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Abstract 
A fast, simple and costless methodology without sample pre-treatment is proposed for the discrimination of beers. It is 
based on cyclic voltammetry (CV) using commercial carbon screen-printed electrodes (SPCE) and includes a correction of 
the signals measured with different SPCE units. Data are submitted to partial least squares discriminant analysis (PLS-
DA) and support vector machine discriminant analysis (SVM-DA), which allow a reasonable classification of the beers. 
Also, CV data from beers can be used to predict their alcoholic degree by partial least squares (PLS) and artificial neural 
networks (ANN). In general, non-linear methods provide better results than linear ones. 
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1. Introduction 

Food authentication is an analytical field that checks out 
label description about the origin, the production process 
and the processing technologies of foods and beverages. 
In the last years, strategies of food authentication have 
gained considerable interest due to increasing public 
awareness concerning food quality and safety [1]. Thus, 
there is a special concern in the development of robust, 
accurate and high-performance analytical methods to 
ensure the characterisation, discrimination and 
authentication of foods and beverages. Despite the 
predominant use of chromatographic techniques coupled 
to different detectors (UV-visible, fluorescence, mass 
spectrometry…) for the evaluation of characteristic 
compounds and fingerprints, electrochemical methods are 
evolving as a fast and costless alternative to 
chromatography. In this sense, approaches such as 
electronic tongue and electronic nose have been 
introduced for the characterisation, discrimination and 
authentication of different types of foods and beverages. 
The electronic tongue and the electronic nose use an 
array of non-specific sensors, that ideally  must present a 
significant cross response with respect to taste/odour of 
the substances to avoid redundant information, and 

pattern recognition tools to mimic the capability of 
human tongue and human noses to distinguish 
characteristic tastes and odours [2, 3].  
In particular, electronic tongues, which can be 
potentiometric or voltammetric depending on the 
operating principle of the sensors involved [4], in 
combination with diverse chemometric methods of 
pattern recognition [5, 6], have been extensively applied 
to the analysis of food products and, especially, 
beverages [2, 7-13]. Regarding beverages, beers are 
among the world's oldest prepared and consumed drinks 
[14]. Beer is any fermented beverage prepared from these 
four primary ingredients: grain (most  commonly  malted  
barley but also other grains); hops (grown in many 
different varieties); yeast (responsible for fermentation, 
based on style-specific strains); and water (accounts for 
up to 95% of beer’s content). All these ingredients 
provide beers with different attributes (colour, flavour, 
bitterness, aroma, strength, production method or 
fermentation method), which allow their differentiation 
and categorization. Therefore, considering the large 
complexity and diversity of this beverage depending on 
both the ingredients and the brewing process, as well as 
the enormous economic implications of the industrial 
production of beer, it seems clear that beers are one of the 
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main targets in the analysis of food products with 
chromatographic techniques, electronic tongues and 
chemometrics [15-21].  
Electronic tongues have shown excellent abilities for beer 
discrimination, as it has been demonstrated in the 
different publications related to the subject [22-31]. But 
sometimes the electronic tongue approach involves a too 
large number of sensors in the array, which increases the 
fabrication time and the costs of the full device. 
Moreover, it leads to a high amount of data, which means 
a great deal of information but also a high complexity in 
the calculations.  
Thus, in this work we try to explore the opposite 
direction, towards simplicity, even accepting the risk of 
losing some accuracy. For this purpose, we have 
evaluated the possibilities of a single, commercially 
available, disposable carbon screen-printed electrode 
(SPCE) as the only sensor used for cyclic voltammetric 
(CV) measurements. The choice of this particular 
material (carbon) for the screen-printed device was made 
not only in terms of its simplicity, reproducibility and 
low cost, but also considering the excellent results 
provided by SPCE units in previous investigations of our 
research group involving organic substances [32, 33].  
The data have been analyzed first with pattern 
recognition methods in order to classify the different 
beers according to their fermentation process and to their 
different varieties. Secondly, methods of multivariate 
calibration have been applied to predict the alcoholic 
degree of the samples. In both cases, linear chemometric 
methods like principal component analysis and partial 
least squares calibration (these more ‘classical’ and 
widespread) have been compared with non-linear 
approaches, more recent and less popular than the linear 
ones but, in our opinion, best suited to deal with the 
characteristic non-linear behaviour of many voltammetric 
measurements [6, 34-36]. Among these non-linear 
approaches, we have selected support vector machines, 
based on hyperplane calculations in high-dimensional 
spaces to optimize classification [37, 38] and artificial 
neural networks, based on calculation units 
interconnected by parametric functions whose parameters 
are changing during the learning process to optimize 
calibration predictions [39, 40]. 

