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ABSTRACT

One hundred and forty years after his discovery, the Hall effect still deserves attention. If it is well-known that the Hall voltage measured in
Hall bar devices is due to the electric charges accumulated at the edges in response to the magnetic field, the nature of the corresponding
boundary conditions is still problematic. In order to study this out-of-equilibrium stationary state, the Onsager’s least-dissipation principle
is applied. It is shown that, beside the well-known expression of the charge accumulation and the corresponding Hall voltage, a longitudinal
surface current proportional to the charge accumulation is generated. An expression of the surface current is given. The surface currents
allow the Hall voltage to be stabilized at a stationary state, despite, e.g., the presence of leakage of charges at the edges.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0013182

I. INTRODUCTION

The classical Hall effect1 is usually described by the local
transport equations for the charge carriers that takes into account
the effect of the Laplace–Lorentz force generated by a static mag-
netic field. Typically, in a planar Hall device, an electric generator
imposes an electric current~J along the x direction (see Fig. 1), and
the Hall voltage is then measured transversally along the y direction
at a stationary regime, as a function of the magnetic field. The
physical mechanisms behind this effect and the corresponding
transport equations are well-known and are described in all refer-
ence textbooks.

However, the non-equilibrium stationary state of the classical
Hall effect still presents some important technical and conceptual
difficulties while treating the boundary conditions. In contrast to
usual non-equilibrium stationary sates, the presence of the static
magnetic field leads to specific transverse boundary conditions—
the charge accumulation at the edges—that are not imposed
directly by external constraints but by the system itself, according
to the Le Chatelier–Braun principle.2,3

This specificity of the boundary conditions for the Hall effect
has been discussed within a large variety of theoretical models,4–12

but the nature of the charge accumulation at the edges still remains
rather mysterious. Indeed, the discovery of the extraordinary Hall
effect at the turn of the millennium13–15 and the recent develop-
ments about the Hall effect in ferromagnets16,17 or about the

spin-Hall effect18,19 show that 140 years after his discovery, the
classical Hall effect still deserves attention.

For the ideal Hall bar (i.e., with a translational invariance
along x and symmetric edges), the local stationarity condition
~∇ �~J ¼ 0 is not sufficient to define a unique stationary state (see
Appendix A). It is usually admitted that the stationary state corre-
sponds to a vanishing transverse current Jy ¼ 0 along the y axis,20

as claimed in reference textbooks.21–24 The argument invoked is
that an accumulation of electric charges at the edges produces a
transverse electric field Ey that balances the Lorentz force so that
the system reaches “equilibrium” along the y axis.

However, the term “equilibrium” is misleading because the
electric charges at the edges are not static but renewed permanently
in order to maintain a stationary non-equilibrium charge distribu-
tion, typically in the case of charge leakage due to the Hall-voltage
measurement.

It is shown in this paper that the non-equilibrium stationary
state defined by the second law of thermodynamics—through the
least-dissipation principle25–28—is indeed defined by Jy ¼ 0, but with
the generation of a surface current Jx(y) flowing along the x axis (see
Fig. 1) and proportional to the charge accumulation. This is valid as
long as the total power dissipated by the charge leakage at the edges
is negligible with respect to the total power dissipated in the device.29

The demonstration is presented in the following way: the
system is first defined from a non-equilibrium thermodynamic
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point of view in Sec. II. In Sec. III, the minimization of the Joule
power is performed under the electrostatic screening and the galva-
nostatic constraint. A differential equation is obtained, where solu-
tions would necessitate the knowledge of the local boundary
conditions. The use of global constraints—instead of local—allows
the stationary state to be uniquely defined. The expression of the
surface currents is derived in Sec. IV. In Sec. V, the stability of the
stationary state is investigated before concluding in Sec. VI.

