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Neurodegenerative disorders such as Parkinson’s (PD) and Huntington’s disease (HD)
are characterized by a selective detrimental impact on neurons in a specific brain area.
Currently, these diseases have no cures, although some promising trials of therapies that
may be able to slow the loss of brain cells are underway. Cell therapy is distinguished
by its potential to replace cells to compensate for those lost to the degenerative
process and has shown a great potential to replace degenerated neurons in animal
models and in clinical trials in PD and HD patients. Fetal-derived neural progenitor cells,
embryonic stem cells or induced pluripotent stem cells are the main cell sources that
have been tested in cell therapy approaches. Furthermore, new strategies are emerging,
such as the use of adult stem cells, encapsulated cell lines releasing trophic factors
or cell-free products, containing an enriched secretome, which have shown beneficial
preclinical outcomes. One of the major challenges for these potential new treatments
is to overcome the host immune response to the transplanted cells. Immune rejection
can cause significant alterations in transplanted and endogenous tissue and requires
immunosuppressive drugs that may produce adverse effects. T-, B-lymphocytes and
microglia have been recognized as the main effectors in striatal graft rejection. This
review aims to summarize the preclinical and clinical studies of cell therapies in PD
and HD. In addition, the precautions and strategies to ensure the highest quality of cell
grafts, the lowest risk during transplantation and the reduction of a possible immune
rejection will be outlined. Altogether, the wide-ranging possibilities of advanced therapy
medicinal products (ATMPs) could make therapeutic treatment of these incurable
diseases possible in the near future.
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INTRODUCTION

The term ‘neurodegenerative diseases’ refers to a heterogeneous
group of disorders that affect the central or the peripheral
nervous system with a wide array of clinical symptomatology,
depending on the region that is affected. Neurodegenerative
disorders are classified either by their clinical symptoms mainly
motor, cognitive and psychiatric, by the proteins involved in the
disorder (Ross and Poirier, 2004; Soto and Pritzkow, 2018; Agbas,
2019), or by the affected cell type, usually neurons or glial cells
(Williams, 2002; Kovacs, 2014).

A wide range of neurodegenerative conditions have been
recognized, with some of the best-known being Alzheimer’s,
Parkinson’s (PD), Huntington’s (HD), and amyotrophic lateral
sclerosis. PD and HD have well-characterized neuropathology
and have been a focus of cell therapy research over the
last three decades.

PD and HD present two main characteristics: the first is
the progressive dysfunction of specific neurons, which initially
occurs in a defined brain area; the second is worsening over time
with eventual extension to involve additional cell types in more
widespread brain areas (Williams, 2002; Hussain et al., 2018).
Both are associated with aging and, in the majority of cases,
present a life-threatening denouement.

PARKINSON’S DISEASE

PD is a progressive neurodegenerative disorder that presents a
characteristic triad of motor symptoms: bradykinesia, tremor and
rigidity. PD is thought to involve genetic and environmental
factors, while the precise etiology is still unclear (Dickson, 2012).
Despite current advances, there are no readily available specific
biomarkers of PD, as may be available through genetic testing in
monogenic disorders. Hence, a diagnosis of PD is normally based
on clinical assessment of motor signs.

PD is associated with loss of dopamine (DA) neurons in the
Substantia Nigra pars compacta (SNpc) (Fusco et al., 1999; Brichta
and Greengard, 2014; Giguère et al., 2018), thus, at the anatomical
pathology level, the two key hallmarks of PD are the selective
loss of DA neurons of the SNpc, which results in a decrease of
DA reaching the striatum, and the formation of intracytoplasmic
α-synuclein (α-syn) protein aggregates known as Lewy Bodies
(Spillantini et al., 1997; Sulzer and Surmeier, 2013).

The nigrostriatal DA pathway is the circuit primarily affected
in PD, consequently making it the main target of the majority of
cell-based strategies in this disease (Björklund and Stenevi, 1979;
Perlow et al., 1979; Toledo-Aral et al., 2003).

The neuropathogenesis behind PD is still being elucidated.
Here, some of the mechanisms underlying DA neuronal cell
death are summarized (Figure 1A), based on neuropathological
studies either from animal models or from human postmortem
samples (Dauer and Przedborski, 2003; Hartmann, 2004). Several
animal models of PD are available to study the disease (Blesa and
Przedborski, 2014; Aron Badin et al., 2015), but none of them
replicates human PD etiopathogenesis, nor accurately represents
the anatomic organization of the human brain.

In-depth analyses of human postmortem samples have
identified two key factor that compromise the viability of
vulnerable neurons in PD (Figure 1A): proteostatic dysfunction,
mediated by abnormal accumulation of misfolded proteins,
such as α-syn and oxidative stress (Dias et al., 2013) which
causes mitochondrial dysfunction, damage to nucleic acids and
neuroinflammation (Blesa et al., 2015; Czarny et al., 2018; Guo
et al., 2018). In addition, DNA integrity is compromised due to
its intrinsic vulnerability to oxidative damage. Thus, the survival
of affected neurons is uncertain, despite the compensatory
efforts made by DNA-repair machinery (Gencer et al., 2012;
Guo et al., 2018).

Treatments for PD
There are no established disease-modifying treatments able to
slow, stop, or modify the disease course. Hence, at the moment
available treatments only offer symptomatic relief of motor
symptoms, with little clinical benefit in terms of the non-motor
manifestations of PD (Figure 2A).

As the main hallmark in PD is the lack of DAergic innervation
in the striatum, drug-based treatments rely on exogenous
administration of compounds with DAergic activity (i.e.,
levodopa, DA agonists) to replace the depleted neurotransmitter
(Zahoor et al., 2018). L-dopa is currently the most effective
drug for PD. However, its long-term administration is linked
to adverse effects such as dyskinesias and motor impairments.
Fortunately, advanced treatments such as deep brain stimulation
(DBS) have emerged as a complementary therapeutic approach
for PD. DBS is an effective surgical intervention for PD,
mediated by the application of chronic electrical currents to
selected targets in the brain. The usual targets of DBS in PD
are the subthalamic nucleus (STN) and/or the globus pallidus
internal (GPi), depending on the dominant symptoms that need
addressing (Krack et al., 2000; Negida et al., 2018).

The best clinical outcomes for PD have been achieved using
DBS combined with pharmacological treatment (Wagle Shukla
and Okun, 2014; Jakobs et al., 2019). DBS requires stereotactic
surgery, so the procedure is associated with some risks and
adverse effects. In some cases, worsening of cognitive, motor or
psychiatric symptoms, and cerebral hemorrhages or stroke have
been reported, while the potential for hardware failure must not
be forgotten (Fang and Tolleson, 2017).

HUNTINGTON’S DISEASE

Huntington’s Disease (HD) is an inherited neurodegenerative
disease caused by a single mutation in the IT15 gene, known
as huntingtin (HTT), that generates a toxic huntingtin protein
(mHTT), leading to the dysfunction or death of medium spiny
neurons (MSNs) from the striatum. HD is characterized by
involuntary movements (chorea), cognitive and neuropsychiatric
symptoms. Atrophy of the striatum (caudate and putamen nuclei),
largely due to the loss of MSNs (Vonsattel et al., 1985), is one of the
earliest and most striking changes in the brain in HD. However,
many other brain areas are affected, such as cortex, globus
pallidus or thalamus (Reiner et al., 1988; Kremer et al., 1990).

Frontiers in Cellular Neuroscience | www.frontiersin.org 2 August 2020 | Volume 14 | Article 250

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-14-00250 August 9, 2020 Time: 12:3 # 3

Salado-Manzano et al. Immunological Response After Cell Therapy

FIGURE 1 | Pathogenesis of PD and HD. (A) Pathogenesis of PD, mediated by protein misfolding and aggregation of α-synuclein and the accumulation of
intracytoplasmic Lewy bodies. Mitochondrial stress, augmentation of ROS and oxidative damage, together with axonal transport impairment and synaptic
dysfunction, contribute to increase the vulnerability of SNpc DA neurons, leading to dysfunction or death during PD. (B) Pathogenesis of HD, mediated by
aggregation of mHTT, transcriptional dysregulation, mitochondrial stress, augmentation of ROS and oxidative damage along with imbalances in axonal transport,
synaptic connectivity and receptor regulation. Together, these disturbances contribute to increase vulnerability of MSNs, leading to dysfunction or death during HD.
ROS: Reactive oxygen species. SNpc DA: substantia nigra pars compacta DAergic neurons. MSNs: medium spiny neurons.

The presence of the mutant HD gene can be detected through a
highly reliable genetic test, usually performed on a blood sample,
which also allows identification of gene positive, asymptomatic
individuals. Disease onset most commonly occurs in mid-life
and life expectancy ranges from around 15-30 years after disease
onset, as there are no disease-modifying treatments currently
available and symptomatic treatment is limited.

The neurotoxic (gain-of-function) properties of mHTT are
probably accompanied by some loss of wtHTT properties (loss-
of-function disease); both contributing to the pathogenesis
of HD’s. Although a comprehensive understanding of the
downstream cellular processes is still being sought, two
processes that appear to play a key role in HD are altered

protein homeostasis and disturbances in mitochondrial function
(Figure 1B). Imbalances in the proteasome lead to the activation
of proteases that cleave mHTT, generating more toxic species.
In parallel, mitochondrial dysfunction is enhanced by defects
in calcium homeostasis, aberrant ROS production and oxidative
damages (Saudou and Humbert, 2016; Figure 1B). Brain-
derived neurotrophic factor (BDNF) may also play a crucial
role (Zuccato and Cattaneo, 2007; Baydyuk and Xu, 2012).
BDNF is a potent neuroprotector with special affinity for striatal
neurons and is decreased in HD due to the imbalances in
transcriptional dysregulation and vesicular transport that also
occur during the disease (Gauthier et al., 2004; Moumné et al.,
2013). As previously described by our group, the decrease of
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FIGURE 2 | Current treatments for PD and HD. (A) Treatments for PD. Conventional drugs and DBS generally target motor symptoms of PD only and are usually
accompanied by cognitive therapy. Cell therapy possesses disease-modifying potential through cell replacement. Trophic support is mainly seeking for a
neuroprotective effect. (B) Treatments for HD. Conventional drugs are either targeting motor (e.g., tetrabenazine) or psychiatric symptoms (e.g., antidepressants or
benzodiazepines). Therapies targeting DNA or RNA such as ASOs can be applied to silence HTT mRNA. Cell therapy possesses disease-modifying potential
through cell replacement. Trophic support is mainly seeking for a neuroprotective effect. COMT: Catechol-O-methyltransferase. MAO-B: Monoamine oxidase B.
DBS: Deep Brain Stimulation. hfVM: human fetal ventral mesencephalon. hPSCs: human pluripotent stem cells. hMSCs: human mesenchymal stem cells. GDFN:
glial cell-line derived neurotrophic factor. ASOs: antisense-oligos. RNAi: RNA interference. WGE: whole ganglionic eminence. LGE: lateral ganglionic eminence.
MSNs: medium spiny neurons. BDNF: brain-derived neurotrophic factor.

BDNF induces dysfunction of enkephalinergic neurons which
aggravates the symptomatology of HD (Canals et al., 2004). In
fact, one of the most studied therapies preclinically has been
the exogenous administration of BDNF, as it has demonstrated
an ability to improve several motor and cognitive symptoms
(Canals et al., 2004).

In conclusion, in HD, striatal MSNs receive a combination
of pro-apoptotic signals in cell autonomous and non-cell
autonomous ways that contribute to their vulnerability,
leading to dysfunction or even death (Ehrlich, 2012;
Morigaki and Goto, 2017).

Treatments for HD
There is currently no neuroprotective, disease-modifying
or curative treatment for HD available to clinical practice;
only symptomatic treatments such as antidepressants,

movement-suppressing drugs and physical therapy are available
(Mestre and Ferreira, 2012; Figure 2B). Pharmacological relief
of motor symptoms, such as chorea and dystonia, attempt to
restore the balance of neurotransmitters including GABA, DA
and glutamate (Van Vugt and Roos, 1999; Pidgeon and Rickards,
2013), but in general their efficacy is very limited.

