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Abstract: We use the different quantum computers which IBM made available on the cloud
(IBM Q Experience) to implement different quantum circuits. First, we study the dynamics of a
single spin interacting with a magnetic field using the main single-qubit gates, which allows us to
obtain the evolution of the three components of the spin. Finally, we study the performance of the
quantum computers by implementing two quantum algorithms: the dense coding protocol, which
we use to study the connectivity between qubits, and the quantum Fourier transform, which we
use to study the performance of three different quantum computers when the number of qubits is
increased.

I. INTRODUCTION

In the last four decades the field of quantum compu-
tation has not stop growing and attracting people from
different backgrounds, such as physics, computer science,
information theory and cryptography [1]. Nowadays, it
is a very promising and exciting field. Quantum comput-
ers have been presented as potential tools for solving real
problems which are considered out of reach for classical
computers. It is believed that they could contribute to
the development of new breakthroughs in science, medi-
cations, machine learning methods or materials to make
more efficient devices and structures, among others. One
such example would be a quantum algorithm for factor-
ing integers [2], which was developed by Peter Shor in
1994.
To that end, big companies like IBM or Google [3] have
been investing huge amounts of money to build the first
full-operational quantum computer. There is more, in
May 2016, IBM launched the IBM Q Experience [4], an
open online platform which gives the general public ac-
cess to a set of prototype quantum processors.
The main purpose of this work is to implement well-
known quantum algorithms in the framework set up by
IBM. On the one hand, a study regarding the interac-
tion of a single spin with a magnetic field will be done.
On the other hand, an inspection of the performance
of these processors will be carried out by going through
two specific quantum algorithms: superdense coding and
quantum Fourier transform. From the set of quantum
processors we will use three of them: two 5-qubit proto-
types, ibmqx2 and ibmq vigo, and the 15-qubit prototype
ibm 16 melbourne.
The study is organised as follows. In Section II, the con-
cept of qubit will be explained and a brief description of
the most relevant (to this work) quantum gates will be
made. In Section III, we study the interaction of a spin
with a magnetic field. In Section IV, we use two quan-
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tum algorithms to analyze the performance of different
quantum prototypes. Finally, in Section V, conclusions
are presented.

II. FUNDAMENTALS

A. The qubit

Quantum computers use qubits, which generalize the
classical bit. They are two-level systems, i.e. systems
with one quantum property that can take two possible
values. These two values allow us to label the basis states
and are denoted as |0〉 and |1〉. The main feature of the
qubits is the possibility to have superposition states. A
qubit can be in an arbitrary combination of the two basis
states

|ψ〉 = α|0〉+ β|1〉, (1)

being α and β complex numbers. Taking into account
the normalization condition 〈ψ|ψ〉 = |α|2 + |β|2 = 1, it
follows that a general state of a qubit can be expressed
in terms of two real parameters (up to a global phase)

|ψ〉 = cos (θ/2)|0〉+ sin (θ/2)eiφ|1〉. (2)

Therefore, the quantum state of a single qubit can be vi-
sualized as a vector of length 1 inside the so-called Bloch
sphere. The parameters θ and φ are the polar and az-
imuthal angle of the spherical coordinates.
In the IBM Q Experience, the prototypes use a physical
type of qubit called superconducting transmon qubits,
which are made of superconducting materials. The two
states |0〉 and |1〉 represent two possible energy levels
within this superconducting system. For these systems
to behave as an abstract qubit they must be at drastically
low temperatures (15 mK in the case of IBM’s).

B. Quantum gates

Quantum gates are unitary matrices (they must be re-
versible and conserve the probability amplitudes) which
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allow to change the state of the qubit, e.g. create super-
positions, rotations, etc.
The most basic quantum gates are the single-qubit gates
X,Y and Z (the usual Pauli matrices). In matrix form

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (3)

Two other important gates are the Hadamard gate, H,
which generates superposition, and the S gate, which
adds a phase. In matrix form

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
. (4)

The Hadamard gate acts as follows: H|0〉 ≡ |+〉 = (|0〉+
|1〉)/

√
2 and H|1〉 ≡ |−〉 = (|0〉 − |1〉)/

√
2. Applying the

the S gate to these new states: S|+〉 ≡ | �〉 = (|0〉 +

i|1〉)/
√

2 and S|−〉 ≡ | 	〉 = (|0〉 − i|1〉)/
√

2. We are
able to define three different bases: the computational
basis: {|0〉, |1〉}, the x-basis: {|+〉, |−〉} and the y-basis:
{| �〉, | 	〉}. In Section III we will see how to make
measurements in each one of the bases.
To end with the single-qubit gates, we must introduce
the U1, U2 and U3. In matrix form

U3(θ, φ, λ) =

(
cos (θ/2) −eiλ sin (θ/2)

eiφ sin (θ/2) eiλ+iφ cos (θ/2)

)
, (5)

U1(λ) = U3(0, 0, λ), U2(φ, λ) = U3(π/2, φ, λ). (6)

All the aforementioned gates are just special cases of
these.

