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Abstract

Sometimes, conservative dynamical systems model an idealization of real-life
processes, but non-conservative forces, such as friction, can play an important role
in the (long-term) evolution of the system, and hence they must be considered
in order to describe the process more accurately. The main goal of this work is
to study the transition from conservative to weakly-dissipative dynamics. To this
end, we consider the effect of dissipation in area-preserving maps. The structure
of the conservative phase space is explained in the first chapter with the help of
several numerical illustrations. In the second chapter, we design some numerical
experiments in order to investigate some of the properties of the transition to the
dissipative regime, along with a general description of this scenario.

Resum

A vegades, els sistemes dinàmics conservatius modelen una idealització de
processos reals, però forces no conservatives, com la fricció, poden jugar un paper
important en la evolució (a llarg termini) del sistema, i per tant han de ser con-
siderades per tal de descriure el procés més acuradament. El principal objectiu
d’aquest treball és estudiar la transició de la dinàmica conservativa a la feblement
dissipativa. Per això, considerem l’efecte de dissipació en aplicacions que pre-
serven l’àrea. L’estructura de l’espai de fase conservatiu està explicada al primer
capítol amb ajuda de diverses il.lustracions numèriques. Al segon capítol, dis-
senyem alguns experiments numèrics per tal d’investigar algunes propietats de
la transició al règim dissipatiu, juntament amb una descripció general d’aquest
escenari.
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Introduction

Many real-life processes, both deterministic and random, evolve in time, and
can be mathematically modelled by either a differential equation or by a discrete
map. The study of these constitutes the branch of mathematics known as Dynam-
ical Systems.

In this work, we will study the dynamics of discrete mappings F : U ⊂ Rn →
Rn, that is, the behaviour of points x ∈ U under iterates of F. In particular, we
are interested in real analytic1 area-preserving maps (APMs), which are mappings
F : R2 → R2 such that det(DF(x)) = 1 ∀x ∈ R2, where DF denotes the differen-
tial of F. Analyticity has great importance on some phenomena exhibited in the
dynamics of APMs, specially in beyond all orders phenomena like the splitting of
separatrices, which will be shown in chapter 1.

More precisely, we will consider a uniparametric family of APMs {Fα}α∈R.
Real-life systems often have parameters, such as the constant of a spring or the
mass of an asteroid. One is then interested in the robustness properties of the sys-
tem. Hence, bifurcations are of particular interest because they produce topologi-
cal changes of the phase space under small variations of the parameter, affecting
the local and global dynamics of F.

Indeed, bifurcations might have a local effect on the dynamics, such as the birth
of fixed or periodic points. This dynamics can be studied using Taylor expansions
and local analysis tools. On the other hand, global bifurcations produce non-local
topological changes. For example, the breakdown of invariant curves allows the
invariant manifolds of hyperbolic points to intersect across the phase space.

Nevertheless, we will not restrict ourselves to conservative perturbations. We
are specifically interested in dissipative perturbations, e.g. a pendulum with fric-
tion. Weakly-dissipative regimes are relevant in concrete applications, like celestial
mechanics [7], where the Hamiltonian models, although very accurate, are simply
idealizations of the true dynamics. As we will see, the changes on the phase space

1Analyticity implies that F is a Cr-diffeomorphism ∀r ≥ 0 (i.e. its a r-times continuously differ-
entiable bijection) and that, when considering F : R2 ⊂ C2 → C2, the Taylor series of F about any
point in its domain has positive radius of convergence.
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iv Introduction

in the dissipative regime are far more drastic than the ones observed under conser-
vative perturbation: Most invariant curves disappear and the long-term dynamics
is condensed in attractors, which are stable invariant objects.

More precisely, we are interested in the transition from the conservative case
to the dissipative regime. More specifically, we will analyze and describe this
transition by means of numerical experiments. To that end, some specific models
are introduced in order to perform simulations.

Hamiltonian systems and APMs

APMs are important because they naturally arise as Poincaré maps of Hamilto-
nian systems. A system is called Hamiltonian (non-autonomous, canonical) if it is
of the form

dx
dt

=
∂H
∂y

(t, x),
dy
dt

= −∂H
∂x

(t, x), (1)

for a suitable function H : R×R2n → R2n. In such a case, we say that the system
has n + 1/2 degrees of freedom (d.o.f.). If one considers a Hamiltonian function
which is periodic in time, the stroboscopic Poincaré map is an APM. In general,
however, these APMs do not have an analytical expression.

On the other hand, if one considers an autonomous 2−d.o.f. Hamiltonian
system, then the Hamiltonian function is a first integral since

dH
dt

=
∂H
∂x

dx
dt

+
∂H
∂y

dy
dt

(1)
= 0, (2)

and the system is conservative. Therefore, the motion takes place within a 3-
dimensional manifold of constant energy level. If one considers a Poincaré sec-
tion (local, in general, and transversal to some specific recurrent motion inside the
energy level, such as a periodic orbit), then one obtains an APM again.

We refer to [1] for details on the derivations and proofs of the previous state-
ments.

The dynamics of an APM (and, in general, of any dynamical system) is orga-
nized around invariant objects of the phase space. The simplest invariant object
is a fixed point, which is a point p ∈ R2 such that F(p) = p. Other invariant
objects are periodic orbits and invariant curves with quasiperiodic motion, which
together with their invariant manifolds (if they have) form the skeleton of the APM.

Let p be a fixed point of an APM. Then, Spec DF(p) = {λ, λ−1}. p is said to
be hyperbolic if |λ| 6= 1. In this case, the dynamics of F around p is topologically
conjugated to those of the related linear system: This is the content of Hartman-
Grobman’s theorem [26]. If |λ| = 1, however, the linear system does not tell the
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dynamics of F around p. In this case, λ = eiα: If α 6= 0, π, the point is elliptic.
Otherwise, we will say p is parabolic.

As a paradigmatic example of an APM, we will use the Hénon map [14]

Hα :

(
x
y

)
7→ R2πα

(
x

y− x2

)
, α ∈ (0, 1/2), (3)

where R2πα =

(
cos(2πα) − sin(2πα)

sin(2πα) cos(2πα)

)
is the rotation of angle 2πα.
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Figure 1: Phase space of Hα for α = 0.1.

In figure 1 we display the dynamics on the phase space of the Hénon map for
α = 0.1. It has two fixed points: One elliptic at the origin, and a hyperbolic
point near (0.6, 0.2). Observe that there are invariant curves and periodic orbits
surrounding the origin, and these are more deformed the further they are from
the origin. As the parameter increases, the existence and persistence of these
invariant objects will depend on the rotation number of the orbit, an invariant of the
homeomorphisms of the circle [2]. If it is irrational enough (in a sense elaborated
later), the invariant curve will survive: This is the content of the Moser Twist
Theorem [21]. If it is rational, the Poincaré-Birkhoff theorem [2] states (under
certain conditions) that there exist two periodic orbits with the same period. We
shall summarize these theoretical results in chapter 1.

Further away from the origin, the saddle has an unstable and stable invariant
manifold which enclose the stability region. Even though they seem coincident,
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they are not, and they split further apart the larger the parameter is. This results
in homoclinic intersections, which give rise to chaos. We present the horseshoe
dynamics and its relation with transversal homoclinic intersections given by the
Birkhoff-Smale theorem [18] in section 1.3.

We will also study the Chirikov standard map [8], which is an area-preserving
map defined on the cylinder S1 ×R and given by

Sk :

(
x
y

)
7→
(

x̄
ȳ

)
=

(
x + ȳ

y + k
2π sin 2πx

)
, k ∈ R. (4)

For k = 0, the standard map is an example of integrable twist map. The loss of
integrability when k > 0 produces changes on the phase space which we will
study. As k increases, more and more invariant curves break down. The parameter
at which the last rotational invariant curve disappears is known as the Greene
parameter [11]. For larger values of k, points can diffuse along the cylinder.

The reason behind using these two APMs is because they exhibit similar be-
haviour to that of more complicated APMs (they are universal models), with the
advantage that these have an explicit and easy analytical expression, which is
quadratic in (3) and contains a trigonometric function in (4). Furthermore, these
maps are reversible, and as a consequence the corresponding phase spaces exhibit
symmetries.

Weakly-dissipative systems

Now, we discuss how to add dissipation on a conservative dynamical system.
There are multiple ways of adding dissipation, each producing different dynamics.
We shall consider two kinds of dissipation: A radial one on the plane [23], acting
on map (3)

Hα,ε(x, y) = (1− ε)Hα(x, y), 0 < ε� 1, (5)

and a vertical dissipation on the cylinder [4] acting on map (4)

Sk,ε,ω :

(
x
y

)
7→
(

x̄
ȳ

)
=

(
x + ȳ + ω

(1− ε)y + k
2π sin 2πx

)
, k, ω ∈ R, 0 < ε� 1. (6)

Radial dissipation on the Hénon map causes elliptic points to turn into attrac-
tors, invariant objects to which points tend to. Since the dissipation is pointed
towards the origin, the elliptic point there will be the attractor capturing the ma-
jority of points or, equivalently, the one with the biggest basin of attraction. Nev-
ertheless, there will be a coexistence of attractors for a small dissipation parameter
ε, where some phase space structures related to the resonances of the conservative
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case might survive. These other attractors will be periodic orbits, and it is inter-
esting to see which attractor captures more points. To this end, in chapter 2 we
carry out an experiment consisting in iterating initial conditions on an invariant
curve from the conservative case surrounding the 1:5 resonance, and see the ratio
of points captured by the attractor at the origin in contrast to the periodic attractor
for different values of ε.

Hyperbolic points and their invariant manifolds also evolve with the dissipa-
tion: As ε increases, the stable and unstable manifolds of these points separate
from one another. This means that, when ε is large enough, no homoclinic points
survive, and the invariant manifolds become flow-like (like the ones of a pendu-
lum with dissipation). Additionally, invariant manifolds play an important role
in guiding orbits through the phase space to one attractor or another. We shall
analyze the evolution of invariant manifolds as a function of ε in section 2.1.

On the other hand, invariant curves cannot persist under radial dissipation,
since the area enclosed by them would be preserved, contrary to the fact that the
system is dissipative with constant jacobian, see chapter 2.

For the standard map, however, the dissipation applied on (6) produces differ-
ent effects than those commented for (5). Since the phase space of the standard
map is the cylinder, a single rotational invariant curve does not enclose an area on
the phase space, and consequently it can survive under dissipation. On the other
hand, as in (5), elliptic points turn into attractors, there is coexistence of attractors
for a range of values of the dissipative parameter and the invariant manifolds of
the hyperbolic points also evolve and play a role in guiding orbits.

This dissipation is pointed towards y = 0, where we expect the attractor cap-
turing most points to be. Moreover, variation of k, ε and ω causes an interesting
effect: The attractor can now be an invariant curve, a periodic orbit or a strange
attractor. To support this, we will show numerical evidences of the existence of
periodic strange attractors of Hénon type [15].

The aim of our study of the dissipative standard map is to see the evolution
of the attractor for different values of the aforementioned parameters, including
the study of the breakdown of the attracting invariant curve, and the existence of
periodic attractors and strange attractors with periodic components.

Contents of this work

As mentioned above, the main goal of this work is to study the effect of specific
dissipative perturbations on APMs. To better understand the dynamics, we first
study the conservative case, in order to know the structure of the phase space and
its transition into the dissipative case. The summarized contents of the chapters
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are:

Chapter 1. It is a descriptive chapter where we present the main aspects
of the dynamics of APMs around an elliptic fixed point. The contents of
the chapter are developed in order to explain what is observed in the phase
space of the Hénon map and the standard map. It has a section of basic no-
tions, including results (without proofs) on the dynamics of APMs around
hyperbolic fixed points, and another section including results on the dynam-
ics around an elliptic fixed point, including normal forms, twist maps, the
Moser Twist theorem, the Poincaré-Birkhoff theorem and the horseshoe map.

Chapter 2. It addresses the effect of different dissipations for the maps con-
sidered in the previous chapter. In particular, its main aim is to see how
the conservative structure is mostly destroyed, and how some remaining el-
ements evolve under dissipation: Invariant curves are (in general) broken
down, elliptic points become attractors and the invariant manifolds of the
saddles become flow-like. In this chapter, we present numerical experiments
to discuss the transition to a weakly-dissipative regime. Concretely, we have
performed the following simulations:

– For the Hénon map, the main objective is to study the coexistence of
attractors through an experiment whose purpose is to know how many
points are captured by each attractor after iteration.

– For the standard map, different kinds of attractors occur for different
values of the parameters. The goal is then to see how the main attractor
evolves when changing parameters.

Chapter 3. The conclusions of the work are displayed here, summarizing our
main results. Moreover, it poses some questions which could lead to future
work.



Chapter 1

Overview of area-preserving maps

Many fields of study require the analysis of data evolving in time. For this
purpose, we introduce dynamical systems, systems whose states change in time.
In this work, we deal with finite deterministic dynamical systems. Furthermore,
unless stated otherwise, we consider analytic dynamical systems of one of the
following types:

1. Discrete dynamical system: Those whose time variable t is discrete (t ∈ Z).
They can be presented by the iteration of a function F : U ⊂ Rn → Rn

xt 7→ xt+1 = F(xt). (1.1)

2. Continuous dynamical system: Those with a continuous time variable (t ∈
R or t ∈ C). Their time evolution is given by a differential equation, which
for our purpose will be an ordinary differential equation (ODE)

ẋ = f (t, x), (1.2)

where f : I×U→ Rn.

In (1.1) and (1.2), x is a state of the system, which takes values in the phase space
U, which can be the Euclidean space or a subspace thereof, or a non-Euclidean
differentiable manifold such as the the cylinder.

