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Featured Application: The use of a residue that is currently disposed of in landfills was consid-
ered in this study, to obtain binder materials more sustainable and respectful to the environment.
The recycling glass industry is identified as a model to advance towards a circular economy. The
recycling glass rate in Europe is around 74%; meanwhile, in Spain it is approximately 70%, as
reported elsewhere. However, in Spain, there is a problem with a residue obtained during the
glass recycling process. The residue is named CSP (ceramic, stone, and porcelain). The results of
this contribution show that is possible to use this residue as the precursor for developing alkali-
activated cements (AAC). Due to the small amount of aluminum in CSP, it is desirable to use it as
a non-hydraulic binder for specific purposes, such as prefabrication, decoration, insulation walls,
or flooring material. Otherwise, for future works, it will be necessary to include aluminum for
hydraulic binder development.

Abstract: During the glass selection process by optical sorting equipment, a rejection material called
CSP (ceramic, stone, and porcelain) is generated, which is lower than 2 wt % of the glass cullet
collected in Catalonia (Spain). Although this process should only separate non-glass impurities from
the glass cullet, around 84 wt % of glass is found in the CSP. The CSP characterization reveals that
CSP is mainly compound by SiO2, Al2O3, alkali metals, and CaO, which are key components for the
alkali-activated cement (AAC) development. Consequently, this study is focused on the potential of
CSP as a precursor to synthesize AAC. The concentration of the alkali activator (NaOH: 1 M, 4 M,
and 8 M) and the liquid-to-solid (L/S) ratio were tested in the formulation of the AAC. The AAC
specimens at 28 days cured were evaluated using X-ray diffraction (XRD), Fourier transform infrared
spectroscopy (FIR), scanning electron microscopy (SEM), apparent density (ρapp), and compressive
strength (σs). The results obtained showed that the L/S of 0.5 and 4.0 M for NaOH concentration are
the best conditions, due to the mechanical properties (ρapp = 1.75 g·cm−3; σs = 52.8 MPa), cohesion
(SEM), and formed phases (XRD and FT-IR). Therefore, CSP can be a precursor for developing new,
sustainable binders.

Keywords: sustainable binder; alkali-activated cement; residue; CSP; municipal waste management

1. Introduction

An important challenge in the present society is proper management of waste, which
is generated both in urban and industrial areas. The new environmental European Union
(EU) policies in the waste management field [1], based on the concept of the circular
economy, are focused on recycling and recovery promotion. On the other hand, the EU
is making efforts to reduce CO2 emissions and energy consumption, which are growing
exponentially. One of the solutions to overcome the above-mentioned problems is the
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development of new materials more respectful to the environment, as well as secondary
raw material usage in its manufacture.

In the past few decades, regarding the framework of building material applications,
there has been a commitment to reduce greenhouse gas (GHG) emissions by using materials
that have a low carbon emission associated with their manufacture. In this sense, one
of the most polluting materials during its manufacturing process is ordinary Portland
cement (OPC). The OPC industry is responsible for 7% of global CO2 emissions and
3% of global energy consumption. In this regard, the cement industry must face the
challenge of producing materials more sustainably to reduce the levels of contamination
and environmental degradation. Nowadays, different alternative cements are being studied
to reduce CO2 emissions and energy consumption during the manufacturing process [2–6],
as well as being able to incorporate waste into their formulations by contributing to the
EU’s strategic policies by the year 2050.

