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Abstract

The truth-functional interpretation of classical implication gives rise to relevance para-
doxes, since it doesn’t adequately model our usual understanding of a valid implication,
which assumes the antecedent is relevant to the truth of the consequent. This work gives
an overview of the system R of relevance logic, which aims to avoid said paradoxes. We
present the logic R with a Hilbert calculus and then prove the Variable-sharing Theorem.
We also give an equivalent algebraic semantics for R and a semantics for its first-degree
entailment fragment.

Resum

La implicació de la lògica clàssica dóna lloc a paradoxes de rellevància, ja que no modela
adequademant el que intuïtivament entenem com a implicació vàlida, que assumeix que
l’antecedent és rellevant per la veritat del conseqüent. Aquest treball pretén donar una
visió general del sistema R de lògica de la rellevància, que té com a objectiu evitar aquestes
paradoxes. Presentarem la lògica R amb un càlcul Hilbert i demostrarem el Teorema de
la Variable Compartida. També donarem una semàntica algebraica equivalent per R i una
semàntica pel seu fragment d’implicacions de primer grau.

2010 Mathematics Subject Classification. 03B47, 03G27



Introduction

We all know about material or classical implication for its role in mathematics. When we are
writing a proof, we use expressions like "imply" or "if ... then", which assume a certain
understanding of classical implication. We know that an implication is false only when
the antecedent is true and the consequent is not, and we use this in our mathematical
endeavours. But not only do we use implication in a mathematical framework, conversa-
tion is full of examples of its use in our day to day, as in a parent that warns his son "If
it’s raining, then you should take an umbrella" or a teacher lecturing his students "If you
only study the day before the exam, then you will most probably fail". But if someone
told you "If p is transcendental, then 3 ˆ 3 = 9", you would respond that this doesn’t
make an ounce of sense, although it is in fact a true sentence, since the consequent is true.
The problem is that "p is transcendental" and "3 ˆ 3 = 9" are sentences with no common
meaning, so to us one implying the other is not relevant. This irrelevance is why there
are no theorems which state that 3 ˆ 3 = 5 implies the Bolzano theorem, since we don’t
consider all true classical implications as valid implications. Thus, we find that classical
implication doesn’t adequately model our understanding of implication, and that is the
starting point of Anderson and Belnap’s investigation in [2].

Anderson and Belnap’s work on relevance logics centers on their system E of entailment,
and they develop their logic E with an implication that they call entailment in which the
antecedent is relevant to the truth of the consequent and which is concerned about matters
of necessity or possibility (it is a modal logic). The book also comments on a system R of
relevance logic, which doesn’t take necessity in regard. The implication in R is called
relevant implication. Our work will be to overview the system R of logic following its
construction in [2] and giving it adequate semantics. The formal motivation of this work
is the aim to avoid the so-called paradoxes of material implication:

p Ñ (q Ñ p) Positive paradox

p Ñ ( p Ñ q) Explosion

We are considering these paradoxes arise from relevance concerns, since the Positive para-
dox would allow us to infer any truth from an aleatory sentence, and Explosion infers any
sentence from a contradiction.

We start with an introduction into logic and the tools needed for understanding this work.
It also features classical logic as an example of what we’re about to present with our
system R.

The second chapter concerns the construction of our relevance logic R. We will work par-
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iv Introduction

allelly to the construction of E in [2], and since R is usually only mentioned in comparison
to E, we will develop all the proofs and properties which are sometimes not made explicit
in Anderson and Belnap’s book. The construction will start by presenting the implica-
tional fragment of R, to which we will add negation afterwards. With this, we will turn
to conjunction and disjunction, but instead of adding them on top of negation, we will
construct the first-degree entailment fragment of R (implicational formulas with no other
implication than the outermost one). The first-degree entailment fragment of R and the
first-degree entailment fragment of E coincide. Finally, in the last section, we will join
our negation-implication and first-degree entailment fragments adequately to present our
relevance logic R. Along the way we will prove some interesting properties, such as the
Variable-sharing Theorem, which are important results concerning the adequacy of R into
the topic of relevance.

The third and last chapter will give semantics to R and its first-degree entailment frag-
ment. We have chosen to present semantics for both these logics since the first-degree
entailment fragment of R has an interesting semantics on its own. For this, we will follow
Chapter III in [2], and we will present some required preliminaries on lattices and filters.
The semantics we will give to R were presented in [10] and are purely algebraic, so we will
turn to the work on algebraic semantics in [4] when necessary. Anderson and Belnap’s
book also give semantics for R, so a discussion on their adequacy will finish the chapter.

[2], [10] and [4] have been widely used in this work, although some other references will
promptly appear which introduce different tools needed. The proofs which are not fully
developed in [2] will be completed and the others referenced. We will add an annex of
logical deductions from axioms and rules in order to make the reading of this work more
accessible.

Acknowledgements

I want to thank Dr. Joan Gispert for introducing me to this interesting topic which I wasn’t
acquainted with and for assessing me any time I needed it.



Chapter 1

Preliminary concepts

1.1 Propositional logic

Given a language L (determining the connectives) we denote the set of formulas of L
as FmL. The set of formulas is constructed in the usual way: a variable is a formula, a
connective of rank 0 (a constant) is a formula, and for every connective c P L of rank
k • 1 if j1, ..., jk P FmL, then c(j1, ..., jk) is a formula. (The priority in connectives
will be the usual: first  , then ^, _ and then Ñ, so p Ñ q _ p = p Ñ (q _ p) for
example). From now on, we will denote the language of a given logic L as LL , the set
of variables will be denoted by Var. Also, any assignment s : Var ›Ñ FmL extends into a
substitution s : FmL ›Ñ FmL where for any formula j(p1, ..., pn) with variables p1, ..., pn,
s(j(p1, ..., pn)) = j(s(p1), ..., s(pn)).

Definition 1.1.1. A propositional logic is a pair L =† L, $L° such that $L is a structural
consequence relation i.e. a relation between sets of formulas and formulas which satisfies for every

S Y G Y tju Ñ FmL:

Reflexivity j $L j

Monotony If S $L j and S Ñ G then G $L j

Cut If S $L j and G $L y for all y P S then G $L j

With these conditions we have a consequence relation. Moreover, it is structural, so that for every

substitution s, if S $L j then s[S] $L s(j).

Since we won’t work with higher-order logics than propositional logic, any time we say
logic we are referring to a propositional logic. Propositional logics can be defined from a
syntactical point of view or semantically. We can define them syntactically as follows:

Definition 1.1.2 (Syntactic consequence). Given a language L, a calculus is a set of inference

rules and/or axioms in FmL. Let S Y tju Ñ FmL, a deduction of j from S is a finite sequence

of formulas † j1, ..., jn´1, j ° where each ji is in S, is an axiom or is obtained from previous

formulas using an inference rule. We can thus define a deductive system DS =† L, $DS°
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2 Preliminary concepts

where given S Y tju Ñ FmL, S $DS j if and only if there is a deduction of j from S. We then

say j is a syntactic consequence of S. If S = ?, we say j is a theorem of DS .

Clearly, a deductive system defined this way is a logic. Moreover, since deductions are
finite it is also finitary, i.e. if S $L j then G $L j for some finite G Ñ S. There
are different types of calculi used in the field of logic, and we will work with two: the
Hilbert calculus, a deductive system with a large number of axioms and small number of
inference rules (most times only one), and natural deduction calculus, which has no axioms
(or sometimes very few).

We can also define a logic from a semantic point of view, behind and idea of what "truth"
should be. The basis of semantics is that a reasoning must preserve truth, that is, if the
premises are true, then the conclusion is true, just as in classical logic and the truth tables.
We now give a possible generalisation of this idea, but first we need to introduce some
algebraic concepts:

Definition 1.1.3. Let L be the propositional language of a given logic and w the set of its connec-

tives. A structure A =† A, wA ° where wA = tc
A : c P wu is called an L-algebra if A is a

non-empty set (we call it the universe) and each c
A P wA

is an operation on A with the same rank

as c P w (a connective of rank 0 is a constant). Let D be a subset of A. We say A =† A, D ° is

an L-matrix, and we call the elements of D designated elements.

Definition 1.1.4. Given a mapping s : VarL ›Ñ A of the variables of the language into A, we

define an interpretation I : FmL ›Ñ A by recursion so that:

• If j P VarL, then I(j) = s(j)

• If j = c(j1, ..., jk) for some connective c P w of rank k, then I(j) = c
A(I(j1), ..., I(jk))

We will define semantic consequence the following way:

Definition 1.1.5 (Semantic consequence). Let A be an L-matrix, given S Y tju Ñ FmL,

S (A j if for every interpretation I : FmL ›Ñ A:

I[S] Ñ D ùñ I(j) P D

We can generalise this into the class of L-matrices M the following way: write S (M j if for

every A P M, S (A j. † FmL, (A° and † FmL, (M° are logics.

1.2 Completeness and consistency

It is interesting to study the relationship between a semantics and a calculus.

Definition 1.2.1. We say that an L-matrix A (or a class of L-matrices M) is a matrix model
(class model) of a given deductive system DS if for every S Y tju Ñ FmL

S $DS j ùñ S (A j (S (M j)

Looking from the other point of view, if this is satisfied we can say DS is consistent with respect

to A (M). If ù is satisfied we can say DS is complete with respect to A (with respect to M).
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If DS is complete and consistent with respect to A (with respect to M) we say that A (the class

M) is a matrix semantics of DS i.e. if for every S Y tju Ñ FmL

S $DS j ñ S (A j (S (M j)

Usually, the matrix semantics of a logic are found by abstracting its algebraic structure.
This is done via the Lindembaum algebra of the logic:

Definition 1.2.2. Let FmL be the set of formulas of a given language L with a set of connectives

w (where ÑP w). Given a logic † L, $L° we define the relation ” on FmL to be:

j ” y
defñ $L j Ñ y and $L y Ñ j

We consider the algebra of sentential formulas of L , FL =† FmL , w °. If ” is a congruence

over FL , we say
FL ä” is the Lindenbaum algebra of L .

Definition 1.2.3. We will say an algebra A is free in its class of algebras if any identification of

the generators of A into another algebra of the same class can be extended to an homomorphism
between the two algebras, a mapping which preserves the operations of the class.

Proving that the Lindenbaum algebra of a logic is free in its variety of algebras is important
in the sense that it assures an adequate representation of the Lindenbaum algebra into the
variety, because it will satisfy the defining identities.

1.3 Algebraic semantics

But we can go further than matrix semantics in our study of the semantics of a given
deductive system, since nothing assures us that a matrix semantics is unique, or that it is
the most adequate to represent our deductive system. That is why in [4] a general theory
on algebraizability is developed.

An L-equation (or simply an equation) is a formal expression j « y where j, y P FmL;
the set of all equations is denoted by EqL. A quasi-equation is a formal expression (j1 «
y1)&...&(jn « jn) ùñ j « y. Let j(p1, ..., pm) P FmL and pi P Var, if A is an L-algebra,
then jA(a1, ..., am) is the interpretation of j in A when the variables and connectives are
interpreted as elements and operations of A.

Definition 1.3.1. Let K be a class of L-algebras, S Y tj « yu Ñ EqL, we will say j « y is a K-
consequence of S and write S (K j « y if for every A P K and every assignment s : Var ›Ñ A,

we have:

If xA(s( p̄x)) = hA(s( p̄h)) for every x « h P S then jA(s( p̄j)) = yA(s( p̄y))

where we write p̄ for the sequence (p1, ..., pm) of variables of a given formula, so that s( p̄) =
(s(p1), ..., s(pm)).

Clearly, (K satisfies reflexivity, monotony and cut. From Chapter 2 in [4], (K is also
structural and therefore it determines a logic. Also, if (tAu j « y, we will say j « y is an
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identity of A, and if tj1 « y1, ..., jn « jnu (tAu j « y, we will say (j1 « y1)&...&(jn «
jn) ùñ j « y is a quasi-identity of A. The class of algebras defined as satisfying a
given set of identities is a variety, and if it satisfies a given set of quasi-identities it is a
quasi-variety.

Definition 1.3.2. We say that a class of L-algebras K is an algebraic semantics of a given

deductive system DS if there is a system of equations of one variable d(p) « e(p) (called the

defining equations) such that for every S Y tju Ñ FmL

S $DS j ñ td(y) « e(y) : y P Su (K d(j) « e(j)

Theorem 1.3.3. [4] Let DS be a deductive system, K a quasi-variety and d(p) « e(p) a system

of equations, the following are equivalent:

(i) K is an algebraic semantics for DS with defining equations d(p) « e(p).

(ii) The class of L-matrices M = t† A, F
d«e
A °: A P Ku where F

d«e
A = ta P A : dA(a) =

eA(a)u is a matrix semantics for DS .

Definition 1.3.4. Let DS be a deductive system, K an algebraic semantics for DS with defining

equations d « e. We say K is equivalent to DS if there is a finite system of formulas with two

variables D such that for every j « y P EqL

j « y (K) d(jDy) « e(jDy)

where d(jDy) « e(jDy) = tdi(jDjy) « ei(jDjy) : di « ei is an equation of the system

d « e and Dj is a formula of the system D, for all possible i, ju. The system D are the equivalence
formulas.

Corollary 1.3.5. [4] K is equivalent to DS with equivalence formulas D if and only if for every

S Y tj « yu Ñ EqL

S (K j « y ñ txDh : x « h P Su $DS jDy

and for every x P FmL, x $DS% d(x)De(x)

This indicates that we can interpret $DS from (K and conversely, and that these interpre-
tations are essentially inverse, so that K is the algebraic counterpart of DS . Thus, Blok
and Pigozzi [4] propose the following definition:

Definition 1.3.6. A deductive system is algebraizable if it has an equivalent algebraic semantics.

Moreover, we have the following very desirable property for algebraizable logics:

Theorem 1.3.7. [4] Every algebraizable logic has a unique equivalent semantics on a quasi-variety.

Therefore, the equivalent algebraic semantics on a quasi-variety is the algebraic semantics
which characterises best the algebraic structure of our deductive system, and by Theo-
rem 1.3.3 we can obtain the most adequate matrix semantics via the analogous algebraic
semantics.
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1.4 Classical logic as an example

The usual language LCPL of classical propositional logic contains connectives t , Ñ, ^, _u.
The habitual semantic approach to CPL is given by the interpretations into t0, 1u and truth-
tables. We can see this in the algebraic point of view of the previous sections defining
the LCPL-matrix B :=†† t0, 1u, ˚, ^˚, _˚, Ñ˚°, t1u ° where the operations are the
usual boolean operators. We can then present classical propositional logic as CPL =†
LCPL, (B°. Whenever two formulas j, y P FmLCPL satisfy that j (B y and y (B j we
will say they are classically equivalent.

We present now some calculi which determine classical propositional logic. There are
many Hilbert calculi for classical propositional logic, but we will use a Russell axiomatisa-
tion of the classical propositional calculus (CPC), where only Ñ, are taken as primitive
and the only rule is modus ponens, i.e. from j, j Ñ y we infer y:

CPC 1 j Ñ (y Ñ j)
CPC 2 (j Ñ y) Ñ ((y Ñ x) Ñ (j Ñ x))
CPC 3 (j Ñ (y Ñ x)) Ñ (y Ñ (j Ñ x))
CPC 4 (j Ñ  y) Ñ (y Ñ  j)
CPC 5 (j Ñ  j) Ñ  j
CPC 6   j Ñ j

If needed, we can then define j _ y :=  j Ñ y and j ^ y :=  ( j _ y). In [11] [12] we
can find its equivalence to an axiomatic system by Łukasiewicz, for which completeness
and consistency with respect to B can be found in [13].

A Fitch-style natural deduction calculus for CPL was developed in [9]. Fitch-style natural
deduction calculi consist on opening hypothesis which start an inner subformula and then
using rules that can introduce new connectives or eliminate them. Some of these rules can
close hypotheses, so that we return to an outer subformula, and a deduction is finished
when all hypotheses are closed. Some rules are:

Rules of Implication: Elimination (Ñ E) and Introduction (Ñ I)
(Ñ I closes hypotheses)

With this,

Theorem 1.4.1. Let S Y j Ñ FmLCPL
, then S (B j if and only if S $CPC j if and only if

S $FCPL j.
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We can also study the algebraic semantics for CPL, which is given by Boolean algebras. Blok
and Pigozzi proved the algebraizability of classical logic in [5], so we give the definitions
necessary to present its equivalent algebraic semantics.

Definition 1.4.2. A lattice is a pair † L,§° such that L is a partially ordered set with order §
satisfying the following for any a, b P L:

(i) There is a least upper bound (lub) of ta, bu, we denote it by a _ b and call it the join.

(ii) There is a greatest lower bound (glb) of ta, bu, we denote it by a ^ b and call it the meet.

