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A B S T R A C T   

Macroalgal communities have an essential role in the shallow benthic habitats of temperate seas, where changes 
in their composition can resonate through entire coastal ecosystems. As all major ecosystems on Earth, algal beds 
have already been affected by multiple disturbances. Passive conservation tools, such as marine protected areas 
or No-take zones, have the potential to reduce some of the anthropogenic impacts by limiting human activity. 
However, without a good knowledge of the natural community dynamics, it is not easy to discern between 
changes fruit of the intrinsic variability of biological communities and the ones caused by human-related 
stressors. In this study, we evaluated the natural variability of macroalgal communities’ composition inside 
and outside a Mediterranean No-Take marine reserve during 15 years. We described their temporal dynamics 
considering their main drivers and we tested the effect of protection in seaweed beds. We did not find differences 
either in the composition of the macroalgal assemblages or the total algal cover between protected and non- 
protected locations over the fifteen years of study. Nevertheless, we observed a positive effect of the protec-
tion increasing the cover of some specific species, such as the canopy-forming Treptacantha elegans. Our results 
highlight the importance of obtaining long-term data in ecological studies to better understand the natural 
variability of marine communities. Accordingly, a robust understanding of the community dynamics would help 
us to avoid misinterpretations between ‘impacted’ or ‘in-recovery’ communities when recovery times are longer 
than the study periods.   

1. Introduction 

Global and local human disturbances have affected all major eco-
systems on Earth, including coastal algal communities (Halpern et al., 
2007; Gianni et al., 2017), the dominant primary producers in the 
coastal zone (Krause-Jensen and Duarte, 2016). Overfishing, global 
warming, and exceptional storms further contribute to transforming 
rocky infralittoral algal habitats (Ling et al., 2009; Smale and Vance, 
2016; Wernberg et al., 2016; Maggi et al., 2018). Conservation tools 
such as Marine Reserves or No-Take Zones (NTZ) have the potential to 
reduce some of these anthropogenic disturbances (i.e, banning fishery 
activities) and to restore benthic habitats through trophic cascade effects 
(Shears and Babcock, 2002; Guidetti, 2006; Babcock et al., 2010). 

Macroalgae play a key role in the structure of temperate benthic 

ecosystems (Jones et al., 1994; Duarte and Cebrian, 1996; Teagle et al., 
2017), representing an important source of carbon sequestration 
(Krause-Jensen and Duarte, 2016) and providing invaluable ecosystem 
services in many shallow coastal systems (Blamey and Bolton, 2018). 
Consequently, changes in macroalgal communities may sway in the 
whole coastal ecosystem (Mineur et al., 2015). In the Mediterranean 
Sea, algal communities dominate the shallow benthic habitats (Zabala 
and Ballesteros, 1989). There, the highest level of structural complexity 
is represented by canopies of fucoid algae, mostly Cystoseira sensu lato 
populations, providing habitat, shelter, and food to many associated 
organisms and harboring a high diversity and productivity (Ballesteros 
et al., 1998; Mangialajo et al., 2008; Sala et al., 2012; Chemin�ee et al., 
2013). Water pollution, modifications of natural rocky coastline, and sea 
urchin overgrazing as a consequence of overfishing are the major drivers 
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of the loss of fucoids in the Mediterranean Sea (Airoldi and Beck, 2007; 
Mineur et al., 2015). Consequently, severe declines of macroalgal forests 
(i.e. Cystoseira spp.) have been documented, with the consequent 
changes in the associated species, and effects cascading up to higher 
trophic levels (Ling et al., 2015; Chemin�ee et al., 2013). 

Long-term ecological studies observing natural communities dy-
namics under the human influence are essential to understand the 
operation of natural systems, and most especially, to know the com-
munities’ baseline before describing pressures or impacts. Changes in 
marine benthic communities and conservation effects are usually re-
ported in ‘before-after’ studies or with ‘snapshots’ of the protected area 
vs. the unprotected one, while long-term monitoring programs are 
focused on specific species or populations, such as corals, seagrasses, sea 
urchins or kelp species among others (e.g. Kirkman and Kirkman, 2000; 
Steneck et al., 2002; Babcock et al., 2010; Gross and Edmunds, 2015). 
Despite the essential role of macroalgal beds in benthic communities, 
there is an important lack of continuous and long-term studies that 
integrate community changes together with their long-term dynamics 
and with the conservation role, without which we can misinterpret 
communities alterations. 