2. Materials and Methods 

2.1. Instrumentation and apparatus 

Voltammetric measurements by cyclic (CV) and 
differential pulse voltammetry (DPV) were made with a 
potentiostat µAutolab III (EcoChemie, Utrecht, The 
Netherlands) controlled with the software GPES 4.9 

(Ecochemie). Disposable carbon screen-printed 
electrodes by Metrohm-Dropsens (Oviedo, Spain), with 
reference DS-110, were used as working electrode, with a 
surface of 50.3 mm2. Although the DS-110 units are 
equipped with a counter and a pseudo-reference 
electrode, conventional Ag/AgCl and glassy carbon 
electrodes by Metrohm (Herisau, Switzerland) were used 
as reference and auxiliary electrodes, respectively, for the 
sake of a better reproducibility. The DS-110 devices and 
the other two electrodes were connected to the 
potentiostat by means of a Metrohm-DropSens DSC 
connector (reference DRP-CAC). 

2.2. Samples and measurements 

19 beer brands of different varieties, summarised in Table 
1, were considered in this study. Two or more 
bottles/cans of each brand were purchased in local 
supermarkets of Barcelona (Spain). They were stored and 
opened at room temperature (20 oC) and measured by CV 
or DPV immediately upon aperture, filling a disposable 
polypropylene can and immersing the electrodes there. 
This means that, in contrast with many conventional 
procedures of beer analysis, nor oxygen nor carbon 
dioxide were removed. Several replicates of different 
samples were randomly measured by using the same 
screen-printed unit, which was replaced every 25 
measurements to ensure reproducibility standards. In the 
Results and Discussion section an optimised procedure of 
signal correction between different screen-printed units 
using a reference beer sample is described. 

2.3. Data treatment 

The full data set registered in every voltammogram (200 
values of current including both forward and backward 
scans) was corrected for differences in the electrodes (as 
explained in Section 3.1). This was the only correction 
made to experimental data. Then, the corrected 
voltammograms of the beer samples were combined into 
data matrices by means of home-made programs 
implemented in Matlab [41]. The data matrices contained 
the currents measured for every beer sample replicate (in 
rows) at a given potential during the forward or backward 
scan (in columns).  Calibration and validation data sets 
were submitted to principal component analysis (PCA), 
partial least squares calibration (PLS), partial least 
squares discriminant analysis (PLS-DA), support vector 
machine discriminant analysis (SVM-DA) and artificial 
neural networks (ANN) by means of the SOLO program 
by Eigenvector Research [42]. Unless otherwise 
indicated, autoscalling pretreatment was applied to all 
data sets prior to chemometric analysis. 
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Table 1. Main characteristics of the 19 brands of beer considered in the present study. 

 
3. Results and Discussion 

3.1. Preliminary study 

A comparative study between CV and DPV 
measurements was made with several beer samples. From 
the study it was clear that, although DPV signals were 
sharper than CV ones, they were less reproducible and 
had less discrimination power. This could be because, 
unlike DPV, CV informs about both the oxidation 
(forward scan) and reduction (backward scan) of the 
samples. Thus, CV measurements were chosen for further 
experiments. As for the potential range, scans between -
0.5 V and 0.5 V appeared to be the most convenient, 
being quite informative and avoiding excessive currents 
at extreme potentials which could favour an early 
deterioration of the disposable device. 
An important factor to evaluate was the reproducibility 
and durability of the screen-printed electrodes. Figure 1a 
shows that the first CV scans obtained with a new screen-

