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Study of the ecosystem metabolism in confined coastal lagoons during three years 

Nutrient concentrations do 
not play a key role as 

drivers of metabolism in 
these confined lagoons

We measured dissolved oxygen
(DO) among other parameters
in high-frequency (10 min) and
calculated the GPP and ER by
applying Bayesian models

We studied two Mediterranean
confined coastal lagoons in La
Pletera salt marsh (Girona, Spain)

LOCATION

Temperature was an important factor as we can see from the seasonal patternMAIN RESULTS

METHODS
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ABSTRACT 10 

Aquatic metabolism is an important descriptor of ecosystem functioning. The metabolism of 11 

ponds and confined coastal lagoons has been poorly studied in comparison to other coastal 12 

systems, in which the metabolic dynamics are better understood. In this study, we described the 13 

ecosystem metabolism of two confined Mediterranean coastal lagoons located in La Pletera salt 14 

marsh (NE Iberian Peninsula), which is dominated by flooding-confinement patterns. We 15 

estimated the metabolic rates by applying Bayesian models to three years of high-frequency 16 

open water oxygen data. Our aim was to test if nutrients and other environmental variables (the 17 

temperature, conductivity, light and water level) that registered as important drivers of 18 

metabolism in the literature were the primary drivers of metabolic variation in confined coastal 19 

water bodies. We observed clear seasonal patterns in the metabolic rates, with extremely high 20 

oxygen variability during the summer season ranging from supersaturation (saturations > 200% 21 

were recorded) to anoxia (< 5%). Despite the high rates of production registered during the 22 

summer, periods of anoxia could prevail for several days during that season. Thus, although the 23 

aerobic production and respiration were quite balanced in the lagoons during the study period, 24 

these lagoons are probably more heterotrophic since their anaerobic respiration has not been 25 

estimated. Because the studied lagoons are rich in nutrients, we expected a low response in the 26 

metabolic rates to nutrient increases, since the physiological response of primary producers to 27 

nutrient loading is usually low in nutrient-saturated ecosystems; our results supported this 28 
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hypothesis. The temperature was the primary driver, highlighting the importance of seasonality 29 

in these highly productive ecosystems. Our results also showed an uncoupling between the 30 

metabolic rates, which were higher in the summer, and the standardized ones, after removing 31 

the temperature and irradiance effects, which were higher in the winter and negatively related to 32 

the conductivity. This finding suggests that potential productivity (standardized rates) is more 33 

sensitive to winter inputs and, in contrast, the actual productivity is more related to summer 34 

concentration processes due to confinement. 35 

Keywords 36 

Dissolved oxygen, metabolic rates, autotrophy/heterotrophy, temperature, nutrients, seasonality 37 

1. Introduction 38 

Coastal lagoons are dynamic water bodies located between inland and marine systems, and 39 

they rank among the most productive ecosystems on the planet (Barnes, 1980). These 40 

ecosystems rarely exceed a few meters in depth, and they present high levels of primary 41 

production and offer nursery, refuge and feeding habitats for a variety of estuarine, freshwater 42 

and marine species (Duarte et al., 2002; Giordano et al., 2012). They also play an important 43 

role in the biogeochemical cycling of pollutants, nutrients and organic matter as well as in 44 

coastal defence in the face of erosion (Brito et al., 2012; Costanza et al., 1997; Kennish and 45 

Paerl, 2010; Kingsford et al., 2016). Occupying ~13% of global coasts and 5.3% of the 46 

European coast, they also provide exceptional recreational and commercial value (de Eyto et 47 

al., 2019; Pérez-Ruzafa et al., 2011). However, the co-occurrence of natural and human 48 

disturbances (climate change, changes in human land use, and pollutants) makes them among 49 

the most heavily impacted ecosystems on earth (Arévalo et al., 2013; Kjerfve, 1994; Morant et 50 

al., 2020). Thus, they were included in the EU Water Framework Directive 51 

(Directive2000/60/EC) for protection as transitional waters, that is, bodies of surface water 52 

located close to a river mouth and influenced by freshwater and coastal waters.  53 

Quantifying metabolic rates can help us to understand the energy turnover, nutrient cycling, 54 

trophic status and food web dynamics in aquatic systems (Holtgrieve et al., 2010). Over the last 55 

century, several methods have been developed for calculating the gross primary production 56 

(GPP), ecosystem respiration (ER) and net ecosystem production (NEP) in aquatic ecosystems 57 
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and have been applied to a wide range of habitat types (e.g., rivers, lakes, estuaries, and open 58 

ocean) (Staehr et al., 2012). Although no unique methodology has emerged as completely 59 

satisfactory, the diel oxygen open-water technique proposed by Odum (1956) provides a useful 60 

alternative to bottle and chamber incubations because it addresses aquatic metabolism directly 61 

at the ecosystem scale (Staehr et al., 2012b, 2010a). The development of reliable oxygen 62 

sensors has led to an increase in the use of aquatic metabolism measurements as an 63 

integrative indicator of ecosystem functioning worldwide (e.g., Hanson et al. 2008; Obrador and 64 

Pretus, 2013; Winslow et al., 2016). Many studies have been published in recent decades about 65 

the metabolism of ponds or coastal lagoons (e.g., Carmouze et al., 1991; Delgadillo-Hinojosa et 66 

al., 2008; Giordano et al., 2012; Howarth et al., 2014; McGlathery et al., 2001; Thébault et al., 67 

2008). As far as we know, there are only a few studies using high-frequency, long-term datasets 68 

on oxygen concentrations. New modelling approaches for estimating metabolic rates that have 69 

been used for rivers and deep lakes (Giling et al., 2017b; Obrador et al., 2014; Staehr et al., 70 

2012a; Winslow et al., 2016) have yet to be fully deployed in the study of coastal lagoons. 71 

Coastal lagoons have a wide range of morphological, geological and hydrological 72 

characteristics (Basset et al., 2013; Guelorget and Perthuisot, 1983; Kennish and Paerl, 2010; 73 

Kjerfve, 1986; Pérez-Ruzafa et al., 2005) that are shaped by the varying influence of local 74 

climate conditions, marine tides and freshwater inputs (Nidzieko et al., 2014). All these factors 75 

determine the nutrient inputs that, in turn, are one of the primary drivers of aquatic metabolism. 76 

These dynamic ecosystems, with their well-irradiated water columns and high nutrient loading, 77 

have high levels of primary production (Duarte et al., 2002). However, a certain slowing of the 78 

physiological response of primary producers to nutrient inputs might take place in nutrient-79 

saturated ecosystems, so that additional inputs to these eutrophic systems may not necessarily 80 

cause a significant increase in productivity as they would in oligotrophic systems. For this 81 

reason, the response of the metabolism to nutrient inputs might be stronger under oligotrophic 82 

conditions, whereas a sharp attenuation of this response is predicted in nutrient-rich conditions 83 

(Glibert et al., 2010).  84 

In confined coastal lagoons, the surface connections, with their connected freshwater and 85 

marine ecosystems, can be restricted to a few days per year (Badosa et al., 2006; López-Flores 86 

et al., 2006; Quintana et al., 1998). These shallow coastal lagoons are found throughout the 87 
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Mediterranean Sea, which has a very small tidal range (e.g., the average tidal range along the 88 

NE Catalan coast is 17 cm (1990-2017, Estartit meteorological station 0385J, AEMET)). Water 89 

exchanges are therefore predominantly the result of catchment floods and sea storms, rather 90 

than regular tidal refreshment. In these ecosystems, the primary water inputs are limited to 91 

those of subsurface or groundwater origin, especially during the winter, but that may account for 92 

15–80% of the water in the lagoons during the summer (Casamitjana et al., 2019; Menció et al., 93 

