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ABSTRACT 27 

Information about the genomic processes underlying responses to temperature changes is still limited 28 

in non-model marine invertebrates. In this sense, transcriptomic analyses can help to identify genes 29 

potentially related to thermal responses. We here investigated, via RNA-seq, whole-transcriptomic 30 

responses to increased and decreased temperatures in a thermophilous keystone sea urchin, Arbacia 31 

lixula, whose populations are increasing in the Mediterranean. This species is a key driver of benthic 32 

communities’ structure due to its grazing activity. We found a strong response to experimentally 33 

induced cold temperature (7ºC), with 1,181 differentially expressed transcripts relative to the control 34 

condition (13ºC), compared to only 179 in the warm (22ºC) treatment. A total of 84 (cold treatment) 35 

and 3 (warm treatment) Gene Ontology terms were linked to the differentially expressed transcripts. 36 

At 7ºC the expression of genes encoding different heat shock proteins (HSPs) was up-regulated, 37 

together with apoptotic suppressor genes (e.g. Bcl2), genes involved in the infection response and/or 38 

pathogen-recognition (e.g. echinoidin) and ATP-associated genes, while protein biosynthesis and 39 

DNA replication pathways were down-regulated. At 22 ºC neither HSPs induction nor activation of 40 

the previously mentioned pathways were detected, with the exception of some apoptotic-related 41 

activities that were up-regulated. Our results suggest a strong transcriptional response associated with 42 

low temperatures, and support the idea of low water temperature being a major limitation for A. lixula 43 

expansion across deep Mediterranean and northerner Atlantic waters. 44 
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INTRODUCTION 54 

 55 

Predicting organismal responses to environmental shifts is one of the main priorities of 56 

contemporary ecology (Calosi et al., 2017; King, McKeown, Smale, & Moore, 2018; Donelson et al., 57 

2019). During the last decades, scientific studies have linked global warming, characterised by both an 58 

increase in mean temperatures and frequency of heat waves (Jordà, Marbà & Duarte 2012; Oliver et 59 

al., 2018), to detrimental impacts on marine systems at different biological levels. At the ecosystem 60 

level, impacts include the alteration of the whole ecosystem functioning as changes in food-wed 61 

dynamics and in ecosystem productivity occur, together with biodiversity loss (see Smale et al., 2019; 62 

Stillman, 2019). Mean temperature increases and heat waves also result in a number of lethal and sub-63 

lethal effects on particular species and populations, including coral reef bleaching, alteration of animal 64 

migration routes and behaviour, and shifts of marine taxa distribution patterns, among many others 65 

(e.g. Hoegh-Guldberg & Bruno, 2010; Deutsch, Ferrel, Seibel, Pörtner & Huey, 2015; Hughes et al., 66 

2017; King et al., 2018). At the individual level, when organisms are exposed to sub-lethal extreme 67 

temperatures stress is likely to occur (e.g. Buckley & Huey, 2016). To compensate the negative 68 

impacts related with stress, organisms develop different molecular and cellular mechanisms to 69 

maintain physiological performance and cell homeostasis (Pörtner, 2002; Buckley & Huey, 2016).  70 

The cellular and molecular pathways involved in thermal stress response in marine organisms 71 

have been recently thoroughly studied. These studies showed changes in expression patterns of stress-72 

responsive genes, including gene pathways that regulate metabolism, oxidation-reduction processes, 73 

cell cycle, and protein folding repair systems, among others (e.g. Gleason & Burton, 2015; Zhu et al., 74 

2016; Gierz, Forêt & Leggat, 2017; Kim, Kim, Choi & Rhee, 2017; Xu, Zhou & Sun, 2018; Zheng et 75 

al., 2019). But, in marine invertebrates, most interest has focused on Heat Shock Proteins (HSPs) 76 

(Feder & Hofmann, 1999; Tomanek, 2010; Kim et al., 2017). HSPs are chaperones highly conserved 77 

during metazoan evolution that help proteins’ folding and transport across cell membranes during non-78 

stressful conditions. They also refold and stabilise denatured proteins under different conditions of 79 

stress (e.g. Matranga, Toia, Bonaventura & Müller, 2000; Di Natale et al., 2019). Nevertheless, 80 
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additional knowledge on the involvement of different genes and gene pathways, such as antioxidant 81 

genes, apoptosis-associated and immune-associated genes, in ecologically relevant marine 82 

invertebrates under thermal shifts is still desirable to unravel the whole mechanisms of thermal stress 83 

response (Gleason & Burton, 2015; Zhu et al., 2016). One relatively recent approach to investigate 84 

organismal rapid responses to environmental shifts, to identify potential physiological networks, and 85 

to discover candidate genes involved in their responses, is to explore the whole transcriptional profiles 86 

using RNA-seq techniques (e.g. Zhu, Zhang, Li, Que & Zhang, 2016; Evans, Pespeni, Hofmann, 87 

Palumbi & Sanford, 2017; Xu et al., 2018). Although the relationship between mRNA transcript 88 

abundance and protein abundance is still not clear (Feder & Walser, 2005), some studies have shown a 89 

correlation between these two variables (Maier, Güell & Serrano, 2009). Changes in gene expression 90 

are considered to be sensitive indicators of stress and potential predictors of organismal physiology 91 

under experimental conditions (Feder & Walser, 2005; Buckley, Gracey & Somero 2006; Schoville, 92 

Barreto, Moy, Wolff & Burton, 2012). 93 

Among marine ecosystems, one the most impacted seas in the world is the Mediterranean 94 

(Lejeusne, Chevaldonné, Pergent-Martini, Boudouresque & Pérez, 2010; Coll et al., 2010). This sea is 95 

a hotspot of marine diversity subject to intense anthropogenic pressures (Claudet & Fraschetti, 2010; 96 

Templado 2014), which interact with the ongoing global warming (Francour, Boudouresque, 97 

Harmelin, Harmelin-Vivien & Quignard, 1994; Jordà et al. 2012). During the last three decades, 98 

summer surface temperature (SST) has risen in the Mediterranean at a rate ranging from 0.25ºC per 99 

decade in the western basin to 0.65ºC per decade in the eastern one (Marbà, Jordà, Agustí, Girard & 100 

Duarte, 2015). High-resolution ocean models, considering a diversity of potential climate change 101 

scenarios, have projected in all cases a significant increase in SST by the end of the century (see 102 

Somot, Sevault & Déqué, 2006; 2008; Parry, Canziani, Palutikof, Van Der Linden, & Hanson, 2007; 103 

Shaltout, & Omstedt, 2014). A Mediterranean seawater temperature rise represents a challenge for 104 

most mediterranean taxa, reflected in sub-lethal effects linked to behavioural and physiological 105 

responses (e.g. Anestis, Lazo, Pörtner & Michaelidis 2007; Prusina et al., 2014), lethal outcomes, 106 

including mass mortality events associated to heat waves (e.g. Cerrano et al., 2000; Coma et al., 2009; 107 
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Garrabou et al., 2009), and the collapse of whole ecosystems along the warmest areas of the 108 

Mediterranean (Rilov, 2016). This warming also brings about other indirect effects, accelerating the 109 

entrance of warm-water alien species (Raitsos et al., 2010) and promoting the expansion of subtropical 110 

species that naturally colonised the Mediterranean during different geological periods (Briand, 2008; 111 

and examples of echinoderms in Wangensteen, Turon, Pérez-Portela & Palacín, 2012; Garcia-Cisneros 112 

et al. 2017; Pérez-Portela et al., 2019).  113 

The black sea urchin Arbacia lixula (Linnaeus 1758) has tropical affinities (Tortonese, 1965) 114 

and an amphi-Atlantic distribution across shallow rocky ecosystems, being the Moroccan coast its 115 

northern-most distribution limit in the east Atlantic. This sea urchin entered the Mediterranean basin 116 

during the last Pleistocene interglacial period (Wangensteen et al., 2012; Pérez-Portela et al., 2019), 117 

and it is now a common species across the whole Mediterranean (Tortonese, 1965; Palacín, Turon, 118 

Ballesteros, Giribet & López, 1998). Densities of this species significantly increased in some 119 

Mediterranean areas during the last decades (Francour et al., 1994, Harmelin et al., 1995; Hereu et al., 120 

2012), and it is among the key drivers structuring littoral communities due to its grazing activity 121 

(Bonaviri, Fernández, Fanelli, Badalamenti & Gianguzza, 2011). The species is capable of shifting 122 

littoral complex macroalgal beds into “barren grounds”- areas of high densities of sea urchins deprived 123 

of erect seaweeds and dominated by crustose coralline algae - (Gianguzza et al., 2011; Bonaviri et al., 124 

2011). Several authors have predicted that the foreseen global warming might have a positive effect on 125 

its reproduction output and larval survival (Francour et al., 1994; Gianguzza et al., 2014; 126 

Wangensteen, Dupont, Casties, Turon & Palacín, 2013a; Wangensteen, Turon Caso & Palacín 2013b; 127 

Visconti et al., 2017). This potential effect, if real, will represent a worrisome increase of the impact of 128 

this sea urchin on littoral ecosystems in a near future (Gianguzza et al., 2011; Wangensteen et al., 129 

2013a, 2013b). On the other hand, it seems that the distribution of A. lixula is constrained by low 130 

temperatures, like the low sea surface temperature provoked by the southward Portugal Current 131 

(Martins, Hamann & Fiùza, 2002), which might be the cause of its absence along the south Atlantic 132 

coast of Europe (Wangensteen et al., 2012). In this sense, experiments to investigate the potential of A. 133 

lixula to invade deep seawaters, analysing the combined effect of pressure (from 1 atm to 250 atm) 134 
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and temperature (from 5ºC to 15ºC) on the survival of embryos and larvae, showed that the 135 

combination of high temperatures and pressures, rather than temperature per se, might be the major 136 

factor limiting the distribution in depth (Young, Tyler & Fenaux, 1997). It was then concluded that A. 137 

lixula is more likely to invade deep habitats of the Mediterranean than open Atlantic ones, the latter 138 

being characterised by lower deep temperatures (Young, Tyler & Fenaux, 1997). In contrast, more 139 

recent studies have demonstrated higher mortality rates, larval growth abnormalities and significant 140 

delays in settlement at the lowest experimental temperatures tested in this species (experimental 141 

temperatures from 18ºC to 22ºC in Privitera, Noli, Falugi, & Chiantore, 2011; and from 16ºC to 19ºC 142 

in Wangensteen et al., 2013a). According to these studies, the abundance of A. lixula in the 143 

Mediterranean might be constrained by the low winter temperature of colder years, when mean 144 

temperatures can drop to 11°C, because gonad maturation is then considerably impaired (Lejeusne et 145 

al., 2010; Wangensteen et al., 2013a). But whereas the mentioned studies shed some light on the 146 

effects of thermal variation on the early development stages of A. lixula, almost nothing is known 147 

about its effects on the general performance of adult individuals, which can have different thermal 148 

sensitivity (Buckley & Huey, 2016). The capability of adult individuals to acclimatise and endure 149 

thermal changes is highly relevant from an evolutionary perspective. It not only affects their own 150 

survival and/or fertility, but can also result in negative transgenerational carry-on effects on 151 

hatchability and larval size of the next generation, which have been shown after prolonged periods of 152 

parental exposure to elevated temperatures in some sea urchins (Zhao et al., 2018). In sea urchins, 153 

transcriptomes from different tissue types and larval thermal stress responses have been characterised 154 

(e.g. Runcie et al., 2012; Gillard, Garama & Brown, 2014; Gaitán-Espitia, Sánchez, Bruning & 155 

Cárdenas, 2016; Pérez-Portela, Turon & Riesgo, 2016; Jia et al., 2017; Clark et al., 2019). But, to our 156 

knowledge, transcriptome-wide screenings have never been used for measuring responses to thermal 157 

variation in adult individuals of this animal group. 158 

 The aim of this study is to explore the short-term transcriptional response to thermal changes 159 

in the subtropical sea urchin A. lixula. We set three specific objectives for our study: a) To quantify 160 

and compare transcriptional responses to both high and low temperature treatments in A. lixula under 161 
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experimental conditions, b) To identify some of the most important candidate genes involved in rapid 162 

thermal responses in sea urchins, and c) To determine the conservation of the genetic machinery 163 

involved in thermal responses for both increase and decrease temperature challenges.  164 