To address the toxic gain-of-function of mHTT in HD,
there is an extended field working on the development of
huntingtin lowering therapies, with the most advanced currently
being the lowering of mHTT levels by targeting its mRNA
transcripts. Huntingtin-lowering strategies that target RNA or
DNA (Figure 2B) are reviewed elsewhere (Carroll et al., 2011;
Wild and Tabrizi, 2017; Tabrizi et al., 2019). RNA it is easily
accessible in both nucleus and cytoplasm and is unprotected by
repair machinery (Wild and Tabrizi, 2017). Therapies targeting
RNA, such as antisense oligonucleotides (ASOs), aim to reduce
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the translation of HTT mRNA transcripts, which should
theoretically inhibit all downstream toxic effects and slow, halt
or reverse the progression of HD pathology and symptoms (Lane
et al., 2018). Within RNA-targeting strategies, ASOs are the most
advanced in the clinical pipeline, having already reached phase
III clinical trials in HD patients under the name of Tominersen
(previously known as RO7234292 and IONIS-HTT Rx; Ionis
Pharmaceuticals, Inc.). The clinical trial (NCT03761849, 2018) is
underway to evaluate the efficacy, safety, and biomarkers related
to Tominersen compared to placebo in more than 800 early-stage
HD patients, as part of GENERATION HD1 (Leavitt and Tabrizi,
2020). Although HTT-lowering therapies are promising, several
questions remain open, such as the administration route, the
potential toxicity due to lowering endogenous wild type, as well as
mHTT by some ASOs, and the need to develop biomarkers that
can report on the central lowering of mHTT and early reversal of
neuronal dysfunction (Lu and Yang, 2012; Leavitt et al., 2020).

ADVANCED THERAPIES TO TREAT
NEURODEGENERATION

There are three types of Advanced Therapy Medicinal Products
(ATMPs); gene therapy, cell therapy and tissue-engineered
products. In addition, they can be combined with medical devices
(so called combined ATMPs), for example, a biomaterial used
to encapsulate a cell line that releases a neuronal pro-survival
molecule (Lindvall and Wahlberg, 2008). In this review we will
focus on the different strategies employed in cell therapy to treat
neurodegeneration.

CELL THERAPY IN
NEURODEGENERATIVE DISEASES

The ultimate goal of cell therapy in neurodegenerative diseases
is to restore the lost function due to a neural circuit damage
that occurs during neurodegeneration. To achieve this three
main aspects have to be considered: (i) functional replacement
of lost neural cells; (ii) enhancement of endogenous regeneration
(which is a significant process in some regions of the adult brain
in animal models, but its significance still widely discussed in
human patients); and (iii) supply of pro-survival factors that are
decreased because of the pathogenesis of the disease.

In this regard, two main strategies have been applied:
human fetal neural tissue and stem cell-derived grafts.
Among approaches using stem cells, two subgroups dominate:
pluripotent stem cells (PSCs) and adult stem cells, such as
mesenchymal stromal cells (MSCs). The first subgroup includes
embryonic stem cells (ESCs) and induced pluripotent stem
cells (iPSCs). When used in the context of cell therapy, PSCs
are differentiated in vitro to the desired neural progenitor
commitment is achieved prior transplant. In theory, at least,
these cells represent an unlimited source of donor cells for
transplantation. The second subgroup includes adult stem
cells, such as MSCs, which are either delivered without
major modifications or are reprogrammed in vitro towards

a neuronal lineage. In some studies, MSCs have also been
subjected to genetic engineering to enrich the therapeutic
secretome that they cells naturally release (Dunnett and Rosser,
2004; Benraiss and Goldman, 2011; Barker et al., 2015a;
Henchcliffe and Parmar, 2018).

Cell therapy approaches present many advantages over
conventional treatments. Cell grafts can provide continuous
replenishment of neurotransmitters, and hold the potential
to integrate in the brain network and to produce long-
term neuromodulation of the lost functionality in the basal
ganglia (Piquet et al., 2012; Dunnett and Björklund, 2017).
Either engineered to overexpress trophic factors or unmodified,
stem cells release trophic factors such as BDNF and glial
cell line-derived neurotrophic factor (GDNF) among others,
as well as other growth factors and cytokines. The cocktail
of small molecules continuously secreted by the cells has the
potential to modulate neuroplasticity and induce neurogenesis
(Drago et al., 2013; Salgado et al., 2015; Vogel et al., 2018;
Reza-Zaldivar et al., 2019).

Cell Therapy Strategies for PD
As described above, PD usually responds well to pharmacological
medication in the short to medium term, but long-term
DA repletion treatments led eventually to a variety of dopa-
resistant motor complications, including difficult-to-treat motor
fluctuations, dyskinesia, dystonia and freezing episodes, and
non-motor signs including autonomic dysfunction, mood
fluctuations and cognitive impairment (Fahn et al., 2004; Abbott,
2010). Driven by the need for physiological and localized
delivery of DA, transplantation of fetal neural grafts led the
way to diverse neuronal replacement strategies. Figure 3A
summarizes cell-based therapy approaches administered in
humans for PD and HD.

Allogeneic Fetal Neural Tissue
Autologous adrenal medullary tissue (AM) grafts were the first
to be tested in patients with PD (Backlund et al., 1985; Lindvall
et al., 1987; Madrazo et al., 1987; Drucker-Colín et al., 1988,
1999; Peterson et al., 1989; Hirsch et al., 1990; Goetz et al.,
1991), but lacked sufficient supporting preclinical evidence and
were associated with concerns about the efficacy (poor or absent
functional outcome and poor survival of grafted cells) and safety
(frequent complications from the surgery) of this approach,
ultimately leading to its abandonment (Barker et al., 2015a).
This failure was also partially blamed on the immune response
generated from immunocompetent hosts (Piquet et al., 2012).
Better outcomes were achieved using fetal ventral mesencephalic
grafts (fVM), probably accounted for the better supporting
preclinical data. The first published fVM implant, at the interface
between the caudate nucleus and the lateral ventricle reported,
was reported to have been associated with some improvement
in PD symptoms although there was a lack of proper clinical
assessment and long-term follow-up (Madrazo et al., 1988). The
first fVM transplants into the striatum were associated with no
improvement for the two PD patients of the study (Lindvall
et al., 1989), but subsequent modifications of the grafting process
resulted in graft survival in the caudate nucleus, DA release and
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FIGURE 3 | Descriptive statistics based on studies analyzed in Table 1. (A) Graft type used for each of the pilor study or clinical trial evaluated within this review for
PD and HD. (B) Immunosupression regime administered and benefit obtained. fVM: fetal ventral mesencephalon. fSN and AM: Fetal Substantia Nigra and adrenal
medula. RPE: retinal pigment epithelial cells. MSCs: Mesenchymal stromal cells. NPSCs: Neural progenitor or stem cells. SC-derived neurons: stem cell derived
neurons. fWGE: fetal whole ganglionic eminence. fLGE: fetal lateral ganglionic eminence. BM: Bone-marrow. CyA: Cyclosporin A.

improvement of motor symptoms of PD patients (Lindvall et al.,
1990). These promising results led to the transplantation of 13
more patients in an open label study in Lund over the 1990s
(Sawle et al., 1992; Lindvall et al., 1994; Wenning et al., 1997;
Brundin et al., 2000). Despite an overall patient improvement
and sustained benefits in some patients over more than 20
years (Kefalopoulou et al., 2014), efficacy was variable between
individual participants (Piccini et al., 1999, 2000). Following
the publications of these results, further groups in Europe,
United States, and Canada applied a similar strategy in PD
patients (Gildenberg et al., 1990; Freed et al., 1992; Widner
et al., 1992; Kordower et al., 1995; Hauser et al., 1999; Freeman
et al., 2000; Mendez et al., 2000, 2002). Unfortunately, although
some results were promising, outcomes continued to be variable,
ranging from clear benefits to poor or none (Boronat-García
et al., 2017). The open-label studies were followed by two
double-blind placebo-controlled trials. Although these trials were
considered as a valuable continuation to previous studies, their
design was significantly different to earlier open-label studies. In
the first double-blind study bilaterally implanted grafts showed a
modest recovery compared to the sham group (Freed et al., 2001),
and the second double-blind study revealed a similarly variable
symptomatic outcome (Olanow et al., 2003). Overall, these two
trials did not provide significant improvements in patients with
PD, especially when compared with other PD therapies such

as DBS, although the primary outcome measures were highly
subjective (Freed et al., 2011). In addition, these clinical trials
reported some unpredictable and unacceptable side effects (i.e.,
dyskinesias) several years after the transplant in some of the
patients (Allan et al., 2010) and older patients did not show any
significant improvement (Krack et al., 2000). Retrospectively, it
has been acknowledged that the design of both trials had many
shortcomings, which resulted in them being underpowered and
suboptimal. These limitations included the immunosuppressive
regime, patient selection, cell preparation, fVM tissue handling
and storage, surgical technique and graft location (Barker et al.,
2013a). Furthermore, the original publications had relatively
short follow-up periods, since it has been suggested that more
time (3 to 5 years) would be required in order for the graft
to produce significant clinical improvement (Ma et al., 2010).
The modest improvement seen in some patients in the double-
blind studies was associated with successful transplantation of
DAergic cells that innervated the striatum and released DA, and
as such confirmed the positive findings in the open-label studies
which suggested that these factors were key for improvement of
motor deficits. Efficacy of fetal transplant was further signaled
by longer-term follow-up of some of the patients (Ma et al.,
2010; Table 1).

Clinical cell transplantation in PD was not further pursued
until recently, when fVM grafts for PD were again considered for
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a multi-center trial (NCT01898390, 2013) by the TRANSEURO
consortium (Barker et al., 2019). The trial was planned
after re-analysis of available clinical data on human fVM
transplantation, during which various factors associated with
positive outcomes were identified, including the provision of
adequate immunotherapy (Barker et al., 2015a). TRANSEURO
has been systematically and rigorously designed, having adopted
well-defined criteria for a number of parameters including patient
selection, tissue detection, preparation, grafting, trial design and,
most importantly, immunosuppression (Barker et al., 2019).
Results from the TRANSEURO trial are not expected before 2021.

Embryonic Stem Cells
In order to overcome the main drawbacks of fetal-derived
tissue, human ESCs were proposed as an alternative cell source
from which to derived DAergic neuronal progenitors. Following
differentiation towards the specific neural or neuronal lineage,
these cells have the potential to be an unlimited source of donor
cells for transplantation.

Early differentiation protocols yielded few neurons positive
for the limiting enzyme for DA synthesis, tyrosine hydroxylase
(TH). Subsequent strategies specifically aimed to generate DA
neurons (Kawasaki et al., 2000; Kim et al., 2002; Barker, 2014)
yielded relatively high numbers of TH-positive DA cells, but
did not show co-expression of some transcription factors specifi
for midbrain DA neurons (e.g., FOX2A). Along with tumor
formation in vivo in some cases, the overall outcomes of early
studies in animal models were not positive (Park et al., 2005;
Roy et al., 2006; Sonntag et al., 2007), but new approaches
rapidly emerged and more recent hESCs differentiation protocols
have resulted in much more reliable production of midbrain
DA-producing neuroblasts which, following transplantation into
adult rodent brains, showed survival in the absence of tumor
formation or uncontrolled growth (Kriks et al., 2011; Kirkeby
et al., 2012; Grealish et al., 2014; Steinbeck et al., 2015). In
fact, hESC-derived midbrain DA neurons are currently being
developed for application in clinical trials in the United States
(NYSTEM-PD) and Europe (EUROPEAN STEM-PD) in the
context of a global consortium, G-Force PD (Barker et al., 2015b,
Barker et al., 2017; Fan et al., 2020). Australian (NCT02452723,
2015; Garitaonandia et al., 2016, 2018; Kern et al., 2018) and
Chinese (Cyranoski, 2017; NCT03119636, 2017) groups have also
started clinical trials involving hESC-based therapy for PD. In
the case of the Australian trial, Kern et al. (2018) have reported
successful grafts of cells from a human parthenogenetic-derived
neural stem cell line in ten out of twelve planned PD patients,
with eight of them having completed the one-year active phase
and entered the 5-year safety follow-up phase. No data has been
published yet for the Chinese study, which was launched in 2017,
but is apparently still in the recruitment phase.