2017). During the confinement periods, when exchanges with coastal waters and inputs from 94 

flooding events are rare, the water level decreases while the salinity increases, along with the 95 

organic matter and nutrient accumulation, reaching concentrations similar to those found in 96 

eutrophic waters (Àvila et al., 2019; Badosa et al., 2006; López-Flores et al., 2006; Quintana et 97 

al., 1998; Vollenweider and Kerekes, 1982). Therefore, this kind of ecosystem might provide the 98 

ideal sites to check for the existence of a saturation-type response in the primary production to 99 

nutrient concentrations.  100 

In this study, we measured the metabolism of two confined coastal lagoons, where long periods 101 

of confinement result in high levels of nutrients, organic matter and chlorophyll-a, especially 102 

during the summer season (Badosa et al., 2006; Quintana et al., 2018). Our first objective was 103 

to determine the seasonal metabolic dynamics by quantifying the aquatic metabolism from high-104 

frequency dissolved oxygen (DO) concentrations during three hydrological years. The second 105 

objective was to identify the primary drivers of primary production in these confined coastal 106 

water bodies and to ascertain the influence of the nutrient concentrations and other 107 

environmental parameters (temperature, conductivity, light and water level) on the annual 108 

metabolism. We hypothesized that increases in nutrient concentrations would not cause a 109 

significant response in the metabolism in these ecosystems, suggesting the existence of a 110 

saturation-type response of the primary production to the nutrient concentration. Lastly, we 111 

discussed the challenges involved in measuring of aquatic metabolism in such productive and 112 

highly dynamic ecosystems.  113 

2. Material and methods 114 

2.1. Study Site 115 
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We studied two lagoons located in the restored salt marsh of La Pletera in L’Estartit (Girona, NE 116 

Iberian Peninsula) (Fig. 1). This area has a subhumid Mediterranean climate with a mean 117 

annual temperature ranging from 14 to 17ºC, and mean temperatures of 21ºC in the summer 118 

and 12ºC in the winter. The average annual rainfall is approximately 545 mm/year and the wind 119 

speed is approximately 3 m/s, with a strong wind influence from the NNW, occasionally reaching 120 

values higher than 17 m/s (1966-2017, Estartit meteorological station 0385J, AEMET. Data 121 

available upon request in http://meteolestartit.cat/). La Pletera salt marsh is a protected area 122 

composed of a set of water bodies defined as confined coastal brackish or hyperhaline lagoons 123 

(Trobajo et al., 2002). In these ecosystems, water exchanges basically occur during sudden and 124 

unpredictable flooding events, especially during winter, either from runoff or from the sea. 125 

However they are also characterized by isolation as a result of long periods without surface 126 

water inputs, especially during summer (Quintana et al., 2018; Trobajo et al., 2002). We 127 

selected two lagoons, Fra Ramon lagoon (FRA), which is a natural lagoon, and G02 lagoon, 128 

which was created in 2002 as part of a Life Nature restoration program (LIFE 99 NAT/E/00 129 

6386). Both are small (Table A.1; Fig. 1), permanent and shallow, free from tidal influences, and 130 

with high variability in the environmental parameters summarized in Table A.1 (see also Badosa 131 

et al. (2006), López-Flores et al. (2006), Quintana et al. (2018)). These lagoons support an 132 

important population of the endangered fish Aphanius iberus (Valenciennes, 1846) (Alcaraz et 133 

al., 2008; Alcaraz and García-Berthou, 2007; Badosa et al., 2007). The shallowest parts of the 134 

lagoons are covered primarily by meadows of Ruppia cirrhosa (Petagna) Grande, 1918; 135 

although Ulva intestinalis Linnaeus, 1753 and Chaetomorpha Kütz., 1845 are also present. The 136 

development of reefs of the alien colonial polychaete Ficopomatus enigmaticus (Fauvel, 1923) 137 

is also notable (Badosa et al., 2006; Gesti et al., 2005). As a consequence of the water level, 138 

salinity and nutrient fluctuations, only a few euryhaline species form stable populations (Badosa 139 

et al., 2006; Brucet et al., 2005; Gascón et al., 2005; Quintana et al., 2018). 140 
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 141 

Fig. 1. Location of the two confined coastal lagoons in La Pletera salt marsh (Girona, NE Iberian 142 

Peninsula). Red dots indicate the sonde locations. 143 

2.2. Data collection 144 

This study was conducted during three hydrological years from July 2015 to July 2018 145 

(hereafter: 2015/2016, 2016/2017, and 2017/2018) for both the FRA and G02 lagoons. One 146 

optical DO sonde (MiniDOT, PME, USA) was deployed in each lagoon. These sondes were 147 

deployed on a buoy in the central and deepest point of each lagoon at a depth of 30 cm from 148 

the surface. Although FRA can be 2.5 m deep, no sondes were installed in deeper water 149 

because there is usually anoxia below 1.5 m (Compte et al., 2018). The sondes measured the 150 

oxygen concentration (mg L-1), oxygen saturation (%) and temperature (ºC) every 10 minutes. 151 

Each temperature sensor has a resolution of 0.01ºC with an accuracy of 0.1ºC, and the oxygen 152 

sensor has a resolution of 0.01 mg L-1 with an accuracy of ± 5%. We considered all values 153 

below 5% saturation as anoxic conditions. The sondes were cleaned monthly and the small 154 

detected drifts were considered as negligible (< 2%). The water level, salinity and density 155 
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vertical profiles were measured every 10-15 days using a CTD sonde (Aquistar CT2X). The 156 

wind speed (m s-1) and solar irradiance (I; W m-2) were measured at 3-hour and 1-hour intervals, 157 

respectively, in meteorological stations located in L’Estartit (Estartit meteorological station 158 

0385J, AEMET. Data available upon request from http://meteolestartit.cat/) and La Tallada 159 

d’Empordà (Mas Badia), which are located 3 and 10 km away from the lagoons, respectively. 160 

2.3. Aquatic metabolism estimations 161 

Several models have been developed in accordance with Odum’s initial method to estimate 162 

metabolic rates using the diel, “free-water” changes in DO (Odum, 1956). In the present study, a 163 

modification of the BAyesian Single-station Estimation (BASE) program originally developed for 164 

stream metabolism (Grace et al. 2015) was used for its application in lentic water bodies (Giling 165 

et al., 2017b; Song et al., 2016; Staehr et al., 2012a). The primary equation behind the model is: 166 

[DO]��� =	 [DO]� +	A	 × 	PAR�
� − ER��	�Ɵ����

�� −	k�
�������	����

 !"#
	± Adv  167 

where [DO]� and [DO]��� correspond to the changes in the DO concentrations between 168 

consecutive time steps. The subscript t indicates a 10-minute time interval. The GPP is 169 

expressed as A × PAR�
�, where A is a daily constant that represents the primary production per 170 

quantum unit of light, PAR	is the photosynthetic active radiation (400-700 nm waveband, in 171 

µmol m-2 s-1) and the exponent p is the coefficient that reflects the ability of the primary 172 

producers to use the incident light (Grace et al., 2015). The ER�� 	�Ɵ����
�� term in the equation is 173 

the Arrhenius thermo-dependent respiration rate (ER��), where Ɵ is the coefficient for 174 

temperature dependence, '( is the temperature at the corresponding time step and ') is the daily 175 

mean water temperature. The expression k�
�������	����

 !"#
 corresponds to the gas exchanged with 176 

the atmosphere, where *( is the gas transfer velocity, DOeq� is the equilibrium DO	concentration 177 

at a given salinity, temperature and barometric pressure, and DO� is the measured DO 178 

concentration. The k� was obtained from the Schmidt coefficient for oxygen in seawater by 179 

considering the water temperature (Wanninkhof, 1992), and based on wind speed equations by 180 

Cole and Caraco (1998). The Zmix refers to the depth of the mixed layer. Adv represents other 181 

physical fluxes, such as advection or vertical exchange, that were considered negligible (Staehr 182 

et al., 2010a). 183 
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The barometric pressure was set by default at 1 atmosphere. The PAR was calculated from 184 

irradiance values (PAR= I × 4.6 × 0.45) (Kirk, 1994; McCree, 1981). The DOeq	concentrations 185 

were determined for the observed water salinity and temperature using Benson and Krause 186 

(1984) expressions. The Zmix (m) was defined as the lagoon water level in G02, and the depth of 187 

the maximum water density gradient in the vertical profiles for the FRA lagoon, which shows 188 

some stratification during the winter time (Compte et al., 2018; Quintana et al., 2018). The Zmix 189 

ranged from 0.3 - 2.1 m in FRA and 0.7 - 1.7 m in G02. The parameters that were not measured 190 

at a high frequency (the solar irradiance, wind, salinity and water level) were linearly 191 

interpolated at 10-minute intervals. Incomplete days with less than 144 total daily 192 

measurements were discarded from the database. No smoothing was applied to any of the data 193 

series. 194 

The model estimates whole-ecosystem metabolic rates from single-station measurements in a 195 