Many studies on global warming focus on the negative effect of rising temperatures, but in this study, 165 

we worked under the hypothesis that A. lixula will experience higher stress when subjected to low 166 

rather than to high temperatures. Based on previous transcriptional information from marine 167 

invertebrates under thermal stress (e.g. Gleason & Burton, 2015; Zhu et al., 2016), we also expect 168 

changes of expression patterns in different gene pathways during our temperature treatments, 169 

including genes encoding HSPs, apoptosis and anti-apoptosis mechanisms, ATP-associated genes due 170 

to an increase of energy demand to restore cell homeostasis, antioxidant genes since extreme 171 

temperatures can increase cells’ oxidative stress, and immune-associated genes (Xu et al., 2018). The 172 

information obtained here will be relevant to understand the ecophysiological patterns of sea urchins 173 

exposed to thermal challenges. We also discuss the significance of our findings for the foreseeable 174 

ecological spread of this keystone species in the Mediterranean.  175 

 176 

MATERIAL AND METHODS 177 

 178 

Sea urchin collection 179 

 180 

Adult specimens of A. lixula were collected by SCUBA diving in December 2012 from the shallow 181 

subtidal population (5-8 m depth) of Punta Santa Anna, Blanes (41°40′22.47″N, 2°48′10.81″E, North-182 

western Mediterranean; Figure 1). Specimens were quickly transported to the laboratory (less than 2 183 

Km away) in a cooler with seawater and oxygen tablets to keep stress induced by land transportation 184 

to a minimum. Experiments were performed in the LEOV (Laboratory of Experimentation with Living 185 

Organisms) facility of the Centre for Advanced Studies of Blanes (CEAB), equipped with an open 186 

system of running seawater coming directly from a sea intake. Once in the laboratory, sea urchins 187 

were measured with callipers and left to adjust for 48 hours in a common chamber with airflow and 188 
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flow-through running seawater at 13˚C, which was the sea temperature in Blanes at the collection 189 

time. During these 48 hours animals had rocky surfaces available for grazing. 190 

 191 

Experimental design 192 

 193 

To quantify rapid transcriptomic responses of A. lixula under thermal assays, we exposed adult 194 

sea urchins (test diameter 40 to 50 mm) to three different treatments under controlled conditions in 195 

laboratory for 20 hours: control (CT) with sea water at 13˚C± 1˚C, sea water temperature at 7˚C± 196 

0.5˚C (T7), and sea water temperature at 22˚C ± 0.5˚C (T22). We set the temperature exposure time to 197 

20 hours because previous experiments of thermal stress responses in other marine invertebrates 198 

demonstrated maximum peaks of expression between the first 6- 24 hours, depending on the genes 199 

(e.g. Zhu et al., 2016; Kim et al., 2017).  200 

It is important to note that our goal was to submit the test organisms to an acute thermal 201 

change to measure their responses, not to mimic highest or lowest seasonal temperatures in the area. 202 

The treatment temperatures were chosen to represent an important shift with respect to the controls 203 

(13ºC, the surface water temperature at this location when sea urchins were collected in wintertime) 204 

while remaining within realistic values for our area of study, the NW Mediterranean. Thermal 205 

sensitivity and resistance of organisms are not constant over time and often shift in response to 206 

seasonal conditions (Buckley & Huey, 2016). The temperatures chosen, therefore, would have been 207 

different had we performed the trials at other seasons as they were contingent on current conditions at 208 

the time of the experiment. The average summer surface temperatures in the Mediterranean range 209 

from 22ºC to 28ºC, with the lowest values at the north Aegean, Alboran Sea, and NW Mediterranean 210 

(Pastor 2012; Marbà et al., 2015). The global average for the coldest month of the year (February) in 211 

the Mediterranean is 14.5ºC, with a lower average value (12º-13ºC) found at the NW Mediterranean 212 

(Pastor 2012) (see Supplementary Information S1). Since the species’ thermal history can determine 213 

the thresholds of stress response (Osovitz & Hofmann 2005) and thermal sensitivity can change over 214 

the seasons, we made a preliminary assessment of the tolerance limits of our NW Mediterranean 215 
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population at that time of the year (so-called here “trials”), with several temperatures assayed over a 216 

20 hours period and visual inspection of the state and activity level of 10 sea urchins per temperature 217 

treatment. Specimens used for the trials were not used for further experiments and were returned to the 218 

sea after experimentation, nor were samples collected for transcriptomic analysis during the trials. For 219 

the trials, we used 22ºC, 24ºC, and 26ºC as upper thermal limits, and 12ºC, 9ºC and 7ºC as lower 220 

limits. 7˚C and 22˚C marked the lower and upper thresholds, respectively, at which all individuals 221 

used for the trials remained alive, visually healthy (intact skin, no algae or microorganism colonies 222 

growing up over the animal surface and no massive spine lost) and active (feet and spines movement). 223 

For the cold treatment, 7ºC (a decrease of 6ºC relative to the control) was the limit temperature 224 

achievable in winter in shallow embayments in the NW Mediterranean (e.g. Ordoñez et al. 2015), 225 

while for the warm treatment we increased temperature by 9ºC (relative to the control), being 22º-23ºC 226 

the conditions encountered in mid-summer in the study area (e.g. Pastor 2012; Marbà et al., 2015; De 227 

Caralt, González, Turon & Uriz, 2018). Over 22ºC, experimental animals either died or presented 228 

clear signs of infection with microorganism colonies over the skin and/or massive loss of spines. We 229 

emphasize that, while sea urchins thrive at this temperature and higher in summer, we were 230 

performing an acute exposure treatment during wintertime, so we had to adjust our treatments 231 

accordingly.  232 

Our experimental design for transcriptomic analysis consisted of two different experiments: A 233 

“Low temperature” experiment comparing the control condition at 13˚C ± 1˚C and experimental 234 

condition at 7˚C ± 0.5˚C, hereafter named as “Control vs T7”, and a “High temperature” experiment 235 

comparing the control condition at 13˚C ± 1˚C and experimental condition at 22˚C ± 0.5˚C, hereafter 236 

named as “Control vs T22” (see Figure 1). Samples used as control condition were the same for both 237 

experiments, since all treatments were run at the same time and laboratory. After the acclimation 238 

period of 48 hours, each sea urchin was placed in an independent aquarium to avoid interactions 239 

among specimens. Each aquarium had constant airflow and the seawater temperature was set at the 240 

required temperature (13ºC, 7ºC or 22ºC) prior to adding the sea urchins. Temperature of the aquaria 241 

was controlled with HOBO loggers (one per aquarium). Aquaria with different treatments were 242 
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randomly allocated across the wet-lab space to avoid any bias related to their spatial distribution. 243 

Animals were not fed during the 20 h of the experimental time, and seawater pH (8.1) was monitored 244 

during the experiments. Eight different replicates (specimens) per treatment were included, although 245 

for gene expression analyses only six of them were processed. The sample size of 8 was used to ensure 246 

an even proportion of sexes in the specimens analysed (since sex determination can be only performed 247 

a posteriori after dissection), and indeed we processed for transcriptomic analyses 3 males and 3 248 

females per treatment. After the 20 hours of treatment, sea urchins were removed from the aquaria, 249 

quickly dissected under RNAase free conditions, and coelomocyte fluid collected and processed as 250 

explained in the next section.  251 

For sex determination we used histological techniques. One gonad per individual was obtained 252 

and preserved in 4% formaldehyde. Gonad samples were washed in distilled water, dehydrated, 253 

embedded in paraffin, cut in 5 μm sections using a Microm HM325 Microtome, and stained in 254 

haematoxylin–eosin as described in Wangensteen et al. (2013b) and Garcia-Cisneros et al. (2017). Sex 255 

was then determined under the optical microscope. 256 

 257 

Coelomocytes collection and RNA sequencing 258 

 259 

Coelomocytes consist of several cell types contained in the coelomic fluid and are immune effectors in 260 

echinoderms (Matranga et al., 2000; Smith et al., 2018). They have been used as biomarkers of stress 261 

due to their prompt response to changing environmental conditions (Matranga et al., 2000, Matranga, 262 

Bonaventura & Di Bella, 2002; Matranga et al., 2005; Pinsino et al., 2008) that can reduce the 263 

protective capacity of these cells and rapidly induce activation of the heat shock proteins expression 264 

(Matranga et al., 2000; Pinsino et al., 2008). Additionally, these cells showed higher thermal response 265 

capacity than other tissues in sea urchins (e.g., digestive tissues, Gonzalez et al., 2016), and protocols 266 

for extraction of high quality RNA and high throughput sequencing have been developed for this 267 

tissue type in A. lixula (Pérez-Portela & Riesgo 2013; Pérez-Portela et al., 2016). 268 

Five millilitres of the coelomic fluid of each specimen (a total of 18 specimens; six per 269 
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treatment) was collected using a sterile syringe inserted through the peristomic membrane, taking care 270 

not to puncture the gut. The fluid was then centrifuged, and all fresh cellular components 271 

(coelomocytes) gathered and quickly embedded in TRizol reagent (Invitrogen, www.invitrogen.com). 272 

Total RNA was directly extracted from coelomocytes following a protocol previously optimized for 273 

this species (Pérez-Portela & Riesgo 2013 and Pérez-Portela et al., 2016). Integrity of total RNA and 274 

potential DNA contaminations were initially evaluated by visualizing the 28S rRNA and 18S rRNA 275 

bands into a 1% agarose gel in 1x TAE Buffer. Concentration of the RNA extracts was assessed in a 276 

Hellma spectrophotometer (Hellma Analytics), and total RNA extracts were also run in an Agilent 277 

2100 Bioanalyzer (Agilent Technologies) at the Scientific and Technical Services of the University of 278 

Barcelona for quality measurements. High quality RNA (RINs over 8.5) samples were sent to the 279 

National Centre of Genomic Analyses of Barcelona (CNAG) for mRNA isolation, cDNA library 280 

construction, normalization and sequencing. 281 

Isolation of mRNA and cDNA library preparation for each of the 18 specimens were 282 

performed using the Illumina TruSeq RNA Sample Prep Kit (Illumina, Inc.) following the 283 

manufacturer’s recommendations, with an input of 800-900 ng of mRNA, and average insert size of 284 

the libraries of 300 bp. Quality and concentration of the 18 cDNA libraries was controlled with 285 

Ribogreen Assays in a NanoDrop 3300™ Fluorospectrometer (Thermo Fisher Scientific, 286 

www.thermofisher.com). The 18 libraries (6 per treatment) were multiplexed with Illumina barcodes, 287 

5 libraries per lane were sequenced on an Illumina HiSeq2000 Sequencer, and 101 base paired-end 288 

reads were generated. The 18 libraries from different treatments were randomised across Illumina 289 

lanes. 290 

 291 

Sequence processing and de novo assembly 292 

 293 

The software FASTQC v. 0.10.0 (www.bioinformatics.babraham.ac.uk) was used to visualise and 294 

measure the quality of the raw reads generated in the HiSeq2000. Adapters and bases with low quality 295 

(phred scores <33) were trimmed off, and a length filter was applied to keep only sequences of >25 296 
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bases using TrimGalore v. 0.2.6 (www.bioinformatics.babraham.ac.uk). High-quality reads were re-297 

screened in FASTQC to ensure a good quality of the samples after trimming. A basic scheme of the 298 

most important steps of our pipeline is presented in Figure 2. 299 

Two de novo assemblies, hereafter named as “CT+T7” and “CT+T22”, one per experiment 300 

(“Control vs T7” and “Control vs T22”, respectively), were separately built up as reference for gene 301 

expression analyses. Due to technical difficulties and the low quality of two libraries, for gene 302 

expression only 5 samples could be used for each of the T7 and T22 treatments (see details in Results 303 

section and Figure 1). Nevertheless, these two libraries discarded for gene expression could be used 304 

for the assembly of the respective references. The assemblies were performed separately for each 305 

experiment to ensure that the corresponding reference is the most comprehensive for each particular 306 

experiment. The de novo assemblies were performed with the software Trinity (Grabherr et al., 2011), 307 

which allows detecting differentially spliced isoforms, with default parameters for this software. Only 308 

contigs with a minimum length for reported transcripts of 200 bp and at least 10x coverage were 309 

retained for the assemblies. 310 

The two de novo assemblies were separately blasted against a selection of the nr database of 311 

