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Quantifying Human engagement 
into playful Activities
David Reguera1,2, Pol colomer-de-Simón1, Iván encinas3, Manel Sort3, Jan Wedekind3 & 
Marián Boguñá1,2*

Engaging in playful activities, such as playing a musical instrument, learning a language, or performing 
sports, is a fundamental aspect of human life. We present a quantitative empirical analysis of the 
engagement dynamics into playful activities. We do so by analyzing the behavior of millions of players 
of casual video games and discover a scaling law governing the engagement dynamics. This power-
law behavior is indicative of a multiplicative (i.e., “happy- get-happier”) mechanism of engagement 
characterized by a set of critical exponents. We also find, depending on the critical exponents, that 
there is a phase transition between the standard case where all individuals eventually quit the activity 
and another phase where a finite fraction of individuals never abandon the activity. The behavior that 
we have uncovered in this work might not be restricted only to human interaction with videogames. 
Instead, we believe it reflects a more general and profound behavior of how humans become engaged in 
challenging activities with intrinsic rewards.

Humans are deeply captivated to try new experiences that eventually become pleasant daily routines. The enjoy-
ment of playing a musical instrument, speaking foreign languages, sports or hobbies, are all activities that for 
full enjoyment require some time investment and training experience that eventually pay off. One interesting 
question is how humans get engaged and come to love these activities, which offer both a challenge as well as an 
intrinsic reward. What is the training or learning process and how does it affect their level of enjoyment? How can 
we measure and quantify fun?

Before the new era of modern technology, answering this type of question relied on the accumulated knowl-
edge obtained from qualitative observations of single individuals made in different conditions by different observ-
ers. This makes it very difficult to extract general laws of human behavior. The widespread use of the Internet 
and the world-wide connectivity that it provides is changing this picture radically and fast. For the first time in 
human history, it is possible to monitor human actions on an unprecedented large-scale, allowing us to uncover 
precise and quantitative laws of human behavior1–3. Nowadays, we have the ability to measure, with impressive 
precision, our mobility patterns4,5, our musical tastes6,7, or the way in which ideas spread and crystallize across 
populations8,9, providing us with a very accurate picture of some of the key aspects of human behavior at the large 
scale10–13.

Fostered by the widespread outburst of smart phones and tablets, one of the most popular current amuse-
ments are casual video games. These are games with simple rules and game dynamics that can be played in brief 
bursts in a casual way, e.g. during breaks or daily commuting. Some of these games, like Candy Crush Saga (the 
flagship game of King Digital Entertainment), have reached outstanding popularity. As of the fourth quarter of 
2018, King’s games were played by 268 millions monthly active players, with millions of players playing many mil-
lions of levels every day in Candy Crush Saga alone14. Hence, they are an ideal platform for studying how humans 
become engaged in a rewarding activity.

There is a vast literature on measuring video game engagement and enjoyment. However, most of these stud-
ies are based on (1) surveys with a moderate number of individuals15–18, (2) physical measures of physiological 
metrics on players while they are playing19, or (3) studies of psychological motivations18,20–22. In this paper, it is 
not our intention to enter into the psychological, motivational, behavioral, or social aspects of video game playing 
nor criticize the standard psychometric, behavioral or physiological metrics, or questionnaire-based evaluation 
of engagement performed on a limited number of individuals (typically aware to be subject of study) and short 
time span. Our work is radically different as it approaches the problem from a data-driven point of view by ana-
lyzing the real behavior of a large population of individuals as they play the game. In some of the games we have 
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analyzed, we follow the individual behavior of a cohort of 10 million players during a period of two years. This 
astonishing amount of data allows us to quantify empirically users’ engagement vs progression in a way that has 
not been possible before the big data era. Besides, our analysis reveals a scaling law that is universal –across many 
different games, player segmentation, or countries– with profound theoretical implications.

Specifically, we show that the progression, engagement, and quitting of players in casual games can be ana-
lyzed and simulated using a simple stochastic model. The level of enjoyment and engagement of a fun activity, like 
a video game, can be measured and shows a common scaling behavior described by a power-law as a function 
of the progression in the game. This result suggests that enjoyment, like popularity, wealth, and many other phe-
nomena, is a multiplicative process23–26: the more you are into it, the more engaged you become. Our empirical 
findings have interesting implications not only for casual games but also for generic engagement dynamics into a 
variety of different activities, reflecting a global trend of human behavior.