Both kinds of dynamical systems are related. In fact, when studying a dis-
crete system, it is often useful to relate it to a suitable continuous system. This is
called the suspension of the map: It uses interpolation to create a non-autonomous
time-periodic vector field that is coincident with the map iterates whenever one
considers the flow at integer times. Moreover, one can use Hermite’s interpolation
to ensure the derivatives of the flow are also coincident with the derivatives of the
map at those points. This way, we can achieve a flow that is a Cr-diffeomorphism
∀r. In general, however, it will not be analytic.

On the other hand, to study the dynamics of a continuous system with flow φ

we can consider the time-τ map: Fixed τ ∈ R, x 7→ y = φτ(x). Another way is to

1



2 Overview of area-preserving maps

consider the Poincaré section Σ (a codimension 1 surface in U where the flow is
locally transverse) and define a Poincaré map: x ∈ Σ is mapped to y ∈ Σ iff exists
tx ∈ R such that φtx(x) = y and φt(x) /∈ Σ ∀t < tx.

As we have stated in the introduction, this work focuses on the study of an-
alytic area-preserving maps under dissipation. The purpose of this chapter is to
show and explain the dynamics of analytic APMs in the conservative case. This
chapter is inspired on [2, 24], but we complement these references with some re-
sults and illustrations that ought to facilite the understanding of the topic.

1.1 Basic notions of dynamics

Let F : R2 → R2 be an analytic APM, that is, a map F such that
• det DF(x, y) = 1 ∀(x, y) ∈ R2.
• F is a real analytical diffeomorphism.

For m ∈ Z+, Fm is the composition of F with itself m times. Since F is a
diffeomorphism, its inverse F−1 exists. Thus, F−m is the composition of F−1 with
itself m times, and F0 = IdR2 . Three important concepts arise from this:

Definition 1.1.1.
1. For each x ∈ R2, the orbit of x under F is the set O(x) = {Fm(x) | m ∈ Z}.
2. A point x∗ ∈ R2 is a fixed point of F if F(x∗) = x∗.
3. A point x∗ ∈ R2 is a periodic point of F if there exists m ∈N such that x∗ is a

fixed point of Fm.
4. A set M ⊂ U is invariant under F if Fm(x) ∈ M ∀x ∈ M, ∀m ∈ Z. We write

F(M) ⊂ M. If m ∈ Z+ (m ∈ Z−), we say M is positively (negatively) invariant.

The minimum value of m satisfying Fm(x∗) = x∗ is called the period of x∗, and
the orbit {x∗, F(x∗), . . . , Fm−1(x∗)} is called periodic orbit of period m or m-cycle. In
addition, all points in an m-cycle are periodic points of period m, and a fixed point
is a periodic point of period 1.

Fixed points and periodic orbits are invariant compact sets. As we commented
in the introduction, the dynamics of a system is organised around these invariant
objects in what is called the skeleton of the system.

Another important feature of APMs is that they can be reversible under certain
mappings known as reversors.

Definition 1.1.2.
1. A map R : R2 → R2 is called an involution if it is its own inverse, that is,

R(R(x)) = x ∀x ∈ R2. (1.3)
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2. An involution R : R2 → R2 is a reversor for a Cr-diffeomorphism F : R2 →
R2, r ≥ 0, if

R ◦ F ◦ R(x) = F−1(x) ∀x ∈ R2. (1.4)

Reversibility implies that the APM will be symmetric with respect to a certain
curve, which is in fact the set of fixed points of the reversor. This feature will help
in plotting the invariant manifolds of hyperbolic fixed points, which is explained
at the end of this section. Moreover, reversibility plays an important role in finding
the periodic points of reversible mappings. This is the content of proposition 1.1.1.

Proposition 1.1.1. Let R be a reversor for a mapping F with fixed point set Fix(R) =

{x ∈ R2 |R(x) = x}. Let x∗ ∈ Fix(R). If there exists m ∈ N such that Fm(x∗) ∈
Fix(R) and Fn(x∗) /∈ Fix(R) ∀n < m, then x∗ is a periodic point of F. Furthermore,
either x∗ has period m or it has period 2m.

Proof. Fm(x∗) ∈ Fix(R) ⇔ R(Fm(x∗)) = Fm(x∗). Since x∗ ∈ Fix(R), we can write

the left hand side of the equation as R(Fm(x∗)) = R(Fm(R(x∗)))
(1.4)
= F−m(x∗).

Thus, F−m(x∗) = Fm(x∗)⇔ F2m(x∗) = x∗ ⇒ x∗ is a periodic point of F. As for the
periodicity of x∗:

• If Fm(x∗) = x∗, then x∗ is m-periodic. Indeed, if there exists n < m such that
Fn(x∗) = x∗, then R(Fn(x∗)) = R(x∗) = x∗ = Fn(x∗), which contradicts the
hypothesis that m is the least natural number satisfying Fm(x∗) ∈ Fix(R).
• If Fm(x∗) 6= x∗, then x∗ is 2m-periodic because, if there existed n < 2m such

that Fn(x∗) = x∗, then n would divide 2m, which would imply either n|m or
n|2. In the former, Fm(x∗) = x∗ contradicting the hypothesis. In the latter,
either n = 1 or n = 2. In both cases, arguing in the same manner as above,
we arrive at a contradiction.

Remark. The main consequence of this proposition is that if we iterate F picking
initial conditions along Fix(R) for some reversor R of F, we will be able to obtain
the periodic points of F with period up to twice the number of iterates.

We will study area-preserving maps using the Hénon map (3) as an example.
As noted in [14], it is the simplest APM with non-trivial behaviour, making it a
good model for numerical simulations.

The phase space of the Hénon map is depicted in figure 1.1 for the value
α = 0.21. This map has a fixed point pe at the origin and another one at ph =

(2 tan πα, 2 tan2 πα). These behave differently, however, which is apparent from
looking at the figure again: The dynamics concentrates around the fixed point at
the origin. Meanwhile, the other fixed point seems to be at the edge of the domain
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Figure 1.1: Left: Phase space of Hα for α = 0.21. The hyperbolic fixed point is
plotted in blue, whereas its stable and unstable manifolds are depicted in green
and red, respectively. Right: Close-up of the phase space around the elliptic fixed
point. The symmetry lines are plotted in blue and orange.

where the invariant and recurrent dynamics occurs. The Hénon map is reversible
by means of the involutions

(x, y) 7→ (cos(2πα)x + sin(2πα)y, sin(2πα)x− cos(2πα)y), (1.5)

(x, y) 7→ (x, x2 − y), (1.6)

which have y = tan(πα)x and y = x2/2 as symmetry lines, respectively. These
intersect at the fixed points of the mapping, and are plotted on the right of figure
1.1 in blue and orange, respectively.

The following definitions will help us classify fixed and periodic points de-
pending on the behaviour of the orbits close to them. Let x∗ be a fixed point of
an APM F. In addition, let DF(x∗) be the differential of F evaluated at x∗. For an
APM, one has Spec DF(x∗) = {λ, λ−1}.

Definition 1.1.3. A fixed point x∗ is said to be hyperbolic if λ 6= 1 ∀λ ∈ Spec DF(x∗).
In particular, x∗ is linearly stable (unstable) if λ < 1 (λ > 1) ∀λ ∈ Spec DF(x∗), and
it is called a saddle otherwise.

Fixed points which do not satisfy definition 1.1.3 are called non-hyperbolic. In
particular, they have all eigenvalues with modulus equal to unity. We say a non-
hyperbolic fixed point is elliptic if λ = e2πiα, α 6= 0, 1/2, and parabolic otherwise. In
both cases, we say that λ is the multiplier of the fixed point. An important trait of
the Hénon map is that any APM having an elliptic fixed point can be reduced to
the Hénon map in a neighbourhood of this point [14].
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In addition, we can generalize the concept of hyperbolic and elliptic fixed
points to periodic points: An m-periodic point x∗ is hyperbolic (resp. elliptic) if x∗
is a hyperbolic (resp. elliptic) fixed point of Fm. In particular, all results yielded for
hyperbolic (resp. elliptic) fixed points will be valid for periodic hyperbolic (resp.
elliptic) points considering the appropriate power of F.

For the Hénon map, pe is elliptic, with eigenvalues λ = e2πiα and λ̄, whereas
ph is saddle-type hyperbolic with eigenvalues λ = c + 2st +

√
(c + 2st)2 − 1 > 1

and λ−1 < 1, where c = cos(2πα), s = sin(2πα) and t = tan(πα). A more general
sense of stability is given in the following definition.

Definition 1.1.4. A fixed point x∗ is said to be (Lyapunov) stable if, for every neigh-
bourhood N of x∗, there is a neighbourhood M ⊂ N of x∗ such that if x ∈ M then
f m(x) ∈ N ∀m > 0. Moreover, x∗ is said to be assymptotically stable if f m(x) m→∞→ x∗.

Hence, a fixed point x∗ is Lyapunov stable if iterates of points "near" it remain
"near" it, and it is assymptotically stable if the iterates of points "near" x∗ tend to
the fixed point. If x∗ Lyapunov stable but not assymptotically stable, it is neutrally
stable. If x∗ is not stable, it is called unstable.

Remark.
1. If a fixed point x∗ is linearly stable, then x∗ is Lyapunov stable. However, the

converse is not true.
2. If x∗ is an elliptic fixed point, then it is neutrally stable.

1.1.1 Dynamics around a hyperbolic fixed point

Since the dynamics of APMs is far richer in a neighbourhood of an elliptic point
than around a hyperbolic fixed point, we will first study how the latter affects the
dynamics around it, and then proceed to do the same with the former. Indeed,
the type of dynamics of an APM around a hyperbolic fixed point is determined
by the one of the related linear system DF(ph), which is the content of Hartman-
Grobman’s theorem [26].

Theorem 1.1.1 (Hartman-Grobman). Let x∗ be a hyperbolic fixed point of the diffeo-
morphism F : U → R2, U ⊂ R2 an open subset. Then there is a neighbourhood N ⊂ U
of x∗ and a neighbourhood N′ ⊂ R2 containing the origin such that F|N is topologically
conjugated to DF(x∗)|N′ .

Two diffeomorphisms f , g : R2 → R2 are said to be topologically conjugated if
there is a homeomorphism h : R2 → R2 such that

h ◦ f (x, y) = g ◦ h(x, y) ∀(x, y) ∈ R2. (1.7)
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Topological conjugacy sends orbits of f to orbits of g preserving orientation, it
respects the fixed point types and sends m-periodic orbits of f to m-periodic orbits
of g.

 1.198

 1.2

 1.202

 1.204

 1.206

 1.208

 1.546  1.548  1.55  1.552  1.554

Figure 1.2: Schematical dynamics of DHα(ph), α = 0.21, around ph (in blue).

The dynamics of DHα(ph) is displayed in figure 1.2. The line in green (resp.
red) is the invariant stable (resp. unstable) eigenspace, denoted Es (resp. Eu).
Moreover, DHα(ph)|Es (resp. DHα(ph)|Eu ) is a contraction (resp. expansion) and
Es ⊕ Eu = R2. Then, we identify Es (resp. Eu) with the eigenspaces of eigenvalues
with modulus less (resp. greater) than 1. In addition, the sum of both eigenspaces
gives the whole of R2 since each eigenvalue is associated to either Es or Eu.

Thus, the dynamics of DHα(ph) is quite simple: Points belonging to the stable
(resp. unstable) eigenspace get closer (further) to ph as we iterate the mapping. As
for the points outside these eigenspaces, they follow the stable eigenspace until
they are close to ph. Then, they follow the unstable eigenspace and go to infinity.

Theorem 1.1.1 tells us that the dynamics of Hα close to ph is that described
above. Nevertheless, the Hénon map is not linear, and points eventually escape the
domain where theorem 1.1.1 applies. In figure 1.1 we can see how near ph the lines
depicted in green and red take the roles of the stable and unstable eigenspaces,
respectively. The following result extends the notions of stable and unstable sub-
spaces to a non-linear mapping in the form of invariant manifolds.

Theorem 1.1.2 (Invariant Manifold). Let F : U → R2 be an analytic APM with a
hyperbolic fixed point at x∗ ∈ U. Then on a sufficiently small neighbourhood N ⊂ U of
x∗, there exist unique and analytic local stable and unstable manifolds

Ws
loc(x∗) = {x ∈ U| f m(x)→ x∗ as n→ ∞},

Wu
loc(x∗) = {x ∈ U| f m(x)→ x∗ as n→ −∞}
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of the same dimensions as Es and Eu for DF(x∗) and tangent to them at x∗.

By iteration, one can define global stable and unstable manifolds at x∗ by

Ws(x∗) =
⋃

m∈Z+

F−m(Ws
loc(x∗)), Wu(x∗) =

⋃
m∈Z+

Fm(Wu
loc(x∗)). (1.8)

Thus, the lines in red and green in figure 1.1 correspond to the unstable and
stable manifolds of ph, respectively. Notice how these have separated with respect
to figure 1, where they seemed to be coincident. Since they cannot intersect with
themselves and each lobe must have the same area as its successive images, the
branches of each manifold surrounding the elliptic point accumulate along the
branches which go to infinity, making each successive lobe longer along the direc-
tion of the branches, and thinner along the perpendicular direction. In fact, this is
a consequence of the λ-lemma [12, 19].

Lemma 1.1.3 (λ-Lemma). Let x∗ ∈ U be a hyperbolic point of saddle type of an analytic
APM F : U → R2 having Ws(x∗) and Wu(x∗) as the stable and unstable invariant man-
ifolds, respectively, and let I ⊂ Wu(x∗) be any interval such that x∗ ∈ I. Furthermore,
suppose an interval J ⊂ Ws(x∗) intersects Wu(x∗) transversally. Then,

⋃
n≥0 Fn(J)

contains a sequence intervals acummulating to I in the C1 topology.1.

)

)

J

I

Ws(x∗)

Wu(x∗)

x∗
(

(

Figure 1.3: Accumulation of the unstable manifold near the hyperbolic point.