NCBI containing only proteins from Metazoa (blastx) using BLAST (Altschul et al., 1997) with a cut-312 

off E value of 1e-5. The highest scoring blast hit was used to assign a gene name to each contig. De 313 

novo assemblies were also blasted against both a database containing proteins of bacteria (blastx), and 314 

a database of ribosomal DNA of bacteria (blastn) obtained from NCBI to remove bacterial 315 

contaminations. Sequences with blast hit exclusively against proteins and nucleotides of bacteria were 316 

eliminated from the datasets.  317 

Blast results against Metazoa served as a database for annotation of transcripts differentially 318 

expressed between treatments (see below). Moreover, Blast results of the assemblies were used to 319 

retrieve Gene Ontology (GO) terms with BLAST2GO (Conesa et al., 2005) under different categories: 320 

biological processes, molecular function and cellular component, which are hierarchically organized 321 

into different levels (see Figure 2). The completeness of the reference transcriptomes was assessed 322 
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with BUSCO (Benchmarking Universal Single-Copy Ortholog) against the eukaryotic and metazoan 323 

databases (Simão, Waterhouse, Ioannidis, Kriventseva & Zdobnov, 2015). 324 

  325 

Differential expression analyses and annotation 326 

 327 

Reads from all replicates in each experiment were aligned against the corresponding “reference” 328 

transcriptome as per experiment (see Figure 2). Paired reads after trimming were mapped using 329 

Bowtie2 v. 2.2.1 (Langmead & Salzberg, 2012) as implemented in Trinity (Grabherr et al., 2011). 330 

RSEM v. 1.2.11 (Li & Dewey, 2011) was then run to generate a table with read counts, and unmapped 331 

reads were discarded. In the “reference” transcriptomes, transcripts of the same trinity component 332 

were treated as different isoforms. We retained information of differential expression of all isoforms 333 

detected for a given gene (or component) because they may have different functions. 334 

Differential expression (DE) analyses of the two experiments were performed with the 335 

package DESeq2 (Love, Huber & Anders, 2014) in R v 3.2.1 (R Development Core Team 2008). 336 

Before performing the analyses, preliminary tests to investigate differences in gene expression 337 

between sexes and treatments were performed. No significant differences in response to treatments 338 

were observed between males and females, and “sex” was not considered as a variable in further 339 

analyses. 340 

Before analysing differential gene expression, read counts were normalized, and then a 341 

negative binomial model was fit to accurately estimate differential expression. The significance value 342 

for multiple comparisons was adjusted to 0.01 with the function “padj” (Benjamini-Hochberg 343 

adjustment) as implemented in DESeq2. Transcripts with significantly different expression values 344 

relative to the controls will be hereafter called “DE” transcripts. Component Analyses (PCAs) were 345 

performed and plotted with the same package to visualize variation of expression levels among 346 

samples and treatments. Visualization of the significant outcomes of isoforms differentially expressed 347 

(up- and down-regulated) between treatments of each experiment was obtained with a heatmap 348 

performed with the “gplots” package of R (Warnes, Bolker, Bonebakker & Gentleman, 2016). 349 
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Using the GO annotation results from the de novo assemblies of the two experiments, we 350 

obtained the GO terms associated to the differentially expressed isoforms, which were then input 351 

(together with their associated log2foldchange) to the REVIGO web server (Supek, Bošnjak, Škunca, 352 

&  Šmuc, 2011) to obtain summaries of GO terms. Results were graphically represented with the 353 

“treemap” R package. Size of the rectangles was adjusted to reflect the log2foldchange in REVIGO. 354 

Differentially expressed isoforms without blast hit, unknown function and/or without annotation for 355 

each experiment were assessed with the InterProScan 5 software (Jones et al., 2014), which predicts 356 

protein family membership and the presence of functional domains and sites, at the Superfamily level 357 

(De Lima Morais et al., 2011). The InterproScan was run as implemented in the Blast2GO software 358 

with default parameters. We finally merged the results of the associated GO terms and those from 359 

InterProScan with the purpose of increasing our knowledge of coelomocyte gene functions and GO 360 

annotations. 361 

In order to identify common genes and/or isoforms differentially expressed under temperature 362 

increase and decrease, the de novo assemblies of both experiments, that assigned different transcript 363 

names to all isoforms, were blasted against each other using BLASTn.  364 

 365 

RESULTS 366 

 367 

Data filtering and de novo assembly 368 

 369 

A total of 18 RNA-seq datasets were used for de novo assembling (see Figure 2), and 16 datasets for 370 

quantifying transcriptomic responses in A. lixula (see Figure 1) since one sample from experiment T7 371 

and another from T22 were discarded for gene expression analyses because of their low quality. 372 

Datasets have been deposited in Mendeley Data (doi.org/10.17632/5673n552yj.1). The number of 373 

trimmed reads used for de novo assembly, as per sample replicate and treatment, are detailed in Tables 374 

1 and 2. All replicates had over 26 million reads. 375 

The de novo assembly “CT+T7”, used as a reference for the “Control vs T7” experiment, 376 
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included 141.5 Megabases that rendered 211,650 transcripts (including both genes and their different 377 

isoforms), and 19.6% of them had blast hit with known proteins of metazoans (see species blast hit 378 

distribution in Supplementary Information S2). The reference assembly “CT+T22” for the “Control vs 379 

T22” experiment included 147.4 Megabases, and rendered 219,655 different transcripts, from which 380 

17.9% had blast hit (see species blast hit distribution in Supplementary Information S2). Both de novo 381 

assemblies were very comparable (and had 99,5% transcripts in common), presenting relatively high 382 

N50 values, between 1,102 and 1,114, meaning that over 50% of the transcripts were longer than 383 

1,100 bases. Details of the de novo assemblies for the two different experiments are presented in Table 384 

1. Both, “CT+T7” and “CT+T22”, showed high completeness when compared with BUSCO 385 

conserved ortholog databases of eukaryotes and metazoans (see Table 3). For the reference 386 

assemblies, “CT+T7” and “CT+T22”, 194 and 4,293 transcripts, respectively, had blast hits against 387 

proteins and/ or nucleotides of bacteria and were removed from subsequent analyses. In fact, most 388 

differences between the reference assemblies “CT+T7” and “CT+T22” were due to the amount of 389 

bacterial transcripts. 390 

 391 

General results of differential expression analyses 392 

 393 

The differential expression analyses revealed changes in gene expression between controls and 394 

temperature treatments in both experiments, “Control vs T7” and “Control vs T22”, but with a 395 

remarkable difference in the magnitude of the transcriptomic responses, which was over 6 times 396 

higher in number of differentially expressed (DE) transcripts in the former experiment, as explained 397 

below. We also detected differences in gene expression among different isoforms of the same genes.398 

  399 

In the “Control vs T7” experiment, we detected 1,181 DE transcripts between CT and T7, 400 

being 720 transcripts up-regulated at T7 (61% of the total DE transcripts) and 461 transcripts down-401 

regulated at T7 (49% of the total DE transcripts) (see Figure 3). 445 transcripts (37.7 % of the total DE 402 

transcripts) had blast hit and known function (see Table 4), including 28 transcripts within the top 50 403 
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most significant DE (see Supplementary Information S3). Regarding different isoforms, over all DE 404 

transcripts (potential genes), 176 presented different isoforms (see Supplementary Information S3). 405 

Ten genes presented all isoforms DE between CT and T7, whereas the other 166 genes only showed 406 

some of their isoforms differentially expressed between treatments.  407 

The number of DE transcripts in the “Control vs T22” experiment was much lower than in the 408 

“Control vs T7” experiment, with only 179 DE transcripts, being 57 transcripts up-regulated (32% of 409 

the total DE transcripts) and 122 transcripts down-regulated (68% of the total DE transcripts) in the 410 

T22 treatment (see Figure 2). Only 35 transcripts (19.7 % of the total DE transcripts) had annotation 411 

and known function (Table 4), 10 of them within the top 50 most significant DE. Of these 35 412 

transcripts, 27 had different isoforms, and in all cases only one of their isoforms was DE between CT 413 

and T22 (see Supplementary Information S3). A complete list of differentially expressed, annotated 414 

transcripts for both experiments is presented as Supplementary Information (S3), including transcript 415 

identification code (id), logarithm of the fold change, adjusted p-value with FDR correction obtained 416 

from the expression analyses, gene description, number of isoforms found and transcripts with known 417 

function within the top 50 most significant DE (* Top 50 DE). Fourteen DE transcripts were common 418 

between experiments (see Figure 3) and most of them featured opposite responses between treatments. 419 

Only four of these transcripts had annotations (fam-55cc, tripartite motif-containing protein 3, and wsc 420 

domain- containing protein 1 with opposite responses in T7 and T22, whereas the histone-lysine n-421 

methyltransferase prdm 9 was down-regulated in both temperature treatments of the two experiments, 422 

T7 and T22). 423 

Figure 4 represents the hierarchical clustering of all transcripts related to their expression 424 

differences between treatments for each experiment (heatmaps), and Figure 5 the corresponding 425 

PCAs. The heatmaps and PCAs showed, in general, little differentiation between replicates of the 426 

same treatment, and large differences in transcript expression between treatments. Only one of the 427 

control replicates had a mixed pattern of expression between that of the other control samples (Control 428 

replicate 1, see Figure 4) and those from treatment 22ºC, and clustered together to the T22 samples on 429 

the PCA (see Figure 5). However, this control sample did not follow the same trend in the other 430 
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experiment, “Control vs T7”.  431 

 A total of 84 and three GO terms were found associated to the differentially expressed 432 

transcripts in the “Control vs T7” and “Control vs T22” experiments, respectively (Table 4). The 433 

InterProScan could only predict information of protein domains in six uncharacterised transcripts of 434 

the “Control vs T22” experiment. In Figures 6 and 7 the up- and down-regulated GO categories 435 

associated to DE transcripts from the two experiments are depicted. These GO terms were not equally 436 

represented among categories between up- and down-regulated DE transcripts, or between 437 

experiments. For the experiment “Control vs T7” the most important up-regulated GO term categories 438 

for Biological Process (BP) were “tyrosine metabolism” (including “positive regulation of apoptotic 439 

process”), “peptidyl-tyrosine dephosphorylation”, “protein folding” and “ATP hydrolysis coupled 440 

proton transport”; “proton-transporting V-type ATPase-V0 domain” and “sarcoplasmic reticulum” for 441 

Cellular Component (CC), and “GTP binding”, “protein tyrosine phosphatase activity”, “Protein 442 

tyrosine phosphatase activity”, “sulfo-transferase activity”, “hydrogen ion transmembrane transporter 443 

activity” and “lipid binding” (among others) for Molecular Function (MF) (Figure 6). The most 444 

important down-regulated GO categories for BP were “neurotransmitter transport”, “Intracellular 445 

signal transduction” and “protein O-linked glycosylation”; “nuclear origin of replication recognition 446 

complex”, “cell”, “intracellular” and “integral component of membrane” for CC, and “protein-N-447 

acetylglucosaminyltransferase activity”, “sequence- specific DNA binding”, NAD-dependent histone 448 

deacetylase activity” and “zinc ion binding” (among others) for MF (Figure 6). For the experiment 449 

“Control vs T22” only GO information for down regulated transcripts could be obtained and, among 450 

them, the most important DE categories were “notch signalling pathway”, “multicellular organismal 451 

development” for BP, “integral component of membrane”, “membrane”, and “SAGA-type complex” 452 

for CC, and “calcium ion” and “protein binding” for MF. 453 

 454 

Differentially expressed genes involved in thermal stress, apoptotic processes and immune responses 455 

in Arbacia lixula 456 

 457 
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At 7˚C, the production of different heat shock proteins was up-regulated, including different 458 

transcripts for the Heat Shock family proteins: an inducible Hsp70, and Hsp71, Hsp90 and the Dnaj 459 

homolog subfamily c member 21(DNAJC21), which encodes a member of the DNAJ heat shock 460 

protein 40 family (Hsp40) (see Supplementary Information S3 for Hsp40 transcripts and foldchanges: 461 

c256938_g1_i3, log2foldchange= 2.98; c260821_g2_i1, log2foldchange= 1.35; c260821_g1_i2, 462 

log2foldchange= 3.05; c264479_g1_i1, log2foldchange= 7.35; c249691_g1_i1, log2foldchange= 1.91; 463 

c271252_g1_i1, log2foldchange= 3.69) acting as a co-chaperone of Hsp70 (Supplementary 464 

Information S3). In addition, the receptor of stress Wsc domain-containing protein 1 was found down-465 

regulated at 7˚C and up-regulated at 22˚C (Supplementary Information S3: c266025_g2_i1, 466 

log2foldchange= -1.19; and c265343_g1_i1, log2foldchange= 1.84, respectively). 467 