By the year 2030, the recycling packaging rate is expected to reach at least 75% [7]. Up
to now, Belgium, Denmark, and the Czech Republic have accomplished this target, although
there are also some countries close to achieving it (e.g., Spain) [8]. If attention is focused
on the recycling glass rate, in Europe around 74% is accomplished [9], and above 70% in
Spain [8]. The energy and natural resource savings, low emission of GHGs, water pollution
reduction, and high recyclability of glass (as well as its capacity to be recycled infinite
times without losing its properties) [10], turn the recycling glass industry into an example
of sustainability and circular economy. Unfortunately, it exists in an improper fraction,
composed of glass and non-glass materials, which are found in the glass treatment process
and hinder its recycling. In Catalonia, the improper fraction is estimated to be around 2 wt %
of the total glass cullet collected in the separate curbside containers [11]. The most common
improper are polyethylene terephthalate (PET) containers, ceramics, porcelain (cups and
plates), and metal waste associated with tin and bottle caps. Elimination is relatively simple
for metallic and plastic remains by using electromagnets and mechanical separators [12],
respectively. However, in the case of ceramics and porcelain, their separation becomes
a difficult task. In addition, the elimination of ceramics and porcelain is crucial for the
subsequent recycling process, since its presence increases the glass melting temperature and
can cause defects in the new container glass [13]. There is a European standard focused on
minimizing these problems, which only considers the content of 20 g of ceramic or porcelain
per ton of glass to be recycled [14], and it is not inconceivable that this would fall to
15 g·t−1. For the separation of these materials, the use of special optical sorting equipment
is necessary, by using the laser, X-ray techniques, or optical cameras, allows the removal
of non-glass contaminants, as well as sorting of mixed glass by color, obtaining a waste
fraction known as CSP (ceramic, stone, and porcelain) [15]. Nevertheless, CSP contains
a high amount of glass because the sorting equipment does not recognize as translucent
elements glass fragments with labels or necks, or bottle bottoms. The CSP residue contains
approximately 80 wt % of glass, around 4 wt % of ceramic, and 4 wt % of porcelain; the
remaining components are small pieces of metals, polymers, papers, and organic materials.
According to the Catalan recycling glass companies, around 4–5 wt % of the recycled glass
is CSP, which is more than 30,000 t of CSP per year in Catalonia. Currently, as this residue
cannot be valorized, the main destination of CSP in Spain is landfill, where accessibility in
the EU is increasingly restricted [16] due to the environmental problems [17–20] generated
by the waste deposits. In recent years, to increase sustainable and environmental criteria,
the authors seek possible potential uses of this particular residue [21]. Regarding the
elemental composition of CSP, it is rich in silicon, alkali metals, and to a lesser extent
aluminosilicate (e.g., mullite), making it a suitable raw material to obtain alkali-activated
cements (AAC) [22,23]. Obtaining AAC consists of the reaction of an aluminosilicate
powder precursor with a highly alkaline activator solution to form sodium aluminosilicate
hydrate (NASH; when CaO amount on precursor < 10%) or calcium aluminosilicate hydrate
(CASH; when CaO amount on precursor > 10%) gels [23]. Also, it is possible to obtain CSH
(calcium silicate hydrate) gel depending on the amount of the precursors [24]. The result of
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these reactions, after a proper curing time and temperature, is a compact solid with good
mechanical properties. AAC are considered as a sustainable alternative to OPC, due to
low carbon emissions during their manufacture, as well as their appropriate mechanical
properties, chemical stability, acid resistance, and fire resistance [19], among others. There
are several publications about the compressive strength of AAC developed by using glass
wastes as precursors, such as that by Zhu et al., where 70 MPa were reported when the
specimens were cured at 75 ◦C and 98% relative humidity for 3 days [25]. Tho-In et al.
obtained compressive strength values around 49 Mpa after combining glass wastes with fly
ash (FA); the samples were cured at 60 ◦C in an oven for 48 h, and consequently cured at
23–25 ◦C and 50% relative humidity to be tested at 7 days [26]. Xiao et al. obtained around
30 MPa at 28 days when FA and glass waste were combined in a 1:3 weight ratio with 5 M
NaOH solution and cured at room temperature [27].

A large variety of industrial waste and by-products can be used as precursors, with the
purpose of developing new sustainable binders or AAC [28,29]. All these alkali-activated
waste solid precursors are rich in silica and alumina, with the highest possible amorphiza-
tion degree. Hence, there are several publications, including urban and industrial waste
glass, which is specifically glass as a precursor in alkaline activation [30–32].