II. JOULE DISSIPATION

The system under interest is defined in the context of non-
equilibrium thermodynamics.25–28,30–33 It is a thin homogeneous
conducting layer of finite width contacted to an electric generator
and submitted to a magnetic field (see Fig. 1). We assume that the
device is planar, invariant by translation along the x axis (in partic-
ular, the region in contact to the generator is not under consider-
ation here), and that the two lateral edges are symmetric. However,
it is important to point out that we do not assume local boundary
conditions for the current Jy . In particular, the model takes into
account a possible charge leakage that can be present due to the
Hall-voltage measurements (since any realistic voltmeter has a
finite internal resistance). The power lost by this leakage of electric
charges is assumed to be small with respect to the total power dissi-
pated in the device (in other terms, the voltmeter has a large
enough internal resistance).29 Furthermore, we do not assume a
priori the expression of the continuity equation ~∇ �~J ¼ 0.

Let us define the distribution of electric charge carriers by
n(y) ¼ n0 þ δn(y), where δn(y) is the charge accumulation and n0
the homogeneous density of an electrically neutral system (e.g.,
density of carriers without the magnetic field). The charge accumu-
lation is governed by the Poisson’s equation ∇2V ¼ @2

yV ¼ � q
ε δn,

where V is the electrostatic potential, q is the electric charge, and ε
is the electric permittivity. The local electrochemical potential
μ(x, y), which takes into account not only the electrostatic potential
V but also the energy (or the entropy) responsible for the diffusion,
is given by the expression (local equilibrium is assumed

everywhere),31

μ ¼ kT
q
ln

n
n0

� �
þ V , (1)

where k is the Boltzmann constant and T is the temperature of the
heat bath in the case of a non-degenerate semiconductor or the
Fermi temperature TF in the case of a fully degenerated conduc-
tor.34 Poisson’s equation now reads

∇2μ� λ2D
q
ε
n0∇2 ln

n
n0

� �
þ q
ε
δn ¼ 0, (2)

where λD ¼
ffiffiffiffiffiffiffi
kTε
q2n0

q
is the Debye–Fermi length. The invariance along

x gives ∇2 ¼ @2
y .

On the other hand, the transport equation under a magnetic
field is~J ¼ �σ̂~∇μ ¼ �qnη̂~∇μ, with the conductivity tensor σ̂ and
the mobility tensor η̂. In two dimensions and for isotropic material,
the mobility tensor is defined by Onsager relations,25

η̂ ¼ η ηH
�ηH η

� �
¼ η

1 θH
�θH 1

� �
,

with

θH ¼ ηH
η
,

where η is the ohmic mobility, ηH the Hall mobility (usually pro-
portional to the magnetic field ~H ¼ H~ez), and θH the Hall angle.
The electric current then reads

~J ¼ �qnη ~∇μ� θH ~ez � ~∇μ
� �

(where � denotes the cross
product) or

�qnη(1þ θ2H)@xμ ¼ Jx � θHJy , (3)

�qnη(1þ θ2H)@yμ ¼ Jy þ θHJx: (4)

The expression of the power dissipated by the system reads

PJ ¼
ð
D
qnηk~∇μk2 dxdy ¼ 1

qn0η(1þ θ2H)

ð
D

n0
n
k~Jk2 dxdy:

III. LEAST-DISSIPATION PRINCIPLE

The least-dissipation principle states that the current distributes
itself so as to minimize Joule heating PJ compatible with the
constraints. After introducing the galvanostatic constraint
Jx ¼ �qn(η@xμþ ηH@yμ), the screening equation [Eq. (2)], and
their respective Lagrange multipliers β(y) and γ(y), the functional to

FIG. 1. Schematic representation of the Hall effect under a static magnetic field
H applied along the z direction, with the electrostatic charge accumulation δn
and surface currents JSx (y) ¼ Jx � J0x at the edges.
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be minimized reads

F[n, ~∇μ] ¼
ð
D
qnηk~∇μk2 dy �

ð
D
β(y) �qηn@xμ� qηHn@yμ

� �
dy

�
ð
D
γ(y) ∇2μ� λ2D

q
ε
n0∇2 ln

n
n0

� �
þ q
ε
δn

� �
dy,

(5)

where D is the width of the device. It contains, on the right-hand
side from left to right, the heat power, the galvanostatic constraint,
and the electrostatic constraint. The minimization imposes the van-
ishing of the functional derivatives δF