Several genes from the apoptotic gene complements were differentially expressed between 468 

controls and T7. They included the Bcl2 (up-regulated in T7, Supplementary Information S3: 469 

c263429_g1_i1, log2foldchange= 2.17; and c271119_g2_i1, log2foldchange= 1.73), sequestosome 1 470 

(up-regulated in T7, Supplementary Information S3: c257995_g1_i1, log2foldchange= 3.72) and fas-471 

associating death domain-containing protein and death ligand signal enhancer (down- and up-472 

regulated in T7, respectively; Supplementary Information S3: c268119_g1_i3, log2foldchange= -1.48 473 

and c270362_g1_i1, log2foldchange= 1.99). In T22, we found upregulation of immediate early 474 

response 3-interacting protein 1-like (Supplementary Information S3: c276658_g1_i2, 475 

log2foldchange= 1.55).  476 

At 7˚C, there was an up-regulation of genes involved in the innate immune response identified 477 

as echinoidin, senescence associated-gene and Tripartite motif-containing protein 3 (TRIM) 478 

(Supplementary Information S3: c258741_g1_i1, log2foldchange= 5.35; c150071_g1_i1, 479 

log2foldchange= 6.02; c273778_g2_i1, log2foldchange= 2.90). In addition, the genes interleukin-17 480 

and cytohesin-like were also upregulated in T7 (Supplementary Information S3: c239836_g1_i1, 481 

log2foldchange=6.22; and c263807_g1_i1, log2foldchange=1.77, respectively).    482 

 483 

DISCUSSION 484 
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 485 

The response of marine organisms to thermal shifts is likely different across the species’ range of 486 

distribution (Donelson et al. 2019). In our study, we investigated transcriptional responses of a 487 

keystone species, the black sea urchin, in the northern part of its range of distribution (NW 488 

Mediterranean). We found contrasting responses to low (7˚C) and high (22˚C) temperatures, with the 489 

former eliciting a much stronger reaction. Such differences were related to both the magnitude of the 490 

transcriptional response (e.g. number of up- and down- regulated transcripts and gene expression fold-491 

change) and the diversity of genes and pathways involved in these responses. 492 

The capacity of ectotherm species to thrive across wide temperature ranges is, in part, based 493 

on their ability to modulate the expression of genes encoding proteins involved in the physiological, 494 

metabolic and cellular stress responses (Stillman, 2003; Runcie et al., 2012; Tomanek, 2010; Kim et 495 

al., 2017). Resistance to acute sublethal temperatures is an adaptive trait that varies among species of 496 

the same genus from different latitudes and habitats (Stillman, 2003; Yao & Somero, 2012). In 497 

general, marine tropical species are more heat tolerant than their temperate and cold counterparts 498 

(Somero, 2010). Paradoxically, analyses of both marine and terrestrial ectotherms suggest that 499 

tropical, or the warmest-adapted species, may be more threatened by global warming because they live 500 

closer to their upper physiological thermal limit, and have higher metabolic rates that accelerate 501 

quicker than in colder species under rising thermal conditions (e.g. Stillman, 2003; Somero, 2010). 502 

According to this expectation, A. lixula, a heat tolerant species with sub-tropical affinities (Tortonese, 503 

1965; Wangensteen et al., 2012), could be threatened by global warming across the warmest areas of 504 

its geographical distribution (Elmasry et al., 2015; Rilov 2015), where it might be closer to its thermal 505 

physiological limits. However, in the Northwestern Mediterranean this species is in the coldest part of 506 

their range of distribution, which encompasses both sides of the tropical and subtropical Atlantic 507 

(Wangensteen et al. 2012), and thus it could be more limited by cold temperatures. Current 508 

Mediterranean sea warming may be removing thermal limitations for this species (Francour et al., 509 

1994; Gianguzza et al., 2014; Wangensteen et al., 2013a, 2013b; Visconti et al., 2017) allowing an 510 

increase in its abundance in the Mediterranean. 511 
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In general, it is difficult to determine whether changes of expression in particular genes have 512 

important functional consequences, because for each gene the threshold for metabolic and 513 

physiological downstream effects can be different, and relatively small changes in gene expression of 514 

only a few genes can be as functionally important as larger changes in other genes (Oleksiak, Roach  515 

& Crawford, 2005). However, the overall changes of gene expression patterns found in A. lixula, the 516 

number of genes differentially expressed, and the clustering of one control individual with the 22˚C 517 

experimental individuals at the PCA and heatmap, indicates a lower transcriptional response to rapid 518 

temperature increases in this subtropical species.  519 

Decreasing temperatures elicited the activation of genes related to metabolism changes, pro- 520 

and anti-apoptotic mechanisms, and immune responses in coelomocytes of A. lixula. Among the 521 

upregulated genes related to the stress response at 7˚C, we detected the Hsp71, Hsp90, an inducible 522 

Hsp70, and Hsp40; being the last one a co-chaperone of the Hsp70. The protein Hsp40s stimulate the 523 

ATPase activity of Hsp70s and targets unfolded proteins to Hsp70s (Ngosuwan, Wang, Fung & 524 

Chirico, 2003). In general, these HSP chaperones are involved in the strong and mild thermal stress 525 

response and protein folding reaction to avoid protein denaturation in sea urchins, either in adult or 526 

early development stages and eggs (e.g. Matranga et al., 2000, 2002; Runcie et al., 2012; González, 527 

Gaitán-Espitia, Font, Cárdenas & González-Aravena, 2016). Their presence might be involved in the 528 

wide thermal distribution of some particular marine species (see Zhu et al., 2016, and references 529 

herein), and the HSP family seems to be a mechanism to cope with the stress associated with cold, and 530 

with temperatures existing along the lower-end of thermal tolerances for A. lixula (e.g. NW 531 

Mediterranean).  On the other hand, no overexpression of genes encoding HSPs was detected at 22˚C 532 

in A. lixula.  533 

Under conditions of thermal stress, protein refolding by HSPs may not be efficient enough, 534 

and misfolded protein degradation can be necessary to restore cell homeostasis (Mosser et al., 2000). 535 

Therefore, other mechanisms such as proteolysis to eliminate disfunctional proteins via the Ubiquitin 536 

proteosome pathway, and finally apoptosis to eliminate damaged cells, can be activated (Somero, 537 

2010; Logan & Somero, 2011; Zhu et al., 2016). We only detected signs of Ubiquitin proteosome 538 
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pathway activation in the 7˚C treatment, with the up-regulation of the gene sequestosome 1 539 

(Supplementary Information S3), which is an autophagosome cargo that detects proteins for autophagy 540 

previously identified in echinoderms (Bitto et al. 2014), and the e3 ubiquitin-protein ligase, which 541 

targets damaged proteins for transport and degradation by the proteasome (Ardley & Robinson, 2005).  542 

In addition, we observed differential expression of several apoptosis-associated genes in both 543 

treatments, 7˚C and 22˚C. Several studies demonstrated that sea urchins hold a complex apoptotic 544 

system (Agnello & Roccheri 2010; Lesser, 2012). We found transcriptional changes at 7˚C in 545 

apoptosis suppressor genes such as the Bcl2 (up-regulated, Supplementary Information S3), widely 546 

distributed in different marine invertebrates (see Lesser, 2012), and in genes containing death domains 547 

(down-regulated: fas-associating death domain-containing protein and death ligand signal enhancer, 548 

Supplementary Information S3) that induce cell apoptosis through the regulation of caspase activation 549 

(Agnello & Roccheri 2010; Zhu et al., 2016). These findings suggest the activation of some particular 550 

pathways to control the programmed cell death at low temperatures. The up-regulation at 22˚C of the 551 

gene immediate early response 3-interacting protein 1-like (Supplementary Information S3), which is 552 

a molecule involved in protein transport between the Sarcoplasmic reticulum and Golgi apparatus and 553 

that mediates apoptosis in human cells (https://www.uniprot.org), suggests that apoptosis is also 554 

occurring as a response of increased experimental temperatures.  555 

Additionally, a Serine threonine- protein kinase pim3, an enzyme involved in the regulation of 556 

cell transport and survival, which prevents apoptosis by inducing the release of the anti-apoptotic Bcl2 557 

mentioned before (Cross et al., 2000) was also overexpressed at 7˚C, whereas a Serine threonine-558 

protein phosphatase 6, with opposite function to the kinase enzyme (Cross et al., 2000), was down-559 

regulated at 22˚C. Another interesting finding is the opposite pattern of gene expression found 560 

between experiments for the Wsc domain-containing protein 1 (down-regulated at 7˚C and up-561 

regulated at 22˚C) (Supplementary Information S3). Different members of the Wsc family are 562 

identified as putative receptors of stress and required for the heat shock response and the maintenance 563 

of cell wall integrity in yeasts (Lodder, Lee & Ballester, 1999). The Wsc members are upstream 564 

regulators of other serine-threonine kinases, the protein kinase C1 (PKC1) and mitogen-activated 565 

https://www.uniprot.org/
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protein kinase (MAPK), which can promote apoptosis (Lodder et al., 1999; Cross et al., 2000). The 566 

differential expression of these molecules between control conditions, 7˚C, and 22˚C, evidences the 567 

different regulation systems of apoptosis and control of cell damage at different temperatures in A. 568 

lixula. 569 

Previous experiments on echinoderms demonstrated the effect of thermal stress on the 570 

immune capacity of coelomocytes, being this effect greater at higher than lower temperatures in the 571 

analysed species (the sea cucumber Apostichopus japonicus, Wang, Yang, Gao & Liu, 2008). 572 

However, in A. lixula, it was the lowest temperature the one that triggered a higher immune response 573 

in terms of gene expression. The echinoidin, senescence associated-gene, cytohesin-like and tripartite 574 

motif-containing protein 3 (TRIM) (Supplementary Information S3) involved in the infection response 575 

and/or pathogen-recognition process against bacteria, fungi and viruses (Smith et al., 2006; Ozato, 576 

Shing & Chang, 2008) were up-regulated at 7ºC. In addition, the gene interleukin-17 (Supplementary 577 

Information S3) which is a cytokine inducing and mediates proinflammatory responses in metazoans 578 

and stimulates phagocytosis in echinoderms (Beck et al. 1993), was also up-regulated at 7˚C. None of 579 

these immune genes were, however, activated (or, when detected, were down-regulated) at the highest 580 

experimental temperature (e.g. TRIM), suggesting no immune response at 22˚C. 581 

  582 

The differentially expressed genes for the low and high temperature experiment were 583 

associated to different GO categories that provide additional information. These GO categories 584 

summarise the most significant biological processes, cellular components, and molecular functions 585 

that were up- and down- regulated during the experimental response in A. lixula. For the high thermal 586 

stress experiment, we could only recover GO terms of three transcripts, and therefore, there is limited 587 

information to reach conclusions on the GO categories for this experiment. However, we detected the 588 

down-regulation of two interesting GO terms, the “Notch signaling pathway” with the associated gene 589 

neurogenic locus notch (Notch1), and the “integral component of membrane” with the associated gene 590 

encoding a Notch ligand, the delta protein. Notch is a cell signaling system calcium-dependent 591 

involved in different functions including cell differentiation, proliferation and apoptosis. In general, 592 
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Notch inhibits apoptosis and induces cell proliferation but, in vitro studies, using different cell 593 

lineages, showed that hyperthermia reduced Notch1 expression and apoptosis in some cell lineages, 594 

whereas a opposite pattern was obtained in other cell lineages (Basile et al., 2007). Therefore, the 595 

effect of the Notch down-regulation at high temperatures in coelomocytes is not completely clear, but 596 

it suggest the existence of an alternative pathway of apoptosis under thermal stress.  597 

Among the GO terms up-regulated during cold exposure that add further information we 598 

found the “Tyrosine metabolism” term, which is related to cell protection against stress, including the 599 

up-regulation of HSPs, cytoskeletal stabilization and apoptosis decrease (Baird, Niederlechner, Beck, 600 

Kallweit & Wischmeyer, 2013). This major GO term also includes the subordinate “Positive 601 

regulation of apoptotic process”, which can induce apoptosis when protein refolding by HSPs is not 602 

efficient enough. The induction of HSPs during thermal stress can considerably increase the energy 603 

demand in cells (Tomanek 2010; Dong, Yu, Wang & Dong, 2011). This increased energy demand is 604 

reflected in the over-representation of the GO category “ATP hydrolysis”, a catabolic process that 605 

releases energy previously stored in the form of ATP, and the up-regulation of the V-type proton 606 