In this study, we annually monitored infralittoral macroalgal com-
munities inside and outside a NTZ located in the North-Western Medi-
terranean Sea during 15 years. Benthic shallow-rocky habitats in the 
study area are mostly represented by photophilic algal communities of 
small and erect algae (e.g., Dyctiota spp.) and calcareous algal formations 
(Ballesteros, 1991). The sea urchin Paracentrotus lividus is the main 
herbivorous species that control algal biomass (Hereu et al., 2012; 
Medrano et al., 2019). Abundance and temporal trends on sea urchin 
populations were similar inside and outside the studied NTZ (Hereu 
et al., 2012) until an exceptionally violent storm occurred in 2008 that 
drastically reduced sea urchin densities. After that, the populations of 
the sea urchin P. lividus outside the NTZ recovered faster than the pop-
ulation inside the NTZ (Medrano et al., 2019). The present study aims to 
describe the temporal dynamics of the macroalgal communities 
considering their main drivers and environmental stressors and to 
evaluate the effect of protection in macroalgal beds over time by 
analyzing long-term monitoring data. 

2. Methods 

2.1. Monitoring and study area 

Shallow rocky infralittoral macroalgal communities were monitored 
at eight localities in the Montgrí, the Illes Medes and the Baix Ter Nat-
ural Park, located in the North-Western Mediterranean Sea (Fig. 1). 
Within the Natural Park, four out of the eight sampled localities were 
placed inside the Medes Islands No-Take Zone (NTZ) and, the other four, 
outside the boundaries of the NTZ (Fig. 1). 

To monitor macroalgal communities, we annually sampled the algal 
assemblage structure based on the main seaweed species (Table 1) from 
2001 to 2016, excluding the years 2006, 2007, 2011 and 2015. The algal 
percent cover was visually quantified using 50 � 50 cm quadrats divided 
into 25 subquadrats of 10 � 10 cm (Hereu et al., 2008). Twenty replicate 
quadrats were randomly counted at each location at depths between 5 
and 10 m by SCUBA divers. At each quadrat, each species percentage 
cover was estimated as the percentage of the numbers of subquadrats 
where the species was present relative to the total number of sub-
quadrats sampled (as described in Sala and Ballesteros, 1997 and Hereu 
et al., 2008). To avoid the effect of seasonality, sampling was always 
performed at the end of May, when the most representative macroalgae 
(perennial and seasonal species) reach the maximum biomass in the 
study area (Sala and Boudouresque, 1997). 

2.2. Environmental drivers and stressors determining algal assemblage 
structure 

To investigate the relation between the composition of the macro-
algal assemblages and the effect of the environmental drivers inside and 
outside the NTZ, we used Redundancy Analysis (RDA) (Van Den Wol-
lenberg, 1977) on fourth-root transformed percentage cover data of all 
the monitored macroalgal species (Table 1). The RDA is a multivariate 
analysis technique which allows to introduce explanatory (environ-
mental) variables considering multiple regressions to determine linear 
combinations of these variables with the dependent variables (sea-
weeds). Water nutrients, sea-surface temperature, sea urchin abun-
dance, and level of protection (as categorical variable) were included as 
environmental variables (adapted from Hereu et al., 2008). 

Specifically, Chlorophyll-a (Chl-a) levels are a good proxy for 
nutrient levels in coastal waters (Brodie et al., 2007). Therefore, Chl-a 
data from the MODIS-Aqua sensor were extracted for the monitored 
area with a 4 km resolution from NASA Giovanni (MOD-
ISA_L3m_CHL_v2018; https://giovanni.gsfc.nasa.gov/giovanni/) from 
2002 (starting date of this time-series) to 2016. In order to relate the 
nutrient concentration with the sampled algae cover, the average con-
centration of Chl-a (mg/m3) was calculated for the spring season of each 
sampled year (March to May). 

Sea-surface temperature (SST) data were obtained from the L’Estartit 
Meteorological Station (http://meteolestartit.cat/mar/temperatura/), 
where temperature has been measured 1.7 km offshore of the Medes 
Islands NTZ (the northwestern Mediterranean, 42�030N 3�1501500E) 
since 1974. Like Chl-a, we have considered here the mean SST of the 
spring season (March to May) for each year from 2001 to 2016. 

