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Highlights: 

 High temperature negatively affects wheat yield, particularly in winter genotypes 

 Vegetation indices (VI) phenotype better genotypes in normal than in late planting 

 Grain δ13C and N content work well as phenotypic traits regardless of planting date 

 Combination of VI and isotopes improved yield prediction for both planting dates. 

 

 

 

Abstract 

This study compares distinct phenotypic approaches to assess wheat performance under different 

growing temperatures and vernalization needs. A set of 38 (winter and facultative) wheat cultivars 

were planted in Valladolid (Spain) under irrigation and two contrasting planting dates: normal 

(late autumn), and late (late winter). The late plating trial exhibited a 1.5 ºC increase in average 

crop temperature. Measurements with different remote sensing techniques were performed at 

heading and grain filling, as well as carbon isotope composition (δ13C) and nitrogen content 

analysis. Multispectral and RGB vegetation indices and canopy temperature related better to grain 

yield (GY) across the whole set of genotypes in the normal compared with the late planting, with 

indices (such as the RGB indices Hue, a* and the spectral indices NDVI, EVI and CCI) measured 

at grain filling performing the best. Aerially assessed remote sensing indices only performed 

better than ground-acquired ones at heading. Nitrogen content and δ13C correlated with GY at 

both planting dates. Correlations within winter and facultative genotypes were much weaker, 

particularly in the facultative subset. For both planting dates, the best GY prediction models were 

achieved when combining remote sensing indices with δ13C and nitrogen of mature grains. 

Implications for phenotyping in the context of increasing temperatures are further discussed.   

Keywords: Wheat; high temperature; vernalization; remote sensing; stable isotopes; yield 

prediction. 

Abbreviations: CCI, chlorophyll/carotenoid index; CCiTUB, centres cientifics i tecnològics de 

la universitat de barcelona; CIELab, international commission on illumination lightness a* b*; 

CIELuv, international commission on illumination lightness u* v*; CT, canopy temperature; EVI, 

enhanced vegetation index; FIJI, fiji is just imageJ; GY, grain yield; GA, green area; GGA, 
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greener area; HSI, hue-saturation-intensity; HTPPs, high throughput phenotyping platforms; IR, 

infrared; IRMS, infrared mass spectrometer; ITACyL, instituto técnico y agrario de castilla y 

león; NDVI, normalized difference vegetation index; NIRS, near infrared spectrometers; NP, 

normal planting; VIs, vegetation indices; PRI, photochemical reflectance index; RGB, red-green-

blue; TCARI/OSAVI, transformed chlorophyll absorption reflectance index/optimized soil 

adjusted vegetation index; TGW, thousand grain weight; UAV, unmanned aerial vehicle; VIF, 

variance inflation factor. 

 

 

1. Introduction 

Climate change is a prevalent concern that is already threatening food production and will even 

more so in the future, especially when addressing Mediterranean semi-arid climate regions [1–3]. 

Providing breeding and management practices are unchanged, annual rates of crop increase are 

more likely to decline as a response to drought periods and, even more importantly, to increases 

in temperature, including the frequency and strength of heat waves [4,5]. Therefore, efforts have 

to be harnessed into developing improved varieties that can be adapted to these rising challenges.  

Wheat varieties have proven great adaptability to different agro-climatic regions [6]. 

Vernalization and photoperiod needs divide wheat genotypes into winter cultivars and spring 

(facultative) cultivars. The first category is usually sown in autumn or early winter [7,8], during 

which an exposure to low temperature (i.e. vernalization) is required in order to promote 

flowering. On the other hand, spring or facultative varieties do not require vernalization for 

flowering and thus, they can be more adapted to higher temperatures [8] and therefore they are 

more amenable for spring cultivation [7]. Besides the effect on floral induction, temperature also 

affects crop growth. High temperature accelerates the crop cycle and decreases the amount of 

accumulated photosynthesis, and the sinks (ear density and size in case of wheat), which 

subsequently reduces the final yield [9–11].  

In recent years, the perception that crop phenotyping is a bottleneck that hinders breeding 

advances, has been widely recognized [12]. Presently, high throughput phenotyping platforms 

(HTPPs), placed at ground level or from the air (usually using unmanned aerial vehicles) have 

been developed to collect and handle accurately and in a non-invasive and fast way the large 

magnitude of information usually needed to properly phenotype crops in field conditions [13,14]. 

The main category of phenotyping techniques that may include HTPPs are categorized into 

remote (proximal) sensing and imaging. The most commonly deployed techniques deal with the 

use of spectroradiometrical and thermal sensors or imagers, together with an increasing use of 

conventional Red-Green-Blue (RGB) cameras [12,15,16]. The spectroradiometers measure 

different wavelength bands, within visible and near infrared regions of the spectrum, which allow 

the formulation of a wide range of vegetation indices informing on biomass [17,18], leaf area 

index [19,20], pigment content [21–23], nitrogen content [24,25], photosynthetic efficiency [26] 

and water status [26,27]. The thermal sensors and imagers measure the far infrared region of the 

spectrum informs on the plant canopy temperature and therefore of its water status [28,29]. 

Another category of remote sensing approaches is that derived from RGB images [12,30], with a 

wide range of vegetation indices being derived from different space colors which characterize the 

conventional images. It has been reported that frequently RGB indices work better than spectral 

indices in assessing differences in leaf color or green canopy area associated with genotypic 

performance, in optimal agronomical conditions as well as under different abiotic and biotic stress 

conditions [18,31]. Laboratory-category traits (i.e. analytical traits), may be also deployed for 

HTPPs [12]. When Mediterranean conditions are targeted, carbon and, to a lesser extent, nitrogen 

stable isotope compositions (or alternatively expressed as discrimination from the substrate) may 

be used as phenotyping tools, informing on the water regime and nitrogen metabolism conditions, 

respectively [32–34]. Several studies have highlighted the synergistic effect, in terms of quality 
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of plant characterization, when combining spectroscopy performance with the biophysical 

information provided through stable isotope composition [35,36]. 

The efficient use of the HTPPs, including the most adequate traits to measure, may be affected 

by the growing conditions. In that sense, as indicated above, one of the main environmental 

variables associated with climate change is temperature. The present study compares the 

performance of different phenotyping approaches under “current” temperature conditions 

(provided by a normal planting date) and high temperature conditions (provided by a late 

planting). Therefore, the heat stress conditions tested implies a constant higher temperature, 

besides a higher probability of experiencing a heat wave during the last part of the crop cycle. 

Another aspect related with increase in temperature is the potential altering effects on the pattern 

of flowering, associated with the lack of vernalization  induction. To that end, we have concluded 

in the wheat panel winter (i.e. requiring vernalization) and facultative (less dependent on 

vernalization) semi-dwarf wheat cultivars. Different remote sensing techniques were 

implemented from ground and aerial levels, combined with the analyses of the stable carbon and 

nitrogen isotope composition of the flag leaves and mature grains.  

 

2. Materials & methods 

A set of 36 post green revolution (i.e. semidwarf) bread wheat commercial cultivars (Triticum 

aestivum L.) were evaluated altogether with other 2 durum wheat cultivars (Triticum turgidum L. 

ssp. durum (Desf.) Husn.) (Table 1). In order to assess vernalization effects on final production 

and yield components, cultivars were separated into winter (27) and facultative genotypes (11). 

Field trials were carried out in the Experimental Station of Zamadueñas (41º 39´ 8´´ N and 4º 

43`24`` W, 690 m.a.s.l.); of the Instituto Técnico y Agrario de Castilla y León (ITACyL) in 

Valladolid (Spain) (Fig. 1). Temperature effects were investigated through implementing trials 

under contrasting planting dates: a normal planting (December 2nd, 2016), followed by a late 

planting (February 10th, 2017). The late planting trial (and specifically the facultative cultivars) 

caught up with the development of the facultative and winter genotypes of the normal planted 

trial around 90 days after sowing, corresponding to the heading-anthesis stages. Patterns of 

precipitation, temperature (average, minimum and maximum) and photoperiod throughout the 

crop season are displayed in Fig. 2. Accumulated precipitation from planting to maturity during 

the crop cycle were 129 mm and 89 mm, for the normal and late planting respectively. In order 

to restrict environmental stress factors to temperature, both trials were grown under support 

irrigation, supplied with periodical sprinkler irrigation totaling 60 mm during normal planting, 

and 140 mm during late planting. Fertilizers were applied as recommended; it consisted for both 

trials in 300 kg ha-1 of basic dressing in the form of 8-15-15 (N-P-K) before seeding, ensued with 

a twofold partitioning of 300 kg ha-1 of Nitrosylsulphuric acid (NSA, 27%) as top dressing during 

stem elongation and booting stages. Phytosanitary control included the spraying of herbicides 

(Axial and Amadeus, Syngenta), fungicide (Karate Zeon, Syngenta) and pesticide (Prosaro, 

Bayer) at the recommended rates during booting (late planting) and heading (normal planting) 

stages. For both trials, the experimental design was fully randomized with three replications 