δ(@xμ)
¼ 0, δF

δ(@yμ)
¼ 0, and

δF
δ(n) ¼ 0, from which we obtain the Euler–Lagrange equation corre-
sponding to the stationary state (see Appendix B),

Jy � λ2D@y
n0
n
@yJy

� �
¼ ε

2q2η(1þ θ2H)
@y

(Jy)
2 þ 2θHJxJy � (Jx)

2

n2

� �
:

(6)

This is a second order differential equation in Jy and first
order in n, and its resolution—coupled with Poisson’s equation and
transport equations—would need the knowledge of four boundary
conditions. However, a part of these conditions is not imposed
externally but are fixed by the system itself in order to reach the
state of minimum dissipation. Our approach does not consider
them explicitly as the functional equation (5) does not include the
treatment of the discontinuity between the conductor and its envi-
ronment. Indeed, it is possible to find the minimum power dissi-
pated without the aforementioned boundary conditions by taking
into account the global constraints, which are known.

Let us define the width L of the conductor. Due to the sym-
metry of the device and that of the magnetic field (as an axial
vector), we have

Ð
δnst dy ¼ 0, and the total charge carrier density

is constant ntot ¼ 1
L

Ð
n dy. For the sake of simplicity, we assume a

global charge neutrality so that ntot ¼ n0. On the other hand, the
global current flowing in the x direction throughout the device is
also constant along x by definition of the galvanostatic condition.
The two global constraints are

ðL=2
�L=2

n(y) dy ¼ Ln0 and
ðL=2
�L=2

Jx(y) dy ¼ LJ0x , (7)

where J0x is the uniform current density present at zero magnetic
field. The inhomogeneity of the current density along the x axis
(derived below) is then defined by the difference JSx (y) ¼ Jx(y)� J0x .

We define for convenience the reduced power:

~PJ ¼ qη(1þ θ2H) PJ ¼
Ð J2xþJ2y

n dy. Let us introduce the Lagrange
multiplayers λJ and λn corresponding to the constraints [Eq. (7)]
so that the functional to be minimized reads now,

~P
Lag
J [Jx , Jy , n] ¼

ð J2x þ J2y
n

� λJ Jx � λn n

 !
dy: (8)

The minimum corresponds to

δ~P
Lag
J

δJx
¼ 0()2Jstx ¼ nstλJ , (9)

δ~P
Lag
J

δJy
¼ 0()Jsty ¼ 0, (10)

δ~P
Lag
J

δ(n)
¼ 0()(Jstx )

2 þ (Jsty )
2 ¼ �λn(n

st)2, (11)

where the superscript st stands for “stationary.” Using Eqs. (7) and (9)

leads to λJ ¼ 2J0x
n0

so that J stx ¼ n
n0
J0x [and from Eq. (11), we

have, furthermore, λn ¼ �(J0x n
st=n0)]. Hence, the minimum is

reached for

Jstx (y) ¼ J0x
n(y)
n0

and Jsty ¼ 0: (12)

It is easy to verify that this state is a solution of the Euler–
Lagrange equation (6), whatever the density distribution n(y). As
shown in Sec. V, this solution is stable. Note also that the usual
stationarity condition ~∇ �~Jst ¼ 0 is verified. Inserting the solution

(12) into the relations (3) and(4), we deduce @xμst ¼ �J0x
qn0η(1þθ2H )

and

@yμst ¼ θHJ0x
qn0η(1þθ2H )

. These two terms are constant so that the electro-

chemical potential of the stationary state is harmonic: ∇2μst ¼ 0.
The corresponding current [Eq. (12)] is defined as a function of
the charge density n. The solution is hence given by Poisson’s
equation for ∇2μst ¼ 0,

λ2D@
2
y ln 1þ δnst

n0

� �
¼ δnst

n0
: (13)

It is still necessary to know two boundary conditions on the
density n in order to determine the solution. Once again, these
boundary conditions are not explicitly given, but we can use global
conditions instead. The first one is given by

