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Abstract: In this work we consider a variation of the SIR model where mutations of the pathogen
are allowed. We discuss the appearance of an endemic phase using a mean-field approximation and
solve the stochastic model using Monte Carlo simulations. We find that our model has three distinct
phases and serves as an interpolation between the SIR and SIS models.

I. INTRODUCTION

An epidemic disease is a contagious disease caused by
a biological pathogen that spreads from person to per-
son, e.g. smallpox, polio, rubella, chickenpox, influenza,
measles, and sexually transmitted diseases. Dynamical
population models are used in the study of epidemic dis-
eases [1] to form hypotheses, predict average behavior or
investigate mechanisms across many fields of science such
as epidemiology, immunology, and ecology. The course
of an epidemic spreading is not only determined by the
properties of the pathogen carrying it, but also by net-
work structures within the population it is affecting [2].
In a social network, each person is assigned a node in a
graph, and there is an edge between two nodes if two peo-
ple are capable of transmitting the disease to each other.
The disease spreads from the affected to the unaffected
via contact infection, and therefore the network will be
modified for different types of pathogens. For example,
the networks describing the propagation of influenza and
HIV will be different. The second one is much sparser,
with fewer pairs connected by a node.

Epidemic modeling also translates into other domains.
Phenomena described via population dynamics qualita-
tively similar to that in the spreading of infections in-
clude political and religious beliefs, innovations, fads, or
fanatic behaviors; dynamics of traits such as the diffu-
sion of ideas [3], the spread of computer viruses [4] or the
propagation of rumors. They involve states heavily in-
fluenced by peer interaction, where a contagion analogy
can be made. The transmission of information is partic-
ularly interesting, due to the intentional acts by both the
sender and the receiver, as opposed to disease spreading.
These interactions can lead to epidemic-like outbreaks
including cascades or memes going viral online [5].

II. STANDARD EPIDEMIC MODELS

Most epidemic models belong to either one of the
two main families of compartmental models [6], the SIR
and SIS models. In these models the population is di-
vided into compartments representing different states,
and rules to govern the transitions between states are
given. All the properties of the pathogen are translated
into mathematical parameters, with the possibility of in-

cluding a wide range of factors [7], e.g. immunity, vacci-
nation, vital dynamics, and age.

The Susceptible-Infectious-Recovered (or Removed),
SIR model, describes the behavior of a pathogen that
the individuals contract at most once. Given an undi-
rected graph representing a certain population structure,
an individual node goes through three potential stages,
compartments, during the course its sickness:

• Susceptible. Every node, except some needed to
initialize the process, is assumed to be susceptible
to the disease at the beginning.

• Infectious. If the node gets infected, it becomes in-
fectious and has some probability of infecting each
of its susceptible neighbors, given by a rate of in-
fection λ.

• Recovered. Each infected individual recovers spon-
taneously at a constant rate δ. Once recovered from
a single infection, complete immunity is granted.

The SIR model has a further interpretation, instead of
recovering, the individuals die, henceforth are removed.
This means that the SIR model can represent two differ-
ent kinds of situations. Nevertheless, we will stick to the
recovery interpretation for our work.

The Susceptible-Infectious-Susceptible, SIS model, al-
lows the individuals to contract the disease more than
once, instead of granting them immunity after a single
contagion. In contrast to the SIR model, the SIS model
may reach a stationary state, making it ideal for the ap-
plication of many theoretical approaches.

Both models have a phase transition with the ratio
of the rates of infection and recovery λ/δ as the order
parameter, as shown in Fig. 1. For the SIS model, the
two phases distinguish the case where the virus dies out
from the one where it stays alive and a stationary state is
reached, with a constant prevalence ρst over time (in the
limit of N →∞, with N the number of nodes), the latter
is also called the endemic phase. Instead, for the SIR
model, no stationary state is reached. In one phase, a
macroscopic number of recovered individuals is reached,
those who have been infected at some point, while below
a critical value the agent dies out before reaching this
level.