printed unit were very different to the others, with quite 
low currents. As the electrode surface achieves 
equilibrium with the solution, next measurements exhibit 
slight current increases until they stabilise after 3-4 
consecutive cycles. Then, successive scans become quite 
reproducible during 25-30 measurements until the 
electrode starts to deteriorate and voltammograms are 
notoriously distorted. Once a new electrode has been 
‘stabilised’, CV voltammograms measured with it in 
different beers can be compared (Figure 1b). Therefore, 
the subtle differences in the scans can be used by pattern 
recognition techniques like PCA, PLS-DA or SVM-DA 
to discriminate among different kinds of beer. 
Figure 2 summarizes the effect of the scan rate of CV 
measurements. As Figure 2a shows, when the scan rate 
increases, both the forward and backward currents 
increase, but the signals loose definition. This is because 
faradaic currents, which are the most informative about 
electroactive substances, increase more slowly than 
capacitive ones and are masked by them. A PCA study 
was carried out with a data set integrated by several 

Brand name Code Fermentation Characteristic 
ingredients Variety % Alcohol 

Franziskaner FRAN Ale Wheat Witbier 5.0 
1550 Weiss 155W Ale Wheat Witbier 5.3 
Paulaner PAUL Ale Wheat Witbier 5.5 
Grimbergen GRIM Ale Malt Blonde 6.5 
Leffe Brune LFBR Ale Toasted malt Dubbel 6.5 
Amstel Radler AMRA Lager Lemonade Radler 2.0 
Moritz Radler MORA Lager Lemonade Radler 2.8 
Corona CORO Lager Malt Pilsner 4.5 
Estrella Damm Original EDOR Lager Malt and rice Pale 5.4 
Moritz Original MOOR Lager Malt Pale 5.4 

San Miguel Manila SMMA Lager Malt and hops Indian pale 
lager (IPL) 5.8 

Cerveza Tequila CETE Lager Tequila Tequila 5,9 
Desperados Original DEOR Lager Tequila Tequila 6.0 
San Miguel Selecta SMSE Lager Toasted malt Vienna 6.2 
Cruz Campo Gran Reserva CCGR Lager Toasted malt Especial 6.4 
Voll Damm Doble Malta VDDM Lager Toasted malt Märzen 7.2 
Moritz Epidor MOEP Lager Malt caramel Blonde 7.2 
San Miguel 0,0 SM00 Lager Zero alcohol Alcohol-free 0.0 
Free Damm 0,0 ED00 Lager Zero alcohol Alcohol-free 0.0 
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replicates of two beers measured by CV at different scan 
rates in the range 10 – 200 mVs-1. Figure 2b shows a 
scores plot, where PC1 is mostly influenced by the level 

of currents (related to the scan rate) and PC3 mainly 
depends on the details of the signal shape (related to the 
type of beer).  

 
 

 

 

 

 

 

Fig. 1. (a) Successive CV scans made with a brand-new SPCE unit in a reference sample of beer (MOEP) where the three first 
scans have been highlighted; (b) CV scans obtained with the same SPCE unit in different beer varieties (CETE, EDOR and 
AMRA). 

 

 

 

 

 

 

Fig. 2. (a) Evolution of the CV scans measured with a SPCE unit in a beer sample (MOEP) at increasing scan rates from 10 to 200 
mVs-1 with the arrows showing the increase of the currents as the scan goes faster. (b) PC3 vs. PC1 scores plot obtained from the 
overall PCA analysis of several replicates of two different beers (MOEP and ED00) measured by CV at different scan rates, which 
are shown in the graph. MOEP samples (here denoted as EPI) appear in the top half of the graph, whereas ED00 samples (here 
denoted as ED0) appear in the bottom half of the graph. 

It can be seen that lower rates produce a better agreement 
of the replicates of the same beer (placed in the positive 
region of PC3) and a clearer separation from the 
replicates of the other beer (placed in the negative region 
of PC3). However, slow scans are time consuming. 
Therefore, an intermediate scan rate of 50 mVs-1 was 
chosen as a compromise between analysis time and 
discrimination power. 