Bayesian framework using the statistical software R (R Core Team, 2017), which invokes JAGS 196 

(Plummer, 2003) to run the Markov Chain Monte Carlo iterations (Grace et al., 2015). To ensure 197 

the greatest accuracy, the model was run with A, p, ER�� and Ɵ as estimable daily parameters 198 

and the numbers of iterations were fixed to 40000 and 20000 for burn-in (equilibration iterations) 199 

(Grace et al., 2015). The estimable parameter distribution priors were set to Gaussian 200 

distributions with known physical limits following Grace et al. (2015). Different parameters were 201 

used to validate the fit of the model for every day included in the study. The parameter 202 

convergence was assessed using Gelman-Rubin statistics (R- < 1.1) and the posterior predictive 203 

p-value (PPP; 0.1-0.9), among other tests. In addition, the models were considered good-fitting 204 

when the R2 was higher than 0.4 (e.g., Giling et al., 2017a). Days with an R2 < 0.4 or 205 

unconverged chains of the parameters were excluded from the posterior analyses.  206 

The mean daily rates (mg O2 L-1 day-1) were calculated from the estimated parameters as 207 

follows: 208 

GPP= ∑ A	 × 	PAR�
�2�3456�2�7�4

�8�  209 

ER= ER�� × 144 210 

Lastly, the daily NEP was calculated as the difference between GPP and ER and the GPP:ER 211 

as the quotient between GPP and ER.  212 
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The mean daily rates were also standardized to remove temperature and PAR effects, thus 213 

yielding the potential productivity and respiration that were not affected by meteorological 214 

conditions but only dependent on the water composition. Thus, the GPP and ER were 215 

standardized at 20ºC as follows: 216 

GPP20= GPP ×	�Ɵ9:���� 217 

ER20= ER ×	�Ɵ9:���� 218 

In addition, the GPP20MAX was calculated using the maximum irradiance value registered during 219 

the entire study period and at a temperature of 20ºC. This value corresponds to the specific 220 

photosynthetic rate at optimal illumination (Jassby and Platt, 1976) and is used as the Pmax in 221 

many metabolic models (Hanson et al. 2008), representing the maximum productivity that 222 

autotrophs would have if the light was unlimited. For those calculations, the hours of light was 223 

set at 12 (i.e., 72 10-minute intervals per day), and we used the estimated median daily values 224 

of A, p and Ɵ because they did not always follow a normal distribution. 225 

GPP20MAX = A × maxPARp × �Ɵ9:���� 	× 72 226 

2.4. Water analyses 227 

The water electrical conductivity and pH were measured monthly in situ with hand-held sonde 228 

model HACH HQ30d. Water samples for inorganic nutrient analyses were filtered in the field 229 

through precombusted (450ºC for 4 h) Whatman GF/F filters (0.7 µm pore) and frozen until 230 

analysis. The ammonium, nitrite and nitrate were analysed following the APHA (2005) and the 231 

phosphate was measured according to UNE-EN-ISO6878. Unfiltered water samples were also 232 

frozen for the analysis of total nitrogen (TN), total phosphorus (TP) and total organic carbon 233 

(TOC). The TOC and TN were measured using a TOC analyser (TOC-V CSH SHIMADZU). The 234 

TP analyses were performed as described in Grasshoff et al. (2007). Organic forms of nitrogen 235 

(Norg) and phosphorus (Porg) were calculated by taking the difference between TN or TP and the 236 

sum of the inorganic forms. The dissolved inorganic nitrogen (DIN) was calculated as the sum of 237 

the NH=
�, NO9�, and NO>�. The chlorophyll-a concentrations were estimated by high-performance 238 

liquid chromatography (HPLC) following Zapata et al. (2000) and López-Flores et al. (2006). 239 

2.5. Data analysis 240 
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To characterize the days with anoxia, a MANOVA analysis was performed, with the 241 

temperature, wind and PAR as dependent variables. The explanatory variable was ‘anoxia’ (1= 242 

day with anoxic conditions; 0= day without anoxia) that was included as a factor. We calculated 243 

the monthly metabolic rates (hereafter, GPPm and ERm) to have the same frequency for the 244 

different variables, since nutrient concentrations were measured monthly. We used the median 245 

values because the daily metabolic rates were skewed. The relationship between the physical 246 

and chemical parameters and the metabolic rates was tested through Spearman correlations. 247 

To avoid collinearity among explanatory variables in posterior analyses, the r values were used 248 

to select them (r < 0.7 according to Dormann et al. (2013)) as well as the variance inflation 249 

factor (VIF < 3) (Zuur et al., 2009). The relative importance of nutrients (DIN, PO=>� ,TOC, Norg, 250 

Porg) and some physical variables (the temperature, conductivity, light and water level) to the 251 

monthly metabolic rates (non-standardized and standardized) was assessed using general 252 

additive mixed models (GAMMs). GAMMs were applied with cubic regression splines and 253 

Gaussian distributions using the mgcv package in R (Wood, 2011). For all the models, each 254 

metabolic rate was included as a dependent variable, and the potential physical and chemical 255 

drivers were log-transformed and included as explanatory variables. The optimum model was 256 

found to exclude non-significant terms through the stepwise backward method. We tested all 257 

the models for violations of assumptions of normality, homogeneity and independence. When 258 

the homogeneity assumption was breached, different variance structures were applied to the 259 

model  and then compared using Akaike information criterion (AIC) values following Zuur et al. 260 

(2009). We tested the independence of the residuals in the optimum model using an 261 

autocorrelation function plot of the residuals. We also applied the same data analysis using 262 

different nutrient log-ratios as dependent variables, namely TN:TP, DIN:Norg, PO=>�:Porg and 263 

DIN:	PO=>�. For all the data analyses, the significance level was set to a p < 0.05 and all were 264 

performed using R (R Core Team, 2017). 265 

3. Results 266 

High values were found for the temperature, conductivity, chlorophyll-a and nutrient 267 

concentrations (Fig. A.1 and A.2), primarily when the water level was low and coinciding with 268 

the summer periods (Fig. A.2). Seasonal differences were also observed for the range of 269 

variation in DO. During the summer, the oxygen saturation ranged from 0% to > 200% over a 270 
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24-hour period, and in winter, it ranged from 50% to < 150% (Fig. 2). Despite the high oxygen 271 

concentration values, full days with anoxia (oxygen saturation < 5%, see methods) also 272 

occurred in the summer months, and it occasionally lasted for several days (Fig. 3). Out of a 273 

total of 1057 and 1005 days processed for FRA and G02, respectively, 75 and 72 days showed 274 

anoxic conditions. Anoxia occurred primarily during the summer season, and 59% (FRA) and 275 

75% (G02) of those days were discarded by the model of GPP and ER computations mostly 276 

because they had R2 < 0.4. An example of a discarded day due to anoxia with a poor fit (R2 < 277 

0.4) is shown in Fig. A.3. However, some of the days with anoxic conditions displayed good 278 

model fit (R2 > 0.4 and good convergence of the parameters). During those days, the annual 279 

minimum GPP rates were recorded (0.002 mg O2 L
-1 d-1) (Fig. A.4). The MANOVA test revealed 280 

that days with anoxic conditions were characterized by higher temperatures (F1,1944= 71.79, p < 281 

0.01) and higher PAR values (F1,1944= 13.40, p < 0.01), but the wind had no effect (F1,1944= 0.04, 282 

p= 0.85) (Fig. A.5). 283 

 284 

Fig. 2. Example of the seasonal changes in oxygen saturation dynamics over 8 days. The winter 285 

period (in blue) ranged from the 1st to 7th February 2016 and the summer period (in red) from 286 

the 19th to 25th July 2017. FRA and G02 are represented by continuous and dashed lines, 287 

respectively. 288 

 289 
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 290 

Fig. 3. Variation in oxygen saturation (%) during an anoxic event lasting 6 days. The values 291 

correspond to the FRA lagoon from 26th August to 4th September 2015. 292 

A total of 593 and 558 daily ecosystem metabolism rates were selected after modelling (see 293 

methods) for FRA and G02, respectively. They represented 54 and 51 % of the total sampling 294 

days. Two examples of days with good and poor fit and the convergence of the parameters are 295 

shown in Fig. A.6 and A.7, respectively. Both lagoons showed similar temporal patterns in their 296 

metabolic rates during the three years of the study period. Despite some variability, a clear 297 

seasonal pattern emerged (Fig. 4). The GPP and ER increased around the spring, reaching the 298 

highest values in the summer (maximum GPP and ER of 71.88 and 62.06 mg O2 L-1 d-1, 299 

respectively). Both rates declined in autumn and winter (with GPP and ER rates rarely 300 

exceeding 30 mg O2 L
-1 d-1) and experienced lower variability during this period. The seasonal 301 

pattern observed in the daily GPP and ER was not observed in the ln(GPP:ER) dynamics (Fig. 302 