Several modifications to both models exist [8, 9], like
the SIRS model, where a stage of immunity happens be-
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fore going back to being susceptible, leading to interest-
ing dynamics such as periodic prevalence oscillations [10];
the SEIR/SEIS model, with an exposed (E), or latent pe-
riod before the infected one; or the MSIR/MSIS model,
where to model passive, or maternally (M) derived im-
munity, an extra initial compartment is included.
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Fig. 1: Averages over 100 realizations for the stationary preva-
lence (SIS) and total ratio of recovered individuals (SIR)
with respect to λ/δ. For the SIS model ρ becomes zero be-
low λ/δ = 1/〈k〉, while for the SIR model R∞ ' 0 below
λ/δ = 1/(〈k〉 − 1).

III. SIR MODEL

We have based our work on the SIR model (Fig. 2).
We define the rate of recovery δ ≡ 1, so from now on we
will not worry about it, and the rate of infection becomes
λ ≡ λ/δ.

S I R
β δ

Fig. 2: Flow chart for on node in the SIR model. In the
mean-field approximation β = 〈k〉λ.

Given that the dynamics of an epidemic, for example,
influenza [11], are usually much faster than the dynamics
of birth and death, these will be omitted hereafter.

For an uncorrelated homogeneous network, or in the
mean-field approximation, the equations that describe it
are:

dS(t)

dt
= −λ〈k〉ρ(t)S(t)

dρ(t)

dt
= −ρ(t) + λ〈k〉ρ(t)S(t)

dR(t)

dt
= ρ(t)

(1)

S(t), R(t) and ρ(t) are the ratios of susceptible, recu-
perated and infectious individuals, the latter also called

prevalence. t is the time in units of 1/δ and 〈k〉 is the
average number of connections per node.

If the number of nodes is constant, there is no vital
dynamics, then

S(t) + ρ(t) +R(t) = 1, (2)

The system is non-linear, without a general analytical
solution. However, significant results can be analytically
derived or simulated with Monte Carlo methods, such as
the Gillespie algorithm (see VI).
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Fig. 3: Prevalence with respect to time for 100 SIR realiza-
tions (λ = 1.0), starting with 1 infected individual (red), 10
(blue) and 100 (green).

If we initialize the population with a microscopic num-
ber of infected individuals, ρ(0) ' 0, S(0) ' 0, R(0) = 0,
we obtain:

S(t) = e−λ〈k〉R(t) (3)

Together with (2), we find that the total number of in-
fected individuals, R∞ = limt→∞R(t), which is the same
as the number of recovered ones when there is no infected
nodes left, satisfies the self-consistent relation:

R∞ = 1− e−λ〈k〉R∞ (4)

The solution R∞ = 0 always exists, but to get a second
one we must have:

d

dR∞

(
1− e−λ〈k〉R∞

)∣∣∣
R∞=0

≥ 1 (5)

which is equivalent to λ ≥ λc = 1
〈k〉 .

λc is the epidemic threshold, below which the total
number of infected individuals will be microscopic. The
basic reproduction number R0 = β/δ, with β = λ〈k〉 in
the mean-field approximation, is defined as the number
of infections one infected individual generates on average
over the course of its infectious period, in an otherwise
uninfected population. It is useful to determine whether
a pathogen can spread through a population. For R0 < 1,
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the virus will die out in the long run, while for R0 > 1
the infection will be able to spread. Notice that R0 = 1
implies λ〈k〉 = 1 ⇒ λ = λc.

We can do better by noticing that in the SIR model
any infected individual, except the initial ones, must have
been infected by a neighbor, therefore one less edge than
the average should be considered, consequently:

λc =
1

〈k〉 − 1
(6)

A similar result can be found for a generic complex
network [12], taking into account the degree distribution
and possible correlations between nodes.

Depending on the number of initially infected individ-
uals we obtain a slightly different behavior (Fig. 3). If
the number is little enough, some realizations will not
even reach a macroscopic prevalence. Indeed, starting
with a single infectious node there is a phase transition
with λ, below a certain value, no realization reaches the
macroscopic level of infection, while over it, the proba-
bility of a realization generating a substantial epidemic
is approximately 1 − 1/R0 [1], which grows similarly to
Fig. 1. For this work, we have arbitrarily chosen to start
all the simulations with 10 infected nodes.