The invariant manifolds contribute to the complexity of the dynamics of Hα by
intersecting with one another. In, general, if ph and qh are two hyperbolic points
of an APM F, we say a point p is a heteroclinic point if p ∈ Wu(ph) ∩Ws(qh). If
ph = qh, p is a homoclinic point. If these manifolds intersect at a non-zero angle, we
say p is a transverse heteroclinic (resp. homoclinic) point.

Observe that if p is a heteroclinic (resp. homoclinic) point, all points in its orbit
are also heteroclinic (resp. homoclinic) points, of which there will be infinitely

1This highlights the fact that the two intervals and their derivatives are "close" throughout U. For
more information on this statement, see [2, 19].
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many by definition (1.8). As a consequence of lemma 1.1.3, these get closer as
we approach one hyperbolic point (see figure 1.3). In addition, if one heteroclinic
(resp. homoclinic) point is transverse, then all other points in the orbit are as well:
This is a consequence of F being a diffeomorphism. These heteroclinic (resp. ho-
moclinic) intersections contribute to the creation of a complicated structure called
a heteroclinic (resp. homoclinic) tangle, which gives rise to chaos [18]. The mechanism
through which chaos arises is explained in section 1.3.

The branches of the invariant manifolds surrounding the elliptic point enclose
the domain containing all points that do not scape to infinity. This domain, which
includes the surroundings of the elliptic point until the last invariant curve as well
as the islands in the chaotic region (see section 1.2 for further discussion on these),
is known as the stability domain of the mapping.

Definition 1.1.5. Given a diffeomorphism F : U ⊂→ Rn and a compact domain
K ⊂ U, the stability domain of F relative to K is the largest invariant subset of K.

The fact that we can speak about the stability domain of the Hénon map is due
to the topology of the invariant manifolds, which form a "fish-like" structure (see
figure 1) that implies that, once the iterates leave a compact domain cointaning
the loop of the invariant manifolds, all points (except a measure zero set) escape
to infinity.

Computation of invariant manifolds

Here we will describe the algorithm used in the computation of the invariant
manifolds seen in figures 1 and 1.1. Specifically, we have employed the algorithm
in [22], which uses the conjugacy to the linear dynamics along the stable and un-
stable manifolds associated to a hyperbolic point. Although methods based on
higher order parameterizations of the invariant manifolds (we refer to [13] for a
full discussion on the topic) allow for more accurate computations, the method
sketched here is enough to compute the invariant manifolds displayed in the fig-
ures. See A.1 for details on the implementation.

Let ph = (xh, yh) be a hyperbolic fixed point of an APM F : U ∈ R2 → R2,
and let λ > 1 be the eigenvalue corresponding to the unstable direction. In order
to compute the unstable manifold (for the stable manifold, we apply F−1 and
λ < 1 → λ−1 > 1), we consider a parametric representation (x(z), y(z)) around
ph, with ph = (x(0), y(0)) and F(x(z), y(z)) ' (x(λz), y(λz)) (consequence of
theorem 1.1.1). In particular, we will use the linear parameterization (x(z), y(z)) =
(xh + zv1, yh + zv2), with v = (v1, v2) a normalized eigenvector of eigenvalue λ.
We proceed as follows:
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1. Let z0 be a value of z such that ||F(x(z), y(z))− (x(λz), y(λz))|| is lesser than
some tolerance (e.g. 10−14). This ensures the linear approximation is valid.
We take the fundamental domain2 generated by z in [z0/λ, z0).

2. We fix a distance ∆s such that successive points (xm−1, ym−1), (xm, ym) ∈
Wu(ph) should satisfy

||(xm+1, ym+1)− (xm, ym)|| ≤ ∆s. (1.9)

3. Assume we have computed up to (xm, ym) satisfying equation (1.9), and we
have a current value of z, zm, and a current value of ∆zm = zm − zm−1. We
select ∆zm+1 = min(1.5, 0.75 ∆s

∆zm
) ·∆zm. The factor accompanying ∆zm can be

considered a security factor.

4. Using zm+1 = zm +∆zm+1, we perform k iterates, the same number of iterates
used to get (xm, ym) from zm, and we obtain (xm+1, ym+1). If zm+1 > z0, we
divide zm+1 by λ and replace k by k + 1 until zm+1 falls in the allowed range.

5. If, despite our choice of zm+1, inequality (1.9) is not verified, we return to
step 3 using 0.75 ∆s

zm+1
as the new security factor.

6. Steps 3 to 5 are repeated until

(a) we have the desired length of the manifold or
(b) either ∆zm+1 or ∆zm are too small. In this case, we must resort to some

kind of interpolation to obtain more points of the manifold and con-
tinue the algorithm.

Reversibility of the Hénon map allows us to plot the stable manifold as the
image of (1.5) of the unstable manifold. As we will see in chapter 2, however,
reversibility is often lost when introducing dissipation, and so we will need to use
the algorithm described above twice to plot each of the invariant manifolds.

Furthermore, this algorithm does not only allow to compute the invariant man-
ifolds of a fixed point: By considering Fm and the appropiate eigenvalues and
eigenvectors, we can also compute the invariant manifolds of an m-periodic hy-
perbolic point. Nevertheless, along with limited precision, hyperbolicity of these
periodic points give numerical problems, increasing the difficulty in the computa-
tion of invariant manifolds of these points.

2This domain is called fundamental because every orbit in Wu(ph) has a point (representative)
in this domain.
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1.2 Dynamics around an elliptic fixed point

As we have seen in figure 1.1, the dynamics of the Hénon map revolves around
the elliptic fixed point at the origin. This section is devoted to the understanding
the dynamics of APMs around elliptic fixed points. Theorem 1.1.1 does not tell
anything about this, and so we must seek an alternative way to explain it. To this
end, let F : R2 → R2 be an APM with a fixed point p (observe we do not ask p
to be elliptic yet), which we can assume to be the origin p = 0 without loss of
generality, and consider the Taylor expansion of F about 0

F(x) = DF(0)x + F2 + · · ·+ Fn + O(|x|n+1), (1.10)

where x ∈ R2 and Fk ∈ Hk, k = 2, . . . , n, Hk being the vector space of homogeneous
polynomials of degree k. Our goal is to eliminate as many terms of order greater
than one as possible. If we focus on the term of order r ≥ 2, we can rewrite
equation (1.10) as

F(x) = DF(0)x + Fr(x) + O(|x|r+1). (1.11)

We will try to get rid of the term Fr(x) using the polynomial transformation

x = y + kr(y) = K(y), (1.12)

where y ∈ R2, kr ∈ Hr. If K transforms F into F̃, then

F̃(y) = K−1(F(K(y))) =

= DF(0)y + DF(0)kr(y) + Fr(y)− kr(DF(0)y) + O(|y|r+1). (1.13)

Therefore, we must choose kr so that

kr(DF(0)y)− DF(0)kr(y) = Fr(y) (1.14)

in order to get
F(y) = DF(0)y + O(|y|r+1). (1.15)

Equation (1.14) is known as the homological equation associated with DF(0).
Nevertheless, it is not always possible to chose kr to get (1.15). It can be seen [2]
that the coefficients of kr(x) can be expressed in terms of the coefficients of Fr(x)
as

km,i =
Fm,i

λm − λi
i = 1, 2, (1.16)

with λ1, λ2 ∈ Spec DF(0), m = (m1, m2) ∈N×N, r = m1 +m2 and λm = λm1
1 λm2

2 .
Thus, we are not able to eliminate the term of order r if

λi = λm (1.17)
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for some allowed m and i = 1, 2. In this case, we say λ = (λ1, λ2) is resonant of
order r. This is known as a small divisors problem.

The following theorem [2] states that we we can repeat this process for all
orders r ≥ 2 and eliminate all non-resonant terms from equation (1.10).

Theorem 1.2.1 (Normal Form Theorem). F can be reduced by polynomial transforma-
tion to the form

Jy +
N

∑
r=2

wr(y) + O(|y|N+1), (1.18)

where J is the Jordan form of DF(0) and wr ∈ Hr is resonant of order r.

F is said to be in normal form if it is expressed as in (1.18). Alternatively, we say
F is in normal form if it commutes with its linear term DF(0). Note that, since F
is an APM, preservation of area gives us

λ1λ2 = 1 =⇒ λ1 = 1/λ2, (1.19)

and plugging (1.19) in equation (1.17), we get the resonant conditions

m1 = m2 + 1 if m1 > m2, (1.20)

m2 = m1 + 1 if m2 > m1. (1.21)

The resonant terms in the first (resp. second) component of F are associated
with (1.20) (resp. (1.21)). These terms appear for all orders r ≥ 2 and are called
inevitable resonant terms. The reason for this nomenclature will be explained later.

The BNF for an APM F having a hyperbolic fixed point at 0 only has the linear
term and the inevitable resonances up to any order because small divisors do not
appear in this case.

1.2.1 Birkhoff Normal Form and twist maps

Now consider p = 0 to be an elliptic fixed point with multiplier λ = e2πiα0 . If
we perform the change of variables to Poincaré action-angle variables, defined by

(x, y) = (2τ)1/2(cos θ, sin θ), (1.22)

to expression (1.18), and assuming λ is not a root of unity of degree s or less, we
obtain

(θ1, τ1) = (θ + α0 +
M

∑
i=1

αiτ
i + Rθ(θ, τ), τ + Rτ(θ, τ)), M = [s/2]− 1, (1.23)
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where Rθ , Rτ are o(τM). Note that, since θ is an angular coordinate, it is computed
mod 1. We then say F is in Birkhoff Normal Form (BNF). The expression

(θ1, τ1)− (Rθ(θ, τ), Rτ(θ, τ)) = (θ +
M

∑
i=0

αiτ
i, τ) (1.24)

is known as the (truncated) BNF to order s, and it is denoted by BNFs.
When α0 is irrational, M may be taken to be arbitrarily large, thus removing

the residual dependence on θ appearing in Rθ , Rτ to arbitrarily high orders of τ.
The only resonant terms present in this case are the ones in (1.20) and (1.21). They
are inevitable because they occur for all values of α.

On the other hand, if α0 = p/q, then additional resonances show up. In Poincaré
variables, these resonant terms are not functions of τ alone, so the map cannot
be reduced to the form (θ + α(τ), τ) to arbitrarily high order in τ anymore. The
requirement that λ is not a root of unity of degree s or less prevents these resonant
terms from occuring at any order lesser than or equal to s. These additional
resonances are also known as evitable resonances, since with a small change of the
parameter α they do not longer appear. In particular, when λ is a root of unity of
degrees 2,3 or 4 we talk about strong resonances. These cases are special because
the resonant terms are of the same order as the lowest order terms in (1.23), and
the elliptic point need not to be stable anymore. The study of these resonances are
not within the scope of this work. For further information, please refer to [27].

Elliptic points with a multiplier λ that is not a root of unity of degree s ≥ 5 are
said to be generic if α1 6= 0. This condition is sufficient for the BNFs (1.24) to be an
(integrable, see definition 1.2.3 below) area-preserving twist map [18].

Definition 1.2.1. A diffeomorphism T of the annulus S1× (−1, 1) (or, equivalently,
the cylinder) is said to be a twist map if

1. T preserves orientation.

2. T preserves boundary components, that is, there exists ε > 0 such that if
(x, y) ∈ S1 × (−1,−1 + ε), then T(x, y) ∈ S1 × (−1, 0).

3. ∂
∂y T̂1(x, y) 6= 0 ∀(x, y) ∈ R × (0, 1), where T̂ = (T̂1, T̂2) is a lift of T, that
is, a map T̂ : R× (−1, 1) → R× (−1, 1) such that π ◦ T̂ = T ◦ π, where
π : x 7→ x (mod 1) is the projection from R to S1. Since a lift is unique up to
an additive integer [2], once a lift is chosen, all computations should use the
same lift.

In action-angle coordinates, an area-preserving twist map is written as

T : (θ, τ) 7→ (θ + α(τ), τ). (1.25)
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For a given τ ∈ (−1, 1), α(τ) is known as the rotation number of the orbit,
defined for homeomorphisms of the circle [2] as follows.

Definition 1.2.2. Let f : S1 → S1 be a homeomorphism of the circle and f̂ : R→ R

a lift of f . The rotation number of f is the limit

ρ( f̂ ) := lim
n→∞

f̂ n(x)− x
n

. (1.26)

Remark. ρ exists for all x ∈ R, is independent of x and well defined up to an
integer. Moreover, the limit does not depend on the lift chosen, so ρ = ρ( f ) =

ρ( f̂ )(mod 1) is well-defined.

Applying expression (1.26) to T, it is easy to see that α(τ) is the rotation num-
ber of the orbit of T with radial coordinate τ.

Let us explain how the previous concept is adapted to the setting of APMs.
For an arbitrary APM F : R2 → R2, F = (F1, F2), we shall restrict ourselves to an
annulus A = S1 × (a, b) and consider a lift F̂ = (F̂1, F̂2) : R× (a, b) → R× (a, b).
For invariant curves, F can be restricted to the curve, and the limit is computed
as in (1.26). As for periodic points, the limit is defined using F̂1 in (1.26). For
other points, such as points belonging to islands of figure 1.1, the limit is also
defined and is the same as the periodic point inside the island. Nevertheless,
there are other points for which limit (1.26) might not be defined, such as most of
the points in bounded chaotic regions.

The dynamics of T is now clear: Orbits lie on circles of radius τ = τ0 sur-
rounding the origin (equivalently, at τ0 in the vertical direction of the cylinder),
and behave like a rotation of angle α(τ0), which is the rotation number of the or-
bit. Therefore, it differs from a linear rotation in that the rotation number changes
with τ. In fact, in Poincaré variables, condition 3 from definition 1.2.1, known as
the twist condition, translates to

dα

dτ
(τ) 6= 0, τ ∈ (−1, 1). (1.27)

Then, α is a continuous monotone function of τ. Hence, it takes values on the
twist interval (α(−1), α(1)) = (α−, α+), and there is a one to one correspondence
between the set of orbits and the twist interval, which allows us to tag each orbit
with its own unique rotation number. That is, the so-called frequency map [1] is a
one-to-one correspondence between the action space and the frequency space.

