
 

Effective field theory for double heavy baryons at strong coupling

Joan Soto1,* and Jaume Tarrús Castellà 2,†
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We present an effective field theory for doubly heavy baryons that goes beyond the compact
heavy diquark approximation. The heavy quark distance r is only restricted to mQ ≫ 1=r ≫ Ebin, where
mQ is the mass of the heavy quark and Ebin the typical binding energy. This means that the size of
the heavy diquark can be as large as the typical size of a light hadron. We start from nonrelativistic QCD,
and build the effective field theory at next-to-leading order in the 1=mQ expansion. At leading order the
effective field theory reduces to the Born-Oppenheimer approximation. The Born-Oppenheimer potentials
are obtained from available lattice QCD data. The spectrum for double charm baryons below threshold is
compatible with most of the lattice QCD results. We present for the first time the full spin averaged double
bottom baryon spectrum below threshold based on QCD. We also present model-independent formulas for
the spin splittings.
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I. INTRODUCTION

The recent discovery of the Ξþþ
cc baryon by the LHCb

Collaboration [1,2], together with the expectation that other
states can be confirmed or discovered in the near future, has
revitalized the interest of the theoretical community on
double heavy baryons. Earlier SELEX claims [3,4] on the
discovery of Ξþ

cc appear to clash with LHCb searches [5,6],
as well as earlier ones by BABAR [7] and BELLE [8].
From the theoretical side, a QCD based approach to

double heavy baryons was already considered in the early
days of Heavy Quark Effective Theory [9]. The key
observation was that a QQ state at short distances has
an attractive channel in the 3� representation. Then, if the
heavy quark masses are large enough, theQQwould form a
compact hard core and the lowest-lying excitations would
be given by the typical hadronic scale ΛQCD. The spectrum
would then be analogous to the one of heavy-light mesons.
Predictions for the hyperfine splitting were put forward
within this approach [9], sometimes referred to as heavy
quark-diquark duality. This framework was put in a more
solid theoretical basis in Ref. [10] by working out a lower

energy effective theory (EFT) for the QQ system, similar
to potential nonrelativistic QCD (pNRQCD) [11,12]. The
quark-antiquark duality assumption could then be quanti-
fied: it would hold when the typical binding energies of the
QQ systems, Ebin, are much larger than the typical hadronic
scale (Ebin ≫ ΛQCD). In practice, however, the duality
hypothesis does not hold for double charm nor for double
bottom baryons. Indeed, it is well known that Ebin ≫ ΛQCD

does not hold for charmonium and bottomonium (QQ̄), the
attractive channel of which is twice stronger than the one of
their QQ counterpart. The EFT built in Ref. [10] is valid
whenever the typical size of the system is smaller than
typical hadronic size, r ≪ 1=ΛQCD, and in particular it is still
correct forEbin ∼ ΛQCD. In this case, the excitations due to the
internal QQ dynamics compete with the excitations of the
light degrees of freedom (which include a light quark)
surrounding the QQ compact core, and the spectrum of
the lower-lying states will not mimic the one of the heavy-
light mesons anymore. For charmonium and bottomonium
the hypothesis that Ebin ∼ ΛQCD is only reasonable for the
ground state and the gross description of excited states clearly
requires the introduction of a confining potential, in addition
to the Coulomb-like potential that arises from the hypothesis
r ≪ 1=ΛQCD. Therefore, for doubly heavy charm or bottom
baryons, for which the attraction of the Coulomb-like
potential is twice weaker than that for quarkonium, the
assumption Ebin ∼ ΛQCD seems unlikely to hold.
It is the aim of this paper to build an EFT for QQq

systems in which the hypothesis r ≪ 1=ΛQCD is released,
along the lines suggested in Ref. [13]. In fact, this paper
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may be considered a concrete example of a more general
formalism developed in an accompanying one [14]. This
EFT is built upon the heavy quark mass expansion,
mQ ≫ ΛQCD, and an adiabatic expansion between the
dynamics of the heavy quarks, and the light degrees of
freedom, the gluons and light quarks, ΛQCD ≫ Ebin. Under
these assumptions, the heavy quark mass and the typical
hadronic scale can be integrated out producing an EFT that
at leading order (LO) consist of a set of wave function fields
for the QQ system with the quantum numbers of the light
degrees of freedom, in addition to the ones of the QQ,
interacting through a number of Born-Oppenheimer (BO)
potentials. Since the BO potentials cannot be calculated in
perturbation theory, we shall use available lattice data for
them. Four different BO potentials turn out to be relevant
for describing the spectrum of double charm and double
bottom baryons below the first heavy-meson-heavy-baryon
threshold. At LO, the BO potentials are flavor independent.
They neither depend on the heavy quark mass, nor on light
quark ones mq, if ΛQCD ≫ mq is assumed. Hence, the LO
Lagrangian enjoys heavy quark spin symmetry and chiral
symmetry. We calculate the spectrum using the lattice data
of Refs. [15,16] as the input for the BO potential. We also
work out the EFT at next-to-leading order (NLO) in the
1=mQ expansion for the terms depending on the heavy
quark spin and angular momentum. Heavy quark spin
symmetry is violated at this order. We put forward model-
independent formulas for the spin splittings. In particular,
we make a prediction for the spin partner of Ξþþ

cc .
Another QCD-based approach to double heavy baryons

is lattice QCD. The study of double heavy baryons on the
lattice is quite challenging due to the wide spread of the
characteristic scales. The light quark and gluon dynamics
occurs at low energies and requires large lattices for
accurate simulations, while the heavy quarks necessitate
small lattice spacings. The combination of both require-
ments results in computationally demanding simulations.
To reduce the computational cost, early studies relied on the
quenched approximation and were carried out in lattice
nonrelativistic QCD (NRQCD) [17–20]. For doubly
charmed baryons, relativistic actions were latter used in
Refs. [21,22] and full QCD simulations in Refs. [23–35].
The latter, however, were limited to the lowest-lying
spin 1=2 and 3=2. The spectrum of a wider array of jηP
states was obtained in Refs. [36,37]. In the bottom sector
unquenched computations have been carried out in
Refs. [24,32,38,39] but still using nonrelativistic bottom
quarks. Lattice NRQCD, expanded about the static limit, is
also necessary to compute the matching coefficients of the
EFT presented here, namely the BO potentials. This can be
done by using the expressions of the matching coefficients
as operator insertions in the Wilson loop that we present in
an accompanying paper [14]. An example of this are the
static energies computed in Refs. [15,16] that we use
as input.

We have organized the paper as follows. In Sec. II we
construct the EFT at NLO. In Sec. III we focus on the LO
Lagrangian. We find suitable parametrizations of the lattice
data of Refs. [15,16] that fulfill expected short and long
distance constraints, and calculate the spectrum. In Sec. IV,
we discuss the hyperfine splittings and produce a number
of model-independent results. We compare our findings
with lattice QCD results in Sec. V. Section VI is devoted
to the conclusions. In Appendix A we derive the coupled
Schrödinger equations for the κp ¼ ð3=2Þ− states, which
are a mixture of the ð1=2Þu and ð3=2Þu static energies, and
in Appendix B we collect the plots of the double heavy
baryon radial wave functions.

II. NONRELATIVISTIC EFT FOR DOUBLE
HEAVY BARYONS

Double heavy baryons are composed of two distinct
components: a heavy quark pair in a 3� color state and a
light quark. The heavy quark mass is larger than the typical
hadronic scale, mQ ≫ ΛQCD, and therefore the natural
starting point to study double heavy baryons is NRQCD
[40–42]. At leading order in the 1=mQ expansion the heavy
quarks are static and the spectrum of the theory is given by
the so-called static energies. The static energies are the
energy eigenvalues of the static eigenstates which are
characterized by the following set of quantum numbers:
the flavor of the light quark, the heavy quark pair relative
distance r, and the representations of D∞h. The latter is a
cylindrical symmetry group, also encountered in diatomic
molecules. The representations of D∞h are customarily
written as Λη, with Λ the absolute value of the projection of
the light quark state angular momentum on the axis joining
the two heavy quarks, r̂, and η ¼ �1 is the parity
eigenvalue, denoted by g ¼ þ1 and u ¼ −1.1

The static energies are nonperturbative objects and have
to be computed in lattice QCD. Preliminary calculations for
the static energies of two heavy quarks and a light quark
state in the isospin limit were presented in Refs. [15,16].
The lattice data for the four lowest lying states is shown in
Fig. 1. The lowest lying static energy corresponds to the
representation ð1=2Þg followed by three very close states
corresponding to the representations ð1=2Þu, ð3=2Þu, and
ð1=2Þ0u. The prime is used to indicate an excited state with
the same representation as a lower lying one. In the short-
distance limit the symmetry group is enlarged from D∞h to
Oð3Þ and the states can be labeled by their spin (κ) and
parity (p). In this limit the κp of the three lowest lying states
found in Refs. [15,16] correspond to ð1=2Þþ, ð3=2Þ−, and
ð1=2Þ−. In the short-distance limit the two heavy quarks act