(individual plots) per genotype, totaling for each trial 114 plots (81 and 33 plots per winter and 

facultative genotypes, respectively). Plots were 6 m long and 1.5 m wide, with 7 rows sown 20 

cm apart (totaling 9 m2 per plot). During early grain filling flag leaves were sampled, and by 

physiological maturity number of spikes per square meter was evaluated together with grain 

number per spike and thousand grain weight, for genotypes in normal planting, and only number 

of spikes per square meter in late planting. For both trials, maturity was reached the second half 

of June. Then, plots were harvested mechanically on July 20th, 2017 for both trials and yield 

assessed. 
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2.1  Ground and aerial remote sensing 

Plots were evaluated at ground level using a Red-Green-Blue (RGB) camera, an infrared 

thermometer and a spectro-radiometer. Aerial images were obtained during the same visits as 

ground data using an Unmanned Aerial Vehicle (UAV) (Drone Mikrokopter OktoXL 6S12, 

Moormerland, Germany), controlled manually and flying at an altitude of 50 m, carrying a digital 

RGB camera just before solar noon in the first flight, and thermal and multispectral cameras 

within one hour of solar noon in the  second flight. For normal planting, the range of heading 

dates for the whole set of genotypes was about 10 days, while in the late planting the range was 

larger (around 30 days) due to the delay in the reproductive stage experienced by the winter 

genotypes. During the first date of measurements (middle-May), the whole set of genotypes for 

the normal planting and the subset of facultative genotypes for the late planting were at late 

heading. During the second visit (second week June), the whole set of genotypes for the normal 

planting and the subset of facultative genotypes for the late planting were in the second half of 

grain filling.  

 

2.1.1 Canopy temperature 

Measurements of canopy temperature (CT) at ground level were carried out during both visits 

using an infrared (IR) thermometer (PhotoTempTM MXSTMTD Raytek®, California; USA), 

pointed towards plants leaves at a distance of 80 cm approximately, while having the sun towards 

the rear. For aerial thermal images, a FLIR Tau2 640 was used (FLIR Systems, Nashua, NH, 

USA) with a VOx uncooled microbolometer, equipped with a TEAX Thermal Capture model 

(TeAx Tecnology, Wilnsdorf; Germany) for recording thermal frames of full resolution (640×520 

pixels at 20 frames per second). 

2.1.2 RGB images 

RGB images (one per plot) were taken from ground holding a Sony ILCE-QX1 (Sony Europe 

Limited, Brooklands; United Kingdom), digital camera of 20.1 megapixel resolution, equipped 

with 23.2 mm × 15.4 mm sensor size (type CMOS Exmor HD) and using 16 mm focal lens and 

an exposure time of 1/60 seconds. Images were captured zenithally at 80 cm above the plant 

canopy, focusing near the center of each plot, and then saved in JPEG format for later analysis. 
The ground sample distance (GSD) of the images captured was 0.021 cm/pixel, and the area 

captured in the image corresponded to 0.89 m2. For aerial data assessment, the RGB used camera 

was a Lumix GX7 (Panasonic, Osaka; Japan), a digital mirrorless camera of 16.0 megapixel 

resolution with an image sensor size of 17.3×13.0 mm (type Live MOS), using a 20 mm focal 

lens with an exposure time of 1/8000 seconds.  The GSD of the aerial images for a flight at 50 m 

altitude was 0.941 cm/pixel, and the area captured in the image corresponded to 1404.55 m2.  In 

practical consideration, mirrorless cameras provide equal imaging capacities for agricultural 

applications than traditional cameras in a more compact and lightweight body, which promote 

their flexible application in the field or mounted on a UAV. 

 

2.1.3 Multispectral information 

The normalized difference vegetation index (NDVI) was measured at ground (NDVI.g) on 

individual plots using a GreenSeeker (Trimble, Sunnyvale, CA, USA), a hand held 

spectroradiometer with active self-illuminated sensor in red (660 ± 10 nm) and near infrared (780 

± 15 nm) wavelengths [37]. The NDVI was measured by skimming the sensor across each plot, 

at a constant height of 60 cm while maintaining a perpendicular position from above the canopy 

[38]. At this distance, the sensor field of view emits a strip of 61 cm long and 1.5 cm thick.   
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Multispectral aerial images were acquired using a Tetracam micro-MCA (Tetracam Inc., 

Chatsworth, CA; USA). The Tetracam camera consists of eleven independent image sensors and 

optics each, using configurable filters of center wavelengths and full-width half-maximum bands 

with: 450 ± 40, 550 ± 10, 570 ± 10, 670 ± 10, 700 ± 10, 720 ± 10, 780 ± 10, 840 ± 10, 860 ± 10, 

900 ± 20 and 950 ± 40 nm. In addition, the camera possesses one sensor dedicated to calibration 

(Incident Light Sensor, ILS), which provides band-by-band reflectance calibration in real-time, 

correcting the 11 bands to reduce atmospheric effects to at-sensor reflectance. The multispectral 

camera is equipped with rolling shutter sensors system, and captures 15.6 megapixels of image 

data that are transferred to twelve separate flash memory cards [17]. Every UAV flight included 

between 20-30 image capture moments, each consisting of the 12 images representing the 11 

spectral bands and ILS of the sensor, which recorded data every 5 s. 

2.1.4 Image processing 

Pre-processing was required for multispectral and thermal images. Multispectral images were 

spatially aligned and radiometrically calibrated using PixelWrench 0.2 version 1.2.2.2 (Tetracam, 

Chatsworth, CA, USA) and exported as TIFF files. Whereas thermal frames were stacked to raw 

16-bit TIFF format (temperature values expressed in Kelvin x 10000) using the ThermoViewer 

software (v1.3.13) by TEAX (TeAx Technology, Wilnsdorf, Germany). Therewith, RGB, thermal 

and multispectral images were 3D-reconstructed using Agisoft Photoscan Pro (Agisoft LLC, St. 

Petersburg, Russia, www.agisoft.com) [39]. This later overlaps up to 30 images (with at least 80% 

overlap) and removes UAV flight effects to produce accurate ortho-mosaics. Afterwards, regions 

of interest (plots) were cropped and processed using the MosaicTool software (Prof. Shawn C. 

Kefauver, https://integrativecropecophysiology.com/software-development/mosaictool/, 

https://gitlab.com/sckefauver/MosaicTool/, University of Barcelona, Barcelona, Spain) 

integrated as a plugin for the open source image analysis platform FIJI (Fiji is Just ImageJ; 

http://fiji.sc/Fiji) [40]. 

Extracted RGB vegetation indices collected from both ground and aerial platforms were obtained 

using an updated version of the original Breedpix 2.0 software [41], which is a tool for fast 

calculation of pictures-based vegetation indices (Pic-VIs), adapted to JAVA8 and integrated as 

MosaicTool plugin within FIJI  [40]. RGB indices are related to different color properties and 

based either on the average color of the entire image on the proportion of green pixels over the 

total number of pixels in the full image. CIELab and CIELuv color space models were defined by 

the CIE (Commission Internationale de l’Eclairage; the International Commission on 

Illumination) as the simultaneous contrast of green with red colors (CIELab), and yellow with 

blue colors (CIELuv) [42]. Both models operate similarly albeit on separate spectrums, and 

include lightness component (L*), a* and b* dimensions for CIELab, and u* and v* coordinates 

for CIELuv. The indices a* and u* represent the green to red spectrum, where red is linked to 

positive values and green to negative ones; whereas b* and v* express the blue to yellow 

spectrum, where yellowish pixels are related to positive values and conversely, bluish pixels to 

negative ones. HSI color space, referring to the components Hue, Saturation and Intensity. This 

color space model describes saturation as the pure (chroma) concentration when diluted with 

white color, and intensity as the achromatic measurement of the reflected light. Regarding Hue, 

it is described as the chroma traversing the visible spectrum in the form of an angle between 0° 

and 360°, where 0° and 360° are decrypted into red, 60° into yellow, 120° into green and 180° 

into cyan. Derived from the Hue, the indices Green Area (GA) and Greener Area (GGA) were 

described as the fraction area presented by green pixels in the image, and which Hue ranges from 

60º to 180º (GA) and from 80º to 180º (GGA). While GA gives a broader perception to canopy 

greenness, GGA excludes yellowish green pixels [31,41]. The current study was limited to the 

parameters (Hue, a*, b*, GA and GGA), as the best performed RGB indices.  

Multispectral indices were formulated using a custom FIJI macro code built into the MosaicTool 

software (University of Barcelona, Spain). The macro operates through measuring the mean value 
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of the plot image of each band to calculate the following indices:  Normalized Difference 

Vegetation Index (NDVI), Enhanced Vegetation Index (EVI),  Photochemical Reflectance Index 

(PRI), Chlorophyll/Carotenoid Index (CCI), Transformed Chlorophyll Absorption Index 

(TCARI), and the TCARI/OSAVI index ratio . Likewise, aerial CT was acquired using a custom 

batch processing macro function in FIJI that converts 16-bit images (in Kelvin x 10000) to 32-bit 

images (in Celsius) [40]. Further information regarding the selected RGB and multispectral 

indices is summarized in Table 2. These indices represent a selection of the classic reference 

indices, the most relevant, enhanced, optimized, and transformed index variations and the best 

capacity of our Tetracam multispectral sensor to measure different traits separately. 