Fig. 1. Map of the study sites in the Montgrí, the Illes Medes, and the Baix Ter 
Natural Park (NW Mediterranean Sea). Orange dots represent the long-term 
monitoring sites: four are located outside the NTZ, and four more are inside 
the Medes Islands NTZ. The perimeter of the Medes Islands NTZ is delimited by 
the green polygon. Unprotected zone is outside the green polygon. (For inter-
pretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 
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We used the same physical environmental variables (Chla- and SST) 
for locations inside and outside the NTZ, given that the average distance 
between the locations is lower than the spatial resolution of the 
described physical environmental variables (2 km). 

The effect of protection on fish communities and the sea urchin 
abundance inside and outside the Medes Islands NTZ over the studied 
period were obtained from the long-term monitoring program of the 
Montgrí, the Illes Medes and the Baix Ter Natural Park (Medrano et al., 
2019). Sea urchins missing data of the years 2006, 2007, 2014 and 2015 
were linearly interpolated from the known values in the time-series. It is 
important to note that higher fish abundance and biomass of the main 
sea urchin predator species have remained significantly larger inside the 
NTZ than outside (García-Rubies and Zabala 1990; Sala, 1997; Hereu, 
2005; Sala et al., 2012), with higher predation rates of sea urchins 
observed inside the NTZ over the last years (Sala, 1997; Hereu, 2005, 
2012). Contrarily, no clear effect of protection on the unique herbivo-
rous fish in the area, Sarpa salpa, was observed in rocky bottoms 
(Macpherson et al., 2002; Hereu et al. non pub. data). 

The collinearity of the four variables was checked. Although the 
maximum correlation was found between the variables Sea urchin 
abundance and Protection level (Spearman correlation: � 0.7), we 
considered and included all four variables as reasonably explanatory in 
this study. 

2.3. Long-term trends of the main macroalgal species inside and outside 
the NTZ 

The fourteen most representative algal species (representing a total 
cover of 89 � 0.06% (Mean � SD) in the studied monitoring period, 
Table 1 bolded species) were selected to describe the temporal patterns 
of the macroalgal dynamics across protection levels and time. To show a 
clearer global view rare species were excluded. First, kite diagrams of 
the percentage of the main algal cover were plotted to visualize the 
changes of these algal assemblages over the studied period inside and 
outside the NTZ. Second, to assess the abundance variability throughout 
the studied period inside and outside the NTZ, we calculated the coef-
ficient of variation (CV) of the algal relative abundance in each location. 
CVs of the fourteen most representative macroalgae were estimated as 
the mean CV of each species between the monitoring sites and CVs of the 
assemblages between protection levels were estimated with the fourteen 
CVs mean of each site. To test pairwise comparisons among CV, we used 
Tukey’s Honestly Significant Differences (HSD) test in each pair of 
means (inside/outside NTZ). Finally, to test for differences in overall 
macroalgal assemblage structure among protection and time, we used 
multivariate generalized linear models implemented in the manyglm 
function of the mvabund R package (Wang et al., 2017). The macroalgal 
abundance in each monitored site was fitted as the response variable 
with a negative binomial distribution after visually checked the most 
likely distribution of the data. The variables protection (inside/outside 
NTZ) and time (years) were included as main fixed effects in the model. 
We then ran a univariate analysis of variance to test the significance of 
the effects in every algal species (Wang et al., 2017). 

All statistical analysis and plots were run with the software R 3.3.3 (R 
Core Team, 2017). Multivariate analyses were performed with the R 
package ‘vegan’ (Oksanen et al., 2017) and R Package ‘mvabund’ (Wang 
et al., 2017). 

3. Results 

3.1. Environmental drivers and stressors determining algal assemblage 
strucure 

The first two axes of the RDA explained the 68% of the species- 
environment relationship (Fig. 2A RDA, Table 2). The four biotic and 
abiotic variables were significantly correlated with the RDA axes. Pro-
tection and Sea urchins were strongly correlated with the first axis, 
while environmental variables related to seasonality (SST and Chl-a) 
were significant correlated with the second axis (Table 3). 