Now lets turn to the the two-qubits quantum gates.
The most important one is the Controlled-NOT (CNOT)
gate. Its action is to flip the target qubit if the control
qubit is |1〉; otherwise it does nothing. The last quan-
tum gate useful for this work is the controlled phase shift
gate Rm, which is specially relevant for implementing the
quantum Fourier transform. In matrix form they read

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , Rm =


1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e
2πi
2m

 . (7)

III. SINGLE-SPIN DYNAMICS

Firstly, we study the interaction of a single spin with
a time independent magnetic field along the z-direction
~B = B0ẑ. The objective is to analyze how to build the
quantum circuits that allow us to compute the three com-
ponents of the spin as a function of time.

Given the magnetic moment of the spin ~µ = gµB ~S/~,
which is expressed in terms of the Pauli matrices σi from

Si = σi~/2, the Hamiltonian describing this interaction
is

H = −~µ · ~B =
~ω0

2
σz, (8)

where ω0 = −gµBB0/~ is the Larmor frequency. Since
we are dealing with a time-independent Hamiltonian,
the solution of the Schrödinger equation for this system
might be found applying the time evolution operator [5]
U(t, 0) = exp (−iHt/~) to the initial state |ψ(0)〉

|ψ(t)〉 = exp (−iHt/~)|ψ(0)〉. (9)

In matrix form, the operator is written as

U(t) = exp

(
−iω0t

2
σz

)
=

(
1 0
0 eiω0t

)
. (10)

We choose our initial state to be in a superposition of
both basis states

|ψ(0)〉 = cos

(
θ

2

)
|0〉+ sin

(
θ

2

)
|1〉. (11)

Thus, the evolved state will be given by

|ψ(t)〉 = cos

(
θ

2

)
|0〉+ eiω0t sin

(
θ

2

)
|1〉. (12)

Now, by computing the different components of the spin
we get

Mz(t) = 〈ψ(t)|Sz|ψ(t)〉 =
~
2

cos (θ), (13)

Mx(t) = 〈ψ(t)|Sx|ψ(t)〉 =
~
2

sin (θ) cos (ω0t), (14)

My(t) = 〈ψ(t)|Sy|ψ(t)〉 =
~
2

sin (θ) sin (ω0t). (15)

Next, we are ready to implement the problem in a quan-
tum circuit. First, we need to prepare the initial state.
All circuits in the IBM Q Experience are initialized in
the |0〉 state, so, from this state we can obtain |ψ(0)〉 by
applying the following unitary operation

Uin =

(
cos (θ/2) − sin (θ/2)
sin (θ/2) cos (θ/2)

)
, (16)

which is obtained by using the U3(θ, ϕ, λ) quantum gate
and setting ϕ = 0 and λ = 0. The next step is to im-
plement the time evolution operator, which is given by
Eq. (10). This is accomplished by using the U1(λ) if we
identify λ = ω0t. Finally, we must make a measurement.
IBM Q Experience only allows to make a z-measurement
directly, which is the one we must use to compute Mz(t).
To find the x-component of the spin, we must measure
in the x-basis, and this is done using circuit (b) of Fig. 1.
Same for the y-component, the measurement in the y-
basis is shown in circuit (c) of Fig. 1.
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|0〉 U3 U1 (a)

|0〉 U3 U1 H (b)

|0〉 U3 U1 S† H (c)

FIG. 1: Circuits used for measuring the components of
the spin: (a) is a z-measurement, (b) is a x-measurement
and (c) is a y-measurement. The red dashed line divides
the circuit in three parts: preparation of the initial state,
implementation of the time evolution operator and mea-
surement.
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FIG. 2: Expected value of the three components of the
spin as a function of ω0t using the prototype ibmqx2
after 8192 shots each point. Continuum lines are the
theoretical results, and points are experimental data. In
this case θ = π/4.