 

2.2  Carbon and nitrogen stable isotope composition 

Flag leaves, sampled during grain filling (coinciding with the second measuring data), and mature 

grains, collected at harvest, were dried at 60 ºC for a minimum of 48 hours finely ground using a 

grinder machine (Mixer Mill MM 400; Retsch GmbH, Haan; Germany), and then weighed in tin 

capsules (approximately 1 mg) for further analysis of the carbon and nitrogen stable isotope 

signatures and the total nitrogen and carbon contents. Stable isotope values were expressed in 

composition (δ) units, as the deviation of the isotopic composition of the material from the 

standard. Thus, the carbon and nitrogen isotopic compositions (δ13C and δ15N) were expressed as: 

δ13C or δ15N (‰) = [(Rsample/Rstandard) - 1] × 1000         

Where the 13C/12C and 15N/14N ratios of the sample are notated as δ13C and δ15N and expressed in 

‰, whereas Rstandard is the molar abundance ratio of the secondary standard calibrated against the 

primary standard Pee Dee Belemnite (δ13C) and N2 from air (δ15N) [43]. Different secondary 

standards were used for carbon (IAEA-CH7, IAEA-CH6 and IAEA-600, and USGS 40) and 

nitrogen (IAEA-600, N1, N2, NO3, UREA and Acetanilide) isotope analyses. Analytical precision 

of the δ13C and δ15N analyses were 0.1‰ and 0.3‰, respectively. Total carbon and nitrogen 

contents in flag leaves and grains were expressed as the percentage (%) of total carbon and 

nitrogen on dry matter basis. Isotopes and elemental analyses were performed employing an 

elemental analyzer operating in a continuous flow mode with a mass spectrometer (Delta C IRMS; 

ThermoFinnigan, Bremen; Germany), at the Scientific and Technical facilities of the University 

of Barcelona (Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB)). 

2.3  Statistical analysis 

Analysis of variance (ANOVA) was performed using SPSS 20 (IBM SPSS Statistics 20, Inc., 

Chicago, IL; USA), to test the effects of planting date (normal vs late planting), genotypes attitude 

(winter vs facultative) and genotypic differences per subset (winter or facultative) and within each 

subset, for all parameters evaluated. The same analysis of variance was run also using days to 

heading (DTH) as a covariable to remove the effect of phenology. A bivariate Pearson correlation 

was used operating with the same statistical package SPSS 20 to evaluate relationships between 

all analytical traits and GY. Yield prediction was assessed by implementing stepwise multiple 

regression models within each treatment, where a multicollinearity level was controlled by setting 

a maximum variance inflation factor (VIF) at 10. Graphs were created using the softwares 

SigmaPlot 10.0 (Systat Software Inc, California; USA) and the open source software R and 

RStudio 1.0.44 (R Foundation for Statistical Computing, Vienna, Austria). 

 

3. Results 
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3.1 Effect of planting date and genotype attitude on yield and agronomical components 

Effects of planting date (P < 0.001) and genotype attitude (P < 0.05) on grain yield (GY) were 

significant (Table 3). Means of GY and the number of spikes per square meter (spikes m-2), as 

well as days to heading were greater in the normal planting compared to late planting regardless 

of the genotypic attitude (winter or facultative). Winter cultivars exhibited higher GY, spikes m-

2, grains spike-1 and days to heading and lower thousand grain weight (TGW) and grain weight 

spike-1 than the facultative genotypes in the normal planting. However, in late planting, days to 

heading was the only trait where genotypic attitude had a significant effect, with facultative 

cultivars reaching heading in average three weeks earlier than winter cultivars. Moreover, heading 

in the winter cultivars was not synchronized. For a given cultivar, the culms did not extrude the 

ears simultaneously but rather extended in time. Interaction between planting date and genotypic 

attitude was significant for GY and days to heading. In normal planting genotypic differences 

were also significant for GY and TGW within each subset of cultivars (winter and facultative), 

and with grain weight spike-1 and spikes m-2 in winter cultivars. In late planting, genotypic 

differences were found for GY in winter cultivars, and for spikes m-2 within facultative ones 

(Supplemental Table 1). 

3.2  Effect of planting date and genotypes attitude on RGB and multispectral indices 
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Remote sensing techniques were implemented during two consecutive visits (coinciding roughly 

with late heading and the second half of the grain filling). During heading, all the aerial RGB 

indices along with the multispectral NDVI.g were affected by planting date (Table 4). RGB 

vegetation indices were significantly lower in normal planting compared to late planting except 

for the Hue.a and GGA.a, while NDVI.g exhibited an opposite behavior. Among these indices 

solely the Hue.a, GA.a and NDVI.g were affected by genotypic attitude and its interaction with 

planting date. Furthermore, and within normal planting, b*.a, GA.a and GGA.a and the 

multispectral index TCARIOSAVI.a were higher across facultative genotypes than within winter 

ones. However, the RGB and multispectral indices assessed at ground level failed to separate 

between genotypic attitudes (Table 4). In late planting, no significant effect was revealed between 

winter and facultative genotypes except for the RGB index a*.a and NDVI.g (Table 4), while 

ground RGB indices and aerial multispectral indices were not assessed. In normal planting, 

genotypic differences within both subsets (winter and facultative) were shown for the RGB index 

Hue.g, and for most aerially assessed RGB indices (except a*.a), while genotypic differences 

within the winter set of genotypes also existed for NDVI.g, the RGB indices a*.g, b*.g, GGA.g 

and a*.a. In late planting, solely NDVI.g within facultative cultivars exhibited genotypic 

differences, while no genotypic effects were found for other indices within the subsets of winter 

and facultative genotypes (Supplemental Table 2).  

The grain filling stage (assessed during the second visit) revealed significant planting date and 

genotypic attitude effects for almost all RGB and multispectral indices derived from both ground 

and aerial platforms, whereas the interaction effect between these factors was only significant for 

some RGB indices (Hue.g, a*.g, GGA.g and GA.a). Regardless of being acquired at ground or 

from the aerial platform, multispectral indices PRI and NDVI and RGB indices GA and GGA 

increased significantly in late planting compared to normal planting. Moreover, and in both 

planting dates, RGB and multispectral vegetation indices recorded significantly higher values in 

winter genotypes compared to facultative ones (Table 4). At the normal planting and within both 

subsets of cultivars, genotypic differences existed for the multispectral index (EVI.a), while 

genotypic differences for the RGB indices b*.g and the GGA.a were found only across the winter 

subset. In late planting, genotypic differences were significant within both winter and facultative 

genotypes regarding RGB and multispectral indices (Hue.g, a*.g, b*.g and NDVI.g), while GA.g 

and GGA.g were only significant within facultative genotypes (Supplemental Table 2). 

3.3 Effect of planting date and genotypes attitude on water regime and nitrogen status parameters 

In both heading and grain filling canopy temperature (CT) assessed from ground (i.e. at single 

plot level) was affected significantly by planting date and genotypic attitude, while interaction for 

these factors occurred during grain filling only. Significant differences between genotypic 

attitudes were well evident in normal planting during heading and in the late planting during grain 

filling, where facultative genotypes exhibited higher CT.g than winter ones. Likewise, CT.a was 

significantly higher in facultative genotypes than winter ones in both phenological stages when 

measured in normal planting date (Table 5). Moreover, significant genotypic differences were 

shown within facultative genotypes at heading in both planting dates, but were not evidenced 

during grain filling (Supplemental Table 3).  

Nitrogen content (N) and carbon isotope composition (δ13C) of flag leaves and grains, together 

with nitrogen isotopic composition (δ15N) of flag leaves were significantly affected by planting 

date and genotypic attitude, while carbon content in grains was only affected by planting date. A 

significant interaction between planting date and genotypes attitude was found only for Ngrain and 

δ13Cleaf (Table 5). In both flag leaves and grains, N and δ13C were higher in normal planting 

compared with late planting. Furthermore, winter genotypes exhibited higher Nleaf and lower 

δ13Cleaf, Ngrain and δ13Cgrain than facultative genotypes in normal planting, and higher Nleaf and 

δ13Cleaf in late planting. In normal planting genotypic differences were shown for Ngrain within 

both subsets (winter and facultative), and for δ13Cleaf and δ15Nleaf and δ15Ngrain only within 

facultative cultivars. In late planting, genotypic differences were only found for δ13Cleaf, δ
13Cgrain 

and Ngrain within winter genotypes (Supplemental Table 3). 
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3.4 Effect of phenology on grain yield and phenotypical traits 

For grain yield, agronomical components and all the phenotypical traits assayed, ANOVA was  

also run using days to heading as a covariate, to remove the effect of phenology. In this context, 

planting date did not have a significant effect on GY and number of spikes m-2. Moreover, 

phenology significantly affected GY, number of spikes m-2, the traits informing on water status 

(CT and heading and grain filling, and δ13C of the flag leaf and mature grains) and most of the 

remote sensing vegetation indices. Nevertheless, the effect of genotype attitude (winter versus 

facultative) was still significant for GY, number of spikes m-2, δ13Cleaf and δ
13Cgrain and N content 

of the grain, as well as most of the RGB vegetation indices measured during grain filling.   