An equational presentation of lattices can be given by taking ^ and _ as primitive oper-
ations satisfying idempotence, associativity and commutativity each one and absorption,
i.e. a ^ (a _ b) = a and a _ (a ^ b) = a. And so a lattice presented this way is an algebra
and the class of lattices is a variety. In this case a § b ñ a ^ b = a. [6]

Definition 1.4.3. A distributive lattice is a lattice † L,§° satisfying that:

D1 : For all a, b, c P L, a ^ (b _ c) = (a ^ b) _ (a ^ c).

D2 : For all a, b, c P L, a _ (b ^ c) = (a _ b) ^ (a _ c).

Definition 1.4.4. A Boolean algebra (or complemented distributive lattice) is a distributive

lattice † L,§° which has a least element (we denote it by 0) and a greatest element (we denote it

by 1) satisfying that for every a P L, there is  a P L such that a ^ a = 0 and a _ a = 1. We

say  a is the complement of a.

In [17] Tarski proved that the Lindenbaum algebra of classical propositional logic is a
Boolean algebra, and that all the theorems of classical logic belonged to the same class,
1 = [J] = [p _ p]. Also, the Lindenbaum algebra of CPL is the free Boolean algebra.[7]
In [5] it is shown that the class of Boolean algebras is an equivalent algebraic semantics
for classical propositional logic in the style of Blok and Pigozzi.

Finally, we give some properties which characterise classical propositional logic:

Theorem 1.4.5. [8] Let S Y tj, y, xu be a set of formulas in the language of CPL, then:

Deduction Theorem S Y tju $CPC y if and only if S $CPC j Ñ y

Reductio ad Absurdum S Y tju $CPC j if and only if S Y t ju is inconsistent, i.e. for

every formula y S Y t ju $CPC y.

Left conjunction property S Y tj, yu $CPC x if and only if S Y tj ^ yu $CPC x.

Right conjuction property S $CPC j ^ y if and only if S $CPC j and S $CPC y.

Left disjunction property S Y tj _ yu $CPC x if and only if S Y tju $CPC x and S Y
tyu $CPC x.

Right disjunction property If S $CPC j then S $CPC j _ y and S $CPC y _ j.



Chapter 2

Construction of R

As discussed in the introduction, material implication doesn’t adequately represent our
use of implication, since relevance concerns arise between antecedent and consequent.
Our task will be to construct a logic that avoids fallacies of relevance in the sense that for an
entailment to hold the antecedent must be relevant to the truth of the consequent. We will
call this logic R. As aforementioned, R must avoid the fallacies of material implication:

p Ñ (q Ñ p) Positive paradox

p Ñ ( p Ñ q) Explosion

Other classical theorems which we don’t consider relevant are p ^  p Ñ q, p Ñ q _
 q and p Ñ (q Ñ q), the first one representing that if the antecedent is false then the
classical implication is always true, and the second and third ones representing that if the
consequent is true then the classical implication is true no matter the antecedent. In fact,
p Ñ ( p Ñ q) and p ^ p Ñ q are classically equivalent and closely related, as we will
see in the third section of this work, but they may not be equivalent in R (as it happens,
they aren’t), and so must be treated separately.

2.1 Axiomatising relevant implication

We start by presenting the implicational fragment, since the problem with relevance arises
in implication. We will give the natural deduction and Hilbert presentations in [2], for
which equivalence is not proven in the book, since it centers on the system E of entailment.

2.1.1 Natural deduction

We define the implicational fragment of our relevance logic, RÑ, by giving a Fitch-style
natural deduction calculus. What interests us about natural deduction is that it has the
rule of implication introduction (ÑI, see page 5), in which you can deduce an implication
from its antecedent and consequent. This is done by previously taking the antecedent as a
hypothesis and then deducing the consequent under it. With this rule, it is easy to control

7



8 Construction of R

in what cases an entailment is valid, but this still doesn’t guarantee that the antecedent
will be relevant to the consequent, since using the classical rule of repetition (repeating a
formula under the same hypothesis) we could prove the following:

1 j hyp

2 y hyp

3 y rep, 2

4 y Ñ y ÑI, 2, 3

5 j Ñ (y Ñ y) ÑI, 1, 4

But we don’t want j Ñ (y Ñ y) to be a theorem of this logic, because j and y may have
no relation. In classical logic, since y Ñ y is always true, it can be inferred from j (or
in fact any formula), but j needn’t be relevant to the actual deduction of y Ñ y. As we
see in the example above, even though y Ñ y is deduced under the hypothesis of j, it is
deduced independently of j. So our aim will be to modify these rules and add others so
as to get a deductive system in which only relevant entailments can be deduced. We will
add the classical rules of implication elimination (Ñ E or modus ponens, see 5) and reiteration

(under a certain hypothesis, repeating a formula that is under an outer hypothesis).

Now, the main issue found is that when the rule of implication introduction is used,
the consequent may not have been deduced actually using the hypothesis. Therefore it
is proposed to affix some kind of mark to the hypothesis opened, making the rules Ñ E,
repetition and reiteration pass on the mark to the formulas deduced using them. This way,
we know whether the hypothesis has been used in deducing a given formula. Restricting
the use of ÑI only when the consequent is marked would assure that the hypothesis was
actually used in the deduction of the consequent, fulfilling our requirement of relevance.
But we might have different hypotheses opened during a deduction, so we need different
marks for all of them. Thus, in order to simplify the notation, we will subscript the
formulas in a deduction with sets of numbers in the way we detail now. When opening
a hypothesis we subscript it with a new singleton like so: jtku. In the case of repetition
and reiteration, we keep the same subscript. This way we keep the property of "having
been deduced using certain hypothesis" when repeating a formula (see Figure 1 in the
next page).

The same idea works for implication elimination, where we take the union of the two
subscripts as below. Therefore, we are indicating that y carries all the hypoteses used in
deducing j and j Ñ y:

n ja

...
...

m j Ñ yb

m + 1 yaYb ÑE, n, m

The case of implication introduction is more complex. First, we restrict its use to the
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Figure 1: repetition and reiteration

case where the subscript of the consequent contains the number in the subscript of the
hypotheses (in the diagram below, k P a). Then, in the resulting implication, we take out
said number, since we have closed the hypothesis.

n jtku hyp
...

...

m ya

m + 1 j Ñ ya´tku ÑI, n, m

With this, we have a Fitch-style natural deduction calculus FRÑ with rules

hyp opening hypothesis
rep repetition
reit reiteration

Ñ E implication elimination
Ñ I implication introduction

Definition 2.1.1. Let S be a set of formulas. We will say a formula j follows from S in FRÑ
and we will write S $FRÑ j if there is a deduction of j in FRÑ where all the hypotheses have

been closed and the formulas of S were taken as premises at the start of the deduction (with an

empty subscript).

2.1.2 Equivalence to Hilbert calculus

We now give a Hilbert-style presentation of this logic RÑ, with modus ponens as the only
rule, and the following axioms:
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RÑ1 j Ñ j identity

RÑ2 (j Ñ y) Ñ ((x Ñ j) Ñ (x Ñ y)) transitivity

RÑ3 (j Ñ (y Ñ x)) Ñ (y Ñ (j Ñ x)) permutation

RÑ4 (j Ñ (j Ñ y)) Ñ (j Ñ y) self-distribution

To see that the natural deduction and Hilbert-style calculi defined previously determine
the same logic we need to prove that $RÑ and $FRÑ are equivalent, that is, for every
S Y tju Ä Prop(X) S $RÑ j if and only if S $FRÑ j, written $RÑ=$FRÑ .

Theorem 2.1.2. $RÑ is equivalent to $FRÑ .

Proof. ùñ To prove this implication we find a deduction of the axioms of RÑ in $FRÑ
and we see that $FRÑ satisfies modus ponens. Therefore, every deduction in $RÑ will have
a valid counterpart in $FRÑ by substituting the axioms by its deduction. We give only
deductions for RÑ1 and RÑ4 so that the reading is more accessible, the others may be
found in Appendix A.

1 jt1u hyp

2 jt1u rep, 1

3 j Ñ j ÑI, 1, 2

1 j Ñ (j Ñ y)t1u hyp

2 jt2u hyp

3 j Ñ (j Ñ y)t1u reit, 1

4 j Ñ yt1,2u ÑE, 2, 3

5 yt1,2u ÑE, 2, 4

6 j Ñ yt1u ÑI, 2, 5

7 (j Ñ (j Ñ y)) Ñ (j Ñ y) ÑI, 1, 6

Finally, modus ponens is a special case of the rule ÑE where both a and b (as in the initial
definition) are the empty set. Thus, we conclude $RÑ§$FRÑ ( ùñ is satisfied).

ù For the proof of the other implication, we define a new calculus FRÑ̊ whose de-
ductions will be called quasi-deductions. We define the concept of quasi-deduction as a
deduction in FRÑ where an axiom of $RÑ may be introduced, with the empty set as sub-
script (we remark that said axiom can appear in any subdeduction without restrictions).
That is, FRÑ̊ has the same rules as FRÑ and a rule of axiom introduction. Clearly, FRÑ̊
and FRÑ are equivalent, since any deduction in FRÑ is a quasi-deduction and given a
quasi-deduction, if we substitute every axiom introduced by its deduction in FRÑ, this
is still a quasi-deduction, but also a deduction in FRÑ. Also, we define the degree of a
subdeduction as the number of hypothesis under which it is included. We will say that a
quasi-deduction has maximum degree n if its innermost subdeductions are of degree n. For
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example, the deduction of RÑ1 in ùñ has maximum degree 1, whereas the deduction
of RÑ4 has maximum degree 2.

Now, we need to prove that RÑ is equivalent to FRÑ̊. Using induction over the natural
numbers we prove the following statement for n • 0:

(*) Any quasi-deduction with maximum degree n can be expressed as a quasi-
deduction without subdeductions (i.e. with maximum degree 0).

Base case (n = 0): A quasi-deduction with maximum degree 0 has no subdeductions.

Inductive step: We suppose that if a quasi-deduction has maximum degree n ´ 1 it can
be expressed as a quasi-deduction without subdeductions (HI1). We take a quasi-
deduction with maximum degree n. This quasi-deduction has m subdeductions of
degree n for a certain m • 1. By induction over m, we prove that we can reduce the
m subdeductions to equivalent ones without opening hypotheses so that the overall
deduction has maximum degree n ´ 1.

Base case (m = 1): We have a subdeduction similar to this one, since a subdeduction
can only be closed by the rule Ñ I:

. . .

s + 1 j1tku hyp
...

...

s + i ji ai

...
...

s + r jr ar

s + r + 1 j1 Ñ yar´tku

where k P ar. We replace every ji for j1
i

(i • 1) this way:
• If k P ai, then j1

i
:= j1 Ñ jia

i
´tku

• If k R ai, then j1
i

:= jia
i

We use a third nested induction over r to prove that with this substitution
each step in the deduction † j1

1
tku, ..., jr

1
ar
° (where we can only use axioms,

repetition, reiteration and ÑE) can be justified without using a hypotheses (in
the sense that they are deduced from preceding ones and axioms using the
rules available).
Base case (r = 1): Since k P tku we have j1

1 = j1 Ñ j1, justified by RÑ1.
Inductive step: We suppose the subdeduction has i steps and we suppose if

a deduction has i ´ 1 steps all of them are justified (HI3). In particular,
† j1

1tku, ..., j1
i´1ai´1 , yj1

i ai
° is a subdeduction with i ´ 1 steps, so using HI3

we can proceed supposing all steps in our deduction but the last one are
justified. We take j1

i
and, depending on the rule used originally to deduce

ji, we have four cases:
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• Reiteration: Then k R ai, so j1
i
= ji ai

, which can still be deduced from
reiteration (or repetition) from the same formula as before.

• Repetition: Then ji = jj, ai = aj, for some j † i, so j1
i
= j1

j
, therefore j1

i

is deduced from j1
j

by repetition.

• Axiom introduction: Since ji is an axiom, then ai = ?, so j1
i
= ji?,

which is still justified because it is an instance of an axiom.
• Implication Elimination: ji ai

is deduced from jj b and jj1 c = jj Ñ ji c,
where j, j

1 † i and ai = b Y c. We must distinguish 4 cases:
1. k R b and k R c: then j1

j
= jj b and j1

j1 = jj1 c, and using ÑE we
obtain ji bYc = ji ai

= j1
i

since k R ai = b Y c.
2. k R b and k P c: then j1

j
= jj b and j1

j1 = j1 Ñ (jj Ñ ji)c´tku. We
add axiom RÑ3

(j1 Ñ (jj Ñ ji)) Ñ (jj Ñ (j1 Ñ jj)) ?
so that using ÑE we obtain jj Ñ (j1 Ñ ji)c´tku. And finally using
again ÑE we get j1 Ñ ji bY(c´tku) = j1 Ñ ji ai´tku = j1

i
since

k P ai = b Y c.
3. k P b and k R c: then j1

j
= j1 Ñ jj b´tku and j1

j1 = jj Ñ ji c. We add
axiom RÑ2

(jj Ñ ji) Ñ ((j1 Ñ jj) Ñ (j1 Ñ ji)) ?
so that using ÑE twice first with j1

j1 and then with j1
j

we obtain
j1 Ñ ji (b´tku)Yd = j1 Ñ ji ai´tku = j1

i
since k P ai = b Y c.

4. k P b and k P c: we have that j1
j
= j1 Ñ jj b´tku and that j1

j1 = j1 Ñ
(jj Ñ ji)c´tku. We add axiom RÑ4

(j1 Ñ (jj Ñ ji)) Ñ ((j1 Ñ jj) Ñ (j1 Ñ ji)) ?
so that using Ñ E twice first with j1

j1 and then with j1
j

we obtain
j1 Ñ ji (b´tku)Y(c´tku) = j1 Ñ ji ai´tku = j1

i
since k P ai = b Y c.

We have substituted our initial subdeduction for an equivalent one, since j1
r

coincides with the formula for step s + r + 1, thus justifying it by repetition.

Inductive step: As hypotesis of induction, we suppose that if we had m ´ 1 subde-
ductions of degree n, we could find equivalent deductions without opening a
hypothesis, integrating them into the subdeduction of degree n ´ 1 (HI2). We
suppose we have m subdeductions of degree n, and we consider the first one.
We can use the substitution of the basis case in the same way as before so that
we have m ´ 1 subdeductions of degree n, which by HI2 have equivalent de-
ductions of degree n ´ 1. Now, our overall quasi-deduction has maximum degree
n ´ 1.

Since we have proven that we can reduce our quasi-deduction to a quasi-deduction

of maximum degree n ´ 1, by HI1 we can express it as a quasi-deduction without
subdeductions, ending the proof of the initial statement.

We have proven that if we can deduce a formula in FRÑ̊, it can be deduced with a quasi-
deduction without subdeductions. We note that without opening any hypothesis, the only
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rules which can be used are ÑE, repetition and introduction of axioms and premises.
Since ÑE is modus ponens, a quasi-deduction without subdeductions is a valid deduction
in RÑ. Therefore, FRÑ̊ and RÑ are equivalent deduction systems. We can conclude if
S $FRÑ j then S $RÑ j. ˝

2.1.3 Variable-sharing and fallacies

The first result we get that reassures us that we have taken the right direction in the
study of relevance is the variable-sharing theorem, which states that for an entailment to be
a theorem of RÑ the antecedent and consequent must share a variable. This guarantees
that the antecedent and consequent aren’t completely unrealated, they must share some
kind of meaning. To prove this theorem, we will use some tools of matrix semantics which
we introduced in the first chapter.

Theorem 2.1.3 (Variable-sharing in RÑ). Let j, y be implicational formulas. If $RÑ j Ñ y,

then j and y share a variable.

Proof. This proof is similar to the one in [2] for EÑ; the matrix presented here is the one
used in the book, since it is also a model for EÑ. We consider the matrix M with universe
t0, 1, 2, 3u, designated elements t2, 3u and a single operation Ñ defined as in the following
table:

Ñ 0 1 2 3
0 3 3 3 3
1 0 2 2 3
2 0 1 2 3
3 0 0 0 3

To prove that M is a matrix model of RÑ we need only prove that for every interpretation
I : Fm ›Ñ t0, 1, 2, 3u (where Fm refers to the set of implicational formulas) and every
instance of an axiom x, we have I(x) P t2, 3u, and also that for every x1, x1 Ñ x2 P FmL
if I(x1) P t2, 3u and I(x1 Ñ x2) P t2, 3u then I(x2) P t2, 3u. Therefore if the premises of
a deduction are interpreted as 2 or 3, the consequence will be too. The second statement
is clear from the previous table, the first one is proven by checking all possible cases,
something done using the program I coded in Appendix B.