5). Many ln(GPP:ER) values were close to zero with occasional sharp deviations, either positive 303 

or negative, with maximum and minimum values of 4.93 and -7.46, respectively. 304 
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 305 

Fig. 4. Daily gross primary production (GPP) and ecosystem respiration (ER) during the study 306 

period in the studied lagoons (FRA in black, and G02 in grey). The X-axis labels indicate the 307 

month-year. 308 

 309 

Fig. 5. Daily ln(GPP:ER) ratio during the study period for both lagoons (FRA represented in 310 

black, and G02 in grey). The X-axis labels indicate the month-year. 311 

Higher annual GPP and ER values were recorded in G02 than FRA for all hydrological years, 312 

with higher interannual variability (Table 1). During the second hydrological year (2016/2017), 313 

the rates were lower for both lagoons. Overall, in both lagoons the GPP was slightly lower than 314 
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the ER (NEP < 0 and GPP:ER < 1), but the median GPP:ER was close to 1, indicating a 315 

balance between both rates (Table 1). The only year with GPP higher than ER values (NEP > 0 316 

and GPP:ER > 1) was 2017/2018 in G02. 317 

Table 1. Median values of daily ecosystem metabolism parameters for the three hydrological 318 

years studied here (from July 2015 to July 2018). The metabolic rates are expressed in mg O2 319 

L-1 d-1. Note that the median values are provided instead of the mean values because the data 320 

were not normally distributed. The 5th and 95th percentiles are shown in brackets. GPP: gross 321 

primary production; ER: ecosystem respiration; and NEP: net ecosystem production. 322 

 GPP ER NEP GPP:ER 

FRA 
    

2015/2016 6.91 (0.006-30.50) 7.97 (3.06-25.30) -0.86 (-4.39-4.44) 0.92 (0.0014-1.34) 
2016/2017 3.53 (0.03-45.06) 5.05 (0.70-38.88) -0.20 (-4.66-7.01) 0.94 (0.0049-2.60) 
2017/2018 7.94 (0.06-38.94) 8.42 (0.13-34.58) -0.29 (-5.37-6.46) 0.98 (0.074-21.55) 

G02     
2015/2016 11.65 (0.35-46.30) 13.09 (4.69-41.73) -1.62 (-7.05-6.73) 0.91 (0.063-1.48) 
2016/2017 5.68 (0.01-45.15) 8.04 (0.44-38.89) -0.47 (-8.45-8.71) 0.90 (0.0013-2.24) 
2017/2018 10.29 (1.41-51.23) 11.15 (0.43-46.27) 0.97 (-6.64-12.90) 1.10 (0.26-6.43) 

 323 

The Spearman correlations revealed a significant coupling between the monthly metabolic 324 

rates, GPPm and ERm (r= 0.91, Fig. 6). High positive correlations were also observed between 325 

both GPPm and ERm with the temperature and PAR, but both GPPm and ERm, showed 326 

significant negative relationships with the water level. No significant correlation was found 327 

between the GPPm:ERm quotient and the physical and chemical variables analysed here. All 328 

environmental variables except the water level were positively correlated with the water 329 

temperature and electrical conductivity (EC), suggesting a seasonal pattern in water conditions. 330 

There was a high correlation between the PAR and Porg with the temperature, and the Norg and 331 

PO=>�  with the TOC (r > 0.7; Fig. 6). Therefore, the PAR, Porg and TOC were not included in 332 

posterior analyses to avoid collinearity in the explanatory variables. 333 

 334 
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 335 

Fig. 6. Spearman correlation coefficients for the monthly metabolic rates, GPPm (gross primary 336 

production), ERm (ecosystem respiration), the GPPm:ERm quotient and temperature (T), 337 

photosynthetic active radiation (PAR), electrical conductivity (EC), water level (WL), dissolved 338 

inorganic carbon (DIN), phosphate (PO=>�), total organic carbon (TOC), organic nitrogen (Norg) 339 

and organic phosphorus (Porg). Significance is indicated by coloured squares. Blue and red 340 

colours indicate positive and negative values for r, respectively. High absolute values of r are 341 

represented by dark colours and low values are indicated by light colours. 342 

The GAMM results showed no significant relationship between the nutrients and metabolic rates 343 

(Table 2). The GPP was only significantly related to the temperature while the ER was positively 344 

related to the temperature and negatively related to the water level, with a significant difference 345 

between lagoons due to differences in the depths (Fig. 7). The GPP:ER did not show a 346 

significant relationship with any of the physical and chemical variables included in the model.  347 
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GAMMs including the log-ratios of nutrients as explanatory variables (TN:TP, DIN:Norg, PO=>�:Porg 348 

and DIN:	PO=>�) did not reveal any significant relationship to any of the metabolic rates. 349 

Table 2. Results of the generalized additive mixed model analysis (GAMMs) performed to 350 

identify the primary drivers contributing to metabolic variations in the study lagoons (FRA and 351 

G02). The response variables were the monthly non- and standardized metabolic rates, 352 

represented by GPPm (gross primary production), ERm (ecosystem respiration), GPPm20 (gross 353 

primary production standardized to 20ºC), GPPm20MAX (gross primary production standardized to 354 

20ºC and to the maximum value of irradiance registered during the study period) and ERm20 355 

(ecosystem respiration standardized to 20ºC). The GPPm:ERm ratio was also included in the 356 

analysis as a response variable but none of the explanatory variables showed significant 357 

results. The table simply shows the significant explanatory variables resulting from the 358 

backward selection procedure. (s) refers to the scaled smoother for each significant explanatory 359 

variable; ‘edf’ is estimated degrees of freedom; AIC: Akaike information criterion; and R2= 360 

adjusted R-squared. T: temperature; WL: water level; EC: electrical conductivity; and PO=>�: 361 

phosphate.  The number of observations was 72 for all the models. 362 

Response variable: GPPm   AIC= 487 R2= 0.32 
 Estimate Standard error t value Pr (>|t|) 

Intercept 11.92 1.03 11.64 <0.01 
Approximate significance of smooth terms edf  F p 

s(lnT) 2.53  22.05 <0.01 
Response variable: ERm   AIC= 454 R2= 0.53 

 Estimate Standard error t value Pr (>|t|) 
Intercept 14.71 1.22 12.11 <0.01 

factor (lagoon) G02 -3.97 1.92 -2.07 0.04 
Approximate significance of smooth terms edf  F p 

s(lnT) 2.50  28.46 <0.01 
s(lnWL) 1.00  8.47 <0.01 

Response variable: GPPm20   AIC= 618 R2= 0.12 

 Estimate Standard error t value Pr (>|t|) 
Intercept 16.65 2.21 7.54 <0.01 

Approximate significance of smooth terms edf  F p 
s(lnEC) 1  12.73 <0.01 

Response variable: GPPm20MAX   AIC= 702 R2= 0.22 
 Estimate Standard error t value Pr (>|t|) 

Intercept 8.88 7.83 1.13 0.26 
factor (lagoon) G02 37.81 15.77 2.40 0.02 

Approximate significance of smooth terms edf  F p 
s(lnPO=>�) 1.36  4.71 0.04 
s(lnWL) 2.80  3.25 0.03 

Response variable: ERm20   AIC= 595 R2= 0.19 
 Estimate Standard error t value Pr (>|t|) 

Intercept 17.43 1.78 9.80 <0.01 
Approximate significance of smooth terms edf  F p 
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s(lnEC) 1  18.41 <0.01 
 363 

