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Abstract: Although cosmology is entering the precision era, there is a quantity for which its
measurements are not converging to an exact value, but rather the opposite: the Hubble Constant
(H0). Because its incompatible values stem from observations of the early and late Universe, respec-
tively, in this work we propose a phantom equation of state (ω < −1, ω constant) for dark energy,
which could change the Universe evolution in such a way that the two values would be compatible.
We will calculate a value of ω that could solve this tension, making the Universe dynamics start
to deviate from the ΛCDM standard model at z ∼ 1. Furthermore, we will study the problems
that arise from this exotic dark energy and review alternative theories that also address the Hubble
tension. We will solve numerically the Friedman equations to find the Universe scale factor evolution
over time, for both phantom and Λ dark energy types.

I. INTRODUCTION

It is a well-known fact that the Universe is not static,
but expanding: the general theory of relativity, together
with its solutions found by Friedman, set the theoretical
grounds upon which the observations were to be able
to determine the various parameters that characterise
the dynamics of the Universe. And, within all these
parameters, there is a quantity that is particularly
important: the Hubble constant, H0, which is namely
the expansion rate of the Universe, H(t), at present.

Thanks to the ground-breaking observations by Riess
[1] and Perlmutter [2], it was discovered that the expan-
sion of the Universe was accelerating, thus giving birth
to our current Λ-Cold Dark Matter (ΛCDM) standard
model. In that model, this acceleration is driven by a
cosmological constant energy component, Λ, that will
cause H0 to become a constant in the future. This is
interesting because, although labeled as ”constant”,
H(t) is a quantity that evolves with time, except pre-
cisely if a cosmological constant dark energy is dominant.

In any case, there is a problem: the value of H0 has
been measured using different techniques, and the results
so far have not been consistent. The two main methods
used are the Cosmic Microwave Background (CMB) and
the identification of Type 1a Supernovae (SN1a). With
each method being increasingly precise as the experi-
mental errors are being reduced, their discrepancy not
only does not disappear, but is instead gaining relevance.

After inflation, the Universe was in a state of hot
plasma, that was highly homogenous and with very little
deviations from the density and temperature means. By
analysing the picture that was left after the decoupling
of photons, the CMB, the value of H0 can be inferred.
This is accomplished by taking the power spectrum of
the temperature anisotropies in every direction and cor-
relating it to a curve that contains information of several

cosmological parameters, including H0, and relation-
ships between them. The latest value for that quantity,
coming from the Planck satellite, is H0 = 67.36±0.54 [3].

A more direct way of inferring H0 is measuring the
rate at which other galaxies are going away from us,
by correlating their distance with their redshift. There
have been a handful of relevant ways to do that, but
the one that has been studied and modelled the most
is the SN1a. It is based on the fact that a Type 1a
Supernova always has the same luminosity, given by
the Chandrasekhar mass limit of white dwarfs, so by
comparing it to its detected brightness, the distance can
be calculated. By taking a sufficiently large sample of
them, the expansion rate of the Universe is obtained
statistically. The problem, or crisis (as is regarded by
some), is that the value obtained by SN1a is 74.03±1.42
[4], which differs by more than 4σ with the CMB
measurement. This is known as the Hubble tension.

In this work we are going to review some theories
that propose specific modifications to the ΛCDM model
so that this discrepancy between measurements of H0

is explained and solved. We will put special emphasis
on the Late Phantom Energy solution, which suggests
a change in the nature of dark energy, manifested
in a higher acceleration of the expansion rate at low
redshifts. This, as we will see, results in a higher value
of the H0 inferred from the CMB, thus easing the tension.

II. GOING PHANTOM

The CMB method is based on data from the early
Universe (z ∼ 1100), while SN1a deals with the late Uni-
verse (z <∼ 1). Also, while the CMB method calculates
the present value of H assuming that the whole Universe
evolution has followed ΛCDM hypotheses, SN1a is based
on astronomical observations, so the ΛCDM accepted
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value for H0 is the one coming from CMB. This is
crucial, because one may ask then if this tension may
be an indicator that the ΛCDM model needs to be
rethought as it may have failed somehow to describe the
evolution of the Universe.

As for other ways to obtain H0 from the early Universe,
like the Baryon Acoustic Oscillations method (BAO),
they are statistically consistent with the mentioned CMB
result, and so are the ones from the late Universe (lensing,
quasars. . . ) with the SN1a, to some extent. A conser-
vative approach is blaming this discrepancy between H0

drawn from observations at different redshifts to system-
atic errors, primarily those concerning the accuracy in
measuring distances. This is not the object of this work,
but rather pointing at some new physics that could ex-
plain this phenomenon, so we will assume that both val-
ues are correct by themselves.