Now, we suppose that j and y share no variables. Therefore, we can assign the value 3
to all variables of j and the value 2 to all the variables of y, so that for the associated
interpretation I, I(j) = 3 (since 3 Ñ 3 = 3) and I(y) = 2 (since 2 Ñ 2 = 2). But
I(j Ñ y) = I(y) Ñ I(j) = 0, so *M j Ñ y. Finally, M is a matrix model of RÑ, which
makes &RÑ j Ñ y unprovable in RÑ. ˝

This theorem assures us that j Ñ (y Ñ y), a formula we discussed earlier, isn’t a theorem
of RÑ, since j and y Ñ y may not share a variable (as is the case in p Ñ (q Ñ q)). With
this, we can already reject the Positive Paradox j Ñ (y Ñ j) as being a theorem of
RÑ, because if it were, using permutation we would conclude j Ñ (y Ñ y) is too. The
Positive Paradox is the epitome of the fallacy of relevance, since it would enable us to
infer something true from anything we wanted. This is the complete opposite of what we
are considering, and we are thus satisfied to have rejected the Positive Paradox.
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2.2 The negation-implication fragment

The objective of this section is to add negation into our relevant implicational calculus in
a way that keeps the classical properties of negation but altogether avoiding paradoxes of
implication. We will do so by extending our Hilbert calculus and proving afterwards that
we avoid the fallacies. This chapter follows the development of Chapter II in [2] for their
calculus of entailment, applying it to our system RÑ. In the book, the initial motivation is
an axiomatisation due to Ackermann [1], but we have found more straightforward to use
an axiomatisation of Russell instead.

2.2.1 Adding negation axioms

We take Russell’s axiomatisation in section 1.4 (with the rule of modus ponens). This par-
ticular axiomatisation is convenient to us since only implication and negation are taken as
primitive connectives and, as we have stated in the introduction of this chapter, we want
to keep the classical properties of negation. Therefore, we add the negational axioms of
this axiomatisation to RÑ (note that CPC1 is the Positive Paradox, so we are avoiding it):

Ax 1 (j Ñ  y) Ñ (y Ñ  j)
Ax 2 (j Ñ  j) Ñ  j
Ax 3   j Ñ j

But this axiomatisation is not independent, that is, there are axioms we can deduce from
others. We are going to prove we can take out Ax 2 or RÑ4 and the resulting axiomatisa-
tions are equivalent.

Lemma 2.2.1. RÑ1 ´ 4+ Ax 1-3, RÑ1 ´ 4+ Ax 1,3 and RÑ1 ´ 3+ Ax 1-3 with the rule modus

ponens are equivalent axiomatisations.

Proof. Firstly, we prove with RÑ1 ´ 4, Ax 1,3 we can deduce Ax 2:

1 (j Ñ  j) Ñ (j Ñ  j) RÑ1
2 ((j Ñ  j) Ñ (j Ñ  j)) Ñ (j Ñ ((j Ñ  j) Ñ  j)) RÑ3
3 j Ñ ((j Ñ  j) Ñ  j) 1, 2 ´ MP
4 ((j Ñ  j) Ñ  j) Ñ (j Ñ  (j Ñ  j)) Ax 1
5 ((j Ñ  j) Ñ  j) Ñ (j Ñ  (j Ñ  j)) Ñ RÑ2

((j Ñ ((j Ñ  j) Ñ  j)) Ñ (j Ñ (j Ñ  (j Ñ  j))))
6 j Ñ (j Ñ  (j Ñ  j)) 3, 4, 5 ´ MP(ˆ2)
7 (j Ñ (j Ñ  (j Ñ  j))) Ñ (j Ñ  (j Ñ  j)) RÑ4
8 j Ñ  (j Ñ  j) 6, 7 ´ MP
9 (j Ñ  (j Ñ  j)) Ñ ((j Ñ  j) Ñ  j) Ax 1

10 (j Ñ  j) Ñ  j 8, 9 ´ MP

Secondly, we need to prove with RÑ1 ´ 3, Ax 1-3 we can deduce RÑ4. A proof that
( j Ñ  y) Ñ (y Ñ j), (y Ñ j) Ñ ( j Ñ  y) and j Ñ   j can be deduced from
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RÑ1 ´ 3, Ax 1-3 can be found in Appendix A. Using this, we give a deduction of RÑ4
with the axioms chosen:

1 ((j Ñ  j) Ñ  j) Ñ (( y Ñ (j Ñ  j)) Ñ ( y Ñ  j)) RÑ2
2 (j Ñ  j) Ñ  j Ax 2
3 ( y Ñ (j Ñ  j)) Ñ ( y Ñ  j) 1, 2 ´ MP
4 (j Ñ ( y Ñ  j)) Ñ ( y Ñ (j Ñ  j)) RÑ3
5 (j Ñ ( y Ñ  j)) Ñ ( y Ñ  j) 3, 4, RÑ2 ´ MP(ˆ2)
6 ( y Ñ  j) Ñ (j Ñ y) Thm

7 (j Ñ ( y Ñ  j)) Ñ (y Ñ j) 5, 6, RÑ2 ´ MP(ˆ2)
8 (j Ñ y) Ñ ( y Ñ  j) Thm

9 ((j Ñ y) Ñ ( y Ñ  j)) Ñ RÑ2
((j Ñ (j Ñ y)) Ñ (j Ñ ( y Ñ  j)))

10 (j Ñ (j Ñ y)) Ñ (j Ñ ( y Ñ  j)) 8, 9 ´ MP
11 (j Ñ (j Ñ y)) Ñ (y Ñ j) 7, 10 ´ MP

where in 5 and 7 the adequate instance of R2 must be taken. Since all the axioms from one
of the axiomatisations can be deduced from the others, and the only rule is modus ponens,
all axiomatisations are equivalent. ˝

For ease in the proofs of the next section, we take the following axiomatisation of RÑ ,
with the rule of modus ponens together with the following axioms:

RÑ 1 j Ñ j identity

RÑ 2 (j Ñ y) Ñ ((x Ñ j) Ñ (x Ñ y)) transitivity

RÑ 3 (j Ñ (y Ñ x)) Ñ (y Ñ (j Ñ x)) permutation

RÑ 4 (j Ñ  y) Ñ (y Ñ  j) contraposition

RÑ 5 (j Ñ  j) Ñ  j

RÑ 6   j Ñ j

2.2.2 Equivalence to natural deduction

In this section, we will add natural deduction rules for negation to FR. We do so by
substituting each axiom we have added by a rule. For example, in the case of axiom RÑ 6
we need to be able to infer j from   j, we thus get the rule of negation elimination:

s   ja

s + 1 ja   E, s

in which the subindex is kept since j carries all hypotheses used in deducing   j. RÑ 5
allows us to infer  j from j Ñ  j, which translates into natural deduction by deducing
 j in the case that  j can be deduced from j (in the relevant sense of from). The resulting
rule is called negation introduction:
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r jtku hyp
...

...

s  ja

s + 1  ja´tku  I, r, s

We observe that for the rule to be used, k must be in a, since otherwise the deduction of
 j under hypothesis j is not relevant. At last, and in the same way as before, the axiom
for contraposition is translated into a natural deduction rule this way:

t yb

...
...

r jtku hyp
...

...

s  ya

s + 1  jaYb´tku contrap, t, r, s

In the end, we have added three new rules to the ones we already had: negation intro-
duction ( I), contraposition (contrap) and double negation elimination (  E). Now, we
must prove the equivalence between natural deduction and Hilbert calculus:

Lemma 2.2.2. $RÑ
 is equivalent to $FRÑ

 .

Proof. First, we prove FR˚
Ñ (a deduction system with the rules of FRÑ in which the axioms

of RÑ can be introduced with subscript ?) is equivalent to FRÑ :

ù  I,   E and contraposition are valid in FR˚
Ñ :

1 jtku hyp
...

...

s  ja

s + 1 j Ñ  ja´tku ÑI, 1, s

s + 2 (j Ñ  j) Ñ  j axiom

s + 3  ja´tku ÑE, s + 1, s + 2

We proved negation introduction as an example, the proofs of the other rules may be
found in Appendix A. Therefore if S $FRÑ

 j we can find a deduction of S $
FR˚

Ñ
 j by

substituting the occurrences of these three rules.
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ùñ RÑ 4 ´ 6 can be proven in FRÑ . We give RÑ 4 as example (for the others, see
Appendix A).

1 j Ñ  yt1u hyp

2 yt2u hyp

3 jt3u hyp

4  yt1,3u ÑE, 1, 3

5  jt1,2u contrap, 2, 3, 4

6 y Ñ  jt1u ÑI, 2, 5

7 (j Ñ  y) Ñ (y Ñ  j) ÑI, 1, 6

Since FRÑ has every rule in FRÑ, then RÑ 1 ´ 3 can also be proven in FRÑ . Therefore,
if S $

FR˚
Ñ
 j, by substituting each axiom introduction by its deduction in FRÑ , we get a

deduction of j in FRÑ , thus proving the other direction.

Since all new axioms are implicational, one may use the same proof as in 2.1.2 to show
that FR˚

Ñ is equivalent to RÑ , hence concluding this proof. ˝

2.2.3 Fallacies avoided

Definition 2.2.3. Let L,L˚
be propositional languages, and † FmL, $° and † FmL˚ , $˚° be

two logics, we say $ is an expansion of $˚
if $ is an extension of $˚

(i.e. if S $˚ j then S $ j)

and L˚ à L, that is, if the language is broadened. Moreover, we say the expansion is conservative
if $ proves no new theorems in the language of L˚

, that is, if j P FmL˚ , then $ j implies $˚ j.

Checking that every expansion in the steps to constructing our relevance logic is con-
servative is enormously important, since conservativity assures we are not adding any
unknown theorems or metalogical properties which would trump the properties of our
initial logic. We are constructing our relevance logic starting from implication and work-
ing our way up, and so being able to ensure conservativity is necessary.

Theorem 2.2.4. RÑ is a conservative expansion of RÑ.

Proof. That it is an expansion is clear from the presentation of both logics, but that it is
conservative falls out of the scope of this work, so we won’t reproduce any proof of it. A
proof can be found in [2], (Theorem 2 in page 146). ˝

What we have stated assures us that the Positive Paradox isn’t a theorem of RÑ and, more
importantly, since we don’t obtain new implicational theorems, only the properties of
implicational formulas that we already had are present in RÑ . For example, Theorem 2.1.3
still holds for implicational formulas of RÑ .
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1 p Ñ ( p Ñ  q) Explosion
2 ( p Ñ  q) Ñ (q Ñ p) Thm
3 p Ñ (q Ñ p) 1,2, RÑ 2-MP

Moreover, conservativity assures us that
the paradox of Explosion is not a theorem
of RÑ , since if it were we could deduce
the Positive Paradox, as in the deduction
at the right.

2.3 First-degree entailments

A first-degree entailment (fde) is an implicational formula j Ñ y where neither j nor y
have any Ñ. In this section we are going to construct the fragment of R that contains
the first degree entailments, we will denote it by R f de. With this, we avoid the nesting of
implications while adding disjunction and conjunction, allowing us to treat Ñ more like
a consequence relation than a connective, the same way the Deduction Theorem (Theo-
rem 1.4.5) allows us to do so in classical logic. We will start by characterising the first
degree entailments and deciding which ones satisfy the relevance criteria by comparing
them to their classical counterparts. Then, we will find the equivalent Hilbert-style calcu-
lus for R f de. Since the first-degree entailment fragment of R is the same as the one for the
calculus of entailment developed by Anderson and Belnap, we will follow Chapter III in
[2].

2.3.1 Motivation and first characterisation

Definition 2.3.1. We give the necessary preliminary definitions:

• We will say a formula consisting of a variable or its negate is a literal.

• A formula j1 ^ ... ^ jn where each ji is a literal is called a primitive conjunction.

• A formula j1 _ ... _ jn where each ji is a literal is called a primitive disjunction.

• A formula j Ñ y where j is a primitive conjunction and y is a primitive disjunction is

called a primitive implication.

Remark 2.3.2. We use the notation j1 ^ ... ^ jn as (...(j1 ^ j2) ^ ...jn´1) ^ jn, and the
same for disjunction. We will see further into this work it is not necessary to incur in this
distinction.

We now pause to determine the validity of a primitive implication. First, we study the case
of a formula j Ñ y where both j and y are literals. j and y have each one variable, so
we consider two cases: if these variables are the same or not. If the variables are different,
we don’t want the formula to be valid since the variable-sharing theorem wouldn’t hold.
If the variables are the same we have four possible formulas:

1 p Ñ p

2 p Ñ  p

3  p Ñ p

4  p Ñ  p
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In order to keep axiom RÑ 2 we need 1 and 4 to be valid formulas. If 3 was a theorem of
RÑ , by means of axiom RÑ 5, 2 would be too. And if 2 were a theorem, since we know
Ax 2 (in the previous section) is too, then  p would be a theorem of RÑ . Therefore, we
discard 2 and 3. Hence, we will have j Ñ y valid if and only if j = y. In keeping with
this condition, we give the first characterisation of validity in R f de:

Definition 2.3.3. We will say a primitive implication j Ñ y is explicitly tautological if one of

the literals of j is identical to one of the literals of y.

In classical logic, a primitive implication j1 ^ ... ^ jn Ñ y1 _ ... _ ym would have to satisfy
one of the following criteria in order to be a tautology:

(i) j has a contradiction, i.e. for some i, j and a variable p, ji = p and jj =  p.

(ii) y has an excluded middle, i.e. for some i, j and a variable p, yi = p and yj =  p.

(iii) j and y share an literal.

We observe that, by only taking 3, we have avoided the relevance issues that arise in 1 and
2. Therefore, formulas as p ^ p Ñ q or p Ñ q _ q aren’t valid in our system, although
they are classical tautologies.

We now go on to define a more general form of first-degree entailment:

Definition 2.3.4. We will say a first degree entailment is in normal form if it is a formula

j1 _ ... _ jn Ñ y1 ^ ... ^ ym where n, m • 1, every ji is a primitive conjunction and every yj is

a primitive disjunction.

Remark 2.3.5. If n = m = 1, the formula is a primitive implication. Also, we say a formula
like j1 _ ... _ jn (a disjunction of conjunctions of literals) is in disjunctive normal form and
a formula as y1 ^ ... ^ ym (a conjunction of disjunctions of literals) is in conjunctive normal

form.

To extend validity to all fde’s in normal form, we turn to the classical conjunction and
disjunction properties (in Theorem 1.4.5) which together with the Deduction Theorem (in
Theorem 1.4.5) give:

$CPC j Ñ y ^ x ñ $CPC j Ñ y and $CPC j Ñ x

$CPC j _ y Ñ x ñ $CPC j Ñ x and $CPC y Ñ x

Since these are sound in regards to relevance, we will take the following properties to be
true for fde’s:

j Ñ y ^ x is explicitly tautological if and only if j Ñ y and j Ñ x are too.
j _ y Ñ x is explicitly tautological if and only if j Ñ y and j Ñ x are too.

The previous properties extend to fde’s in normal form naturally:

Definition 2.3.6. We will say an fde j1 _ ... _ jn Ñ y1 ^ ... ^ ym in normal form is explicitly
tautological if for every i, j § m ji Ñ yj is explicitly tautological, i.e. ji and yj share a literal.
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Clearly, the case of primitive implication still holds. The last step is to extend explicit
tautologyhood to all first-degree entailments. We have chosen this particular characteri-
sation of fde’s (the normal form) because in classical logic any formula can be expressed
as a classically equivalent one in conjunctive or disjunctive normal form. This is achieved
by using certain classical equivalences; we give a list of the ones referring to disjunction,
conjunction and negation:

Commutation: j ^ y()y ^ j, j _ y()y _ j

Association: (j ^ y) ^ x()j ^ (y ^ x), (j _ y) _ x()j _ (y _ x)

Distribution: j ^ (y _ x)()(j ^ y) _ (j ^ x), j _ (y ^ x)()(j _ y) ^ (j _ x)

Double negation:   j()j

De Morgan laws:  (j ^ y)() j _ y,  (j _ y)() j ^ y

A short examination of these assures us they are relevantly sound, in the sense that for us
a deduction of j _ y from y _ j, for example, would be relevant. We can now consider
these classical equivalences as substitution rules taking () to mean "we can substitute
... by ... or viceversa and the resulting formula is equivalent". We define these rules for
non-implicational formulas. For example, the rules of association would be:

(j ^ y) ^ x
j ^ (y ^ x)

j ^ (y ^ x)
(j ^ y) ^ x

(j _ y) _ x
j _ (y _ x)

j _ (y _ x)
(j _ y) _ x

Using these rules, any non-implicational formula can be expressed as an equivalent for-
mula in disjunctive normal form or conjunctive normal form. Therefore, we will say any
fde has an equivalent normal form, found substituting the antecedent and consequent by
equivalent disjunctive and conjunctive normal forms respectively. For example, an equiv-
alent normal form for  (p _ q) Ñ q _ (p ^ r) would be  p ^ q Ñ (q _ p) ^ (q _ r).

Remark 2.3.7. We note that we are using the term "equivalence" in two different contexts:
when referring to equivalence in classical logic, we mean classically equivalent in the
sense of the first chapter; when referring to equivalence in fde’s (in the context of defining
validity in Rfde), we mean two formulas where one is generated by the other by means of
the rules available and conversely.