As pointed out before, the durability of screen-printed 
devices is limited, and this prevented us to measure a 
sufficient number of replicates of all the considered beers 
with the same SPCE unit. To minimize the differences in 
the CV signals when the unit was replaced, a correction 
method between consecutive electrodes was developed. It 
consists on comparing the CV scans of a reference beer 
(EDOR) measured with the old and the new electrode. If 
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we consider every scan (including both forward and 
backward parts) as a vector, we can define a correction 
vector vcor in the form:  

vcor = v2 - v1    (1) 

where v2 and v1 are the CV scans measured for the 
reference sample with the new and the old electrode, 
respectively. If we assume that this approach holds for all 
samples, we can correct the signal of any sample 
measured with the new electrode (v2’) to predict the scan 
that this sample would have produced with the old 
electrode (v1’): 

v1‘= v2‘ - vcor    (2) 

In this way, the corrected scan would be more 
comparable to the measurements of other samples made 
with the old electrode. In practise, the percentage of 

current added or subtracted by the correction is quite 
small, so the changes are hardly noticeable at the first 
sight. However, the effects of the correction are clearly 
visible when pattern recognition methods are applied. As 
an example, Figure 3 compares the scores plots obtained 
with PCA in the analysis of a matrix containing the 
voltammograms of several replicates of two different 
beers measured with two electrodes. In the absence of 
correction (Figure 3a), there is a clear difference between 
the replicates of the same sample measured with different 
SPCE units, a difference comparable to that between 
different beers measured with the same SPCE device. In 
contrast, Figure 3b shows that the application of the 
developed correction produces only two well defined 
groups of scores corresponding to both beer samples, 
with a good integration of the measurement of the 
different electrodes in the same group of samples. Thus, 
these results suggest the appropriateness of applying the 
proposed correction. 

 

 
 

 
 

 

 

 

 

 

Fig. 3. PC2 vs. PC1 scores plots of a set of CV scans measured in five replicates of two different beers (beer 1: SM00; beer 2: 
SMSE) using two different SPCE electrodes before (a) and after (b) the proposed correction between SPCE units. (beer 1 and 
electrode 1 ●, beer 1 and electrode 2 ▲, beer 2 and electrode 1 ●, beer 2 and electrode 2 ▲). 

 
Therefore, CV from -0.5 V to 0.5 V with a scan rate of 50 
mVs-1 and the above-described correction protocol was 
applied to measure several replicates of the brands of 
beer selected. Moreover, to ensure reproducibility 
standards, every SPCE unit was first scanned with the 
reference beer, then used to measure replicates of other 
beers in random order and finally was replaced once 25 
measurements had been performed. In this way, all 
measurements made with all SPCE units can be 
compared to each other by using the initial measurements 
with the reference sample to correct data. The data were 
integrated into matrices with the samples in rows and the 

potentials in columns and were submitted to different 
methods of sample discrimination and multivariate 
calibration which are described in the next sections. 

3.2. Discrimination of beer varieties 

A comparative study was made by PLS-DA and SVM-
DA to discriminate among the two big groups of beers 
studied according to their fermentation process: ale beers 
and lager beers. Figure 4 and Table 2 compare the 
classification of 148 replicates of the 17 beers considered 



Full Paper                                                            ELECTROANALYSIS 
according to both chemometric methods. In all cases, a 
calibration set of 110 voltammograms was used to build 

the classification model and a set of 38 voltammograms 
was used for validation. 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Classification of the brands of beer considered according to their kind of fermentation (■ Ale or ♦ Lager) obtained from the 
PLS-DA (a) and SVM-DA (b) analysis of a total of 148 CV samples/scans obtained from them. The 148 replicates have been 
divided into a calibration set of 110 samples and a validation set of 38 samples. Validation samples are denoted with more intense 
colour than calibration ones. REF1, REF2 and REF3 stand for the three samples of EDOR used as a reference in the corrections of 
the voltammograms. 
 