However, unlike what happens with this kind of waste glass, CSP is a residue that is
discarded in the glass cullet recycling industry, and for this reason, it is currently disposed
of in landfills because of its 20 g of ceramic or porcelain per ton of glass content. In this
regard, the use of CSP as a raw material in the AAC formulations must allow valorizing this
rejected fraction generated during the glass recycling process. Aiming to contribute to the
development of new sustainable materials, the present work was focused on studying CSP
for its valorization and using it in high-benefit applications that definitively close the cycle
of glass recycling. In this way, the main objective of the present study was to evaluate the
potential of CSP for its use as a precursor in the synthesis of AAC (as sustainable cement),
with NaOH as an activator. Consequently, different formulations from CSP generated in a
glass treatment plant to develop sustainable binders were studied to reduce the material
disposed of in landfills (with important environmental and economic advantages), and
to obtain more ecological and respectful cements with the environment. The chemical
composition and microstructure of the AAC formulations were characterized by Fourier
transform infrared spectroscopy (FTIR) by using attenuated total reflectance sampling
technique (ATR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The
physical and mechanical characterization of the AAC formulations was evaluated by the
apparent density (ρapp), and compressive strength (σc) at 28 days of curing. These were
determined at the age of 28 days for a better understanding of mechanical properties. For
this purpose, using CSP as a precursor, different concentrations of the alkaline activator
solutions were considered, as well as different precursor–activator ratios.

2. Materials and Methods

The CSP sample was collected from the glass treatment plant Daniel Rosas, S.A., lo-
cated in Barcelona (Spain). This plant manages 90,000 t per year of glass cullet, collected in
curbside containers. The particle size distribution (Figure 1a) and the percentage composi-
tion (Figure 1b) in mass were determined after cleaning the sample with soap, to eliminate
the remains of dirt and ferments produced during the deposit of CSP in the treatment plant.
As can be observed in Figure 1a, the highest percentage (wt %) for CSP was the 8–16 mm
particle size fraction, followed by the size fraction > 16 mm. On the other hand, Figure 1b
shows glass as the main component in CSP.
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Figure 1. CSP (ceramic, stone, and porcelain) waste as raw material and as an alkali-activated cement (AAC) precursor:
(a) Particle size distribution in mass percentage; (b) CSP composition (wt %).

Moreover, to improve the reactivity for AAC synthesis, the CSP sample was crushed
and milled, using a ball mill, until CSP particle sizes were below 80 µm. The particle size
distribution (PSD) of the CSP used as precursor raw material (i.e., after crushing and milling
below 80 µm) was determined by using a Beckman Coulter LSTM 13 320. Additionally,
the CSP powder semi-quantitative elemental analysis was carried out by a Panalytical
Philips PW 2400 sequential X-ray fluorescence (XRF) spectrophotometer equipped with the
software UniQuant V5.0. In addition, X-ray diffraction (XRD) analysis was conducted to
determine the crystalline phases of CSP and the different AAC formulations using a Bragg–
Brentano Siemens D-500 powder diffractometer device with CuKα radiation. Fourier
transform infrared spectroscopy (FTIR) by using the attenuated total reflectance sampling
technique (ATR) was performed to compare the CSP initial powder structure before the
AAC composition, employing Spectrum Two equipment from Perkin Elmer supported by
a Dynascan interferometer and OpticsGuard technology. FTIR equipment is optimized by
a wavelength range between 4000 cm−1 and 500 cm−1, and its standard spectral resolution
is 0.5 cm−1.

Different alkaline solutions were studied as activators to elucidate the effect of the
activator concentration in the AAC synthesis. For this purpose, various concentrations of
sodium hydroxide solutions (1 M, 4 M, and 8 M) were prepared by using sodium hydroxide
pearls (Labkem) dissolved in deionized water. Sodium hydroxide concentrations were
chosen by following the conclusions reported by Cyr et al. when NaOH is used for
geopolymer mortars made of glass cullet [33].

The AAC specimens using CSP as precursor were formulated by mixing the CSP
powder (below 80 µm) with the NaOH solutions as an alkaline activator, according to the
designed formulations shown in Table 1. The same amount of CSP (16 g) was used for
each formulation, and different amounts of NaOH solutions (8.0 and 9.6 g) were added
to the CSP powder to obtain the two liquid-to-solid (L/S) ratios under study: 0.5 and
0.6. L/S ratios were selected after preliminary tests for obtaining proper workability of
the mixtures.