Remark 2.3.8. We remit to Remark 2.3.2 to note that because of the association rule the
distinction we made is avoided in the context of this section, since any correct positioning
of parentheses would determine an equivalent formula.

Definition 2.3.9. We will say an fde is a tautological implication if it has an equivalent normal

form which is explicitly tautological.

An fde may have more than one equivalent normal form, although its normal forms
j1 _ ... _ jn Ñ y1 ^ ... ^ ym only differ in the order of j’s and y’s and the literals in them
– for example, p _ q Ñ r and q _ p Ñ r are equivalent. Therefore, a formula is explicitly
tautological if and only if all its equivalent normal forms are explicitly tautological. In
conclusion, we only need to find one non-explicitly tautological normal form equivalent
to an fde to disprove its validity.
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2.3.2 An equivalent Hilbert calculus

We present now a Hilbert-style calculus for Rfde:

Axioms Rules
Implication IR: From j Ñ y and y Ñ x we infer j Ñ x
Conjunction R f de1: j ^ y Ñ j CR: From j Ñ y and j Ñ x we infer j Ñ y ^ x

R f de2: j ^ y Ñ y

Disjunction R f de3: j Ñ j _ y DR: From j Ñ x and y Ñ x we infer j _ y Ñ x
R f de4: j Ñ y _ j

Distribution R f de5: j ^ (y _ x)
Ñ (j ^ y) _ x

Negation R f de6: j Ñ   j NR: From j Ñ y we infer  y Ñ  j
R f de7:   j Ñ j

The following result states the equivalence of this axiomatisation with the system in the
previous section:

Proposition 2.3.10. Let j be first-degree entailment, then $R f de
j if and only if j is a tautological

implication.

Proof. ù First, we prove that every explicitly tautological primitive implication is a
theorem of R f de. Let j1 ^ ... ^ jn Ñ y1 _ ... _ ym be an explicitly tautological primitive
implication. Therefore, there exist i § n, j § m such that ji = yj. Since $R f de

j Ñ   j
and $R f de

  j Ñ j, using IR we get $R f de
j Ñ j. With this, we obtain $R f de

ji Ñ yj, so:

1 ji Ñ yj Thm
2 (j1 ^ ... ^ ji´1) ^ ji Ñ ji R f de2
3 (j1 ^ ... ^ ji´1) ^ ji Ñ yj 1, 2 ´ IR
4 (j1 ^ ... ^ ji) ^ (ji+1 ^ ... ^ jn) Ñ j1 ^ ... ^ ji R f de1
5 j1 ^ ... ^ jn Ñ yj 3, 4 ´ IR
6 yj Ñ (y1 _ ... _ yj´1) _ yj R f de4
7 j1 ^ ... ^ jn Ñ y1 _ ... _ yj 5, 6 ´ IR
8 y1 _ ... _ yj Ñ (y1 _ ... _ yj) _ (yj+1 _ ... _ ym) R f de3
9 j1 ^ ... ^ jn Ñ y1 _ ... _ ym 7, 8 ´ IR

Secondly, we prove that every explicitly tautological fde in normal form is a theorem of
R f de. Let j1 _ ... _ jn Ñ y1 ^ ... ^ ym in normal form be explicitly tautological. Therefore,
for every i § n, j § m we have $R f de

ji Ñ yj, since the formula is explicitly tautological.
By using DR, we get $R f de

j1 _ ... _ jn Ñ yj for every j § m and through CR we conclude
$R f de

j1 _ ... _ jn Ñ y1 ^ ... ^ ym, in a similar way as for primitive implications.

Finally, we prove that the substitution rules we use to find equivalent normal forms are
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theorems of Rfde. As an example, we prove the case of one of the De Morgan laws:

1  j Ñ  j _ y Rfde3
2  ( j _ y) Ñ   j 1 ´ NR
3   j Ñ j Rfde7
4  ( j _ y) Ñ j 2, 3 ´ IR
5  y Ñ  j _ y Rfde3
6  ( j _ y) Ñ   y 5 ´ NR
7   y Ñ y Rfde7
8  ( j _ y) Ñ y 6, 7 ´ IR
9  ( j _ y) Ñ j ^ y 4, 8 ´ CR

10  (j ^ y) Ñ   ( j _ y) 9 ´ NR
11   ( j _ y) Ñ  j _ y Rfde7
12  (j ^ y) Ñ  j _ y 10, 11 ´ IR

1 j ^ y Ñ y Rfde2
2  y Ñ  (j ^ y) 1 ´ NR
3 j ^ y Ñ j Rfde1
4  j Ñ  (j ^ y) 3 ´ NR
5  j _ y Ñ  (j ^ y) 2, 4 ´ DR

To end this proof, we show:

Lemma 2.3.11 (Replacement). Let j, y1, y2 be non-implicational formulas and p be a variable

of j. If $Rfde
y1 Ñ y2 and $Rfde

y2 Ñ y1, then

$Rfde
j

✓
y1
p

◆
Ñ j

✓
y2
p

◆
and $Rfde

j

✓
y2
p

◆
Ñ j

✓
y1
p

◆

(where j
⇣

y1
p

⌘
and j

⇣
y2
p

⌘
are obtained by substituting the same instance of p in j by y1 and y2

respectively)

Proof. (of lemma) (For ease in the notation, we denote "$Rfde x1 Ñ x2 and $Rfde x2 Ñ x1"
by "$Rfde x1 Ô x2"). Let j1, j2 be such that $Rfde y1 Ô y2. By induction over j:

* If j is a variable, then j = p, and therefore j
⇣

y1
p

⌘
= y1 and j

⇣
y2
p

⌘
= y2, by

hypothesis, we obtain what we wanted.

* If j =  j1 and suppose $Rfde j1
⇣

y1
p

⌘
Ô j1

⇣
y2
p

⌘
(HI). Using the rule of negation

(NR),

$Rfde  j1
✓

y1
p

◆
Ô  j1

✓
y2
p

◆

* Let j = j1 ^ j2 and suppose $Rfde j1

⇣
y1
p

⌘
Ô j1

⇣
y2
p

⌘
if p appears in j1 and

$Rfde j2

⇣
y1
p

⌘
Ô j2

⇣
y2
p

⌘
if p appears in j2 (HI). Then since the lemma states we

only substitute one instance of p in the formula:

(j1 ^ j2)

✓
y1
p

◆
=

$
&

%
j1

⇣
y1
p

⌘
^ j2 if p is substituted in j1

j1 ^ j2

⇣
y1
p

⌘
if p is substituted in j2

and

(j1 ^ j2)

✓
y2
p

◆
=

$
&

%
j1

⇣
y2
p

⌘
^ j2 if p is substituted in j1

j1 ^ j2

⇣
y2
p

⌘
if p is substituted in j2
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We prove the equivalence in the first case, the other is proven analogously:

1 j1

⇣
y1
p

⌘
^ j2 Ñ j1

⇣
y1
p

⌘
Rfde1

2 j1

⇣
y1
p

⌘
Ñ j1

⇣
y2
p

⌘
HI

3 j1

⇣
y1
p

⌘
^ j2 Ñ j1

⇣
y2
p

⌘
1, 2 ´ IR

4 j1

⇣
y1
p

⌘
^ j2 Ñ j2 Rfde1

5 j1

⇣
y1
p

⌘
^ j2 Ñ j1

⇣
y2
p

⌘
^ j2 3, 4 ´ CR

1 j1

⇣
y2
p

⌘
^ j2 Ñ j1

⇣
y2
p

⌘
Rfde1

2 j1

⇣
y2
p

⌘
Ñ j1

⇣
y1
p

⌘
HI

3 j1

⇣
y2
p

⌘
^ j2 Ñ j1

⇣
y1
p

⌘
1, 2 ´ IR

4 j1

⇣
y2
p

⌘
^ j2 Ñ j2 Rfde1

5 j1

⇣
y2
p

⌘
^ j2 Ñ j1

⇣
y1
p

⌘
^ j2 3, 4 ´ CR

* The case where j = j1 _ j2 is analogous to the previous one, using DR instead of
CR.

˝

Remark 2.3.12. With this lemma and the fact that $Rfde j ^ (y ^ x) Ô (j ^ y)^ x and the
same for disjunction, the distinction in Remark 2.3.2 is avoided in Rfde.

This lemma and rule IR, conclude that if $Rfde y1 Ô y2, then

$Rfde j1

✓
y1
p

◆
Ñ j2

✓
y1
p

◆
ñ $Rfde j1

✓
y2
p

◆
Ñ j2

✓
y2
p

◆

therefore the use of the substitution rules preserves the theoremhood of formulas, prov-
ing that if j is a tautological implication, then $R f de

j, since we know every explicitly
tautological implication in normal form is a theorem of R f de.

ùñ We need to prove that the axioms are tautological entailments and that the rules
preserve this property.

˝ Rule of conjunction

Let j Ñ y and j Ñ x be tautological entailments, we need to prove j Ñ y ^ x is too. We
express all formulas in equivalent normal forms:

j Ñ y = j1 _ ... _ jn Ñ y1 ^ ... ^ ym

j Ñ x = j1 _ ... _ jn Ñ x1 ^ ... ^ xk

j Ñ y ^ x = j1 _ ... _ jn Ñ y1 ^ ... ^ ym ^ x1 ^ ... ^ xk

Clearly j Ñ y ^ x is a tautological entailment bacause for all i = 1, .., n ji shares a literal
with every yj and x j1 .

˝ Rule of disjunction

Let j Ñ x and y Ñ x be tautological entailments, we need to prove j _ y Ñ x is too. We
express all formulas in equivalent normal forms:

j Ñ x = j1 _ ... _ jn Ñ x1 ^ ... ^ xk

y Ñ x = y1 _ ... _ ym Ñ x1 ^ ... ^ xk

j _ y Ñ x = j1 _ ... _ jn _ y1 _ ... _ ym Ñ x1 ^ ... ^ xk
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Since any xi shares a literal with jj or yj1 for all possible j, j
1, clearly j Ñ y ^ x is a

tautological entailment.

˝ Rule of negation

Let j Ñ y be a tautological entailment, we need to prove  y Ñ  j is too. This relies on
the fact that if j is in disjunctive normal form (or conjuntive normal form), then by chang-
ing ^’s into _’s and viceversa and the literals into their negates or taking out negation,
we obtain a conjuntive normal form (disjunctive normal form) for  j. We show the first
case, but first we prove by induction over n • 1 that

(*) if y1 ^ ... ^ yn is a primitive conjunction, by changing ^ into _ and p into p

and conversely we obtain a primitive disjunction equivalent to  (y1 ^ ... ^ yn)
(in the sense of being able to obtain it from the rules)

• Base case (n = 1): We have the literal y1. Therefore, y1 = p or y1 =  p for some
variable p in the language of Rfde. In the first case, it is clear that  p is an equivalent
primitive disjunction for  y1, and in the second case p is equivalent to  y1 =   p

by using double negation.

• Inductive step: We take the primitive conjunction y1 ^ ... ^ yn ^ yn+1 and we sup-
pose that  (y1 ^ ... ^ yn) has an equivalent primitive disjunction y by changing ^
into _ and  p into p and conversely (HI).  (y1 ^ ... ^ yn ^ yn+1) is equivalent to
 ((y1 ^ ... ^ yn)^ yn+1), which by using De Morgan gives  (y1 ^ ... ^ yn)_ yn+1.
By using HI, this formula is in turn equivalent to y _ yn+1. Now, yn+1 is a literal,
therefore as in the base case either  p or p is equivalent to  yn+1, giving us the
equivalent formula we wanted.

Lastly, we show by induction over n • 1 that if j1 _ ... _ jn is in disjunctive normal form,
making the transformation described previously we obtain a conjuntive normal form for
 (j1 _ ... _ jn):

• Base case (n = 1): We have j1 which is a primitive conjunction, that is, j1 =
y1 ^ ... ^ ym where each yi is a literal. Therefore, the base case is reduced to (*).

• Inductive step: We take j1 _ ... _ jn _ jn+1 in disjunctive normal form and suppose
 (j1 _ ... _ jn) has an equivalent conjunctive normal form j using the indicated
transformation (HI). Since jn+1 is a primitive conjunction, because of (*) there is
a primitive disjunction j˚ equivalent to  jn+1. Therefore, j ^ j˚ is equivalent
to  (j1 _ ... _ jn) and satisfies that it is obtained from j1 _ ... _ jn by using the
indicated transformation.

The same result for conjunctive normal forms can be obtained analogously. With this, it
is clear that if j Ñ y is a tautological entailment,  y Ñ  j is too, since if the normal
form for j Ñ y is explicitly tautological, the normal form for  y Ñ  j found through
the changes would be too.

˝ Rule of implication
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First, we observe that j Ñ j is a tautological implication, since we can easily prove by
induction over n and using Distribution that if we have the conjunctive normal form of j
below then we get its disjunctive normal form like so:

^n

i=1 ji = ^n

i=1(ji

1 _ ... _ ji

ni
) _i1¨...¨in

j=1 j1
j
= _ji§ni

(j1
j1

^ ... ^ jn

jn
)

(taking all possible conjunctions of elements each from one of the terms in the conjunctive
normal form). So for every possible i and j, ji

ji
in j1

j1
_ ... _ jn

jn
will be in ji

1 ^ ... ^ ji
ni

,
making j Ñ j a tautological entailment.

Let j Ñ y and y Ñ x be tautological entailments, we need to prove j Ñ x is too. First,
we express all the formulas in normal form:

j Ñ y = j1 _ ... _ jn Ñ y1 ^ ... ^ ym

y Ñ x = y˚
1 _ ... _ y˚

m˚ Ñ x1 ^ ... ^ xk

j Ñ x = j1 _ ... _ jn Ñ x1 ^ ... ^ xk

Each ji must share a literal with each x j for j Ñ x to be a tautological entailment. Let i be
such that 1 § i § n, then ji shares a literal yi

j
with yj for every j = 1, ..., m, so yi

1 ^ ... ^ yi
m

is a subconjunction of ji. We see that it is also one of the terms y˚
l

for some l § m
˚, since

the terms of y˚
1 _ ... _ y˚

m˚ are generated taking conjunctions of elements each from one
of the terms in y1 ^ ... ^ ym (in all possible combinations). As y Ñ x is a tautological
entailment, each x j for j = 1, ..., k shares a literal with y˚

l
, and in turn with ji, which was

what we wanted.

˝ Axioms

With the initial observation in the proof for the rule of implication, we can prove that the
axioms are tautological entailments. Rfde1 ´ 4 are very similar, so we only prove R1. We
do it by induction over the number of terms of the disjunctive (conjunctive if it is Rfde3, 4)
form of y. The base case is that y is equivalent to a primitive conjunction and so (following
the same notation as in the observation) (j1 _ .. _ jn) ^ y is equivalent by Distribution to
(j1 ^ y) _ .. _ (jn ^ y) which is in disjunctive normal form. Since for all possible i and
j, ji and j1

j
share a literal, ji ^ y and j1

j
do too. For the inductive step we suppose that

if y1 is equivalent to y1 _ .. _ ym´1 then j ^ j1 Ñ j is a tautological implication. Now,
if y is equivalent to y1 _ ... _ ym, then taking y1 = y1 _ .. _ ym´1 we have that j ^ y is
equivalent to (j ^ y1)_ (j ^ ym) by Distribution. By hypothesis of induction and the base
case, and since we have proven the rule of disjunction (conjunction if it is Rfde3, 4) works
for tautological entailments, (j ^ y1) _ (j ^ ym) Ñ y is a tautological implication, and as
it has an explicitly tautological normal form and it also is equivalent to j ^ y Ñ j then
j ^ y Ñ j is a tautological implication.

To prove Rfde5 is a tautological implication we first observe that it is equivalent by Dis-
tribution to j ^ (y _ x) Ñ (j _ x) ^ (y _ x). We have proven that j ^ (y _ x) Ñ j,
j ^ (y _ x) Ñ y _ x and j Ñ j _ x are tautological implications, and since we already
have that the rules preserve this property by IR j ^ (y _ x) Ñ j _ x is a tautological im-
plication and finally by CR j ^ (y _ x) Ñ (j _ x) ^ (y _ x) is a tautological implication,
so R5 is too.