When α(τ0)/2π = p/q ∈ Q, where p, q ∈ Z, q 6= 0 and gcd(p, q) = 1, we have

Tq(θ0, τ0) = (θ0 + q · 2πp/q, τ0) = (θ0, τ0), (1.28)
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and (θ0, τ0) is a periodic point of period q. On the other hand, if α(τ0)/2π ∈ R\Q,
then

Tm(θ0, τ0) = (θ0 + 2mπα(τ0), τ0) 6= (θ0, τ0) (1.29)

and there are no periodic points: The orbit of any point with τ = τ0 fills the circle
densely, and T has an invariant curve at τ = τ0. If T is defined on the cylinder, the
curve is said to be a rotational invariant curve (r.i.c.). As an example of integrable
area-preserving twist map, we will use Chirikov’s standard map (4) with k = 0.

Definition 1.2.3. An APM F : U → R2, U ⊂ R2 is said to be (analytically) integrable
if there exists an (analytic) non-constant function G : U → R such that G(x) =

G(F(x)) ∀x ∈ U.

Remark. For an integrable twist map (1.25), the action τ plays the role of G above.
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Figure 1.4: Left: Phase space of Sk for k = 0. Right: Phase space of Sk for k = 0.5.

The phase space of (4) for k = 0 is depicted on the left of figure 1.4. We observe
that, for y ∈ Q, the standard map has a periodic orbit (in particular, all points with
y = 0 are fixed points), whereas if y ∈ R\Q, the mapping presents an invariant
curve, in concordance with the discussion of twist maps presented above.

On the other hand, if k > 0, the integrability condition is lost. The map has an
elliptic fixed point at (1/2, 0) and a hyperbolic fixed point at the origin. Moreover,
(4) is reversible with respect to the axis x = 1/2 for all values of k, and is 2π-
periodic in both x and y. Therefore, it can be defined on the torus S1 × S1. From
this periodicity, we infer that the mapping has an elliptic fixed point for (1/2, m)

and a hyperbolic fixed point at (0, m) ∀m ∈ Z, ∀k > 0.
These hyperbolic points present the same dynamics as the Hénon map, which

include validity of theorem 1.1.1, and the presence of stable and unstable mani-
folds, as can be seen on the right of figure 1.4.
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1.2.2 The Moser Twist Theorem

Focusing on the same figure, we observe that invariant curves from the left
of figure 1.4 are now deformed after increasing the value of k, and elliptic points
in periodic orbits have invariant curves surrounding each point of the orbit. This
happens in the same fashion as in (3): As we observed in figure 1.1, there are
invariant curves surrounding the origin, as well as a 5-periodic orbit of elliptic
points which also has curves surrounding each of its points.

We now ask ourselves if an invariant curve with rotation number α ∈ R\Q
will survive under small parameter changes. For this purpose, let

Tε(θ, τ) = T(θ, τ) + P(θ, τ, ε) (1.30)

be a perturbation of (1.25), where

P : S1 × (−1, 1)→ R2

(θ, τ) 7→ ( f (θ, τ, ε), g(θ, τ, ε)) (1.31)

is a 2π-periodic in θ analytic (real) function, and P(θ, τ, 0) ≡ 0. Furthermore, we
will suppose Tε is area-preserving for all values of ε. Note that, for k > 0, (4)
satisfies these conditions with ε = k

2π , P(θ, τ, k) = ( k
2π sin(2πθ), k

2π sin(2πθ)).
The following theorem [21] guarantees, under certain assumptions, that an

invariant curve of T will survive for Tε.

Theorem 1.2.2 (Moser Twist). Given any irrational number ω ∈ (α−, α+) satisfying

| ω

2π
− p

q
| > C

qτ
∀p, q ∈ Z, q 6= 0 (1.32)

for a given C > 0 and τ ≥ 2, there exists a differentiable closed curve

θ = ξ + G(ξ, ε), τ = F(ξ, ε), (1.33)

with F, G analytic and 2π-periodic in ξ, which is invariant under the mapping Tε, pro-
vided |ε| is sufficiently small. The image of a point in (1.33) is obtained by replacing ξ by
ξ + ω.

A real number ω satisfying (1.32) is said to be diophantine, or, equivalently,
we say ω satisfies a (C, τ)−diophantine condition. It is a measure of how well an
irrational number can be approximated by rational numbers. If we use a continuous
fraction representation [18] ω = [a0; a1, a2, . . . ] with ai ∈ Z, which corresponds to

ω = a0 +
1

a1 +
1

a2+...

, (1.34)
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w will have a better diophantine condition the sooner we have an infinite sequence
of ones, denoted by 1∞. In this case, we will say w is a noble irrational number. In
particular, the golden ratio

ϕ =

√
5− 1
2

(1.35)

is the "noblest number", since it is diophantine for τ = 2. Its continuous fraction
representation is ϕ = [0; 1∞].

Therefore, three factors come into play for the persistence of an invariant curve
of a twist map under perturbation: The twist condition, ω and |ε|. The larger the
twist condition or the better the diophantine condition is, the larger perturbation
|ε| is allowed.
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Figure 1.5: Left: Phase space of Sk for k = 0.98 > kG. Right: Phase space of the
Hénon map for α = 0.215.

When changing the parameter α in (3) or k in (4), the size of the parameter
also changes, and we expect some invariant curves to persist and some others to
break down. The ones with the most diophantine rotation number will survive for
larger increments of the parameter, whereas the curves with the least diophantine
rotation numbers will disappear with small increments.

For the standard map, the last rotational invariant curve has rotation number
equal to the golden ratio (1.35) and breaks down at the Greene parameter [11]

kG ' 0.971636 . . . (1.36)

Invariant curves are very important for the dynamics of APMs. Indeed, orbits
cannot cross invariant curves, since it would contradict the preservation of orien-
tation. Consequently, the motions in a region between two invariant curves are
trapped in what is known as a Birkhoff instability zone [27]. In particular, chaotic
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motions are trapped in this instability zone. This can be observed in figure 1.1 and
on the left of figure 1.4.

As a consequence, the breakdown of invariant curves allows diffusion, that is,
it allows previously trapped motions to be able to navigate the phase space freely.
Just after the the last invariant curve has disappeared, the diffusion is very slow
because it requires a lot of iterates for an orbit to reach a previously unreachable
part of the phase space. This is because a small decrease in parameter would make
this invariant curve to reappear.

In figure 1.5 we can see how the destruction of invariant curves affects the
dynamics of APMs: On the left, the phase space of the standard map is depicted
for a value of k greater than kG. This means all the r.i.c.’s are already broken
down, and points can navigate the cylinder freely. However, a large number of
periodic orbits remain, and it takes a lot of iterates for a point to cross them, since
they tend to get near the invariant curves surrounding the points in the orbit and
follow their periodic motion, which is horizontal. Most of these periodic orbits,
which form some sort of island chains, were already present on the right of figure
1.4. With the increase of the parameter, however, some of them have disappeared,
whereas some others seem to have gotten bigger in size, in the sense that the
invariant curves of every island now enclose a bigger region.

On the other hand, the phase space of the Hénon map is depicted on the right
of figure 1.5 for the value α = 0.215. The invariant curves surrounding the five
islands have been broken down by the change of the parameter, and thus, the
chaotic motions, which were previously trapped between this destroyed invariant
curve and the remaining outermost one, can now move freely.

Nevertheless, it seems that the five islands from figure 1.1 are still present on
the right of figure 1.5, despite the increase of parameter, which is large enough to
break down the invariant curves that were surrounding these islands.

1.2.3 The Poincaré-Birkhoff theorem

The main aim of this section is to understand the nature of the islands seen
in figures 1.1, 1.4 (right) and 1.5 (right), how they affect the dynamics of an APM
and their persistence under perturbation. As we have commented before, even
though the changes in the parameter for the aforementioned figures is enough
to break down some invariant curves (all in the case of the standard map), there
are some periodic orbits that persist, and they change in size with a parameter
change. Additionally, these orbits might somehow affect the chaoticity of orbits
around them.

Recall that, for α/2π = p/q ∈ Q, the twist map (1.25) has a periodic orbit of
period q. Next theorem [2] ensures the survival of this orbit under perturbation.
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Theorem 1.2.3 (Poincaré-Birkhoff). Given any rational p/q between α−/2π and α+/2π,
there are 2q fixed points of Tq

ε satisfying

Tq
ε : (θ, τ) 7→ (θq, τq) = (θ + 2πp, τ) (1.37)

provided that |ε| is sufficiently small.

These 2q fixed points of Tq
ε are q−periodic points of Tε. In particular, these are

arranged in two q-periodic orbits, one comprised of q elliptic points (the points
at the center of the islands) and another one of hyperbolic points (each located
between any two consecutive islands). This can be checked by computing the
eigenvalues of DTq evaluated at each periodic point.

Note that, by perturbing T, additional resonances appear in its normal form.
These resonances show up on the phase space in the form of islands, which is
why both terms are used indistinctively. Indeed, we know that if the elliptic point
is generic, the truncated BNF is a twist map. Since the actual mapping has these
islands whilst the truncated BNF does not (because it is a twist map), then the
islands must appear because of the difference between the BNF and the truncated
BNF, i.e. (Rθ , Rτ). Then, to see resonances of order m ≥ 5, one needs to consider
α = q

m + δ, 1 ≤ q < m, gcd(q, m) = 1, where λ = e2πiα is the multiplier of the
elliptic fixed point. In this case, the island chain is called the q : m resonance.
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Figure 1.6: Left: Phase space of Sk for k = 2. Right: Phase space of Sk for k = 5.
See the text for more information.

Focusing on the q : m resonance and considering Tm
ε as the main mapping, each

elliptic point will have a multiplier λm, and we can apply theorems 1.2.2 and 1.2.3
around an elliptic periodic point, which will be surrounded by invariant curves
and islands in the same fashion as the origin for the Hénon map. Moreover, all
these invariant curves and satellite islands jump from one island to the next one
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in the main resonance. Therefore, the whole mapping repeats on a smaller scale,
creating a island-around-island fractal structure. As for the hyperbolic points, we
have already commented that they have invariant stable and unstable manifolds
and that theorem 1.1.1 applies when considering the convenient power of the
mapping. Moreover, the increase of the parameter will destroy these resonances,
which will lead to a bigger chaotic region. This is depicted in figure 1.6, where we
have plotted the standard map for the values k = 2 (left) and k = 5 (right). In the
former, there are still invariant curves surrounding the elliptic point at (1/2, 0),
and the 1:2 resonance has not been destroyed yet. In the latter, all resonances
visible in the former are destroyed, and the cylinder appears chaotic. Note that
there are always resonances (of higher periods) even if we cannot see them due
to numerical precision. In fact, it is an open question [3, 16] if there is any open
subset of the domain of an APM where there are no islands.
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Figure 1.7: Left: Close-up of the phase space of Hα, α = 0.21, around one of the is-
lands of the 1:5 resonance. Right: Phase portrait (level curves of the Hamiltonian)
of the mathematical pendulum.

Notice that the phase space of an APM around an elliptic point of a resonance
resembles the phase portrait of the mathematical pendulum, an integrable Hamil-
tonian system defined on the cylinder S1 ×R, with Hamiltonian

H(x, y) =
y2

2
+

1
2π

cos(2πx), (1.38)

and described by the ODEs

ẋ = y, ẏ = sin(2πx). (1.39)

This system has a saddle-type hyperbolic fixed point (unstable equilibrium) on
the origin and one elliptic fixed point (stable equilibrium) at (1/2, 0). The invariant
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manifolds of the saddle (depicted in red) are separatrices, because they separate two
regimes of motion: The orbits in-between the separatrices and around the elliptic
point (−1/2π < H < 1/2π) correspond to librational motions (plotted in green),
whilst the orbits of higher energy (H > 1/2π) are outside the region enclosed the
separatrices, and correspond to rotational motions (plotted in blue). [18]

The similarities between the dynamics of an APM around an elliptic point of
a resonance and the pendulum can be observed in figure 1.7, where a close-up of
one island of the 1:5 resonance has been plotted (left), along with the phase space
of the pendulum (right). Nevertheless, there are some notable differences:
• In the Hénon map, the invariant manifolds are not coincident. These transver-

sal intersections form heteroclinic tangles, which create chaos. On the other
hand, the pendulum is an integrable system, and the first integral (1.38)
prevents from having transversal intersections between invariant manifolds.
Thus, there can be no chaos in an integrable system.
• The Hénon map has infinitely many resonant islands, whereas this is impos-

sible for an integrable system.
• The separatrices of the classical pendulum are symmetrical with respect to

the axis y = 0. In contrast, the invariant manifolds surrounding an island
in the Hénon map are not: The outer manifolds have more length than the
inner ones, and the island looks more deformed than the region delimited
by the separatrices of the pendulum3.

Even though the invariant manifolds on the left of figure 1.7 seem coincident,
we know they they intersect transversally4. This can be seen on the right of figure
1.8, where now the splittings of the invariant manifolds of the hyperbolic point at
(-0.32748,0.36126) are evident. There are theoretical results, e.g. [10], showing that
these splittings behave exponentially small in the parameter α− 0.2 when α→ 0.2
due to analyticity of the APM (see comments in the Introduction).

Now we can understand how important is (Rθ , Rτ) in equation (1.23): The
truncated BNF is an integrable twist map, and does not have resonances nor chaos.
When we encounter the first additional resonance, a resonance strip appears in the
mapping. Now consider the normal form to any order plus additional resonant
terms. The difference between the normal form and the mapping is (Rθ , Rτ), and it
includes the splitting of the invariant manifolds. Since we can do the normal form
procedure to any order, (Rθ , Rτ) must be exponentially small in the distance-to-
bifurcation parameter, and splitting is a beyond all orders phenomenon (i.e. it does
not appear on the normal form to any order considered) which is exponentially
small in the aforementioned parameter.