 364 

Fig. 7. Selection of significant smoothers for the contribution of explanatory variables (physical 365 

and chemical variables) for the optimal generalized additive mixed model (GAMMs) that 366 

explains the variation for each metabolic rate (dependent variable). The red line is the smoother 367 

and the grey shaded area shows the 95th confidence bands. FRA lagoon is represented in 368 

black, and G02 lagoon in grey. Non-significant relationships are not shown. T: temperature; WL: 369 

water level; EC: electrical conductivity; and PO=>�: phosphate. The monthly metabolic rates are 370 

represented by GPPm: gross primary production and ERm: ecosystem respiration, and the 371 

monthly standardized rates by GPPm20: gross primary production standardized to 20ºC; 372 

GPPm20MAX: gross primary production standardized to 20ºC and to the maximum value of 373 

irradiance registered during the study period; and ERm20: ecosystem respiration standardized to 374 

20ºC. 375 
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The temperature-standardized rate (i.e., GPP20, GPP20MAX and ER20) dynamics differed from the 376 

patterns of non-standardized ones (Fig. 8). The maximum values for the GPP20 and ER20 (480.4 377 

and 319.8 mg O2 L
-1 d-1, respectively) were observed in the autumn and winter. In addition, the 378 

GPP20MAX, which represented the autotroph productivity at 20ºC under maximum light 379 

conditions, showed the maximum value (1166.8 mg O2 L-1 d-1) during the winter time. The 380 

conductivity arose as the primary factor, with a significant negative relation to the GPP20 and 381 

ER20 (Table 2; Fig. 7). The model that included GPP20MAX as a response variable revealed a 382 

significant positive relationship to the water level and significant differences for both lagoons 383 

due to the differences in the depths (Table 2; Fig. 7). Again, no significant influence from the 384 

nutrient concentration on the standardized rates was found, except for PO=>� with the GPP20MAX, 385 

but this relationship was negative (Table 2). 386 

 387 

Fig. 8. Daily standardized rates for GPP20, GPP20MAX and ER20 during the study period for both 388 

lagoons (FRA in black, and G02 in grey). GPP20: gross primary production standardized to 389 

20ºC; GPP20MAX: gross primary production standardized to 20ºC and to the maximum value of 390 

irradiance registered during the study period; and ER20: ecosystem respiration standardized to 391 

20ºC. X-axis labels indicate the month-year. 392 

4. Discussion 393 
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The metabolic rates measured in La Pletera are similar in both water bodies studied here and 394 

higher than the values reported in other coastal lagoons (Table 3). When comparing La Pletera 395 

lagoons with other types of aquatic systems, we also find higher rates relative to estuaries 396 

(Caffrey, 2004, 2003; D’Avanzo et al., 1996; Russell and Montagna, 2007; Thébault et al., 2008) 397 

or lakes (Giling et al., 2017b; Staehr et al., 2010a; Staehr and Sand-Jensen, 2007), even the 398 

ones in eutrophic and hypereutrophic states (Table 3). The maximum values for estuaries 399 

(28.10 g O2 m
-2 d-1; Table 3) are close to the ones obtained in La Pletera, although they are not 400 

the usual values for that type of ecosystem (average value of 7.70 g O2 m
-2 d-1 for estuaries 401 

according to Caffrey, 2004). 402 

Table 3. Ecosystem metabolism estimations in similar ecosystems. The values are expressed in 403 

g O2 m
-2 d-1. GPP: gross primary production and ER: ecosystem respiration. The values were 404 

converted from carbon units to oxygen in a ratio of 1 except for a (photosynthetic quotient= 1.2; 405 

respiratory quotient= 1).  406 

Location Time period 
studied GPP ER Method References 

FRA, La Pletera, Spain 
Annual 

average range 
13.03-14.09 12.84-14.90 DO Open-water This study* 

G02, La Pletera, Spain 
Annual 

average range 
12.05-17.00 13.04-15.70 DO Open-water This study* 

FRA, La Pletera, Spain 
Summer (June-

September) 
average range 

19.00-34.64 21.16-32.15 DO Open-water This study* 

G02, La Pletera, Spain 
Summer (June-

September) 
average range 

15.82-18.63 16.63-18.69 DO Open-water This study* 

Ria Formosa, Portugal 
Summer (July) 

average 
1.38 0.99 Incubation 

Santos et al., 
2004 

Lower Laguna Madre, 
Texas, USA 

Annual range 2.15-14.10a 3.30-12.20a DO Open-water 
Ziegler and 

Benner, 
1998 

Ninigret pond, Rhode 
Island, USA 

Summer 
(August) 
average 

5.40 6.10 DO Open-water 
Nixon and 

Oviatt, 1972 

Saquarema lagoon, Brazil 
Annual 
average 

3.40 3.30 CO2 Open-water 
Carmouze et 

al., 1991 

West Falmouth Harbor, 
Cape Cod, USA 

Summer (July-
August) 

average range  
4.80-16.00 6.40-17.60 DO Open water 

Howarth et 
al., 2014 

Everglades peatland, 
USA 

Annual 
average 3.30 7.04 DO Open-water 

Hagerthey et 
al., 2010 

Albufera des Grau, 
Balearic 

Islands, Spain 

Summer (July-
August) 

average range 
1.40-8.90 3.70-17.00 DO Open water 

Obrador and 
Pretus, 2013 

Estuaries included in 
National Estuarine 

Annual 
average range 

2.30-28.10 4.40-32.30 DO Open water 
Caffrey, 

2004 
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Research Reserves, USA 
Shallow lakes,  Northern 
Highland Lake District, 

Wisconsin, USA 

Summer (3-5 
days) average 

6.03 6.00 DO Open-water 
Lauster et 
al., 2006 

 407 

We found higher GPP and ER values during the summer period, consistent with studies of 408 

Ziegler and Benner (1998) in a subtropical seagrass-dominated lagoon and Hagerthey et al. 409 

(2010) in the Everglades. Similar studies developed in the Mediterranean climate (Obrador and 410 

Pretus, 2012) also reported these seasonal patterns. Similar seasonal patterns in the GPP and 411 

ER were described for freshwater shallow lakes (Laas et al., 2012; Staehr and Sand-Jensen, 412 

2007). The seasonal pattern found in the metabolic rates of La Pletera lagoons could be 413 

explained by the flooding-confinement dynamics dominating the salt marsh. Confined coastal 414 

lagoons have water inputs that are limited to a few days per year and scarce or absent during 415 

the summer, when we found higher metabolic rates. During that season, the water level 416 

decreases and results in a strong concentration effect (Casamitjana et al., 2019; Menció et al., 417 

2017; Quintana et al., 2018), leading to high conductivity, total nutrients, organic matter and 418 

chlorophyll-a. These dynamics have already been reported in previous studies in the area and 419 

in other nearby Mediterranean coastal systems (e.g., Badosa et al., 2006; Cabrera et al., 2019; 420 

Menció et al., 2017; Quintana, 2002).  421 

The small size, low water level and the presence of Ruppia cirrhosa and macroalgae in littoral 422 

areas might also contribute to the high production and respiration rates found in La Pletera. 423 

Both the minimum and maximum metabolic rates were recorded during the summer time, 424 

because of the differences in the observed diel oxygen saturation dynamics. During summer, 425 

the oxygen concentration can range from anoxia (less than 5%) at night to supersaturation 426 

(more than 200%) during daylight. These supersaturation and hypoxia conditions are rarer in 427 

the winter. Large and pulsed oxygen oscillations varying from supersaturation to anoxia on both 428 

seasonal and diurnal time scales have already been described in similar ecosystems (Obrador 429 

and Pretus, 2013; Viaroli and Christian, 2003). Similar oxygen patterns have also been reported 430 

in other eutrophic coastal ecosystems (Beck and Bruland, 2000; Hull et al., 2008; Shen et al., 431 

2008; Ziegler and Benner, 1998), especially anoxic conditions in deep waters as a result of 432 

sinking organic matter due to high rates of surface primary production (Kemp and Testa, 2011; 433 
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Rabalais et al., 2009) or to the metabolic activity of submerged vegetation in macrophyte-rich 434 

lagoons (Camacho et al., 2016; Obrador and Pretus, 2013).  435 

Stable anoxia was recorded for consecutive days in La Pletera lagoons, even at shallow depths 436 

(30 cm from the surface). These situations typically correspond to days with high temperatures 437 

and irradiance. In some systems, anoxia near the surface can result from the upwelling of 438 

poorly oxygenated deep waters due to wind influence (Chikita, 2000; Sanford et al., 1990). 439 