1Additionally forΛ ¼ 0 there is a symmetry under reflection in
any plane passing through the axis r̂, the eigenvalues of the
corresponding symmetry operator being σ ¼ �1 and indicated as
superscript. However, it is not needed for half-integer light quark
spin states and we will omit it.
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as a single heavy antiquark; this is sometimes refereed to as
quark-diquark symmetry [9,43–45]. Therefore, the double
heavy baryon system in the short-distance limit is equiv-
alent to a heavy-light meson and in fact the spectrum found
in Refs. [15,16] is consistent with the D and B meson
spectra within a few tenths of MeV in this limit. Projecting
the κp states into the heavy quark axis one can obtain states
in representations of D∞h. We show the correspondence in
Table I. The most significant feature in Table I is that
ð3=2Þ− projects both to ð1=2Þu and ð3=2Þu, thus we expect
these two static energies to be degenerate in the short-
distance limit on symmetry grounds. This behavior can in
fact be observed form the lattice data in Fig. 1. The short-
distance degeneracy between ð1=2Þu0 and ð1=2Þu − ð3=2Þu
is a reflection of the degeneracy between the short distance

states ð3=2Þ− and ð1=2Þ−, which as far as we know is
accidental.
The static energies can be computed in the lattice from

the large time limit of correlators of appropriate operators
that overlap dominantly with the static states. Such oper-
ators must have the same quantum numbers as the static
states. The static energies are given by

EκpΛη
ðrÞ ¼ lim

t→∞

i
t
lnh0jTr½PκΛOκpðt=2; r;RÞO†

κpð−t=2; r;RÞ�j0i ð1Þ

where r and R are the relative and the center-of-mass coordinate of the heavy quark pair, respectively, and

Oα
ð1=2Þþðt; r;RÞPþ ¼ ψ⊤ðt; x2Þϕ⊤ðt;R; x2ÞTl½Pþqlðt; xÞ�αϕðt;R; x1Þψðt; x1Þ; ð2Þ

Oα
ð1=2Þ−ðt; r;RÞPþ ¼ ψ⊤ðt; x2Þϕ⊤ðt;R; x2ÞTl½Pþγ5qlðt; xÞ�αϕðt;R; x1Þψðt; x1Þ; ð3Þ

Oα
ð3=2Þ−ðt; r;RÞPþ ¼ ψ⊤ðt; x2Þϕ⊤ðt;R; x2ÞC3=2α1m1=2α0T

l½ðe†m · DÞðPþqðt; xÞÞα0 �lϕðt;R; x1Þψðt; x1Þ: ð4Þ

with ψ the Pauli spinor fields that annihilate a heavy quark,
Tl
ij ¼ ϵlij=

ffiffiffi
2

p
is a 3� irreducible tensor [10], Cj3m3

j1m1j2m2
is a

Clebsch-Gordan coefficient, Pþ ¼ ð1þ γ0Þ=2, and the
polarization vectors are eþ1¼−ð1;i;0Þ= ffiffiffi

2
p

, e−1¼ð1;−i;0Þ=ffiffiffi
2

p
, e0 ¼ ð0; 0; 1Þ. The light quark fields are standard

Dirac fermions represented by qlαðt; xÞ where l is the
color index and α the spin index. ϕ is a Wilson line
defined as

ϕðt; y; xÞ ¼ P
n
ei
R

1

0
dsðx−yÞ·gAðt;x−sðx−yÞÞ

o
; ð5Þ

where P is the path-ordering operator. The projectors
PκΛ in Eq. (1) act on the light quark spin indices and for
spin-1=2 and spin-3=2 take the form

P1
2
1
2
¼ 1lq2 ; ð6Þ

P3
2
1
2
¼ 9

8
1lq4 −

1

2
ðr̂ · S3=2Þ2; ð7Þ

P3
2
3
2
¼ −

1

8
1lq4 þ 1

2
ðr̂ · S3=2Þ2; ð8Þ

with 1lqn an identity matrix in the light quark spin space
of dimension n ¼ 2κ þ 1.
The spectrum of double heavy baryons corresponds to

the heavy quark pair bound states on the static energies
defined by Eq. (1), thus the lowest lying states correspond
to the static energies in Fig. 1. The binding energies are
expected to be smaller thanΛQCD and therefore these bound
states can be described in a BO-inspired approach [46].
That is, incorporating an adiabatic expansion in the energy

FIG. 1. Lattice data of Refs. [15,16] for the four lowest
lying double heavy baryon static energies together with the
fitted potentials corresponding to the parametrizations of
Eqs. (21)–(24).

TABLE I. Correspondence between short-distance Oð3Þ rep-
resentations and D∞h representations.

Oð3Þ D∞h

ð1=2Þþ ð1=2Þg
ð3=2Þ− ð1=2Þu; ð3=2Þu
ð1=2Þ− ð1=2Þ0u
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scales of typical binding energies over the one of light
quark and gluon degrees of freedom, ΛQCD.
The EFT describing heavy exotic hadrons and double

heavy baryons up to 1=mQ for any spin of the light quark
and gluonic degrees of freedom has been presented in
Ref. [14]. In the case of double heavy baryons correspond-
ing to the static states of Fig. 1 the Lagrangian is as follows:

LQQq ¼ Ψ†
ð1=2Þþ ½i∂t − hð1=2Þþ �Ψð1=2Þþ

þΨ†
ð3=2Þ− ½i∂t − hð3=2Þ− �Ψð3=2Þ−

þΨ†
ð1=2Þ− ½i∂t − hð1=2Þ− �Ψð1=2Þ− ; ð9Þ

with the Ψ fields understood as depending on t; r;R, where
r ¼ x1 − x2 and R ¼ ðx1 þ x2Þ=2 are the relative and
center-of-mass coordinates of a heavy quark pair. The Ψ
fields live both in the light quark and heavy quark pair spin
spaces. In the Lagrangian on Eq. (9) we have chosen to
leave the spin indices implicit.
The Hamiltonian densities hκp have the following

expansion up to 1=mQ:

hκp ¼
p2

mQ
þ P2

4mQ
þ Vð0Þ

κp ðrÞ þ
1

mQ
Vð1Þ
κp ðr; pÞ; ð10Þ

with p ¼ −i∇r andP ¼ −i∇R. The kinetic terms in Eq. (10)
are diagonal in spin space while the potentials are not. The
static potentials, Vð0Þ, are diagonal in the heavy quark spin
space, due to heavy quark spin symmetry, while the light
quark spin structure is determined by the representations of
D∞h that the κp quantum numbers can be associated with:

Vð0Þ
ð1=2Þ�ðrÞ ¼ Vð0Þ

ð1=2Þ�ðrÞ; ð11Þ

Vð0Þ
ð3=2Þ−ðrÞ ¼ Vð0Þ

ð3=2Þ−ð3=2ÞðrÞP3
2
3
2
þ Vð0Þ

ð3=2Þ−ð1=2ÞðrÞP3
2
1
2
; ð12Þ

with PκΛ the projectors into representations of D∞h in the
spin-κ space. These fulfill the usual projector properties:
they are idempotent P2

κΛ ¼ PκΛ, orthogonal to each other
PκΛPκΛ0 ¼ δΛΛ0 , and add up to the identity in the spin-κ
space

P
Λ PκΛ ¼ 12κþ1.

The subleading potentials Vð1Þ can be split into terms
that depend on SQQ or LQQ and terms that do not. The
former read

Vð1Þ
ð1=2Þ�SDðrÞ ¼ Vs1

ð1=2Þ�ðrÞSQQ · S1=2

þ Vs2
ð1=2Þ�ðrÞSQQ · ðT 2 · S1=2Þ

þ Vl
ð1=2Þ�ðrÞðLQQ · S1=2Þ; ð13Þ

Vð1Þ
ð3=2Þ−SDðrÞ ¼

X
ΛΛ0¼1

2
;3
2

P3
2
Λ½Vs1

ð3=2Þ−ΛΛ0 ðrÞSQQS3=2

þ Vs2
ð3=2Þ−ΛΛ0 ðrÞSQQ · ðT 2 · S3=2Þ

þ Vl
ð3=2Þ−ΛΛ0 ðrÞðLQQ · S3=2Þ�P3

2
Λ0 ; ð14Þ

with the total heavy quark spin defined as 2SQQ ¼ σQQ ¼
σQ1

12Q2
þ 12Q1

σQ2
where the 12 are identity matrices in the

heavy quark spin space for the heavy quark labeled in the
subindex, LQQ ¼ r × p, and the spin-2 irreducible tensor is
defined as

ðT 2Þij ¼ r̂ir̂j −
1

3
δij: ð15Þ

The heavy quark spin component of the Ψ fields is
given by χQ1

s χQ2
r with χs the usual spin-1=2 two-component

spinors. The light quark spin component, χlqα , is a 2- or
4-component spinor for the Ψð1=2Þ� and Ψð3=2Þ− fields,
respectively.
The matching of the potentials in Eqs. (12), (13), and

(14) in terms of static Wilson loops has been presented in
Ref. [14]. These Wilson loops are nonperturbative quan-
tities and should be computed on the lattice. The only ones
available are the ones corresponding to the static energies,
from Refs. [15,16] shown in Fig. 1, which match to the
static potentials

Vð0Þ
κpΛðrÞ ¼ EκpΛη

ðrÞ: ð16Þ

Furthermore the form of the static potentials can be
constrained in the short- and long- distance limits from
general grounds. In the short-distance regime, r≲ 1=ΛQCD,
one can integrate out the relative momentum scale pertur-
batively and build weakly coupled pNRQCD [11,12] for
double heavy baryons as was done in Ref. [10]. In this
regime the potential at leading order in the multipole
expansion is the sum of the Coulomb-like potential for
two heavy quarks in a triplet state plus a nonperturbative
constant