3.5 Performance of yield components assessing GY within planting dates and genotypic attitudes 

Correlation coefficients of the linear regressions of GY against days to heading and agronomical 

yield components using genotypic means are presented (Table 6). In the case of normal planting, 

days to heading correlated positively and thousand grain weight negatively against GY only when 

combining both categories of genotypes. In the late planting, GY related negatively to days to 

heading and positively to spikes m-2 (the only yield component measured) across both set of 

genotypes. 

3.6 Performance of RGB and multispectral indices assessing GY within planting dates and 

genotypic attitude 

In the normal planting, during heading and using genotypic means (Table 7), all aerially assessed 

RGB vegetation indices together with the multispectral TCARIOSAVI.a correlated with GY 

across both subsets of genotypes, while the ground-assessed RGB indices and the rest of 

multispectral indices did not correlate. As per genotypic attitude, the RGB indices a*.a, GA.a and 

GGA.a correlated within winter genotypes, while the Hue.a and multispectral indices EVI.a and 

TCARIOSAVI.a correlated with GY within facultative ones. In the late planting however, only 

the RGB parameters a*.a and b*.a correlated against GY; in this case across all genotypes as well 

as within winter genotypes. 

During grain filling, for normal planting, all RGB and multispectral indices assessed at ground 

and aerially were significantly correlated against GY across both subsets of genotypes combined 

(Table 7). Regarding genotypic attitude however, only the RGB index a*.a and the multispectral 

EVI.a correlated with GY within facultative genotypes, and no correlation existed within winter 

ones. In the late planting, only the RGB indices b*.g and a*.a, together with multispectral indices 

EVI.a and CCI.a correlated with GY across both categories of genotypes as well as (except for 

b*.g) within winter genotypes only. No other vegetation index correlated with GY within the 

winter and facultative subsets of genotypes. 

3.7 Performance of canopy temperature, stable isotope signatures and N content assessing GY 

within planting dates and genotypes attitude 

In the normal planting (and except for ground-assessed CT at heading), CT correlated negatively 

with GY across the whole set of genotypes in the normal planting. In the late planting negative 

correlations were achieved only at heading and this index also correlated negatively with GY 

within the winter subset of genotypes. No other correlation between CT and GY within each of 

the two subsets of genotypes were recorded (Table 8).  

δ13C of grains correlated negatively with GY across the whole set of genotypes and replicates in 

both planting dates (Fig. 3). Significant correlations using genotypic means were also recorded 

across the whole set of genotypes as well as within the facultative subset of genotypes in the 

normal planting and within winter genotypes in the late planting (Table 8). In flag leaves however, 

the negative correlations of δ13C against GY were only reported in the late planting across all 

genotypes as well as within winter genotypes. Nitrogen content of the flag leaf correlated 

positively with GY across the whole set of genotypes and replicates in both the normal and the 
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late plantings (Fig. 4A), while nitrogen content in grains correlated negatively with GY (Fig. 4B). 

However phenotypic correlation (i.e. across the genotype means) between leaf N and GY was 

only significant at normal planting when both subgroups of genotypes were considered together, 

while no correlations existed for late planting or within each of the subsets of genotypes (Table 

8). N content of kernels correlated negatively with GY across the means of the whole set of 

genotypes at both the normal and late plantings as well as within the winter subset. Total carbon 

content and the δ15N of the flag leaf and grains did not correlate with GY in any case.  

Correlations of CT against δ13C and nitrogen content of the flag leaf and the mature grains were 

also investigated in both planting dates (Supplemental Table 6). In normal planting and 

disregarding the placement of the sensor, CT measured at heading related negatively against N of 

the flag leaf and positively with N content of grains, as well as with the δ13C of flag leaf and 

grains. These correlations in the late planting were weaker, though. 

Relationships between δ15N and nitrogen content of the flag leaf against ground and aerial remote 

sensing (RGB, thermal and multispectral) indices were also displayed (Supplemental Tables 7 

and 8). For both δ15N and N content, correlations were stronger with remote sensing traits 

measured in normal rather than in late planting, particularly when measured during grain filling. 

3.8 Performance of remote sensing techniques and stable isotopes on GY phenotyping  

To evaluate the best GY predictors among all remote sensing (RGB, thermal and multispectral) 

indices and analytical (N content and isotopic parameters) values, multilinear stepwise regression 

models were tested for both planting dates, and using the genotypic means for GY as well as for 

all the phenotypic traits evaluated (Table 9). Three different categories of phenotyping models 

were tested: 1) only including remote sensing indices; 2) only including stable isotope signatures 

and N content and 3) combining the two previous categories. In general, and for each of these 

three categories of phenotyping characteristics, models explained better genotypic variability in 

GY in the normal compared with the late planting within each phenotyping category. Also, 

models using stable isotopes and nitrogen content alone predicted GY performance more 

efficiently than these using remote sensing indices alone; nevertheless, the best predictions were 

attained when both categories of traits were combined (Table 9). 

4. Discussion 

4.1 Effect of planting date and the genotype attitude on wheat performance 

Sowing date is regarded as a key factor to adjust wheat growth cycle to the climate conditions 

prevailing in a site [1]. Late planting is an experimental approach frequently used to evaluate the 

effect of increased temperature in crop performance [44–46]. The interfering effects of factors 

other than temperature affecting the growth and development pattern of the crop may be excluded. 

In our experimental setup, differences in photoperiod were rather minor: one hour (corresponding 

to 10.39 h and 11.39 h, for the dates for normal and late planting, respectively), from a total annual 

variation of about 6 h at the latitude of Zamadueñas station). Moreover, both trials were exposed 

to a pattern of increasing daylength after seedling emergence (considering the days elapsed 

between sowing and emergence in the normal planting).The current study intended to evaluate 

the behavior of wheat cultivars planted in different dates in relation with the performance of 

phenotyping techniques, altogether with the interaction of planting temperature (i.e. planting date) 

with genotyping characteristics determining flowering induction by low temperature (i.e. winter 

versus facultative behavior).  

Even after removing the effect of phenology (using heading time as a covariate), winter cultivars 

were still significantly different than facultative cultivars for GY, number of spikes m-2, δ13Cleaf 

and δ
13Cgrain and N content of the grain, as well as most of the RGB vegetation indices measured 

during grain filling.  A decrease in GY is expected in the late planting as a result of higher 

temperatures which, not only shorten the duration of the crop cycle, but also increase respiration 
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(dark respiration and photorespiration) rates and may eventually expose plants to heat stress 

during late growth stages [47,48]. Our results suggest that differences in yield between the two 

genotypic types were (at least in part) established prior grain filling. One factor involved may be 

the longer phenology (date of heading) of the winter phenotypes which has been reported before 

[10,49]. Moreover, it has been reported that winter cultivars are more tolerant to low temperature 

than the facultative ones [7,8]. The negative effect of a late planting on GY was related with a 

shorter crop duration, which basically caused a decrease in spikes m-2, particularly in the winter 

genotypes, given their poor flowering. By contrast, facultative cultivars, apart from not having 

the vernalization requirements to flowering [7,8,50], they express genes that confer heat tolerance 

[51–53]. The expected rise in temperature associated with climate change [4,5] will make on the 

long term winter genotypes more vulnerable than facultative ones, highlighting hence the 

potential adaptive ability of facultative genotypes that can secure better productivity under 

Mediterranean conditions. The increase in the atmospheric level of CO2 is not expected to play 

any differential effect between both categories of genotypes, besides to alleviate the negative 

effects of heat on the photosynthetic activity.   

In the normal planting the δ13C of both the flag leaf and grains of the winter genotypes were 

slightly more negative than that of facultative genotypes, indicating better water status 

experienced by the winter genotypes in spite their somewhat larger crop cycle [54,55]. In 

agreement with that, days to heading was positively correlated with GY across the whole (winter 

plus facultative) set of genotypes. By contrast, in the late planting, facultative genotypes exhibited 

a more negative leaf δ13C than the winter genotypes, and days to heading were negatively 

correlated with GY across the whole set of genotypes as well as within winter genotypes. These 

results indicate that for a late planting, even if under well irrigated conditions shown by the very 

low δ13C values of both the flag leaf and the grains (even more negative than for the normal 

planting), escaping attitude, in terms of reaching fast the reproductive stage, is paramount under 

Mediterranean conditions as growing temperature increases [55,56].  

4.2  RGB and multispectral indices and wheat performance  

Among RGB indices, GA, GGA, a* and Hue, altogether with multispectral-derived indices 

NDVI, EVI, PRI and TCARIOSAVI, are considered as efficient indicators of canopy growth and 

green vegetation [17]. In the present study, and regardless of data of measurement, these indices 

correlated in general better with GY in the normal planting compared with the late planting trial. 