Likewise, from now on we assume an Erdős-Rényi (ER)
network with N = 104 and 〈k〉 = 6. The ER model [13]
encompasses all the random networks with a given aver-
age degree 〈k〉. The resulting networks are characterized
by a Poisson degree distribution. It is also to be the
quenched (all edges are fixed in time) network structure
closer to the mean-field description.

IV. MODELING MUTATIONS

One interesting generalization of the SIR model is the
allowance of pathogen cohabitation. It is well known that
viruses mutate, so several strains of a virus can inhabit
the same population. Flu season happens during winter
in each hemisphere, yet it is an unsolved puzzle why this
is. It has been suggested [14] that the high mutation
rate of influenza may promote the rapid evolution of the
virus in nature. Temperature changes, rainy seasons or
the fact that people spend more time inside could also be
pieces of an explanation.

Here we propose an extension of the SIR model to rep-
resent a mutating agent, introducing a new parameter,
the individual rate of mutation ε. We label the different
mutations (strains) with numbers, starting with a single
one in the beginning. A mutation event happening after
n different strains makes an infected node to go from be-
ing infected by the strain i to being infected by a new
strain n+1, recovering from the previous strain, i, in the
process. In other words, every new mutation is different
from all the previous ones, without restricting the num-
ber of different strains. It is not sufficient to say that an
individual is recovered anymore, now we have to specify
to which strains it is immune, while it stays susceptible to

all the other ones. We do restrict the number of strains
an individual can be infected of at once, to just one. Oth-
erwise, simulation of the fully stochastic SIR model with
mutations is intractable.

Moreover, this model provides a bridge between the
standard SIR and SIS models. For when ε = 0 we
just have the SIR model, and if the rate of mutations is
big enough, once an individual recovers from whichever
strain he was infected with, no other individual will have
that same strain any longer, so we recover the SIS model
(Fig. 4). The model is not independent of the network
size anymore. Certainly, a population 10 times larger
than another, with the same individual rate of mutation
ε, will get about 10 times more different strains, so we
will use εN as a parameter instead of ε.
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Fig. 4: Prevalence with respect to time for a range of εN , in
the SIR model with mutations; SIR and SIS models. All with
λ = 1.0. For εN ' 105 we recover the SIS model.

We will have two possible distinguished regimes:

• There is a finite number of mutations and the pop-
ulation ends up recovering from all of them (Fig.
5).

• In the limit of infinite time, an infinite number of
mutations develop and the virus becomes endemic
(Fig. 6)

We are interested in which of these regimes (phases)
the system will be as a function of our parameters, λ and
εN . To obtain the phase diagram (Fig. 8) we perform a
series of simulations (Fig. 7). For every λ we search for
the minimum εN that achieves:

1) at least half of the realizations are still alive after a
set time t = 400.

2) the same number of alive realizations after t = 200
and t = 400.

For either criterion, each combination of parameters is
simulated 100 times, with different seeds for the Monte
Carlo steps. In the N → ∞ limit, we expect them to
agree, with all the realizations alive for ε ≥ εc(λ) after
any set amount of time, and none for ε < εc(λ).
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Fig. 5: Total prevalence and prevalence for each strain with
respect to time for the SIR model with mutations (λ = 1.0,
εN = 1.5).
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Fig. 6: Total prevalence and prevalence for each strain with
respect to time for the SIR model with mutations (λ = 1.0,
εN = 10).

In the same spirit of the basic reproduction number we
search for a basic mutation number M0. It should fulfill
the conditions that:{
For M0 < 1, the virus will die out in the long run,
while for M0 > 1, the infection will become endemic.