Rfde6, 7 are easy to see, since by Double Negation   j is equivalent to j, so with the
initial observation in the proof of IR we are done. ˝
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2.4 Syntax of R

2.4.1 Presentation of the axioms

We first present the axiomatisation of the logic we have finally constructed, and afterwards
we will discuss the choice of axioms and rules:

AXIOMS
R1 j Ñ j
R2 (j Ñ y) Ñ ((x Ñ j) Ñ (x Ñ y))
R3 (j Ñ (y Ñ x)) Ñ (y Ñ (j Ñ x))
R4 (j Ñ (j Ñ y)) Ñ (j Ñ y)
R5 j ^ y Ñ j
R6 j ^ y Ñ y
R7 (j Ñ y) ^ (j Ñ x) Ñ (j Ñ y ^ x)
R8 j Ñ j _ y
R9 y Ñ j _ y

R10 (j Ñ x) ^ (y Ñ x) Ñ (j _ y Ñ x)
R11 j ^ (y _ x) Ñ (j ^ y) _ x
R12 (j Ñ  y) Ñ (y Ñ  j)
R13   j Ñ j

RULES
j j Ñ y

y

j y
j ^ y

MP, modus ponens

&I, adjunction

If R didn’t extend the logics which we have discussed until now, we wouldn’t have taken
adequate axioms, so we need to check that:

Proposition 2.4.1. R is an expansion of RÑ and RÑ

Proof. This result is derived from Lemma 2.2.1, since R1 ´ 4 + R12, 13 + MP give RÑ .
Since RÑ is an expansion of RÑ(Proposition 2.2.4), R is also an expansion of RÑ. ˝

Proposition 2.4.2. R is an expansion of Rfde

Proof. R f de1 ´ 5 and Rfde7 are axioms of R, and since we know Rfde6 is a theorem of RÑ 
from the proof of Lemma 2.2.1, we need only prove that the inference rules of Rfde are
valid in R:

˝ Rule of disjunction ˝ Rule of conjunction

1 j Ñ x Premise 1 j Ñ y Premise
2 y Ñ x Premise 2 j Ñ x Premise
3 (j Ñ x) ^ (y Ñ x) 1, 2 ´ &I 3 (j Ñ y) ^ (j Ñ x) 1, 2 ´ &I
4 (j Ñ x) ^ (y Ñ x) Ñ R10 4 (j Ñ y) ^ (j Ñ x) Ñ R7

(j _ y Ñ x) (j Ñ y ^ x)
5 j _ y Ñ x 3, 4 ´ MP 5 j Ñ y ^ x 3, 4 ´ MP
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˝ Rule of implication ˝ Rule of negation

1 j Ñ y Premise 1 j Ñ y Premise
2 y Ñ x Premise 2 (j Ñ y) Ñ ( y Ñ  j) Thm
3 (y Ñ x) Ñ R2 3  y Ñ  j 1, 2 ´ MP

((j Ñ y) Ñ (j Ñ x))
4 (j Ñ y) Ñ (j Ñ x) 2, 3 ´ MP
5 j Ñ x 1, 4 ´ MP

By the proof of Lemma 2.2.1 (j Ñ y) Ñ ( y Ñ  j) is a theorem of RÑ , so of R too. ˝

With this discussion we have given reason to all axioms except R7, 10 and rule &I. It is
clear they are useful in deriving the rules of disjunction and conjunction, but couldn’t we
have avoided having a new rule? In classical logic, when we want to infer x from j and
y, we prove j Ñ (y Ñ x) and apply modus ponens twice. Therefore, couldn’t we have an
axiom j Ñ (y Ñ j ^ y) and avoid &I altogether? In fact, j Ñ (y Ñ j ^ y) is a tautology
in classical propositional logic, since given any interpretation into t0, 1u we have:

p q p Ñ (q Ñ p ^ q)
0 0 0 ÑB (0 ÑB 0 ^B 0) = 0 ÑB (0 ÑB 0) = 0 ÑB 1 = 1
0 1 0 ÑB (1 ÑB 0 ^B 1) = 0 ÑB (1 ÑB 0) = 0 ÑB 0 = 1
1 0 1 ÑB (0 ÑB 1 ^B 0) = 1 ÑB (0 ÑB 0) = 1 ÑB 1 = 1
1 1 1 ÑB (1 ÑB 1 ^B 1) = 1 ÑB (1 ÑB 1) = 1 ÑB 1 = 1

where the operations are the ones in the first chapter. But adding this axiom to R gives:

1 (j ^ y Ñ j) Ñ ((y Ñ j ^ y) Ñ (y Ñ j)) R2
2 j ^ y Ñ j R5
3 (y Ñ j ^ y) Ñ (y Ñ j) 1, 2 ´ MP
4 j Ñ (y Ñ j ^ y) New Axiom
5 (j Ñ (y Ñ j ^ y)) Ñ (((y Ñ j ^ y) Ñ (y Ñ j)) Ñ (j Ñ (y Ñ j))) R2
6 ((y Ñ j ^ y) Ñ (y Ñ j)) Ñ (j Ñ (y Ñ j)) 4, 5 ´ MP
7 j Ñ (y Ñ j) 3, 6 ´ MP

This generates a problem for two reasons. First and foremost, j Ñ (y Ñ j) is the Positive
Paradox, and the object of this logic is to avoid it, therefore, this is enormously problematic
on its own. In addition, we have previously shown that the Positive Paradox isn’t a
theorem of RÑ, therefore, by being one of R, it would signify the extension between RÑ
and R isn’t conservative. So, this course of action doesn’t comply with our requirements.
A second idea would be to avoid &I not by substituting the rule, but by substituting
axioms R7, 10 with

R7˚ (j Ñ y) Ñ ((j Ñ x) Ñ (j Ñ y ^ x))

R10˚ (j Ñ x) Ñ ((y Ñ x) Ñ (j _ y Ñ x))

Hence, the need for &I in the proof that the rules of disjunction and conjunction are valid
in R is lost. But this doesn’t satisfy us either. We see in this case (j Ñ y) Ñ (j Ñ j)
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would be a theorem of R:

1 (j Ñ j) Ñ ((j Ñ y) Ñ (j Ñ j ^ y)) R7˚
2 j Ñ j R1
3 (j Ñ j) Ñ (j Ñ j ^ y) 1, 2 ´ MP
4 j ^ y Ñ j R5
5 (j ^ y Ñ j) Ñ ((j Ñ j ^ y) Ñ (j Ñ j)) R2
6 (j Ñ j ^ y) Ñ (j Ñ j) 4, 5 ´ MP
7 ((j Ñ y) Ñ (j Ñ j ^ y)) Ñ ((j Ñ y) Ñ (j Ñ j)) 6, R2 ´ MP
8 (j Ñ y) Ñ (j Ñ j) 3, 7 ´ MP

The matrix in Theorem 2.1.3 (Matrix 1 below) disproves that (j Ñ y) Ñ (j Ñ j) is a
theorem of RÑ for if we take the interpretation I such that I(p) = 1 and I(q) = 3, then
I((p Ñ q) Ñ (p Ñ p)) = (1 Ñ 3) Ñ (1 Ñ 1) = 3 Ñ 2 = 0. This implies that this manner
of avoiding &I would also establish R to be non-conservative with respect to RÑ. We are
thus satisfied by having the rule &I.

Ñ 0 1 2 3
0 3 3 3 3
1 0 2 2 3

2˚ 0 1 2 3
3˚ 0 0 0 3

Ñ 0 1 2
0 2 2 2
1 0 2 0

2˚ 0 0 2

Matrices 1 and 2 respectively

Remark 2.4.3. In [2] the fact that (j Ñ y) Ñ (j Ñ j) is not a theorem of EÑ is indicated
to be refuted by Matrix 2 above. For any interpretation I in this matrix, I(j Ñ j) would be
2, so for (j Ñ y) Ñ (j Ñ j) to be unsatisfied (i.e. I((j Ñ y) Ñ (j Ñ j)) ‰ 2), I(j Ñ y)
would need to be 1. That is impossible since an implication can only be interpreted as 0
or 2 in this matrix. This error in [2] is easily avoided by using the matrix in Theorem 2.1.3
as previously, which is also a matrix model for EÑ.

Remark 2.4.4. By Proposition 2.4.1 and Proposition 2.4.2, the following formulas are the-
orems of R, since we’ve proven they are theorems either of Rfde or of RÑ :

(j Ñ  j) Ñ  j j Ñ   j
(j Ñ y) Ñ ( y Ñ  j) ( j Ñ  y) Ñ (y Ñ j)
(j Ñ y) Ñ ((y Ñ x) Ñ (j Ñ x))

where the last theorem is deduced from R2 and R3.

2.4.2 Variable-sharing Theorem and its consequences

Definition 2.4.5. We define the concepts of antecedent and consequent parts of a formula j
recursively:

• j is a consequent part of j.
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• If  y is a consequent part of j, then y is an antecedent part of j.

• If  y is an antecedent part of j, then y is a consequent part of j.

• If y ^ x or y _ x is a consequent part of j, then y and x are consequent parts of j.

• If y ^ x or y _ x is an antecedent part of j, then y and x are antecedent parts of j.

• If y Ñ x is a consequent part of j, then y is an antecedent part of j and x is a consequent

part of j.

• If y Ñ x is an antecedent part of j, then y is a consequent part of j and x is an antecedent

part of j.

Theorem 2.4.6 (Variable-sharing in R). If $R j Ñ y then there is a variable p occurring as a

consequent in both j and y or as an antecedent in both j and y.

Proof. The matrix in Appendix C is a matrix model for R (we don’t reproduce it here
since it’s very large). It has elements t˘0, ˘1 ˘ 2, ˘3u and the positives are the designated
elements. We have proven the axioms take designated values in it using the program in
Appendix B and a simple look at the table defining implication ratifies that if for some
interpretation I, I(j) and I(j Ñ y) are positive, then I(y) is too and if I(j) and I(y) are
positive, then I(j ^ y) is.

The proof of this theorem is by contrapositive. Let j Ñ y be a formula in which there
doesn’t exist any variable occurring neither as a consequent in both j and y nor as an
antecedent in both j and y. Then, for every variable occurring in j Ñ y there are six
cases depending on whether it appears in j or y and if it does so as a consequent or an
antecedent. Depending on this, we give to the variables the following assignment in the
universe our matrix:

j y v(p)

consequent ˘˘ ´1
antecedent ˘˘ +1

˘˘ consequent ´2
˘˘ antecedent +2

consequent antecedent +3
antecedent consequent ´3

This assignment is extended to an interpretation I for the matrix model in Appendix C in
the usual way. If we prove

(i) If x is an antecedent of j then I(x) P t˘1, ´3u and if it is a consequent of j then
I(x) P t˘1,+3u.

(ii) If x is an antecedent of y then I(x) P t˘2,+3u and if it is a consequent of y then
I(x) P t˘2, ´3u.

we are finished, because since j is a consequent part of j and y is a consequent part of y,
then I(j) P t˘1,+3u and I(y) P t˘2, ´3u, and restricting implication to these values:

Ñ ´3 ´2 +2
´1 ´3 ´3 ´3
+1 ´3 ´3 ´3
+3 ´3 ´3 ´3
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we obtain that I(j Ñ y) = ´3 R t+0,+1,+2,+3u. We consequently conclude &R j Ñ y.
We need only prove (i) and (ii), but we will only explicitly prove (i) since the proof of (ii)
is analogous. We prove (i) by induction over the construction of x:

• If x = p, a variable, then

Case 1 : If x is an antecedent part of j, then I(p) = v(p) = +1, ´3.

Case 2 : If x is a consequent part of j, then I(p) = v(p) = ´1,+3.

• If x =  x1 and x1 complies with the conditions of (i), then

Case 1 : If x is an antecedent part of j, then x1 is a consequent part of j, therefore
I(x) =  I(x1) P t¯1, ´3u since I(x1) P t˘1,+3u.

Case 2 : If x is a consequent part of j, then x1 is an antecedent part of j, therefore
I(x) =  I(x1) P t¯1,+3u since I(x1) P t˘1, ´3u.

• If x = x1 _ x2 and x1, x2 comply with the conditions of (i), then

Case 1 : If x is an antecedent part of j, then x1, x2 are antecedent parts of j and
I(x1), I(x2) P t˘1, ´3u, so if we restrict disjunction to these values (see table
below), I(x) P t˘1, ´3u.

Case 2 : If x is a consequent part of j, then x1, x2 are consequent parts of j and
I(x1), I(x2) P t˘1,+3u, so if we restrict disjunction to these values (see table
below), I(x) P t˘1,+3u.

_ ´3 ´1 +1
´3 ´3 ´1 +1
´1 ´1 ´1 +1
+1 +1 +1 +1

_ ´1 +1 +3
´1 ´1 +1 +3
+1 +1 +1 +3
+3 +3 +3 +3

• The cases where x = x1 ^ x2 and x = x1 Ñ x2 are analogous, and we will simply
state the matrices with restricted values:

^ ´3 ´1 +1
´3 ´3 ´3 ´3
´1 ´3 ´1 ´1
+1 ´3 ´1 +1

^ ´1 +1 +3
´1 ´1 ´1 ´1
+1 ´1 +1 +1
+3 ´1 +1 +3

Ñ ´3 ´1 +1
´1 ´3 +1 +1
+1 ´3 ´1 +1
+3 ´3 ´3 ´3

Ñ ´1 +1 +3
´3 +3 +3 +3
´1 +1 +1 +3
+1 ´1 +1 +3

Case 1 ^ Case 2 ^ Case 1 Ñ Case 2 Ñ ˝

Corollary 2.4.7. If $R j Ñ y then j and y share a variable.

This theorem is an extension of the one we saw when constructing R. Again, the fact
that antecedent and consequent share common meaning in the form of sharing a variable
is a remarkably desirable property, since if you stated that X implied something with
no relation to X, most probably the reaction of your interlocutor would be to ask "But
how is that relevant?". But Theorem 2.4.6 not only allows us to discard formulas with no
intensional meaning: depending on the position of the shared variable, the formula can
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be discarded too. For example, the following are not theorems of R, since an instance of
them doesn’t comply with the necessary conditions:

j Ñ (j Ñ y) ploomoon
conseq.

ploomoon
ante.

Ñ qloomoon
conseq.looooooooomooooooooon

conseq.

j Ñ (y Ñ  j) ploomoon
conseq.

qloomoon
ante.

Ñ  ploomoon
ante.looomooon

conseq.loooooooooomoooooooooon
conseq.

j Ñ  j ploomoon
conseq.

 ploomoon
ante.looomooon

conseq.

 j Ñ j  ploomoon
ante.looomooon

conseq.

ploomoon
conseq.

Another consequence of Theorem 2.4.6 is the conservativity in $Rfde§$R:

Theorem 2.4.8. R is a conservative expansion of Rfde.

Proof. That it is an expansion is clear from Proposition 2.4.2, so we only need to prove
conservativity. First, we observe that since $Rfde§$R and through the use of &I, the
following are theorems of R (with j Ø y := (j Ñ y) ^ (y Ñ j)):

j ^ y Ø y ^ j j _ y Ø y _ j
(j ^ y) ^ x Ø j ^ (y ^ x) (j _ y) _ x Ø j _ (y _ x)
j ^ (y _ x) Ø (j ^ y) _ (j ^ x) j _ (y ^ x) Ø (j _ y) ^ (j _ x)
 (j ^ y) Ø  j _ y  (j _ y) Ø  j ^ y
  j Ø j

Let j Ñ y be a first-degree entailment such that $R j Ñ y. As a result of the previous
observation, if j1 Ñ y1 is a normal form of j Ñ y then $R j Ø j1, $R y Ø y1 and
through the use of modus ponens and R2, $R j1 Ñ y1 (note that $R j Ø j1 ñ $R
j Ô j1). Now, if j1 = j1 _ ... _ jn and y1 = y1 ^ ... ^ ym, for 1 § j § m, we have
$R y1 ^ ... ^ yn Ñ yj because of R5 and R6. Similarly, for 1 § i § n $R ji Ñ j1 _ ... _ jn.
Then, by the use of modus ponens, we conclude that for every i = 1, ..., n j = 1, ..., m

$R ji Ñ yj. Applying Theorem 2.4.6, we obtain that for each i, j available there is a
variable pi,j such that it appears as an antecedent in ji and yj, or as a consequent in ji

and yj. But we need to prove that ji and yj share a literal, not only a variable. We study
the literal in which pi,j is contained. Since ji is a primitive conjunction, ji = ji

1 ^ ... ^ ji
ni

and since yj is a primitive disjunction, yj = y
j

1 _ ... _ j
j

mj
where all ji

r, y
j

s are literals.

There must be 1 § r § ni, 1 § s § mj such that pi,j is in ji
r and y

j

s, but these literals are
consequent parts of ji and yj respectively, and since pi,j can only appear as an antecedent
or a consequent in both at the same time, we get ji

r = y
j

s = pi,j or ji
r = y

j

s =  pi,j. This
implies that j Ñ y is a tautological entailment, concluding our proof. ˝

As remarked in section 2.2.3, it is very important to see that R is a conservative expan-
sion of all the subsystems we have defined before. Otherwise, all the effort we put into
constructing them so they are relevantly sound would have been unnecessary and we
wouldn’t be able to ensure the properties we proved for the formulas of RÑ, RÑ , Rfde still
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apply to R, because we may be unknowingly adding theorems or properties to our logic
which it didn’t have. That is why we state the following theorem, although we cannot
give a full proof of it in this work:

Theorem 2.4.9. R is a conservative expansion of RÑ and RÑ.