In fact, late planting, by shortening crop cycle, is probably diminishing genotypic differences in 

canopy biomass and greenness, as well as in ground covering and thus yield. All these aspects 

may limit the performance of vegetation indices assessing genotypic differences in GY. Different 

explanations may be argued, as for instance the faster development and shorter crop duration in 

late planting, which moreover to limiting canopy growth may blur genotypic differences in 

canopy size as well as in stay green.  

Generally, RGB and multispectral vegetation indices correlated better against GY during grain 

filling than at heading. Comparable results have been reported previously regarding durum wheat 

[27,41,57], the explanation being these indices, when assessed during grain filling, may catch 

differences across genotypes in terms of maintaining the photosynthetic capacity of the canopy 

for longer, which is known as stay green [58]. Besides that, grain filling is at a later stage than 

heading, and closer to maturity and harvest, therefore more representing the final GY.  

Concerning stay green, in the case of CCI, this index reflects the chlorophyll/carotenoid ratio in 

the canopy, with senescence increasing this ratio. The negative correlation obtained in the late 

planting, not only across the whole set of genotypes, but also across the winter genotypes, can be 

explained by the fact the canopy of the winter genotypes remains greener for longer because 

reproductive stage is delayed (and irregular), and consequently the canopy senescence too. The 

more the senescence is delayed the poorer the reproductive stage is and consequently GY will be 

lower. On the contrary in the normal planting, stay green during grain filling is a positive trait in 
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terms of increasing GY, particularly when water conditions are adequate such in our trials 

submitted to support irrigation.  

Recent reports on barley [26] and maize [17,31] concluded for RGB indices that when assessed 

from ground they performed as well as assessed aerially. Nevertheless, different factors may 

explain the poor performance of ground images at heading.  For each index differences across the 

whole set and the subsets of winter and facultative genotypes were similar regardless of being 

assessed at ground or from an UAV. Nevertheless, the absolute values varied between both 

ground and aerial acquired indices (Table 4). Ground and aerial measurements were held at the 

same time (though for ground measures the assessment period was considerably longer than these 

assessed aerially). Differences in environmental variables possibly affecting the images can be 

involved. Thus, while measurements during grain filling were performed on a sunny day, 

measurements during heading took place in a day of alternating sun and clouds. Therefore, sudden 

and/or transient changes in light conditions may affect the ground measurements.  On the other 

hand, the potential effects of Bidirectional Reflectance Distribution Function (BRDF) were 

minimized by capturing ground and UAV images at approximately the same time of day and 

within 2 hours of solar noon. Moreover, at least for the measurements during heading the 

conditions were partially cloudy which could minimize BRDF effects with diffuse light. The main 

advantage of ground assessment is that images resolution is higher compared to that of aerial 

images. In the case of the RGB images, the number of pixels per plot decreases drastically when 

images are acquired aerially. Nevertheless, aerial images provide full coverage of the entire plots 

at the same time, while ground assessed RGB images capture only approximately 35% plot area 

coverage based on ground sample distance calculations (data not shown). In the case of the NDVI 

measured with the hand spectroradiometer, again only a section of the plot is captured.  Besides 

that, heading is not the optimal period to assess GY differences with RGB indices, particularly 

given the fact green biomass is larger at this stage than at grain filling. Thus, ground-acquired 

indices may be more saturated (excess of green because of very dense canopies) and then it is 

more complicated to assess differences among the genotypes.  

4.3  Canopy temperature and wheat performance  

Water stress conditions can be detected through measuring CT, where stressed plants reveal 

higher CT compared to unstressed ones and in fact, negative correlations between CT and GY are 

expected [59,60]. In our study, even if trials were irrigated, significant negative correlations were 

found for the normal planting trial from both platforms. Similarly to the vegetation indices, at 

heading CT measured from the aerial platform correlated stronger against GY than those 

measured from ground level, whereas similar phenotypic correlations against GY were found 

during grain filling. In any case the potential advantage of an aerial platform relies in the fact that 

CT from the entire plots are measured simultaneously, which is not the case when temperature is 

assessed at ground level in individual plots. Soil but specially environmental conditions (air 

temperature, wind, sun brightness) may fluctuate from plot to plot throughout the sampling [12]. 

Moreover, whilst aerial images capture the entire plot canopy, the ground based ones cover only 

40% to 50% of each plot’s canopy [42]. 

In our study, a higher CT was coupled not only with a lower yield but also with lower leaf nitrogen 

content and higher δ13C values. Comparable relationships have been reported before in wheat 

under Mediterranean conditions, by combining different water and nitrogen fertilization regimes 

[27]. The positive correlation of CT with carbon isotopic composition is coherent with the fact a 

higher δ13C has been associated with a poorer water status [55]. In the same sense, a poorer water 

status assessed through high CT, may also negatively affect N accumulation in the plant 

[27,57,61]. 

However, CT may be affected by genotype attitude in a way it does not inform on the water status 

of the crop. The delay in the extrusion of the spikes, together with a larger leaf biomass of the 

winter genotypes is related with their lower CT during heading and grain filling compared to the 

facultative ones in both plantings. In fact, leaves transpire more than the non-laminar parts (stems, 
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ears) of the plant, and therefore the CT is strongly affected by phenology [62]. This should agree 

with the lower CT observed in the winter compared with facultative subset during grain filling at 

late panting. Interestingly, for the late planting δ13C of the flag leaf was higher (less negative) in 

the winter compared with the facultative group, suggesting poorer water status in the winter 

cultivars, and no differences in δ13C of mature grains were found between both groups (winter 

and facultative). These results in carbon isotope signature further support differences in CT 

between winter and facultative are not due to differential water status [55] but to phenology (ear 

emergence).  

4.4  Stable isotopes, N content and wheat performance  

δ13C is an efficient and accurate estimator of the effect of water status on stomatal conductance 

and thus photosynthesis and yield [43,63,64]. Correlations of GY with δ13C of mature grains were 

negative and significant in both planting dates, with correlation coefficients usually larger than 

for remote sensing data against GY. For the late planting δ13C flag leaf was also negatively 

correlated with GY. In fact, under Mediterranean field conditions and except for very severe 

stressed environments, the correlations between δ13C and GY are negative, which means that 

genotypes more productive are keeping stomata more open [33,55].  

For both the normal and the late planting, the flag leaf of the winter genotypes exhibited higher 

δ15N values than the facultative genotypes. While the nitrogen chemical fertilizer used possesses 

δ15N values near 0‰, naturally available nitrogen in the soil exhibits values δ15N clearly higher 

[65,66]. Therefore, and regardless the planting date, the higher δ15N values of the winter 

genotypes may be related with their larger biomass compared with the facultative genotypes, 

which make the former more demanding of nitrogen sources other than that provided by the 

chemical fertilizer. In fact, leaf δ15N was positively related with the RGB (GA, GGA) and 

multispectral (NDVI, EVI) indices most suited as indicators of green biomass, while it correlated 

negatively with CT. However, δ15N did not correlate with GY in any case even if entered as a trait 

in most of the stepwise models explaining GY. 

Nitrogen content of flag leaves in the normal planting was positively correlated with GY, while 

in mature grains, and for both planting dates, nitrogen content was negatively correlated to GY. 

In fact, we found a positive correlation between leaf nitrogen against canopy greenness measured 

as NDVI, GA or GGA measured during grain filling. This agrees with previous results [67] and 

suggests a higher N content in flag leaves is an indicator for stay-green and thereby for greater 

yield. Moreover, and for both planting dates, N content in leaves was higher in winter compared 

with facultative genotypes, which agrees with the delayed phenology of the former in terms of 

reproductive period. By contrast the negative correlation of nitrogen concentration in grains 

against GY is just a consequence of a concentration effect related with lower yield [68,69]. In this 

sense, for the normal panting nitrogen concentration of grains was lower in the winter compared 

with the facultative genotypes.  

4.5  Phenotyping approaches and grain yield prediction 

Vegetation indices, both multispectral and RGB-derived, proved their efficiency in the normal 

planting at detecting genotypic variability in GY. Moreover, for late planting even if the stepwise 

models were less strong than for the normal planting, they still explained a relevant portion of 

genotypic variability in GY, and again with models using indices assessed at heading working 

better than those using indices measured at grain filling. These results illustrate the potential 

advantage of using a combination of selection indices to explain genotypic differences in GY 

rather than just a single index [17,31]. Furthermore, total nitrogen content and carbon isotopic 

composition of flag leaves and mature grains proved to be appropriate phenotypical proxies for 

determining genotypic performance throughout the crop cycle and regardless of the planting date. 

These traits provide a time-integrated information of the crop performance in terms of water status 

in the case of δ13C [55], stay green in case of leaf nitrogen [70] or sink size as for the nitrogen 
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content in grains [69]. Therefore, these analytical variables, contribute to a better understanding 

of the physiological differences existing between genotypes attitudes or and their adaptation to 

different growing conditions. Moreover, by adding these analytical variables the strength of the 

stepwise models based in remote sensing indices strongly improved regardless of the planting 

date and stage when remote sensing traits were acquired.  