Induced Pluripotent Stem Cells
Human iPSCs (hiPSCs) are a source of patient-specific neurons,
that can also produce DA neurons via similar protocols
to the ones used for hESCs (Kikuchi et al., 2011, 2017).
One of the key benefits of using hiPSCs is the possibility
of autologous transplantation. Similarly to hESC-derived DA

neurons, midbrain identity has been achieved in differentiated
hiPSCs (Niclis et al., 2017; Tofoli et al., 2019). Transplants
of hiPSC-derived DA progenitors in rodent and non-human
primate models of PD have resulted in graft integration into
existing neural networks with associated motor improvement
(Hallett et al., 2015; Kikuchi et al., 2017; Niclis et al., 2017).
Two clinical trials of iPSC-derived DAergic progenitors have
been planned by members of G-Force PD; one using allogeneic
iPSCs with up to 2 years of immunosuppression with FK506
(CiRA trial) whereas the other will use autologous iPSCs with
no immunosuppression [summit for PD trial; (Barker et al.,
2017; Fan et al., 2020)]. The first patient in the CiRA trial was
transplanted with iPSC-derived DA neurons in 2018 at Kyoto
University Hospital, although recruitment to this clinical trial has
since been suspended (UMIN000033564, 2018).

Mesenchymal Stromal Cells
MSCs are multipotent cells that can generate osteocytes,
adipocytes, and chondrocytes. They are usually obtained from
bone marrow, umbilical cord or adipose tissue and expanded
in vitro as adherent cells. MSCs have demonstrated certain degree
of potential in differentiating into non-mesenchymal cell types,
such as neurons. This finding was very promising as these cells
can be easily obtained and used for autologous treatment in
neurodegenerative diseases. The ability of MSCs to differentiate
into dopaminergic neurons was demonstrated using specific
in vitro conditions in rat MSCs (Guo et al., 2005; Wang et al.,
2013; Welchko et al., 2018) as well as in human MSCs (Fu et al.,
2006; Trzaska et al., 2007, 2009; Trzaska and Rameshwar, 2011;
Singh et al., 2017; Khademizadeh et al., 2019).

A recent meta-analysis demonstrated that MSC transplants
can exert beneficial effects in animal models of PD (Riecke
et al., 2015). Indeed, direct striatal administration of MSCs, with
or without prior differentiation, has resulted in improvement
of motor function, protection of the nigrostriatal system,
and improved striatal DA release in several studies using
rodent models of PD (Kitada and Dezawa, 2012; Mendes
Filho et al., 2018). Some studies have even reported reduced
microglial activation and graft immunoreactivity, as well as
enhancement of neurogenesis in the subventricular zone and
neuroblast migration to the striatum (Staff et al., 2019).
Immunohistochemical analyses have provided very little evidence
of MSC differentiation into DA neurons upon transplantation
(Khoo et al., 2011). Overall, the beneficial outcomes observed
following transplantation of MSCs in animal models seem to
be promoted by their immunomodulatory and neurotrophic
activity, rather than their potential ability to differentiate into
functional neurons, which is in fact very limited in vivo (Cova
et al., 2010; Lescaudron et al., 2012; Teixeira et al., 2017).
Genetically engineered MSCs overexpressing TH, VEGF, GDNF
or CDNF have also been used in PD mouse models with mixed,
although overall positive, results (Staff et al., 2019). Along these
lines, MSC-based GDNF secreting cells exert neuroprotective
effects in inflammation-driven rat models of PD (Hoban et al.,
2015). It has been found that secreting GDNF not only has
positive effect on the viability and neural-like cell differentiation
capacity of hMSCs, but it could also promote the therapeutic
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TABLE 1 | Summary of pilot studies and clinical trials in cell therapy for PD and HD.

Year n Graft Administration route /
Brain area

Assessment Clinical
benefits

Immunosuppression
used

Graft
survival
analyzed?

Immune
response

Clinical Trial Ref References

Parkinson’s Disease (PD): Open-label studies (1987-2000)

1987 1 fSN and AM Unilateral stereotaxic
implants. Caudate

UDPSR Low Ciclosporin A + Prednisone No Not evaluated Early study (Mexico) Madrazo et al., 1988

1987 2 fVM Unilateral, CT-guided
stereotaxic implants.
Striatum

UDPSR, single-dose
L-dopa tests, 18F-PET, D2
PET.

High Triple immunotherapy
(Cyclosporin A +
Azathioprine
+Prednisolone)

Yes (PET) Not evaluated Lund series Lindvall et al., 1989,
1990, 1992, 1994;
Piccini et al., 1999; Li
et al., 2016b

1988 2 fVM Unilateral stereotaxic
implants. Putamen

18F-PET No Not indicated Yes (PET) Not evaluated Early study
(London,
United Kingdom)

Sawle et al., 1992

1989 2 fVM Bilateral, staged (2 weeks
apart) CT-guided
stereotaxic implants.
Striatum

CAPIT: UPDRS,
single-dose L-dopa tests,
18F-PET, cognitive tests.

Mild Triple immunotherapy:
Cyclosporin A (1 year) +
Azathioprine (18 months)
+Prednisolone

Yes (PET) Not evaluated Lund series Widner et al., 1992

1989 6 fVM Bilateral, staged (1-4 years)
CT-guided stereotaxic
implants. Striatum

CAPIT: UPDRS,
single-dose L-dopa tests,
18F-PET, cognitive tests.

High Triple immunotherapy
(Cyclosporin A +
Azathioprine
+Prednisolone)

Yes (PET) Not evaluated Lund series Wenning et al., 1997
Hagell et al., 1999
Kefalopoulou et al.,
2014

1995 7 fVM Bilateral, CT-guided
stereotaxic implants.
Striatum

UPDRS, 18F-PET,
neuropsychological tests

Mild IV methylprednisolone
(surgery) + Cyclosporin A
+ Prednisolone

Yes (PET) Not evaluated Pilot study
(Canada)

Freed et al., 1990,
1992

1995 6 fVM Bilateral, staged (4 weeks)
MRI-guided stereotaxic
implants. Putamen

CAPIT: UPDRS,
single-dose L-dopa tests,
18F-PET, cognitive tests.

Mild Cyclosporin A (6 months) Yes (PET,
postmortem
IHC)

Postmortem
IHC: CD68
(microglia,
macrophages),
CD3 (T
lymphocytes),
L26 (B cells),
HLA class II,

Pilot study (FL,
United States)

Kordower et al., 1995,
1996, 1997, 1998,
Freeman et al., 1995
Hauser et al., 1999

1995 12 Porcine fVM tissue Unilateral MRI/CT-guided
stereotaxic implants.
Striatum

Safety, UPDRS, MRI,
18F-PET.

Low Cyclosporin A (50%
patients) // Graft treatment
with monoclonal anti-MHC I
Ab. (50% patients)

Yes (PET,
postmortem
IHC)

Postmortem
IHC: CD3 (T
lymphocytes),
HLA class II.

Pilot study (MA,
United States)

Deacon et al., 1997
Schumacher et al.,
2000

1997 5 fVM Bilateral, staged (0-6
months) CT/MRI-guided
stereotaxic implants.
Striatum

CAPIT: UPDRS, single-dose
L-dopa tests, 18F-PET,
H2

15O PET, cognitive tests.

High Triple immunotherapy
(Cyclosporin A +
Azathioprine
+Prednisolone)

Yes (PET) Not evaluated Lund series Brundin et al., 2000;
Piccini et al., 2000;
Kefalopoulou et al.,
2014
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TABLE 1 | Continued

Year n Graft Administration route /
Brain area

Assessment Clinical
benefits

Immunosuppression
used

Graft
survival
analyzed?

Immune
response

Clinical Trial Ref References

2000 3 fVM Bilateral, staged (4 weeks
apart), MRI-guided
stereotaxic implants.
Putamen and substantia
nigra

Safety, UPDRS, 18F-PET. No Cyclosporin A (6 months) Yes (PET,
postmortem
IHC)

Postmortem
IHC: CD45,
CD68
(microglia,
macrophages),
GFAP
(astrocytes)

Pilot study
(Canada)

Mendez et al., 2002,
2005

Parkinson’s Disease (PD): NIH studies, clinical trials using fVM and alternative cell sources (2001-2015)

2001 20 fVM Bilateral, MRI-guided
stereotaxic implants.
Putamen

UPDRS, 18F-PET.
Double-blind (control
group).

No Not used Yes (PET,
postmortem
IHC)

Postmortem
IHC: CD3
(lymphocytes),
HLA class II.

NIH study (Canada)
NCT00038116

Freed et al., 2001
Ma et al., 2010

2003 23 fVM Bilateral, staged (1 week
apart) stereotaxic implants.
Putamen

UPDRS, 18F-PET.
Double-blind (control
group).

No Cyclosporin A (6 months) Yes (PET,
postmortem
IHC)

Postmortem
IHC: CD45
(activated
microglia,
immune
reactivity),

NIH study
(United States)

Olanow et al., 2003

2003 6 hRPE cells linked to
gelatin
microcarriers
(Spheramine)

Unilateral, MRI-guided
stereotaxic implants.
Putamen

Safety, UPDRS Mild Not used No Not evaluated Pilot study Watts et al., 2003
Bakay et al., 2004
Stover et al., 2005

2003 6 Autologous carotid
body cells

Bilateral stereotaxic
implants. Striatum

Safety, UPDRS Low Not used (autologous) No Not evaluated Pilot study Arjona et al., 2003

2004 1 Autologous
hSC-derived
neurons

Unilateral, MRI-guided
stereotaxic implant.

CAPIT, UPDRS 18F-PET,
MRI

Mild Not used (autologous) Unknown Not evaluated Pilot study Neuman et al., 2009

2007 13 Autologous carotid
body cells

Bilateral stereotaxic
implants. Striatum

CAPIT, CAPSIT-PD.
Long-term safety, UPDRS,
18F-PET

Low Not used (autologous) No Not evaluated Pilot study Mínguez-Castellanos
et al., 2007

2009 35 hRPE cells linked to
gelatin
microcarriers
(Spheramine)

Bilateral, MRI-guided
stereotaxic implants.
Putamen

UPDRS. Double-blind
(control group)

No Not used Yes (PET,
postmortem
IHC)

Postmortem
IHC: CD19 (B
cells), CD4
(natural killers,
cytotoxic T
cells), CD8
(helper T cells)

STEPS
(NCT00206687)

Farag et al., 2009
Gross et al., 2011

2009 5 Autologous bone
marrow stem cells

Stereotaxic implant.
Striatum

UPDRS No Not used (autologous) No Not evaluated NCT00976430
(Terminated)

2011 20 Bone marrow
MSCs

IV administration Safety, UPDRS Not
published

Not indicated No Not evaluated NCT01446614

(Continued)
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TABLE 1 | Continued

Year n Graft Administration route /
Brain area

Assessment Clinical
benefits

Immunosuppression
used

Graft
survival
analyzed?

Immune
response

Clinical Trial Ref References

2013 4 NTCELL:
immunoprotected
(alginate-
encapsulated)
porcine choroid
plexus cells.
Xenograft

Intracranial stereotaxic
insertion, guidance by
neuroimaging

Safety, UPDRS, PET Low Not used Not indicated Not evaluated NTCELL Phase I
(NCT01734733)

2013 15 Mesencephalic
neural precursor
cells

No data available Safety, UPDRS, PET Ongoing Not indicated Not indicated Not evaluated NCT01860794

2014 8 Celavie human
allogeneic
undifferentiated
NPCs from fetal
brain tissue (OK99)

MRI-guided stereotaxic
implant. Putamen

Safety, UPDRS, 18F-PET,
MRI

Mild Cyclosporine A (1 month) Not specified Flow cytometric
analysis of
antibodies
against grafts
and antibody-
dependent
cell-mediated
cytotoxicity

HSCfPD
(NCT02780895)

Madrazo et al., 2019

Parkinson’s Disease (PD): TRANSEURO, MSC and NSC late clinical trials (2016-2020)

2015 16 Peripheral nerve
tissue

DBS surgery. SN Safety, UPDRS, MRI Low Not used (autologous) Yes (MRI) Not evaluated NCT01833364 Van Horne et al., 2017,
2018

2015 20 fVM Bilateral stereotaxic
implants. Striatum.