3In fact, this is generic for any twist APM around an elliptic fixed point.
4This is true for the Hénon map, since it is an entire function
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1.3 Homoclinic tangles: Horseshoes and topological chaos

As we have mentioned, the orbits of points near the invariant manifolds are
chaotic. Indeed, on the left of figure 1.8, 106 points belonging to the orbit of
the point (−0.33500, 0.36300) are plotted in blue. The iterates of this point travel
along the invariant manifolds of all the hyperbolic points in the periodic orbit.
In addition, the iterates fill the region comprised between the invariant manifolds
and the invariant curve surrounding the resonance strip, as observed on the right
of figure 1.8.
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Figure 1.8: Left: Phase space of Hα, α = 0.21 with the orbit of (−0.33500, 0.36300)
depicted in blue Right: Close-up of the figure on the left around the hyperbolic
periodic point

The aim of this section is to understand what is needed to create chaos, and the
mechanism through which it is created. There are three main ingredients which
are necessary for the presence of chaos:

1. Hyperbolicity, given by the hyperbolic fixed point. Indeed, if there is stabil-
ity (e.g. around an elliptic fixed point), there cannot be chaos, since orbits
remain near the fixed point.

2. Transversality of the intersection of invariant manifolds. In fact, this is the
most fundamental ingredient, since an integrable system might present hy-
perbolicity but there cannot be chaos (e.g. the pendulum).

3. Reinjection of the dynamics: This is guaranteed because of the accumulation
of the invariant manifolds by lemma 1.1.3, which after a suitable number
of iterates return to the starting point (see the left of figure 1.1: The lobes
stretch after iterating the mapping, and eventually return near the first lobe).
This reinjection allows more transversal intersections to happen and chaotic
orbits to return nearby the hyperbolic point.
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The question now is: How do transversal intersections of the invariant mani-
folds create chaos? To this end, we present the horseshoe map [25]. To define this
mapping f : R2 → R2, we employ the following procedure:

1. Take a square Q on the plane.
2. We contract Q in the horizontal direction and expand it on the vertical one.
3. We fold Q in the middle, forming the shape of a horseshoe.
4. We place the horseshoe so that it intersects the original square along two

vertical strips.

Q

a

c d

b

a b

c d

a
a b c

c

b
d

d

V V ′

Figure 1.9: Construction of the horseshoe map. Steps 1 to 4 are depicted from left
to right.

From figure 1.9 it is clear that Q ∩ f (Q) = V ∪V ′. This mapping is invertible,
and the inverse map creates a horizontal horseshoe, so that after, unfolding the
horseshoe, expanding the rectangle in the horizontal direction and contracting it
in the vertical direction, we recover the original square. In this case, the horizontal
horseshoe intersects Q in two horizontal strips.

Most of the points leave Q under iterates of f or f−1. We are interested in
those points that remain in Q, that is, the invariant set

Λ := {x ∈ Q | f k(x) ∈ Q ∀k ∈ Z}. (1.40)

If we iterate f twice, Q ∩ f (Q) ∩ f 2(Q) is made of four vertical strips, and if
we do it for f−1, we obtain four horizontal strips. In general, the intersection
∩n

k=0 f k(Q), n ≥ 0, is made up of 2n vertical strips, and the same number of
horizontal strips is obtained if we consider f−1. We then want to consider the
set

n⋂
k=−n

f k(Q) ⊃ Λ. (1.41)

which is depicted in figure 1.10 for n = 2. This set has a very complicated struc-
ture, and it is in fact a hyperbolic Cantor set with zero measure [17].
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Figure 1.10: Intersection of Q and its two first images under f and f−1.

Now consider the set

AZ
2 := {s = . . . s−1s0s1s2 . . . , si ∈ {0, 1}} (1.42)

and the shift map σ : AZ
2 → AZ

2 defined by

σ(s) = s′ if s′j = sj−1 ∀j ∈ Z. (1.43)

Theorem 1.3.1. There is a one-to-one map correspondence

h : Λ→ AZ
2

x 7→ s (1.44)

Moreover,
h( f (x)) = σ(h(x)) (1.45)

Theorem 1.3.1 tells us that the dynamical systems (Λ, f ) and (AZ
2 , σ) are topo-

logically conjugated, see (1.7). The next theorem [25] tells us that the latter has
chaotic dynamics, and therefore, so does the former.

Theorem 1.3.2. The horseshoe map has a closed invariant set Λ that contains:

1. A countable set of periodic orbits of arbitrarily long period.
2. An uncountable set of non-periodic orbits.
3. Dense orbits.

These three type of orbits are enough to guarantee the presence of chaos. As a
consequence, we might pick any two points in Λ which have the same sequence
in AZ

2 up until some point, which means that they are arbitrarily close (with
a suitable distance [17]), and see how after a number of iterates they end up
arbitrarily far. This is known as sensitivity to initial conditions, and it is a property
of chaos.
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But why is the horseshoe map so important? The following result states that
any APM having a hyperbolic fixed point with a transverse homoclinic point has
a horseshoe as a subsystem.

Theorem 1.3.3 (Birkhoff-Smale). Let F : U ∈ R2 → R2 be an APM with a hyperbolic
fixed point at the origin 0 which has a transverse homoclinic point p. Then in an arbitrarily
small neighbourhood of 0 there exists a horseshoe for some iterate of F.

0 p
Q

Fk(Q)

Figure 1.11: Sketch of the horseshoe in an APM with a transverse homoclinic point
in a neighbourhood of a hyperbolic fixed point.

Therefore, APMs have a horseshoe (in fact, an infinite number of them) and, as
a consequence, chaos. However, this chaos affects a set of points of zero measure
in the phase space of F (because Λ has zero measure), which means that it might
not be observed when studying the dynamics of F. Nevertheless, every hyperbolic
point in an APM has invariant manifolds with an infinite number of transversal
homoclinic and heteroclinic points.

In fact, the invariant manifolds of one hyperbolic point do not only intersect
with the invariant manifolds of the other points in the periodic orbit, but with the
invariant manifolds of hyperbolic points of other periods, creating infinitely many
homoclinic and heteroclinic tangles. This, together with the fact that an invariant
curve traps the chaotic motion, helps the chaos to seemingly have positive mea-
sure, and therefore to be visible. Note that the positive measure is apparent (in
the sense that chaos is visible), however we can not assure that: As we have said
before, it is an open problem known as the positive entropy conjecture [3, 16].

For details and proofs on the topic, we refer to [12, 17, 25, 28].



Chapter 2

Numerical exploration of the
weakly-dissipative regime

In many situations, conservative dynamical systems model an idealization of
real-life processes but non-conservative forces, such as friction or medium resis-
tance, play an important role in the evolution in time of the system, and must
be considered to obtain a more accurate description of the process. For instance,
the classical pendulum, with Hamiltonian (1.38), describes the motion of a pendu-
lum without friction. A more accurate description of the motion of a pendulum
involves the perturbation of this model introducing dissipative forces.
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Figure 2.1: Strange attractor of the classical dissipative Hénon map.

Throughout this chapter, we will study how dissipation affects the dynamics
of APMs. Specifically, we study a dissipative perturbation on a uniparametric
family of analytic APMs {Fα : U ⊂ R2 → R2}α∈R. The perturbation will be
different depending on the family considered: For the Hénon map, the dissipation

25
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considered in (5) is radial. It is related to the classical dissipative Hénon map [15]

Ha,b :

(
u
v

)
7→
(

1− au2 + v
bu

)
(2.1)

by introducing parameters b = (1 − ε)2 and a = b(cos2(2πα) − 2 cos(2πα)).
This version of the dissipative Hénon map is of interest because of the exis-
tence of a strange attractor (see figure 2.1) for the values a = 1.4, b = 0.3 [15].
Note that the definition of a and b defines a one-to-one correspondence between
(α, ε) ∈ [0, 1/2]× [0, 1] and (a, b) ∈ [−b, 3b]× [0, 1], hence the classical values are
not included in the domain (ε is, but α becomes complex). We are interested in
the study of weak dissipation (ε � 1), that is, close to the conservative case. On
the other hand, the dissipation applied on (6) points towards y = 0. In both cases,

det DF(x, y) = 1− ε < 1 ∀(x, y) ∈ U, (2.2)

where F is either the dissipative Hénon map or the dissipative standard map, and
U is the corresponding phase space. A diffeomorphism F : U → R2 satisfying
(2.2) is said to be dissipative with constant jacobian.

Figure 2.2: Phase space of the dissipative Hénon map for α = 0.21 and ε = 10−3.
The 1:5 resonance persists under this dissipation, and the stable and unstable
invariant manifolds of the saddles are depicted in green and red, respectively.
Additionally, we see that a resonance of period 11 has survived as well.

Note that, despite restricting ourselves to two types of dissipation, the phe-
nomena showed are rich and varied. In fact, if the dissipation depends on (x, y)
smootly, most of the arguments used in this chapter can be adapted [23].

The evolution of the conservative case to the dissipative scenario is driven by
the destruction of topological structures present in the former. In particular, no
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invariant curves can survive on R2 under radial dissipation. Indeed, suppose there
were one such curve, then F would have to preserve the area enclosed by it, A, i.e.
F(A) = A. However, this contradicts the fact that F is dissipative, since

Area (F(A)) = (1− ε)Area (A) < Area (A) (2.3)

for any enclosed region A. On the cylinder, at most one r.i.c. can persist under
dissipation [2] since it does not enclose an area. These statements can be checked
in figure 2.2. If we consider two r.i.c.’s on the cylinder, they would also enclose an
area on this surface, and we would be in the same situation as in (2.3).

On the other hand, depending on the size of dissipation, Birkhoff periodic
orbits can persist under sufficiently small dissipative perturbations [2]. Indeed,
assume x∗ ∈ U is a q-periodic point of F belonging to such an orbit, and consider
the mapping

G(x, ε) = ((1− ε)F(x))q − x, x ∈ U. (2.4)

Clearly, G(x∗, 0) = 0, and the Implicit Function Theorem guarantees the existence
of the q-periodic point for sufficiently small ε > 0. Accordingly, in figure 2.2 we
observe that the 1:5 resonance and a 11-periodic orbit of the conservative Hénon
map have persisted under dissipation. In particular, fixed points will survive,
although their cooordinates will depend on ε. For the dissipative Hénon map, the
fixed point located at the origin in the conservative case persists for all values of
ε, while the hyperbolic fixed point ph (see section 1.1) is located at

ph(ε) =

(
1− 2cµ + µ2

µs
,
(µ− c)(1− 2cµ + µ2)

µs2

)
, (2.5)

where c = cos(2πα), s = sin(2πα) and µ = 1− ε. On the other hand, for the
standard map, the hyperbolic fixed point is located at

p′h(ε, ω) =

(
1

2π
arcsin

(εω

K

)
,−ω

)
, (2.6)

where K = k/2π. The elliptic fixed point that was at (1/2, 0) for the conservative
case is now located at p′h(ε, ω) + (1/2, 0).

Nevertheless, the type of these points has changed in the dissipative regime,
as observed in figure 2.2. Indeed, perturbed elliptic points become stable foci, and
they are no longer neutrally stable but assymptotically stable (in particular, they
are linearly stable). These foci are attractors, invariant objects where the long-term
dynamics of the system is concentrated. Furthermore, the invariant curves that
were surrounding elliptic points have been replaced by basins of attraction of the
foci [27], which are the regions of the phase space whose points are captured by
the corresponding focus. This concept will be further discussed in section 2.2.
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On the other hand, hyperbolic points persist since hyperbolicity is an open
condition (see definition 1.1.3). In particular, they have their stable and unstable
manifolds which evolve under dissipation, that is, a resonant structure will change
its topology depending on the size of the dissipation [23]. According to the relative
(to the size/order of the resonance) stress of the dissipation, we distinguish:

1. Strong dissipative perturbation: The resonance is destroyed in a saddle-focus
bifurcation [23]: The saddle and the focus collide and disappear when in-
creasing ε. This explains why in figure 2.2 only two resonances survive the
dissipation: For other resonances (of higher order), the dissipation is strong
enough relative to their size in phase space.

2. Medium size dissipative perturbation: The resonance persists but dissipation
has destroyed all homo/heteroclinic points of the resonant structure (related
to the invariant manifolds of saddles of the same period), becoming flow-
type. This is the case of the 5-order resonance observed in figure 2.2. The
topology of the resonances resembles the phase space of the pendulum un-
der dissipation, justifying why we call them flow-type resonances. In this
case, the invariant manifolds define an "entrance channel" to the periodic at-
tractor and a "crossing channel" allowing points to pass through the resonant
chain.

3. Weak dissipative perturbation: For a small dissipation, the resonance keeps
the topological shape from the conservative case, with homo/heteroclinic
points. As the dissipative parameter is increased, these are destroyed and
the resonance becomes of flow type.

We are interested in a weak dissipative perturbation, since the most compelling
aspect of introducing dissipation is to observe which structures survive from the
conservative case. Nevertheless, note that all scenarios above coexist when con-
sidering a fixed ε and studying the dynamics of outlasting resonances at different
distances from the perturbed elliptic point [23].

On the other hand, we note that there is chaos in the dissipative scenario when
homo/heteroclinic points persist (indeed, the Birkhoff-Smale theorem 1.3.3 can be
adapted to the dissipative setting). Nevertheless, it is not chaos in the conservative
sense (as seen in section 1.3), but a temporary chaos: Every point ends up in an
attractor (or infinity), since the long-term dynamics is concentrated there.

This chapter is organized as follows: First, we will study the evolution of the
invariant manifolds of the saddles of dissipative APMs, emphasizing the fact that
their topology is different depending on the map considered, their location on the
phase space and the combination of parameters. Secondly, we will study the coex-
istence of attractors of the dissipative Hénon map for α = 0.21, looking at the ratio
of points captured by each attractor. Finally, we will do a numerical exploration
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of the dissipative standard map, where the addition of a third parameter ω allows
the system to have different types of attractors aside from the ones seen in the
dissipative Hénon map.