 
Table 2 shows that, although the results of PLS-DA are 
reasonable (e.g. 21.1% of classification error in 
validation), SVM-DA provides a much better 
classification (5.3% of error in the same item), maybe 
because it is a non-linear method which models better 
than PLS-DA (linear) the usual non-linearity of 
voltammetric data. 
This difference between PLS-DA and SVM-DA is more 
notorious when the models try to classify the beers into 
12 more specific varieties (listed in Table 1). Then PLS-
DA clearly fails (graphic not shown) with classification 
errors of 43.6 % and 60.5 % in the calibration and 
validation sets, respectively. In contrast, SVM-DA 
provides a really accurate result, with only three samples 
wrongly classified out of 148 (Figure 5). This produces 
classification errors of 0.0 % and 7.9 % for the 
calibration and validation sets, respectively. 
These results suggest that the use of an SPCE unit as a 
single sensor coupled with the analysis by SVM-DA 
allows an accurate classification of beer samples 

according to both the kind of fermentation and the variety 
of beer 

3.3. Prediction of the alcoholic degree 

Multivariate calibration models obtained by means of 
PLS with 6 latent variables (deduced by cross-validation) 
and by means of ANN with two neurons in the inner 
layer (the default setup in the program SOLO) were 
applied to voltammetric data to predict the alcoholic 
degree of the beers in % v/v (this declared by the 
manufacturer).  The results of both approaches are 
summarised and compared in Figure 6 and Table 3. As it 
happened in the classification study, the performance of 
the non-linear method (ANN) is clearly superior to the 
linear one (PLS). Figure 6a shows in detail the large 
deviations of most PLS predictions from the expected 
values of the alcoholic degree. Moreover, the predicted 
values present a high dispersion. In contrast, Figure 6b 
shows the accurate predictions made by ANN in a broad 



Full Paper                                                            ELECTROANALYSIS 
range of alcoholic degrees, from 0 % to 8 %. With the 
exception of two beer brands (indicated by orange 

circles), all the predictions are uniformly and well 
distributed around the line indicating the real value. 

 
Table 2. Parameters obtained in the classification by PLS-DA and SVM-DA of the brands of beer considered in the study according 

to their kind of fermentation, as shown in Fig. 4. 

Method Data Parameter Ale  Lager Overall 
PLS-DA Calibration Sensitivity 0.82 0.74 - 
  Specificity 0.74 0.82 . 
  Classification error  - - 23.6 % 
 Validation Sensitivity 0.80 0.79 . 
  Specificity 0.79 0.80 . 
  Classification error  - - 21.1 % 
SVM-DA Calibration Sensitivity 1.00 1.00 . 
  Specificity 1.00 1.00 - 
  Classification error  - - 0 % 
 Validation Sensitivity 1.00 0.93 . 
  Specificity 0.93 1.00 - 
  Classification error  - - 5.3 % 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Classification of the same set of 148 samples according to the 12 varieties/classes of beers (plus the reference samples) 
shown in Table 1 by applying SVM-DA to the corresponding CV voltammograms. All samples have been assigned to the most 
probable class. Samples inside the validation set are denoted with a more intense colour than these of the calibration set. Circles 
and arrows in orange indicate the three only samples wrongly classified by the model. 
 
In order to carry out a comparative validation of both 
PLS and ANN approaches, 7 replicates of the beer 
SMMA were measured by CV and the data were 

submitted to both PLS and ANN calibration models. 
Table 4 shows the average and the standard deviation of 
the 7 predicted values obtained in each case and 
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compares them with the ‘true’ value provided by the 
manufacturer. Figures 6a and 6b also compare the 
predicted values of the validation sample (in blue colour) 
with the expected one (in red colour). The analysis of 

these data confirms the superior performance of ANN, 
which gets closer to the expected value than the PLS 
results, with a relative error of 2 %, much better than the 
9% provided by PLS. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 6. Prediction of the alcoholic degree (% v/v) of the beer samples considered by using a PLS calibration model (a) and an ANN 
calibration model with two neurones in the hidden layer (b). The alcoholic degree provided by the manufacturer is indicated in red 
for every brand. The average value predicted for the validation sample is indicated in blue. Orange circles indicate the brands with 
poor predictions (all points above or below the line). 
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Table 3. Comparison of the calibration (C) and cross-validation (CV) parameters of the multivariate calibration of the alcoholic 
degree of the beers by using PLS with 6 latent variables and ANN with 2 neurons in the hidden layer. (RMSE stands for the root 
mean square error, bias accounts for the systematic error and R2 is the coefficient of determination of the fitted line in the plot of 

predicted versus expected values) 
 