UPDRS, 18F-PET.
Double-blind (control group)

Ongoing Triple immunotherapy
(Cyclosporin A +
Azathioprine
+Prednisolone) for 12
months

Not indicated Not evaluated TRANSEURO
(NCT01898390)

Barker et al., 2017,
2019

2015 12 hpNSCs
(ISC-hpNSC R©)

Bilateral MRI-guided
stereotaxic implants.
Striatum and SN.

Safety, UPDRS No
(ongoing)

Triple immunotherapy
(Cyclosporin A +
Azathioprine
+Prednisolone)

Not indicated Not evaluated NCT02452723 Garitaonandia et al.,
2016, 2018
Kern et al., 2018

2016 18 NTCELL:
immunoprotected
(alginate-
encapsulated)
porcine choroid
plexus cells.

Intracranial stereotaxic
insertion,

Safety, UPDRS No Not used Not indicated Not evaluated NTCELL Phase II
(NCT02683629)

Snow et al., 2019

2017 50 HLA-matched
hESC-derived
NPCs

MRI-guided stereotaxic
implants. Striatum.

Safety, UPDRS, imaging. Ongoing Cyclosporin A Not indicated Not evaluated NCT03119636

(Continued)
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TABLE 1 | Continued

Year n Graft Administration route /
Brain area

Assessment Clinical
benefits

Immunosuppression
used

Graft
survival
analyzed?

Immune
response

Clinical Trial Ref References

2017 20 Bone marrow
MSCs

IV administration Safety, UPDRS, MRI,
immune response changes

Low Not indicated Yes (MRI) Measurement
of plasma
cytokines:
inflammation
(i.e., IL-6), cell
growth and
differentiation
(i.e., BDNF)
monocyte
migration
(MCP-1), and
adaptive
immune
response (i.e.,
IL-12), HLA

NCT02611167 Schiess et al., 2019,
2020

2017 12 hNSCs Nasal administration Safety, UPDRS, MRI/PET,
immunological index

Not
published

Not indicated Yes
(MRI/PET)

Biomarker
analysis: CD3,
CD4, CD8, Treg
cells

hNSCPD
(NCT03128450)

2017 12 Autologous MSCs IV administration UPDRS Not
published

Not indicated No Not evaluated NCT04146519

2018 20 Umbilical cord
MSCs

IV administration Safety, UPDRS Ongoing Not indicated No Not evaluated NCT03550183

2018 10 Umbilical cord
MSC-derived NSCs

Intrathecal and IV
administration

Safety, blood based
biomarkers, CSF-based
biomarkers,

Ongoing Not indicated No Measurement
of peripheral
blood pro-
inflammatory
markers

NCT03684122

2019 10 Autologous
iPSC-derived NSCs

Not specified Safety Ongoing Not specified No Not evaluated NCT03815071

2020 12 Stem cell-derived
NPCs

Stereotactic delivery of cell
suspension. Basal ganglia
structures

UPDRS Ongoing Not specified No Not evaluated NCT03309514

2020 1 Autologous
iPSC-derived DA
progenitor cells

Bilateral, staged (6 months
apart) MRI-guided
stereotaxic implants.
Putamen.

18F-DOPA PET,
MDS-UPDRS, Hoehn &
Yahr, MoCA, BAI, BDI,
QUIP-RS, NMSS, PDQ-39

Low
(Ongoing)

Not used (autologous) Yes (MRI,
PET)

Not evaluated
(Ongoing)

Early Study (MA,
United States)

Schweitzer et al., 2020

(Continued)

Frontiers
in

C
ellular

N
euroscience

|w
w

w
.frontiersin.org

11
A

ugust2020
|Volum

e
14

|A
rticle

250

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-14-00250
A

ugust9,2020
Tim

e:12:3
#

12

S
alado-M

anzano
etal.

Im
m

unologicalR
esponse

A
fter

C
ellTherapy

TABLE 1 | Continued

Year n Graft Administration route /
Brain area

Assessment Clinical
benefits

Immunosuppression
used

Graft
survival
analyzed?

Immune
response

Clinical Trial Ref References

Huntington’s Disease (HD): Pilot studies (1990-2008)

1990 4 Embryonic
mesencephalon
(pieces)

Bilateral CT-guided
stereotactic implants.
Caudate.

No formal clinical
assessment

No Cyclosporin A No Not evaluated Early study
(Cuba, Slovakia)

Šramka et al., 1992

1990 2 WGE (pieces) Unilateral open
microsurgery. Caudate.

No formal clinical
assessment.

No Cyclosporin A+
Prednisolone (6 months)

No Not evaluated Early study (Mexico) Madrazo et al., 1993,
1995

1995 12 Porcine fVM tissue Unilateral MRI/CT-guided
stereotaxic implants.
Striatum

Safety, UPDRS, MRI,
18F-PET.

No Cyclosporin A (50%
patients) // Graft treatment
with monoclonal anti-MHC I
Ab. (50% patients)

Yes (PET,
postmortem
IHC)

Postmortem
IHC: CD3 (T
lymphocytes),
HLA class II.

Pilot study (MA,
United States)

Fink et al., 2000

1995 14 LGE (pieces) Bilateral MRI-guided
stereotaxic implants.
Striatum.

CAPIT-HD: UHDRS,
neuropsychological tests,
MRI, FDG-PET

No Cyclosporin A (18-35
months.

Yes
(MRI/PET,
postmortem
IHC)

Not evaluated Pilot study (Los
Angeles, CA,
United States)

Philpott et al., 1997
Kopyov et al., 1998
Ross et al., 1999
Keene et al., 2007,
2009

1997 5 WGE (pieces) Bilateral, staged (1 year
apart) MRI-guided
stereotaxic implants.
Striatum.

CAPIT-HD: UHDRS,
neuropsychological tests,
electrophysiological tests,
MRI, FDG-PET.
Comparison with reference
group.

High Triple immunotherapy:
Cyclosporin A (at least 6
months) + Prednisolone (1
year) + Azathioprine (1
year).

Yes
(MRI/PET)

Not evaluated Pilot study (Créteil,
France)

Bachoud-Lévi et al.,
2000a,c, 2006
Gaura et al., 2004

1998 7 LGE (pieces) Bilateral, staged (1 month
apart) MRI-guided
stereotaxic implants.
Striatum

CAPIT-HD: UHDRS,
neuropsychological tests,
MRI, D1, D2 and FDG-PET.

Low Cyclosporin A (up to 6
months).

Yes
(MRI/PET,
postmortem
IHC)

Postmortem
IHC: GFAP
(astrocytes),
CD4 (T helper
cells), CD8
(natural killers
and cytotoxic T
cells) HLA-DR
(MHC-II)

Pilot study (FL,
United States)

Freeman et al., 2000
Hauser et al., 2002b
Furtado et al., 2005
Cicchetti et al., 2009,
2014
Cisbani et al., 2013

2000 5 WGE (suspension) Unilateral MRI-guided
stereotaxic implants.
Striatum.

CAPIT-HD: UHDRS,
neuropsychological tests,
MRI, D2 PET.

No Triple immunotherapy:
Cyclosporin A +
Azathioprine +
Prednisolone (at least 6
months)

Yes
(MRI/PET)

Inflammatory
markers
(C reactive
protein)

NEST-UK pilot
study
(ISRCTN36485475)

Rosser et al., 2002
Barker et al., 2013b

2006 16 WGE (suspension) Bilateral, staged (2-3
months apart) stereotaxic
implants. Striatum

CAPIT-HD: UHDRS,
neuropsychological tests,
MRI, FDG PET,
123 IBZM-SPECT.
Comparison with reference
group.

No Oral methylprednisolone (2
weeks) + Azathioprine +
Cyclosporin A (1 year)

Yes
(MRI/PET)

Donor-specific
HLA-antibody
measurement

Pilot study
(Florence, Italy)

Gallina et al., 2008a,b,
2010, 2014
Mascalchi et al., 2014
Paganini et al., 2014
Porfirio et al., 2015
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TABLE 1 | Continued

Year n Graft Administration route /
Brain area

Assessment Clinical
benefits

Immunosuppression
used

Graft
survival
analyzed?

Immune
response

Clinical Trial Ref References

2008 2 WGE (suspension) Bilateral, staged (2-3 month
apart) MRI-guided
stereotaxic implants.
Striatum

UHDRS,
neuropsychological tests,
MRI, D2 PET. Comparison
with reference group.

Mild Cyclosporin A (1 year) +
Prednisolone (1 month).

Yes
(MRI/PET)

Not evaluated Pilot study (London,
United Kingdom)

Reuter et al., 2008

Huntington’s Disease (HD) (Cont.): MIG-HD, clinical trials (2001-2020)

2001 22 WGE (pieces) Bilateral, staged (1 apart)
stereotaxic implants.
Striatum

Primary: UHDRS.
Secondary: neurologic,
cognitive, neurophysiologic,
psychiatric, MRI PET.

Low Triple immunotherapy:
Cyclosporin A +
Azathioprine +Prednisolone
(18 months)

Yes
(MRI/PET,
postmortem
IHC)

Donor-specific
HLA-antibody
measurement
+ postmortem
ICH: CD45
(lymphocytes
and microglia),
CD28
(macrophages
and activated
microglia),
GFAP
(astrocytes),
CD4 (T helper
cells), CD8
(natural killers
and cytotoxic T
cells).

MIG-HD
(NCT00190450)

Krystkowiak et al.,
2007
Capetian et al., 2009
Krebs et al., 2011

2013 50 Bone-marrow
derived autologous
mononuclear cells

Intrathecal administration Cognitive and behavioral
effects

Not
published

Not indicated No Not evaluated BMACHC
(NCT01834053)

2016 6 MSC (CellAvitaTM) Intravenous administration Primary: Safety. Secondary:
preliminary efficacy
(UHDRS, CIBIS, MRI),
inflammatory markers,
immunological response,
HDRS

Ongoing Not indicated No CD4+ and
CD8+
proliferation
and
inflammatory
markers (IL4,
IL6, IL10,
TNFa) release

SAVE-DH Phase I
(NCT02728115)

(Continued)
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effectiveness of this delivery in a PD mouse model, since GDNF
overexpression increases the viability and proliferation of stem
cells (Sun et al., 2020).

Small open-label studies have demonstrated short-term safety
of MSC grafts from healthy donors although no clinical benefit
has been demonstrated (Venkataramana et al., 2010, 2012).
Several clinical trials worldwide are currently applying allogeneic
MSCs intravenously to treat PD. At this early clinical phase,
the outcome is most commonly measured on the basis of safety
and tolerability of the procedure, although most of these studies
the Unified Parkinson’s Disease Rating Scale (UPDRS) as an
additional outcome measure (Díaz, 2019).

Cell Therapy Strategies for HD
HD displays a number of biological features, which make it a
good model to explore how stem cell therapy can replace lost
neurons. The fact that the disease involves significant atrophy
of the striatum, with a relatively focal area of degeneration and
predominantly loss of a single cell type (MSNs), provides to
be a target for cell replacement strategies (Dunnett and Rosser,
2004; Figure 3A).