Vð0Þ
κpΛðrÞ ¼ −

2

3

αs
r
þ Λ̄κp þOðr2Þ ð17Þ

with

Λ̄κp ¼ lim
t→∞

i
t
loghOκpðt=2; r;RÞeig

R
t=2

−t=2
dt0Al

0
ðt;RÞðT�Þl

×O†
κpð−t=2; r;RÞi: ð18Þ

Using quark-diquark symmetry the values of Λ̄κp can be
obtained from analysis of the D and B meson masses
[47,48]. On the other hand, in the long-distance regime,
r ≫ ΛQCD, we expect the formation of a flux tube that
behaves as a quantum string. The formation of such flux
tubes has been observed from lattice [49–51] QCD in
standard and hybrid quarkonium, but is not yet confirmed
for double heavy baryons. Nevertheless, the data from
Refs. [15,16,52], although it does not strictly reach the
long-distance regime, does show a remarkable linear
behavior for the larger heavy quark pair distances.
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Therefore in the long-distance regime we expect the
potential to be linear in r plus a possible additive constant
depending on the light quark mass

Vð0Þ
κpΛðrÞ ¼ σQQqrþ cðmqÞ þOð1=rÞ: ð19Þ

III. DOUBLE HEAVY BARYON SPECTRUM
AT LEADING ORDER

The spectrum of double heavy baryons is obtained by
solving the Schrödinger equations resulting from the LO
Lagrangian

LLO
QQq ¼ Ψ†

ð1=2Þþ
�
i∂t −

p2

mQ
þ Vð0Þ

ð1=2ÞþðrÞ
�
Ψ†

ð1=2Þþ

þΨ†
ð1=2Þ−

�
i∂t −

p2

mQ
þ Vð0Þ

ð1=2Þ−ðrÞ
�
Ψ†

ð1=2Þ−

þΨ†
ð3=2Þ−

�
i∂t −

p2

mQ
þ Vð0Þ

ð3=2Þ−ð1=2ÞðrÞP3
2
1
2

þ Vð0Þ
ð3=2Þ−ð3=2ÞðrÞP3

2
3
2

�
Ψ†

ð3=2Þ−: ð20Þ

The first two terms in Eq. (20) define standard
Schrödinger equations, while the last term corresponds to
two sets of coupled Schrödinger equations corresponding to
the two possible parities of the double heavy baryon states.
The coupled Schrödinger equations for the latter case are
derived in Appendix A. The main point to keep in mind is
that while the states associated with κp ¼ ð1=2Þ� are
eigenstates of L2

QQ with eigenvalue lðlþ 1Þ, the states
associated with κp ¼ ð3=2Þ− are eigenstates of L2 ¼
ðLQQ þ S3=2Þ2 with eigenvalue lðlþ 1Þ. Additionally, in
the latter case there are states with positive and negative
parity for eachlwith different masses due to themixing that
leads into the coupled Schrödinger equations. This is the so-
called Λ-doubling effect known from molecular physics.
Using Eq. (16), the static potentials in Eq. (20) can be

obtained by fitting the lattice data from Refs. [15,16] on the
corresponding static energies. To fit them we use the
following parametrizations of the potentials which interpo-
late between the expected short- and long-distance behavior:

Vð1=2Þþ ¼ Eð1=2Þg ¼ −
2

3

αsðνlatÞ
r

þ c2rþ c1
c3rþ 1

þ σr; ð21Þ

Vð3=2Þ−ð1=2Þ ¼Eð1=2Þu ¼−
2

3

αsðνlatÞ
r

þb3r2þb2rþb1
b5r2þb4rþ1

þσr;

ð22Þ

Vð3=2Þ−ð3=2Þ ¼Eð3=2Þu ¼−
2

3

αsðνlatÞ
r

þb7r2þb6rþb1
b9r2þb8rþ1

þσr;

ð23Þ

Vð1=2Þ− ¼ Eð1=2Þ0u −
2

3

αsðνlatÞ
r

þ c5rþ c4
c6rþ 1

þ σr; ð24Þ

with the ν scale taken as the inverse of the lattice spacing
νlat ¼ 1=a ¼ 2.16 GeV (a ¼ 0.084 fm). We constrain
the parameters b1 ¼ c1 þ Elattð1aÞð1=2Þu − Elattð1aÞð1=2Þg
and c4 ¼ c1 þ Elattð1aÞð1=2Þ0u − Elattð1aÞð1=2Þg . Notice that,

numerically, Elattð1aÞð1=2Þu ≃ Elattð1aÞð3=2Þu hence in prac-
tice b1 ≃ c4.
The energy offset c1 is an additive constant that

affects the masses of all the double heavy baryon states;
therefore, it is important to determine it accurately. To do
so, we fit the short-distance data (r ¼ a; 2a; 3a) to the one-
loop expression of the heavy-quark-heavy-quark 3� poten-
tial added to c1

Vð1=2Þþ ¼−
2

3

αsðνlatÞ
r

�
1þαsðνlatÞ

4π
ð2β0 logðνlatreγEÞþa1Þ

�
þc1: ð25Þ

The value we obtain is

c1 ¼ 1.948 GeV; ð26Þ

and therefore

b1 ¼ 2.370 GeV; c4 ¼ 2.343 GeV: ð27Þ

The long-distance behavior is given by the linear term
whose constant is fixed at σ ¼ 0.21 GeV2 [53]. One could
obtain similar values by fitting the longer distance lattice
points to a straight line plus a constant term; however, there
is some correlation between the two parameters that makes
this procedure undesirable. The rest of the parameters are
obtained by fitting the potentials in Eqs. (21)–(24) to the
lattice data. The fits yield the following values:

c2 ¼ 15.782 GeV2; c3 ¼ 9.580 GeV;

c5 ¼ 13.265 GeV2; c6 ¼ 6.560 GeV;

b2 ¼ 1.196 GeV2; b3 ¼ 0.123 GeV3;

b4 ¼ 0.763 GeV; b5 ¼ 0.041 GeV2;

b6 ¼ 5.560 GeV2; b7 ¼ 1.066 GeV3;

b8 ¼ 2.879 GeV; b9 ¼ 0.452 GeV2: ð28Þ

In Fig. 1 we show the fitted potentials together with the
lattice data.
We solve numerically the radial Schrödinger equations in

Eqs. (21)–(24) with the short-distance constants of each
potential (c1; c4 or b1) subtracted. The effect of this is just
to set a common origin of energies so we can compare the
binding energies obtained from the Schrödinger equations.
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To obtain the total masses of the baryons we add to the
binding energy two times the heavy quark mass and Λ̄ð1=2Þþ

Mð0Þ
ð1=2Þg ¼ 2mQ þ Eb þ Λ̄ð1=2Þþ ; ð29Þ

Mð0Þ
ð3=2Þunð1=2Þu ¼ 2mQ þ Eb þ Λ̄ð1=2Þþ

þ Elattð1aÞð1=2Þu − Elattð1aÞð1=2Þg ; ð30Þ

Mð0Þ
ð1=2Þ0u ¼ 2mQ þ Eb þ Λ̄ð1=2Þþ þ Elattð1aÞð1=2Þ0u

− Elattð1aÞð1=2Þg : ð31Þ

In practice what we are doing is removing the ambiguity on
the origin of energies of the lattice data on the static
energies by rescaling them by a factor Λ̄ð1=2Þþ − c1 so that
the short-distance behavior of Vð1=2Þþ matches exactly
Eq. (17) since Λ̄ð1=2Þþ can be obtained independently from
lattice studies ofD and Bmeson masses. We take the values
for the heavy quark masses and Λ̄ð1=2Þþ from Ref. [48]2

mc ¼ 1.392ð11Þ GeV; ð32Þ

mb ¼ 4.749ð18Þ GeV; ð33Þ

Λ̄ð1=2Þþ ¼ 0.555ð31Þ GeV: ð34Þ

The same masses have been used in the kinetic terms of the
Schrödinger equations. In Tables III and IV we present the
results for the spectrum of cc and bb double heavy baryons.
In Table II we show the full quantum numbers of the double
baryon states including mixings and degenerate spin
multiplets. We also represent the spectra in terms of jηP
states graphically in Figs. 2 and 3 for double charm and
double bottom baryons, respectively.
The BO approach, corresponding to our LO Lagrangian

in Eq. (20) may only be completely consistent for
states below the first heavy-meson-heavy-baryon threshold.
Above threshold, the states predicted from the Schrödinger
equations are expected to acquire widths, corresponding to
decays into the particles that form the threshold, and the
double heavy baryon masses can also vary due to coupled
channel effects. Therefore, above heavy-baryon-meson
thresholds our results should be taken with care. In the
charm sector the first heavy-baryon-meson threshold is
formed by the Λ0

c and D0 at ∼ 4.151 GeV. There are only
four spin multiplets below this threshold with quantum
numbers Λη ¼ ð1=2Þg with l ¼ 0; 1, n ¼ 1, Λη ¼ ð1=2Þ0u
with l ¼ 0 n ¼ 1, and Λη ¼ ð3=2Þunð1=2Þu with
lηP ¼ ð3=2Þþ, n ¼ 1. In the bottom sector the first
heavy-baryon-meson threshold is formed by Λ0

b and B0

at ∼10.899 GeV. In this case sixteen spin multiplets are
found below threshold: eight multiplets for Λη ¼ ð1=2Þg,
two for Λη ¼ ð1=2Þu0, four for Λη ¼ ð3=2Þunð1=2Þu and
two for ð1=2Þu.
There are two possible different choices for the origin of

energies of the potentials that would affect the number of

TABLE II. Quantum numbers of double heavy baryons associated with the four lowest static energies displayed in Fig. 1. The
quantum numbers are as follows: lðlþ 1Þ is the eigenvalue of L2

QQ, lðlþ 1Þ is the eigenvalue of L2 ¼ ðLQQ þ SκÞ2, sQQðsQQ þ 1Þ is
the eigenvalue of S2QQ. Note that the Pauli exclusion principle constrains sQQ ¼ 0 for odd l and sQQ ¼ 1 for even l. The total angular
momentum J2 ¼ ðLþ SQQÞ2 has eigenvalue jðjþ 1Þ. Finally, ηP stands for the parity eigenvalue. Numbers in parentheses correspond
to degenerate multiplets at LO; numbers separated by backslashes indicate mixing of the physical state on those quantum numbers.
Notice that � in the parity column does not indicate degeneracy in that quantum number but correlates to the � parity of the light quark
operator in the first column.