Ð
n dy ¼ n0L, and a

second condition is imposed by the expression of the electric field
Ey , given by Gauss’s law ~∇ �~E ¼ @yEy ¼ q

ε δn, at a point y0 (see
Appendix C),

Ey(y0) ¼ �@yV(y0)

¼ � q
2ε

ðL=2
�L=2

δn(y)
y � y0
jy � y0j dy þ E(1)þ E(�1), (14)

whose derivative is nothing but the Poisson’s equation. The cons-
tant E(þ1)þ E(�1) accounts for the electromagnetic environ-
ment of the Hall device [E(+1) ¼ 0 in vacuum]. Inserting the
stationary solution (12) and the relation (4) for @yμ gives the final
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condition (see Appendix C),

2θHJ0xC0

1þθ2H
þ2λ2D@y ln

nst

n0

� �
(y0)þ2CEþ

ðL=2
�L=2

δnst(y)
y� y0
jy� y0j dy¼ 0,

(15)

where C0 ¼ ε
q2n0η

and CE ¼ ε(E(1)þE(�1))
qn0

. The sign of (δnst(y))

(y � y0) is fixed by the sign of θHJ0x meaning that the side where
δnst . 0 is fixed by the direction of the current in x and by the
magnetic field. Using this condition and fixing n0 gives a unique
solution for nst and the surface currents [Eq. (12)] are now fully
determined.

The typical characteristics of the stationary state are plotted in
Figs. 2 and 3. The stationary charge accumulation, voltage, and
chemical potential are shown in Fig. 2. Note that the minimum
power is reached when the voltage V st(y) (plain line in Fig. 2) com-
pensates the charge accumulation nst(y) (dashed line in Fig. 2) in
order to maintain a linear chemical potential μst(y) (dotted line in
Fig. 2) throughout the Hall bar. The surface currents associated
with this state—deduced from Eqs. (15) and (12)—are plotted in
Fig. 3. The calculation is performed for a disordered semiconductor
(typically Ge) at room temperature. The ratio JSx (y)=J

0
x ¼ 10�3 is

obtained for a current density J0x of the order of 10mA=m2 and
θH � 0:1. The Debye length is typically λD � 1 μm.

IV. EXPRESSION OF THE SURFACE CURRENTS

The linearization of Eqs. (13) and (15) when δnst � n0 gives
an analytical solution of the problem. Indeed, the solution of the

linearized Poisson equation reads δnst
n0

¼ Ae
y
λD þ Be�

y
λD , where A and

B are constants. The condition of neutrality (
Ð
δnstdy ¼ 0) imposes

that A ¼ �B, and we can use the condition [Eq. (15)] to determine
B at y0 ¼ 0,

2θHJ0xC0

n0(1þ θ2H)
þ 2BλD þ 2CE þ B

ðþL=2

�L=2
(e

y
λD � e

�y
λD )

y
jyj dy ¼ 0, (16)

after linearizing the ln (n=n0) term. Thus, after integration and sim-
plification, we have

B ¼ � θHJ0xC0

(1þ θ2H)n0λD
þ CE

λD

� �
1

e
L

2λD þ e
�L
2λD

� �
, (17)

and the charge accumulation reads

δnst

n0
¼ 1

λD

J0x C0θH
n0(1þ θ2H)

þ CE

� �
e
�y
λD � e

y
λD

e
�L
2λD þ e

L
2λD

, (18)

which leads, through the stationary solution [Eq. (12)] Jstx ¼ J0x
n
n0

,
to the expression of a surface current JSx (y) ¼ J stx � J0x superimposed
to the galvanostatic current J0x ,

JSx (y) ¼ �J0x
1
λD

J0x C0θH
n0(1þ θ2H)

þ CE

� �
sinh ( y

λD
)

cosh ( L
2λD

)
: (19)

For a vanishing screening length λD ! 0 and E(+1) ¼ 0, the
charge accumulation Eq. (18) reduces to Dirac distributions at the
edges of the Hall bar,

q δnst ¼ QS δ y � L
2

� �
� δ y þ L

2

� �	 

, (20)

FIG. 2. Profile of the stationary density nst=n0, voltage Vst, and chemical poten-
tial μst . The sample is confined in the region y [ [� 1, 1], and the straight ver-
tical lines represent the Debye–Fermi length λD. All quantities are
dimensionless, for q=ε ¼ �1. The density nst(y) is a solution of Eq. (13) for
δnst(+ L=2) ¼ +0:1. The electric potential Vst(y) is a solution of Eq. (14) for
V (0) ¼ 0, and the chemical potential μst is calculated from Eq. (1).