A. The Equation of State of Dark Energy

If the present acceleration is higher than what could
be expected from fitting to the CMB anisotropies, what
could be the physical cause? There have been some
solutions proposed so far, and we are going to center
on one that involves the so-called phantom energy, at
small redshifts. Let us introduce phantom energy first.
As we have said before, the evolution of the Universe,
after the assumptions of homogeneity and isotropy, can
be derived from General Relativity in the Friedman
Equations. However, there is a missing piece to be able
to fully use them: the relationship between pressure and
density. Namely, the equation of state (EOS), usually
expressed as ω = p/ρ (in natural units).

We will not expand a lot here, but will just say that
the ΛCDM standard model gives to dark energy the con-
stant value ω = −1. This value means that the density
of energy remains constant, thus making the dark energy
contribution larger as the Universe expands (as matter
density decreases in that scenario). In a Universe with
a global EOS of ω = −1, also called De Sitter Universe,
the Hubble parameter is constant over time, so we can
say that ΛCDM model predicts the Hubble parameter
to be approaching a constant value. Phantom energy,
in turn, has an EOS of ω < −1, so if the Universe
were to have a phantom EOS, when it expanded, the
density of this energy would grow, along with the
Hubble parameter. This is key, as it could be the
cause for the fact that the late Universe derived calcula-
tion of H0 is higher than the one from the early Universe.

To further support this idea with a more involved
treatment, it is found in [5] that statistically combining
the data from both early and late Universe results in
ω < −1 with more than 1σ probability in all cases, thus
making the Hubble Constant values compatible. This is

considering ω constant, hypothesis that is not so clear
should it cross to the phantom domain. In any case,
the fact that a phantom EOS can be consistent with
the observational data is certainly interesting and is
nowadays a subject of ongoing study. This is exactly
our purpose in this work, and we will start by working
on an analytic phantom solution to the Hubble tension,
for the case where ω is constant.

B. Phantom Solution with Constant ω

The Universe is a rather complex system, even at
cosmological scales. Matter, radiation, dark energy. . .
all have a part in the cosmic picture, and it is clear by
just taking a quick look at the Friedman equations that
our desired analytic solution cannot be found by taking
into account all of them. Thus, the appropriate approx-
imations must be made, together with the assumption
of constant ω. We know that, from z ∼ 1 to our days,
the energy in the Universe comes from the contributions
of matter and an ever-increasing dark energy, with the
radiation and curvature contributions close to none
(ρrad ≈ 0, ε ≈ 0). As we are working on the nature
of dark energy, and its contribution can be deemed
irrelevant before z ∼ 1, we will greatly simplify our
quest by assuming that the Universe is well described
by the ΛCDM model until the turning point of z = 1.
From then on, it is safe to say that the dynamics of the
Universe are governed only by matter and dark energy.
The key point is that, as we have said, if the Universe
expansion were to be due to phantom dark energy, then
the Hubble parameter would be higher than what is
inferred from ΛCDM. That means that the fact that the
SN1a value for H0 is higher than expected from the CMB
could have been caused by the extra acceleration, com-
paring with ΛCDM model, given by the phantom energy.

Our procedure to quantify this effect will consist
in the following: starting at the ΛCDM derived value of
the Hubble constant, H0Λ = 67.36, we will obtain the
correspondent value of HΛ(z = 1), assuming ω = −1.
At that moment, we impose that Hph and HΛ coincide,
and the same for Ωph and ΩΛ. After that, with a
constant value of ω < −1, we will find the required value
of ω so that H0ph = 74.03, which corresponds to the
observations from SN1a. All calculations will be based
on the Friedman equations, that are:
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where ρi and ωi are the density contribution and equa-
tion of state of each component of the Universe (matter,
dark energy...). Regarding densities, it is more conve-
nient to use instead the density parameters: Ωi = ρi

ρc
,
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where the term ρc = 3H2

8π is the critical density of the
Universe so that it has zero curvature. We know that
in our Universe (Ωm = 0.32 [3]) the density of dark en-
ergy accounts for ΩΛ = 1− 0.32 = 0.68, and we want to
express the Universe evolution in terms of these present
density parameters. After solving the Friedman equa-
tions for each component ρi, we are led to

ρi = ρi0

(a0

a

)3(1+ωi)

(3)

as seen in [6], where the matter EOS is ω = 0. Using
this, the following simple calculations give us the energy
densities at z = 1 (equivalently, a = (1 + z)−1 = 1

2 ):{
ρm, 12 = ρm0 · 23

ρΛ, 12
= ρΛ0 · 1

, where

{
ρm0 = 0.32 · 3

8πH
2
0Λ

ρΛ0 = 0.68 · 3
8πH

2
0Λ

It follows that
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2
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H2
1
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(4)
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= 0.68 · H

2
0Λ

H2
1
2

(5)

Knowing the density parameters at z = 1, for ωΛ = −1,
we will go forward in time from there, assuming now
that the dark energy is phantom. The second Friedman
equation can be written as