Results
Casual games. Many typical casual games, like Candy Crush Saga, pose a linear sequence of levels that a 
player can access one by one as the previous level is successfully completed (see Fig. 1). Players start the game at 
level 1 and progress level by level in an increasing manner. At each level, the player must achieve a predefined 
goal to pass it (e.g. collect a specific number of candies or reach a certain score) using a limited number of moves, 
resources, or time. Each attempt to pass a level can be successful, meaning that the player passes that level and 
can play the next one, or unsuccessful. Alternatively, the player can become tired or frustrated at some point 
and decides to quit the game. Each level always involves randomness, either in the initial configuration or in the 
dynamics. This makes it natural to model game dynamics as a stochastic process27,28.

To model player progression and experience in the game, we use two general indicators: one to quantify 
the total time spent in the game and another one to measure the progression within the game. In casual games, 
the real-time activity (i.e. how often and for how long the person plays the game) is not a good measure of the 
actual time spent in the game. This is so because these games are very often played in short breaks or free time, 
which is unpredictable and not controlled by the player. Instead, we use the accumulated number of attempts as 
activity-independent measure of the total “time” spent in the game. The maximum level achieved after a given 
number of attempts is an indicator of game progression, i.e., on how far a player is in the game (see Fig. 1b). With 
this strategy, we monitor the actual progression of players in the game decoupled from their real-world activity.

For these games, the dynamics of game progression can be modeled in a very simple way using Continuous 
Time Random Walks (CTRW)29,30, as described in detail in the Supplementary Information (SI). In our model, 
we assume that all players can be considered as identical and independent. When a player reaches a new level, 
there are two competing random processes taking place simultaneously: (1) the random number of attempts 
required to pass that level, τp, and (2) the random time, measured in number of attempts, that the player takes to 
get bored or frustrated and decides to abandon the game, τa. For a given level, the final fate of the player depends 
on which of these random times is shorter. If τp < τa, the player passes the level and jumps to the next one; other-
wise the player quits the game. These two times are assumed to be statistically independent random variables with 
probability density functions t( )n

pψ  and t( )n
aψ . In short, ψ t( )n

p  controls the time that the player would take to pass 
level n if he/she were not allowed to abandon the game. Similarly, ψ t( )n

a  defines the time the player would take to 
abandon the game if level n were impossible to pass (without the player knowing it). In the simplest version of the 
model, pass and abandon times at level n are taken to be Poisson point processes and, therefore, their probability 
density functions are31

Figure 1. (left) Map of the linear sequence of levels of a saga game. Players start at level 1 and take a different 
number of attempts to pass each level, progressing until eventually they decide to abandon the game. (right) 
Typical trace of the progression of a player measured as the highest level achieved after a total number of 
accumulated attempts.
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where t n( )p  and t n( )a  are the average time to pass or abandon at level n, respectively. In the SI file, we show that 
although this assumption is not totally correct, deviations from the exponential hypothesis only occur in around 
0.1% of the observed abandon and pass times. With this choice, t n( )p  and t n( )a  are the main ingredients of the 
model. Specifically, t n( )p  is a measure of the relative difficulty (or relative cost) of that particular level, whereas t n( )a  
is a measure of the engagement of a player at that particular level. Both times can be easily measured for an arbi-
trary dataset as (see Methods) 
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where t n( )p
emp  is the empiric mean time to pass level n, and pc(n) the probability to churn at that level. The empiric 

time to pass t n( )p
emp  is just the average number of attempts needed by players that passed level n to pass it. The 

churn probability pc(n) is the total number of players that abandoned at level n divided by the total number of 
players that played level n. We consider that a player has abandoned the game when the player shows no activity 
during the remaining of the observation time window. Consequently, the estimation of pc, and so of ta, depends on 
the observation time window of the dataset. In the SI file, we report estimations of ta for the same cohort of players 
by increasing the total observation window from 60 to 600 days. The abandon time nicely collapses into a clean 
power law as we increase the size of the window.