Along the first axis, species positioned at the far right end were more 
abundant in protected sites with low abundance of sea urchins (e.g., 
Asparagopsis armata and Treptacantha elegans). These species were 
separated from those most commonly observed in non-protected sites, 
which were correlated with higher abundances of sea urchins (e.g., 
Wrangelia penicillata, Lithophyllum incrustans, Peyssonnelia bornetii). In 
line with that, the species identified as canopy-forming (Cystoseira sensu 
lato species) were positioned in the right side of the axis, while the 
encrusting coralline algae were on the left side (e.g, Lithophyllum 
incrustans and M. alternans). Along the second axis, the macroalgal 
seasonal species (spring-growing) related to the spring nutrient peak and 
cold waters were positioned in the top of the RDA biplot (e.g., Dictyota 
spp., Bonnemaisonia asparagoides, and Ulva rigida). Despite being a sea-
sonal growing alga, since Laurencia obtusa biomass peak takes place 
during the late spring-early summer, it was mostly related to warm 
waters as well as the perennial Codium species (Fig. 2A). 

Macroalgal assemblages inside and outside the NTZ shifted towards 
the same ordination space over time, highlighting inter-annual vari-
ability of the assemblage, and homogeneous patterns of change in both 
protection levels (Fig. 2B). Despite this observed variability, the last dot 
(representing 2016 data) was located close to the origin dot (repre-
senting 2003 data), indicating that no major shifts in the algal 

Table 1 
List of the main macroalgal species present in the study area and included in the 
anual monitoring: full names, abbreviations, and authorities. The species in bold 
represent about 90% of total algal cover and were considered here as the four-
teen major species.  

Rhodophyta 

Amphiroa rigida Amphiroa Lamouroux 
Asparagopsis armata Asparagopsis Harvey 
Bonnemaisonia 

asparagoides 
Bonnemaisonia (Woodward) C. Agardh 

Ceramium ciliatum Ceramium Ducluzeau 
Corallina elongata Corallina Ellis and Solander (also accepted as 

Ellisolandia elongata) 
Gelidium spinosum Gelidium (Gmelin) Silva 
Jania rubens Jania (Linnaeus) Lamouroux 
Laurencia obtusa Laurencia (Hudson) Lamouroux 
Liagora viscida Liagora (Forsskal) C. Argardh 
Lithophyllum 

incrustans 
L.incrustans Philippi 

Mesophyllum 
alternans 

M.alternans (Foslie) Cabioch and Mendoza 

Peyssonnelia bornetii Peysonnelia Bourderesque and Denizot 
Sphaerococcus 

coronopifolius 
Sphaerococcus (Goodenough and Woodward) 

Stackhouse 
Wrangelia penicillata Wrangelia C. Agardh  

Phaeophyta 

Cladostephus spongiosus Cladostephus (Hudson) C. Agardh 
Colpomenia sinuosa Colpomenia (Mertens ex Roth) Derb�es and Solier 
Cystoseira compressa C.compressa (Esper) Gerloff and Nizamuddin 
Treptacantha elegans T.elegans Sauvageau 
Dictyota spp Dictyota  
Halopteris scoparia Halopteris (Linneaus) Sauvageau 
Padina pavonica Padina (Linneaus) Thivy 
Zanardinia typus Zanardinia (Nardo) Furnari  

Chlorophyta 

Acetabularia 
acetabulum 

Acetabularia (Linnaeus) Silva 

Codium bursa C.bursa (Linnaeus) C. Agardh 
Codium effusum C.effusum (Rafinesque) Delle Chiaje 
Codium vermilara C.vermilara (Olivi) Delle Chiaje 
Flabellia petiolata Flabellia (Turra) Nizamuddin 
Halimeda tuna Halimeda (Ellis and Solander) Lamouroux 
Ulva rigida Ulva C. Agardh  
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assemblages occurred over this long-term study (Fig. 2B). 

3.2. Long-term trends of the main macroalgal species inside and outside 
the NTZ 

The cover of the main macroalgal communities was homogeneous 

between the protected and the non-protected locations (inside/outside 
NTZ) (Fig. 3). The seasonal species of the genus Dictyota and the 
perennial Corallina elongata (today also accepted as Ellisolandia elongata) 
were the dominant seaweed in the study area during Spring, with a mean 
cover of 60 � 15% and 52 � 17.3% (Mean � SD), respectively, across the 
eight monitored sites over time (Fig. 3). High stability of seaweeds cover 

Fig. 2. (A) Redundancy Analysis ordination for macroalgal cover data over time. Blue dots are sampling sites inside the NTZ and grey dots, outside the NTZ. Species 
code in Table 1 (B) Biplot of the Redundancy Analysis connecting the monitored years with grey lines within the protection levels. Font colors indicate the protection 
level (Blue ¼ inside the NTZ, Grey ¼ outside the NTZ). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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over the fifteen years was found in most of the species in both protection 
levels. Annual changes in the species cover were detected simulta-
neously throughout the fifteen years in the protected NTZ and unpro-
tected zones, suggesting the same variability on algal community drivers 
and the similar impact of stressors in both levels of protection (Fig. 3). 