The experimental points reflect rather well the theoreti-
cal behavior in all three cases.
Note that we have not simulated the time evolution of the
system using the quantum computer. Instead, we have
constructed the evolved state with a quantum circuit and
found the probability of having the system at each one
of the basis states at a given time, which we introduce
manually.

IV. PERFORMANCE OF THE QUANTUM
COMPUTERS

A. Superdense coding

Superdense coding is a protocol introduced by Bennett
and Wiesner [6] which allows to send two bits of classical
information between two partners (Alice and Bob) who
share an Einstein–Podolsky–Rosen (EPR) state by only
manipulating and sending one qubit. The protocol
works as follows [7] (see Fig. 3):

|0〉 H Z H

|0〉

FIG. 3: Quantum circuit for the implementation of dense
coding. In this case, the string of classical bits 10 is sent.

1. Alice and Bob share an EPR state, which is prepared,
for instance, in the state

|φ+〉 =
1√
2

(|00〉+ |11〉). (17)

This is accomplished through the Hadamard and CNOT
gate. It is important to notice that the preparation of
the EPR pair might be done by a third party, who will
send one qubit to Alice and the other to Bob. Thus,
they can be located far apart.
2. Depending on the values of the two classical bits (00,
01, 10 and 11) that Alice wants to send to Bob, she will
perform different unitary operations on her qubit. If she
wishes to send 00, she does not need to do anything, i.e.
the identity matrix. In case it is the 01 bit string, she
applies the Pauli matrix X. Another possibility would
be the 10, in which case Alice would have to operate
with the Pauli matrix Z. Finally, to send the 11, the
gate iY is needed, which is accomplished by the product
Z ·X.
3. Alice sends her qubit to Bob.
4. Finally, Bob can determine which one of the four
possible bit strings Alice sent by using a CNOT and
Hadamard gate again and making a measurement.
In conclusion, Alice is able to send a two-bit string of
information by only interacting with one qubit. Note
that two qubits are involved in the protocol, but Alice
never needs to interact with one of them.

Our purpose is to analyze this quantum algorithm
using different pairs of qubits. As it can be seen in
Fig. 4, not all qubits have an allowed connectivity
between them due to experimental constraints, so we
expect different results if we use two qubits with an
allowed connectivity, e.g. 1 and 2, or two qubits with a
not-allowed connectivity, e.g. 1 and 3.
Since the theoretical outcome of receiving the same
bit string that was sent is 100%, we can take the
probability outcomes of Table I as a measurement of
the performance of the quantum computer, which varies
depending of the pair of qubits used.

As expected, the performance is better when we use
qubits with an allowed connectivity. Let us emphasize
that two not-connected qubits can actually be used to
perform two-qubit operations but, as we have seen,
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1

20 3

4

FIG. 4: Connectivity of the qubits in the ibmqx2 quan-
tum prototype

Bits sent Allowed connectivity Not-allowed connectivity

00 96, 8± 0, 3% 93± 2%

01 72, 9± 0, 6% 71, 2± 0, 9%

10 94, 8± 0, 2% 91, 4± 0, 9%

11 93, 6± 0, 4% 88± 3%

TABLE I: Mean probability outcomes of receiving the
same two classical bits which were sent after 5 runs of
8192 shots using the protoype ibmqx4. The errors are the
standard deviations among these five runs. The second
column shows the results using qubits 1 and 2 (allowed
connectivity) and the third column show the results using
qubits 1 and 3 (not-allowed connectivity).

the performance degrades in this case.
It might be surprising that the performance decreased
significantly when we sent the classical bits 01, which
corresponds to the case where we used the X gate. A
possible explanation to this could be that the implemen-
tation of this gate is worse than the others.

B. Quantum Fourier Transform

To introduce the quantum Fourier transform (QFT)
[8], first we need to define the discrete Fourier trans-
form, which takes a vector of N complex numbers,
(a0, . . . , aN−1), and returns another vector of complex
numbers, (b0, . . . , bN−1), according to

bj ≡
1√
N

N−1∑
k=0

ake
2πikj/N , (18)

where i is the imaginary unit. The QFT acts on a quan-

tum state |ψ〉 =
∑N−1
j=0 aj |j〉 and maps it to another

quantum state F|ψ〉 = |φ〉 =
∑N−1
j=0 bj |j〉 where bj is

given by Eq. (18). In our case, N is the number of ba-
sis states, which are N = 2n with n being the number
of qubits. The basis states |j〉 = |j1j2 . . . jn〉 enumer-
ate all possible states of the system, where it is use-
ful to use the following binary to decimal representation

j =
∑n
i=1 ji2

n−i.
Let us try to find the matrix form of the algorithm. If
we act on a basis state |k〉, we get

F|k〉 =
1

2n/2

2n−1∑
j=0

e2πijk/2
n

|j〉. (19)

We can now find the different matrix elements by com-
puting 〈k|F|0〉, 〈k|F|1〉 and so on until 〈k|F|2n−1〉 with
k taking values from 0 to 2n − 1. We find

F =
1

2n/2


1 1 1 · · · 1

1 ω ω2 · · · ω2n−1

1 ω2 ω4 · · · ω2(2n−1)

...
...