2.1 Topology of stable and unstable manifolds of hyper-
bolic points

As mentioned previously, hyperbolic points persist under dissipation, and
their invariant manifolds evolve as dissipation increases. The first noticeable trait
is that the splitting, which was exponentially small in the conservative case, is no
longer so. In fact, in the dissipative case the splitting of invariant manifolds is of
order ε.

Figure 2.3: Phase space of the dissipative Hénon map for α = 0.21 and ε = 0.05.
The stable and unstable manifolds of the saddle are plotted in green and red,
respectively.

In figure 2.3 we can see the invariant manifolds of ph(ε) of the Hénon map for
α = 0.21 and ε = 0.05. In comparison with figure 1.1, we see that all the homoclinic
points are destroyed, and the unstable manifold has a spiral shape with the origin
as its center. All the points in the "entrance channel" (marked with an arrow in
the plot) follow the spiral and tend to the focus at the origin. Moreover, it does
not take much iterates to reach the origin. In fact, picking initial conditions along
the curves of symmetry of the conservative case, iterating 2000 each and plotting
from the 10th iterate, we obtain the black dots in figure 2.3, which are quite close
to the focus. The rest of the points follow the stable manifold until they are close
to the saddle, where, by theorem 1.1.1, will then follow the unstable manifold to
infinity.
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The situation displayed in figure 2.3 is such that all resonant structures (that
evolve from the conservative case) are destroyed. It is clear that dissipation has
destroyed all homoclinic points of the invariant manifolds of ph(ε) in 2.3, and since
there are no resonances outside the region enclosed by the invariant manifolds of
the hyperbolic fixed point, then all resonances inside must be either destroyed
or without any homo/heteroclinic points. We can conclude we are in the former
scenario by the behaviour of points under iteration.

For the dissipative standard map, if we set ω = 0 we have a focus at (1/2, 0)
and a hyperbolic fixed point at the origin. The invariant manifolds behave as in
the dissipative Hénon map. However, in this case, points from above and below
the focus are attracted by it, and hence we find two "channels" created by the
invariant manifolds which direct all points towards the attractor. Moreover, in
contrast with the invariant manifolds seen in 2.3, here we have that, even in the
strong dissipative scenario, all long-term dynamics is concentrated in this focus,
that is, points cannot escape to infinity as in the dissipative Hénon map.
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Figure 2.4: Left: Dissipative standard map for k = 0.5, ε = 10−3 and ω = 0.
The stable and unstable manifolds of the saddles are plotted in green and red,
respectively. In addition, we can see the coexistence of attracting periodic orbits of
periods 2 and 3. Right: Close-up around the hyperbolic fixed point at the origin.

The other elliptic fixed points of the mapping (6), located near x = 1/2 and
y ∈ Z \ {0}, also turn into foci under dissipation. Nevertheless, the topology of
the invariant manifolds is different in this case: As for the resonant structures of
the Hénon map, not all points are captured by these foci, and the invariant man-
ifolds create two channels: One "entrance channel" through which points get to
the attractor, and one "crossing channel" through which points can travel towards
y = 0 until they are captured by another attractor.

See the left of figure 2.4, where the phase space of the dissipative standard map
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for k = 0.5, ε = 10−3 and ω = 0 is depicted, along with the invariant manifolds
surrounding three perturbed elliptic fixed points. On the right of the same figure, a
magnification around the saddle located at the origin is shown, confirming that all
homoclinic points are destroyed. In addition, we see that the invariant manifolds
fold in a strange manner: This is due to the fact that in between there are invariant
manifolds belonging to other resonances as well, and they try not to intersect each
other by folding. In fact, if we were to plot these other invariant manifolds, we
would see they fold in the same manner as the ones depicted. Moreover, although
in 2.3 there is a larger dissipation parameter, we can hold the same phenomenon
accountable for the foldings seen there.

For a concrete resonance, the transition from the medium-dissipative to the
weakly-dissipative scenario is related to the fact homoclinic and heteroclinic points
persist, and are progressively destroyed with the increase in size of the dissipation.
This transition, described in [23], is illustrated in figure 2.5, where, from left to
right, we see how the invariant manifolds in the bottom progressively separate
until we have a flow-type resonance. There is a whole sequence of homoclinic
bifurcations taking place.

ε↗

Figure 2.5: Evolution of the invariant manifolds surrounding a resonance. The left
sketch represents an "almost conservative" island, and the size of the dissipation
increases as we go to the right, where we have a flow-type resonance.

2.2 Coexistence of attractors and basins of attraction

If the size of the dissipation is small enough, resonances of the conservative
case can persist in the dissipative scenario, such as in figures 2.2 and 2.4. Hyper-
bolic points keep their properties in this case, although their invariant manifolds
evolve as explained in section 2.1. On the other hand, the perturbed elliptic points
turn into attracting foci. Therefore, the persisting resonant structure contains a
periodic attractor, and there is a coexistence of attractors since there is always an
attractor where the dissipation points to.
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Note that even though there are q foci in a perturbed q-periodic orbit, there is
a single periodic attractor: Since points that are captured by this attractor visit all
foci in the resonance, we cannot distinguish separate basins of attraction for each
focus, that is, they do not have disjoint regions of the phase space where points
belonging to those end captured by a determined focus. Instead, there is only a
basin of attraction, and points proceed to visit all foci in the orbit.

When we are in the situation of coexistence of attractors, one may wonder
which one captures the most points, and how the ratio of captured points varies
in terms of ε. To this end, we focus on the dissipative Hénon map. Assume we
have a value of the parameter α = q

m + δ, 1 ≤ q < m, gcd(q, m) = 1 and a
dissipative parameter ε such that the q : m resonance still persists. In our case,
we will use α = 0.21 in order to study the 1:5 resonance, and several ε values in
order to compare the ratio of captured points of each attractor for different sizes
of dissipation. For a given α and ε, we have performed the following simulation:

1. We calculate two radii r0 and rm such that

|Hα,ε(x)− 0| < r0 ∀x ∈ ∂Br0(0), (2.7)

|Hm
α,ε(x)− xm| < rm ∀x ∈ ∂Brm(xm), (2.8)

that is, we calculate the radii so that the image of the points in the circumfer-
ence centered at the origin (respectively, at a point xm of the q : m resonance)
with radius r0 (respectively, rm) remain inside the circumference. This allows
us to consider a point x ∈ Br0(0) (respectively, Brm(xm)) to be captured by
the origin (respectively, the periodic foci), since it cannot escape the region
enclosed by the circumference. To compute these radii, we have used the
following strategy, see Appendix A.2 for details on the implementation:

(a) Set an initial radius r0. The first guesses for each one are r0
0 = ( 1

2 +

ε)|xm − x0| for r0 and r0
m = r0/4 for rm. Observe that r0 is computed

first, since our first guess for rm employs its value.
(b) In the k-th step, check if the corresponding inequality (either (2.7) or

(2.8)) holds. If it does, set r = rk. Otherwise, set rk+1 = Ark, where
A = 0.9 when computing r0 and A = 0.95 when calculating rm.

2. If ε ∼ 10−k, we perform 2 · 10k iterates on points on an invariant curve sur-
rounding the m-order resonance in the conservative scenario. The invariant
curve needs to be inside the stability domain of the conservative map (see
figure 1.1) in order that points belonging to it end up captured by either the
origin or the resonance.

3. We tag each initial point with a 0 if it was captured by the origin, a 1 if it is
captured by the resonance or a 2 if it is not captured by either. In this case,
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we perform 107− 108 extra iterates in order to see if the point is captured by
an attractor after those iterates.

Even though the radii from step 1 guarantee that all points that fall inside the
region enclosed by the circumferences do not escape under iteration, one must be
careful selecting radii since:

i) The circumferences must not intersect with each other, nor with the invariant
curves from which we pick initial conditions.

ii) Choosing a radius that is too small results in a lot of iterates needed in order
to get inside the circumference. Our initial guesses for the radii ought to
prevent this.

To save time, the radii computation is done only for ε = 5 · 10−3, which is
the largest value of the dissipation parameter in our simulation. Nevertheless,
this will not affect our results significantly since the periodic attractor captures
the least points for this value of ε, which means that, if rm works for this ε, it
will work for lower values of the dissipation parameter as well. On the other
hand, the value considered for r0 is useful for smaller sizes of dissipation since no
resonance survives inside the ball of this radius around the origin for the values
of ε considered. Thus, the radii employed in the simulation are

r0 = 0.3340670, r5 = 0.0475043. (2.9)

Note that the smaller the dissipation parameter ε, the more iterates are needed to
decide about the assymptotic behaviour of the initial points. Indeed, for a small
dissipation parameter, points converge very slowly to an attractor, because in the
conservative case they were not able to reach that region of phase space.

Point n0 ρ0 n5 ρ5 n? ρ?

(0.683649738552201, 0.530293094929367) 1582 0.7910 418 0.2090 0 0
(0.696796848908974, 0.465475653404428) 1618 0.8090 382 0.1910 0 0
(0.709943959265747, 0.400658211879489) 1732 0.8660 268 0.1340 0 0
(0.723091069622521, 0.335840770354550) 1653 0.8265 347 0.1735 0 0
(0.736238179979294, 0.271023328829611) 1607 0.8035 393 0.1965 0 0

Table 2.1: Comparison of the number of points of different conservative invariant
curves surrounding the 1:5 resonance captured by each attractor.

To provide evidence on the robustness of the reported results, we have com-
pared, for ε = 5 · 10−3, the ratios of number of points in each curve captured
between number of total points to the same ratios from outer invariant curves.
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The results are presented in table 2.1, where the first column indicates the initial
condition taken on the symmetry line y = tan(πα)x of the conservative Hénon
map , n0 is the number of points captured by the origin, n5 is the number of
points captured by the 1:5 resonance, n? the number of points that are not cap-
tured by neither and ρ0, ρ5 and ρ? are the corresponding ratios with respect with
the total number of points on each curve, ntot = 2000, which has been chosen in
order to have a uniform set of points along each curve.

We see that the ratio of number of points captured by each attractor slightly
oscillates for each curve, except for the third one, which seems to have significantly
more points captured by the origin than the rest. We believe that these oscillations
are due to changes of the transversality of the "entrance and crossing channels"
of the 5-order resonance with the invariant curve, and to the fact that we iterate a
relatively small number of initial conditions. We will use the first curve to perform
the simulation with other values of ε, whose ratios are more consistent with the
ones of the other invariant curves. This invariant curve is the closest one to the 1:5
resonance depicted in figure 1.1.

ε n0 ρ0 n5 ρ5 n? ρ?

5 · 10−3 1582 0.7910 418 0.2090 0 0
10−3 1122 0.5610 878 0.4390 0 0

5 · 10−4 1398 0.6990 602 0.3010 0 0
10−4 1037 0.5185 963 0.4815 0 0

5 · 10−5 1053 0.5265 947 0.4735 0 0
10−5 1148 0.5740 852 0.4260 0 0

5 · 10−6 1167 0.5835 833 0.4165 0 0
10−6 1148 0.5740 848 0.4240 4 0.002

5 · 10−7 1150 0.5750 838 0.4190 12 0.006
10−7 1162 0.5810 781 0.3905 57 0.0285

Table 2.2: Number of points of the invariant curve captured by each attractor, with
the corresponding ratios with respect to the total number of points. The table also
shows the number of points which are not captured after iteration.

In table 2.2, we show the results concerning the captured points by each attrac-
tor for values of ε ranging between 10−7 and 5 · 10−3.

Furthermore, it is not until we have ε ∼ 10−6 that we have points which are
not captured by any attractor after iteration of the mapping. This might be caused
by the persistence of additional resonances near the invariant curve for this and
lesser values of ε, as can be observed in figure 2.6.

In figure 2.7, we have plotted the points that end at the periodic attractor and
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Figure 2.6: Phase space of the dissipative Hénon map for α = 0.21 and ε = 10−6.
We have performed, a transient of 106 iterates for 100 initial conditions and plotted
the next 10000 iterates. The invariant curve from which we pick points to perform
the simulation is plotted in blue.

the origin in blue and red, respectively, as well as the circumferences of radii r5

and r0 surrounding each 5-periodic point and the origin, respectively. The colored
dots that are found inside each circumference correspond to the last iteration of
each point. Notice how, for larger values of ε, there are well-defined intervals on
the curve, each one ending captured by either the origin or the resonance. These
intervals mix up as ε becomes smaller, until one cannot distinguish them anymore.
This has to do with the transversality between the "entrance and crossing channels"
and the invariant curve and with the fact that for ε small enough there appear
homoclinic points in the resonant structure, see 2.5.
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Figure 2.7: Representation of the invariant curve where a point is plotted in blue,
red and black if it is captured by the resonance, the origin or it has not been
captured, respectively. The final iteration is depicted in the same color. Moreover,
the circumferences of radii (2.9) are depicted in red and blue, respectively. The
values of ε are, from left to right: 10−3, 10−4, 10−6 and 10−7.
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2.3 Weakly-dissipative standard map

The standard map, being defined on the cylinder, allows for other kinds of
dissipation to show interesting phenomena. The dissipation considered in (6) is
vertical, in the sense that it points to y = 0. The dissipative standard map can be
rewritten as [4, 5, 6, 7, 9]

Sk,ε,c :

(
x
z

)
7→
(

x̄
ȳ

)
=

(
x + ȳ

(1− ε)y + k
2π sin(2πx) + c

)
, (2.10)

where c is known as a drift parameter, via the change of coordinates C(x, y) =

(x, y + ω) and setting c = εω. Setting c = 0 = ω, we obtain the dissipative
standard map studied in [20], which is the one used to obtain figure 2.4. In this
case, the topology of the phase space as explained in section 2.1 and 2.2: Elliptic
points turn into foci, hyperbolic points persist and their invariant manifolds evolve
to "guide" points to the attractors, and there is a coexistence of attractors in the
weakly-dissipative scenario. Although the topology of the manifolds surrounding
the focus at (1/2, 0) is different than the one of the invariant manifolds of the
hyperbolic fixed point for the dissipative Hénon map, the phase spaces of both
mappings are very similar.