 

5. Conclusions 

This study highlights the importance for wheat phenotyping performance of growing temperature, 

genotype attitude, trait category, phenological stage when evaluated, and even platform 

placement. In a normal planting the different remote sensing indices and regardless their nature 

(RGB or multispectral) performed quite similarly assessing yield. Later evaluation (i.e. at grain 

filling) performed clearly better than the earlier one (at heading) even if combined (e.g. stepwise) 

models may palliate such limitation. Concerning placement of the remote sensing sensors (at 

ground versus aerial) vegetation indices and CT evaluated aerially worked much better than from 

ground at heading but quite similarly at grain filling. At least on what concerns the RGB cameras 

potential minor differences between the images captured at the ground level and from the UAV 

may be due to differences in camera model and sensor (micro 4/3 size LiveMOS Panasonic GX7 

vs CMOS Exmor size APS-C Sony QX1 in our study). However, camera comparisons made to 

the XRite ColorChecker Passport showed correlations r>0.94 for RGB values for both cameras 

under natural sunlight conditions (data not shown). Therefore, as indicated above other factors 

like sunlight conditions or the representativeness of the plot area assessed at ground may be 

involved in the poor performance of ground-acquired indices at heading.  

With regard to genotype attitude, no clear pattern emerged; in some cases, remote sensing indices 

correlated better with GY within winter genotypes and in others the opposite. Late plating 

conditions strongly decreased the performance of remote sensing approaches for assessing yield. 

By contrast analytical traits such as δ13C as well as N content of mature kernels correlated quite 

similarly against GY regardless planting time and genotype attitude. Taken together these results 

indicate that for Mediterranean conditions while remote sensing techniques may lose efficiency 

as phenotyping traits due to miscellaneous factors, analytical traits, such as δ13C and %N, of 

kernels are less affected. Moreover, the performance of remote sensing approaches (RGB, 

multispectral and thermal) aiming to track genotypic differences in grain yield in wheat, can be 

clearly improved when combined with δ13C or N of mature kernels. However, the intrinsic 

limitation of these analytical traits is that they are assessed at maturity, which prevent their use to 

predict yield before the crop cycle ends.  Using hyperspectral remote sensing to improve (in some 

cases) the ability of single indices to assess traits, or even to use the entire spectrum, in an 

empirical way, may represent other alternatives. The decreasing cost of hyperspectral imagers, 

together the improving capacity of data processing may pave the way for adopting these 

approaches [15]. 
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Figure legends: 

 

 

Fig. 1: Map of the location (red point) and the satellite image of the experimental station of 

Zamadueñas (ITACyL), Valladolid, Spain (A). RGB ortho-mosaics of the normal planting (B) 

and the late planting (C) trials during late heading. The shift in plot placement of normal planting 

was due to a problem during planting. 

 

 

Fig. 2: Weekly precipitation, temperature (average, minimum and maximum) and photoperiod 

during the growing period covering both planting trials. 
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Fig. 3: Relationship between grain yield (GY) and carbon isotope composition (δ13C) of mature 

grains, sorted by wheat genotype attitude (winter vs facultative), in both normal planting date (A) 

and late planting date (B). Each point represents a replication (i.e. plot value) for a given cultivar 

and growing condition. 
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Fig. 4: Relationship between grain yield (GY) and nitrogen content (N) of flag leaves (A) and 

mature grains (B), sorted by genotypes attitude (winter vs facultative) in normal planting date. 

Each point represents a replication (i.e. plot value) for a given cultivar and growing condition. 
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Table 1: List of the 38 wheat varieties used in the study, with their provenance, register number and sorted by their attitude (winter and 

facultative): 36 were bread wheats (Triticum aestivum L), while the other two were durum wheats (Triticum turgidum L. ssp. Durum 

(Desf.) Husn.). For each cultivar the register number is specific to the country where the cultivar was registered. Information can be 

accessed through the variety finder web of the Community Plant Variety Office (CPVO): https://cpvo.europa.eu/en/cpvo-variety-finder 

    

Genotype Nature Attitude 

Provenance 

(seed 

company) 

Spanish 

register 

number 

 

Genotype Nature Attitude 
Provenance 

(seed company) 

Spanish register 

number 

ATOMO bread  Facultative LG SEEDS 20090316  REBELDE bread Winter BATLLE 20132043 

BISANZIO bread Facultative AGRAR 20151856  RIMBAUD bread Winter BATLLE 1023863- 

CREDIT durum Facultative PRO.SE.ME 20101512  TRIBAT bread Winter BATLLE 20120245 

GALERA bread Facultative LG SEEDS 20001714  CHAMBO bread Winter LG SEEDS 20110170 

TOGANO bread Facultative ROLLY 20042601  COMPLICE bread Winter MARISA 20160212 

VALBONA bread Facultative PRO.SE.ME 20061701  COSMIC bread Winter AGRUSA 4048820 

MIMMO durum Facultative PRO.SE.ME 20101513  IPPON bread Winter FLORIMON DESPREZ 20151563 

ENEAS bread Facultative DAFISA 20090257  NEMO bread Winter AGRUSA 20143383 

08THES1262 bread Facultative BATLLE 20114988  OREGRAIN bread Winter FLORIMON DESPREZ 20120181 

ARTHUNICK bread Facultative LG SEEDS 20021627  PR22R58 bread Winter PROVASE 20041719 

ALHAMBRA bread Facultative LG SEEDS 20122397  SOBERBIO bread Winter CAUSSADE 20151744 

ALBERTUS bread Winter PRO.SE.ME 20130238  SOISSON bread Winter AGRUSA 199850256 

ALGORITMO bread Winter RGT 20160437  MH1307 bread Winter KWS Advanced breeding line 

BOLOGNA bread Winter BATLLE 20152157  MH1341 bread Winter KWS Advanced breeding line 

DOLLY bread Winter ROLLY 20101741  MH1411 bread Winter KWS Advanced breeding line 

FORCALLI bread Winter KWS 1006401  MH1444 bread Winter KWS Advanced breeding line 

INGENIO bread Winter AGRUSA 20062285  CRACKLIN bread Winter LG SEEDS 19990012 

GHAYTA bread Winter AGRUSA 20122320  MARCOPOLO bread Winter RGT 20132034 

MECANO bread Winter AGRUSA 20100121  SEPTIMA bread Winter AGRAR 20093- 
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Table 2: Indices derived from RGB and multispectral visible and near infrared bands. 

Function Index Equation Reference 

Greenness 

Green Area (GA) 60º <Hue< 180º [41] 

Greener Area (GGA) 80º <Hue< 180º [41] 

Enhanced Vegetation Index (EVI) 2.5 x ((RNIR - RRed) / (RNIR + 6 x RRed -7.5 x RB + 1)) [71] 

Normalized Difference Vegetation Index (NDVI) (RNIR - RRed) / (RNIR + RRed) [58] 

Optimized Soil-Adjusted Vegetation Index 

(OSAVI) 
(R780 - R670) / (R780+R670+0.16) [72] 

Photosynthetic 

Activity 

Photochemical Reflectance Index (PRI)* (R550 - R570) / (R550 + R570) [73] 

Chlorophyll/Carotenoid index (CCI) (R550 - R670) / (R550 + R670) [21] 

Leaf pigments 

Transformed Chlorophyll Absorption Index 

(TCARI) 
3 x (R700 - R670) - 0.2 x (R700 - R550) x (R700x/ R670) [74] 

Index Ratio (TCARIOSAVI) TCARI / OSAVI [74] 

* For the PRI index, R550 is used instead of the R531 proposed by Gamon et al. [75], given the 

limitation in specific wavelengths of the multispectral camera used [76,77] 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jo
ur

na
l P

re
-p

ro
of



Table 3: Effect of planting date and genotype attitude on wheat grain yield (kg ha-1), days to heading, 

grain dry weigh per spike, number of grains per spike, thousand grain weigh (TGW), and number of spikes 

per area. Range of genotypic values within each category (winter versus facultative) of cultivars are shown 

in parenthesis. 

 Yield  

(kg ha-1) 

Genotypic 

Yield 

(kg ha-1) 

Days to 

heading 

Grain weight 

spike-1 (g) 

Grains  

spike-1 

TGW (g) Nº spikes 

m-2  

Normal planting 

All 8161±115 (5694-9893) 149±1 1.75±0.03 43.11±0.62 40.90±0.58 607±10 

Winter 8498a±104 (7344-9893) 152a±1 1.71b±0.03 43.96a±0.69 39.01b±0.55 622a±11 

Facultative 7296b±251 (5694-9212) 143b±1 1.90a±0.1 40.94 b±1.22 45.76a±1.06 568 b±22 

Late planting 

All 4894±110 (2770-5961) 104±2 - - - 476±10 

Winter 4806a±142 (2770-5961) 109a±1 - - - 482a±12 

Facultative 5095a±156 (4330-5907) 90b±1 - - - 461a±18 

ANOVA        

PD <0.001 - <0.001 - - - <0.001 

A <0.05 - <0.001 - - - <0.05 

PD x A <0.001 - <0.001 - - - 0.617 

Values are means ± standard error of the whole set (38) of genotypes and the winter (27) and facultative 

(11) subsets of genotypes.  Levels of signification for the ANOVA: P<0.01 and P<0.001. PD, Planting date; 

A, Attitude. Within each planting date, means exhibiting different letters are significantly different (P < 

0.05) by t-student on independent samples.  
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27 
 
 

Table 4: Effect of wheat planting dates (normal vs late), and placement of the sensors (aerial vs ground) on RGB and 

multispectral indices assessed in different phenological stages (Heading vs grain filling). 