Allogeneic Fetal Neural Tissue
Administration of allogeneic fetal neural tissue in the striatum,
which started to be considered more than 30 years ago (Table 1),
has provided the rationale for exploring cell replacement in
HD patients. So far, the most convincing evidence supporting
potential effectiveness of cell replacement strategies to treat HD
comes from animal and human studies which use transplantation
of donor cells derived from dissection of the whole ganglionic
eminence (WGE) (Döbrössy and Dunnett, 2003; Mazzocchi-
Jones et al., 2009; Pauly et al., 2012), which gives rise largely
to striatal brain structures (Graybiel et al., 1989). A short time
after the first early-study WGE transplants (Table 1), the strategy
was modified to enrich the population of striatal precursor cells,
by dissecting only the lateral ganglionic eminence (LGE), rich
in MSNs. Some studies revealed some behavioral improvement
in rodents using both strategies, but survival and striatal graft
volume were greater in WGE grafts (Kordower et al., 1995).
WGE is the area of the fetal brain which eventually becomes
the adult striatum and where the MSNs develop (Deacon et al.,
1994; Olsson et al., 1995, 1998; Marín et al., 2000; Evans et al.,
2012; Straccia et al., 2016). Hence, cells from this area are
considered the “gold standard” for cell replacement in HD as
the donor cells have the capacity to differentiate into the target
cell type (Precious et al., 2017). It is important to bear in mind
that optimal grafts are those derived from fetal WGE collected
during the peak period of MSN neurogenesis (around 8-10 weeks
of gestation in humans) (Dunnett and Rosser, 2011), whose
transplantation has been shown to reduce or delay motor and
cognitive deficits in animal studies including rats and non-human
primates (McLeod et al., 2013; Schackel et al., 2013; Paganini
et al., 2014; Yhnell et al., 2016). These studies have demonstrated
that implanted cells can create functional synaptic connections
and integrate into the neural circuitry, provided they meet the
following conditions: (i) they are obtained during the appropriate
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developmental window; and (ii) they are directed to a GABAergic
MSN fate (Dunnett and Rosser, 2014).

Overall, clinical studies of striatal allografts in HD patients
have not present major complications associated with the surgery,
but there is not enough data supporting its long-term beneficial
effects. In addition, there have been complications derived from
the immunosuppressive treatment in some patients, such as renal
impairment, anemia, wound infections, and allograft rejection
(Wijeyekoon and Barker, 2011). Also, heterogeneity and shortage
of fetal tissue of suitable quality for transplantation is an issue.
Given the need for other more readily available sources that could
give rise to striatal MSNs, ESCs, iPSCs and MSCs have also been
investigated as donor cell sources for HD, mainly in preclinical
studies in animal models.

Embryonic Stem Cells
hESCs need to be differentiated to MSN progenitors in vitro
before transplantation, in order to achieve lineage specificity and
reduce the risk of tumorigenesis. Aubry et al. (2008) described
the differentiation of human ESCs into MSNs in vitro, and the
subsequent transplantation into a rodent model of HD. Other
studies have also reported MSN differentiation protocols and
have shown that grafts of the differentiated progeny could survive
and develop into neurons, although in some cases transplanted
cells did not differentiate into MSN-like neurons (Joannides et al.,
2007; Song et al., 2007; Vazey et al., 2010). Positive effects on
motor function impairment in the absence of MSN generation
has also been reported (Song et al., 2007), possibly due to
expression of neuroprotective factors by the transplanted cells.
However, most studies have reported the generation of MSNs
following transplantation into the lesioned striatum, showing
that transplanted neural progenitor cells (NPCs) can survive,
differentiate and integrate into the host, extending fibers over a
long distance including into the SN and globus palidus, natural
striatal targets (Aubry et al., 2008; Delli Carri et al., 2013; Nicoleau
et al., 2013; Arber et al., 2015; Faedo et al., 2017; Comella-
Bolla et al., 2020). Earlier studies reported teratoma formation
(Aubry et al., 2008), but more recent studies with optimized
differentiation protocols have reported successful transplant
survival with no evidence of tumor formation (Arber et al., 2015;
Comella-Bolla et al., 2020).

Induced Pluripotent Stem Cells
MSNs can also be generated from hiPSCs in vitro. In fact, most
of the protocols mentioned for hESCs were also designed to
work for hiPSCs (An et al., 2012; Jeon et al., 2012). Human
iPSC-derived neural stem cells (NSCs) from an HD patient
demonstrated MSN differentiation and functional improvement
in mouse models (Jeon et al., 2014). However, mHTT aggregates
were detected 33 weeks post-transplant, which highlights the
possibility that auto-transplantation of cells derived from HD
patients that still carry the HD mutation will eventually lead
to persistence of the HD phenotype and cell death (Jeon et al.,
2012). In contract, correction of the mutation in an HD-
patient derived iPSC line resulted in the corrected cells not
only surviving after transplantation, but also showing successful
differentiation into a MSN phenotype (An et al., 2012). Besides

these positive reports, long-term transplant studies are essential
before clinical application to better clarify the mechanisms
underlying therapeutic effect following transplantation of hPSC-
derived NSCs (Lescaudron et al., 2012).

Mesenchymal Stromal Cells
Efficacy of human bone marrow-derived hMSCs (hBM-MSCs)
after transplantation into the striatum has been examined in
different rodent models of HD. HBM-MSCs have survived
following transplantation, although only a minority of cells
expressed a GABAergic phenotype and reduced the number of
apoptotic cells in the striatum in a transgenic (R62-J2) and in
a quinolinic acid (QA)–lesioned model. Motor improvements
were only seen following transplantation in the QA-lesioned
model (Lin et al., 2011). Another study showed that hBM-
MSCs implanted into a transgenic HD mouse model (N171-82Q)
increased endogenous neurogenesis and decreased atrophy of
the striatum (Snyder et al., 2010). In addition, transplantation
of rat BM-MSCs also elicited motor improvements in QA-
rats as well as an increase in striatal volume (Jiang et al.,
2011). As was the case following MSC transplantation in PD,
the improvements observed after transplantation of MSCs in
the striatum of HD animal models are very likely related to
the therapeutic secretome that the cells release (Drago et al.,
2013; Teixeira et al., 2017). It has been proposed that MSCs
act through various mechanisms, including induction of NPC
proliferation, chemokine secretion to promote endogenous NPCs
cell recruitment and enhancement of neuronal differentiation
(Connor, 2018). MSCs could also be useful in reducing the
immune response occurring as a part of HD (Dalrymple et al.,
2007; Björkqvist et al., 2008; Wild et al., 2011). In accordance
with these results, Kwan et al. (2012) reported a therapeutic
benefit of intravenous delivery of bone marrow-derived MSCs
for the treatment of HD through modification of immune
cell dysfunction.

Another approach which has gained traction as a potential
HD therapy recently is the use of MSCs engineered to stably
overexpress BDNF (Annett et al., 2013; Fink et al., 2015; Deng
et al., 2016). There is evidence that intrastriatal delivery of hMSCs
overexpressing BDNF causes a significant reduction in anxiety-
like behaviors, a reduction of striatal atrophy, a significant
increase in neurogenesis and extended lifespan in immune
suppressed HD mouse models (Pollock et al., 2016).

To date, MSCs have been demonstrated to be effective in some
cases, and to be safe and feasible for treatment in HD. However,
several steps need standardization before further clinical trials
of hMSCs in neurodegeneration-affected patients. For instance,
aspects such as cell source (i.e., bone-marrow, adipose-derived,
umbilical cord) and passage, route of administration, localization
and number of injections would need to be standardized
according to the purpose of the study and based on robust
preclinical data.

So far, the majority of clinical trials using hMSCs have chosen
an intravenous route of administration (Table 1), relying on
previously demonstrated safety and the ability of MSCS to cross
the BBB and travel to injury sites (Ra et al., 2011; Lykhmus
et al., 2019). To our knowledge, the number of functional cells
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reaching target areas (such as striatum) upon administration in
HD patients has not been published.

The question of whether the use of hMSCs will lead to
therapeutic benefits to HD patients can only be answered once
standardized and properly-designed studies are performed and
their outcomes are analyzed.

IMMUNOGENICITY OF STRIATAL
GRAFTS

As the field of regenerative medicine grows and new advanced
therapies arise, clinical practices need to be continually adapted
and updated. The intervention strategy and the analysis of the
outcomes are tailored according to the type of therapy being
considered and can be highly complex when it comes to cell and
gene therapies or tissue engineering approaches. The potential
impact of cell therapy as a disease-modifying strategy that could
replace damaged neurons in neurodegenerative diseases such
as HD and PD is beyond doubt. Nevertheless, the successful
application of this type of advanced therapy relies on multiple
factors, and among these factors, the host immune response is
of critical importance.

The original idea of the CNS as an absolute immune-privileged
site was proven to be wrong, however, there is a certain degree
of privilege (Barker and Widner, 2004; Louveau et al., 2015,
2016a,b). Several studies have shown an innate and an adaptive
immune response to allogeneic and xenogeneic cell transplants
in the CNS, compromising the survival and functionality of
the grafts (Hoornaert et al., 2017). Nevertheless, the immune
response upon transplantation in the CNS differs to the response
of allo- and xenografts transplants in the periphery, which is
much more vigorous and immediate.

Critical Factors That Affect the Immune
Response Upon Cell or Tissue Grafting
When designing any given cell therapy, the aim is to maximize
the therapeutic benefit (functionality, survival and integration)
causing minimal injury, in order to obtain a positive balance of
risk and benefit for the patient. To achieve this, there are critical
factors that could impact the immune response and should be
taken into consideration when implanting cells into the CNS to
treat neurodegeneration.

The first is related to the transplantation procedure. Despite
new techniques being minimally invasive and extremely accurate,
the delivery of any cell into the brain involves penetration of
the brain by a surgical instrument, which inevitably disrupts the
BBB, leading to reactive astrogliosis and microglia activation and
opens up the opportunity for lymphocytes to enter the CNS.
Immunosuppression is needed to overcome inflammation and
morbidity associated with the transplant procedure, however,
immunosuppression therapy can act as a double-edged sword, as
it can cause toxicity and worsen the clinical scenario if the regime
is not accurately selected and monitored (Graybiel et al., 1989;
Olanow et al., 2003; Ideguchi et al., 2008).

The second factor is the graft itself: the cell type used (fetal
tissue, ESCs, iPSCs, NPCs, MSCs), its genetic modifications

(if any) and the degree of mismatch between donor and recipient.
Within the latter, four categories can be delineated: discordant
xenograft (divergent species), concordant xenograft (closely
related species), allogeneic (genetically different, but derived
from individuals from the same species), including syngeneic
(genetically identical), and autologous (same individual) grafts.
The immune response observed for each of the categories
is different. Hoornaert et al. (2017) described the immune
response against discordant xenografts transplanted into the
brain as usually involving the adaptive system through a
cascade of events involving antibodies, complement system,
natural killer cells and T-cell mediated responses (Abbas et al.,
2017). Concordant xenografts and allografts should theoretically
induce the same response, this being mediated by T-cells
as CD4+ and CD8+ infiltration into rejecting grafts, and
activated microglia (Larsson and Widner, 2000; Barker and
Widner, 2004). Lastly, autologous grafts have been shown to
induce certain degree of inflammation at the grafted site,
which should subside rapidly without precluding graft survival
(Hoornaert et al., 2017).

Another important aspect is the compatibility of the major
histocompatibility complex (MHC), known in humans as HLA,
human leucocyte antigen. The probability of graft rejection
increases with the degree of mismatch between donor and
host, and it could range from no rejection to a lifelong need
of immunosuppressive therapy. Perfect HLA compatibility is
difficult to achieve for allogeneic transplantation, although
understanding the interactions of the graft with the recipient’s
immune system is surely worth considering to achieve successful
cell therapy outcomes (Taylor et al., 2011; Morizane et al.,
2017). Contrary to previous reports showing that matching
HLA haplotypes would reduce the need for immunosuppression
following transplantation, a recent study by Aron Badin et al.
(2019) has provided evidence of an immune response even in the
context of an MHC-matched allograft, suggesting that, even in
such an immunological combination, immunosuppression may
needed to obtain long-term graft survival.