Parameter PLS ANN 

RMSEC 0.907 0.054 

RMSECV 0.983 0.691 

Bias C 1.8 10-15 1.2 10-3 

Bias CV 0.014 -0.049 

R2 C 0.707 0.999 

R2 CV 0.658 0.840 

Table 4. Comparison of the alcoholic degree predictions of SMMA beer made by PLS and ANN from the CV scans of 
7 replicate samples. Errors are computed according to the value provided by the manufacturer, which is also shown. 

 
 
 
 
 
 
 
 

 
 
4. Conclusions 

The results obtained in the present work show that, 
although maybe less accurate than the strategies based on 
chromatographic fingerprinting or voltammetric 
electronic tongues, the use of CV measurements with a 
single, unmodified commercial screen-printed device can 
be a faster, simpler and more economic tool for the 
preliminary screening of beers.  For this purpose, carbon 
devices (SPCE) appear to be a good choice due to their 
low cost and durability. Obviously, the information 
provided by a single sensor is not as rich as that yielded 
by an array of several sensors with cross-response but, in 
some way, the correction between successive units and 
the possibility of working with the untreated sample (thus 
preserving the contribution of carbon dioxide and volatile 
substances to the signal) enhances the discrimination 
power of such a modest approach and easily allows the 
comparison of sets of measurements carried out in 
different days. 
As for the chemometric tools tested for both 
classification and calibration, non-linear methods like 
SVM-DA or ANN seem to reflect better than the linear 
ones (PLS, PLS-DA) the intrinsic non-linearity of 
voltammetric measurements, thus providing a more 
accurate discrimination among different types of 

fermentation and different varieties of beer, as well as a 
more successful prediction of their alcoholic degree. 
As a general conclusion, this work suggests that in many 
practical applications of food characterization and 
discrimination, the rich information provided by an array 
of several electrodes constituting an electronic tongue 
could be replaced by a simpler and cheaper solution 
involving a single and disposable electrode if the loss of 
information is compensated by both a correction 
methodology to account for the different electrodes used 
and a non-linear chemometric method better suited for 
voltammetric data than linear ones. Thus, it would be 
interesting to test similar strategies in other relevant 
beverages such as wine, tea or coffee. 
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Figure Legends 

Fig. 1. (a) Successive CV scans made with a brand-new SPCE 
unit in a reference sample of beer (MOEP) where the three first 
scans have been highlighted; (b) CV scans obtained with the 
same SPCE unit in different beer varieties (CETE, EDOR and 
AMRA). 

Fig. 2. (a) Evolution of the CV scans measured with a SPCE 
unit in a beer sample (MOEP) at increasing scan rates from 10 
to 200 mVs-1 with the arrows showing the increase of the 
currents as the scan goes faster. (b) PC3 vs. PC1 scores plot 
obtained from the overall PCA analysis of several replicates of 
two different beers (MOEP and ED00) measured by CV at 
different scan rates, which are shown in the graph. MOEP 
samples (here denoted as EPI) appear in the top half of the 
graph, whereas ED00 samples (here denoted as ED0) appear in 
the bottom half of the graph. 

Fig. 3. PC2 vs. PC1 scores plots of a set of CV scans measured 
in five replicates of two different beers (beer 1: SM00; beer 2: 
SMSE) using two different SPCE electrodes before (a) and 
after (b) the proposed correction between SPCE units. (beer 1 
and electrode 1 ●, beer 1 and electrode 2 ▲, beer 2 and 
electrode 1 ●, beer 2 and electrode 2 ▲). 