ATPase gene (see Supplementary Information S3), a proton pump found within the 607 

“proton−transporting V−type ATPase, V0 domain” term. Likewise, the terms “Protein folding” and 608 

“Protein transport”, the last one subordinate to the “ATP hydrolysis” category, are linked to protein 609 

transport to the Sarcoplasmic reticulum for folding reaction to avoid protein denaturalization by HSPs. 610 

Hence, the “Sarcoplasmic Reticulum” category, a key organelle involved in the thermal stress 611 

response that ensures that misfolded proteins are directed towards a degradative pathway to the central 612 

cytoplasmic proteolytic machinery (Malhotra & Kaufman, 2007), was also over-represented at 7ºC. 613 

Actually, the induction of expression of Hsp70s has been directly associated to the accumulation of 614 

unfolded proteins in the sarcoplasmic reticulum (Rachel, Tyson & Stirling, 1997; Rao et al., 2002), 615 

which are later eliminated if refolding fails by retrograde transport across the reticulum membrane 616 

(Kostova & Wolf, 2003). Other minor up-regulated GO terms, at the biological process and molecular 617 

function, were “oxidation-reduction processes” (1 Go term) and “oxidoreductase activitiy” (2 Go 618 

terms). These terms suggest that low temperature affects the intracellular redox state in coelomocytes. 619 
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 Among the down- regulated GO terms at the 7˚C treatment we found “Neurotransmitter 620 

transport” with the associated differentially expressed genes Creatine transporter and Trafficking 621 

protein particle complex subunit 2 protein. The Creatine transporter is essential for normal brain 622 

function in humans and tissues with high energy demands because, together with other molecules, 623 

maintains ATP levels (Christie, 2007). The down-regulation of these genes and pathways could be a 624 

potential response to energy competition with the induction of HSPs during thermal stress. The 7˚C 625 

treatment also seemed to inhibit nuclear replication, as represented by the down-regulation of the 626 

“nuclear origin of replication recognition complex” and “DNA replication” terms, among others. The 627 

origin recognition complex is a ATP-dependent system that, among other factors, enables the initiation 628 

of DNA replication in eukaryotic cells (Li & Stillman, 2013). Cells under stressful conditions must 629 

prevent cell division in favour of protective funtions (Jonas, Liu, Chien & Laub, 2013), as well as to 630 

avoid entering in a new DNA replication cycle if there is DNA damage  (Lee et al., 2009). We also 631 

found down-regulation of the “Intracellular signal transduction” term, with the subordinate “cell redox 632 

homeostasis” and “smoothened signalling pathway” terms, and the “protein O-linked glycosylation” 633 

term. Smoothened is a key transmembrane protein involved in a critical cell-to-cell communication 634 

system for tissue homeostasis. Glycosylation, on the other hand, is one of the most common post-635 

transcriptional modifications during protein biosynthesis, which contributes to increase protein 636 

solubility and stability against proteolysis, and can also be involved in their correct folding (Shental-637 

Bechor & Levy, 2008). Hence, the down-regulation of these last two terms reflects the potential 638 

negative effect of low temperatures on protein biosynthesis and stabilization, and homeostasis control 639 

in coelomocyte cells.  640 

In summary, our results based on RNA-seq analyses of the whole transcriptome of 641 

coelomocytes in A. lixula show that this sea urchin, or at least this NW Mediterranean population 642 

(Wangensteen et al. 2012; Pérez-Portela et al. 2019), displays strong gene expression changes in 643 

response to the cold treatment, with activation of many genes whose functions could be related to 644 

stress responses in the form of chaperone production, apoptosis regulation, ATP-associated genes, 645 

enhancement of the immune system and redox processes, and down-regulation of gene pathways 646 
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related to protein biosynthesis and DNA replication. Nevertheless, contrary of that found in other 647 

studies (e.g. Gleason & Burton, 2015; Zhu et al., 2016) no activation of genes encoding antioxidant 648 

enzymes was detected in our experiments. As we initially expected, a markedly lower response is 649 

found in the warm treatment, with no activation o deactivation of the previously mentioned pathways, 650 

with the exception of the apoptosis regulation. Although some caution is needed, as we have 651 

characterized transcriptional changes and not protein levels, the differential patterns found in these 652 

genes strongly indicated that sea urchins are more stressed under lowered experimental temperatures.  653 

We acknowledge that we have tested only acute thermal conditions, without any progressive 654 

acclimation. This is an unrealistic scenario but was chosen to elicit a short-term measurable response. 655 

This response was much more marked against lower than higher temperatures, which indicates 656 

potential to compensate for cold stress. Future research should investigate a wider panoply of 657 

temperature regimes combined with acclimation periods. However, our results indicate that A. lixula 658 

might require energy expenditure to withstand the stress associated with low temperatures, while it 659 

does not undergo relevant transcriptional changes when exposed to warm temperatures. This is 660 

coherent with the notion of a thermophilous species living near the colder limit of its physiological 661 

tolerance, as found also when analysing reproductive and larval features (Wangensteen et al., 2013a, 662 

2013b).  663 

It has been suggested that the tropicalization of NW Mediterranean can lead to a shift in 664 

dominance between the temperate common sea urchin Paracentrotus lividus, which will suffer from 665 

warming temperatures, and the thermophilous black sea urchin A. lixula (Gianguzza et al., 2011, 666 

Wangensteen et al., 2013a,b, Carreras et al., 2020). Such a shift can have drastic ecological impacts, as 667 

both species are conspicuous engineer species shaping benthic communities (Bulleri et al., 1999, 668 

Bonaviri et al., 2011). Specific biological and genomic studies are needed to understand the adaptive 669 

capabilities of A. lixula to ongoing warming, but our results add to the available evidence that colder 670 

rather than warmer temperatures may be a limiting factor for A. lixula. The absence of clear signs of 671 

stress at warm temperatures in adults of A. lixula, together with information on larvae development 672 

and gonad maturation (Wangensteen et al., 2013a and 2013b), support the hypothesis of the positive 673 
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effect of winter warming on the species’ reproduction output and larval survival. The ongoing 674 

expansion of the species across the littoral coast of the Mediterranean, with the concomitant impacts 675 

of its grazing activity on littoral communities, may be exacerbated in the near future by rising winter 676 

temperatures in the NW Mediterranean. 677 

 678 

ACKNOWLEDGEMENTS 679 

We are indebted to José Carrillo Ortiz, María Casso, Oriol Sacristan, Magdalena Guardiola, and 680 

Vanessa Arranz for helping during the thermal stress experiments. This research was funded by the 681 

Spanish Government projects ADAPTIVE PGC2018-100735-B-I00 (MCIU/AEI/FEDER, UE) and 682 

PopCOmics CTM2017-88080 (MCIU/AEI/FEDER, UE) and Juan de la Cierva contracts to RPP and 683 

AR. 684 

 685 

REFERENCES 686 

 687 

Agnello, M., & Roccheri, M. C. (2010). Apoptosis: focus on sea urchin development. Apoptosis 15(3), 688 
322-330. 689 
 690 
Anestis, A., Lazou, A., Pörtner, H. O., & Michaelidis, B. (2007). Behavioral, metabolic, and molecular 691 
stress responses of marine bivalve Mytilus galloprovincialis during long-term acclimation at 692 
increasing ambient temperature. American Journal of Physiology-Regulatory, Integrative and 693 
Comparative Physiology, 293, R911-R921. 694 
 695 
Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. 696 
(1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. 697 
Nucleic acids research, 25, 3389-3402. 698 
 699 
Ardley, H.C. & Robinson, P.A. (2005). E3 ubiquitin ligases. Essays in Biochemistry, 41, 15–30. 700 
 701 
Baird, C. H., Niederlechner, S., Beck, R., Kallweit, A. R., & Wischmeyer, P. E. (2013). L-Threonine 702 
induces heat shock protein expression and decreases apoptosis in heat-stressed intestinal epithelial 703 
cells. Nutrition, 29, 1404-1411. 704 
 705 
Basile, A., Biziato, D., Sherbet, G. V., Comi, P., & Cajone, F. (2008). Hyperthermia inhibits cell 706 
proliferation and induces apoptosis: relative signaling status of P53, S100A4, and Notch in heat 707 
sensitive and resistant cell lines. Journal of cellular biochemistry, 103, 212-220.  708 
 709 
Beck, G., O’Brien, R.F., Habicht, G.S., Stillman, D.L., Cooper, E.L., & Raftos, D.A. (1993). 710 
Invertebrate cytokines III: Invertebrate interleukin-1-like molecules stimulate phagocytosis by tunicate 711 
and echinoderm cells. Cellular Immunology, 146, 284-299. 712 



 27 

 713 
Bitto, A., Lerner, C.A., Nacarelli, T., Crowe, E., Torres, C., & Sell, C. (2014). P62/SQSTM1 at the 714 
interface of aging, autophagy, and disease. Age, 36, 9626. 715 
 716 
Bonaviri, C., Fernández, T. V., Fanelli, G., Badalamenti, F., & Gianguzza, P. (2011). Leading role of 717 
the sea urchin Arbacia lixula in maintaining the barren state in southwestern Mediterranean. Marine 718 
Biology, 158, 2505. 719 
 720 
Briand, F. (Ed.). (2008). Climate warming and related changes in Mediterranean marine biota. In 721 
CIESM Workshop Monographs (No. 35). CIESM, Monaco. 722 
 723 
Buckley, B. A., Gracey, A. Y., & Somero, G. N. (2006). The cellular response to heat stress in the 724 
goby Gillichthys mirabilis: a cDNA microarray and protein-level analysis. Journal of Experimental 725 
Biology, 209, 2660-2677. 726 
 727 
Buckley, L. B., & Huey, R. B. (2016). How extreme temperatures impact organisms and the evolution 728 
of their thermal tolerance. Integrative and comparative biology, 56, 98-109. 729 
 730 
Calosi, P., Melatunan, S., Turner, L. M., Artioli, Y., Davidson, R. L., Byrne, J. J., ... & Rundle, S. D. 731 
(2017). Regional adaptation defines sensitivity to future ocean acidification. Nature communications, 732 
8, 13994. 733 
 734 
Carreras, C., García Cisneros, A., Wangensteen, O. S., Ordóñez, V., Palacín, C., Pascual, M., & 735 

Turon, X. (2020). East is East and West is West: Population genomics and hierarchical analyses reveal 736 
genetic structure and adaptation footprints in the keystone species Paracentrotus lividus (Echinoidea). 737 
Diversity and Distributions, 26, 382-398. 738 
 739 
Cerrano, C., Bavestrello, G., Bianchi, C. N., Cattaneo Vietti, R., Bava, S., Morganti, C., … & 740 
Siccardi, A. (2000). A catastrophic mass-mortality episode of gorgonians and other organisms in the 741 
Ligurian Sea (North-western Mediterranean), summer 1999. Ecology letters, 3, 284-293. 742 
 743 
Christie, D. L. (2007). Functional insights into the creatine transporter. In Creatine and creatine 744 
kinase in health and disease (pp. 99-118). Springer, Dordrecht. 745 
 746 
Clark, M. S., Suckling, C. C., Cavallo, A., Mackenzie, C. L., Thorne, M. A., Davies, A. J., & Peck, L. 747 
S. (2019). Molecular mechanisms underpinning transgenerational plasticity in the green sea urchin 748 
Psammechinus miliaris. Scientific reports, 9, 952. 749 
 750 
Claudet, J., & Fraschetti, S. (2010). Human-driven impacts on marine habitats: a regional meta-751 
analysis in the Mediterranean Sea. Biological Conservation, 143, 2195-2206. 752 
 753 
Coll, M., Piroddi, C., Steenbeek, J., Kaschner, K., Ben Rais Lasram, F., Aguzzi, J., et al. (2010). The 754 
biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One 5:e11842 755 
 756 
Coma, R., Ribes, M., Serrano, E., Jiménez, E., Salat, J., & Pascual, J. (2009). Global warming-757 
enhanced stratification and mass mortality events in the Mediterranean. Proceedings of the National 758 
Academy of Sciences, 106, 6176-6181. 759 
 760 
Conesa, A., Götz, S., García-Gómez, J. M., Terol, J., Talón, M., & Robles, M. (2005). Blast2GO: a 761 
universal tool for annotation, visualization and analysis in functional genomics research. 762 
Bioinformatics. 21, 3674–3676 763 
 764 