Furthermore, the transplantation site itself also plays an
important role in graft survival. Barker & Widner (Barker
and Widner, 2004) described the putamen as a region
supporting higher graft survival than other areas such as
the hippocampus, although this could be due to non-
immunological factors, such as the presence of trophic factors.
Fainstein and Ben-Hur (2018) showed in a recent study
that the hippocampus is an almost completely immune-
privileged site that allows survival of NPC grafts, while the
same grafts were immunorejected in the striatum (Fainstein
and Ben-Hur, 2018). Further assessment of the effects of
transplantation site using identical cell grafts and animal
models is needed to accurately identify “tolerant” and “non-
tolerant” CNS areas.

The last aspect to consider is of special importance, the
neuroinflammation process observed in neurodegenerative
disorders. Neuroinflammation occurs in HD and PD and is
characterized by the activation of astrocytes, microglia and other
immune-mediators, together affecting the integrity of grafted
cells (Barker and Widner, 2004; Phatnani and Maniatis, 2015;
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Hickman et al., 2018; Stephenson et al., 2018). Thus,
neuroinflammation can influence graft survival and integration,
as well as its rejection.

In order to evaluate the effect of each of these factors,
there is a need for standardization of immune-related aspects
following cell transplantation. The accurate monitoring of the
immunosuppressive treatment administered, their adverse effects
and the analysis of neuroinflammatory biomarkers should be
considered to be as relevant as other elements of a transplant trial,
such as the accurate evaluation of clinical outcomes.

Neuroimmunology in Health and Disease
The classic idea of the CNS as an immune privileged site, meaning
the inability of this system to generate an immune response
against an implanted graft has been reassessed. Several studies
have demonstrated an immune response occurring in the CNS,
although it is delayed compared to non-CNS reactions, due to
the tight control exerted on the brain’s immune system through
multiple signaling pathways (Carson et al., 2006). There are
several factors that could explain this delay. From an anatomic
point of view, the CNS is protected by the BBB, which acts
as a dynamic barrier that separates nervous tissue from the
peripheral environment. The BBB also maintains the optimal
balance of chemicals to support the function of neurons and
it is in charge of limiting the entrance of antibodies and
activated immune cells into the CNS (Barker and Widner,
2004; Iwasaki, 2017). It used to be postulated that the brain
lacked lymphocyte drainage so that only activated lymphocytes
could cross the BBB (Weller et al., 2010). However, due
to advanced imaging techniques, two different studies have
recently shown the existence of functional lymphatic channels
that drain molecules and immune cells from meninges and
parenchyma into the cervical lymph nodes (Aspelund et al., 2015;
Louveau et al., 2015).

A further major consideration is that the immunologic profile
of the CNS is completely different to other tissues. Peripheral
tissues have antigen-presenting cells (APCs), such as dendritic
cells (DCs) that present antigens to T lymphocytes through
the interaction of MHC and co-stimulatory molecules. This
interaction leads to the activation of an adaptive immune
responses (Schetters et al., 2018), but does not exist in the
brain, at least in the same way. There are also other cell types
in the brain, primarily glial cells, that play similar roles to
APCs and act as an innate immune response barrier in the
parenchyma. Astrocytes and microglia are glial cells with
different developmental origins that reside in the CNS and
collaborate in the innate immune response (Ransohoff and
Brown, 2012). Astrocytes usually need activation by specific
signals (Toll-like receptor, nod-like receptor, TLR and NLR
respectively) to participate in the immune response upon injury
or infection (Ransohoff and Brown, 2012). Astrocytes usually
take part in modulating the immune response by secreting a wide
array of molecules: neurotransmitters, cytokines and metabolic
and trophic factors (Verkhratsky et al., 2016). In addition,
microglia also contribute to neuroinflammation by secretion
of immunomodulatory, pro- and anti-inflammatory molecules
(Town et al., 2005).

Interestingly, neurodegenerative diseases also lead to
microglial activation with uncertain outcomes (Pennell
and Streit, 1997; Ransohoff and Brown, 2012). It is also
important to emphasize that knowledge available about the
immune profile of the CNS apply, to some extent, to diseased
conditions such as PD and HD, as neurodegeneration can also be
associated with immunopathologies such as neuroinflammation
(Guzman-Martinez et al., 2019).

Chronic neuroinflammation is an important feature
of both PD and HD (Stephenson et al., 2018; Guzman-
Martinez et al., 2019). Whether it results from a reaction
to the neuronal degeneration process or it is an acquired
phenotype from dysfunctional immune cells, is currently
unclear (Crotti and Glass, 2015). However, it is very likely
that it is a combination of both. Neuroinflammation is
regulated by mediators such as cytokines, chemokines
or ROS, among other inflammatory molecules that are
released by glial cells. In addition, neuroinflammation
compromises the BBB permeability, which can increase the
recruitment of peripheral immune cells, exacerbating the
neuroinflammatory response. The extent of the disruption
of BBB during neurodegeneration is still controversial
(Cabezas et al., 2014).

Neuroinflammation Biomarkers
The use of biomarkers allows access to information about
a given tissue by measuring biological parameters (Table 2).
In the case of neurodegenerative diseases such as PD and
HD, there are specific biomarkers of neuroinflammation
that help us to understand the human disease and that
could also serve to monitor the recipient’s host response to
a graft. Two key approaches have been used to monitor

TABLE 2 | Summary of inflammatory biomarkers for PD and HD.

PD HD

Brain parenchyma IL-6 IL-6

IL-8

TNF-α TNF-α

PET-Activated microglia PET-Activated microglia

Cerebrospinal Fluid CRP PGLYRP2

SAA APOA4

MCP-1 MMP-3

MMP-9

IFNγ Clusterin

IL-8 Complement factors

IL-6 IL-6

IL- α TGF-β1

Peripheral blood
or plasma

IL-1β VEGF

IL-2 MMP-9

IL-10 Chemokines

IL-17A Eotaxin-3, MIP-1β

MIF MCP-1

TNF-α MCP-4

Anti-HLA Anti-HLA
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neuroinflammation in the brain; imaging methods such as
positron emission tomography (PET) and quantification of
specific neuroinflammatory markers, such as cytokines, by
immunohistochemistry in postmortem samples. PET has been
proposed as a method to evaluate microglial activation in vivo,
as it it would allow longitudinal monitoring of astroglial signals
in life. [(11)C]-PK11195 is one of the markers used in PET
imaging of the brain to detect inflammation, and it correlates
with microglial activation and the severity of striatal neuronal
dysfunction in neurodegenerative diseases (Politis et al., 2015;
Rocha et al., 2016).

Activated microglia have been detected in vivo by
PET in basal ganglia and cortical regions of patients
suffering with PD (Gerhard et al., 2006), and correspond
to immunohistochemistry postmortem analyses that
showed significant increase of TNF-α, and IL-6 in the
putamen of PD patients (Sawada et al., 2006). In HD,
immunohistochemistry studies of postmortem samples
showed significant microglial activation accompanied by
an increased number of astrocytes. Increased levels of
proinflammatory cytokines, such as IL-6 and IL-8, have
also been shown in HD patients’ striatae (Björkqvist et al., 2008).
In addition PET studies have confirmed microglial activation
in HD patients, even before symptoms onset (Rocha et al.,
2016; Table 1).

Some studies have shown that the imbalance of cytokine
profiles was also reflected in the CSF of neurodegenerative
patients, for example the observation of an increase of
proinflammatory cytokines (IL-6, IL-1β) in PD patients (Chen
et al., 2018), as well as increased inflammatory mediators
(PGLYRP2, APOA4), metalloproteinases (MMP-3 and MMP-
9), clustering and complement factors in the CSF of HD
patients (Rocha et al., 2016; Table 1). Therefore, the knowledge
of the inflammatory and immunological profiles of the
different neurodegenerative pathologies represents a valuable
tool to understand the behavior of grafted cells, as the
functionality of the graft could be affected by the presence of
neuroinflammation (Barker and Widner, 2004; Ideguchi et al.,
2008; Hoornaert et al., 2017).

Obtaining CSF samples is usually invasive, time consuming
and carries a small risk of adverse events. For this reason,
some groups have been focused on the search for peripheral
biomarkers that can serve to monitor the state of the disease
as well as the immune response caused by the graft. Peripheral
blood analysis in PD has shown an increase of proinflammatory
cytokines (Hu et al., 2017; Chen et al., 2018), indicating
the presence of inflammation associated to neurodegeneration
(Table 1). The pro-inflammatory cytokines IL-6, TGF-β1 as
well as vascular growth factor (VEGF), matrix metallopeptidase
9 (MMP-9) and chemokines eotaxin-3, MIP-1β, MCP-1 and
MCP-4 have also been reported to be increased in HD
patients (Dalrymple et al., 2007; Chang et al., 2015; Connolly
et al., 2016). Moreover, IL-6 levels in peripheral blood were
correlated with stage of HD pathology as represented by the
UHDRS scale (Wild et al., 2011). Interestingly, a peripheral
proinflammatory process is evident even in the pre-manifest
stages (Björkqvist et al., 2008).

Neuroinflammation Markers:
Assessment in Cell-Based Clinical Trials
for PD and HD
The success of a cell transplant in the CNS is not only due
to its ability to integrate into the CNS parenchyma but also to
the functionality of the cell graft to restore the proper neural
connections in damaged tissue. For this reason, in order to
understand the cellular and immunological response of the
graft, two crucial aspects must be addressed. First, preclinical
studies must be carried out in models that recapitulate the
inflammatory events of the pathology, in order to understand
the response of the cellular graft. Second, it is important to
include measurements of the inflammatory and immunological
parameters as a primary or secondary outcome in clinical trials
of cell transplantation. To date, many studies have analyzed the
immune response following cell engraftment (Table 1). However,
there is a lack of standardization of this assessment, thus reducing
the opportunities to draw clear conclusions.

Several clinical trials based on the treatment of PD or HD with
cell therapy products have already included inflammatory and
immunological mediators as measures (Table 1).

The first report of immune response monitoring after striatal
cell transplantation in PD comes from the publication of
the postmortem histological analysis of porcine xenografts that
were placed unilaterally into the striatum of a cyclosporin A
(CyA)-immunosuppressed PD patient (who died 7.5 months
post-transplantation). As reported by Deacon et al. (1997),
absent or little cellular infiltration and inflammatory response
to the xenogeneic cells was found, which was confirmed by
a relative low reactivity of markers for human T-cells and
microglia (CD3, MHC-II) confined to the proximity the pig
graft. These observations do not preclude an immune response,
but may indicate that any response that had been mounted was
relatively weak (Deacon et al., 1997; Schumacher et al., 2000).
However, it cannot be ruled out that a strong response was
mounted early on and had resolved by the time the postmortem
can undertaken. Kordower et al. (1997), also documented the
postmortem analysis of two PD patients transplanted with human
fVM, who died around 19 months post-transplantation. In
this case, the immune response to the grafts was assessed by
immunostaining of MHC-II and markers for T-cells (CD3),
B-cells (L26) and macrophages and monocytes (CD68). MHC-
II upregulation and immune cell reactions from a central origin,
as microglia, and a peripheral origin such as B-cells, T-cells,
and macrophages, were found within the nigral graft, with
no associated significant adverse effects having been reported.
However, the possibility that the presence of these immune
cells could have attenuated neurite outgrowth and the clinical
benefits of the transplants was contemplated by the authors
(Kordower et al., 1997). Two other examples of clinical studies
which incorporated monitoring of immune response after striatal
transplantation of fVM tissue in PD patients are the double-
blind NIH-funded trials, both of which failed to show significant
clinical benefit (Freed et al., 2001; Olanow et al., 2003). In the
Canadian study, which did not include immunosuppression, two
post-mortem cases were analyzed. CD3 and MHC-II staining
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revealed some inflammatory cells in the transplant tracks and
perivascular areas, which did not seem to be correlated with graft
survival (Freed et al., 2001). The United States trial analyzed
five postmortem cases by immunostaining, finding upregulation
of CD45, as a marker of activated microglia in the grafted
striatum and especially around graft deposits, which is consistent
with an immune reaction. Once again, it was hypothesized
that following discontinuation of immunosuppression with CyA
(which only lasted for six months) this immune reaction could
have limited the clinical benefits of the intervention (Olanow
et al., 2003). These observations contrast with reports from
Mendez et al. (2005), in which postmortem analysis of microglial
CD45 and CD68 markers undertaken 3-4 years after surgery in
patients, immunosuppressed for only 6 months post operatively,
revealed that the transplants were only mildly immunogenic
to the host brain in the SN and the putamen. There were no
major microglial reaction in the host tissue, and most CD45
or CD68 positive microglial cells showed resting morphology
with only a mild reaction around the needle tracks (Mendez
et al., 2005). This could be explained by the fact that in this
case, cell suspension grafts were used instead of the solid
tissue grafts in the previous three studies. Several factors,
including vascularization, trophic factor support and graft–host
interaction, may be different for single cell suspension grafts
and tissue grafts (Leigh et al., 1994). In fact, cell suspension
grafts have a lower number of immunogenic graft-derived blood
vessels (transplantation antigens such as MHC I have one of their
highest concentrations on endothelial cells and blood vessels)
(Finsen et al., 1991) than solid tissue grafts that eventually
supply the surviving cells. Hence, host-derived angiogenesis
appear to be predominant in cell suspension grafts (Peschanski
and Isacson, 1988; Geny et al., 1994; Leigh et al., 1994),
which could make them less immunogenic to the host brain
(Mendez et al., 2005).