The coefficient of variation showed a consistency of the total 

macroalgal cover estimates over time in both protection levels (Fig. 4A). 
For the particular species A. armata, Halopteris scoparia, W. penicillata, 
and M. alternans, CV pairwise comparisons showed differences within 
levels of protection being A. armata and H. scoparia more variable 
outside the NTZ while the abundances of W. pencillata and M. alternans 
were more variable inside the protected area (Fig. 4B, Table 1 supple-
mentary). Among all the most abundant species, the canopy-forming 
species Treptacantha elegans showed the highest variability (Fig. 4B). 

Short-term changes in macroalgal abundance such as the observed 
after the 2008 extraordinary storm occurred in the studied period 
(Fig. 3), but these were not significant over all the multi-year monitoring 
for the majority of the species (Table 4). Only three of the fourteen 
dominant species showed differences in their cover across protection 
levels (Table 4). In spite of the very low cover, the seasonal growing 
naturalized alga A. armata and the perennial canopy-forming T. elegans 
were more abundant inside the NTZ than outside. In contrast, the sea-
sonal growing species W. penicillata was the most characteristic species 
outside the NTZ (Fig. 3, Table 4). While L. obtusa increased its relative 
cover over the study period (Fig. 3, Table 4) the calcareous algae 
C. elongata and Jania rubens decreased over the study period but only 
outside the NTZ (Fig. 3, Table 4). 

4. Discussion 

Our results revealed that the coastal macroalgal assemblages of the 

Table 2 
Results of redundancy analysis (RDA) on fourth-root transformed data.  

Axes RDA 1 RDA 2 RDA 3 RDA 4 

Eigenvalues 2.8765 1.4672 1.2062 0.8398 
Cumulative percentage variance 

of species data 9.92 14.98 19.14 22.03 
of species-environment relation 45.02 67.98 86.86 100  

Table 3 
Biplot scores for environmental variables, the coefficient of determination (R2), 
and their significance using 999 permutations on the RDA results.  

Variable RDA 1 RDA 2 R2 p (>r) 

Protection 0.97570 � 0.21911 0.7393 0.001 
Sea-urchins � 0.93935 � 0.34297 0.4598 0.001 
SST � 0.62272 � 0.78244 0.2954 0.001 
Chl-a 0.58762 0.80913 0.0859 0.043 

SST:Surface Seawater Temperature. Chl-a: Chlorophyll-a as proxy of nutrients. 

Fig. 3. Kite diagram representing the cover of the fourteen most representative macroalgal species in the study area over the fifteen years. Left panel corresponds to 
the percentage cover within NTZ localities and right panel to the percentage cover of the localities outside the NTZ. Percentage cover was scaled to the maximum 
value of 50 and the colored diagrams show spectral values from 0 to 50 for each species. The color code indicates the corresponding macroalgae phyllum (Rho-
dophyta: red, Phaeophyta: yellow, and Chlorophyta: green). (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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Montgrí, the Illes Medes and the Baix Ter Natural Park were stable and 
similar in total algal cover inside and outside the protected NTZ over the 
fifteen years of study with no species replacement, although some 
variability were observed between years. The communities were domi-
nated by the perennial species C. elongata and the seasonal Dictyota 
species. Corallina elongata has been previously described as predominant 
species subjected to moderate pollution (Díez et al., 1999; Soltan et al., 

2001). Species related to high-quality environmental requirements, such 
as Cystoseira sensu lato species (Thibaut et al., 2005; Mangialajo et al., 
2008). were less abundant in the study area. In addition to environ-
mental quality, bottom-up (herbivorous control) and top-down (re-
sources control) processes interactively influence the structure of 
macroalgal benthic communities (Korpinen et al., 2007; Smith et al., 
2010). As we expected, bottom-up forces such as spring nutrient 

Fig. 4. Coefficients of Variation (CVs) over time. Blue 
color represents the values inside the NTZ and grey color 
the values outside the NTZ. (A) Boxplot showing within- 
protection CVs in total macroalgae cover (inside/outside 
the NTZ). (B) Boxplot showing CVs in the cover of the 
fourteen main macroalgae species within protection levels. 
‘*’ indicates significance differences (p < 0.05) in pair 
means using Tukey pairwise comparison. Species code in 
Table 1. (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version 
of this article.)   