Proof. They are both expansions because of Proposition 2.4.1, but as in Theorem 2.2.4, we
don’t have the necessary tools to prove R is a a conservative expansion of RÑ and RÑ. A
proof of this may be found in [14] (Corollary 2 and Corollary 4˚). ˝

Both these theorems assure that all the paradoxes we mentioned at the start of this chapter
(Positive Paradox, Explosion,...) and which we avoided through the careful construction
of Rfde, RÑ and RÑ are not theorems of R.

2.4.3 Expanding the language

As in [2], new connectives may be introduced in R which will aid us in the following
chapters. We present them here.

Co-tenability

We begin by discussing the role of conjunction and disjunction in this logic. Since &R j Ñ
(y Ñ j ^ y), it is clear that the relevant conjunction lacks some of the properties classical
conjunction has, so we can ask ourselves if some other connective can assimilate them.
In the first chapter, we presented an axiomatisation for classical logic which defined _ as
j _ y :=  j Ñ y so we define a new connective:

Definition 2.4.10. Let j, y be formulas in the language of R, we define intensional disjunction
as the connective + such that j + y :=  j Ñ y.

Now, the classical way to extend + into a conjunction is to use the De Morgan laws, which
would give us the definition:

Definition 2.4.11. Let j, y be formulas in the language of R, we define intensional conjunction
as the connective ˝ such that j ˝ y :=  (j Ñ  y).

Clearly, $R j ˝ y Ø  ( j + y).

This definition is equivalent to adding the following axioms to R:

˝1 j Ñ (y Ñ j ˝ y)
˝2 (j Ñ (y Ñ x)) Ñ (j ˝ y Ñ x)

That is, when these axioms are added $R j ˝ y Ø  (j Ñ  y) (these deductions are long
and have been added to Appendix A). Therefore, we can take ˝ as primitive in R. We can
also see that $R (j ˝ y Ñ x) Ñ (j Ñ (y Ñ x)), making ˝2 an equivalence, this way: $R
(y Ñ j ˝ y) Ñ ((j ˝ y Ñ x) Ñ (y Ñ x)) because $R (j Ñ y) Ñ ((y Ñ x) Ñ (j Ñ x))
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from Remark 2.4.4, from R2 and ˝1 we get $R j Ñ ((j ˝ y Ñ x) Ñ (y Ñ x)), and R3
gives us the converse of ˝2.

Consequently, ˝ keeps the classical properties that we avoided in ^ when constructing
Rfde, but it lacks one of the fundamental properties needed to be considered a conjunction,
since &R j ˝ y Ñ j. This is true because otherwise the Positive Paradox would be a
theorem of R, which we are certain it is not. This is shown through the use of the converse
of ˝2, that gives $R (j ˝ y Ñ j) Ñ (j Ñ (y Ñ j)). Thus, we change the nomenclature
"intensional conjunction" in favour of "co-tenability", finding it more adequate.

Adding t

A natural neighbor of R can be constructed from the addition of a simple constant: t, the
conjunction of all logical truths. The idea behind this extension is being able to define
truth from a constant. As we saw in the preliminaries, in classical logic a formula is a
tautology if and only if it is classically equivalent to J (in the Lindenbaum algebra of CPC
the tautologies are elements of 1 = [J]), and therefore all tautologies are equivalent. In R,
p Ñ p and q Ñ q are not equivalent (they don’t imply each other) by the Variable-Sharing
theorem, although in CPC they are. Therefore, instead of having a constant equivalent to
all tautologies, we will have a constant implying all tautologies, since $R j ^ y Ñ j. This
constant is included by adding the following axioms to R:

t1 t
t2 t Ñ (j Ñ j)

The resulting logic is called Rt, and it clearly is an expansion of R. We prove the following
property, which will be useful to us in the future:

$Rt j Ø (t Ñ j) (2.1)

Ñ is obtained through the use of R3 in t2 and the other implication is obtained from R4,
$Rt t Ñ ((t Ñ j) Ñ j), by using modus ponens with t1.



Chapter 3

Algebraic semantics for relevance
logic

In this final chapter we present semantics for Rfde and R. As we saw in the first chapter,
classical logic can be given a semantics with the class of Boolean algebras, but also with
only one Boolean algebra, B. Parallelly, Rfde can also be given a semantics in the class
of intensional lattices, and then reduce them to only one element of the class. The first
semantics is not actually stated in [2], though it is hinted at; the second one is what the
book centers on with respect to a first-degree entailment semantics, since Efde is equivalent
to Rfde. For R, we will present an equivalent algebraic semantics from [10], and then give
an equivalent algebraic semantics for Rt which is found in [2], but for which equivalence
is not proven in the book.

3.1 Semantics for Rfde

3.1.1 Preliminaries on filters

Definition 3.1.1. A sublattice of a lattice † L,§° is a non-empty subset of L which is closed

under the operations ^ and _ of † L,§°.

We present two types of sublattices which are important to our work:

Definition 3.1.2. Let L =† L,§° be a lattice, a filter (or ideal) of L is a subset F Ñ L, F ‰ ?
(I Ñ L, I ‰ ?) such that:

F1(I1) : If a, b P F then a ^ b P F (if a, b P I then a _ b P I)

F2(I2) : If a P F then a _ b P F (if a P I then a ^ b P I) for every b P L

Lemma 3.1.3. Condition F2(I2) is equivalent to:

34
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F2’(I2’) : If a P F and a § b, then b P F (if a P I and b § a, then b P F)

Proof. We prove both implications for filters; for ideals the proof is analogous. For F2 ùñ
F2’, let a be an element of F and let a § b, then the lub of ta, bu is b, so that a _ b = b,
which by F2 implies b P F. For the converse, let a be an element of F, then for any b we
have a _ b • a since a _ b is the lub of ta, bu, which through F2’ means a _ b P F. ˝

Clearly, filters and ideals are closed under ^, _ and therefore are sublattices.

Definition 3.1.4. Let L =† L,§° be a lattice, a filter F of L is maximal if F ‰ L and there is

no ideal F
1

of L such that F Ñ F
1
. An ideal I of L is maximal if I ‰ L and there is no ideal I

1
of

L such that I Ñ I
1
.

Definition 3.1.5. A prime filter (prime ideal) is a filter F (ideal I) which satisfies

PF (PI) : If a _ b P F, then a P F or b P F (if a ^ b P I, then a P I or b P F)

We can give a more elegant characterisation of prime filters and ideals as follows:

Lemma 3.1.6. Let L =† L,§° be a lattice, a set F Ñ L, F ‰ ?, (I Ñ L, I ‰ ?) is a prime filter
(prime ideal) of L if and only if:

F1’(I1’) a, b P F ñ a ^ b P F (a, b P I ñ a _ b P I)

PF’[PI’] a P F or b P F ñ a _ b P F (a P I or b P I ñ a ^ b P I)

Proof. F1’( ùñ ) is F1, PF’( ùñ ) is F2 and PF’(ù ) is PF, so we only need to prove that every
prime filter satisfies F1’( ù ). If a ^ b P F, then since a ^ b § a, b using F2’ we get that
a, b P F, concluding our proof. The case for ideals is analogous. ˝

Definition 3.1.7. Let L =† L,§° be a lattice and let A Ñ L, we define the filter (ideal)
generated by A as the least filter (ideal) including A. If A = tau for some a P L, we say it is the

principal filter (ideal) generated by a.

Remark 3.1.8. The filter or ideal generated by A always exists, since trivially the intersec-
tion of filters is a filter and the intersection of ideals is an ideal.

We can characterise filters generated by sets more explicitly:

Lemma 3.1.9. Let L =† L,§° be a lattice and let A Ñ L, the filter generated by A is F(A) =
tx P L : there are ai P A such that a1 ^ ... ^ an § xu.

Proof. F(A) is a filter because if a1 ^ ... ^ an § x and a
1
1 ^ ... ^ a

1
n § x

1, then a1 ^ ... ^ an ^
a

1
1 ^ ... ^ a

1
n § x ^ x

1 for any y P L a1 ^ ... ^ an § x § x _ y. And since a § a for every
a P A then A Ñ F(A). To finish, we prove that if F is a filter that contains A F(A) Ñ F.
We take x P F(A), therefore x • a1 ^ an for some ai P A. Since F is a filter that contains A

a1 ^ an P F, and by F2’ x P F. ˝
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Lemma 3.1.10. Let L =† L,§° be a lattice and let a P L, then the principal filter generated by

a is tx P L : a § xu and the principal ideal generated by a is tx P L : x § au.

Proof. We denote as Fa the principal filter generated by a. First, we prove the conditions
to show A = tx P L : a § xu is a filter. Since a § a, a P A, so A ‰ ?. Now, if b, c P A, since
§A is total, b ^ c is b or c, and therefore b ^ c P A. Finally, if b P A, then a § b, so if we
take c P L, a § b § b _ c, therefore b _ c P A. Since A is a filter that contains a, Fa Ñ A.
Now we prove the other inclusion. Let b P A, then b • a and since a P Fa, F2 implies that
a _ b = b P Fa. In conclusion, Fa = A. The case of ideals has an analogous proof. ˝

From Theorem 6 in [16] (where an a-ideal is a filter and a µ-ideal is an ideal) we have:

Proposition 3.1.11. Let L =† L,§° be a lattice, if a, b P L are such that a ¶ b, then there is a

prime filter P satisfying that a P P and b R P.

3.1.2 The Lindenbaum algebra of Rfde

This section will characterise algebraically the Lindenbaum algebra of R f de, we proceed
as follows:

Definition 3.1.12. We define Ô as the following relation over non-implicational formulas:

j Ô y
defñ $Rfde

j Ñ y and $Rfde
y Ñ j

Proposition 3.1.13. Ô is a congruence over non-implicational formulas.

Proof. Let j, y, x, j1, y1 be non-implicational formulas. Reflexivity is satisfied since $R
j Ñ j, by conservativity (Theorem 2.4.8), $Rfde j Ñ j, therefore j Ô j. For symmetry,
if j Ô y, then $Rfde j Ñ y and $Rfde y Ñ j, which clearly implies y Ô j. Proving
transitivity we will have an equivalence relation. Suppose j Ô y and y Ô x. Then,
$Rfde j Ñ y, $Rfde y Ñ j, $Rfde y Ñ x and $Rfde x Ñ y. Using IR, we get $Rfde j Ñ x
and $Rfde x Ñ j, so j Ô y. With this, Ô is an equivalence relation. Now we only lack
distribution over  , ^, _:

 Suppose j Ô y, then $Rfde j Ñ y and $Rfde y Ñ j, from NR we obtain $Rfde  y Ñ
 j and $Rfde  j Ñ  y. Therefore  j Ô  y.

^ Suppose j Ô y and j1 Ô y1. Then $Rfde j Ñ y, $Rfde y Ñ j, $Rfde j1 Ñ y1 and
$Rfde y1 Ñ j1. Through the axioms of Rfde, we have:

$Rfde j ^ j1 Ñ j and $Rfde j ^ j1 Ñ j1

and also for the other implication. So using IR, we obtain:

$Rfde j ^ j1 Ñ y and $Rfde j ^ j1 Ñ y1

and conversely. Finally, by CR, $Rfde j ^ j1 Ñ y ^ y1 and $Rfde y ^ y1 Ñ j ^ j1,
therefore, j ^ j1 Ô y ^ y1.
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_ Suppose j Ô y and j1 Ô y1. Then $Rfde j Ñ y, $Rfde y Ñ j, $Rfde j1 Ñ y1 and
$Rfde y1 Ñ j1. Through the axioms of Rfde, we have:

$Rfde y Ñ y _ y1 and $Rfde y1 Ñ y _ y1

and vice-versa. So using IR, we obtain:

$Rfde j Ñ y _ y1 and $Rfde j1 Ñ y _ y1

and the same for the other implication. Finally, by DR, $Rfde j _ j1 Ñ y _ y1 and
$Rfde y _ y1 Ñ j _ j1, therefore, j _ j1 Ô y _ y1.

In conclusion, Ô is a congruence. ˝

We denote by R f deäÔ the Lindenbaum algebra of Rfde (doing the quotient over non-implicational
formulas). Note that the Lindembaum algebra of Rfde is actually not an algebra, since its
equivalence classes contain only non-implicational formulas, so there is no operation for
Ñ. We only have three operations, mirroring the tree connectives in non-implicational
formulas. We now want to characterise algebraically the structure of Rfde and then finde
the role of Ñ, so we introduce some new algebraic concepts:

Definition 3.1.14. An De Morgan lattice is a tuple † L,§, ° where § is a relation and  is

a unary function called intensional complementation satisfying:

DL : † L,§° is a distributive lattice

N1 : For every a P A,   a = a

N2 : For every a, b P L if a § b then  b §  a

Lemma 3.1.15. Intensional complementation satisfies the De Morgan rules, i.e. for every a, b P L

 (a ^ b) =  a _ b and  (a _ b) =  a ^ b

Proof. We prove  (a ^ b) =  a _  b showing the two inequatilites. § is true since
 a, b §  a _  b, by N2,N1  ( a _  b) § a, b which implies  ( a _  b) § a ^ b

and using N2,N1 again we get what we wanted. • is since a, b • a ^ b, then  (a ^ b) •
 a •  a _ b. The proof of  (a _ b) =  a ^ b can be done analogously. ˝

Now we can state our first algebraic characterisation of the Lindenbaum algebra of Rfde:

Proposition 3.1.16. † R f deäÔ,§, ° , where if j, y are non-implicational formulas,

[j] § [y]
defñ $Rfde

j Ñ y

is a De Morgan lattice, and the join and meet operations coincide with _ and ^.
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Proof. First we prove it is a lattice. § is a partial order of Rfde, since $Rfde j Ñ j (reflex-
ivity), if $R f de

j Ñ y and $R f de
y Ñ j then [j] = [y] (antisymmetry) and we have rule IR

(transitivity). We need to see that every two elements [j], [y] of R f deäÔ have a glb which
is [j] ^ [y] and a lub which is [j] _ [y]. Because of axioms Rfde1 ´ 4, [j] ^ [y] § [j], [y]
and [j], [y] § [j] _ [y]. If there is [x] P R f deäÔ such that [x] § [j], [y], then $Rfde x Ñ j
and $Rfde x Ñ y which by CR would give [x] § [j ^ y] = [j] ^ [y]. Similarly, using DR if
[x] P R f deäÔ satisfies [j], [y] § [x] then [j] _ [y] § [x]. Distributivity is easy to prove,
since we know from the proof of Proposition 2.3.10 that the rules used to find equivalent
normal forms translate into theorems of Rfde, so distributivity does too. N1 is a direct
consequence of axioms Rfde6, 7 and N2 of rule NR. ˝

But we can go further with this, and introduce some set that acts as the "designated
elements":

Definition 3.1.17. Let † L,§, ° be a De Morgan lattice, then T Ñ L is a truth filter if it is a

filter and it is

• Consistent: There is no a P L such that a P T and  a P T.

• Exhaustive: For every a P L a P T or  a P T.

Definition 3.1.18. An intensional lattice is a tuple † L,§, , T ° where † L,§, ° is a De

Morgan lattice (i.e. † L,§, ° satisfies DL, N1, N2) and T Ñ L is a truth filter.

An intensional lattice is a De Morgan lattice with a truth filter, therefore, it is useful to
characterise the existence of truth filters in De Morgan lattices, the first result with respect
to this follows:

Definition 3.1.19. Let † L,§, ° be a De Morgan lattice, a P L is a fixed point if a =  a.

Theorem 3.1.20. Let L=† L,§, ° be a De Morgan lattice, then L has a truth-filter if and only

if it has no fixed points.

Proof. ùñ By contradiction. Suppose T Ñ L is a truth filter and there is a P L such that
a =  a. We have two cases:

Case 1: If a P T, then  a P T, so T isn’t consistent, which is a contradiction.

Case 2: If a R T, then since T is exhaustive  a P T, which is a contradiction.

Therefore, there isn’t any a P L such that a =  a.

ù Complete in [2] (Theorem 1 in page 194). ˝

Finally, since j is an antecedent part of  j and a consequent part of j, by Variable-
sharing (Theorem 2.4.6) &R j Ñ  j and &R  j Ñ j. Since R is an expansion of Rfde
† R f deäÔ,§, ° has no fixed points, and by Theorem 3.1.20 we obtain:

Theorem 3.1.21. There is T Ñ R f deäÔ such that † R f deäÔ,§, , T ° is an intensional

lattice.
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3.1.3 Two semantics for Rfde

We observe how in intensional lattices we don’t have an operation for Ñ, since implica-
tion is treated as an order relation. Therefore, our semantics can’t be the usual matrix
semantics as defined in the first section of this work. Therefore, we take a language LÛ
with connectives t^, _, u.