 28 

Cross, T. G., Scheel-Toellner, D., Henriquez, N. V., Deacon, E., Salmon, M., & Lord, J. M. (2000). 765 
Serine/threonine protein kinases and apoptosis. Experimental cell research, 256, 34-41. 766 
 767 
De Caralt, S., González, J., Turon, X., & Uriz, J.M. (2018). Reproductive strategies of two common 768 
sympatric Mediterranean sponges: Dysidea avara (Dictyoceratida) and Phorbas tenacior 769 
(Poecilosclerida). PeerJ 6:e5458 770 
 771 
De Lima Morais, D. A., Fang, H., Rackham, O. J. L.,  Wilson, D.,  Pethica, R., Chothia, C., &  Gough, 772 
J.  (2011) SUPERFAMILY 1.75 including a domain centric gene ontology method. Nucleic Acids 773 
Research, 39, D427–D434. 774 
 775 
Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H. O., & Huey, R. B. (2015). Climate change tightens a 776 
metabolic constraint on marine habitats. Science, 348, 1132-1135. 777 
 778 
Di Natale, M., Bennici, C., Biondo, G., Masullo, T., Monastero, C., Tagliavia, M., ... & Nicosia, A. 779 
(2019). Aberrant gene expression profiles in Mediterranean sea urchin reproductive tissues after metal 780 
exposures. Chemosphere, 216, 48-58. 781 
 782 
Donelson, J. M., Sunday, J. M., Figueira, W. F., Gaitán-Espitia, J. D., Hobday, A. J., Johnson, C. R., 783 
Munday PL (2019). Understanding interactions between plasticity, adaptation and range shifts in 784 
response to marine environmental change. Philosophical Transactions of the Royal Society B, 374, 785 
20180186. 786 
 787 
Dong, Y. W., Yu, S. S., Wang, Q. L., & Dong, S. L. (2011). Physiological responses in a variable 788 
environment: relationships between metabolism, hsp and thermotolerance in an intertidal-subtidal 789 
species. PLoS One, 6, e26446. 790 
  791 
Elmasry, E., Razek, F. A. A., El-Sayed, A. F. M., Omar, H., & El Sayed, A. E. (2015). Abundance, 792 
size composition and benthic assemblages of two Mediterranean echinoids off the Egyptian coasts: 793 
Paracentrotus lividus and Arbacia lixula. The Egyptian Journal of Aquatic Research, 41, 367-374. 794 
 795 
Evans, T. G., Pespeni, M. H., Hofmann, G. E., Palumbi, S. R., & Sanford, E. (2017). Transcriptomic 796 
responses to seawater acidification among sea urchin populations inhabiting a natural pH mosaic. 797 
Molecular ecology, 26, 2257-2275. 798 
 799 
Feder, M. E., & Hofmann, G. E. (1999). Heat-shock proteins, molecular chaperones, and the stress 800 
response: evolutionary and ecological physiology. Annual review of physiology, 61, 243-282. 801 
 802 
Feder, M. E., & Walser, J. C. (2005). The biological limitations of transcriptomics in elucidating stress 803 
and stress responses. Journal of evolutionary biology, 18, 901-910. 804 
 805 
Francour, P., Boudouresque, C. F., Harmelin, J. G., Harmelin-Vivien, M. L., & Quignard, J. P. (1994). 806 
Are the Mediterranean waters becoming warmer? Information from biological indicators. Marine 807 
Pollution Bulletin, 28, 523-526. 808 
 809 
Gaitán-Espitia, J. D., Sánchez, R., Bruning, P., & Cárdenas, L. (2016). Functional insights into the 810 
testis transcriptome of the edible sea urchin Loxechinus albus. Scientific reports, 6, 36516. 811 
  812 
Garcia-Cisneros, A., Palacín, C., Ventura, C. R. R., Feital, B., Paiva, P. C., & Pérez-Portela, R. (2018). 813 
Intraspecific genetic structure, divergence and high rates of clonality in an amphi-Atlantic starfish. 814 
Molecular ecology, 27, 752-772. 815 
 816 

javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;


 29 

Garrabou, J., Coma, R., Bensoussan, N., Bally, M., Chevaldonné, P., Cigliano, M., ... & Ledoux, J. B. 817 
(2009). Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 818 
heat wave. Global change biology, 15, 1090-1103. 819 
 820 
Gianguzza, P., Agnetta, D., Bonaviri, C., Di Trapani, F., Visconti, G., Gianguzza, F., & Riggio, S. 821 
(2011) The rise of thermophilic sea urchins and the expansion of barren grounds in the Mediterranean 822 
Sea. Chemistry and Ecology, 27, 129-134. 823 
 824 
Gianguzza, P., Visconti, G., Gianguzza, F., Vizzini, S., Sarà, G., & Dupont, S. (2014). Temperature 825 
modulates the response of the thermophilous sea urchin Arbacia lixula early life stages to CO2-driven 826 
acidification. Marine environmental research, 93, 70-77. 827 
 828 
Gierz, S. L., Forêt, S., & Leggat, W. (2017). Transcriptomic analysis of thermally stressed 829 
Symbiodinium reveals differential expression of stress and metabolism genes. Frontiers in plant 830 
science, 8, 271. 831 
 832 
Gillard, G. B., Garama, D. J., & Brown, C. M. (2014). The transcriptome of the NZ endemic sea 833 
urchin Kina (Evechinus chloroticus). BMC genomics, 15, 45. 834 
 835 
González, K., Gaitán-Espitia, J., Font, A., Cárdenas, C. A., & González-Aravena, M. (2016). 836 
Expression pattern of heat shock proteins during acute thermal stress in the Antarctic sea urchin, 837 
Sterechinus neumayeri. Revista chilena de historia natural, 89, 2. 838 
 839 
Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., … Regev, A. (2011). 840 
Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nature 841 
Biotechnology. 29, 644–652 842 
 843 
Harmelin, J.G., Hereu, B., De Maisonnave, L.M., Teixidor, N.,Domínguez, L.,  & Zabala, M. (1995). 844 
Indicateurs de biodiversité enmilieu marin: les échinodermes. Fluctuations temporelles des 845 
peuplements d’échinodermes à Port-Cros. Comparaison entre les années 1982-84 et 1993-95.Internal 846 
Report. Port Cros National Park 847 
 848 
Hereu, B., Linares, C., Sala, E., Garrabou, J., Garcia-Rubies, A., Diaz, D., & Zabala, M. (2012). 849 
Multiple processes regulate long-term population dynamics of sea urchins on Mediterranean rocky 850 
reefs. PLoS One, 7, e36901. 851 
 852 
Hoegh-Guldberg, O., & Bruno, J. F. (2010). The impact of climate change on the world’s marine 853 
ecosystems. Science, 328, 1523-1528. 854 
 855 
Hughes, T. P., Kerry, J. T., Álvarez-Noriega, M., Álvarez-Romero, J. G., Anderson, K. D., Baird, A. 856 
H., ... & Bridge, T. C. (2017). Global warming and recurrent mass bleaching of corals. Nature, 543, 857 
373. 858 
 859 
Jia, Z., Wang, Q., Wu, K., Wei, Z., Zhou, Z., & Liu, X. (2017). De novo transcriptome sequencing and 860 
comparative analysis to discover genes involved in ovarian maturity in Strongylocentrotus nudus. 861 
Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 23, 27-38. 862 
 863 
Jonas, K., Liu, J., Chien, P., & Laub, M.T. (2013). Proteotoxic stress induces a cell cycle arrest by 864 
stimulating Lon to degrade the replication initiator DnaA. Cell, 154, 623–636. 865 
 866 
Jones, P., Binns, D., Chang, H. Y., Fraser, M., Li, W., McAnulla, C., ... & Hunter, S. (2014). 867 
InterProScan 5: genome-scale protein function classification. Bioinformatics, 30, 1236-1240. 868 
 869 



 30 

Jordà, G., Marbà, N., & Duarte, C. M. (2012). Mediterranean seagrass vulnerable to regional climate 870 
warming. Nature Climate Change, 2, 821. 871 
 872 
Kim, B. M., Kim, K., Choi, I. Y., & Rhee, J. S. (2017). Transcriptome response of the Pacific oyster, 873 
Crassostrea gigas susceptible to thermal stress: A comparison with the response of tolerant oyster. 874 
Molecular & Cellular Toxicology, 13(1), 105-113. 875 
 876 
King, N. G., McKeown, N. J., Smale, D. A., & Moore, P. J. (2018). The importance of phenotypic 877 
plasticity and local adaptation in driving intraspecific variability in thermal niches of marine 878 
macrophytes. Ecography, 41, 1469-1484. 879 
 880 
Kostova, Z., & Wolf, D. H. (2003). For whom the bell tolls: protein quality control of the endoplasmic 881 
reticulum and the ubiquitin–proteasome connection. The EMBO journal, 22, 2309-2317. 882 
 883 
Langmead, B. & Salzberg, S.L. (2912). Fast gapped-read alignment with Bowtie 2. Nature Methods 9, 884 
357–359 885 
 886 
Lee, E.W., Lee, M.S., Camus, S. et al. (2009). Differential regulation of p53 and p21 by MKRN1 E3 887 
ligase controls cell cycle arrest and  apoptosis. The EMBO Journal, 28, 2100–2113. 888 
 889 
Lejeusne C, Chevaldonné P, Pergent-Martini C, Boudouresque CF, Pérez T (2010) Climate change 890 
effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends in 891 
Ecology and Evolution 25, 250–260 892 
 893 
Lesser, M. P. (2012). Oxidative stress in tropical marine ecosystems. Oxidative Stress in Aquatic 894 
Ecosystems, 1, 9-19. 895 
 896 
Li, B. & Dewey, C.N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or 897 
without a reference genome. BMC Bioinformatics, 12, 323 898 
 899 
Li, H., & Stillman, B. (2012). The origin recognition complex: a biochemical and structural view. In 900 
The Eukaryotic Replisome: A Guide to Protein Structure and Function (pp. 37-58). Springer, 901 
Dordrecht. 902 
 903 
Lodder, A. L., Lee, T. K., & Ballester, R. (1999). Characterization of the Wsc1 protein, a putative 904 
receptor in the stress response of Saccharomyces cerevisiae. Genetics, 152, 1487-1499 905 
 906 
Logan, C. A., & Somero, G. N. (2011). Effects of thermal acclimation on transcriptional responses to 907 
acute heat stress in the eurythermal fish Gillichthys mirabilis (Cooper). American Journal of 908 
Physiology-Regulatory, Integrative and Comparative Physiology, 300, R1373-R1383. 909 
 910 
Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for 911 
RNA-seq data with DESeq2. Genome Biology, 15, 550. 912 
 913 
Maier, T., Güell, M., & Serrano, L. (2009). Correlation of mRNA and protein in complex biological 914 
samples. FEBS letters, 583, 3966-3973. 915 
 916 
Malhotra, J. D., & Kaufman, R. J. (2007). Endoplasmic reticulum stress and oxidative stress: a vicious 917 
cycle or a double-edged sword?. Antioxidants & redox signaling, 9, 2277-2294. 918 
 919 
Marbà, N., Jordà, G., Agustí, S., Girard, C., & Duarte, C. M. (2015). Footprints of climate change on 920 
Mediterranean Sea biota. Frontiers in Marine Science, 2, 56. 921 
 922 