Fig. 4. Classification of the brands of beer considered according 
to their kind of fermentation (■ Ale or ♦ Lager) obtained from 
the PLS-DA (a) and SVM-DA (b) analysis of a total of 148 CV 
samples/scans obtained from them. The 148 replicates have 
been divided into a calibration set of 110 samples and a 
validation set of 38 samples. Validation samples are denoted 
with more intense colour than calibration ones. REF1, REF2 
and REF3 stand for the three samples of EDOR used as a 
reference in the corrections of the voltammograms. 

Fig. 5. Classification of the same set of 148 samples according 
to the 12 varieties/classes of beers (plus the reference samples) 
shown in Table 1 by applying SVM-DA to the corresponding 
CV voltammograms. All samples have been assigned to the 
most probable class. Samples inside the validation set are 
denoted with a more intense colour than these of the calibration 
set. Circles and arrows in orange indicate the three only 
samples wrongly classified by the model. 

 

Fig 6. Prediction of the alcoholic degree (% v/v) of the beer 
samples considered by using a PLS calibration model (a) and 
an ANN calibration model with two neurones in the hidden 
layer (b). The alcoholic degree provided by the manufacturer is 
indicated in red for every brand. The average value predicted 
for the validation sample is indicated in blue. Orange circles 
indicate the brands with poor predictions (all points above or 
below the line). 

References 

[1] G.P. Danezis, A.S. Tsagkaris, F. Camin, V. Brusic, C.A. 
Georgiou, Trends Anal. Chem. 2016, 85, 123-132. 

[2] C. Pérez-Ràfols, N. Serrano, A. Ariño, M. Esteban, J.M. 
Díaz-Cruz, Sensors 2019, 19, 4261.  

[3] S. Mannino, S. Benedetti, S. Buratti, M.S. Cosio, M. 
Scampicchio, Compr. Anal. Chem. 2007, 49, 755-770. 

[4] Y. Tahara, K. Toko, IEEE Sens. J. 2013, 13, 3001-3011. 
[5] S.D. Brown, R. Tauler, B. Walczak, Comprehensive 
Chemometrics: Chemical and Biochemical Data Analysis, 
Elsevier, Amsterdam, The Netherlands, 2009. 

[6] J:M. Díaz-Cruz, M. Esteban, C. Ariño, Chemometrics in 
Electroanalysis. Springer Nature, Cham, Switzerland, 2019. 

[7] A.K. Deisingh, D.C. Stone, M. Thompson, Int. J. Food Sci. 
Technol. 2004, 39, 587–604. 

[8] L. Escuder-Gilabert, M. Peris, Anal. Chim. Acta 2010, 665, 
15–25. 

[9] P. Ciosek, W. Wróblewski, Sensors 2011, 11, 4688–4701. 

[10] M. Peris, L. Escuder-Gilabert, Trends Food Sci. Technol. 
2016, 58, 40–54. 

[11] M. del Valle, Electroanalysis 2010, 22, 1539-1555. 

[12] Z. Wei, Y. Yang, J. Wang, W. Zhang, Q. Ren, J. Food 
Eng. 2018, 217, 75–92. 

[13] J.M. Díaz-Cruz, C. Pérez-Ràfols, X. Cetó, N. Serrano, C. 
Ariño, M. Esteban, Voltammetric electronic tongues. In Recent 
advances in analytical techniques: Volume 4, 27-57, Bentham, 
2020. 

[14] M. Nelson, The Barbarian's Beverage: A History of Beer 
in Ancient Europe. Abingdon, Oxon: Taylor and Francis, 2008. 

[15] B. Vanderhaegen, H. Neven, H. Verachtert, G. 
Derdelinckx, Food Chem. 2006, 95, 357-381. 

[16] C. Boulton, J. Inst. Brew. 2012, 118, 255-263. 

[17] H.E. Anderson, I.C. Santos, Z.L. Hildenbrand, K.A. 
Schug, Anal. Chim. Acta 2019, 1085, 1-20. 



Full Paper                                                            ELECTROANALYSIS 
[18] S. Sohrabvandi, S.M. Mousavi, S.H. Razavi, A.M. 
Mortazavian, Int. J. Food Prop. 2010, 13, 744-759. 