Table 4 
Generalized Linear Model manyglm results (Deviation test statistic, p-value) of macroalgal cover (Percentage/0.25 m2) Df: degrees of freedom. Bold indicates p < 0.05. 
‘:’ indicates interaction. Species code in Table 1.  

Source Df Asparagopsis Dictyota T. elegans C. vermilara C. bursa 

Protection 1 25.093, 0.001 2.45, 0.596 23.324, 0.001 5.545, 0.209 2.26, 0.607 
Time 10 31.461, 0.343 30.58, 0.343 25.542, 0.547 26.429, 0.531 39.415, 0.112 
Protection:Time 9 17.314, 0.088 16.605, 0.088 16.276, 0.088 28.503, 0.020 6.463, 0.088  

Source Df Halopteris Laurencia Padina Sphaerococcus Wrangelia 

Protection 1 0.001, 0.993 0.14, 0.993 0.108, 0.993 0.089, 0.993 14.214, 0.006 
Time 10 29.86, 0.354 47.096,0.010 27.475, 0.489 26.928, 0.510 40.56, 0.112 
Protection:Time 9 18.854, 0.061 13.157, 0.088 19.008, 0.061 13.115, 0.088 11.207, 0.088  

Source Df Coralina Jania L. Incrustans M. Alternans  

Protection 1 0.933, 0.889 1.62, 0.744 8.749, 0.052 3.736, 0.391  
Time 10 34.044, 0.228 21.578, 0.547 33.851, 0.228 35.31, 0.169  
Protection:Time 9 26.231, 0.025 24.497, 0.025 18.032, 0.077 15.289, 0.088   
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concentration and the ordination of the majority of seasonal algal spe-
cies were associated to water temperature, in which herbivory showed 
the weakest influence (except for A. armata and W. penicillata). 
Contrarily, top-down forces may play a role in determining the abun-
dance of fucoids such as the canopy-forming Cystoseira sensu lato species 
and the encrusting coralline algae species. It has been extensively 
documented that increased abundance of grazers feeding on algal beds 
can significantly change the structure of shallow benthic communities 
(Airoldi and Beck, 2007; Filbee-Dexter and Scheibling, 2014; Mineur 
et al., 2015). 

The sea urchin Paracentrotus lividus is the most important herbivore 
in the study area, playing an important role in structuring algal com-
munities (Sala and Zabala, 1996; Palacıń et al., 1998; Hereu et al., 
2008). As P. lividus preferentially graze on fleshy algae (Privitera et al., 
2008), encrusting algae showed a positive relationship to the presence of 
sea urchins. Although many studies have been demonstrate that her-
bivorous fishes may also influence the structure of the benthic assem-
blages (Verg�es et al., 2009; Gianni et al., 2017), we did not consider 
them because there are not evidences of the effect of protection on the 
abundance of the unique herbivore fish in this area, Sarpa salpa (Prado 
et al., 2007). Moreover, their effects on macroalgal beds in the studied 
area are weaker than the sea urchins one (Hereu, 2006; Hereu et al., 
2008). This could be explained by the feeding preference and behavior 
of Sarpa salpa, the only strictly herbivorous fish in this area (Sala and 
Boudouresque, 1997). S. salpa has shown preference for high palatable 
plants such as seagrasses or fleshy algae (Verg�es et al., 2009; Ali et al., 
2017). In addition, fishes feeding behavior differ from the sea urchins as 
fishes bite the leaf while sea urchins graze the entire thalli which could 
deplet large algal extensions (Hereu, 2006; Jadot et al., 2006). 