Definition 3.1.22. A model Q is a pair † L, s ° where L is an intensional lattice and s is an

assignment. We extend s into an interpretation IQ : FmLÛ ›Ñ L as usual. Let j Ñ y be a

first-degree entailment, we say it is

(i) true in Q if IQ(j) § IQ(y), otherwise it is false in Q.

(ii) valid in L if for every possible assignment s of the variables into L it is true in † L, s °,

otherwise it is falsifiable in L.

(iii) valid in the class of intensional lattices if for every intensional lattice L it is valid in L,

otherwise it is falsifiable in the class of intensional lattices.

Note that here truth is not defined from belonging to a given set (which would be the
truth-filter). Also, we are going to prove completeness and consistency only for theorems
of Rfde, this is why semantic consequence is not defined.

We present † R f deäÔ, c ° where c(p) = [p], called the canonical model where c is the
canonical assignment function. The canonical interpretation that extends c is IC(j) = [j], and
this can be proven easily by induction over non-implicational formulas:

• If j is a variable, then IC(j) = c(j) = [j].

• If j =  y and IC(y) = [y] then IC(j) =  IC(y) =  [y] = [ � y]

• If j = y_
^

x and IC(y) = [y], IC(x) = [x], then IC(j) = IC(y)_
^

IC(x) = [y]_
^
[x] = [j]

With the aid of this, we can prove:

Theorem 3.1.23 (Completeness). If an fde is valid in the class of intensional lattices, then it is

provable in Rfde.

Proof. This is a consequence of the fact that if an fde is not provable in Rfde then it is
falsifiable in R f deäÔ, since if $Rfde j Ñ y, then [j] ¶ [y] and hence the canonical
interpretation falsifies j Ñ y. ˝

Conversely, we have:

Theorem 3.1.24 (Consistency). If $Rfde
j Ñ y, then j Ñ y is valid in in the class of intensional

lattices.
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Proof. Let L be an intensional lattice. First, we prove the axioms are valid in L. Let I be
an interpretation from non-implicational formulas into L, since all the theorems of Rfde
are implications j Ñ y, we want to prove for each of them that I(j) § I(y), using the
properties of the operations in intensional lattices:

Rfde1, 2 I(j), I(y) • I(j) ^ I(y) = I(j ^ y)

Rfde3, 4 I(j), I(y) § I(j) _ I(y) = I(j _ y)

Rfde6, 7 Since I(j) =   I(j) = I(  j), I(j) § I(  j) and I(  j) § I(j)

Now, we check Rfde5. I(j ^ (y _ x)) = I(j) ^ (I(y) _ I(x)) § I(j), I(y) _ I(x), therefore
I(j ^ (y _ x)) § I(j), I(y) (which implies I(j ^ (y _ x)) § I(j) ^ I(y)) or I(j ^ (y _
x)) § I(j), I(x). Either way, I(j ^ (y _ x)) § I(j ^ y) _ I(x) = I((j ^ y) _ x). The
following step is to prove that the rules maintain validity in L.

IR : We suppose j Ñ y and y Ñ x are valid. Let I be an interpretation from non-
implicational formulas into L, then I(j) § I(y) § I(x) so j Ñ x is valid in L.

CR : We suppose j Ñ y and j Ñ x are valid. Let I be an interpretation from non-
implicational formulas into L, then since I(j) § I(y), I(x) we have I(j) § I(y) ^
I(x) = I(y ^ x), making j Ñ y ^ x valid in L.

DR : We suppose j Ñ x and y Ñ x are valid. Let I be an interpretation from non-
implicational formulas into L, then since I(j), I(y) § I(x) we get I(j _ y) = I(j)_
I(y) § I(x), so j _ y Ñ x is valid in L.

NR : We suppose j Ñ y is valid in L. Let I be an interpretation from non-implicational
formulas into L, since I(j) Ñ I(y) by N2 I( y) =  I(y) Ñ  I(j) = I( j). Then,
 y Ñ  j is valid in L.

With all this, the theorems of Rfde are valid in the class of intensional lattices. ˝

These two theorems together give:

Theorem 3.1.25. An fde is provable in Rfde if and only if it is valid in the class of intensional

lattices.

Therefore, the class of intensional lattices induces a semantics for Rfde, but, as in classical
logic, we can reduce completeness and consistency to only one intensional lattice. We now
present M0 =† t´3, ´2, ´1, ´0,+0,+1,+2,+3u,§, , t+0, ... + 3u ° where  (˘a) = ¯a

and § is defined as in the following diagram:

-0

+0-1

+1

-2

+2

-3

+3
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M0 is an intensional lattice, since it is lattice and all necessary properties can be proven
easily by looking at the diagram. D1, D2 are checked case by case, for example,

+0 ^ (´1 _ +2) = +0 ^ ´3 = +0
(+0 ^ ´1) _ (+0 ^ +2) = +1 _ +2 = +0

We prove N1: let a P t0, ..., 3u, then   ˘ a =  ¯ a = ˘a. If a, b P t´3, ...,+3u and a § b

it is clear from the diagram of order restricted to negative and positive elements that N2
holds if both a, b are positive or both are negative (see the figure below).

-0

+0

-1 +1-2 +2

-3

+3
If one is negative and the other one is positive, then
a is negative and b is positive, because we can ob-
serve by looking at the original diagram that no
negative element is grater than a positive element.
Now, we can see their complements are related case
by case. Finally, t+0, ... + 3u is a truth filter because
it is consistent and exhaustive.

The final result of this section will be the complete-
ness and consistency of Rfde with respect to M0, but first we will present some useful
tools.

Definition 3.1.26. Let h : L ›Ñ L
1

be an homomorphism between intensional lattices L and L’,
and let T, T

1
be the truth filters of L and L’ respectively. We say h is a T-homomorphism (or a

T-preserving homomorphism) if it satisfies h(a) P T
1

for every a P T. If h is also a one-to-one

function, we call it a T-isomorphism.

Theorem 3.1.27. Let L=† L,§, , T ° be an intensional lattice and P Ñ L a prime filter of L. P

determines a T-homomorphism h : L ›Ñ M0 satisfying for every a P L:

(i) h(a) P F́ 1 if and only if a P P

(ii) h(a) P F́ 2 if and only if  a P ´P(= L ´ P)

(iii) h(a) P F+0 if and only if a P T

where F̆ i is the principal filter of M0 generated by ˘i

Proof. First, we prove h is a function (i.e. for each a P L a has only one image). we consider
µF̆ i to be F̆ i or ´F̆ i(= L ´ F̆ i). Then depending on wheter a is in P, T and  a is in ´P,
h(a) P µ1 F́ 1 X µ2 F́ 2 X µ0F+0 and looking at the diagram for §we can see this intersection
uniquely determines one element of M0, the following table gives all possible cases:

µ1 ´ ´ ´ ´
µ2 ´ ´ ´ ´
µ0 ´ ´ ´ ´

h(a) +3 +2 +1 ´0 +0 ´2 ´1 ´3

Secondly, we prove h is an homomorphism. To show that h(a ^ b) = h(a) ^ h(b) we only
need to see that h(a ^ b) P Fi if and only if h(a)^ h(b) P Fi where i = ´1, ´2,+0 because of
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our observation about intersection determining only one element. ´1 and +0 are similar:

h(a ^ b) P F́ 1 ñ a ^ b P P
F1’ñ a, b P P ñ h(a), h(b) P F́ 1

h(a ^ b) P F+0 ñ a ^ b P T
F1’ñ a, b P T ñ h(a), h(b) P F+0

Now, for i = ´2, we first observe that ´P is a prime ideal because the complement of a
prime filter is a prime ideal (the negation of F1’ is PI’ and the negation of PF’ is I1’). Using
Lemma 3.1.15 in the first equivalence,

h(a ^ b) P F́ 2
DeMñ  a _ b P ´P

I1’ñ  a, b P ´P ñ h(a), h(b) P F́ 2

We show h( a) =  h(a), but first define Fi := t b : b P Fiu. We prove the following:

´F́ 1 = t+0, ´2,+2, ´3u = t´0,+2, ´2,+3u = F́ 2

´F́ 2 = t+0, ´1,+1, ´3u = t´0,+1, ´1,+3u = F́ 1

´F+0 = t´0, ´1, ´2, ´3u = t+0,+1,+2,+3u = F́ 2

Finally,

h( a) P F́ 1 ñ  a P P ñ h(a) P ´F́ 2 ñ  h(a) P ´F́ 2 = F́ 1

h( a) P F́ 2 ñ  a P ´P ñ h(a) P ´F́ 1 ñ  h(a) P ´F́ 1 = F́ 2

h( a) P F+0 ñ  a P T ñ a P ´T ñ h(a) P ´F+0 ñ  h(a) P ´F+0 = F+0

The only thing left is to see h is T-preserving, which is deduced from (iii) since F+0 =
t+0,+1,+2,+3u, the truth-filter of M0. ˝

From Proposition 3.1.11, we have a prime filter P where a P P and b R P, therefore with
this theorem we can conclude:

Theorem 3.1.28. Let L †,§, , T ° be an intensional lattice and a, b P L such that a ¶ b,

then there exists a T-preserving homomorphism h : L ›Ñ M0 satisfying that h(a) P F́ 1 and

h(b) R F́ 1.

Finally, we return to our logic to conclude the section.

Theorem 3.1.29 (Completeness and consistency with respect to M0). j Ñ y is valid in M0
if and only if $Rfde

j Ñ y.

Proof. If $Rfde j Ñ y, then by Theorem 3.1.24 j Ñ y is valid in every intensional lattice,
in particular, it is valid in M0. This gives consistency.

Completeness is by contrapositive. We suppose &Rfde j Ñ y, so [j] ¶ [y]. By Theo-
rem 3.1.28 there is an homomorphism h : R f deäÔ ›Ñ M0 such that h([j]) P F́ 1 and
h([y]) R F́ 1. Therefore, since F́ 1 = tx| ´ 1 § xu = t´1, ´0,+1,+3u it can’t be that
h([j]) § h([y]). Now, h ˝ c is an assignment function for M0, so we consider the model
M =† M0, h ˝ c °, by induction we prove that for every non-implicational formula x
IM(x) = h([x]):
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• If x is a variable p, IM(x) = h ˝ c(p) = h([p]).

• If x =  x1 and IM(x1) = h([x1]), IM(x) =M (x1) =  h([x1]) = h([ x1]).
• If x = x1_

^
x2 and IM(x1) = h([x1]), IM(x2) = h([x2]), then

IM(j) = IM(y)_
^

IM(x) = h([y])_
^

h([x]) = h([j])

Finally, since h([j]) ¶ h([y]), IM(j) ¶ IM(y), so j Ñ y is falsifiable in M0. ˝

Because of its finite number of designated elements, or truth-values, this type of semantics
is useful since it allows us to easily prove if a proposition is a theorem. And actually,
Belnap gave it a more manageable, four-valued semantics in [3]. In fact, this is the usual
presentation this logic, which has been independently researched for 40 years now (a
overview of this field can be found in [15]).

3.2 Semantics for R

3.2.1 An equivalent algebraic semantics for R

First we give the algebraic definitions and properties necessary:

Definition 3.2.1. A relevant algebra (or R-algebra) is a tuple A =† A, ^, _, Ñ, ° where

† A, ^, _, ° is a De Morgan lattice, and for all a, b, c P A:

RA1 a Ñ (b Ñ c) § b Ñ (a Ñ c)

RA2 a § ((a Ñ b) ^ c) Ñ b

RA3 a Ñ  b § b Ñ  a

RA4 a Ñ  a §  a

RA5 ((a Ñ a) ^ (b Ñ b)) Ñ c § c

The class of all R-algebras will be denoted by R.

RA1,3 are actually equalities, by symmetry. Also, note that we are taking the algebraic
presentation of lattices, with ^ and _ as primitive.

Proposition 3.2.2. We now list some properties of R-algebras. Let A =† A, ^, _, Ñ, °P R,

then for all a, b, c P A:

P1 If a § b Ñ c then b § a Ñ c.

P2 If a § b then b Ñ c § a Ñ c.

P3 If a § b then c Ñ a § c Ñ b.

P4 a Ñ b § (c Ñ a) Ñ (c Ñ b)

P5 a Ñ (a Ñ b) § a Ñ b
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P6 a Ñ b ^ c = (a Ñ b) ^ (a Ñ c)

P7 a _ b Ñ c = (a Ñ c) ^ (b Ñ c)

Proof. Probably because the proof of these properties is short, it isn’t in the article we are
following, but we reproduce it nonetheless:

P1 b
RA2§ ((b Ñ c) ^ a) Ñ c = a Ñ c.

P2 a § b
RA2§ (b Ñ c) ^ (b Ñ c) Ñ c = (b Ñ c) Ñ c so by P1, b Ñ c § a Ñ c.

P3 If a § b,  b §  a, by P2  a Ñ  c §  b Ñ  c and since RA3 is an equality,
c Ñ a § c Ñ b.

P4 By RA2, a § (a Ñ b) Ñ b and c § (c Ñ a) Ñ a. The first identity implies by P3 that
c § (c Ñ a) Ñ a § (c Ñ a) Ñ ((a Ñ b) Ñ b)

RA1
= (a Ñ b) Ñ ((c Ñ a) Ñ b). Now, P1

implies that a Ñ b § c Ñ ((c Ñ a) Ñ b)
RA1
= (c Ñ a) Ñ (c Ñ b).

P5 a Ñ (a Ñ b)
RA3
= a Ñ ( b Ñ  a)

RA1
=  b Ñ (a Ñ  a)

RA3
=  (a Ñ  a) Ñ b § a Ñ b

where the last inequality is obtained from the fact that a §  (a Ñ  a) (by RA4)
using P2.

P6 is directly from P3 and P7 directly from P2. ˝

Definition 3.2.3. For any A P R, we denote by E(A) the filter generated by ta Ñ a : a P Au.

We will write R = t† A, E(A) °: A P Ru.

Lemma 3.2.4. If A P R, then for any a, b P A, a § b if and only if a Ñ b P E(A).

Proof. The first implication is from P3 putting c = a. Conversely, supposing a Ñ b P E(A),
this implies by Lemma 3.1.9 that there are c1, ..., cn P A such that c = (c1 Ñ c1)^ ... ^ (cn Ñ
cn) § a Ñ b. Now, we prove by induction over n that for ai, ..., an P A if ai Ñ ai § ai for all
i § n then a1 ^ ... ^ an Ñ a1 ^ ... ^ an § a1 ^ ... ^ an:

Base case(n = 1): if a Ñ a § a then it is clear this holds.

Inductive step: We suppose the statement is true for n ´ 1 and ai Ñ ai § ai for all i § n.
By hypothesis of induction, a1 ^ ... ^ an´1 Ñ a1 ^ ... ^ an´1 § a1 ^ ... ^ an´1 and since
an Ñ an § an, (a1 ^ ... ^ an´1 Ñ a1 ^ ... ^ an´1) ^ (an Ñ an) § (a1 ^ ... ^ an´1) ^ an.
Therefore, using P2, a1 ^ ... ^ an Ñ a1 ^ ... ^ an § (a1 ^ ... ^ an´1 Ñ a1 ^ ... ^ an´1) ^
(an Ñ an) Ñ a1 ^ ... ^ an. Finally, since by RA5, (a1 ^ ... ^ an´1 Ñ a1 ^ ... ^ an´1) ^
(an Ñ an) Ñ a1 ^ ... ^ an § a1 ^ ... ^ an we get what we wanted.

With this, since from RA5 (putting a = b = zi and c = ci Ñ ci) we obtain that (ci Ñ ci) Ñ
(ci Ñ ci) § (ci Ñ ci), we can conclude c Ñ c § c. This implies c Ñ c § a Ñ b, so that

using P1 a § (c Ñ c) Ñ b
RA5§ b. ˝

Definition 3.2.5. We define ÔS as the following relation over formulas in the language of R: let

S Y tj, yu Ñ FmR, then j ÔS y
defñ S $Rfde

j Ñ y and S $Rfde
y Ñ j.
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Proposition 3.2.6. ÔS is a congruence over the algebra of formulas of R.

Proof. The proof is analogous to the case of fde’s, and the case of distributivity with respect
to Ñ is done using only R2 and IR (which we have proven is valid in R in Lemma 2.2.4).
Supposing j ÔS y, j1 ÔS y1 we give the proof of one direction, the other one is sym-
metrical. Taking S as premises, from the hypothesis we have j Ñ y and y1 Ñ j1. From
the first formula, by R2 and using modus ponens S $R (y1 Ñ j) Ñ (y1 Ñ y). From the
second, and using the equivalent form of R2 (by contraction) S $R (j1 Ñ j) Ñ (y1 Ñ j).
Finally, IR gives S $R (j1 Ñ j) Ñ (y1 Ñ y). ˝

Theorem 3.2.7. Let S Ñ FmLR , then
FRäÔS P R and the order induced by the underlying

lattice is §S where [j] §S [y] if and only if S $R j Ñ y.