FIG. 3. Numerical solutions of Eq. (15) for the surface currents. The five pro-
files of the ratio JSx (y)=J

0
x correspond to increasing values of J0x , or equivalently

of the Hall angles θH , while C0 and λD are fixed, and CE ¼ 0.
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where QS is the surface charge,

QS ¼ qJ0x C0θH
1þ θ2H

: (21)

At this point, all happens as if the system were at “equilib-
rium” along the y axis, like in a capacitor. When θH � 1,
this surface charge +QS at y ¼ + L

2 creates a Hall voltage

VH ¼ QSL
ε ¼ θHLJ0x

qn0η
, and the usual formula for the Hall voltage is

recovered by taking θH ¼ arctan (ηH) ≃ ηH,

VH ¼ HJ0x L
qn0

: (22)

Equations (20)–(22) show that the well-known results pre-
sented in the textbooks are recovered. However, Eq. (19) also
reduces to Dirac distributions at the edges of the Hall bar,

JSx (y) ¼ J0x
J0x C0θH

n0(1þ θ2H)
þ CE

� �
δ y � L

2

� �
� δ y þ L

2

� �	 

: (23)

Accordingly, even for vanishing screening length λD �! 0
with a charge accumulation δnst confined at the surface of the
edges, the corresponding current is still present in the Hall device.
The accumulation of electric charges is permanently renewed,

maintaining a distribution δnst, whatever the details of the local
boundary conditions.

Note that for CE ¼ 0, the surface currents are proportional to
the square of the injected current JSx (y)/ J0x

� �2
.

V. STABILITY

Finally, it is important to verify that the solution defined by
Eq. (12) is regular or stable enough so that the stationary state does
not depend on variations of the local boundary conditions. This is
the case if the system described by the Poisson’s equation and the
solution of Eq. (6) (obtained without fixing local boundary condi-
tions) can converge uniformly to the minimum defined by
Eq. (12). This is indeed the case, as shown below: With a given Jy ,
Jx , and n, let us define ϵy ¼ Jy=n, ϵx ¼ Jx=n� J0x=n0, nþ ¼ n� nst

[with nst the solution of Eq. (13)], and f (y) ¼ δn
n0
� λ2D@

2
y ln (

n
n0
). It

is clear that f (y) tends to 0 when n tends to nst. Furthermore,
Poisson’s equation now reads

@yϵy þ θH@yϵx ¼ f (y): (24)

This equation shows that if both f (y) and ϵy tend to 0, then
ϵx tends to a constant. The galvanostatic constraint shows that this
constant is 0. In the same way, if both ϵx and ϵy tend to 0, then
f (y) tends to 0 and n tends to nst. Finally, Eq. (6) now reads

n� ε

q2η
f (y)

� �
ϵy ¼ ε

2q2η
(1þ θ2H) @y

J0x
n0

þ ϵx

� �2

þ2θH
J0x
n0

f (y)� θH @yϵx
� � !

, (25)

which shows that if both f (y) and ϵx tend to 0, then ϵy tends to 0.
As a conclusion, despite the fact that the stationary state is
out-of-equilibrium (the charge accumulation δn being not static)
and that it is described per Eq. (6) (where the solution would
necessitate the knowledge of four boundary conditions), this sta-
tionary state is fully determined by Eq. (12), i.e., by the solution of
the Poisson equation. Once again, apart from the surface currents,
all happens as if the system were at equilibrium along the y axis.