κp Λη l l sQQ j ηP

ð1=2Þ� ð1=2Þg=u0 0 1=2 1 ð1=2; 3=2Þ �
1 ð1=2; 3=2Þ 0 ð1=2; 3=2Þ ∓
2 ð3=2; 5=2Þ 1 ðð1=2; 3=2; 5=2Þ; ð3=2; 5=2; 7=2ÞÞ �
3 ð5=2; 7=2Þ 0 ð5=2; 7=2Þ �

ð3=2Þ− ð3=2Þunð1=2Þu 0n2 3=2 1 ð1=2; 3=2; 5=2Þ −
1n3 5=2 0 5=2 þ
2n4 7=2 1 ð5=2; 7=2; 9=2Þ −
3n5 9=2 0 9=2 þ
1n3 3=2 0 3=2 þ
2n4 5=2 1 ð3=2; 5=2; 7=2Þ −
3n5 7=2 0 7=2 þ
4n6 9=2 1 ð7=2; 9=2; 11=2Þ −

ð3=2Þ− ð1=2Þu 1 1=2 0 1=2 þ
2 1=2 1 ð1=2; 3=2Þ −

2Notice, that in Ref. [48] Λ̄ð1=2Þþ is simply called Λ̄.
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multiplets below heavy-baryon-meson thresholds. First,
instead of using Λ̄ð1=2Þþ one could adjust the short-distance
constant c1 to reproduce the physical mass of Ξþþ

cc
from Ref. [1], which in practice is equivalent to shift down
the masses of all the multiplets by 91 MeV. Second, the
energy gaps Elattð1aÞð1=2Þu − Elattð1aÞð1=2Þg ¼ 421 MeV

and Elattð1aÞð1=2Þ0u − Elattð1aÞð1=2Þg ¼ 394 MeV correspond

to the mass gaps of the light quark states ð3=2Þ− and ð1=2Þ−
with respect to ð1=2Þþ which corresponds the mass differ-
ence of the ground and first excited heavy-light mesons.
From the PDG [54], these mass gaps read

mB0
1
−mB0 ¼ 446MeV; mB�0

2
−mB� ¼ 415MeV; ð35Þ

mD0
1
−mD0 ¼ 556MeV; mD�0

2
−mD� ¼ 454MeV: ð36Þ

The B meson mass gap, which should give the most
accurate value, is compatible with the lattice data and
any shifting of the states would be small.
To close this section let us comment on the uncertainties

of our results. The main source of uncertainty on the values
of Mð0Þ are the uncertainties on the value of the parameters
in Eqs. (32)–(34). These account for an uncertainty of

53 MeV and 67 MeV for Mð0Þ
ccq and Mð0Þ

bbq, respectively.
However, this uncertainty drops in the mass differences.
Additionally, there is the uncertainty on the lattice data for
the static energies of Refs. [15,16] and the model depend-
ence on the long-distance parametrization of the static
potentials. We estimate the effect of these two sources of
uncertainty to be no larger than 10 MeV. Finally, one
should keep in mind that Mð0Þ is only the LO contribution
to the full double heavy baryon masses. The NLO correc-
tions can be estimated to be of parametrical size Λ2

QCD=mQ,

TABLE III. Double charm baryon spectrum. All dimensionful
entries are in GeV. Ebin is the binding energy of the heavy quarks,
h1=ri is the expected value of 1=r and Ekin is the expected value
of the kinetic energy of the heavy quarks. P1=2 is the probability
of finding the state in a Λ ¼ 1=2 state, and therefore a measure of
the mixing between Λ ¼ 3=2 and 1=2. The first charmed meson
charmed baryon threshold is MðΛ0

cÞ þMðD0Þ ¼ 4.151 GeV.

ccq

Λη n lðlηPÞ Ebin Mð0Þ h1=ri Ekin P1=2

ð1=2Þg 1 0 0.373 3.712 0.586 0.270 1
ð1=2Þg 2 0 0.947 4.286 0.396 0.447 1
ð1=2Þg 3 0 1.409 4.748 0.319 0.595 1
ð1=2Þg 1 1 0.723 4.062 0.347 0.368 1
ð1=2Þg 2 1 1.213 4.552 0.276 0.526 1
ð1=2Þg 1 2 1.014 4.353 0.260 0.458 1
ð1=2Þg 2 2 1.455 4.794 0.221 0.602 1
ð1=2Þg 1 3 1.273 4.612 0.213 0.541 1

ð1=2Þ0u 1 0 0.362 4.095 0.583 0.268 1
ð1=2Þ0u 2 0 0.933 4.667 0.396 0.445 1
ð1=2Þ0u 1 1 0.709 4.443 0.346 0.366 1
ð1=2Þ0u 1 2 0.998 4.732 0.260 0.457 1

ð3=2Þu−ð1=2Þu 1 ð3=2Þ− 0.305 4.066 0.579 0.267 0.571
ð3=2Þu−ð1=2Þu 2 ð3=2Þ− 0.863 4.623 0.381 0.473 0.828
ð3=2Þu−ð1=2Þu 1 ð5=2Þþ 0.639 4.399 0.348 0.380 0.697
ð3=2Þu−ð1=2Þu 1 ð7=2Þ− 0.931 4.691 0.265 0.484 0.750

ð3=2Þu−ð1=2Þu 1 ð3=2Þþ 0.720 4.481 0.355 0.390 0.155
ð3=2Þu−ð1=2Þu 1 ð5=2Þ− 1.017 4.778 0.266 0.488 0.235

ð1=2Þu 1 ð1=2Þþ 0.585 4.346 0.347 0.371 1
ð1=2Þu 1 ð1=2Þ− 0.880 4.641 0.265 0.478 1

TABLE IV. Double bottom baryon spectrum. All dimensionful
entries are in GeV. Ebin is the binding energy of the heavy quarks,
h1=ri is the expected value of 1=r, and Ekin is the expected value
of the kinetic energy of the heavy quarks. P1=2 is the probability
of finding the state in a Λ ¼ 1=2 state, and therefore a measure of
the mixing between Λ ¼ 3=2 and 1=2. The first bottomed-meson-
bottomed-baryon threshold is MðΛ0

bÞ þMðB0Þ ¼ 10.899 GeV.

bbq

Λη n lðlηPÞ Ebin Mð0Þ h1=ri Ekin P1=2

ð1=2Þg 1 0 0.087 10.140 0.952 0.204 1
ð1=2Þg 2 0 0.489 10.542 0.617 0.312 1
ð1=2Þg 3 0 0.803 10.856 0.490 0.407 1
ð1=2Þg 4 0 1.078 11.131 0.417 0.492 1
ð1=2Þg 1 1 0.345 10.398 0.537 0.257 1
ð1=2Þg 2 1 0.678 10.731 0.423 0.359 1
ð1=2Þg 3 1 0.963 11.016 0.360 0.449 1
ð1=2Þg 1 2 0.547 10.600 0.398 0.313 1
ð1=2Þg 2 2 0.844 10.897 0.337 0.407 1
ð1=2Þg 3 2 1.109 11.162 0.297 0.493 1
ð1=2Þg 1 3 0.724 10.777 0.324 0.366 1
ð1=2Þg 2 3 0.998 11.051 0.285 0.455 1

ð1=2Þ0u 1 0 0.079 10.527 0.942 0.193 1
ð1=2Þ0u 2 0 0.477 10.924 0.615 0.298 1
ð1=2Þ0u 1 1 0.334 10.781 0.534 0.242 1
ð1=2Þ0u 2 1 0.664 11.112 0.422 0.357 1
ð1=2Þ0u 1 2 0.534 10.981 0.397 0.311 1
ð1=2Þ0u 1 3 0.709 11.157 0.323 0.365 1

ð3=2Þu−ð1=2Þu 1 ð3=2Þ− 0.036 10.510 0.890 0.184 0.574
ð3=2Þu−ð1=2Þu 2 ð3=2Þ− 0.390 10.865 0.568 0.310 0.842
ð3=2Þu−ð1=2Þu 3 ð3=2Þ− 0.692 11.166 0.495 0.423 0.906
ð3=2Þu−ð1=2Þu 1 ð5=2Þþ 0.259 10.734 0.517 0.248 0.718
ð3=2Þu−ð1=2Þu 2 ð5=2Þþ 0.576 11.050 0.414 0.369 0.833
ð3=2Þu−ð1=2Þu 1 ð7=2Þ− 0.447 10.921 0.392 0.315 0.781
ð3=2Þu−ð1=2Þu 1 ð9=2Þþ 0.620 11.094 0.324 0.378 0.816

ð3=2Þu−ð1=2Þu 1 ð3=2Þþ 0.323 10.797 0.540 0.266 0.175
ð3=2Þu−ð1=2Þu 2 ð3=2Þþ 0.586 11.060 0.350 0.373 0.876
ð3=2Þu−ð1=2Þu 1 ð5=2Þ− 0.522 10.996 0.400 0.330 0.286
ð3=2Þu−ð1=2Þu 1 ð7=2Þþ 0.700 11.174 0.327 0.390 0.363

ð1=2Þu 1 ð1=2Þþ 0.219 10.694 0.510 0.235 1
ð1=2Þu 2 ð1=2Þþ 0.552 11.026 0.421 0.360 1

ð1=2Þu 1 ð1=2Þ− 0.406 10.881 0.391 0.305 1
ð1=2Þu 2 ð1=2Þ− 0.714 11.189 0.340 0.418 1
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which amounts to ∼100 MeV and ∼30 MeV for Mccq and
Mbbq, respectively. In the next section we study in more
detail the heavy quark spin and angular momentum NLO
contributions to the double heavy baryon masses. However,
one should keep in mind that NLO contributions indepen-
dent of the spin and angular momentum do also exist.