However, this was not the case at La Pletera, because the periods of anoxia we recorded were 440 

not linked to strong winds or anomalous changes in daily temperature fluctuations that were 441 

attributable to an upwelling of deep waters at different temperatures. Other authors (D’Avanzo 442 

and Kremer, 1994; Thébault et al., 2008; Tyler et al., 2009; Woolway et al., 2017) highlighted 443 

calm conditions (such as high water temperature, low wind and cloudiness) as the drivers of 444 

severe hypoxic or anoxic periods, when the exchange of oxygen with the atmosphere was 445 

scarce or non-existent. In addition, especially for shallow coastal ecosystems, high 446 

concentrations of organic matter could drive the system to intensify the respiration rates 447 

(reducing GPP:ER ratio), and an inhibition of photosynthesis due to high temperatures, a lack of 448 

oxygen and/or the presence of chemical reductants originating from anaerobic respiration (such 449 

as H2S) could lead the system to experience prolonged periods of anoxia during the day (Beck 450 

and Bruland, 2000; Kemp and Testa, 2011; Thébault et al., 2008). Despite the global concern 451 

about oxygen declines in coastal waters at a global scale (Breitburg et al., 2018), it is likely that 452 

the well-adapted organisms inhabiting these lagoons are only slightly affected by these hypoxic 453 

events; for example, dense populations of the endangered fish endemic species Aphanius 454 

iberus have been observed in these lagoons in spite of the prolonged periods of anoxia. 455 

In contrast to the GPP and ER rates, the NEP and GPP:ER ratio did not show a clear temporal 456 

pattern during the three years of the study, consistent with the results obtained by Howarth et al. 457 

(2014) or Giordano et al. (2012) in other shallow coastal lagoons. Contrary to previous 458 

observations (Carmouze et al., 1991; McGlathery et al., 2001; Ziegler and Benner, 1998), 459 

autotrophy peaks occurred more often during winter rather than summer. The extreme values 460 

towards heterotrophy typically corresponded to summer days when an oxygen deficit occurred. 461 

A characteristic of shallow coastal lagoons appears to be day-to-day fluctuations in the NEP, 462 

oscillating between autotrophy and heterotrophy (Carmouze et al., 1991; Giordano et al., 2012). 463 
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Seasonal shifts between both states have been observed for coastal lagoons (Carmouze et al., 464 

1991; McGlathery et al., 2001; Obrador and Pretus, 2012) and lakes (Laas et al., 2012). Net 465 

heterotrophy has also been described (Delgadillo-Hinojosa et al., 2008; Thomaz et al., 2001; 466 

Ziegler and Benner, 1998) as well as in lakes (Staehr et al., 2010b) and estuaries (Caffrey, 467 

2003), but it does not seem to be a general property of coastal lagoons, because annual 468 

autotrophy (Giordano et al., 2012) and balanced metabolism (Santos et al., 2004; Thébault et 469 

al., 2008) have also been described. In La Pletera lagoons, high nutrient levels and the 470 

presence of macrophytes and macroalgae could support high rates of primary production but 471 

also cause the accumulation of labile organic matter, leading to increases in the ER rates and, 472 

driving the system to net heterotrophy (Camacho et al., 2016). When considering aerobic 473 

metabolism only, both Pletera lagoons tend to be slightly heterotrophic on an annual basis and 474 

the GPP:ER ratios are close to 1, indicating that an equivalent quantity of organic matter was 475 

consumed. However, these results should be taken with caution since heterotrophy is 476 

underestimated, as we discuss below. 477 

Although the application of the diel oxygen method has advantages over other techniques 478 

(bottle and chamber incubations), some uncertainties and assumptions of this method that were 479 

already described in previous studies (Kemp and Testa, 2011; Staehr et al., 2012b, 2010a) can 480 

be magnified in coastal lagoons, especially in confined ones. Firstly, La Pletera lagoons show 481 

some degree of horizontal heterogeneity, so the metabolic rate estimations might depend on the 482 

sonde location. In the FRA lagoon, there is a large, shallow, macrophyte-rich area far from the 483 

deepest part of the lagoon. This type of habitat heterogeneity is very common in coastal 484 

lagoons. A sonde installed in the centre of the deepest part might underestimate the total 485 

metabolism if it does not detect the littoral metabolism, since production in shallow macrophyte-486 

rich lagoons is usually very high (Barrón et al., 2004; D’Avanzo et al., 1996; Obrador and 487 

Pretus, 2013). In trying to avoid errors regarding horizontal heterogeneity, we purposely avoided 488 

“whole-lagoon” budgets. However, special attention must be paid during comparisons across 489 

sites (Table 3) due to the fact that it is limited by the number of sondes deployed within each 490 

site and the habitat heterogeneity. Secondly, vertical microstratifications in oxygen 491 

concentration may appear in the surface layer under calm conditions. Thus, metabolic 492 

estimations may depend on the exact depth of the sonde. To quantify the effect of 493 
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microstratification on the metabolic rates, a test using sondes at different depths was performed 494 

during a summer period (July 2017) at FRA lagoon, when the water column was not stratified 495 

(Quintana et al., 2018) and the primary mixing forces were assumed to be scarce. The results 496 

showed deviations of < 15% for GPP and < 2% for ER from the metabolic rates calculated from 497 

a single-depth sonde. Finally, the diel oxygen method is based on oxygen changes and does 498 

not detect anaerobic metabolism, which must be important in the deepest parts of the lagoons 499 

and in the entire water column during the observed anoxia events. Many archaea and bacteria 500 

can derive energy from the decomposition of organic matter through anaerobic respiration, 501 

using other electron acceptors besides oxygen, such as nitrate, sulphate, etc. (Camacho, 2009; 502 

Kemp and Testa, 2011). Blooms of the anaerobic bacteria Chromatium sp. have been 503 

observed, even at the surface of FRA, causing the typical pink colour of the water. To avoid 504 

misunderstandings while analysing the NEP or trying to estimate the carbon balances, we 505 

should keep in mind that by using the diel oxygen method, we are not accounting for the 506 

anaerobic part of the metabolism that seems to be relevant in these ecosystems (especially in 507 

FRA) as prolonged periods of anoxia and the presence of Chromatium sp. revealed. In any 508 

case, the horizontal heterogeneity, vertical microstratification and anaerobic activity contribute 509 

to the total ecosystem metabolism, but they are not detected by the diel oxygen method. Thus, 510 

the total ecosystem metabolism in confined lagoons may be even higher, highlighting the high 511 

productivity of these ecosystems, and they are probably more heterotrophic than the results 512 

given by the diel oxygen method. 513 

We found that the GPP and ER were strongly positively related to the temperature and light. 514 

These results are consistent with previous studies in coastal lagoons (Carmouze et al., 1991; 515 

Giordano et al., 2012; Morant et al., 2020; Ziegler and Benner, 1998), but also in lakes (Laas et 516 

al., 2012; Staehr et al., 2010b; Staehr and Sand-Jensen, 2007) and estuaries (Caffrey, 2004, 517 

2003; Russell and Montagna, 2007). Both parameters have already been described as 518 

important factors that regulate the coastal ecosystem metabolism and provide the ideal 519 

conditions for phytoplankton growth (Beck and Bruland, 2000; Thébault et al., 2008). Light is the 520 

ultimate driver of photosynthetic activities, and it is well-known to influence the temperature in 521 

many biological processes such as respiration due to its control of enzyme-catalysed cellular 522 

metabolism (Kemp and Testa, 2011). The metabolic rates followed the seasonal temperature 523 
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and irradiance cycle, reaching the highest rates in the summer time. A high coupling between 524 

GPPm and ERm was observed, indicating that the production of organic matter by 525 

photosynthesis in the ecosystem is consumed or respired in similar proportions. High 526 

correlations were also observed in previous studies (Brighenti et al., 2018; Staehr et al., 2010b) 527 

that commonly reported weaker coupling in eutrophic than oligotrophic waters (Obrador et al., 528 

2014; Solomon et al., 2013). In La Pletera, the daily lagoon GPP and ER correlations were 529 

lower (r= 0.5) than the monthly correlation rates (r= 0.91), which is consistent with the low 530 

coupling in eutrophic waters. GAMMs highlight the influence of the temperature on the 531 

metabolic rates and reveal the poor relationship to nutrient concentrations, with only a weak 532 

negative relationship between the standardized GPP20MAX and	PO=>�, indicating that the possible 533 

effect of nutrients on metabolic rates are only identifiable when the seasonal effects of 534 

temperature and light are removed and suggesting some PO=>� consumption with an increased 535 