For a single SIR realization, there is a total of NR∞
infected individuals, of which about εNR∞ will mutate
during its infection. Of this, only a fraction P∞ ≈ 1 −
1/R0 will spread the new mutation to a substantial part
of the population. Then,

M0 ≡ P∞εNR∞. (7)

The εN that fulfills M0 = 1 is:

(εcN)th =
1

R∞P∞
. (8)
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Fig. 7: Ratio of endemic realizations after t = 200 and t = 400
with respect to εN , with λ = 1.0.
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Fig. 8: Phase diagram for the SIR model with mutations.
The two criteria explained above are represented. We com-
pute (εcN)th via simulations, averaging R∞ and P∞ over 100
realizations. Below λc (6) no realization will reach a macro-
scopic level of infections (healthy phase), over λc, but below
εc(λ) there can be oscillations ending up with the epidemic
disappearing (SIR-like phase), on top of both λc and εc(λ) an
(endemic phase) exists.

(εcN)th is the minimum εN that will achieve an en-
demic phase. It needs to be one that just achieves a
principal strain at each time, similar to Fig. 5. Note
that it is a function of λ.

As can be seen in Fig. 8, (εcN)th is a crude lower
bound estimation of εc(λ)N . Although it predicts the
(λ − λc)

−1 behavior separating the endemic and SIR-
like phases, it does not characterize the tendency for big
λ’s, where both criteria tend to a constant εcN . Thus
a finite fixed rate of individual mutations is needed to
reach the endemic phase, which could be interesting for
epidemiologists.
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V. CONCLUSIONS

We have described a SIR model with a single mutating
pathogen that encompasses both the SIR and SIS mod-
els in the limits of no mutations and infinite mutations,
respectively. Instead of two distinct regimes, like for the
SIR and SIS models, we have three different phases. One
healthy phase where the pathogen does not spread, a
SIR-like phase with multiple oscillations and an endemic
phase that reaches a stationary prevalence ρst.

The fact that the parameter describing the onset of the
endemic phase is εN instead of just ε is of paramount
importance, for in the N → ∞ limit, any mutation rate
will be enough to produce an endemic infection.

Application to scale-free networks could be interesting.
Even though they have an absence of an epidemic thresh-
old, the individual mutation rate ought to be enormous
to achieve an endemic phase for small λ’s. Further un-
derstanding of the phase transition between the SIR-like
and endemic phases could be achieved using bigger sys-
tems in our simulations. However, a proper theoretical
understanding of the model would certainly help guiding
the computational work.

VI. APPENDIX: GILLESPIE ALGORITHM

To simulate the behavior of our system of equations
we have used two facts:

• The processes are memoryless, with the probability
of an event predicted only by the state attained in
the previous event. Consequently, they are Markov
processes.

• The assumption that all the processes we are in-
terested in are described by independent Poisson
distributions. We can then use the following result:
If Xi ∼ P (µi) for i = 1, .., n are independent, and
µ =

∑n
i µi, then Y = (

∑n
i Xi) ∼ P (µ).

A system of discrete Markovian stochastic processes
can be accurately simulated using the Gillespie algorithm
[15, 16].

A Monte Carlo step of the algorithm consists of:

1. Generate a random number for the next time in-
terval from τ ∼ Exp(µ) = µe−µτ . So instead of
discretizing time with a fixed step, we use the ex-
act interval from the probability distribution.

2. Generate a second random number to choose which
event will come about from i ∼ µi

µ .

3. Once the event has occurred, the changes in all µi
have to be accounted for in the next iteration.

4. Iterate.
A. SIR example

We have two independent processes:

• Infection: µinf = #active edges × λ

• Recovery: µrec = ρ×N

Where we have defined an active edge as an edge be-
tween an infected and a susceptible node.

At every step of the algorithm µ = µr + µi. If a node
is recovered, ρ decreases, and the number of active edges
may decrease, for every neighbor that is susceptible, by
one. Likewise, if a node gets infected, ρ increases, and
the number of active edges can either increase, decrease
or stay the same. For every susceptible neighbor, they in-
crease by one, while they decrease for infected neighbors.
Therefore ∆active edges = #Snn −#Inn.
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