IV. SPIN SPLITTINGS FOR κ= 1=2 STATES

At LO the potential is independent of the spin of the
heavy quarks, hence the final jηP states appear in degen-
erate multiplets. This degeneracy is broken by the spin- and
angular-momentum-dependent operators in the Lagrangian
in Eqs. (13) and (14). At the moment the potentials corres-
ponding to these spin-dependent operators are unknown
and therefore the full computation of this spin-splitting
corrections is not possible. However, in the case of the κ ¼
1=2 states, due to the relatively small number of operators
in the Lagrangian in Eq. (13) it is possible to obtain
relations between the masses of states belonging to
multiplets of a given l independent of the shape of the
potentials. We summarize the states in the multiplets for
l ¼ 0; 1; 2 and the corresponding angular expected values
of the spin-dependent operators in Table V.

Let us label the mass of the states as Mnjll ¼ Mð0Þ
nl þ

Mð1Þ
njll þ… with Mð0Þ

nl the mass solution of the Schrödinger

equation with the static potential andMð1Þ
njll the 1=mQ spin-

dependent contributions. Notice that the Pauli exclusion

FIG. 3. Spectrum of bbq double heavy baryons in terms of jηP
states. The spectrum corresponds to the results of Table IVand the
corresponding jηP multiplets from Table II. Each line represents a
state; the lines with a dot indicate two degenerate states. The color
indicates the static energies that generate the state.

FIG. 2. Spectrum of ccq double heavy baryons in terms of jηP
states. The spectrum corresponds to the results of Table III and the
corresponding jηP multiplets from Table II. Each line represents a
state; the lines with a dot indicate two degenerate states. The color
indicates the static energies that generate the state.

TABLE V. Angular matrix elements for κ ¼ 1=2 double heavy
baryon states. The heavy quark spin state is fixed by the Pauli
exclusion principle.

l sQQ l j hS1=2 · SQQi
hS1=2·

ðT 2 · SQQÞi hS1=2 · LQQi
0 1 1=2 1=2 −1 0 0

3=2 1=2 0 0

1 0 1=2 1=2 0 0 −1
3=2 3=2 0 0 1=2

2 1 3=2 1=2 1=2 −1=3 −3=2
3=2 1=5 −2=15 −3=2
5=2 −3=10 1=5 −3=2

2 1 5=2 3=2 −7=10 2=15 1
5=2 −1=5 4=105 1
7=2 1=2 −2=21 1
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principle constrains sQQ ¼ 0 for odd l and sQQ ¼ 1 for
even l; therefore, sQQ is not needed to label the states.
First, let us look at the states with l ¼ 0. In this case the

expected values of both S1=2 · LQQ and S1=2 · ðT 2 · SQQÞ
are zero. Therefore the spin splittings are produced only by
S1=2 · SQQ and take the form

Mð1Þ
nj01

2

¼ 1

2

�
jðjþ 1Þ − 11

4

� hVs1
ð1=2Þ�in0
mQ

; ð37Þ

where we use the bracket notation to denote the expected
values of the potentials between the radial wave functions

hVi
ð1=2Þ�inl¼

Z
∞

0

drr2ψnl†ðrÞVi
ð1=2Þ�ðrÞψnlðrÞ; i¼s1;s2;l:

ð38Þ

Although the potentials are unknown we can use Eq. (37)
to write the following relation between the masses of the
two l ¼ 0 states and their LO mass:

2Mn3
2
01
2
þMn1

2
01
2
¼ 3Mð0Þ

n0 : ð39Þ

In the case with l ¼ 1 the Pauli principle fixes the heavy
quark spin in a singlet state, and both the expected values of
S1=2 · SQQ and S1=2 · ðT 2 · SQQÞ vanish. Only the contri-
bution of S1=2 · LQQ remains which is found to be

Mð1Þ
nj1j ¼

1

2

�
jðjþ 1Þ − 11

4

� hVl
ð1=2Þ�in1
mQ

; ð40Þ

that is, the same pattern as the l ¼ 0 states. We can also
express the splitting as a mass relation between the two
states that form the l ¼ 1 multiplet

2Mn3
2
13
2
þMn1

2
11
2
¼ 3Mð0Þ

n1 : ð41Þ

Notice that both Eqs. (39) and (41) are equivalent to the
statement that the spin average of the l ¼ 0 and l ¼ 1

multiplets is equal to our LO masses Mð0Þ
nl .

For the case l ¼ 2 all three operators in the
Lagrangian in Eq. (13) contribute to the spin splittings.
In this case the computations of the angular expected
values are slightly more involved. Let us write the
general structure of the spin-dependent contributions for
each state

Mð1Þ
n1
2
23
2

¼ 1

2

hVs1
ð1=2Þ�in2
mQ

−
1

3

hVs2
ð1=2Þ�in2
mQ

−
3

2

hVl
ð1=2Þ�in2
mQ

; ð42Þ

Mð1Þ
n3
2
23
2

¼ 1

5

hVs1
ð1=2Þ�in2
mQ

−
2

15

hVs2
ð1=2Þ�in2
mQ

−
3

2

hVl
ð1=2Þ�in2
mQ

; ð43Þ

Mð1Þ
n5
2
23
2

¼ −
3

10

hVs1
ð1=2Þ�in2
mQ

þ 1

5

hVs2
ð1=2Þ�in2
mQ

−
3

2

hVl
ð1=2Þ�in2
mQ

;

ð44Þ

Mð1Þ
n3
2
25
2

¼ −
7

10

hVs1
ð1=2Þ�in2
mQ

þ 2

15

hVs2
ð1=2Þ�in2
mQ

þ
hVl

ð1=2Þ�in2
mQ

;

ð45Þ

Mð1Þ
n5
2
25
2

¼ −
1

5

hVs1
ð1=2Þ�in2
mQ

þ 4

105

hVs2
ð1=2Þ�in2
mQ

þ
hVl

ð1=2Þ�in2
mQ

;

ð46Þ

Mð1Þ
n7
2
25
2

¼ 1

2

hVs1
ð1=2Þ�in2
mQ

−
2

21

hVs2
ð1=2Þ�in2
mQ

þ
hVl

ð1=2Þ�in2
mQ

: ð47Þ

In mass differences the LO contribution Mð0Þ
nl

cancels out. We construct mass differences independent
of hVl

ð1=2Þ�in2

Mn3
2
23
2
−Mn1

2
23
2
¼ −

3

10

hVs1
ð1=2Þ�in2
mQ

þ 1

5

hVs2
ð1=2Þ�in2
mQ

; ð48Þ

Mn5
2
23
2
−Mn1

2
23
2
¼ −

4

5

hVs1
ð1=2Þ�in2
mQ

þ 8

15

hVs2
ð1=2Þ�in2
mQ

; ð49Þ

Mn5
2
25
2
−Mn3

2
25
2
¼ 1

2

hVs1
ð1=2Þ�in2
mQ

−
2

21

hVs2
ð1=2Þ�in2
mQ

; ð50Þ

Mn7
2
25
2
−Mn3

2
25
2
¼ 6

5

hVs1
ð1=2Þ�in2
mQ

−
8

35

hVs2
ð1=2Þ�in2
mQ

: ð51Þ

Only one of the equations of the upper and lower pairs is
independent

Mn5
2
23
2
−Mn1

2
23
2
¼ 8

3
ðMn3

2
23
2
−Mn1

2
23
2
Þ; ð52Þ

Mn7
2
25
2
−Mn3

2
25
2
¼ 12

5
ðMn5

2
25
2
−Mn3

2
25
2
Þ; ð53Þ

which can be rewritten as

Mn3
2
23
2
¼ 1

8
ð5Mn1

2
23
2
þ 3Mn5

2
23
2
Þ; ð54Þ

Mn5
2
25
2
¼ 1

12
ð7Mn3

2
25
2
þ 5Mn7

2
25
2
Þ: ð55Þ

V. COMPARISON WITH LATTICE QCD

Let us first discuss double charm baryons. For
the ground state spin multiplet ð1=2; 3=2Þþ we get
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MΞcc
¼3712ð63ÞMeV. If we assign to the ð1=2Þþ state

the mass of the Ξþþ
cc found by LHCb [1], MΞcc

¼
3621.2� 0.7 MeV, and use it in Eq. (39) we obtain a
prediction for the mass of the ð3=2Þþ state,
M�

Ξþþ
cc

¼ 3757ð68Þ MeV. This implies a hyperfine splitting

δhf ¼ 136ð44Þ MeV. We estimate the uncertainty as cor-
rections of OðΛ3

QCD=m
2
cÞ added quadratically to the uncer-

tainties in the masses, for which we take into account that
the uncertainties in the Λ̄ð1=2Þþ and mc vanish for mass
differences. This is about 30 MeV larger than what is
obtained by assuming heavy quark-diquark symmetry,
namely a very compact diquark [9,10,45,55], using the
most up to date PDG values. In Table VI we compare this
mass splitting to the ones obtained from lattice QCD
calculations with fully relativistic charm quarks.3 We
observe that our value is about 50 MeV higher than that
of Refs. [31–33,36,56] except for Refs. [27,34] for which
the discrepancy is higher. In most cases, including the
uncertainties, the results are compatible. According to
Eq. (39) the spin average of the ground state multiplet
should coincide with our LO mass. We can check this by
comparing the spin averages of the ground state multiplets
from the lattice, summarized in Table VI, with our result

Mð0Þ
10 ¼ 3712ð63Þ MeV. We find that our results are com-

patible with Refs. [27,31–34,36] and very close to com-
patible with Ref. [56].
For the first excitation, we have three spin multiplets

very close in mass: two ð1=2; 3=2Þ− doublets, the first
one corresponding to the P-wave excitation of the heavy
quarks (4062 MeV) and the second one to the S-wave
ground state of the ð1=2Þ0u BO potential (4095 MeV),
and one ð1=2; 3=2; 5=2Þ− triplet corresponding to the
S-wave ground state of the ð3=2Þu − ð1=2Þu BO potentials
(4066 MeV). This structure qualitatively agrees with the

results of Ref. [36] (see Fig. 11 in that reference). It also
agrees quantitatively for the first doublet, but the second
doublet and the triplet are about 100 MeV and 150 MeV
lower, respectively, than in Ref. [36]. In Refs. [33,35], only
a doublet is reported. The first reference is compatible with
our results whereas the ones of the second reference lie
about 100 MeV below ours.
The higher excitations are all above the Λc −D thresh-

old. The only lattice calculation reporting on them is
Ref. [36]. For the positive parity states, our lowest l ¼ 2
spin multiplet ð1=2; 3=2; 3=2; 5=2; 5=2; 7=2Þþ lies very
close to the ð1=2Þu singlet ð1=2Þþ and both are above
the n ¼ 2; l ¼ 0 spin doublet ð1=2; 3=2Þþ (see Fig. 2)
whereas in Ref. [36] all these states lay in the same energy
range. The spin average of the l ¼ 2 multiplet is about
40 MeV below ours, the spin singlet ð1=2Þþ lays 13 MeV
above ours, and n ¼ 2; l ¼ 0 spin doublet has a spin
average 47 MeV above ours. In any case, we can check
our model-independent formulas in Eqs. (54) and (55) for
the l ¼ 2 spin multiplet against this data. Both formulas
turn out to be fulfilled extremely well, within 2 MeV. For
positive parity, we can qualitatively accommodate the rest
of our states below 4450 MeV to those of Ref. [36], though
precise identifications are difficult due to the large errors in
that reference. Beyond that point we have much less
positive parity states than Ref. [36]. This is easy to
understand because the first BO potential that we left
out starts contributing about this energy. The negative
parity states below 4600MeV (two spin doublets and a spin
triplet) agree reasonably well with the spin averages of
those of Ref. [36], within 72 MeV. Beyond that point we
have more states of higher spin. This is so even if we still
miss some states that would arise from the first BO
potential left out, which are expected to contribute in
this region.
Let us next discuss double bottom baryons, for which no

experimental evidence exists yet. The fact that the bottom
quark mass is more than three times larger than the charm
mass poses further difficulties to direct lattice QCD
calculations. A way out is to factor out the bottom quark
mass from the problem and do the calculations in lattice
NRQCD. So far only results from the ground state spin
doublet ð1=2; 3=2Þþ are available. Following Eq. (41) we
compare the lattice spin average (s.a.) for the ground state

to our valueMð0Þ
10 ¼ 10.140ð77Þ MeV. This is in agreement

with the results of Ref. [38], Ms:a: ¼ 10.166ð40Þ MeV, and
Ref. [32], Ms:a: ¼ 10.143ð29Þ MeV, but about ∼40 MeV
higher than the spin average of those reported in Ref. [39],
Ms:a:¼ 10.099ð17ÞMeV, but still compatiblewith our result.

VI. CONCLUSIONS

We have put forward an EFT for double heavy baryons
that goes beyond the compact diquark approximation. This
EFT is built upon two expansions on the small ratios

TABLE VI. Lattice results with fully relativistic charm quarks
for the hyperfine splitting δhf ¼ MΞ�

cc
−MΞcc

and spin average
compared to our results.

Ref. δhf [MeV] Spin average

[27] 53(94) 3630(50)
[31] 101(36) 3672(20)
[32] 82.8(9.2) 3665(36)
[56] 84(58) 3624(33)
[33] 85(9) 3666(13)
[36] 94(12) 3700(6)
[34] 76(41) 3657(25)

Our values 136(44) 3712(63)

3We thank Stefan Meinel for pointing out a misquotation
of the hyperfine splitting error in Ref. [32] in an earlier version of
this paper.
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between the characteristic energy scales of double heavy
baryon systems. These are the heavy quark mass expan-
sion, mQ ≫ ΛQCD, 1=r, and an adiabatic expansion
between the heavy quark and light degree of freedom
dynamics, ΛQCD; 1=r ≫ Ebin. At LO the EFT reproduces
the Born-Oppenheimer approximation with a set of
static energies. In that sense, it bridges smoothly between
QCD and potential model calculations. The spectrum of
static energies is obtained from lattice QCD data from
Refs. [15,16] and general constraints of the shape of
these in the short- and long-distance regimes. We take
into account the four lowest-lying static energies below
the first heavy baryon-meson threshold, which corre-
spond to the representations ð1=2Þg, ð1=2Þu, ð3=2Þu, and
ð1=2Þu0 of D∞h. These are plotted together with the
lattice data in Fig. 1. In the short distance limit, r → 0,
the compact diquark approximation becomes exact and
the spectrum of static energies matches the heavy meson
spectrum (see Table I for the short-distance quantum
numbers).
In Sec. III, we obtained the spectrum of ccq and bbq

baryons numerically solving the Schrödinger equations
with the aforementioned static energies including the
mixing between ð1=2Þu-ð3=2Þu produced by the leading
nonadiabatic corrections. A clear advantage of our method
in comparison to lattice QCD is that obtaining higher
excitations is very easy, even though the systematic errors
are less under control. Indeed, the condition Ebin ≪ 1=r is
not fulfilled for some multiplets close to or beyond
threshold. For ccq (bbq) only three (ten) of the four
(sixteen) multiplets below threshold fulfill it. In the bottom
case, there is also a multiplet slightly above threshold that
fulfills it. However, Ebin ∼ 500 MeV for this multiplet, and
for two more below threshold, and hence they fail to meet
the Ebin ≪ ΛQCD condition. In any case, we provide here
for the first time the full spectrum below threshold for
double bottom baryons based on lattice QCD data.
Our results do not support the heavy quark-diquark

approximation, neither for double charm baryons nor for
double bottom ones. For ccq, the first angular excitation of
the diquark core (negative parity, lower blue bands in
Fig. 2) is almost degenerate with the two lower light quark
excitations (green and red lines in Fig. 2). For bottomo-
nium, the situation is even worse as the first angular
excitation of the diquark core (negative parity, lower blue
bands in Fig. 3) is clearly below the two lower light quark
excitations (green and red lines in Fig. 3) and the first
principal quantum number excitation has about the same
energy as the latter. This is due to the fact that both for ccq
and bbq the ground state already lies on the non-
Coulombic part of the potential, which is clearly reflected
in the positive binding energies displayed in Tables III and
IV. Nevertheless, it is still remarkable that the gap between
the ground state and the first light quark excitation
(383 MeV for ccq and 387 MeV for bbq) is reasonably

close to the gap for the spin average of the heavy-light
meson systems (427 MeV for c̄q and 406 MeV for b̄q).
In Sec. IV, we discussed the hyperfine splittings genera-

ted by the NLO heavy quark spin- and angular-momentum-
dependent operators in the Lagrangian of Eq. (13). Unlike
quarkonium, where these corrections start at 1=m2