 RGB Indices Multispectral indices 
Hue.g a*.g b*.g GA.g GGA.g Hue.a a*.a b*.a GA.a GGA.a NDVI.g NDVI.a EVI.a PRI.a CCI.a TCARIOSAVI.a 

H
ea

d
in

g
 

Normal planting 

All 108±1 -12.6±0.3 15.2±0.3 0.88±0.01 0.75±0.01 140±3 -7.1±0.1 7.7±0.3 0.76±0.02 0.74±0.02 0.71±0.01 0.82±0.01 0.98±0.01 0.20±0.01 0.28±0.01 0.21±0.01 

Winter 107a±1 -12.5a±0.3 15.2a±0.4 0.88a±0.01 0.75a±0.01 145a±3 -6.9a±0.1 7.1b±0.3 0.73b±0.02 0.71b±0.02 0.71a±0.01 0.82a±0.01 0.98a±0.01 0.21a±0.01 0.28a±0.01 0.21b±0.01 

Facultative 110a±1 -13.1a±0.5 15.1a±0.4 0.88a±0.01 0.75a±0.02 127b±4 -7.7b±0.2 9.1a±0.5 0.83a±0.02 0.81a±0.02 0.71a±0.01 0.81a±0.01 0.99a±0.01 0.21a±0.01 0.29a±0.01 0.22a±0.01 

Late planting 

All - - - - - 93±2 -10.1±0.2 16.4±0.5 0.95±0.01 0.72±0.03 0.76±0.01 - - - - - 

Winter - - - - - 93a±2 -10.4b±0.2 16.9a±0.7 0.95a±0.01 0.73a±0.03 0.77a±0.01 - - - - - 

Facultative - - - - - 912a±2 -9.4a±0.2 15.3a±0.7 0.95a±0.01 0.71a±0.05 0.72b±0.01 - - - - - 

ANOVA                 

PD - - - - - <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 - - - - - 

A - - - - - 0.026 0.238 0.702 0.024 0.392 <0.001 - - - - - 

PD x A  - - - - - 0.018 <0.001 0.02 0.013 0.197 <0.001 - - - - - 

G
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Normal planting 

All 85.2±1.8 -8.1±0.1 14.9±0.3 0.79±0.02 0.51±0.02 61.2±1.6 -6.7±0.5 25.3±0.4 0.53±0.03 0.27±0.02 0.56±0.01 0.79±0.01 0.88±0.01 0.14±0.01 0.28±0.01 0.28±0.01 

Winter 90.3a±1.9 -8.4b±0.1 14.3b±0.4 0.84a±0.01 0.57a±0.02 65.4a±1.8 -8.1b±0.5 24.5a±0.4 0.60a±0.03 0.33a±0.02 0.59a±0.01 0.81a±0.01 0.88a±0.01 0.15a±0.01 0.29a±0.01 0.26b±0.01 

Facultative 71.7b±2.9 -7.4a±0.3 16.7a±0.6 0.68b±0.05 0.33b±0.05 50.1b±2.4 -3.1a±1.1 27.4b±0.5 0.33b±0.05 0.13b±0.03 0.47b±0.02 0.74b±0.02 0.82b±0.02 0.13b±0.01 0.24b±0.02 0.35a±0.02 

Late planting 

All 92.7±1.3 -9.8±0.2 15.3±0.4 0.94±0.01 0.78±0.02 84.5±1.5 -14.8±0.5 25.3±0.3 0.84±0.02 0.63±0.02 0.69±0.01 0.81±0.01 0.67±0.01 0.17±0.01 0.31±0.01 0.28±0.01 

Winter 95.4a±1.2 -9.9b±0.2 14.7b±0.4 0.95a±0.01 0.85a±0.02 92.5a±1.1 -17.2b±0.3 25.1b±0.4 0.91a±0.01 0.76a±0.02 0.73a±0.01 0.82a±0.01 0.68a±0.01 0.17a±0.01 0.31a±0.01 0.26b±0.01 

Facultative 86.5b±2.7 -9.6a±0.3 16.5a±0.5 0.91b±0.01 0.61b±0.05 66.5b±2.1 -9.4a±0.7 26a±1 0.66b±0.04 0.33b±0.03 0.61b±0.01 0.76b±0.01 0.65a±0.02 0.15b±0.01 0.28b±0.01 0.33a±0.02 

ANOVA                 

PD <0.001 <0.001 0.188 <0.001 <0.001 <0.001 <0.001 0.750 <0.001 <0.001 <0.001 0.077 <0.001 <0.001 <0.01 0.583 

A <0.001 <0.01 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

PD x A <0.01 <0.01 0.051 0.978 <0.001 0.055 0.285 0.457 <0.001 0.682 0.286 0.928 0.249 0.862 0.676 0.630 

Values are means ± standard error of the whole set (38) of genotypes and the winter (27) and facultative (11) subsets of 

genotypes. Levels of signification for the ANOVA: P < 0.05, P<0.01 and P<0.001. PD, Planting date; A, Attitude. Within 

each planting date, means exhibiting different letters are significantly different (P < 0.05) by t-student on independent 

samples. Sub-indices: g, ground; a, aerial.  

 
 

 

 

 

 

 

 

 

 

 

Table 5: Effect of planting date (normal vs late) and genotype attitude (winter vs facultative) on ground 

and aerial temperature in both visits (at heading and grain filling), flag leaf and grains dry matter’s 

carbon and nitrogen contents (%C and %N) and carbon and nitrogen isotopic composition (δ15N and 

δ13C). 
 

 Canopy temperature Isotopic composition 
 Heading                                    Grain filling Maturity 

 CT.g 

(°C) 

CT.a 

(°C) 

CT.g 

(°C) 

CT.a 

(°C) 

δ13Cleaf 

(‰) 

δ15Nleaf 

(‰) 

Cleaf 

(%) 

Nleaf 

(%) 

δ13Cgrain 

(‰) 

δ15Ngrain 

(‰) 

Cgrain 

(%) 

Ngrain 

(%) 

Normal planting 

All 26.1±0.1 26.9±0.11 28.9±0.9 27.7±0.2 -26.43±0.09 2.23±0.07 40.58±0.17 3.07±0.04 -25.66±0.06 3.82±0.04 42.24±0.09 2.36±0.02 

Winter 25.9b±0.1 26.8b±0.1 28.7a±0.2 27.4b±0.2 -26.51b±0.11 2.36a±0.07 40.53a±0.19 3.21a±0.04 -25.76b±0.07 3.86a±0.05 42.23a±0.09 2.29b±0.02 

Facultative 26.4a±0.2 27.4a±0.2 29.3a±0.3 28.6a±0.5 -26.24a±0.15 1.90b±0.13 40.72a±0.33 2.70b±0.07 -25.42a±0.13 3.72a±0.08 42.3a±0.2 2.53a±0.04 

Late planting   

All 25.6±0.1 - 26.8±0.1 - -28.76±0.07 2.94±0.06 40.19±0.24 2.76±0.06 -26.76±0.05 3.89±0.04 42.47±0.06 2.26±0.03 

Winter 25.5a±0.2 - 26.4b±0.1 - -28.52a±0.07 3.08a±0.07 40.22a±0.28 2.96a±0.06 -26.76a±0.06 3.87a±0.05 42.36b±0.07 2.26a±0.03 

Facultative 25.8a±0.2 - 27.7a±0.3 - -29.33b±0.09 2.62b±0.09 40.13a±0.45 2.27b±0.11 -26.77a±0.08 3.93a±0.07 42.73a±0.09 2.26a±0.05 

ANOVA   

PD <0.01 - <0.001 - <0.001 <0.001 0.194 <0.001 <0.001 0.063 <0.01 <0.001 

A <0.05 - <0.001 - <0.05 <0.001 0.987 <0.001 <0.05 0.605 0.053 <0.001 

PD x A 0.941 - <0.05 - <0.001 0.982 0.640 0.165 0.088 0.136 0.162 <0.01 
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Values are means ± standard error of the whole set (38) of genotypes and the winter (27) and facultative 

(11) subsets of genotypes. Levels of signification for the ANOVA: P < 0.05, P<0.01 and P<0.001. PD, 

Planting date; A, Attitude. Within each planting date, means exhibiting different letters are significantly 

different (P < 0.05) by t-student on independent samples. Sub-indices: g, ground; a, aerial.  
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Table 6: 

Correlati

on 

coefficien

ts of the 

linear 

regressio

ns of 

wheat 

grain 

yield 

(GY) 

against 

days to 

heading, 

grain dry 

weight 

per spike 

(Grain 

weight 

spike-1), 

number 

of grains 

per spike 

(grains 

spike-1), 

thousand 

grains 

weight 

(TGW), 

number 

of spikes 

per 

grown 

area 

(spikes 

m-2), per 

planting 

date.  
 