Table 1. The AAC mixture composition.

Reference CSP (g)
NaOH Solution (g)

L/S (wt %)
1 M 4 M 8 M

05LS1M 16 8.0 0.5
05LS4M 16 8.0 0.5
05LS8M 16 8.0 0.5
06LS1M 16 9.6 0.6
06LS4M 16 9.6 0.6
06LS8M 16 9.6 0.6
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The mixing process between CSP powder and the alkaline solution consisted of slowly
adding the CSP powder to the NaOH solution while mixing mechanically for 5 min, thus
contributing to its activation. Later, the mixed paste was cast into plastic molds and
vibrated for 5 s to compact the mixture. The molds were sealed in a plastic bag to minimize
the moisture loss for 3 days at 40 ◦C ± 1 ◦C (relative humidity of 10% ± 5%) in a climate
chamber. Afterward, the specimens were unsealed, unmolded, and cured in the same work
conditions up to the age to be tested (28 days). As reported by Cyr et al. [34], the proper
curing temperature range to elaborate AAC with a glassy nature precursor was between
40 ◦C and 60 ◦C. Three cylindrical, prism-shaped specimens (27 mm diameter and 15 mm
height) were prepared for each formulation, as shown in Figure 2. The specimens were
used for compression strength after 28 days, as shown in the scheme in Figure 2. Afterward,
the obtained fragments after the compression tests were used to determine the apparent
density at the same age. Finally, the physico-chemical characterization of the AAC samples
was carried out with the same obtained fragments.
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Figure 2. Experimental tests flowsheet.

The physical and mechanical characterization of AAC formulations was conducted
by following several standards. The apparent density (ρapp), according to the Spanish
standard UNE 83-312-90, based on the Archimedes principle, was determined at the age
of 28 days for a better understanding of mechanical properties. The compressive strength
(σc) at 28 days of curing was determined for each formulation of AAC in a mechanical
testing machine MUTC-200 from Incotecnic, at a loading rate of 240 kg·s−1, by following
the standard EN 196-1.

Additionally, scanning electron microscope (SEM) observation of AAC formulations
coated in carbon was performed by using a Quanta 200 FEI, XTE 325/D8395, obtaining
micrographs by backscattered and secondary electrons.

3. Results
3.1. CSP Characterization

CSP was previously crushed and milled to particle sizes below 80 µm to improve the
reactivity for the AAC synthesis (see the previous section). A proper physico-chemical
characterization of CSP allows us to determine the potential reaction with NaOH. The
PSD is shown in Figure 3. As can be seen, CSP used as a precursor presents a bimodal
distribution, reaching the maximum particle size at 30 µm and 10 µm. As was expected, all
the particles were below 80 µm, because of the previous conditioning process.
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Figure 3. Particle size distribution of the CSP after milling used as raw material.

The main elemental oxide composition in CSP powder, determined by employing XRF,
is shown in Table 2. As expected, considering the high glass content in CSP, the main oxides
found were SiO2, Na2O, CaO, and Al2O3, which are the same components of soda-lime
glass [33,35]. In addition, XRD and FTIR were evaluated for CSP raw material. However,
the results are shown in the next section for better comprehension and interpretation of the
obtained results when AACs were prepared with milled CSP and NaOH.

Table 2. X-ray fluorescence (XRF) results from the CSP raw material.

Compounds CSP (wt %)