 31 

Martins, C. S., Hamann, M., & Fiúza, A. F. (2002). Surface circulation in the eastern North Atlantic, 923 
from drifters and altimetry. Journal of Geophysical Research: Oceans, 107, 10-1. 924 
 925 
Matranga, V., Toia, G., Bonaventura, R., & Müller, W. E. (2000). Cellular and biochemical responses 926 
to environmental and experimentally induced stress in sea urchin coelomocytes. Cell stress & 927 
chaperones, 5, 113. 928 
 929 
Matranga, V., Bonaventura, R., & Di, G. B. (2002). Hsp70 as a stress marker of sea urchin 930 
coelomocytes in short term cultures. Cellular and molecular biology (Noisy-le-Grand, France), 48, 931 
345-349. 932 
 933 
Matranga, V., Pinsino, A., Celi, M., Natoli, A., Bonaventura, R., Schröder, H. C., & Müller, W. E. G. 934 
(2005). Monitoring chemical and physical stress using sea urchin immune cells. In Echinodermata 935 
(pp. 85-110). Springer, Berlin, Heidelberg. 936 
 937 
Mosser, D. D., Caron, A. W., Bourget, L., Meriin, A. B., Sherman, M. Y., Morimoto, R. I., & Massie, 938 
B. (2000). The chaperone function of hsp70 is required for protection against stress-induced apoptosis. 939 
Molecular and cellular biology, 20, 7146-7159. 940 
 941 
Ngosuwan, J., Wang, N. M., Fung, K. L., & Chirico, W. J. (2003). Roles of cytosolic Hsp70 and 942 
Hsp40 molecular chaperones in post-translational translocation of presecretory proteins into the 943 
endoplasmic reticulum. Journal of Biological Chemistry, 278, 7034-7042. 944 
 945 
Oleksiak, M. F., Roach, J. L., & Crawford, D. L. (2005). Natural variation in cardiac metabolism and 946 
gene expression in Fundulus heteroclitus. Nature genetics, 37, 67. 947 
 948 
Oliver, E. C., Donat, M. G., Burrows, M. T., Moore, P. J., Smale, D. A., Alexander, L. V., ... & 949 
Holbrook, N. J. (2018). Longer and more frequent marine heatwaves over the past century. Nature 950 
communications, 9, 1324. 951 
 952 
Ordóñez, V., Pascual, M., Fernández-Tejedor, M. Pineda, M.C., Tagliapietra, D., Turon, X. (2015). 953 
Ongoing expansion of the worldwide invader Didemnum vexillum (Ascidiacea) in the Mediterranean 954 
Sea: high plasticity of its biological cycle promotes establishment in warm waters. Biological 955 
Invasions 17, 2075-2085. 956 
 957 
Osovitz CJ, Hofmann GE (2005). Thermal history-dependent expression of the hsp70 gene in purple 958 
sea urchin: Biogeographic patterns and the effect of temperature acclimation. Journal of Experimental 959 
Marine Biology and Ecology, 327, 134-143. 960 
 961 
Ozato, K., Shin, D. M., Chang, T. H., & Morse III, H. C. (2008). TRIM family proteins and their 962 
emerging roles in innate immunity. Nature reviews immunology, 8, 849. 963 
 964 
Palacín, C., Turon, X., Ballesteros, M., Giribet, G., & López, S. (1998). Stock Evaluation of three 965 
littoral echinoid species on the Catalan Coast North-Western Mediterranean. Marine Ecology, 19, 163-966 
177. 967 
 968 
Parry, M. L., Canziani, O. F., Palutikof, J. P., Van Der Linden, P. J., & Hanson, C. E. (2007). IPCC, 969 
2007: climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to 970 
the fourth assessment report of the intergovernmental panel on climate change. Cambridge Uni-versity 971 
Press, Cambridge, UK. 972 
 973 



 32 

Pastor, F. J. (2012). Ciclogénesis intensas en la cuenca occidental del Mediterráneo y temperatura 974 
superficial del mar: Modelización y evaluación de las áreas de recarga. PhD dissertation. 975 
https://www.tdx.cat/handle/10803/83620 976 
 977 
Pérez-Portela, R., & Riesgo, A. (2013). Optimizing preservation protocols to extract high-quality 978 
RNA from different tissues of echinoderms for next generation sequencing. Molecular ecology 979 
resources, 13, 884-889. 980 
 981 
Pérez-Portela, R., Turon, X., & Riesgo, A. (2016). Characterization of the transcriptome and gene 982 
expression of four different tissues in the ecologically relevant sea urchin Arbacia lixula using RNA-983 
seq. Molecular ecology resources, 16, 794-808. 984 
 985 
Pérez-Portela, R., Wangensteen, O. S., Garcia-Cisneros, A., Valero-Jiménez, C., Palacín, C., & Turon, 986 
X. (2019). Spatio-temporal patterns of genetic variation in Arbacia lixula, a thermophilous sea urchin 987 
in expansion in the Mediterranean. Heredity, 122, 244. 988 
 989 
Pinsino, A., Della Torre, C., Sammarini, V., Bonaventura, R., Amato, E., & Matranga, V. (2008). Sea 990 
urchin coelomocytes as a novel cellular biosensor of environmental stress: a field study in the Tremiti 991 
Island Marine Protected Area, Southern Adriatic Sea, Italy. Cell biology and toxicology, 24, 541-552. 992 
 993 
Pörtner, H. O. (2002). Climate variations and the physiological basis of temperature dependent 994 
biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comparative 995 
Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 132, 739-761. 996 
 997 
Privitera, D., Noli,M., Falugi, C., Chiantore,M. (2011). Benthic assemblages and temperatura effects 998 
on Paracentrotus lividus and Arbacia lixula larvae and settlement. Journal of Experimental Marine 999 
Biology and Ecology, 407(1), 6-11. 1000 
 1001 
Prusina, I., Sarà, G., De Pirro, M., Dong, Y. W., Han, G. D., Glamuzina, B., Williams, G. A. (2014). 1002 
Variations in physiological responses to thermal stress in congeneric limpets in the Mediterranean Sea. 1003 
Journal of Experimental Marine Biology and Ecology, 456, 34-40. 1004 
 1005 
Rachel, A., Tyson, J. R., & Stirling, C. J. (1997). A novel subfamily of Hsp70s in the endoplasmic 1006 
reticulum. Trends in cell biology, 7, 277-282. 1007 
 1008 
Raitsos, D. E., Beaugrand, G., Georgopoulos, D., Zenetos, A., Pancucci-Papadopoulou, A. M., 1009 
Theocharis, A., & Papathanassiou, E. (2010). Global climate change amplifies the entry of tropical 1010 
species into the Eastern Mediterranean Sea. Limnology and Oceanography, 55, 1478-1484. 1011 
 1012 
Rao, R. V., Peel, A., Logvinova, A., del Rio, G., Hermel, E., Yokota, T., ... & Bredesen, D. E. (2002). 1013 
Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. 1014 
FEBS letters, 514, 122-128. 1015 
 1016 
Rilov G (2016) Multi-species collapses at the warm edge of the warming sea. Scientific reports, 6, 1017 
36897. 1018 
 1019 
Runcie, D. E., Garfield, D. A., Babbitt, C. C., Wygoda, J. A., Mukherjee, S., & Wray, G. A. (2012). 1020 
Genetics of gene expression responses to temperature stress in a sea urchin gene network. Molecular 1021 
ecology, 21, 4547-4562. 1022 
 1023 
Schoville, S. D., Barreto, F. S., Moy, G. W., Wolff, A., & Burton, R. S. (2012). Investigating the 1024 
molecular basis of local adaptation to thermal stress: population differences in gene expression across 1025 
the transcriptome of the copepod Tigriopus californicus. BMC evolutionary biology, 12 170. 1026 



 33 

 1027 
Shaltout, M., & Omstedt, A. (2014). Recent sea surface temperature trends and future scenarios for the 1028 
Mediterranean Sea. Oceanologia, 56, 411-443. 1029 
 1030 
Shental-Bechor, D., & Levy, Y. (2008). Effect of glycosylation on protein folding: a close look at 1031 
thermodynamic stabilization. Proceedings of the National Academy of Sciences, 105, 8256-8261. 1032 
 1033 
Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V. & Zdobnov, E.M. (2015). BUSCO: 1034 
assessing genome assembly and annotation completeness with single-copy 1035 
orthologs. Bioinformatics, 31(19), 3210-3212. 1036 
 1037 
Smale, D. A., Wernberg, T., Oliver, E. C., Thomsen, M., Harvey, B. P., Straub, S. C., ... & Feng, M. 1038 
(2019). Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nature 1039 
Climate Change, 9, 306. 1040 
 1041 
Smith, L. C., Rast, J. P., Brockton, V., Terwilliger, D. P., Nair, S. V., Buckley, K. M., & Majeske, A. 1042 
J. (2006). The sea urchin immune system. Invertebrate Survival Journal, 3, 25-39. 1043 
 1044 
Smith, L. C., Arriza, V., Hudgell, M. A. B., Barone, G., Bodnar, A. G., Buckley, K. M., ... & 1045 
Furukawa, R. (2018). Echinodermata: The Complex Immune System in Echinoderms. In Advances in 1046 
Comparative Immunology (pp. 409-501). Springer, Cham. 1047 
  1048 
Somero, G. N. (2010). The physiology of climate change: how potentials for acclimatization and 1049 
genetic adaptation will determine ‘winners’ and ‘losers’. Journal of Experimental Biology, 213, 912-1050 
920. 1051 
  1052 
Somot, S., Sevault, F., & Déqué, M. (2006). Transient climate change scenario simulation of the 1053 
Mediterranean Sea for the twenty-first century using a high-resolution ocean circulation model. 1054 
Climate Dynamics, 27, 851-879. 1055 
 1056 
Somot, S., Sevault, F., Déqué, M., & Crépon, M. (2008) 21st century climate change scenario for the 1057 
Mediterranean using a coupled atmosphere– ocean regional climate model. Global Planet Change, 63, 1058 
112–126 1059 
 1060 
Stapley, J., Reger, J., Feulner, P. G., Smadja, C., Galindo, J., Ekblom, R., ... & Slate, J. (2010). 1061 
Adaptation genomics: the next generation. Trends in ecology & evolution, 25, 705-712. 1062 
 1063 
Stillman, J. H. (2019). Heat waves, the new normal: summertime temperature extremes will impact 1064 
animals, ecosystems, and human communities. Physiology, 34, 86-100. 1065 
 1066 
Stillman, J. H. (2003). Acclimation capacity underlies susceptibility to climate change. Science, 301, 1067 
65-65. 1068 
 1069 
Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011). REVIGO summarizes and visualizes long 1070 
lists of gene ontology terms. PLoS One, 6, e21800. 1071 
 1072 
Templado, J. (2014). Future trends of Mediterranean biodiversity. In The Mediterranean Sea (pp. 479-1073 
498). Springer, Dordrecht. 1074 
 1075 
Tomanek, L. (2010). Variation in the heat shock response and its implication for predicting the effect 1076 
of global climate change on species' biogeographical distribution ranges and metabolic costs. Journal 1077 
of Experimental Biology, 213, 971-979. 1078 
 1079 



 34 

Tortonese, E. (Ed.). (1965). Fauna d'Italia: Echinodermata. Ed. Calderini. 1080 
 1081 
Visconti, G., Gianguzza, F., Butera, E., Costa, V., Vizzini, S., Byrne, M., & Gianguzza, P. (2017). 1082 
Morphological response of the larvae of Arbacia lixula to near-future ocean warming and 1083 
acidification. ICES Journal of Marine Science, 74, 1180-1190. 1084 
 1085 
Wang, F., Yang, H., Gao, F., & Liu, G. (2008). Effects of acute temperature or salinity stress on the 1086 
immune response in sea cucumber, Apostichopus japonicus. Comparative Biochemistry and 1087 
Physiology Part A: Molecular & Integrative Physiology, 151, 491-498. 1088 
 1089 
Wangensteen, O.S., Turon, X., García-Cisneros, A., Recasens, M., Romero, J., & Palacín, C. (2011). 1090 
A wolf in sheep’s clothing: carnivory in dominant sea urchins in the Mediterranean. Marine Ecology 1091 
Progress Series, 441, 117–128. 1092 
 1093 
Wangensteen, O. S., Turon, X., Pérez-Portela, R., & Palacín, C. (2012). Natural or naturalized? 1094 
Phylogeography suggests that the abundant sea urchin Arbacia lixula is a recent colonizer of the 1095 
Mediterranean. PLoS One, 7, e45067. 1096 
 1097 
Wangensteen, O. S., Dupont, S., Casties, I., Turon, X., & Palacín, C. (2013a). Some like it hot: 1098 
temperature and pH modulate larval development and settlement of the sea urchin Arbacia lixula. 1099 
Journal of experimental marine biology and ecology, 449, 304-311. 1100 
 1101 
Wangensteen, O. S., Turon, X., Casso, M., & Palacín, C. (2013b). The reproductive cycle of the sea 1102 
urchin Arbacia lixula in northwest Mediterranean: potential influence of temperature and photoperiod. 1103 
Marine biology, 160, 3157-3168. 1104 
 1105 
Warnes, M. G. R., Bolker, B., Bonebakker, L., & Gentleman, R. (2016). Package ‘gplots’. Various R 1106 
Programming Tools for Plotting Data. 1107 
 1108 
Xu, D., Zhou, S., & Sun, L. (2018). RNA-seq based transcriptional analysis reveals dynamic genes 1109 
expression profiles and immune-associated regulation under heat stress in Apostichopus japonicus. 1110 
Fish & shellfish immunology, 78, 169-176. 1111 
 1112 
Yao, C. L., & Somero, G. N. (2012). The impact of acute temperature stress on hemocytes of invasive 1113 
and native mussels (Mytilus galloprovincialis and Mytilus californianus): DNA damage, membrane 1114 
integrity, apoptosis and signaling pathways. Journal of Experimental Biology, 215, 4267-4277. 1115 
  1116 
Young, C. M., Tyler, P. A., & Fenaux, L. (1997). Potential for deep sea invasion by Mediterranean 1117 
shallow water echinoids: pressure and temperature as stage-specific dispersal barriers. Marine Ecology 1118 
Progress Series, 154, 197-209. 1119 
 1120 
Zhao, C., Zhang, L., Shi, D., Ding, J., Yin, D., Sun, J., ... & Chang, Y. (2018). Transgenerational 1121 
effects of ocean warming on the sea urchin Strongylocentrotus intermedius. Ecotoxicology and 1122 
environmental safety, 151, 212-219. 1123 
 1124 
Zheng, J., Cao, J., Mao, Y., Su, Y., & Wang, J. (2019). Comparative transcriptome analysis provides 1125 
comprehensive insights into the heat stress response of Marsupenaeus japonicus. Aquaculture, 502, 1126 
338-346. 1127 
 1128 
Zhu, Q., Zhang, L., Li, L., Que, H., & Zhang, G. (2016). Expression characterization of stress genes 1129 
under high and low temperature stresses in the Pacific oyster, Crassostrea gigas. Marine 1130 
biotechnology, 18, 176-188. 1131 