H2 = H2
0

∑
Ωi0

(a0

a

)3(1+ωi)

(6)

By now setting the initial time as the correspondent to
z = 1 instead of z = 0, we have that:

H2
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2
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]
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By the Equations (4) and (5), for a = 1, we have that

H2
0ph = H2

0Λ

[
0.32 + 0.68 · 2−3(1+ωph)

]
(8)

The value of ω that reconciles the Hubble tension will
be found for H0ph=74.03 and H0Λ=67.36:

ωph = −
ln

(
74.03
67.36

)2 − 0.32

0.68
3ln(2)

− 1 = −1.12 (9)

This value falls within the statistical results obtained in
[5], and despite the outcome is relevant only insofar as
it comes from an approximation, the value for ωph is in-
teresting, especially for it being close to -1. That means
that the theoretical extreme behaviour of phantom en-
ergy, that will be reviewed later on this work, is not so
radical. If the Universe were to have an EOS given by

the obtained result, during a large period of time it would
not differ qualitatively much from the ΛCDM model. To
see this better, we have obtained the growth of the scale
factor, a(t), for both phantom and Λ models, from z = 1
(Figure 1). For that, we have used the Euler method to
solve numerically the Friedman equations for ωΛ = −1
and ωΛ = −1.12:
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FIG. 1: Evolution of the scale factor for phantom (ωph =
−1.12) and Λ (ωΛ = −1) dark energies, from a ∼ 1

2
(or z ∼ 1)

until a ∼ 1.7. We can see from the plot that there is very little
difference in a(t) between the phantom and ΛCDM models in
the past. This is a good thing, because, although sufficient
for making the Hubble Constant values come to an agree-
ment, the value of ωph does not result in an a(t) departing
markedly from the standard model, which is well-tuned to the
observations.

So far, we have only seen benefits of the Universe possibly
having a phantom EOS. However, as we mentioned be-
fore, there are some caveats, that must be acknowledged
and can become problematic if they are not sorted out.

III. PROBLEMS OF A PHANTOM EOS

One of the reasons that dark energies in the phantom
realm have been investigated so little until lately is that
they have a number of problems, that are seemingly
irreconcilable with the current standard models. These
issues stem from the very fundamental nature of this
kind of energy and the fact that its origin and charac-
teristics are still relatively unknown.

The first problem one encounters is when asking
an elementary question to all of it: where does it come
from? The answer is the habitual “we do not know” one
gets when addressing dark energy, but is in fact worse
than usual. In the case of ω = −1, for example, dark
energy has been related to the cosmological constant Λ
and to the constant vacuum energy that experimentally
is obtained by the Casimir effect. Despite the contro-
versy in this hypothesis, the well-known Cosmological
Constant Problem, it is at least a possible real physical
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interpretation of the mathematical deduction that has
been made out of the observations. For a phantom EOS,
there is none, still. This issue, together with the next
one, may suggest that, were it to exist, the phantom
energy would not necessarily obey a constant EOS, but
rather fluctuate over time and so it being able to cross
the ω = −1 frontier.

Another problem is that a phantom EOS violates
the Null Dominant Energy Condition (NDEC), al-
together with other stablished energy conditions for
stability to be guaranteed (like the Weak and Strong
Energy Conditions). As mentioned in [7], by imposing
these energy conditions to our isotropic and homogenous
Universe, it is derived that ω ≥ −1, which collides with
our definition of phantom energy. This is not just a
problem of formalism and definitions, for it is known
that such violations could cause catastrophic vacuum
instabilities and other phenomena that lie outside the
standard models of physics.

To get a grasp of that, we will peek into the Quantum
Field Theory, which is the most common approach to
dark energy. This theory states, roughly, that every
component of the Universe is an expression of its
associated field. In the case of phantom energy, it is
usual to subordinate it to a scalar field with a corre-
sponding Lagrangian that has the particular feature
that the kinetic term is negative. That means that
the Hamiltonian would not be bounded from below, so
an instability could push the Hamiltonian of the field
to negative infinity. This theoretical singularity of the
scalar field is interesting as it is somehow linked to the
Big Rip, the predicted dramatic ending of a phantom
Universe, that we are going to prove now. Particularly,
we will see that, for a constant ω < −1, the scale factor
a(t) grows to infinity in finite time.

First, we will see that the density of phantom en-
ergy grows with the expansion of the Universe, contrary
to the case of mass and radiation. From the equation
(3) and the fact that ω < −1, it is clear that when
the scale factor grows, the phantom energy density
grows too. Hence, for a Universe where the phantom
energy becomes dominant, it will continue to domi-
nate. In the case where the energy of the Universe is
mainly phantom, as would be our situation, it is safe
to assume that the future expansion of the Universe
will be driven just by the contribution of phantom energy.