Measuring engagement.  Figure 2 shows an example of the average abandon and pass times of the different 
levels of a game, along with the behavior of the survival probability of players in the game as a function of the 
level and attempts, respectively. The data corresponds to a week cohort of 11,836,502 players of Candy Crush Saga 
game playing on the Facebook platform starting on 2014 and followed for 2 years.

The empirical data reveal a very interesting behavior for the abandon time, t n( )a . After an initial number of 
levels, typically 10–20, where the player is discovering the game (or the activity) and deciding whether he/she likes 
it or not, the engagement follows a power-law behavior of the form t n n( )a ~ α, with an exponent α around 1.1 (The 
value of the exponent for most analyzed games is in the range [1.0, 1.5]. In short datasets there is small plateau for 
high levels, consequence of the finite time window of observation and the end of content effect (see Fig. S5)). As a 
consequence of such fast growth rate, players behave very differently depending on their progression throughout 
the game, suggesting a “happy-get-happier” mechanism as a final explanation. The average pass time, on the other 
hand, is an indicator of the relative difficulty of the level as perceived by a player that has reached level n by his/her 
own means. Therefore, t n( )p  is a combination of the intrinsic difficulty of the level and the learning curve of play-
ers32 and, in general, we expect it to show a convex dependency on the progression level n. Consider, for instance, 
the case of learning a musical instrument. It is clear that the Minuet in G (BWV 114) from the Notebook of Anna 
Magdalena Bach is objectively simpler than the Bach-Brahms Chaconne in D minor BWV 1004 (for the left hand 
alone). Yet, the effort to learn the former (and so to advance in the progression) is perceived by a first-year piano 
student as higher than the effort to learn the latter as perceived by, for instance, the great piano player Daniil 
Trifonov. We thus expect t n( )p  to grow with n in a convex way. Our empirical analysis indicates that, indeed, this is 
the case. As a matter of fact, in the studied datasets, the average pass time after the first 10–20 tutorial levels can be 
reasonably fitted by a power law t n n( )p ~ β, with an exponent β in the range [0.1, 0.5].

Figure 2. Average abandon (in blue) and pass (in orange) times measured at each level of the game Candy 
Crush Saga from a week cohort of 11,836,502 players with install dates corresponding to the first week of the 
year 2014 playing on Facebook platform and followed for 2 years. The data has been binned, plotted in double 
logarithmic scale, and fitted to power laws ~ αt n n( )a  and β~t n n( )p , obtaining the values of the exponents α 
and β indicated in the legend. (b) Simulations of the model (orange) reproduce the actual survival of players 
(blue in levels, green in accumulated attempts) within the statistical uncertainty.
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These scaling laws have important consequences for the global dynamics of the game. Indeed, as we show in 
the SI, there is an (infinite order) phase transition as a function of the parameters α and β between a standard 
phase, where all players eventually quit the game, and an “enthusiastic” phase, where a finite fraction of players 
never abandon the game. For α − β < 1, the probability of a player quitting the game at level n or higher follows 
a Weibull distribution of parameter β − α + 1, that is, S n e( ) n( 1)1

≈ µ− −β α− +
. In this standard phase, the probabil-

ity of a player to never abandon the game is zero. Instead, when α − β > 1 there is a finite probability that players 
never abandon the game, provided that the game has infinite content. This probability can be computed as 

≈∞
∑ =

∞
S e t n t n( )/ ( )n p a1  (see SI for a formal proof). In this “enthusiastic” phase, the survival probability for those 
players that eventually do abandon the game follows a power law of the form Sf(n) ~ n1+β−α. This implies that the 
higher the value of α − β the fastest Sf(n) decays, so that either players abandon the game at the beginning of the 
progression, or they keep playing forever. Interestingly, all the analyzed casual games seem to be below but very 
close to the critical point α = 1 + β so that the survival probability is well described by a Weibull distribution. 
Figure 3a shows simulation results of this phase transition as compared to the theoretical approximation for 
t n bn( )p = β, = αt n an( )a  with β = 0.4, a = 1.5, and b = 1. The critical point αc = 1.4 and the behavior of S∞ close 
to the critical point are both very well reproduced by the theoretical approximation. Figure 3b shows the survival 
probability for finite realizations Sf(n) below, at, and above the critical point αc. The agreement with the theoreti-
cal predictions is remarkable.