SiO2 70.78
Na2O 11.15
CaO 9.37

Al2O3 4.81
MgO 1.61
K2O 0.94

Fe2O3 0.57
TiO2 0.13
P2O5 0.04
MnO 0.02
LOI 0.99

3.2. AAC Characterization
3.2.1. AAC Physico-Chemical Characterization

The XRD patterns of CSP and AAC, formulated as a function of the NaOH concentra-
tion and L/S ratio, are shown in Figure 4. It should be noted that no significant differences
were found between the XRD patterns of both S/L (0.5 and 0.6) ratios. All the diffrac-
tograms showed an important halo (between the 2θ range from 15◦ and 35◦) corresponding
to the amorphous phases (vitreous phases) of the CSP, as well as the presence of quartz
(PDF-01-085-0457, most important peaks for the identification of this crystalline phase at
26.625◦ and 20.827◦) and mullite (PDF-01-079-1457, most important peak for the identi-
fication of this crystalline phase at 16.441◦) as the main crystalline phases. The sodium
carbonate (PDF-01-072-0628, mainly because of the peaks at 37.985◦ and 30.149◦) in small
amounts were detected in 4 M formulations (05LS4M and 06LS4M), and in higher amounts
were also detected for the 8 M formulations (05LS8M and 06LS8M). In addition, calcium
silicate hydrate (PDF-01-074-1995) was detected for 4 M formulations and potentially
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presented in 8M formulations. Considering the clearest presence of sodium carbonate in
8 M formulations and the evidence of calcium silicate hydrate in 4 M formulations, it can
be assumed that the higher the NaOH concentration, the higher the amount of sodium
carbonate, and the lower the presence of calcium silicate hydrate. The presence of calcium
silicate hydrate is related to CSH gel, which is better determined in 4 M formulations by
the peak at 31.650◦, probably due to a lower presence of sodium carbonate. Notice that the
higher the alkali concentration, the higher the displacement of amorphous halo, due to the
formation of NASH gel [33].
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Figure 4. X-ray diffraction (XRD) results for the CSP precursor and the different AAC formulations obtained depending on
the liquid-to-solid ratio (L/S) ratios (0.5 and 0.6) and the NaOH concentration.

Regarding FTIR characterization, Figure 5 shows the variation of some IR bands
depending on the different NaOH formulations, as well as the different L/S ratios. Again,
for the same NaOH concentration, it should be noted that no significant differences were
found between the FTIR spectra of both L/S (0.5 and 0.6) ratios. A displacement to lower
frequencies in the peak around 1000 cm−1 can be seen from CSP concerning the different
AAC formulations, because of the formation of NASH gel [36,37]. These displacements
indicate that the vitreous component was reacting with the NaOH, and therefore, new
products of the reaction were formed [38]. As can be seen in the zoomed-in areas of
Figure 6, the formulations of 4 M NaOH concentration present slightly lower frequencies
than the 8 M NaOH concentration formulations. In addition, three main peaks in both
spectra can be observed: (i) a peak at 1400 cm−1

, due to the stretching vibration of CO3
2−,

in 1 M, 4 M, and 8 M formulations; (ii) a peak between 1020 cm−1 and 970 cm−1, because
of the asymmetrical stretching peak of Si–O–Si and Si–O–Al in CSP raw material and AAC
formulated with 1 M, 4 M, and 8 M NaOH; (iii) a peak at 885 cm−1, which corresponds to
the CO3

2− bending vibration in AAC with 1 M, 4 M, and 8 M NaOH.
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Figure 5. FTIR spectra results for the CSP precursor and the different AAC formulations obtained, depending on the L/S
ratios (0.5 and 0.6) and the NaOH concentration.
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Figure 6. Apparent density results of the different AAC formulations obtained, depending on the
L/S ratios (0.5 and 0.6) and the NaOH concentration.

3.2.2. AAC Physical and Mechanical Characterization

An in-depth physical and mechanical characterization was conducted. To perform a
mechanical study of the different formulations depending on the L/S ratios, the apparent
density (ρapp) and the compressive strength (σs) were also evaluated. When analyzing the
results performed by triplicate of the ρapp exhibited in Figure 6, as expected, an increase
of the L/S ratio (from 0.5 to 0.6) led to a decrease of the ρapp, due to the greater amount
of water in the AAC formulations. Moreover, when comparing the results as a function
of NaOH concentration (1 M, 4 M, and 8 M), it can be noticed that samples with the 4 M
concentration have higher values, while samples with the 1 M concentration have lower
values. On one hand, the 05LS4M formulation was the densest (more compact), and on
the other hand, the 05LS1M was the least dense. Hence, regarding the density results, the
05LS4M formulation would be expected that presents better behavior from a mechanical
point of view.