Nevertheless, this changes when we set ω 6= 0 since the frequency of y = 0
becomes ω. For k = 0, the standard map is a twist map. Therefore, we will have
a periodic orbit at y = 0 if ω is rational, or an invariant curve if ω ∈ R\Q. Thus,
for k = ε = 0 and ω = ϕ, we will have the golden curve at y = 0, i.e. a r.i.c. with
frequency ϕ.

As mentioned, the phase space of the standard map is the cylinder. The topol-
ogy of the phase space of a dynamical system has dynamical consequences. In
the case of the cylinder, we observe that a rotational invariant curve does not trap
any region of the phase space, thus does not contradicting equation 2.2. However,
two r.i.c.’s do enclose an area on the cylinder. Therefore, the presence of two of
these objects is impossible in the dissipative case, but, with a suitable choice of
parameters, a single r.i.c. might be able to survive.

Indeed, when considering ε > 0, the golden curve mentioned above persists,
and it becomes an attractor. When the dissipation is strong enough (e.g. ε = 0.05),
it is the only remaining attractor. For (2.10), it is located at y = c

ε . Thus, it goes to
infinity as ε→ 0. In our formulation (6), this attractor remains near y = 0.

In general, for k 6= 0 we will expect an invariant object with frequency ω near
y = 0 for any value of ε ≥ 0 considered. In particular, if ω = ϕ, the attractor has
frequency equal to the golden mean. This is also true for the (2.10), although to
have an invariant object with rotation number ω in this case, given ε we must set
the drift parameter to c = εω.
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2.3.1 Golden curve breakdown

One might wonder what happens to the golden curve when changing param-
eters. We know that it persists for k small enough as a consequence of theorem
1.2.2. Indeed, it persists until k = kG. Here, we investigate its persistence when
adding dissipation. For this purpose, throughout this section we will set ω = ϕ,
and see, for a given k, what dissipation parameter ε is needed in order to break
the golden curve.

We will look for the golden curve breakdown for two different starting values
of k: The first one is k = 0.628, whereas the second one is k = 0.92. The reason
behind this election is the distance of each parameter to the Greene parameter kG

(see section 1.2.2). Indeed, we know that there are no invariant curves for k > kG,
and thus we require that k is below this threshold. Moreover, for values of k closer
to kG, we expect the breakdown of the golden curve to occur sooner, that is, for a
smaller value of ε.
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Figure 2.8: Golden curve of the dissipative standard map for k = 0.628, ω = ϕ.
From left to right: ε = 0.016, 0.8, 0.9.

In all figures displayed in this section, we have plotted 10000 iterates of 100 ini-
tial conditions after a transient of 106 iterates in order to get closer to the attractor.

Before discussing the results, we must take into account that we deal with a
quasiattractor, that is, an attractor that is very sensitive to perturbation, for which is
very difficult to distinguish between, for example, an invariant curve or a periodic
orbit of very high period or even a strange attractor. Hence, when we claim in
the following that we see a concrete type of attraction, such assertion is to be
understood under numerical and observational limitations.

In figure 2.8, the phase space of the standard map for k = 0.628 is depicted
for different values of ε. We see that the curve persists for values of ε up to 0.8,
but all resonant structures are destroyed. As the dissipative parameter increases,
the curve is progressively deformed, as one can see from comparing the left and
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middle of figure 2.8. When we further increase the parameter, we see that the
curve is destroyed and a periodic orbit of high period takes its place, as seen on
the right of figure 2.8.

Figure 2.9: Golden curve of the dissipative standard map for k = 0.9 and ω = ϕ.
From left to right, the values of ε are 0.2, 0.24991 and 0.24993, respectively.

On the other hand, in figure 2.9 we see the dissipative standard map for the
values k = 0.92 and ω = ϕ. We see how, even if k is close to kG, the golden curve
persists up until very large values of the dissipation parameter (ε ' 0.2). We see
that the breakdown of the curve occurs for a value 0.24991 < ε < 0.24993, which
is clear from looking at the middle and right of figure 2.9.

2.3.2 Exploring other kinds of attractors

We have seen how, for ω ∈ R\Q, the dissipative standard map can have an
attracting rotational invariant curve, although it is eventually destroyed by the
dissipation. Nevertheless, the attractor of this mapping can be different from an
invariant curve.

Indeed, we have seen how for, given ω = ϕ, the values k = 0.92 and ε = 0.2
give rise to an invariant curve near y = 0. As we have previously mentioned, these
invariant objects are very sensitive to perturbation, leading to a quasiattractor
scenario: We do not know with certainty if we are looking at an invariant curve
or a periodic orbit, since a small change of parameters would change the attractor
from a periodic object to a quasiperiodic one (e.g. an invariant curve). This is
made clear in figure 2.10. For k = π

10 and ε = 0.3, we have

i) a 2-periodic orbit for ω = 0.5076̂ and
ii) an invariant curve for ω = 0.5077.

If we now consider k
2π = 0.145 and ε = ϕ+1

10 , we arrive at a striking result:
The invariant curve is folding onto itself at all scales, as seen in figure 2.11. Even
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Figure 2.10: Quasiattraction scenario for the dissipative standard map.

though it might seem that we are looking at an invariant curve at first, in fact
we are not: The curve is a strange attractor with frequency ϕ. Strange attractors
are invariant objects with chaotic behaviour. The difference between a strange
attractor and an invariant curve comes by how the points on each attractor behave
under iteration: An invariant curve moves its iterates quasiperiodically, whereas a
strange attractor does not.
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Figure 2.11: Strange attractor with frequency ϕ of the dissipative standard map.

On the right of figure 2.11 there is a close-up on one of the foldings, surrounded
by a square on the left of the same figure. If we were to close in even more, and
with infinite numerical precision, we would see that this folding occurs infinitely
many times at all scales. However, we are again facing a quasiattractor scenario:
Due to limited numerical precision, we cannot be certain that we are looking at a
strange attractor or at a periodic orbit of high-period. What we do know is that
if we slightly moved the parameters, we would get either. Despite that, we can
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assure it is not an invariant curve, since the latter needs to be smooth and must
not have foldings.
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Figure 2.12: Strange attractor with periodic components.

This is not the only set of parameters for which we have a strange attractor.
In fact, there is one with frequency ω ' 0.2040816327 when k ' 0.7539822369
and ε = 0.49. Nevertheless, the following combination of parameters looks more
interesting: Consider k ' 0.7665486075, ε = 0.5 and ω = 0.2. The result is depicted
in figure 2.12: The system has a strange attractor with periodic components. If we
were to perturb the system, this attractor would either become a connected strange
attractor (as in figure 2.11) with frequency ω or a periodic orbit: Again, we are
presented with a quasiattractor escenario.

If instead of considering our formulation of the dissipative standard map we
used

Sk,ε,ω :

(
x
y

)
7→
(

x̄
ȳ

)
=

(
x + ȳ + ω

(1− ε)y + k
2π V(2πx)

)
, (2.11)

where V(2πx) is an arbitrary periodic function, one could observe larger strange
attractors. For more information on this version of the standard map, we refer the
reader to [6, 7].

Understanding the bifurcations leading to the different presented attractors
is far beyond the goals of this work. Moreover, there are many open questions
regarding to all the phenomena shown in the previous illustrations of dissipative
and weakly-dissipative maps, see comments in chapter 3.



Chapter 3

Summary, conclusions and
outlook

In this work, we have studied the effect of dissipation on analytic area-preserving
maps. The transition from the conservative case to the dissipative one is closely
related to the structure of the phase space of the former. To better understand this,
in chapter 1 we studied the dynamics of area-preserving maps, using the Hénon
map and the standard map as paradigmatic examples.

We saw that the dynamics of an APM around hyperbolic fixed points is topo-
logically conjugated to that of the related linear system (theorem 1.1.1), and that
these points have global and unique unstable and stable manifolds (theorem 1.1.2)
which deeply affect the dynamics of the map. We also implemented a simple al-
gorithm for their computation, and explained how chaos arises in APMs via the
horseshoe map, which has chaotic dynamics, and how this system is present in an
APM due to transversal intersections of the invariant manifolds (theorem 1.3.3),
which form homoclinic and heteroclinic tangles.

Around an elliptic fixed point, theorem 1.1.1 does not apply, and so normal
forms are required in order to simplify the expression of an APM around that
kind of point. In particular, Birkhoff normal forms are useful since the result-
ing expression is a twist map, which has a twist interval where each orbit has
a frequency in this interval. In addition, the twist condition is essential for the
most important theorems of chapter 1: The Moser Twist theorem (theorem 1.2.2),
which guarantees the persistence of an invariant curve if the perturbation is small
enough, and the Poincaré-Birkhoff theorem 1.2.3, which ensures the persistence of
periodic orbits under perturbation.

In the dissipative case, we saw how the conservative structure crumbles: All
invariant curves are destroyed (save for a maximum of one on the standard map),
and elliptic points turn into attracting foci, where the long-term dynamics of the

41
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system is concentrated. If the dissipation is not large enough, some periodic orbits
survive, even though the elliptic orbits turn into foci as well.

Hyperbolic points persist if the dissipation is not too large, but their invariant
manifolds disengage: Homoclinic and heteroclinic points of the conservative reso-
nant structure disappear as the dissipation grows larger. The invariant manifolds
now have the role of guiding points closer to the attractor.

We also studied their topology, which is different depending on the hyperbolic
point considered: We saw that the invariant manifolds hyperbolic fixed points of
the standard map not located at y = 0 have the same topology as the resonances of
both the same map and the Hénon map, whereas the manifolds surrounding the
elliptic points at (1/2, 0) for the standard map and the origin for the Hénon map
are different from each other and also differ from the ones mentioned previously.

We saw how, for both systems, there is a coexistence of attractors if the value of
the dissipation parameter is small enough. Indeed, if a resonant structure persists,
its elliptic points turn into foci which also attract points. This leads to a coexistence
of an attracting focus and a periodic attractor.

To see how the number of points captured varies in terms of ε, we performed
an experiment on the dissipative Hénon map. The experiment consists on count-
ing how many points from an invariant curve of the conservative case are captured
by each of the persistent attractors.

Finally, we did a numerical exploration of the dissipative standard map, where
the dissipation applied allows for a single rotational invariant curve to survive.
Furthermore, it has an additional parameter ω, which sets the frequency of the
attractor near y = 0. This allows this attractor to be a r.i.c., a periodic orbit or a
strange attractor (including one with periodic components), which is an attractor
with chaotic dynamics.

There are still many open questions concerning the transition from conserva-
tive to weakly-dissipative dynamics. For example, any small dissipation creates
basins of attraction associated to the different attractors that coexist. These basins
of attraction have positive measure, hence the probability of capture by each at-
tractor is non-zero. How do these probabilities behave when ε tends to zero? We
saw, in the experiment of section 2.2, that the probability of capture by the peri-
odic attractor and the one at the origin seems to remain bounded from zero for
the range of ε explored. What happens for small values of ε?

Related to the previous questions, we note that the homoclinic structure of
the conservative island is recovered when ε tends to zero (see figure 2.5). Hence,
the invariant manifolds no longer define “entrance and crossing channels", and
the transients become more and more chaotic (although the long term dynamics
tends to the attractors). How are these dissipative chaotic transients related to the
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conservative chaos?
Furthermore, the concrete types of dissipation studied in this work are rather

simple. Other ways of adding dissipation can lead to different resonant structures
(due to different bifurcations). Also, in many real processes, the dissipation stress
decays through time. How do these effects change the probability of capture by
the coexistent attractors?

To conclude, we can say that this work simply highlights the need of further
investigations on the transition from conservative to dissipative dynamics while
emphasizing the importance of this setting in real-life applications.





Appendix A

Implemented codes

A.1 Computation of invariant manifolds

Here we present the code, written in C++, employed to compute the invariant
manifolds of hyperbolic points. The algorithm, which is coded from line 198 to
line 263, is explained in section 1.1. We include the implementation of the map,
its inverse and the computation of the fundamental domain.

1 #include <iostream >
2 #include <fstream >
3 #include <cmath >
4 #include <vector >
5 #include <cstdio >
6 #include <sstream >
7

8 using namespace std;
9

10 // Tolerance
11

12 const double dmax = 1.e-4; // Maximum distance between iterations
13 const double dzmin = 1.e-14; // Minimum distance between initial conditions
14

15 double sq(double x){return x*x;}
16

17 double min(double x, double y){
18

19 if (x <= y)
20 return x;
21 else
22 return y;
23

24 }
25

26 double norm(vector <double > x){return sqrt(sq(x[0]) + sq(x[1]));}
27

45
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28 // Computes the distance between two points: It needs to be adapted for the
standard map , since it is defined on the cylinder.