Mimicking player progression by simulation. In our model, we make three main assumptions: (i) the 
independence of the average pass and abandon times; (ii) both times are exponentially distributed; and (iii) all 
players can be considered as statistically identical. To verify the validity of these assumptions, (i) we performed 
a detrended fluctuation analysis that verifies that both times are truly independent (see Fig. S2); (ii) we have also 
verified that the distribution of abandon and pass times of all levels are exponential to a very good approximation 
(see Fig. S3); (iii) we also show that considering all players as identical reproduces their progression and survival 
accurately. To contrast the validity of this last assumption and of the model, we simulated the progression and 
churn of a cohort of identical players using the simple stochastic algorithm described in the Methods section with 
the abandon and pass times measured for the real dataset as input. Figure 2b compares the real data with the results 
of the simulations for the survival probability in levels and attempts (i.e. the fraction of initial players still active 
after playing a given number of attempts or levels). The simulations nicely reproduce the real survival (except for 
the small finite size effects of the tail), showing impressively the validity of the model and of the assumption that all 
players can be considered as identical. Accordingly, the abandon time is indeed an intrinsic, difficulty-independent 
measure of the average engagement of players at that level. Hence, a remarkable aspect of the model is that it can 
measure quantitatively human engagement and how it evolves as players progress in the game.

Universal behavior. The data for the abandon time shown in Fig. 2 for a specific game (Candy Crush Saga), 
clearly shows that the engagement increase as a power-law as the player gets more into the game. We repeated the 
analysis for different Saga games: Farm Heroes, Papa Pear, Candy Crush Soda and Pyramid Solitaire (see Fig. 4). 
These games are very different in terms of genre (e.g. Candy Crush is a match-three swapping tile game; Papa Pear 
is a physics based bouncing game; Pyramid is a card solitaire), targeted audience, graphics, mechanics and design. 
Astonishingly, all of them exhibit a common power law behavior of engagement, showing that this evolution of 
the engagement into a fun activity may be universal. The same happens when we analyzed data corresponding to 
players from different continents, platforms and periods of time (see Fig. S4).
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Figure 3. Numerical simulations of the phase transition. Left, red squares are results of numerical simulations 
of the probability of a realization to never end as a function of α for a fixed value of β. We use the algorithm 
described in the methods section with = βt n bn( )p , = αt n an( )a  with β = 0.4, a = 1.5, and b = 1. Solid line is the 
approximate analytic solution derived in the SI. Notice the smooth approach to the critical point coming from 
the right, as a consequence of the transition being of infinite order. Right, survival probability of finite 
realizations below (α = 1), above (α = 3.4), and at the critical point (α = 1.4). Finite realizations are defined as 
those ending at n < nmax with nmax = 107. Other values of nmax do not change the results significantly. Dashed 
lines are the analytic predictions.
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Discussion
We have seen that it is possible to quantify and model progression and churn of a playful activity or habit, like a 
videogame, as a competition between two ingredients: relative difficulty and engagement. Our big data analysis 
of the system allowed us to find a very precise measure of engagement, which shows a power-law trend indica-
tive of a happy-get-happier mechanism. In this work, we have focused on the particular case of engagement in 
videogames since, to the best of our knowledge, it is the only system where the amount of available data allows 
us to elucidate sound statistical laws. However, we believe the process can be generalized to describe engagement 
in other activities: difficulty is a measure of the training cost and engagement is a measure of the reward or toler-
ance. Our model shows that a delicate balance between these two ingredients is needed to avoid early churn and 
that having a very difficult/traumatic experience at the initial stages would lead to massive churn. In addition, 
there is an interesting phase transition controlled by the ratio of progression between difficulty and engagement 
that leads to a finite probability that the person never abandons the activity. An interesting example is learning 
to play a musical instrument and, in general, any rewarding intellectual activity, like doing scientific research or 
artistic creation. Our model predicts a phase where the probability of individuals to never abandon the activity is 
non-zero. This may seem as obvious in these cases. Indeed, after many years of intense training, it is very unlikely 
that a person who had reached an advanced level would stop playing the piano or doing research33. Certainly, the 
amount of content in such disciplines is, basically, unlimited and the intellectual reward of keeping doing them is 
so high that it would be highly improbable that anyone at an advanced level would quit the activity. The impor-
tance of our framework relies precisely in its ability to explain when this behavior is possible and under what 
precise conditions. The model could be helpful to perform a similar analysis in other fields, to quantify tolerance 
and enjoyment and to design smooth learning procedures to facilitate for instance healthy habits (like sports) or 
to minimize early school leaving.