VI. CONCLUSION

We have shown that the stationary state of the ideal Hall bar
(planar device, translational invariance along x, and symmetric
edges) with small charge leakage at the edges can be derived from
the principle of least dissipation (i.e., on the second law of thermo-
dynamics) and the global boundary conditions. The stationary state
is defined by a vanishing transverse current Jy ¼ 0, a harmonic
chemical potential ∇2μ ¼ 0, and a longitudinal current Jx(y) pro-
portional to the charge accumulation δn(y) (see Fig. 3). The usual
expression of the continuity equation ~∇ �~J ¼ 0 is recovered.

Accordingly, the stationary state is now characterized not only
by the accumulation of electric charges at the edges—that generates

the Hall voltage like in a simple capacitor at equilibrium—but also
by surface currents confined at the edges.

These surface currents allow the charge accumulation to be
stable so that the Hall voltage is robust to perturbations of the boun-
dary conditions, like that occurring while measuring the Hall voltage.
These currents describe the fact that the accumulation of electric
charges δn is not at equilibrium but is renewed permanently by the
generator. A simple expression of the surface current is given for weak
charge accumulation δn=n0 � 1 in Eq. (19). The surface current is
predicted to follow a power two of the injected current and is propor-
tional to the magnetic field at low field. The method developed here
can straightforwardly be generalized to the case of sizable charge
leakage at the edges, i.e., to the hybrid case between the Hall bar
geometry and the Corbino disk geometry. Beyond, the method allows
describing devices comprising active interfaces in order to exploit the
surface current (instead of the charge accumulation) for new magnetic
sensors, actuators, or energy convertors at the nanoscale.
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APPENDIX A: TWOFOLD STATIONARY STATE

The goal of the following calculation is to make explicit the
ensemble of states corresponding to the standard local stationarity
condition ~∇ �~J ¼ 0. Taking the divergence of the transport equa-
tion~J ¼ �qnη ~∇μ� θH ~ez � ~∇μ

� �
, we have

~∇ �~J ¼ �qη~∇: n~∇μ
� �þ qηθH ~∇: ~ez � ~∇μ

� �
: (A1)

Developing the two divergence terms, we obtain

~∇ �~J ¼ �qη~∇n:~∇μ� qηn∇2μ

þ qηθH n~∇μ: ~∇� ~ez
� �� ~ez: ~∇� ~∇μ

� �� �
þ qηθH ~∇n: ~ez � ~∇μ

� �
: (A2)

Note that the two curls in the second line of Eq. (A2) vanish.
Using the symmetry of the Hall bar, the local stationary condition

reduces to

~∇ �~J ¼ �qη n@2
yμþ @yn @yμ� θH@xμ

� �� �
¼ 0: (A3)

The solution @2
yμ ¼ 0, @yn = 0, and @yμ ¼ θH@xμ holds. This

state corresponds to Jy ¼ 0 and the stationary state discussed in the
article. However, we can also have @yn = 0, Jy = 0, @2

yμ = 0, and

n@2
yμ ¼ �@yn @yμ� θH@xμ

� �
: (A4)

It is shown in the article that the condition [Eq. (A4)] does
not correspond to the minimum of the dissipated power compati-
ble with the constraints applied to the system.

APPENDIX B: DIFFERENTIAL EQUATION

In order to investigate the minimum dissipated power compati-
ble with the constraints, we have to study the functional equation (5),
which includes the corresponding Lagrange multipliers β and γ,

F[n, @xμ, @yμ] ¼
ð

qnηk~∇μk2 � βqn(� η@xμ� ηH@yμ)� γ @2
yμ� n0λ

2
D
q
ϵ
@2
y ln (

n
n0

)þ qδn
ϵ

� �� �
dy:

In what follows, we will use several forms of the transport
equation~J ¼ �qnη̂~∇μ,

Jx ¼ �qn(η@xμþ ηH@yμ), (B1)

Jy þ θHJx ¼ �qnη(1þ θ2H)@yμ, (B2)

Jx � θHJy ¼ �qnη(1þ θ2H)@xμ, (B3)

J2x þ J2y ¼ k~Jk2 ¼ (qnη)2(1þ θ2H)k~∇μk2: (B4)