 Days to 

heading 
Grain weight 

spike-1 

Grains 

spike-1 
TGW Nº spikes 

m-2 
Normal planting 

All  0.435** -0.285ns  0.130ns -0.407*  0.276ns 

Winter -0.163ns  0.260ns -0.010ns 0.266ns -0.203ns 

Facultative  0.264ns -0.592ns -0.070ns -0.605ns  0.564ns 

Late planting 

All -0.430** - - - 0.386* 

Winter -0.636** - - - 0.429* 

Facultative  0.076ns - - - 0.472ns 

Correlati

on values 

were 

calculate
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d across 

the whole 

(All) set 

(38) of 

genotypes 

or within 

the winter 

(27) and 

facultativ

e (11) 

subsets of 

genotypes

. (each 

genotypic 

value 

being the 

mean of 

three 

plots). 

Level of 

significan

ce:  ns, 

non-

significan

t; *, p < 

0.05; **, 

p < 0.01.  
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Table 7: Correlations of RGB and multispectral indices assessed during heading and grain filling against GY within each 

planting date (Normal vs Late), per genotypes attitude (Winter vs Facultative) and by placement of sensors (Aerial vs 

Ground). 

 RGB Indices Multispectral Indices 
Hue.g a*.g b*.g GA.g GGA.g Hue.a a*.a b*.a GA.a GGA.a NDVI.g NDVI.a EVI.a PRI.a CCI.a TCARIOSAVI.a 

H
ea

d
in

g
 

Normal planting  

All 0.058ns 0.222ns -0.141ns 0.152ns 0.093ns 0.546** 0.495** -0.538** -0.537** -0.517** -0.100ns 0.235ns 0.281ns 0.125ns -0.091ns -0.489** 

Winter 0.173ns 0.066ns -0.109ns 0.160ns 0.100ns 0.363 0.392* -0.357ns -0.428* -0.426* -0.354ns 0.012ns 0.204ns -0.119ns -0.110ns -0.184ns 

Facultative 0.230ns 0.354ns -0.556ns 0.191ns 0.173ns 0.658* 0.447ns -0.562ns -0.592ns -0.565ns 0.256ns 0.206ns 0.819** 0.299ns 0.350ns -0.246ns 

Late planting 

All - - - - - 0.159ns 0.590** -0.486** -0.147ns 0.170ns -0.268ns - - - - - 

Winter - - - - - 0.221ns 0.698** -0.564** -0.209ns 0.174ns -0.329ns - - - - - 

Facultative - - - - - -0.080ns -0.087ns 0.036ns 0.287ns 0.239ns 0.089ns - - - - - 

G
ra
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Normal planting 

All 0.568** -0.538** -0.338* 0.580** 0.525** 0.531** -0.456** -0.340* 0.527** 0.464** 0.560** 0.585** 0.535** 0.457** 0.592** -0.486** 

Winter 0.141ns 0.078ns -0.298ns 0.121ns 0.195ns 0.155ns 0.337ns -0.235ns -0.302ns -0.034ns 0.057ns 0.158ns 0.190ns 0.112ns 0.194ns -0.124ns 

Facultative 0.529ns -0.540ns 0.121ns 0.530ns 0.390ns 0.563ns -0.807** 0.107ns 0.562ns 0.456ns 0.428ns 0.474ns 0.656* 0.106ns 0.593ns -0.086ns 

Late planting 

All -0.077ns 0.294ns -0.445** -0.110ns -0.109ns -0.110ns 0.478** -0.278ns -0.160ns -0.200ns -0.222ns -0.264ns -0.384* -0.250ns -0.405* 0.065ns 

Winter 0.089ns 0.462* -0.551** -0.119ns 0.023ns -0.044ns 0.623** -0.483* -0.192ns -0.202ns -0.301ns -0.260ns -0.482* -0.236ns -0.481* -0.182ns 

Facultative 0.282ns -0.246ns -0.052ns 0.232ns 0.245ns 0.035ns -0.381ns 0.270ns 0.101ns 0.143ns 0.220ns -0.098ns 0.200ns -0.004ns 0.054ns 0.188ns 

Correlation values were calculated across the whole (All) set (38) of genotypes or within the winter (27) and facultative 

(11) subsets of genotypes (each genotypic value being the mean of three plots). Abbreviations for subscripts are a (aerial) 

and g (ground). Levels of significance: ns, non-significant; *, P < 0.05; **, P < 0.01. Sub-indices: g, ground; a, aerial. 

 

 

 

 

 

 

 

 

Table 8: Correlations of ground-assessed (CT.g), and aerially 

assessed (CT.a) canopy temperature during heading and grain 

filling, carbon and nitrogen contents, carbon and nitrogen isotopic 

composition δ13C and δ15N in sampled flag leaves during grain 

filling and dry matter of mature grains, against GY within planting 

dates (Normal vs Late). 

 Canopy temperature Isotopic composition 
 Heading Grain filling Maturity 

 CT.g CT.a CT.g CT.a δ13Cleaf δ15Nleaf Cleaf Nleaf δ13Cgrain δ15Ngrain Cgrain Ngrain 

Normal planting 

All -0.198ns -0.505** -0.475** -0.452** -0.128ns 0.273ns -0.161ns 0.498** -0.553** 0.106ns -0.040ns -0.624** 

Winter 0.307ns -0.222 -0.274ns -0.250ns 0.083ns 0.078ns -0.098ns 0.057ns -0.188ns -0.089ns -0.106ns -0.404* 

Facultative -0.523ns -0.606 -0.520ns -0.393ns -0.242ns 0.017ns -0.240ns 0.347ns -0.755* 0.088ns 0.079ns -0.536ns 

Late planting 

All -0.357* - 0.150ns - -0.617** -0.219ns -0.053ns -0.254ns -0.591** 0.238ns 0.239ns -0.575** 

Winter -0.583** - 0.139ns - -0.692** -0.160ns -0.166ns -0.330ns -0.706** 0.357ns 0.215ns -0.665** 

Facultative 0.109ns - -0.161ns - -0.381ns -0.152ns 0.382ns 0.370ns 0.037ns -0.325ns 0.071ns -0.287ns 

Correlation values were calculated across the whole (All) set (38) 

of genotypes or within the winter (27) and facultative (11) subsets 

of genotypes (each genotypic value being the mean of three plots). 

Abbreviations for subscripts are a (aerial) and g (ground). Levels 
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of significance: ns, non-significant; *, P < 0.05; **, P < 0.01. Sub-

indices: g, ground; a, aerial. 
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Table 9: Multi-linear regression (stepwise) of grain yield (GY) as dependent variable, and the remote sensing traits 

(canopy RGB, multispectral vegetation indices and canopy temperature) measured from ground and aerial platforms 

and combined to carbon and nitrogen isotope composition (δ13C and δ15N) as independent variables. R2
adjusted, adjusted 

determination coefficient; RMSE, Root Mean Square Error; P-value, linear regression model significance. 

  Grain yield predictions R2
adjusted RMSE P-value 

Heading 

Normal planting 

All parameters Y=597.5 – 2421.4 %Ngrain – 18738.6 TCARIOSAVI.a + 5764.7 EVI.a + 747.8 δ13Cleaf – 1218.7 δ13Cgrain 0.731 492.7 <0.001 

Remote sensing Y= 1697.2 + 41.9 Hue.a + 262.2 b*.g 

 

0.449 704.3 <0.001 

Late planting 

All parameters Y= -9614.1 – 559.1 δ13Cleaf – 1702.1 %Ngrain + 308.9 a*.a + 7133.4 NDVI.g 0.648 466.1 <0.001 

Remote sensing Y= 8887.9 + 396.8 a*.a 

 

0.329 643.7 <0.001 

Grain filling 

Normal planting  

All parameters Y=2934.1– 2942.2 %Ngrain + 29594.9 NDVI.a – 61017.9 PRI.a – 673.9 δ15Ngrain 0.694 524.9 <0.001 

Remote sensing Y= 4118.2 + 14465.4 CCI.a 

 

0.331 776.3 <0.001 

Late planting 

All parameters Y= -24815.4 – 617.7 δ13Cleaf – 1812.9 %Ngrain – 109.6 b*.a + 417.2 %Cgrain 0.654 462.4 <0.001 

Remote sensing Y= 8154.9 + 333.6a*.a 

 

0.205 700.7 <0.001 

Stable isotopes + nitrogen 

Normal planting 

Isotopes Y= -19.1 – 2389.2 %Ngrain + 961.1 %Nleaf + 860.3 δ13Cleaf – 1309.8 δ13Cgrain 

 

0.689 529.6 <0.001 

Late planting  

Isotopes Y= -9787.1 – 649.7 δ13Cleaf –1770.1 %Ngrain 0.529 539.4 <0.001 
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