In this way, it was considered relevant to evaluate the mechanical properties concern-
ing the compressive strength (σs), as constructive purposes were the main use for the AAC



Appl. Sci. 2021, 11, 3528 9 of 12

formulations. The results shown in Figure 7 demonstrate a decrease in the compressive
strength when increasing the L/S ratio from 0.5 to 0.6, due to the greater amount of water
needed in the formulations. Regarding the results as a function of NaOH concentration, it
the highest values were observed in 4 M samples, and the lowest values in 1 M samples.
Then the most compact and cohesive formulation had the highest compression strength
values, and the most disaggregated formulation (see Figure 6) had the lowest compression
strength results. Accordingly, the 05LS4M formulation presented again better results from
a mechanical point of view. In other words, the apparent density and compressive strength
results are in agreement. The compressive strength obtained in this research is remarkable
when compared to other studies. As mentioned, Zhu et al. obtained 70 MPa [25], but the
samples were cured at 75 ◦C. Tho-In et al. obtained around 49 MPa [26], but the glass waste
was combined with fly ash (FA), which apports aluminum to the gel, and the samples were
cured at 60 ◦C. Xiao et al. obtained around 30 MPa at 28 days [27]; in this case, the samples
were cured at room temperature, but once again they used FA.
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Figure 7. Compressive strength (σs) results of the different AAC formulations obtained depending
on the L/S ratios (0.5 and 0.6) and the NaOH concentration.

These results are related to the abovementioned results of XRD and FTIR. On the
one hand, XRD revealed the presence of CSH in 4 M formulations, and better evidence
of sodium carbonate in 8 M formulations. As it is reported [24], when the activator
concentration is high, it is difficult to produce the precipitation of hydrated calcium silicate.
The presence of CSH in 4 M formulations improves mechanical properties. On the other
hand, FTIR reveals slightly lower frequencies (peak between 1020 cm−1 and 970 cm−1) for
4 M, which is related to NASH formation; this could be attributed to a better formation
of NASH gel for 4 M formulations. In this manner, considering physical, mechanical, and
microstructural results, it could be assumed that 4 M formulations must present more CSH
and NASH phases than 1 M and 8 M formulations.

The main aim for the SEM study in the present manuscript is focused on the evaluation
of AAC cohesion. The AAC formulations for L/S = 0.5 were selected to be observed by
SEM using secondary electrons, as is shown in Figure 8. Formulations with L/S = 0.5
were selected for the SEM evaluation due to the higher σs and ρapp values compared with
L/S = 0.6 formulations. The specimens were cut to study the cohesion of several inner zones
of the different formulations (05LS1M, 05LS4M, 05LS8M). Figure 8 shows representative
micrographs of the inner zones of each formulation. It can be observed that the specimen
formulated using 4 M NaOH was the one that presented proper cohesion, while those
formulated using 1 M and 8 M NaOH showed less cohesion with disaggregated particles
(more pronounced in 1 M NaOH formulation), as can be denoted in Figure 8. The cohesion
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and the homogeneous structure of the binder matrix allowed a better understanding
of the mechanical properties of the AAC specimens and the values determined by the
apparent density.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 12 
 

were selected for the SEM evaluation due to the higher σs and ρapp values compared with 
L/S = 0.6 formulations. The specimens were cut to study the cohesion of several inner 
zones of the different formulations (05LS1M, 05LS4M, 05LS8M). Figure 8 shows repre-
sentative micrographs of the inner zones of each formulation. It can be observed that the 
specimen formulated using 4 M NaOH was the one that presented proper cohesion, while 
those formulated using 1 M and 8 M NaOH showed less cohesion with disaggregated 
particles (more pronounced in 1 M NaOH formulation), as can be denoted in Figure 8. 
The cohesion and the homogeneous structure of the binder matrix allowed a better un-
derstanding of the mechanical properties of the AAC specimens and the values deter-
mined by the apparent density. 

 
Figure 8. SEM micrographs of the AAC formulations with an L/S ratio of 0.5 (i.e., 1 M = 05LS1M, 4 M = 05LS4M, 8 M = 
05LS8M). 