 35 

 1132 
 1133 
 1134 
DATA ACCESSIBILITY 1135 
 1136 
The De novo assemblies, RSEM, annotation and DEseq files are available at Mendeley Data 1137 
doi.org/10.17632/5673n552yj.1. 1138 
 1139 
 1140 
AUTHOR CONTRIBUTIONS 1141 
 1142 
All authors contributed to the design of this study and were involved in the aquarium 1143 
experiments. RPP, AR, XT and OSW analysed the data. RPP wrote the first draft of the 1144 
manuscript and created figures and tables. XT, AR and CP contributed to improve the first 1145 
draft, and all authors revised the final version of the manuscript. 1146 
 1147 
 1148 
FIGURE LEGENDS 1149 
 1150 
Figure 1. Sampling and experiments in Arbacia lixula. A- Samples analysed for gene expression: 1151 
Comparison between Control condition (CT at 13°C) and temperature at 7°C (CONTROL vs T7), and 1152 
Control and 22°C (CONTROL vs T22). Red crosses indicated replicates lost during the development 1153 
of the experiments, and B- Map of the sampling area of A. lixula. 1154 
 1155 
Figure 2. Pipeline followed in this study. The most important experimental steps and analyses are 1156 
represented. 1157 
 1158 
Figure 3. Number of differentially expressed (DE) transcripts between treatments and experiments. A- 1159 
Comparison of number and percentage of up- and down- regulated transcripts between treatments at 1160 
each experiment, and B- Venn diagram representing the number of DE transcripts per experiment and 1161 
those (14) in common between experiments. 1162 
 1163 
Figure 4. Heatmaps based on differentially expressed transcripts (DE) from pairwise comparisons of 1164 
treatments within experiments. A- Control condition versus Temperature 7°C, and B- Control 1165 
condition versus Temperature 22°C. Different colours indicate relative expression levels. Similarity in 1166 
gene expression patterns among replicates (individuals) is represented by clustering on the top of the 1167 
heatmaps. 1168 
 1169 
Figure 5. Principal Component Analyses (PCAs) plots for the two different experiments including all 1170 
replicates per treatment. A- “Control versus Temperature 7°C”, and B- “Control versus Temperature 1171 
22°C”  1172 
 1173 
Figure 6. Gene Ontology treemaps for annotated differentially expressed genes in Control versus 1174 
Temperature 7°C. DOWN- and UP- regulated categories at 7°C are presented as separated figures for 1175 
Biological Processes, Cellular components, and Molecular functions. The size of the rectangles 1176 
reflects the log2foldchage associated to the differentially regulated categories. 1177 
[1= multicellular organism development; 2= positive regulation of GTPase activity; 3= regulation of 1178 
ARF protein signal transduction; 4 single−organism cellular process; 5= DNA replication; 6= 1179 
polyamine biosynthetic process; 7= histone H3 deacetylation; 8= DNA−templated transcription 1180 
initiation; 9= microtubule−based movement; 10= mitochondrion organization; 11= microtubule motor 1181 
activity; 12= calcium ion binding; 13= pantothenate biosynthetic process; 14= microtubule−based 1182 
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process; 15= RNA secondary structure unwinding; 16= oxidation-reduction process; 17= heterocyclic 1183 
compound binding; 18= organic cyclic compound binding; 19= sequence−specific DNA Binding; 20= 1184 
poly(A) RNA Binding; 21= heme binding; 22= methyltransferase Activity; 23: protein kinase activity; 1185 
24= monooxygenase activity; 25= oxidoreductase activity; 26= peptidyl−prolyl cis−transisomerase 1186 
activity; 27= G−protein coupled receptor activity; 28= oxidoreductase activity; 29= structural 1187 
constituent of cytoskeleton; 30= protein heterodimerization activity; 31= transcription factor activity, 1188 
sequence−specific DNA binding; 32= phosphatidylserine decarboxylase activity; 33= protein 1189 
phosphatase regulator activity] 1190 
 1191 
Figure 7. Gene Ontology treemaps for annotated differentially expressed genes in Control versus 1192 
Temperature 22°C. Only the function of DOWN- regulated genes at 22°C was obtained for Biological 1193 
Processes, Cellular components, and Molecular functions. The size of the rectangles reflects the 1194 
log2foldchage associated to the differentially regulated categories. 1195 
 1196 
  1197 
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 1198 
Table 1. General statistics of the reference assemblies CT_T7 and CT_T22 of A. lixula. Total number 1199 
of trimmed reads assembled (Reads), number of genes, number of transcripts (Transc.: including 1200 
genes and isoforms collapsed into genes), parameters N50 and N20, number of transcripts with Blast 1201 
hit against proteins of metazoans, percentage of GC (GC%), median transcript length (M_L), average 1202 
transcript length (Avg_L), and number of assembled bases expressed as Mb. 1203 
 1204 
 1205 
 1206 
 1207 
 1208 
 1209 
 1210 
 1211 
Treatment Replicate Gender Nº Reads 

7oC 1 F 74,582,590 

 2 M 40,645,290 

 3 F 83,661,578 

 4 M 60,222,882 

 5 M 140,478,920 

Control  1 F 41,330,158 

 2 M 84,053,170 

 3 M 23,074,766 

 4 F 59,854,444 

 5 F 26,843,788 

 6 M 48,723,838 

22oC 1 F 50,432,902 

 2 M 36,718,372 

 3 F 139,884,462 

 4 M 103,939,816 

 6 M 87,695,436 

 1212 
Table 2. Treatment and replicate, gender and number of trimmed reads used for differential expression 1213 
analyses. Note that replicates 6 and 5 from 7oC and 22oC, respectively, are missing due to low quality 1214 
of the libraries.  1215 
 1216 
 1217 
 1218 
 1219 
 1220 
 1221 
 1222 
 1223 
 1224 
 1225 
 1226 
 1227 
 1228 

Reference Reads Genes Transc. N50 N20 Blast hit GC% M_L Avg_L Mb 

CT+T7 341,735,712 151,418 211,456 1,102 2,960 41,429 41.68 345 668.6 141.5 

CT+T22 351,275,576 151,278 215,362 1,114 2,976 38,691 41.41 345 671.1 147.4 
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Eukarya 

 
Reference C S D F M 

Groups 

searched 

CT+T7 290 (95.7%) 203 (67%) 87 (28.7%) 12 (4%) 1 (0.3%) 

303 CT+T22 286 (94.4%) 206 (68%) 80 (26.4%) 16 (5.3%) 1 (0.3%) 

 
Metazoa   

Reference C S D F M 
Groups 

searched 

CT+T7 924 (94.5%) 618 (63.2%) 306 (31.3%) 45 (4.6%) 9 (0.9%) 

978 CT+T22 925 (94.6%) 603 (61.7%) 322 (32.9%) 42 (4.3%) 11 (1.1%) 

 1229 
Table 3. Number and percentage of BUSCO groups recovered in the searches against the eukaryotic 1230 
and metazoan databases. Complete BUSCOs (C), complete and single-copy BUSCOs (S), complete 1231 
and duplicated BUSCOs (D), fragmented BUSCOs (F), and missing BUSCOs (M). 1232 
 1233 
 1234 
 1235 
 1236 
 1237 
 1238 
 1239 
 1240 
 1241 
 1242 
 1243 

Experiment DE transcripts Blast hit GO term 

Control vs T7 1181 445 84 

Control vs T22 179 35 3 

 1244 
Table 4. Differentially expressed (DE) transcripts between treatments. Number of DE transcripts 1245 
between treatments for each experiment, number of DE transcripts with blast hit against metazoan 1246 
proteins per experiment, and number of DE transcripts with an associated GO term per treatment. 1247 
  1248 
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Figure 1. Sampling and experiments in Arbacia lixula. A- Samples analysed for gene expression: 1249 
Comparison between Control condition (CT at 13°C) and temperature at 7°C (CONTROL vs T7), and 1250 
Control and 22°C (CONTROL vs T22). Red crosses indicated replicates lost during the development 1251 
of the experiments, and B- Map of the sampling area of A. lixula. 1252 
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Figure 2. Pipeline followed in this study. The most important experimental steps and analyses are 1281 
represented. 1282 
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Figure 3. Number of differentially expressed (DE) transcripts between treatments and experiments. A- 1334 
Comparison of number and percentage of up- and down- regulated transcripts between treatments at 1335 
each experiment, and B- Venn diagram representing the number of DE transcript per experiment and 1336 
those (14) in common between experiments 1337 
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Figure 4. Heatmaps based on differentially expressed transcripts (DE) from pairwise comparisons of 1355 
treatments within experiments. A- Control condition versus Temperature 7°C, and B- Control 1356 
condition versus Temperature 22°C. Different colours indicate relative expression levels. Similarity in 1357 
gene expression patterns among replicates (individuals) is represented by clustering on the top of the 1358 
heatmaps. 1359 
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Figure 5. Principal Component Analyses (PCAs) plots for the two different experiments including all 1390 
replicates per treatment. A- “Control versus Temperature 7°C”, and B- “Control versus Temperature 1391 
22°C”  1392 
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Figure 6. Gene Ontology treemaps for annotated differentially expressed genes in Control versus 1421 
Temperature 7°C. DOWN- and UP- regulated categories at 7°C are presented as separated figures for 1422 
Biological Processes, Cellular components, and Molecular functions. The size of the rectangles 1423 
reflects the log2foldchage associated to the differentially regulated categories. 1424 
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[1= multicellular organism development; 2= positive regulation of GTPase activity; 3= regulation of 1460 
ARF protein signal transduction; 4 single−organism cellular process; 5= DNA replication; 6= 1461 
polyamine biosynthetic process; 7= histone H3 deacetylation; 8= DNA−templated transcription 1462 
initiation; 9= microtubule−based movement; 10= mitochondrion organization; 11= microtubule motor 1463 
activity; 12= calcium ion binding; 13= pantothenate biosynthetic process; 14= microtubule−based 1464 
process; 15= RNA secondary structure unwinding; 16= oxidation-reduction process; 17= heterocyclic 1465 
compound binding; 18= organic cyclic compound binding; 19= sequence−specific DNA Binding; 20= 1466 
poly(A) RNA Binding; 21= heme binding; 22= methyltransferase Activity; 23: protein kinase activity; 1467 
24= monooxygenase activity; 25= oxidoreductase activity; 26= peptidyl−prolyl cis−transisomerase 1468 
activity; 27= G−protein coupled receptor activity; 28= oxidoreductase activity; 29= structural 1469 
constituent of cytoskeleton; 30= protein heterodimerization activity; 31= transcription factor activity, 1470 
sequence−specific DNA binding; 32= phosphatidylserine decarboxylase activity; 33= protein 1471 
phosphatase regulator activity] 1472 
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Figure 7. Gene Ontology treemaps for annotated differentially expressed genes in Control versus 1474 
Temperature 22°C. Only the function of DOWN- regulated genes at 22°C was obtained for Biological 1475 
Processes, Cellular components, and Molecular functions. The size of the rectangles reflects the 1476 
log2foldchage associated to the differentially regulated categories between 22°C and the control 1477 
condition. 1478 
 1479 