...
...

1 ω2n−1 ω2(2n−1) · · · ω(2n−1)(2n−1)

 ,

(20)
where we have defined ω ≡ e2πi/2

n

. From this it is easy
to see that it is a unitary transformation.

Regarding the circuit implementation, it is easier to iden-
tify the circuit if we study the effect of the QFT on one
of the basis states and then let the mixed states be de-
fined by linearity. Following the procedure described in
Ref. [8], we find

F|k1k2 . . . kn〉 =
1

2n/2
(|0〉+ e2πi[0.kn]|1〉)

⊗(|0〉+ e2πi[0.kn−1kn]|1〉)⊗ · · · ⊗ (|0〉+ e2πi[0.k1k2...kn]|1〉),
(21)

where we have introduced a new compact notation
[0.k1 . . . kn] =

∑n
l=1 kl2

−l.
The product representation of Eq. (21) makes it easier to
build the quantum circuit that computes the QFT. Such
circuit is shown in Fig. 5, where we have introduced the
Rm operator given by Eq. (7).
The fact that this algorithm can be implemented using
an arbitrary number of qubits might be used to inspect
the effect of increasing the number of qubits on the per-
formance of the algorithm. To this purpose, we create
an initial state which is a superposition of all the basis
states

|ψ0〉 =
1

2n/2

2n−1∑
k=0

|k〉. (22)

This is done by applying Hadamard gates to all the
qubits. Then, the action of the QFT on |ψ0〉 is always
the same: F|ψ0〉 = |0〉. We can take the same argument
as in Section IV A and use the probability outcomes as
a measurement of the performance.
We implement the algorithm using from 1 to 5 qubits
with three different quantum computers, each one having
a different connectivity.
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|k1〉 H R2 · · · Rn−1 Rn |0〉+ e2πi[0.k1k2...kn]|1〉

|k2〉 · · · H · · · Rn−2 Rn−1 · · · |0〉+ e2πi[0.k2...kn]|1〉

...

|kn−1〉 · · · H R2 |0〉+ e2πi[0.kn−1kn]|1〉

|kn〉 · · · H |0〉+ e2πi[0.kn]|1〉

FIG. 5: Circuit for the implementation of the quantum Fourier transform. To obtain the state in Eq. (21) from this
circuit, swap operations of the qubits must be performed to reverse their order.

The performance decreases as the number of qubits in-
creases, as seen in Fig. 6. This should not be surprising,
since with the number of qubits it also increases the num-
ber of quantum gates, which means more manipulation
of the qubits.
We find a similar behavior for two 5-qubit quantum com-
puters, ibmqx2 and ibmq vigo. The performance is rea-
sonable, i.e. error below 20%, for three or less qubits,
and degrades for four and five qubits with errors above
80%. A different behavior is observed for the larger ma-
chine, the 15-qubit ibm 16 melbourne. In this case, the
error grows linearly with the number of qubits.

V. CONCLUSIONS

In this work we have benchmarked the state of the art
IBM quantum computers available online implementing
several relevant quantum algorithms. First, we have ex-
plored the performance of a single qubit. To this aim, we
have considered the dynamics of a spin interacting with
a magnetic field. The obtained performance of the quan-
tum computers in this case is very satisfactory, closely
following the expected behavior. Then we have concen-
trated on two well-known multiqubit algorithms, super-
dense coding and the quantum Fourier transform. The
first has been used to explore the importance of the phys-
ical connectivity of the qubits for the performance of the
protocols. Indeed, physical connectivity results in a bet-
ter performance. The Fourier transform has been imple-
mented on three different quantum computers. The
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FIG. 6: Difference between the theoretical outcome and
the mean probability outcome as a function of the num-
ber of qubits after 5 runs of 8192 shots for each qubit
and for each quantum computer. The error bars are the
standard deviations among these five runs.

performance is found to be reasonable for three or less
qubits in the five qubit computers.
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