4. Conclusions 
To develop new, sustainable materials and to reuse the CSP fraction generated dur-

ing glass cullet recycling, different AAC formulations have been developed. These newly 
formulated sustainable binders contained the CSP as a sole precursor, while the different 
concentrations of NaOH was used as activator solutions. Glass is the main component of 
the CSP fraction, with a high level of amorphization degree and SiO2, Na2O, CaO, and 
Al2O3 as the main components; these are all key components for alkali-activated cement 
(AAC) development. The XRD pattern of the AAC, formulated using CSP as a sole pre-
cursor, showed a displacement of the amorphous halo when increasing the alkali concen-
tration of the activator, due to the potential formation of NASH gel. Likewise, the FTIR 
results also indicated a displacement in the peak around 1000 cm−1 (Si–O–Si) from CSP 
concerning the different AAC formulations, regarding again the formation of N-A-S-H 
gel. After the SEM observation, it was concluded that the AAC formulated with the NaOH 
4 M and L/S = 0.5 were the specimens with proper cohesion and integrity of the matrix 
binder. This result was in accordance with the apparent density and compressive strength. 
On the one hand, a decrease was observed in the apparent density when increasing the 
L/S ratio from 0.5 to 0.6, and higher values were obtained in the 4 M NaOH formulations. 
On the other hand, a decrease in the compressive strength was tested when increasing the 
L/S ratio from 0.5 to 0.6, and an important increase was achieved in the 4 M NaOH for-
mulations. Accordingly, it was demonstrated that CSP can be employed as a precursor for 
alkaline cement formulation for constructive purposes, considering as key parameters the 
activator concentration and L/S ratios, as these affect the physical and mechanical proper-
ties of the AAC obtained. 

This research sheds light on the potential use of the CSP as a precursor for AAC. It 
should be emphasized that CSP is a residue in Spain and is disposed of in landfills because 

Figure 8. SEM micrographs of the AAC formulations with an L/S ratio of 0.5 (i.e., 1 M = 05LS1M, 4 M = 05LS4M,
8 M = 05LS8M).

4. Conclusions

To develop new, sustainable materials and to reuse the CSP fraction generated during
glass cullet recycling, different AAC formulations have been developed. These newly
formulated sustainable binders contained the CSP as a sole precursor, while the different
concentrations of NaOH was used as activator solutions. Glass is the main component
of the CSP fraction, with a high level of amorphization degree and SiO2, Na2O, CaO,
and Al2O3 as the main components; these are all key components for alkali-activated
cement (AAC) development. The XRD pattern of the AAC, formulated using CSP as a
sole precursor, showed a displacement of the amorphous halo when increasing the alkali
concentration of the activator, due to the potential formation of NASH gel. Likewise, the
FTIR results also indicated a displacement in the peak around 1000 cm−1 (Si–O–Si) from
CSP concerning the different AAC formulations, regarding again the formation of N-A-S-H
gel. After the SEM observation, it was concluded that the AAC formulated with the NaOH
4 M and L/S = 0.5 were the specimens with proper cohesion and integrity of the matrix
binder. This result was in accordance with the apparent density and compressive strength.
On the one hand, a decrease was observed in the apparent density when increasing the
L/S ratio from 0.5 to 0.6, and higher values were obtained in the 4 M NaOH formulations.
On the other hand, a decrease in the compressive strength was tested when increasing
the L/S ratio from 0.5 to 0.6, and an important increase was achieved in the 4 M NaOH
formulations. Accordingly, it was demonstrated that CSP can be employed as a precursor
for alkaline cement formulation for constructive purposes, considering as key parameters
the activator concentration and L/S ratios, as these affect the physical and mechanical
properties of the AAC obtained.

This research sheds light on the potential use of the CSP as a precursor for AAC. It
should be emphasized that CSP is a residue in Spain and is disposed of in landfills because
it is not useful for the recycling glass cullet industry. Therefore, the present research is a
relevant solution for enhancing sustainable and environmental criteria, as well as following
a circular economy strategy.
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