29

30 double dist(vector <double > x, vector <double > y){
31

32 vector <double > v(2);
33

34 v[0] = y[0] - x[0];
35 v[1] = y[1] - x[1];
36

37 return norm(v);
38

39 }
40

41 /*Map: Computes the image of a point x under the map (in this case the Hénon
map), with parameters alpha and eps. Change for the expression of the
standard map if one wants to compute the invariant manifolds of that
mapping.*/

42

43 vector <double > map(vector <double > x, double alpha , double eps){
44

45 vector <double > H(2);
46 double c=cos (2* M_PI*alpha), s=sin(2* M_PI*alpha), x2 = sq(x[0]);
47

48 H[0] = (1 - eps)*(c*x[0] - s*(x[1] - x2));
49 H[1] = (1 - eps)*(s*x[0] + c*(x[1] - x2));
50

51 return H;
52

53 }
54

55 // Inverse mapping
56

57 vector <double > inverse(vector <double > x, double alpha , double eps){
58

59 vector <double > inv (2);
60 double c=cos (2* M_PI*alpha), s=sin(2* M_PI*alpha), xaux = x[0]/(1 - eps),

yaux = x[1]/(1 - eps);
61

62 inv [0] = c*xaux + s*yaux;
63 inv [1] = -s*xaux + c*yaux + sq(c*xaux + s*yaux);
64

65 return inv;
66

67 }
68

69 int main(){
70

71 //Input
72

73 double alpha , eps , lmax;
74

75 cerr << "Value␣of␣the␣parameter?" << endl;
76 cin >> alpha;
77

78 cerr << "Value␣of␣the␣dissipative␣parameter?" << endl;
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79 cin >> eps;
80

81 double c = cos(2* M_PI*alpha), s = sin(2* M_PI*alpha), t = tan(M_PI*alpha),
mu = 1 - eps;

82

83 /*
84 In order to compute invariant manifolds in the dissipative case , one must

substitute:
85

86 - Eigenvalue and eigenvector. Moreover , the lack of reversors implies that
the program must be executed twice: once per invariant manifold.

87 - Use the function map (inverse) to compute the unstable (stable) manifold.
88 */
89

90 // Hyperbolic fixed point
91

92 vector <double > fix(2);
93

94 fix [0] = (1 - 2*c*mu + sq(mu))/(mu*s);
95 fix [1] = fix [0]*( mu - c)/s;
96

97 // Eigenvalue and normalised eigenvector of the (un)stable manifold
98

99 double sum = c + 2*s*t, lambda;
100

101 if (eps == 0)
102 lambda = sum + sqrt(sq(sum) - 1);
103 else{
104

105 cerr << "Eigenvalue?" << endl;
106 cin >> lambda;
107

108 }
109

110 vector <double > vep(2);
111

112 if (eps == 0){
113

114 vep [0] = -1;
115 vep [1] = sqrt(sq(sum) - 1)/s - 2*t;
116

117 } else{
118

119 cerr << "Eigenvector?" << endl;
120 cin >> vep [0] >> vep [1];
121

122 }
123

124 double modul = norm(vep);
125

126 vep [0] /= modul;
127 vep [1] /= modul;
128

129 ofstream output;
130 stringstream ss;
131
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132 if (eps == 0)
133 ss <<"H-" << alpha << "-manifold.dat";
134

135 else{
136

137 if (lambda > 1)
138 ss <<"H-" << alpha << "_" << eps << "-unst.dat";
139 else
140 ss <<"H-" << alpha << "_" << eps << "-st.dat";
141

142 }
143

144 string filename = ss.str();
145 output.open(filename);
146

147 //For the computation of the stable manifold we have to consider the
inverse of the eigenvalue

148

149 if (lambda < 1)
150 lambda = 1./ lambda;
151

152 cerr << "Manifold␣length?" << endl;
153 cin >> lmax;
154

155 /* Fundamental domain (z0/lambda , z0) (C. Simó notation): We choose z0 when
the distance F(x(z))-x(lambda*z) <10^-14*/

156

157 for (int i = 0; i < 2; i++){
158

159 if (i == 1){
160

161 cerr << "Longitud␣de␣l’altra␣branca?" << endl;
162 cin >> lmax;
163 vep [0] = -vep [0];
164 vep [1] = -vep [1];
165

166 }
167

168 int n = 0;
169 double z0;
170 vector <double > x(2), linear (2);
171

172 do{
173

174 n++;
175 z0 = pow(10, -n);
176

177 x[0] = fix[0] + z0*vep [0];
178 x[1] = fix[1] + z0*vep [1];
179

180 linear [0] = fix [0] + lambda*z0*vep [0];
181 linear [1] = fix [1] + lambda*z0*vep [1];
182

183 } while (dist(map(x, alpha , eps), linear) >= dzmin);
184

185 z0 = min(z0, 1.e-8);
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186 vector <double > aux (2);
187

188 aux [0] = fix[0] + z0*vep [0];
189 aux [1] = fix[1] + z0*vep [1];
190

191 double z = z0/lambda , dz = z0 , length = 0., fac = 1.;
192 bool okay = true;
193

194 //// Manifold computation via the linear parameterization algorithm
195

196 output << "#" << endl;
197

198 do{
199

200 int nit = 0;
201 double zaux = z;
202

203 while (fabs(zaux) > z0){
204

205 zaux /= lambda;
206 nit ++;
207

208 }
209

210 x[0] = fix[0] + zaux*vep [0];
211 x[1] = fix[1] + zaux*vep [1];
212

213 for(int i = 0; i < nit; i++)
214 x = henon(x, alpha , eps);
215

216 double d = dist(x, aux);
217

218 if (d < dmax){
219

220 if(d < dzmin){
221

222 okay = false;
223 cerr << "No␣avanço" << endl;
224

225 }
226

227 output << setprecision (15) << x[0] << "\t" << setprecision (15) <<
x[1] << endl;

228 aux = x;
229 length += d;
230 nit ++;
231

232 fac = min(1.5, 0.75* dmax/d);
233 dz *= fac;
234 z += dz;
235

236 if(fabs(dz) <= dzmin){
237

238 okay = false;
239 cerr << "dz␣petit" << endl;
240
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241 }
242

243 } else{
244

245 z -= dz;
246 fac = 0.75* dmax/d;
247 dz *= fac;
248 z += dz;
249

250 if(fabs(dz) <= dzmin){
251

252 okay = false;
253 cerr << "dz␣petit" << endl;
254

255 }
256

257 }
258

259 } while (okay == true && length < lmax);
260

261 output << endl;
262

263 }
264

265 output.close ();
266

267 }

A.2 Computation of the number of points captured by at-
tractors

The codes presented here, both written in C++, correspond to the simulation
performed in section 2.2. The first code is used to compute the radii, whereas the
second one calculates the number of points captured by each attractor, as well as
the ratios with respect to the total number of points.

1

2 #include <iostream >
3 #include <fstream >
4 #include <cmath >
5 #include <vector >
6 #include <cstdio >
7

8 using namespace std;
9

10 double alpha = 0.21, c = cos(2* M_PI*alpha), s = sin(2* M_PI*alpha);
11 double eps = 5e-3;
12

13 double sq(double x){return x*x;}
14

15 double min(double x, double y){
16
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17 if (x <= y)
18 return x;
19 else
20 return y;
21

22 }
23

24 double norm(double* x){return sqrt(sq(x[0]) + sq(x[1]));}
25

26 double dist(double* x, double* y){
27

28 double v[2];
29

30 v[0] = y[0] - x[0];
31 v[1] = y[1] - x[1];
32

33 return norm(v);
34

35 }
36

37 // Change from polar coordinates to cartesian coordinates
38

39 void polar(double r, double theta , double* x){
40

41 x[0] = r*cos(theta);
42 x[1] = r*sin(theta);
43

44 }
45

46 //Hénon map defined on R^2
47

48 void henon(double* x, double* y){
49

50 double x2 = sq(x[0]);
51

52 y[0] = (1 - eps)*(c*x[0] - s*(x[1] - x2));
53 y[1] = (1 - eps)*(s*x[0] + c*(x[1] - x2));
54 x[0] = y[0];
55 x[1] = y[1];
56

57 }
58

59 int main(){
60

61 //Input
62

63 int per , npt , nit;
64 double xper [2];
65

66 cerr << "Period␣of␣the␣orbit?" << endl;
67 cin >> per;
68

69 cerr << "Coordinates␣of␣a␣" << per << "-periodic␣point?" << endl;
70 cin >> xper [0] >> xper [1];
71

72 cerr << "Number␣of␣initial␣conditions?" << endl;
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73 cin >> npt;
74

75 cerr << "Number␣of␣iterations?" << endl;
76 cin >> nit;
77

78 ofstream output;
79 output.open("basin.in");
80

81 // Computation of the radii
82

83 double theta;
84 double x[2], aux [2];
85

86 //r0: Cercle surrounding the origin
87

88 int n0 = 0;
89 double r0 = (0.5 + eps)*norm(xper);
90

91 while (n0 < npt){
92

93 n0 = 0;
94

95 for (int i = 0; i < npt; i++){
96

97 theta = 2*M_PI*i/npt;
98 polar(r0 , theta , x);
99

100 for (int j = 0; j < nit; j++)
101 henon(x, aux);
102

103 if (norm(x) < r0)
104 n0++;
105

106 }
107

108 if (n0 < npt)
109 r0 *= 0.9;
110

111 }
112

113 //rper: Cercle surrounding each periodic point
114

115 int nper = 0;
116 double rper = 0.25* r0;
117

118 while (nper < npt){
119

120 nper = 0;
121

122 for (int i = 0; i < npt; i++){
123

124 theta = 2*M_PI*i/npt;
125 polar(rper , theta , x);
126 x[0] += xper [0];
127 x[1] += xper [1];
128
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129 for (int j = 0; j < nit; j++)
130 for (int m = 1; m <= per; m++)
131 henon(x, aux);
132

133 if (dist(xper , x) < rper)
134 nper ++;
135

136 }
137

138 if (nper < npt)
139 rper *= 0.95;
140

141 }
142

143 // Results: They are printed on the file basin.in, which is the input file
for the program basin.cpp

144

145 output << per << endl;
146 output << setprecision (15) << xper [0] << "\t" << setprecision (15) << xper

[1] << endl;
147 output << 2*pow(10,-floor(log10(eps))) << endl;
148 output << 1e5 << endl;
149 output << setprecision (15) << r0 << endl;
150 output << setprecision (15) << rper << endl;
151 output << "p" << endl;
152 output << "basin_" << eps << endl;
153

154 output.close ();
155

156 }

1 #include <iostream >
2 #include <fstream >
3 #include <cmath >
4 #include <vector >
5

6 using namespace std;
7

8 double alpha = 0.21, c = cos(2* M_PI*alpha), s = sin(2* M_PI*alpha);
9 double eps = 5e-4;

10

11 double sq(double x){return x*x;}
12

13 double min(double x, double y){
14

15 if (x <= y)
16 return x;
17 else
18 return y;
19

20 }
21

22 double norm(double* x){return sqrt(sq(x[0]) + sq(x[1]));}
23

24 double dist(double* x, double* y){
25
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26 double v[2];
27

28 v[0] = y[0] - x[0];
29 v[1] = y[1] - x[1];
30

31 return norm(v);
32

33 }
34

35 //Hénon map defined on R^2
36

37 void henon(double* x, double* y){
38

39 double x2 = sq(x[0]);
40

41 y[0] = (1 - eps)*(c*x[0] - s*(x[1] - x2));
42 y[1] = (1 - eps)*(s*x[0] + c*(x[1] - x2));
43

44 x[0] = y[0];
45 x[1] = y[1];
46

47 }
48

49 int main(){
50

51 //Input
52

53 int per;
54 double xper [2];
55 double nit , nitaux , r0 , rper;
56 string infile , outfile;
57

58 cerr << "Period␣of␣the␣orbit?" << endl;
59 cin >> per;
60

61 cerr << "Coordinates␣of␣a␣" << per << "-periodic␣point?" << endl;
62 cin >> xper [0] >> xper [1];
63

64 cerr << "Number␣of␣iterations?" << endl;
65 cin >> nit;
66

67 cerr << "Number␣of␣iterations␣if␣there␣is␣not␣convergence?" << endl;
68 cin >> nitaux;
69

70 cerr << "Radius␣surrounding␣the␣origin?" << endl;
71 cin >> r0;
72

73 cerr << "Radius␣surrounding␣the␣" << per << "-periodic␣points?" << endl;
74 cin >> rper;
75

76 cerr << "Input␣file?" << endl;
77 cin >> infile;
78

79 cerr << "Output␣file?" << endl;
80 cin >> outfile;
81
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82 infile += ".dat";
83 outfile += ".dat";
84 ifstream input;
85 ofstream output;
86 input.open(infile);
87 output.open(outfile);
88

89 // Computation of number of points captured by each attractor
90

91 int npt = 0, n0 = 0, nper = 0;
92 double x[2], aux[2], auxper [2];
93

94 while (input >> x[0] >> x[1]){
95

96 npt ++;
97 output << x[0] << "\t" << x[1] << "\t";
98

99 double m = 0;
100 while (m < nit){
101

102 henon(x, aux);
103 m++;
104 }
105

106 bool decided = false;
107 double notdecided = 0;
108

109 while (decided == false){
110

111 if (norm(x) < r0){
112

113 n0++;
114 decided = true;
115 output << x[0] << "\t" << x[1] << "\t" << 0 << endl;
116

117 } else{
118

119 int m = 1;
120 auxper [0] = x[0];
121 auxper [1] = x[1];
122 while (m <= per && decided == false){
123

124 if(dist(auxper , xper) < rper){
125

126 nper ++;
127 decided = true;
128 output << x[0] << "\t" << x[1] << "\t" << 1 << endl;
129

130 } else{
131

132 henon(auxper , aux);
133 m++;
134

135 }
136

137 }
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138

139 }
140

141 if (decided == false){
142

143 if (notdecided < 1.e8/nitaux){
144

145 notdecided ++;
146 for (int i = 0; i < nitaux; i++)
147 henon(x, aux);
148

149 } else{
150

151 output << x[0] << "\t" << x[1] << "\t" << 2 << endl;
152 decided = true;
153

154 }
155

156 }
157

158 }
159

160 }
161

162 int nesc = npt - (n0 + nper);
163 double p_0 = (double) n0/npt , p_per = (double) nper/npt , p_esc = (double)

nesc/npt;
164 output << "#eps␣r0␣rper␣n0␣p_0␣nper␣p_per␣nesc␣p_esc␣npt" << endl;
165 output << "#" << eps << "␣" << r0 << "␣" << rper << "␣" << n0 << "␣" << p_0

<< "␣" << nper << "␣" << p_per << "␣" << nesc << "␣" << p_esc << "␣"
<< npt << endl;

166 input.close();
167 output.close ();
168

169 }
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