Monitoring of the immune response after transplantation of
other cell types has also been performed. The Phase II STEPS
trial (NCT00206687, 2005), which evaluated safety and efficacy
of a cell product consisting of cultured human retinal pigment
epithelial cells on microcarriers called Spheramine R©, made use of
the immunohistochemical analysis of CD19 marker for B-cells,
CD4 marker for helper T-cells, and CD8 marker for natural
killers and cytotoxic T-cells in a postmortem case six months
post-transplantation (Farag et al., 2009). This study, which failed
to show clinical benefit and did not use immunosuppression,
reported an inflammatory response that involved primarily
macrophages with mild CD8-positive T-cell infiltration, in
the absence of appreciable CD19 and CD4 immunoreactivity
(Farag et al., 2009). Frequent infiltration by CD68-positive and
other inflammatory cells in the needle tracts was observed
(Farag et al., 2009).

More recently, results from the 4-years follow-up of the
HSCfPD trial (NCT02780895, 2016) from Celavie Biosciences
described an alternative method for monitoring immune
responses. In this trial that used a cell-based product consisting
of undifferentiated NPCs derived from human fetal brain tissue,
named OK99, researchers showed a lack of an elicited immune
response in one month CyA-immunosuppressed patient’s blood

samples analyzed by flow cytometry for both NPC-specific
antibodies and antibody-dependent cell-mediated cytotoxicity,
and after CyA treatment withdrawal at six months after grafting
(Madrazo et al., 2019).

Measurement of peripheral blood pro-inflammatory cytokines
and chemokines has also been reported by one clinical trial (Use
of Mesenchymal Stem Cells (MSCs) Differentiated Into Neural
Stem Cells (NSCs) in People With Parkinson’s (PD). Full Text
View – ClinicalTrials.gov., 2018) to monitor immune responses.
Schiess et al. (2019) released the preliminary findings from a
Phase I study which aimed to prove safety of intravenously-
administered allogeneic hBM-MSCs in PD patients, in which
levels of TNF-α, monocyte chemoattractant protein-1/C-C
motif chemokine ligand 2 (MCP-1/CCL-2), macrophage-derived
chemokine/C-C motif chemokine ligand 22 (MDC/CCL-22)
and IL-9 were analyzed before and 3, 12 and 24 weeks
after infusion (Table 1). An anti-inflammatory effect with a
reduction of chemo-attractive molecules was reported following
hMSC infusions for all the molecules monitored, which was
also accompanied by significant increase in BDNF levels
(Schiess et al., 2019).

One of the first studies providing a detailed evaluation of
the immune response following bilateral implants of fWGE in
HD patient’s caudate-putamen was a pilot study performed by
Freeman et al. (2000). The immune response was evaluated
in postmortem tissue 18 months after transplantation in one
patient who died from cardiovascular disease. The analysis
revealed considerable HLA-DR (MHC class II surface receptor,
DR isotype) staining within host’s caudate and putamen while
fewer HLA-DR positive cells were detected in the cell implant.
There were no differences between CD4 and CD8 from host
and graft and there was no perivascular cuffing, defined as
regions with leukocyte aggregations. Upon the characterization
of this patient immune response, the author’s concluded that
minimal macrophage and T-cell immunoreactivity had been
found (Freeman et al., 2000). Postmortem immunological studies
of grafted tissue were complemented ten years later with
the evaluation of the brains of three more HD patients
(Cicchetti et al., 2011). Surprisingly, CD4, CD8 and HLA-DR
markers were identified within the cell graft, thus indicating
an activation of the immune response which was supported
by the finding of a strong astrocytic response measured by
glial fibrillary acidic protein (GFAP)-positive cells at the edges
of the graft (glial scar). In addition, activated microglia were
observed within the graft as well as in the surrounding area.
Glutamate-mediated excitotoxicity was confirmed, apparently
released from the activated microglia, which was postulated
to contribute to promoting the degeneration of grafted cells.
These studies (Cicchetti et al., 2009, 2014; Cisbani et al., 2013)
concluded that the survival of the graft was severely compromised
long-term, most likely due to an immunological response
mediated by host atrophic astrocytes and activated microglia,
the latest specifically targeting the neuronal components of the
grafts and minimally affecting glia cells. The NEST-UK pilot
study also reported to have measured inflammatory markers
following transplantation. One of the NEST-UK cases (Rosser
et al., 2002; Barker et al., 2013b) demonstrated microglial
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activation in postmortem samples, which were more dense
around the grafts (Rosser et al., 2002; Barker et al., 2013b;
Maxan et al., 2018).

The largest and most comprehensive study of the immune
response in HD was done within the context of the multicentric
intracerebral grafting in HD trial [MIG-HD; (NCT00190450,
2005)]. Fourteen months after the bilateral transplantation of
fragments of fWGE in the striatum, one of the recipients
exhibited a general worsening of the HD symptomatology and
an acute weight loss. Graft rejection was confirmed as anti-
HLA antibodies were detected in blood and CSF. Blood from
twelve additional patients who had undergone identical surgery
was also analyzed for anti-HLA antibodies, and found to be
positive in four. This finding demonstrated alloimmunization
towards donor antigens and called for a reconsideration of
the immunosuppression given, pointing out the necessity of
monitoring the immune response (Krystkowiak et al., 2007).
In addition, the time at which anti-HLA appeared was highly
variable as studied by Krebs et al. (2011), as it could happen
during immunosuppression or shortly after in a completely
unpredictable way.

There are clinical trials for safety assessment (NCT02728115,
2016), for analyzing dose-response (NCT03252535, 2017) and as
an extension (NCT04219241, 2020), based on the intravenous
administration of hMSC (CellAvitaTM) to HD patients and whose
approach include the measurement of the inflammatory markers
such as IL-6, TNFα, IL-4 and IL-10 as well as the immune
response by the measurement of lymphocytes CD4+ and CD8+
proliferation. However, there are no outcomes published about
the immune response to date.

Immunosuppression Regimen Given to
Cell Therapy Approaches in PD and HD
Besides of the immune reaction evaluation, the administration of
an immunosuppression regime also contributes to the outcome
of the clinical trial. Table 1 and Figure 3B also summarize the
immunosuppression therapy given in each pilot study or clinical
trial for PD and HD using cell or fetal tissue therapy.

When transplanting fetal grafts for PD, immunosuppression
therapy has been administered by many investigators although
there were differences between groups: Olanow et al. (2003)
administered Cyclosporine A (CyA) only for 6 months while
the Lund group administered a triple immunotherapy (CyA,
azathioprine and prednisolone) for longer periods (Lindvall et al.,
1990; Wenning et al., 1997; Piccini et al., 1999). Freed et al. (2001)
opted for not using any immunosuppression at all (Table 1).
Based on the information available, it is not currently possible
to determine an optimal immunosuppressive regime for striatal
transplantation in the CNS. However, it is agreed by most
groups working in this area that a period of immunosuppression
is required and will involve at least one immunosuppressive
agent, possibly for several years. Furthermore, it has been
demonstrated that triple immunotherapy for a year after
transplantation results in better DAergic cell survival, compared
to no immunosuppression at all or monotherapy with CyA in PD
patients (Barker et al., 2017).

The early pilot studies using allogeneic fWGE for HD
treatment used either CyA alone (Šramka et al., 1992; Kopyov
et al., 1998; Hauser et al., 2002a; Cicchetti et al., 2009), combined
with prednisolone (Madrazo et al., 1995; Reuter et al., 2008)
or used triple immunotherapy (Bachoud-Lévi et al., 2000b,
2006; Rosser et al., 2002). Where reported, clinical benefits
seem to reflect the pattern observed in PD, being better when
triple immunotherapy was administered (Figure 3B). It is
worth mentioning that triple immunotherapy is not always
applied consistently across studies. For instance, in the NEST-
UK study the three agents (CyA, azathioprine and prednisolone)
were all given post-transplantation, with patients weaned off
prednisolone within six months. This is similar to what was
done in the Florence study (where methylprednisolone was
stopped after two weeks, maintaining azathioprine and CyA)
or the MIG-HD trial (in which prednisolone was discontinued
after 18 months). In contrast, the seminal Créteil pilot study
discontinued cyclosporin A after 6 months, leaving the patients
on the other two agents for 1 year. In the case of PSCs for PD
patients, the first patient was transplanted with iPSC-derived
DA producing neurons in 2018 (UMIN000033564, 2018). In
this trial, patients are administered immunosuppression for 52
weeks post-transplantation, with tapering off over a 12 week
period) (Stoddard-Bennett and Reijo Pera, 2019). However,
this trial is currently suspended, with no result having yet
being published.

MSCs seem to be more readily compatible with the host’s
immune system as they have very low levels of MHC I and do
not express MHC II molecules (Ryan et al., 2005; de Vasconcellos
Machado et al., 2013). Although there is conflicting data,
the majority of studies describe hMSCs as hypoimmunogenic
cells that could escape recognition by alloreactive CD4-T cells
(Ryan et al., 2005). In addition, there is evidence that MSCs
may suppress the immune system and reduce inflammation
by decreasing microglia and infiltrating leukocytes. Apparently,
the lack of immune response against hMSC was maintained
for allografts and xenografts, suggesting that hMSCs may
represent a good candidate for immunomodulation following
transplantation (Ryan et al., 2005). To our knowledge, none of
the clinical trials of hMSCs to date included immunosuppression
unless such information was omitted in the subsequent reports.

Strategies to Overcome the Immune
Response Following Intrastriatal
Transplantation
Several strategies have been tested in order to overcome
the immune response following intrastriatal transplantation
(Figure 4). Indeed, the lowest immunogenic risk would be to
graft autologous material or tissue from an identical donor
twin. Currently, achieving these kinds of transplants for PD
or HD patients in not straightforward, so a realistic alternative
would be the selection of the best possible donor based on
HLA compatibility with the host, which would still need to be
accompanied by immunosuppressive drugs. In this regard, the
generation of iPSCs cell banks would assure availability of HLA-
matched tissue (Solomon et al., 2015; Morizane et al., 2017;
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FIGURE 4 | Strategies to overcome graft rejection. To diminish the immune system response following cell transplantation in the CNS, several strategies can be
employed. Autologous transplantation or the procurement of tissue from an identical donor may be the best scenarios. Other possibilities include: cell priming
through the addition of different factors to the cells (i.e., growth factors, drugs or cytokines); the induction of tolerance by deletion of co-stimutory molecules, the
generation of hypoimmunogenic cells; the possibility of co-transplantation or encapsualtion of the cell graft into a biocompatible material. HLA: Human leukocyte
antigen. MHC: Major histocompatibility complex.

Fan et al., 2020). However, this sort of approach is controversial,
as a recent paper showed that MHC-matching neuronal grafts in
a non-immunosuppressed non-human primate model of HD was
insufficient to grant long-term survival of neuronal grafts. The
main conclusion of this preclinical study is that a combination
of MHC-matching graft with an adequate immunosuppression
regime should be further investigated to obtain all the therapeutic
potential that cell therapy carries (Aron Badin et al., 2019).