Q sup-
pression, in double heavy baryons these start at only 1=mQ

suppression. This is a feature shared with exotic heavy
hadrons [14], such as heavy hybrids [57–59]. These
operators are accompanied with, so far, unknown poten-
tials. Despite this, it is possible to obtain relations between
the hyperfine splittings of different states that are indepen-
dent of the specific shape of the potentials. These are
presented in Eqs. (39), (41), (54), and (55).
We have compared our results for the LO masses with

the available lattice calculations for the ground state spin
multiplet making use of Eq. (39). Both for double charm
and bottom baryons we find results compatible with most
of the lattice references when uncertainties are taken into
account. In the case of double bottom baryons we find a
remarkably close agreement. For double charm baryons,
the large array of states computed on the lattice in Ref. [36]
allows us to compare the general features of the spectrum
finding a good qualitative agreement. The data of Ref. [36]
also allows us to check the relations in Eqs. (54) and (55)
with agreement under 2 MeV.
The light flavor dependence of the double heavy baryon

spectrum enters through the lattice data from which the
potentials are obtained. The data of Refs. [15,16] that we
use is for degenerate u and d quarks corresponding to a
pion mass of 783 MeV. Data at more realistic pion masses
would be highly desirable. The EFT used in this paper may
be taken in the chiral limit and therefore our results would
be independent of the flavor of the light quark forming
the double heavy baryon. The implementation of chiral
symmetry breaking to this EFT is straightforward and can
be done using the standard techniques from Heavy Baryon
Chiral Perturbation Theory [60]. However, the couplings
with the pseudo-Goldstone bosons would introduce
a number of unknown potentials that limit the predict-
ability of the EFT, unless data for different low enough
values of the pion mass become available for the poten-
tials. Interestingly, upon implementing chiral symmetry
to this EFT and the expansion of the fields in the
eigenstates of the Schrördinger equations, our EFT will
match the standard chiral hadronic theories. These EFTs
have been used abundantly to discuss threshold effects
and decays [43,44,61].
The main obstacle in the development of the EFT

presented in this paper is the dependence of the potentials
in nonperturbative dynamics. In an accompanying paper
[14] we have presented the matching of the potentials of the
EFT of Sec. II in terms of insertions of NRQCD operators
in the Wilson loop. These Wilson loops are suitable to be
computed on the lattice with light quarks and gluons only,
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sidestepping the issue of having to deal with widely
separated scales on the lattice. Therefore, combining lattice
QCD and EFT the major obstacles of both approaches can
be avoided.
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APPENDIX A: COUPLED SCHRÖDINGER
EQUATIONS FOR SPIN-3=2

Let us introduce the projection vectors P3
2
λ as the

eigenvectors of

ðr̂ · S3=2ÞP3
2
λ ¼ λP3

2
λ; λ ¼ 3

2
;
1

2
;−

1

2
;−

3

2
: ðA1Þ

The projectors used in the Lagrangians in Eqs. (12) and
(14) can be constructed from the projection vectors defined
in Eq. (A1),

P3
2
Λ ¼

X
λ¼�Λ

P3
2
λP

†
3
2
λ
; Λ ¼ 1

2
;
3

2
: ðA2Þ

We can diagonalize the potential matrix for the spin-3=2
field in Eq. (20) by projecting the field into a basis of
eigenstates of r̂ · S3=2

Ψð3=2Þ−λ ¼ P†
3
2
λ
· Ψð3=2Þ− ; ðA3Þ

Ψð3=2Þ− ¼
X
λ

P3
2
λΨð3=2Þ−λ: ðA4Þ

Note that the projection vectors act onto the light quark spin
inside of the Ψð3=2Þ− field. In this basis the LO Lagrangian
for the Ψð3=2Þ− field can be written as

LLO
ð3=2Þ− ¼

X
λλ0

Ψ†
ð3=2Þ−λ

�
i∂t −

1

mQr2
∂rr2∂r −

1

mQ
Pα†

3
2
λ
L2
QQP

α
3
2
λ0

þ Vð0Þ
ð3=2Þ−λðrÞδλλ0

�
Ψ†

ð3=2Þ−λ0 : ðA5Þ

Now we want to obtain the matrix Pα†
3
2
λ
L2
QQP

α
3
2
λ0 using the

techniques of Refs. [59,62]. Let us start with the following
auxiliary formulas. The angular momentum operator in
spherical coordinates is

LQQ ¼ −iϕ̂∂θ þ
i

sin θ
θ̂∂ϕ: ðA6Þ

The unit vectors in spherical coordinates read

r̂ ¼ ðsinðθÞ cosðϕÞ; sinðθÞ sinðϕÞ; cosðθÞÞ;
θ̂ ¼ ðcosðθÞ cosðϕÞ; cosðθÞ sinðϕÞ;− sinðθÞÞ;
ϕ̂ ¼ ð− sinðϕÞ; cosðϕÞ; 0Þ; ðA7Þ

from which we define

r̂i0 ¼ r̂i; ðA8Þ
r̂i� ¼∓ ðθ̂i � iϕ̂iÞ=

ffiffiffi
2

p
: ðA9Þ

Let us compute the commutators of the angular momen-
tum operator and the unit vectors in spherical coordinates

½Li
QQ; r̂

j
0� ¼ r̂iþr̂j− − r̂i−r̂

j
þ; ðA10Þ

½Li
QQ; θ̂

j� ¼ iϕ̂ir̂j0 þ i cotðθÞθ̂iϕ̂j; ðA11Þ

½Li
QQ; ϕ̂

j� ¼ −iθ̂iðr̂j0 þ cotðθÞθ̂jÞ; ðA12Þ

from which one can obtain

½Li
QQ; r̂

j
�� ¼ �ðr̂j0r̂i� þ cotðθÞθ̂ir̂j�Þ: ðA13Þ

Therefore,

½Li
QQ; r̂

i
�� ¼ −

cotðθÞffiffiffi
2

p ; ðA14Þ

½Li
QQ; r̂

†i
�� ¼

cotðθÞffiffiffi
2

p : ðA15Þ

From an explicit computation we obtain

Pα†
3
2
λ
LQQPα

3
2
λ0 ¼

0
BBBBBBBB@

3
2
cotθθ̂ −

ffiffi
3
2

q
r̂†− 0 0

−
ffiffi
3
2

q
r̂− 1

2
cotθθ̂ −

ffiffiffi
2

p
r̂†− 0

0 −
ffiffiffi
2

p
r̂− − 1

2
cotθθ̂ −

ffiffi
3
2

q
r̂†−

0 0 −
ffiffi
3
2

q
r̂− − 3

2
cotθθ̂

1
CCCCCCCCA

ðA16Þ
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and

Pα†
3
2
λ
S3=2Pα

3
2
λ0 ¼

0
BBBBBBBB@

3
2
r̂0

ffiffi
3
2

q
r̂†− 0 0ffiffi

3
2

q
r̂− 1

2
r̂0

ffiffiffi
2

p
r̂†− 0

0
ffiffiffi
2

p
r̂− −1

2
r̂0

ffiffi
3
2

q
r̂†−

0 0
ffiffi
3
2

q
r̂− −3

2
r̂0

1
CCCCCCCCA
; ðA17Þ

and we note that

Pα†
3
2
λ
S23=2P

α
3
2
λ0 ¼

X
λ00

Pα†
3
2
λ
S23=2P

α
3
2
λ00P

β†
3
2
λ00S

2
3=2P

β
3
2
λ0

¼ 15

4
δλλ0 ¼

3

2

�
3

2
þ 1

�
δλλ0 : ðA18Þ

If we define L ¼ LQQ þ S3=2, from Eqs. (A17) and (A16)
we can write

Pα†
3
2
λ
LPα

3
2
λ0 ¼ ½LQQ þ λðcot θθ̂þ r̂0Þ�δλλ0 : ðA19Þ

We are in position now to compute the matrix elements of
the square of the heavy quark angular momentum in
between the projector vectors

Pα†
3
2
λ
L2
QQP

α
3
2
λ0 ¼ L2δλλ0 þ

3

2

�
3

2
þ 1

�
δλλ0

− LPα†
3
2
λ
S3=2Pα

3
2
λ0 − Pα†

3
2
λ
S3=2Pα

3
2
λ0L: ðA20Þ

The square of the right-hand side of Eq. (A19) is

L2 ¼ ½LQQþλðcotθθ̂þ r̂0Þ�2 ¼L2
QQþ λ2

sin2θ
þ2iλ

cosθ
sin2θ

∂θ;

ðA21Þ

which is the operator whose eigenfunctions are our angular
wave functions,

�
L2
QQ þ λ2

sin2θ
þ 2iλ

cos θ
sin2θ

∂θ

�
vλlml

ðθ;ϕÞ

¼ lðlþ 1Þvλlml
ðθ;ϕÞ; ðA22Þ

with

vλlml
ðθ;ϕÞ¼ ð−1Þmlþλ

2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ1

4π

ðl−mlÞ!
ðlþmlÞ!ðl−λÞ!ðlþλÞ!

s

×Pλ
lml

ðcosθÞeimlϕ; ðA23Þ

Pλ
lml

ðxÞ¼ ð1−xÞml−λ
2 ð1þxÞmlþλ

2 ∂lþml
x ðx−1Þlþλðxþ1Þl−λ;

ðA24Þ

with jmj < l and jλj < l. The operators K� act as the λ-
raising and -lowering operators for the angular wave
functions vλlml

,

K� ¼
�
∓ ∂θ þ

i
sin θ

∂ϕ ∓ cot θ

�
; ðA25Þ

K�vλlml
ðθ;ϕÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ−λðλ�1Þ

p
vλ�1
lml

ðθ;ϕÞ: ðA26Þ

The mixing terms in Eq. (A20) can be written as a matrix
in the λ-λ0 indices as

LPα†
3
2
λ
S3=2Pα

3
2
λ0 þPα†

3
2
λ
S3=2Pα

3
2
λ0L¼

0
BBBBBBBBBBBBB@

2

�
3

2

�
2 ffiffiffi

3
p

K− 0 0

ffiffiffi
3

p
Kþ 2

�
1

2

�
2

2K− 0

0 Kþ 2

�
−
1

2

�
2 ffiffiffi

3
p

K−

0 0
ffiffiffi
3

p
Kþ 2

�
−
3

2

�
2

1
CCCCCCCCCCCCCA

¼ 2λ2δλλ0 þK−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

�
3

2
þ1

�
−λðλþ1Þ

s
δðλþ1Þλ0 þKþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

�
3

2
þ1

�
−λðλ−1Þ

s
δðλ−1Þλ0 : ðA27Þ
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Introducing Eq. (A27) into Eq. (A20) we arrive at