Hence, we can approximate the current Universe
energy as its phantom contribution (Ω = Ωph = 0.68)
when we are to make calculations for the future, greatly
simplifying equation (6) to:

(
ȧ

a

)2

= H2
0 Ωpha

−3(1+ω) (10)

By rearranging the terms, and integrating between t0 and
an arbitrary t:

a−
3
2 (1+ω) − a(t0)−

3
2 (1+ω)

3
2 (1 + ω)

= H0Ω
1
2

ph(t− t0) (11)

which gives us the scale factor evolution,

a(t) =

[
3

2
(1 + ω)H0Ω

1
2

ph(t− t0) + 1

] 2
3 (1+ω)

(12)

As (1 + ω) < 0, if the expression below the power index
on the right is equal to zero, then a(t) grows to infinity.
That will happen, for the ω we have found previously,
when

t− t0 =
2

3
|ω + 1|−1H−1

0 Ω
− 1

2

ph = 3.68 · 1018s (13)

Thus, in a time of 1.16 · 102 Gyr from now (about ten
times the age of the Universe, t0 = 13.8 Gyr) the scale
factor would blow up for a constant phantom EOS,
leading our Universe to a singularity in finite time.

We can see that the time at which the singularity
would occur is so distant in the future that the simplifi-
cation of constant ω we have made in our first calculus
is reasonable, for it applies to just a small window of
time in the cosmic evolution (0 < z < 1). However,
this simplification could become rather erroneous in
calculations for larger periods, as also the problems of
phantom we have reviewed seem to point to the fact
that an EOS like this is prone to change over time.

To mention interesting studies in that direction, we have
that the Big Rip is avoided when ω tends asymptotically
to -1 in a given pace [8], or when it is allowed that the
energy-momentum tensor is not conserved [9], among
many other solutions. We find it illustrative to show the
Big Rip graphically, by first numerically finding a(t) as
before, including the matter density term (Figure 2).
Then, in Figure 3 we will compare our diverging phantom
scale factor with the evolution of a(t) at the ΛCDM pace.

Separately, there is another difficulty for the success of
this phantom theory, that comes from a different source:
the observational data. In this work, we have based upon
the data of SN1a and CMB. However, it is deduced from
the BAO data, which involves measuring the evolution
of primordial sound waves over time, that the ΛCDM
model cannot really be modified for, precisely, z < 2 [10].
That means that maybe our effort to reach an agreement
between SN1a and CMB, mediating phantom energy, can
be clashing with another valuable observational set, the
BAO. Nonetheless, there is still hope for our model. As
our result (ωph = −1.12) is not far from the ΛCDM dark
energy EOS (ωΛ = −1) and we saw in Figure 1 that
our phantom model resembles the ΛCDM model at low
redshifts, maybe we just have a tension with BAO, that
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can be polished as new and more precise observations are
made.
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FIG. 2: We can see here that, for ω = −1.12, the moment at
which a(t) diverges is of the same order of magnitude as we
found in our previous calculus (∼ 100 Gyr), which neglected
the matter density term, so we can confirm that the evolution
of the Universe in the future will be driven by the dark energy,
whatever its nature may be.
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FIG. 3: Comparison, with a logarithmic y axis, of the evo-
lution of scale factor for phantom (ωph = −1.12) and Λ
(ωΛ = −1) dark energy, in the late future. It is interesting
to see that the phantom factor scale shows an ever-increasing
tendency, even given the fact that the graphic is logarithmic:
this is one way to see why the phantom dark energy is said
to have a ”super-exponential” behaviour.

IV. OTHER POSSIBLE SOLUTIONS TO THE
HUBBLE TENSION

Despite it being an interesting and compelling way to
solve the Hubble tension, the phantom energy is not the
only game in town. One of the newest and less problem-
atic theories is the one of Early Dark Energy (EDE): As
stated in [11], it consists in an injection of dark energy
in the period before recombination that would raise the
value of H0 inferred from the CMB, thus making it
consistent with the SN1a. It is a rather complex theory,
but its compatibility with all datasets (including BAO)
make it a promising idea, even more than the one we
have studied in this work. Also remarkable are the
approaches that advocate for a change in the behaviour
of neutrinos [12] or, as said before, for the existence
of unknown systematic errors in the SN1a measurements.

V. CONCLUSIONS

We have seen that, while the Hubble tension is becom-
ing one of the biggest problems of the present cosmology,
a little modification in the EOS of dark energy could iron
out this discrepancy in the measurements of H0. How-
ever, it may bring several important issues that still can-
not be avoided given the knowledge and data we currently
have of the Universe. Perhaps the most promising solu-
tion is in the framework of the EDE theory, a novel and
ingenious approach to solve the tension that, together
with our hypothesis of phantom late energy, should be
further examined in the future.
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