Carrying out the extremization (δ denoting the functional
derivative), we have

δF
δ(@xμ)

¼ 0()qnη2@xμþ βqnη ¼ 0 () β ¼ �2@xμ,

δF
δ(@yμ)

¼ 0()qnη2@yμþ βqnηH � @yλ ¼ 0,

(B5)

which, combined with Eq. (B5), gives

�Jy ¼ qn(η@yμ� ηH@xμ) ¼
1
2
@yγ: (B6)

Finally,

δF
δ(n)

¼ 0()qηk~∇μk2 þ βq(η@xμþ ηH@yμ) ¼ λ2D
q
ϵ

n0
n
@2
yγ �

q
ϵ
γ

()ηk~∇μk2 þ 2(@xμ)
Jx
qn

¼ 1
ϵ

λ2D
n0
n
@2
y γ � γ

� �

after using Eqs. (B5) and (B1).
Now, inserting Eq. (B6) in @2

yγ, this last equation becomes

�γ ¼ ϵηk~∇μk2 þ 2ϵ
qn

Jx@xμþ 2λ2D
n0
n
@yJy , (B7)

and Eq. (B6) then becomes, with the help of relations (B3) and (B4),

Jy ¼ @y
ϵη

2
k~∇μk2 þ ϵ

qn
Jx@xμþ λ2D

n0
n
@yJy

� �

¼ @y
ϵη

2

J2x þ J2y
q2n2η2(1þ θ2H)

� ϵ

qn
Jx

Jx � θHJy
qnη(1þ θ2H)

þ λ2D
n0
n
@yJy

 !
,

which can be simplified to get the equation used in the main text,

λ2D@y
n0
n
@yJy

� �
þ ϵ

2q2η(1þ θ2H)
@y

J2y þ 2θHJxJy � J2x
n2

 !
� Jy ¼ 0:

(B8)
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APPENDIX C: ELECTRIC FIELD

The goal of this Appendix is to derive the condition [Eq. (15)]
obtained in Sec. II.

The electric field is determined by Maxwell–Gauss’ law from
the charge density,

~∇ �~E ¼ @xEx|ffl{zffl}
¼0

þ@yEy ¼ q
ϵ
δn,

which can be integrated, relative to a fixed y0, to obtain

Ey(y0) ¼ Ey(�1)þ q
ϵ

ðy0
�1

δn(y) dy and

Ey(y0) ¼ Ey(þ1)� q
ϵ

ðþ1

y0

δn(y) dy:

By adding these two expressions [and because δn(y) ¼ 0 outside
[�‘, þ ‘]], we have

Ey(y0) ¼ Ey(�1)þ Ey(þ1)� q
2ϵ

ðþ‘

�‘

δn(y)sgn(y � y0) dy,

where ‘ ¼ L=2 and sgn(y � y0) ;
y�y0
jy�y0j. The constant Ey(�1)þ

Ey(þ1) may account for the electromagnetic environment of the
Hall device, like a voltmeter. For an isolated conductor under a
galvanostatic constraint, this term vanishes. Using the definitions
μ ¼ n0λ2D

q
ϵ ln (

n
n0
)þ V and Ey ¼ �@yV , as well as the transport

equation [Eq. (B2)], we then have

� Jy þ θHJx
qnη(1þ θ2H)

� n0λ
2
D
q
ϵ
@y ln (

n
n0

)(y0)

¼ Ey(�1)þ Ey(þ1)þ q
2ϵ

ðþ‘

�‘

δn(y)sgn(y � y0) dy: (C1)

Thus, under the main result (Jy ¼ 0, Jx ¼ J0x
n
n0
), we obtain the

condition [Eq. (15)] used in the main text,

2θHJ0xC0

(1þ θ2H)n0
þ 2λ2D@y ln (

n
n0

)(y0)þ 2CE

þ
ðþ‘

�‘

δn(y)
n0

sgn(y � y0) dy ¼ 0, (C2)

with C0 ¼ ϵ
q2ηn0

and CE ¼ ϵ
qn0

(Ey(�1)þ Ey(þ1)).
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