No-take marine reserves can indirectly restore the original trophic 
cascades recovering the abundance of herbivores’ predators (Sala and 
Giakoumi, 2017) and controlling the herbivore populations (Medrano 
et al., 2019). Results of this study go one step further in the trophic 
cascade of the studied area and also demonstrate that No-Take marine 
reserves can influence the abundance of the canopy-forming Cystoseira 
sensu lato species, being more abundant in protected areas (as reported 
for the same studied NTZ in Sala et al., 2012). Without losing sight of the 
large variability observed in the cover of perennial canopy-forming 
T. elegans over time suggesting a high influence of local conditions on 
this species, this results reinforces the usefulness of marine reserves as 
conservation tools also at lower trophic levels, which is particularly 
relevant when considering the global decline of Cystoseira sensu lato 
species. in the Mediterranean Sea (Thibaut et al., 2005, 2014). Despite 
Cystoseira sensu lato species were not the dominant species in the mac-
roalgal beds of the Natural Park, their loss or replacement could have 
major consequences for many associate organisms (e.g., lowering fish 
recruitment, Chemin�ee et al., 2013). On the other hand, Codium vermi-
lara showed completely opposite ordination relative to the main drivers 
and stressors than Cystoseira spp. This result support the hypothesis of 
C. vermilara could have been replaced by Cystoseira sensu lato species 
assemblages after their historical decline in the NW Mediterranean Sea 
(Ricart et al., 2018). Regarding the less abundant species, our study 
confirms the effect of protection for A. armata, which was already sug-
gested by Sala and Boudouresque (1997). This unpalatable red alga was 
practically absent outside the NTZ, but showed a high variability over 
the fifteen years. The reverse pattern was observed for W. penicillata 
species, more abundant and less variable outside the NTZ. We did not 
detect the influence of any of the studied drivers in the filamentous turf 
forming Ceramium ciliatum, probably because of their short life cycle 
(Bologa et al., 1995). 

Extreme climate events such as severe storms have been also 
considered as potential drivers eroding macroalgal beds (Navarro et al., 
2011; Borja et al., 2018; Capdevila et al., 2019). An exceptionally storm 
with drastic consequences on benthic communities occurred in the study 
area in 2008 (Mateo and Garcia-Rubies, 2012; Sanchez-Vidal et al., 
2012), where we observed a short-term effect in the macroalgal 

communities exerted by the storm like those previously reported in 
other studies (Navarro et al., 2011; Micheli et al., 2016; Maggi et al., 
2018). Benefiting from the available space that resulted from the storm, 
a rapid increase of highly seasonal Dictyota species were observed right 
after the storm (the year 2009), while most of the perennial species 
decreased. Over the following years, the abundance and structure of the 
main macroalgal assemblages recovered swiftly to pre-storm values and 
no long-term impacts were observed, indicating that impacts of a single 
extraordinary storm on rocky-shallow algal communities may be 
reversed relatively quickly. However, we should consider that an in-
crease in the intensity and frequency of extreme climatic events, such as 
extraordinary storms, has been observed since 1950 and is expected to 
increase in the future (IPCC et al., 2014; Reguero et al., 2019), especially 
in the Mediterranean, which has been highlighted as a hotspot of 
ongoing climate change (IPCC et al., 2014; Cramer et al., 2018). Our 
results stress the importance of increasing spatial and temporal scales to 
better understand the natural variability of the marine communities and 
do not misunderstand the changes observed in algal assemblages (Lin-
denmayer et al., 2012). If the same dataset of this study would have been 
used to describe the consequences of this extraordinary storm right after 
the impact, notable differences could have been described. 

Despite the relevance of monitoring algal communities, it is impor-
tant to highlight some limitations of this study. In order to effectively 
document long-term changes of the macroalgal assemblages structure 
over time, we prioritize a broad view of the community by monitoring 
the algal cover of the main species in our study area and missing the 
minority species. This methodology allows to maintain long-term 
monitoring programs, involving different observers due to the easy 
identification of a reduced number of species but it is not the optimal 
ecological design in order to analyze other community indexes such as 
biodiversity or richness. Many studies pool species into functional 
groups, as a way to predict algal community composition (Steneck and 
Dethier, 1994). This reduction of species-specific information is gener-
ally accepted at the expense of a broader view of the changes in com-
munity structure. However, it is important to stress that this approach 
hinders to detect some important changes at the species level because 
different algal species have different responses to herbivores and other 
perturbations independently on their functional group (Hereu et al., 
2008). Most of the results exposed here would have been lost or mis-
interpreted working with functional groups such as the high variability 
of T. elegans, which would have been pooled in the erect algae group. 

A major insight of this study is the absence of major shifts in species 
replacement and abundance and the null effect of protection in the most 
important macroalgal communities in the rocky-shallow infralittoral 
zone of the studied area. Differences only regard the less abundant 
species, among them the canopy-forming Treptacantha elegans which 
took preference inside the protected NTZ. These results provide a cur-
rent baseline of algal communities and contribute to the literature on the 
role of NTZs marine reserves in the benthic communities. 
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