GPP. Although many previous studies report an important role for nutrients and organic matter 536 

as the primary drivers of metabolism (Brighenti et al., 2018; Caffrey, 2004; Hanson et al., 2003; 537 

Morant et al., 2020), our results confirm our hypothesis. This finding is consistent with Glibert et 538 

al. (2010), who stated that under high nutrient concentrations, incremental increases in nutrients 539 

do not provoke a significant response in metabolism due to the sharp attenuation on increasing 540 

GPP in nutrient-rich ecosystems. The exchange of water with the ocean or surrounding systems 541 

in La Pletera lagoons is less frequent than in other lagoons or coastal systems. Therefore, the 542 

confinement of FRA and G02 causes an accumulation of organic matter and nutrients that 543 

remain in relatively high concentrations during the annual cycle. Although the nutrient levels 544 

decrease due to a dilution effect during pulsed flooding events and the concentrations follow 545 

natural variations throughout the year, the nutrient concentrations seem not to be the significant 546 

drivers of metabolism in these lagoons. 547 

In spite of the lack of driving effects of nutrient concentrations on the metabolic rates, an indirect 548 

effect from the nutrients should not be discarded. First, the organic and total nutrient 549 

concentrations in water are correlated with the temperature (Fig. 6) caused by the nutrient 550 

accumulation during confinement (Àvila et al., 2019; Badosa et al., 2006; López-Flores et al., 551 

2006). Thus, a possible effect of the nutrient concentrations on the metabolic rates might be 552 

masked by their relationship to the temperature. However, when using standardized rates, only 553 
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a negative relationship between GPP20MAX and PO=>� emerged, suggesting that the PO=>� 554 

concentration is more of a consequence than a driver of GPP. Second, the total amount of 555 

nutrients in the water is not necessarily related to their availability. Serrano et al. (2017) 556 

criticized the use of the total phosphorus concentration as a measure of eutrophication in 557 

Mediterranean shallow wetlands, arguing that high TP values may be the consequence of a 558 

natural concentration caused by the sharp reduction in water volume during confinement. They 559 

affirm that the proportion of inorganic vs. organic forms (rather than the total amounts of 560 

organic, inorganic or total nutrients) is a better indicator of eutrophication in confined wetlands. 561 

Similar amounts of total nutrients but different proportions of inorganic vs. organic nutrients 562 

between highly flooded estuaries and long-term isolated confined wetlands have already been 563 

reported in confined coastal wetlands (Àvila et al., 2019; Badosa et al., 2007; López-Flores et 564 

al., 2006). In this context, we did not find any significant relationship between the metabolic 565 

rates and nutrient ratios. However, coastal wetlands may be N or P-limited (Àvila et al., 2019; 566 

Badosa et al., 2006; López-Flores et al., 2014; Quintana et al., 1998), or even both depending 567 

on the season (Comín and Valiela, 1993), so no single ratio alone (e.g., DIN:Norg, PO=>�:Porg, 568 

DIN:	PO=>�, TN:TP) represents the nutrient availability for primary producers. Third, it is 569 

remarkable that even after removing the temperature effect from the metabolic rates using 570 

GPP20, GPP20MAX and ER20, they peak in winter rather than in summer and correlate negatively 571 

with the conductivity and positively with the water level. The relationship of the conductivity and 572 

water circulation has been widely described in La Pletera, and water circulation can be easily 573 

related to nutrient inputs. Nutrients enter the lagoon during the winter, coinciding with high 574 

groundwater circulation, but they concentrate during summer due to confinement, when inputs 575 

are scarce (Badosa et al., 2006; Casamitjana et al., 2019; Menció et al., 2017; Quintana et al., 576 

1998). This concentration might mask a weak response in metabolic rates to nutrient inputs, if 577 

the water nutrient concentrations are used as a proxy for nutrient inputs, since nutrient inputs 578 

and nutrient concentrations are uncoupled unlike other aquatic systems (e.g., Morant et al., 579 

2020). Therefore, our data confirm the lack of driving effect by nutrient concentrations on 580 

metabolic rates, but the correlation found between standardized metabolic rates and salinity 581 

suggest some response to nutrient inputs, a response that is expected to be weak as predicted 582 

by Glibert et al. (2010) for nutrient-saturated habitats. Additionally, we could consider GPP20MAX 583 
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and ER20 as the capacity for production or respiration with no light and temperature limitations, 584 

so our data would suggest that water inputs during the winter period provide lagoons with their 585 

production capacity, which is not immediately converted to productivity due to low irradiation 586 

and temperature. Margalef (1980) defined eutrophy as the capacity for production, suggesting 587 

that standardized rates may be a suitable proxy of eutrophy. According to this interpretation, 588 

winter flooding inputs would cause eutrophication in La Pletera lagoons, although it will be only 589 

evident in the summer, when the light and temperature increase.  590 

5. Conclusions 591 

In La Pletera lagoons described here, the DO and other environmental parameters (e.g., 592 

temperature, conductivity and chlorophyll a) varied seasonally in response to the Mediterranean 593 

climate and the flooding-confinement dynamics present in the salt marsh. The DO ranged from 594 

supersaturation to anoxia, with anoxic conditions extending to the surface and lasting for 595 

several days, especially during the summer season. Accordingly, the metabolic rates (GPP and 596 

ER) showed higher values and higher variability during summer. However, the standardized 597 

rates showed that the higher potential productivity of these lagoons occurs during the winter, 598 

when water inputs enable nutrient loading. This characteristic might be a limitation due to the 599 

low temperature that turned out to be the primary driver of variations in metabolic rates. Both 600 

lagoons showed slightly heterotrophy during the study period, and although GPP:ER values 601 

close to 1 could indicate some balance between the rates, we cannot forget that there is an 602 

underestimation of heterotrophy while using the diel oxygen method, since it does not include 603 

anaerobic respiration. Despite that underestimation, the production measurements revealed that 604 

the metabolic rates in these lagoons rank among the most productive aquatic ecosystems for 605 

which there are published data. Owing to the high concentrations of nutrients, no significant 606 

relationship between metabolism and nutrients was found, which supports the idea that primary 607 

production was at saturation when nutrient concentrations are high. 608 
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 963 

 964 

 965 

 966 

 967 

Figure captions 968 

Fig. 1. Location of the two confined coastal lagoons in La Pletera salt marsh (Girona, NE Iberian 969 

Peninsula). Red dots indicate the sonde locations. 970 

Fig. 2. Example of the seasonal changes in oxygen saturation dynamics over 8 days. The winter 971 

period (in blue) ranged from the 1st to 7th February 2016 and the summer period (in red) from 972 

the 19th to 25th July 2017. FRA and G02 are represented by continuous and dashed lines, 973 

respectively. 974 

Fig. 3. Variation in oxygen saturation (%) during an anoxic event lasting 6 days. The values 975 

correspond to the FRA lagoon from 26th August to 4th September 2015. 976 

Fig. 4. Daily gross primary production (GPP) and respiration (ER) during the study period in the 977 

studied lagoons (FRA in black, and G02 in grey). The X-axis labels indicate the month-year. 978 

Fig. 5. Daily ln(GPP:ER) ratio during the study period for both lagoons (FRA represented in 979 

black, and G02 in grey). The X-axis labels indicate the month-year. 980 

Fig. 6. Spearman correlation coefficients for the monthly metabolic rates, GPPm (gross primary 981 

production), ERm (ecosystem respiration), the GPPm:ERm quotient and temperature (T), 982 

photosynthetic active radiation (PAR), electrical conductivity (EC), water level (WL), dissolved 983 

inorganic carbon (DIN), phosphate (PO=>�), total organic carbon (TOC), organic nitrogen (Norg) 984 

and organic phosphorus (Porg). Significance is indicated by coloured squares. Blue and red 985 
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colours indicate positive and negative values for r, respectively. High absolute values of r are 986 

represented by dark colours and low values are indicated by light colours. 987 

Fig. 7. Selection of significant smoothers for the contribution of explanatory variables (physical 988 

and chemical variables) for the optimal generalized additive mixed model (GAMMs) that 989 

explains the variation for each metabolic rate (dependent variable). The red line is the smoother 990 

and the grey shaded area shows the 95th confidence bands. FRA lagoon is represented in 991 

black, and G02 lagoon in grey. Non-significant relationships are not shown. T: temperature; WL: 992 

water level; EC: electrical conductivity; and PO=>�: phosphate. The monthly metabolic rates are 993 

represented by GPPm: gross primary production and ERm: ecosystem respiration, and the 994 

monthly standardized rates by GPPm20: gross primary production standardized to 20ºC; 995 