A common strategy to enhance immunomodulatory and
overall therapeutic efficacy of hMSCs is by preconditioning
them, or ‘priming’. Priming approaches are reviewed elsewhere
(Ji et al., 2017; Noronha, Nc et al., 2019) and are mainly based
on the application of growth factors and pro-inflammatory
cytokines (IFN-γ, TNF-α, FGF-2, IL-1α and IL-1β), hypoxia,
pharmacological drugs such as valproic acid, all-trans retinoic
acid, and other molecules including lipopolysaccharide
or cathelicidin.

Regarding the modulation of the cell potential to stimulate
an immune reaction, two approaches have shown encouraging
outcomes; hypoimmunogenic cells, and (closely related)
tolerance induction. The recent idea of ‘hypoimmunogenic
cells’, or ‘universal stem cells’ is receiving increasing attention as
the regenerative medicine field is growing. Over the last year,
Deuse et al. (2019) generated hiPSCs with deleted MHC-I and
MHC-II genes and increased expression of CD47, a surface
protein known as a “don’t eat me” signal (Brown and Frazier,
2001). Following differentiation into cardiac cell types, the newly
generated cells were implanted in rodent models without any

immunosuppression and survived long-term (Deuse et al., 2019;
Shani and Hanna, 2019). Tolerance induction, on the other
hand, relies on the use of more complex approaches that may
include the blockade of co-stimulatory molecules that are crucial
for T-cell activation, such as CD28-CD80/86 and CD40-40L
(Liu et al., 2017).

Another interesting approach is the use of MSCs in
combination with the target neuronal cells to immunomodulate
the response upon grafting. Some studies have shown that MSCs
can delay allograft rejection and generate a local immuno-
privileged site in animal models, as well as preserve the
functionality of the graft (Stewart et al., 2017; Vaithilingam et al.,
2017; Razavi et al., 2018).

Finally, an approach that combines biomaterials
and cell therapy has already reached clinical trial. The
encapsulation of cells using biocompatible carriers has achieved
substantial neuroprotective and neuroregenerative outcomes
(Wong et al., 2014).

FUTURE PERSPECTIVE:
STANDARDIZATION THROUGH AN
IMMUNOGENICITY TESTING PLATFORM

To date, preclinical assessment of cell therapies has depended
on transplantation into animal models, which is the only way
in which to assess its effect on behavioral outcomes. However,
despite the commonalities among mammalian immune systems,
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there are several differences between animals and humans at
peripheral immune system (Colucci et al., 2002; Mestas and
Hughes, 2004; Bailey et al., 2013; Zschaler et al., 2014; Haley,
2017) and CNS (Zhang et al., 2016; Galatro et al., 2017; Gosselin
et al., 2017; Masuda et al., 2019), thus introducing a degree of
uncertainty in terms of understanding the immune responses to
a cell therapy product that may occur in humans.

During the administration of a given cell therapy, the process
of surgical intervention inevitably generates tissue damage in the
brain. The molecular events taking place in a human healthy
brain during such procedure are not fully understood, and are
even less clear in diseased brains that are already subjected to
chronic or acute neuroinflammation, as in PD and HD. This
is one of the main challenges for cell therapy. The second
major challenge is that although the host response has been
assessed to some extent in several clinical trials (Table 1),
the graft response to the host resident immune cells in the
brain parenchyma and those migrating from the periphery have
not been fully considered. As described in this review, the
immune response to the graft is highly variable and unpredictable
(Krystkowiak et al., 2007; Krebs et al., 2011). In this sense, a
possible strategy for systematically testing the immunogenicity
of cell therapy and other ATMPs is an in vitro human-
based platform. A well-designed platform could give valuable
information about molecular and cellular aspects, contributing
to the standardization of pre-clinical safety assessment of cell
therapies. For these reasons, we highlight some features to
be considered in the development of a neuro-immunogenicity
testing platform.

The immunogenic response in the brain depends either
on the host’s neuroimmune system and/or on its peripheral
immune system response, especially if cells are administered
intravenously, as for hMSCs. From this perspective, we envision a
two-way platform for testing the effects of potential cell therapies
on the peripheral immune system and/or on the neuroinmmune
system response. To mimic the physiological communication
of these two compartments, the presence of a human relevant
BBB models is a minimum requirement at the interface. In fact,
the BBB is not only a barrier, but it is also associated to major
neuroimmune functions (Erickson et al., 2020).

In our view, the testing platform should be designed as
integrated modules. The concept of modularity permits starting
with simple testing, saving time and resources, with a tiered
approach to slowly upgrade the complexity level (Figure 5). If a
graft candidate is already stimulating microglia in a 2D culture,
we may assume that the graft is inducing a certain level of
immunogenicity. It is also true that the presence of astrocytes and
neurons in the culture could dial down the microglial activation
(Biber et al., 2007). The tiered approach for immunogenicity
testing would allow the dissection of molecular events in each
condition tested.

In the case of HD, the immunogenicity test must be
performed in cellular models possessing the HTT mutation,
which is achievable by using hiPSCs or genetically engineered
cells (Csobonyeiova et al., 2020) as starting material to
derive neurons (Conforti et al., 2018; Comella-Bolla et al.,
2020), oligodendrocytes (Li et al., 2016a; Ehrlich et al., 2017;

Garcia et al., 2019), microglia (Sabogal-Guáqueta et al., 2020),
DCs (Sachamitr et al., 2018), endothelial cells (Karow et al.,
2012), and pericytes (Karow et al., 2012), to consistently model
human brain parenchyma and BBB (Raimondi et al., 2020).
A similar strategy could be applied to PD using known genetic
variants (Garcia et al., 2019) as a relevant cellular phenotype
is currently more difficult to achieve for sporadic PD (Sancho-
Balsells et al., 2020). Human iPSCs can be also used to ensure
the presence of the multiple genetic polymorphism observed
in PD (Ferrari et al., 2020). However, environmental triggers
would be missing, and in PD microglia can either be activated by
degenerating DA neurons or can be already activated through the
neurodegeneration exacerbating microglial neurotoxic responses
(Fellner et al., 2011). Furthermore, the BBB is reported to be
dysfunctional in PD and HD patients (Gray and Woulfe, 2015)
so this is also an important feature to model into a future
immunogenicity platform connecting the CNS immune system
to the periphery. The initial approach should test the cell graft,
including types of cells and donor source/origin, scaffolding
materials, and coadjuvant solutions, which can be performed
in 2D co-culture models composed of human iPSC-derived
microglia, astrocytes and neurons. A more complex approach
could study the impact of various graft-related morphological
features on the immunogenic potential, such as bulk tissue versus
suspension, cell density, and surgical materials or scaffolds. This
will require homogenous culture of 3D models such as brain
organoids (Lancaster et al., 2013; Conforti et al., 2018; Qian
et al., 2018). The 3D models will approximate to the relevant
biophysical environment by modeling the surgical procedure by
microinjection of an in-scale graft. A protocol to generate striatal
organoids has been described, although microglia and astrocytes
were missing (Adil et al., 2018).

To mimic in vitro the surgical procedure, there are some
challenges to tackle; mainly allometric scaling and neuronal/glial
cell density ratio in the human brain tissue. For practical
reasons the spatio-temporal phenotypic differences of astrocytes
and microglia (de Haas et al., 2008; Koning et al., 2009)
cannot be taken into account as first approximation, although
it is possible that glial migration into the 3D models
will trigger functional differences due to the regionalization
process (Qian et al., 2018). In any case, glial regional cell
density should be considered as a controlled variable to
generate relevant 3D striatal models. In fact, microglia and
astrocytes show different distributions depending on the brain
region (Lawson et al., 1990), and the number of glial cells
may vary in HD (Palpagama et al., 2019) and PD models
(Fellner et al., 2011).

The ideal solution for any research platform would be to
have high-throughput and high content analysis, but this is not
feasible in a field in which technological advances are at an
early stage. Hence, the productivity and high-content analysis
are inversely proportional. To choose what to prioritize depends
on the specific clinical focus. In testing cellular immunogenic
responses of a graft, a high-content analysis would be of
interest to understand the molecular cascades and activated
pathways in depth. When testing surgical materials, solutions
and scaffolds, high-throughput analysis seems more appropriate
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FIGURE 5 | Immunogenicity testing scenario. A perfect model to assess the immunogenicity of cell transplantation therapy does not exist due to the complexity of
the system. A tiered approach could provide an approximation depending on the cell therapy aspects of interest that we want to test. The immunogenicity testing
can be focused on a particular element of the system, which will determine the most relevant model to work with. Some specific variables that need testing will
require advanced and more complex models. As advanced organoids, we envision homogeneously cultured organoids including microglial cells, DCs,
vascularization and functional BBB. MPS = microphysiological system.

as it allows for rapid screening of immunogenic properties
at single-cell levels. However, to test complex variables such
as the biophysical properties or integration into the brain
parenchyma, advanced models must be employed to ensure
relevant data that can be translated into increased clinical
efficacy and safety.

Biological Endpoints
The first target of analysis would be to profile the immune
response. However, the neuroimmune system is a highly
regulated and complex network and the immune response is
not so simple to evaluate. In fact, microglial activation has
not been straight-forward to determine, since many microglial
functions can damage the graft at different stages through a
variety of mechanisms, such as ROS production, phagocytosis,
cytokine production and synaptic pruning, etc. (Bachiller et al.,
2018). In Figure 5, we present some events to establish the
biological endpoints, depending on the different stages of the
cell transplantation and integration into the striatum. In any
case, the minimal biological endpoints should include the
assessment graft survival and cell viability, gliosis, neuronal
synaptic plasticity, and cytokine and chemokine production.
These endpoints can be easily measured in any neuroscience
research lab with standard methods of analysis from 2D co-
culture models onwards.

It is also highly relevant to distinguish between the acute and
chronic immune response. In fact, peripheral and neuroimmune
systems communicate in a highly regulated manner and
this must be studied in complex models integrating both
compartments and cellular components. However, modeling

long term immunogenic responses could be technically
challenging in microphysiological systems integrating more
than one compartment, each with different cells and conditions.
Furthermore, there is still a lack of knowledge about the
events leading to chronic immune rejection in the brain. The
use of an in vitro immunogenicity platform, organized as
modules that mimic different physiological compartments,
connecting peripheral and neuroimmune system through the
BBB, would also enable biomarker discovery. The correlation
between the neuroimmune activity with peripheral measurable
biomarkers is of great importance for monitoring patient
recipient state, and has the potential to substantially improve
the follow-up of grafts in HD and PD patients following
translation to the clinic. However, to date fully functional
immunogenicity platforms have not been applied to the
development and preclinical testing of cell therapies in
neurodegenerative diseases.

CONCLUSION

Several efforts have been undertaken to successfully apply cell
therapy in neurodegenerative diseases such as HD and PD.
To date this approach remains experimental and, despite being
highly promising as disease-modifying therapy, relatively few
clinical trials have been undertaken and most of these have
been small and under-powered to assess efficacy. One of the
challenges when considering cell therapy for brain diseases is the
immune response that occurs in the CNS. The immune response
can compromise the survival of grafted cells, impairing their
integration and therefore, their functionality. Most clinical assays
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in the field are not accompanied by clear and feasible guidelines
for monitoring the immune response (Table 1). In addition, the
immunosuppressive treatments used to date have been highly
variable (Figure 3B, and the associated adverse effects not
always comprehensively reported. For this reason, we have also
summarized the neuro- and inflammatory markers that could be
used to shape the guidelines of future transplants in the CNS.

In recent years, in vitro strategies have been developed to
evaluate the potential immunogenicity of cell therapy, and these
have the potential to address immunological issues that cannot
be readily addressed in animal models. Funding agencies and
neuroscience community should look to this kind of platform as
a priority to improve and standardize preclinical studies for the
development of cell therapies. Good well standardized in vitro
models may provide access to understanding some mechanism
that are difficult to assess in in vivo models.
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