Methods
Empirical estimation of average abandon and pass times of individual levels. In our model, we 
assume that pass and abandon times are statistically independent random variables exponentially distributed 
according to Eq. (1). For mathematical tractability we take t as a continuous variable. This assumption does not 
affect any of the conclusions of this work. The corresponding survival probabilities, representing the probability 
that the time required to pass or abandon at level n is larger than t are: 

t d e( ) ( ) (3)n
p

t
n
p t t n/ ( )p∫ ψ τ τΨ = =

∞ −

and 

∫ ψ τ τΨ = = .
∞ −t d e( ) ( ) (4)n
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t
n
a t t n/ ( )a

The average abandon, t n( )a , and pass, t n( )p , times cannot be measured directly from the data. The reason is that 
abandon and pass times are unconditioned random processes, that is, t( )n

pψ , for instance, accounts for the distri-
bution of pass times at level n if players were not allowed to quit the game, which is a condition that is not meet in 

Figure 4. Comparison of mean abandon times measured in attempts of different popular Saga games from 
King: Candy Crush, Candy Crush Soda, Farm Heroes, Papa Pear, and Pyramid Solitaire. In all of them, the 
abandon time, and thus the engagement, increases as a power-law after the initial 10–20 levels, once players 
have learnt the dynamics of the game. All data corresponds to a week cohort of installs followed for 2 years. Data 
from Candy Crush and Pyramid Solitaire are from players on Facebook in the first week of 2014 and the week 
from 11-10-2013 to 17-10-2013, respectively; the remaining games are from all platforms and the first week of 
installs in 2017.
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a real dataset. Instead, the empirical observables are: the churn probability at level n, pc(n), defined as the number 
of players that churned at level n divided by the total number of players that reached that level; and the empirical 
pass time, t n( )p

emp , defined as the average time to pass level n for those players that actually passed the level (and, 
therefore, did not churn).

In the model, churn probability can be evaluated as the probability that the time to abandon level n –whatever 
value it takes– is smaller than the time to pass it. In mathematical terms this is simply expressed as 

∫ ψ τ τ τ= Ψ =
+

.
∞

p n d
t n

t n t n
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emp  can be evaluated mathematically in the model as 
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relating the parameters of the model t n( )p  and t n( )a  with two quantities that can be directly measured in empirical 
datasets, namely t n( )p

emp  and pc(n).

Stochastic simulations of player progression and churn. To simulate the model, we only need as 
input information about t n( )p  and t n( )a , i.e. the average time to pass or abandon at level n, respectively. In the sim-
ulations, for each player starting at t = 1 at level n = 1, we perform the following steps34: 

 1. Being at level n at time t, generate two random numbers r1 and r2, uniformly distributed between (0, 1).
 2. Use these random numbers to calculate the time to pass that level as t n r( )lnp p 1τ = −  and the time to 

abandon that level as t n r( )lna a 2τ = − .
 3. If τp ≤ τa the player jumps to level n + 1, time is advanced to t + τp, and go to step 1.
 4. If τp > τa the player churns at time t + τa at level n.

The whole procedure is then repeated for another player up to a total of N1 players that are used to evaluate the 
survival curves. The survival curves are calculated as the fraction of the initial number of players that survived 
up to a given total number of attempts or levels. The validation of the model was performed using the average 
abandon and pass time measured from the real dataset and represented in Fig. 2a. An excellent agreement was 
also obtained using the power-law fit as input for the abandon times.
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