GPPm20MAX: gross primary production standardized to 20ºC and to the maximum value of 996 

irradiance registered during the study period; and ERm20: ecosystem respiration standardized to 997 

20ºC. 998 

Fig. 8. Daily standardized rates for GPP20, GPP20MAX and ER20 during the study period for both 999 

lagoons (FRA in black, and G02 in grey). GPP20: gross primary production standardized to 1000 

20ºC; GPP20MAX: gross primary production standardized to 20ºC and to the maximum value of 1001 

irradiance registered during the study period; and ER20: ecosystem respiration standardized to 1002 

20ºC. X-axis labels indicate the month-year. 1003 
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 1020 

Tables 1021 

Table 1. Median values of daily ecosystem metabolism parameters for the three hydrological 1022 

years studied here (from July 2015 to July 2018). The metabolic rates are expressed in mg O2 1023 

L-1 d-1. Note that the median values are provided instead of the mean values because the data 1024 

were not normally distributed. The 5th and 95th percentiles are shown in brackets. GPP: gross 1025 

primary production; ER: ecosystem respiration; and NEP: net ecosystem production. 1026 

 GPP ER NEP GPP:ER 

FRA 
    

2015/2016 6.91 (0.006-30.50) 7.97 (3.06-25.30) -0.86 (-4.39-4.44) 0.92 (0.0014-1.34) 
2016/2017 3.53 (0.03-45.06) 5.05 (0.70-38.88) -0.20 (-4.66-7.01) 0.94 (0.0049-2.60) 
2017/2018 7.94 (0.06-38.94) 8.42 (0.13-34.58) -0.29 (-5.37-6.46) 0.98 (0.074-21.55) 

G02     
2015/2016 11.65 (0.35-46.30) 13.09 (4.69-41.73) -1.62 (-7.05-6.73) 0.91 (0.063-1.48) 
2016/2017 5.68 (0.01-45.15) 8.04 (0.44-38.89) -0.47 (-8.45-8.71) 0.90 (0.0013-2.24) 
2017/2018 10.29 (1.41-51.23) 11.15 (0.43-46.27) 0.97 (-6.64-12.90) 1.10 (0.26-6.43) 
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 1033 

 1034 

 1035 

 1036 

 1037 

 1038 

 1039 

Table 2. Results of the generalized additive mixed model analysis (GAMMs) performed to 1040 

identify the primary drivers contributing to metabolic variations in the study lagoons (FRA and 1041 

G02). The response variables were the monthly non- and standardized metabolic rates, 1042 

represented by GPPm (gross primary production), ERm (ecosystem respiration), GPPm20 (gross 1043 

primary production standardized to 20ºC), GPPm20MAX (gross primary production standardized to 1044 

20ºC and to the maximum value of irradiance registered during the study period) and ERm20 1045 

(ecosystem respiration standardized to 20ºC). The GPPm:ERm ratio was also included in the 1046 

analysis as a response variable but none of the explanatory variables showed significant 1047 

results. The table simply shows the significant explanatory variables resulting from the 1048 

backward selection procedure. (s) refers to the scaled smoother for each significant explanatory 1049 

variable; ‘edf’ is estimated degrees of freedom; AIC: Akaike information criterion; and R2= 1050 

adjusted R-squared. T: temperature; WL: water level; EC: electrical conductivity; and PO=>�: 1051 

phosphate.  The number of observations was 72 for all the models. 1052 

Response variable: GPPm   AIC= 487 R2= 0.32 
 Estimate Standard error t value Pr (>|t|) 

Intercept 11.92 1.03 11.64 <0.01 
Approximate significance of smooth terms edf  F p 

s(lnT) 2.53  22.05 <0.01 
Response variable: ERm   AIC= 454 R2= 0.53 

 Estimate Standard error t value Pr (>|t|) 
Intercept 14.71 1.22 12.11 <0.01 

factor (lagoon) G02 -3.97 1.92 -2.07 0.04 
Approximate significance of smooth terms edf  F p 

s(lnT) 2.50  28.46 <0.01 
s(lnWL) 1.00  8.47 <0.01 
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Response variable: GPPm20   AIC= 618 R2= 0.12 

 Estimate Standard error t value Pr (>|t|) 
Intercept 16.65 2.21 7.54 <0.01 

Approximate significance of smooth terms edf  F p 
s(lnEC) 1  12.73 <0.01 

Response variable: GPPm20MAX   AIC= 702 R2= 0.22 
 Estimate Standard error t value Pr (>|t|) 

Intercept 8.88 7.83 1.13 0.26 
factor (lagoon) G02 37.81 15.77 2.40 0.02 

Approximate significance of smooth terms edf  F p 
s(lnPO=>�) 1.36  4.71 0.04 
s(lnWL) 2.80  3.25 0.03 

Response variable: ERm20   AIC= 595 R2= 0.19 
 Estimate Standard error t value Pr (>|t|) 

Intercept 17.43 1.78 9.80 <0.01 
Approximate significance of smooth terms edf  F p 

s(lnEC) 1  18.41 <0.01 
 1053 

 1054 

Table 3. Ecosystem metabolism estimations in similar ecosystems. The values are expressed in 1055 

g O2 m
-2 d-1. GPP: gross primary production and ER: ecosystem respiration. The values were 1056 

converted from carbon units to oxygen in a ratio of 1 except for a (photosynthetic quotient= 1.2; 1057 

respiratory quotient= 1).  1058 

Location Time period 
studied GPP ER Method References 

FRA, La Pletera, Spain 
Annual 

average range 
13.03-14.09 12.84-14.90 DO Open-water This study* 

G02, La Pletera, Spain Annual 
average range 

12.05-17.00 13.04-15.70 DO Open-water This study* 

FRA, La Pletera, Spain 
Summer (June-

September) 
average range 

19.00-34.64 21.16-32.15 DO Open-water This study* 

G02, La Pletera, Spain 
Summer (June-

September) 
average range 

15.82-18.63 16.63-18.69 DO Open-water This study* 

Ria Formosa, Portugal 
Summer (July) 

average 1.38 0.99 Incubation 
Santos et al., 

2004 

Lower Laguna Madre, 
Texas, USA 

Annual range 2.15-14.10a 3.30-12.20a DO Open-water 
Ziegler and 

Benner, 
1998 

Ninigret pond, Rhode 
Island, USA 

Summer 
(August) 
average 

5.40 6.10 DO Open-water 
Nixon and 

Oviatt, 1972 

Saquarema lagoon, Brazil 
Annual 
average 

3.40 3.30 CO2 Open-water 
Carmouze et 

al., 1991 

West Falmouth Harbor, 
Cape Cod, USA 

Summer (July-
August) 

average range  
4.80-16.00 6.40-17.60 DO Open water 

Howarth et 
al., 2014 

Everglades peatland, 
USA 

Annual 
average 

3.30 7.04 DO Open-water 
Hagerthey et 

al., 2010 
Albufera des Grau, Summer (July- 1.40-8.90 3.70-17.00 DO Open water Obrador and 
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Balearic 
Islands, Spain 

August) 
average range 

Pretus, 2013 

Estuaries included in 
National Estuarine 

Research Reserves, USA 

Annual 
average range 

2.30-28.10 4.40-32.30 DO Open water 
Caffrey, 

2004 

Shallow lakes,  Northern 
Highland Lake District, 

Wisconsin, USA 

Summer (3-5 
days) average 

6.03 6.00 DO Open-water 
Lauster et 
al., 2006 
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Fig. 1. (in colour) 1066 
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Fig. 2. (in colour) 1074 
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Fig. 5.  1104 
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Fig. 6. (in colour) 1115 
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Fig. 7. (in colour) 1126 
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Fig. 8. 1136 
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HIGHLIGHTS 

Metabolic rates in confined lagoons vary seasonally, with high values in summer 

Summer periods are characterized by extended anoxia 

Nutrient concentrations do not drive metabolism in these ecosystems 

Standardized rates show the potential productivity of these lagoons during winter 
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