[19] K.J. Siebert, J. Am. Soc. Brew. Chem. 2001, 59, 147-156. 

[20] C. Pérez-Ràfols, J. Saurina, Anal. Methods 2015, 7, 8733-
8739. 

[21] C. Pérez-Ràfols, D. Viñas, S. Hernández-Cassou, J. 
Saurina, Anal. Methods 2015, 7, 3283-3290. 

[22] A. Rudnitskaya, E. Polshin, D. Kirsanov, J. Lammertyn, B. 
Nicolai, D. Saison, F.R. Delvaux, F. Delvaux, A. Legin, Anal. 
Chim. Acta 2009, 646, 111-118. 

[23] A.A. Arrieta, M.L. Rodríguez-Méndez, J:A. De Saja, C.A. 
Blanco, D. Nimubona, Food Chem. 2010, 123, 642-646. 

[24] E. Polshin, A. Rudnitskaya, D. Kirsanov, A. Legin, D. 
Saison, F. Delvaux, F.R. Delvaux, B.M. Nicolai, J. Lammertyn, 
Talanta 2010, 81, 88-94. 

[25] M. Ghasemi-Varnamkhasti, S.S. Mohtasebi, M.L. 
Rodriguez-Mendez, M. Siadat, H. Ahmadi, S.H. Razavi, Trends 
Food Sci. Technol. 2011, 22, 245-248. 

[26] A. Kutyła-Olesiuk, M. Zaborowski, P. Prokaryn, P. 
Ciosek, Bioelectrochemistry 2012, 87, 104-113. 

[27] X. Cetó, M. Gutiérrez-Capitán, D. Calvo, M. del Valle, 
Food Chem. 2013, 141, 2533-2540. 

[28] X. Cetó, J.M. Gutiérrez, A. Mimendia, F. Céspedes, M. del 
Valle, Electroanalysis 2013, 25, 1635-1644.  

[29] J.M. Gutiérrez, Z. Haddi, A. Amari, B. Bouchikhi, A. 
Mimendia, X. Cetó, M. del Valle, Sens Actuat. B: Chem. 2013, 
177, 989-996. 

[30] C.A. Blanco, R. de la Fuente, I. Caballero, M.L. 
Rodríguez-Méndez, J. Food Eng. 2015, 157, 57-62. 

[31] E.W. Nery, L.T. Kubota, Anal. Chim. Acta 2016, 918, 60-
68.  

[32] A. Sunyer, A. González-Navarro, M.P. Serra-Roig, N. 
Serrano, M.S. Díaz-Cruz, J.M. Díaz-Cruz, Talanta 2019, 196, 
381-388. 

[33] A. Muschietti, N. Serrano, C. Ariño, M.S. Díaz-Cruz, J.M. 
Díaz-Cruz, Sensors 2020, 20, 1839. 

[34] M. Esteban, C. Ariño, J.M. Díaz-Cruz, M.S. Díaz-Cruz, R. 
Tauler, Trends Anal. Chem. 2000, 19, 49-61. 

[35] J.M. Díaz-Cruz, J. Sanchís, E. Chekmeneva, C. Ariño, M. 
Esteban, Analyst 2010, 135, 1653-1662. 

[36] S. Cavanillas, J.M. Díaz-Cruz, C. Ariño, M. Esteban, Anal. 
Chim. Acta 2011, 689, 198-205. 

[37] C.J. Burges, Data Min. Knowl. Discov. 1998, 2, 121-167. 

[38] R.G. Brereton, G.R. Lloyd, Analyst 2010, 135, 230-267. 

[39] V.G. Maltarollo, K.M. Honório, A.B.F. da Silva, 
Applications of artificial neural networks in chemical 
problems. In Artificial neural networks-architectures and 
applications. InTech Open Access Publisher, 2013. 

[40] F. Marini, Anal. Chim. Acta 2009, 635, 121-131. 

[41] Matlab, version R2009b ed.; Mathworks Inc.: Natick, MA, 
USA, 2009. 

[42] Solo 8.7.1. Eigenvector Research, Inc., Manson, WA USA 
98831, 2019. 