Pα†
3
2
λ
L2
QQP

α
3
2
λ0 ¼

�
L2 þ 3

2

�
3

2
þ 1

�
− 2λ2

�
δλλ0 −K−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

�
3

2
þ 1

�
− λðλþ 1Þ

s
δðλþ1Þλ0 −Kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

�
3

2
þ 1

�
− λðλ − 1Þ

s
δðλ−1Þλ0 :

ðA28Þ

Now, let us look at the expected value of the square angular momentum operator between the angular wave functions

Z
dΩvλ�lml

Pα†
3
2
λ
L2
QQP

α
3
2
λ0v

λ0
lml

¼

0
BBBBBBBBB@

lðlþ 1Þ − 3
4

−
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ − 3

4

q
0 0

−
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ − 3

4

q
lðlþ 1Þ þ 13

4
−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ þ 1

4

q
0

0 −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ þ 1

4

q
lðlþ 1Þ þ 13

4
−
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ − 3

4

q
0 0 −

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ − 3

4

q
lðlþ 1Þ − 3

4

1
CCCCCCCCCA
: ðA29Þ

The system decouples into two two-state coupled equations in the basis given by the following transformation matrix:

R ¼ 1ffiffiffi
2

p

0
BBBBB@

1 0 0 1

0 1 1 0

0 1 −1 0

1 0 0 −1

1
CCCCCA; ðA30Þ

RðA29ÞR−1 ¼

0
BBBBBBBBB@

lðlþ 1Þ − 3
4

−
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ − 3

4

q
0 0

−
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ − 3

4

q
lðl − 1Þ þ 9

4
0 0

0 0 lðlþ 3Þ þ 17
4

−
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ − 3

4

q
0 0 −

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ − 3

4

q
lðlþ 1Þ − 3

4

1
CCCCCCCCCA
: ðA31Þ

Therefore, we arrive at two sets of coupled Schrödinger equations

2
6664− 1

mQr2
∂rr2∂rþ

1

mQr2

0
BB@ lðlþ1Þ− 3

4
−
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ− 3

4

q
−
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ− 3

4

q
lðl−1Þþ 9

4

1
CCAþ

0
B@Vð0Þ

ð3=2Þ−ð3=2ÞðrÞ 0

0 Vð0Þ
ð3=2Þ−ð1=2ÞðrÞ

1
CA
3
7775
0
B@ψ ðnÞ

3=2þðrÞ
ψ ðnÞ
1=2þðrÞ

1
CCA

¼ En

0
B@ψ ðnÞ

3=2þðrÞ
ψ ðnÞ
1=2þðrÞ

1
CA; ðA32Þ
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2
6664− 1

mQr2
∂rr2∂rþ

1

mQr2

0
BBB@

lðlþ1Þ− 3
4

−
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ− 3

4

q
−
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ− 3

4

q
lðlþ3Þþ 17

4

1
CCCAþ

0
BB@Vð0Þ

ð3=2Þ−ð3=2ÞðrÞ 0

0 Vð0Þ
ð3=2Þ−ð1=2ÞðrÞ

1
CCA
3
7775
0
B@ψ ðnÞ

3=2−ðrÞ
ψ ðnÞ
1=2−ðrÞ

1
CA

¼ En

 
ψ ðnÞ
3=2−ðrÞ

ψ ðnÞ
1=2−ðrÞ

!
; ðA33Þ

where ψ ðnÞ
3=2þðrÞ, ψ ðnÞ

1=2þðrÞ, ψ ðnÞ
3=2−ðrÞ and ψ ðnÞ

1=2−ðrÞ are radial wave functions with ðnÞ the quantum number labeling the radial
eigenstates. The En are the energy eigenvalues. Notice that for the lowest value of l allowed, l ¼ 1=2 the upper entries of

the coupled system vanish and only the component corresponding to Vð0Þ
ð3=2Þ−ð1=2Þ survives decoupled.

The full wave function solutions of the Schrödinger equation for the Ψð3=2Þ− field are then

ΨnjmjlsQQ
þ ðrÞ ¼ 1ffiffiffi

2
p

X
mlmsQQ

C
jmj

lmlsQQmsQQ

0
BBBBBB@

ψ ðnÞ
3=2þðrÞvþ3=2

lml
ðθ;ϕÞ

ψ ðnÞ
1=2þðrÞvþ1=2

lml
ðθ;ϕÞ

ψ ðnÞ
1=2þðrÞv−1=2lml

ðθ;ϕÞ
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χsQQmsQQ

; ðA34Þ

ΨnjmjlsQQ
− ðrÞ ¼ 1ffiffiffi

2
p

X
mlmsQQ

C
jmj

lmlsQQmsQQ

0
BBBBBB@

ψ ðnÞ
3=2−ðrÞvþ3=2

lml
ðθ;ϕÞ

ψ ðnÞ
1=2−ðrÞvþ1=2

lml
ðθ;ϕÞ

−ψ ðnÞ
1=2−ðrÞv−1=2lml

ðθ;ϕÞ
−ψ ðnÞ

3=2−ðrÞv−3=2lml
ðθ;ϕÞ

1
CCCCCCA
χsQQmsQQ

; ðA35Þ

and the states are related to thewave functions in Eqs. (A34)
and (A35) as

jnjmjlsQQ�i ¼
X
λ

ðψnjmjlsQQ

� ÞλΨ†
ð3=2Þ−λj0i: ðA36Þ

1. Parity of the states

Under a parity transformation we have

Ψð3=2Þ−ðr;RÞ→P −Ψð3=2Þ−ð−r;−RÞ; ðA37Þ

Pi
3
2
λ
→
P ð−1Þ3=2Pi

3
2
−λ: ðA38Þ

Notice that the phase in Eq. (A38) is a complex number.
Thus, the projected fields transform as

Ψð3=2Þ−λ→
P ð−1Þ1=2Ψð3=2Þ−−λ; ðA39Þ

Ψ†
ð3=2Þ−λ→

P ð−1Þ−1=2Ψ†
ð3=2Þ−−λ: ðA40Þ

Since the angular wave function transforms under parity as

vλlml
ðθ;ϕÞ→P ð−1Þlv−λlml

ðπ − θ;ϕþ πÞ; ðA41Þ

the whole wave function components transform as

ðψnjmjlsQQ

� Þλ→
P � ð−1ÞlðψnjmjlsQQ

� Þ−λ: ðA42Þ

Therefore the states in Eq. (A36) transform under
parity as

jnjmjlsQQ;�i→P ηPjnjmjlsQQ;�i; ðA43Þ

ηP ¼ �ð−1Þl−1=2: ðA44Þ

2. Boundary conditions

A system of two linearly coupled differential equations
of second order has in general four linearly independent
solutions of which two will be singular at the origin. For the
case of only one second order differential equation
(l ¼ 1=2) there exists two linearly independent solutions,
one of which will be singular at the origin. These solutions
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can be distinguished by their behavior at the origin which
will also be important as initial conditions for the numerical
solution of the Schödinger equations. To obtain the
behavior at the origin of the solutions of the differential
equations we note that in the short distance the kinetic term
dominates over the potential. In this limit the system can be

diagonalized and the two resulting decoupled equations
solved by a guess function rb. Two solutions will be
obtained for each equation, one of which diverges at the
origin and should be discarded. The remaining one for each
equation gives us one of the solutions for the system with
the weights given by the components of the eigenvectors

FIG. 4. Radial wave functions ccq double heavy baryons. The states are labeled as nl for ð1=2Þg and ð1=2Þ0u and as nlηp for
ð3=2Þu − ð1=2Þu. In the cases of states with mixed contributions the solid and dashed lines correspond to the ð3=2Þu and ð1=2Þu
contributions, respectively.
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that diagonalized the system. These are the behaviors at the
origin of the good solutions for l ≥ 3=2

�
ψ3=2þ
ψ1=2þ

�
∝
�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12lðlþ 1Þ − 9

p
rlþ1=2

ð2lþ 3Þrlþ1=2

�
; ðA45Þ

�
ψ3=2þ
ψ1=2þ

�
∝
� ð2lþ 3Þrl−3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12lðlþ 1Þ − 9
p

rl−3=2

�
; ðA46Þ

�
ψ3=2−

ψ1=2−

�
∝
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12lðlþ 1Þ − 9
p

rl−1=2

ð2l − 1Þrl−1=2
�
; ðA47Þ

�
ψ3=2−

ψ1=2−

�
∝
�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12lðlþ 1Þ − 9

p
rlþ3=2

3ð2lþ 3Þrlþ3=2

�
: ðA48Þ

For the case l ¼ 1=2 the equations decouple and only ψ1=2

remains

FIG. 5. Radial wave functions bbq double heavy baryons. The states are labeled as nl for ð1=2Þg and ð1=2Þ0u.
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ψ1=2þ ∝ r; ðA49Þ

ψ1=2− ∝ r2: ðA50Þ

APPENDIX B: RADIAL WAVE FUNCTION
PLOTS

In this appendix we collect, in Figs. 4–6, the plots of the
radial wave functions of the states in Tables III and IV.
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102, 014012 (2020).
[15] J. Najjar and G. Bali, Proc. Sci., LAT2009 (2009) 089

[arXiv:0910.2824].

FIG. 6. Radial wave functions bbq double heavy baryons. The states are labeled as nlηp . In the cases of states with mixed
contributions the solid and dashed lines correspond to the ð3=2Þu and ð1=2Þu contributions, respectively.

JOAN SOTO and JAUME TARRÚS CASTELLÀ PHYS. REV. D 102, 014013 (2020)
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