Proof. To find the order induced by the lattice we use the characterisation of the first
chapter, so [j] §S [y] ñ [j] = [j] ^ [y] = [j ^ y] ñ S $R j Ô j ^ y. This is
equivalent to S $R j Ñ y, the first direction using axioms R5, 2 and the converse is by
R7 and the rule of adjunction. Now we can use the non-algebraic presentation of lattice
since it will make the proof easier. §S is reflexive (R1), transitive (IR) and anti-symmetric
by the definition of ÔS, and therefore is a partial order. As in the case of fde’s, there
always are lub and glb [j] _ [y] = [j _ y] and [j] ^ [y] = [j ^ y]. Distributivity is
proven from the fact that $Rfde j ^ (y _ x) Ñ (j ^ y) _ (j ^ x) and $Rfde j _ (y ^ x) Ñ
(j _ y) ^ (j _ x). Also, R13 and its converse give [j] = [  j] =   [j], and since
$R (j Ñ y) Ñ ( y Ñ  j), if S $R j Ñ y, then S $R  y Ñ  j, so [ y] §S [ j]. This
proves that † FmRäÔS,§S, ° is a De Morgan lattice.

Finally, we need to prove RA1-5. First, R3 proves RA1 and R12 proves RA3. From R5 and
monotony we get S $R ((j Ñ y) ^ x) Ñ (j Ñ y), so R3 gives S $R j Ñ (((j Ñ y) ^
x) Ñ y), which concludes RA2. From R3, 12 we obtain S $R j Ñ ((j Ñ  j) Ñ  j), and
with contraposition S $R j Ñ (  j Ñ (j Ñ  j)). The double negation is eliminated
by the Replacement Theorem, and using R4 concludes S $R j Ñ (j Ñ  j), which
implies RA4. To show RA5 we need S $R ((j Ñ j) ^ (y Ñ y) Ñ x) Ñ x. From R1 and
R3, $R (j Ñ j) ^ (y Ñ y) Ñ (((j Ñ j) ^ (y Ñ y) Ñ x) Ñ x). R1 again and &I give
$R (j Ñ y) ^ (y Ñ y), so using modus ponens and by monotony of $R, we get what we
wanted. ˝

Theorem 3.2.8 (Consistency). For every A P R, † A, E(A) ° is a matrix model for R.

Proof. We need to prove the interpretation of the axioms is in E(A) and the rules preserve
belonging. The properties of filters assure us that rules preserve belonging to E(A). Now,
since all axioms are implicational i.e. of the form j Ñ y, Lemma 3.2.4 tells us that proving
I(j) §S I(y) we would be done. R1 is verified because orders are reflexive. R2 is from
P4, R3 from RA1, R4 from P5. The fact that a ^ b, b verifies R5, 6, and P6 checks R7. Since
a _ b • a, b R8, 9 are verified, and P7 checks R10. By the properties of distributive lattices,

a ^ (b _ c) = (a ^ b) _ (a ^ c)
a^c§c§ (a ^ b) _ c, so R11 is checked. RA3 verifies R12 and

finally the negation properties of De Morgan lattices verify R13. ˝



46 Algebraic semantics for relevance logic

Theorem 3.2.9 (Completeness). Let S Y tju Ñ FmLR , if S (R j, then S $R j.

Proof. By contrapositive. Suppose S &R j, we want to see that S *R j, that is, there
is some relevant algebra for which j is not a consequence of S. We take FRäÔSP R
and the canonical interpretation Ic : FmLR where Ic(y) = [y] (in the same way as with
Rfde). Ic[S] Ñ E

⇣
FRäÔS

⌘
since if y P S by the reflexivity of logics S $R y. And

since FRäÔSP R, by Theorem 3.2.8 [y] P E

⇣
FRäÔS

⌘
. The only thing left is to see that

[j] R E

⇣
FRäÔS

⌘
. We suppose it is, and arrive at a contradiction. From RA2, we obtain

that for all a in a relevant algebra a § (a Ñ a) Ñ a. Therefore, since [j] P E

⇣
FRäÔS

⌘
,

by the properties of filters [(j Ñ j) Ñ j] P E

⇣
FRäÔS

⌘
, which by Lemma 3.2.4 implies

[j Ñ j] §S [j]. Now, this means by the definition of order we gave that S $R (j Ñ j) Ñ
j, which in turn by axiom R1 gives S $R j, in contradiction with our hypothesis. ˝

Corollary 3.2.10. R is a matrix semantics for R.

Proving that RäÔ is the free R-algebra will assure R-algebras are a good representation
of our relevance logic.

Theorem 3.2.11. RäÔ is the free R-algebra.

Proof. The generators of RäÔ are VaräÔ. Suppose A P R and we have the identification
f :VaräÔ›Ñ A. We need to prove it can be extended to an homorphism from RäÔ into
A. We consider the assignment

s : Var ›Ñ A
p fi›Ñ f ([p])

s extends naturally into an interpretation Is : FmLR ›Ñ A.Now, we define

h : VaräÔ ›Ñ A
[j] fi›Ñ Is(j)

h is well defined, since if [j] = [y], then $R j Ñ y and $R y Ñ j, and by Theorem 3.2.8
Is(j Ñ y), Is(y Ñ j) P E(RäÔ), so Is(j) = Is(y) via Lemma 3.2.4. Since clearly h is an
homomorphism (from the definition of interpretation), we have proven that RäÔ is the
free R-algebra. ˝

Now, in order to prove this matrix semantics (R) is the more adequate for R, we need to
find the defining equations for its equivalent algebraic semantics, so we need to charac-
terise the set of designated elements for relevant algebras:
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Lemma 3.2.12. If A P R then E(A) = ta P A : a Ñ a § au.

Proof. If a P A, then a Ñ ((a Ñ a) Ñ a)
RA1
= (a Ñ a) Ñ (a Ñ a) P E(A), so if moreover

a P E(A) then since E(A) is a filter (a Ñ a) Ñ a P E(A), and by Lemma 3.2.4 a Ñ a § a ˝

As is noted in [10], in Chapter 5 of [4] it is proven that R is algebraizable with defining
equation d « e, where d(p) = p ^ (p Ñ p) and e(p) = p Ñ p, and equivalence formula
D(p, q) = (p Ñ q) ^ (q Ñ p) =: p Ø q, but its equivalent algebraic semantics is not
stated. We can now determine the algebraizability of R with respect to the class of relevant
algebras. But first we observe this class is a variety, since changing any a § b into the
equivalent a ^ b = a all the postulates for R-algebras are identities.

Theorem 3.2.13. R is the equivalent algebraic semantics for R.

Proof. Since for a, b P A, A P R, a § b if and only if a ^ b = a, E(A) = ta P A : a ^ (a Ñ
a) = a Ñ au. Since R is a matrix semantics for R (Corollary 3.2.10) and R is a variety (in
particular, a quasi-variety), from Theorem 1.3.3 we obtain that R is an algebraic semantics
for R with defining equation p ^ (p Ñ p) = p Ñ p. To prove that R is equivalent to
R, we need to see that given j, y P Fm j « y (R) d(jDy) « e(jDy). Let A P R and
I : FmLR Ñ A be an interpretation, and put a = I(j), b = I(y). We prove that a = b if
and only if dA(aDA

b) = eA(aDA
b). If a = b, then

(a Ø b)^((a Ø b) Ñ (a Ø b)) =

= (a Ø b) ^ ((a Ø b) Ñ (a Ø b)) = (a Ñ a) ^ ((a Ñ a) Ñ (a Ñ a))
P4
=

= (a Ñ a) Ñ (a Ñ a) = (a Ø a) Ñ (a Ø a) =

= (a Ø b) Ñ (a Ø b)

Conversely, if (a Ø b) ^ ((a Ø b) Ñ (a Ø b)) = (a Ø b) Ñ (a Ø b), then a Ø b P E(A)
and by Lemma 3.2.4 a = b. ˝

3.2.2 The least truth in R

The previous section on the semantics of R followed [10], but Anderson and Belnap also
gave a semantics for R. They started by seeing that the Lindenbaum algebra of R is a De
Morgan semi-group, a De Morgan lattice which satisfies RA1-4. But R is not free in the
class of De Morgan semi-groups, since any interpretation of the formulas of R will satisfy
RA5, but a De Morgan semi-group won’t necessarily do so. Therefore, De Morgan semi-
groups are not an adequate representation of R, it’s too large a class, and so Anderson and
Belnap find a matrix semantics for Rt in the class of De Morgan monoids (smaller than
De Morgan semi-groups) and from there prove completeness and consistency of R with
respect to De Morgan monoids (which would mean that Rt is a conservative expansion of
R). But De Morgan monoids have a constant t which R doesn’t have, and so this class of
algebras doesn’t adequately represent R, which is why we chose to present the semantics
in [10].
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We now turn to the proof that De Morgan monoids are a matrix semantics for Rt with the
adequate set of designated elements in the style of [10], and we will end by enriching this
semantics using the tools of algebraic semantics in [4], which were developed after the
publishing of [2]. What interests us about this is that the algebraic structure of Rt, being
close to R, gives us more information about our relevance logic.

Definition 3.2.14. A De Morgan monoid is a tuple A =† A,§, Ñ, , t ° where † A,§, °
is a De Morgan lattice, and for all a, b, c P A:

D1 (RA1) a Ñ (b Ñ c) § b Ñ (a Ñ c)

D2 (RA2) a § ((a Ñ b) ^ c) Ñ b

D3 (RA3) a Ñ  b § b Ñ  a

D4 (RA4) a Ñ  a §  a

D5 t Ñ a = a

The class of all De Morgan monoids will be denoted by Rt
.

Lemma 3.2.15. To the properties we had for R-algebras, which are valid for De Morgan monoids

since its proof did not use RA5, we add the following:

P8 For all a P A, t § a Ñ a

Proof. From D2, t § (t Ñ a) ^ (t Ñ a) Ñ a = (t Ñ a) Ñ a = a
D5
= a Ñ a ˝

Definition 3.2.16. For any A P Rt
, we denote by E

t(A) the principal filter generated by t. We

denote Rt = t† A, E
t(A) °: A P Rtu.

We note that this is relevant because the filters defined in the previous section had no
lower bound, since for any a P E(A), a Ñ a § a and a Ñ a P E(A). No constant may be
defined in R that takes the role of least truth, and the reason that t is not naturally in R
as J is in CPC is precisely that. Therefore, t acts as the smallest truth in R, the truth from
which all other truths arise, but is not in R.

We return to our logic to find the Lindembaun algebra of Rt. In the same way as R, the
relation Ôt

S defined analogously as ÔS is a congruence in the algebra FRt of formulas of

Rt, and we can take the relation §t
S as primitive in FRt äÔt

S
. We denote by Rt

äÔ the

Lindenbaum algebra of Rt.

Theorem 3.2.17. Let S Ñ FmRRt , then FRt äÔt
S

P R.

Proof. The fact that it satisfies D1-4 can be seen with the same proof as for R. We only
need to show there is an element acting as t in D5, and that is easy since we have proven
Equation 2.1 for the constant t in Rt, therefore for every j P FmRRt [t] Ñ [j] = [t Ñ j] =
[j] making [t] = t in the algebra. ˝

An in the previous chapter, we characterise order in our class of matrices:
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Lemma 3.2.18. If A P Rt
, then for every a, b P A, a § b if and only if a Ñ b P E

t(A).

Proof. a § b = t Ñ b is equivalent by P1 to t § a Ñ b, and by the characterisation of
principal filters in Lemma 3.1.10 this is equivalent to a Ñ b being an element of E(A). ˝

Theorem 3.2.19 (Completeness and consistency). Let S Y tju Ñ FmLRt , S (Rt j if and only

if S $Rt j. Therefore, Rt
is a matrix semantics for Rt

.

Proof. With the same proof as in Theorem 3.2.8, and by Lemma 3.2.2, the rules and axioms
of Rt except t1 and t2. t1 is verified by the fact that t P E

t(A) for every A P Rt and t2 by
P8. This concludes our proof of consistency.

For the converse, we see that if S &Rt j, then S *Rt j. For that, we only need a matrix
in Rt and an interpretation which falsify j. We consider FRt äÔt

S
P R and the canonical

interpretation I : FmLRt ›ÑFRt äÔt
S

defined by I(y) = [y], which can be seen to be
the interpretation extending the assignment of variables s(p) = [p] by induction. We
suppose j P E

t(FRt äÔt
S
), then [t] §t

S [j], so by the definition of the order, $Rt t Ñ j.
Axiom t1 gives $Rt , which is a contradiction with the supposition that S &Rt j. Therefore
j R E

t(FRt äÔt
S
), which finishes our proof of completeness. ˝

As in R, and with an analogous proof, the following is true:

Theorem 3.2.20. Rt
äÔ is the free De Morgan monoid.

Finally, we can state:

Theorem 3.2.21. R is the equivalent algebraic semantics for Rt
with equivalence formula D(p, q) =

p Ø q and defining equation d « e, where d(p) = p ^ t and e(p) = t.

Proof. From Theorem 3.2.19, Rt is a matrix semantics for Rt, and it is also clearly a quasi-
variety (in fact, a variety). Moreover by Lemma 3.1.10 given A P R, E(A) = ta P A :
t § au = ta P A : a ^ t = tu. By Theorem 1.3.3, R is an algebraic semantics for Rt with
defining equation p ^ t = t. Now, given A P R and an interpretation I : FmLRt ›Ñ A,
writing I(j) = a and I(y) = b we need to prove a = b if and only if (a Ø b) ^ t = t:
a = b is equivalent by Lemma 3.2.2 to a Ø b P E

t(A) which implies t ^ (a Ø b) = t and
conversely. ˝



Conclusions

In the context of non-classical logics, R is an alternative to classical logic which avoids
the material implication paradoxes by assessing their relevance. The motivation for it is very
clear, and it fulfills its aim seeing as with this study, we have found that relevance in
implication can be modelised by the logic R. A formal account of our understanding of
implication is given in this system, which assures that the antecedent is relevant to the
truth of the consequent.

R has some interesting properties revealing the depth of the topic of relevance. From
a syntactical point of view, we have found that relevance is expressed in the sharing of
variables. The fact that this is a necessary condition is a very important consequence of the
study of R, since it tells us that antecedent and consequent must share meaning. But not
only do we have this, the shared meaning must be in a determined position, something
that allows us to easily discard false formulas. This is a powerful tool characteristic to R
which has no parallel in classical logic, and reveals the strength of our logic.

But R also has other relevant properties which are unveiled in the study of its semantics.
The equivalent algebraic semantics of R induces a matrix semantics where the designated
elements form a filter with infinitely many generators. Therefore, truth in R is not defined
by a determined constant, in contrast to the fact that all tautologies are equivalent to J in
classical logic. A constant t may be added as the lower bound of the filter of designated
elements, acting as the conjunction of all truths, the least truth. But this gives rise to a
larger logic, Rt.

Apart from Rt, there are other neighbours of R which unveil the intricacies of relevance
logic. E, Rfde and many others which haven’t been introduced in this work are relevance
logics closely related to R which have their own importance in the field of relevance logic.
In this work, we have highlighted the eight-valued semantics of Rfde, interesting in the
sense that no operation is defined as analogous to Ñ, but instead an order relation acts as
implication, giving rise to a non-algebraic semantics.

Finally, the importance of [2] in the development of the field of relevance logics is clear,
and we have given an overview which unifies and clarifies the book’s knowledge of the
system of logic R, adding relevant information posterior to its publication. I recommend
this book to anyone interested, since it gives a very complete account of many aspects of
relevance logic and it does so in a very clear and at times even funny way. It has been a
delight to read, and I am grateful to have been able to do so.
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Appendices

A Deductions from different calculi

$FRÑ (j Ñ y) Ñ ((x Ñ j) Ñ (x Ñ y))

1 j Ñ yt1u hyp

2 x Ñ jt2u hyp

3 xt3u hyp

4 x Ñ jt2u reit, 2

5 jt2,3u ÑE, 3, 4

6 j Ñ yt1u reit, 1

7 yt1,2,3u ÑE, 5, 6

8 x Ñ yt1,2u ÑI, 3, 7

9 (x Ñ j) Ñ (x Ñ y)t2u ÑI, 2, 8

10 (j Ñ y) Ñ ((x Ñ j) Ñ (x Ñ y)) ÑI, 1, 9
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$FRÑ (j Ñ (y Ñ x)) Ñ (y Ñ (j Ñ x))

1 j Ñ (y Ñ x)t1u hyp

2 yt2u hyp

3 jt3u hyp

4 j Ñ (y Ñ x)t1u reit, 1

5 y Ñ xt1,3u ÑE, 3, 4

6 yt2u reit, 2

7 xt1,2,3u ÑE, 5, 6

8 j Ñ xt1,2u ÑI, 3, 7

9 y Ñ (j Ñ x)t1u ÑI, 2, 8

10 (j Ñ (y Ñ x)) Ñ (y Ñ (j Ñ x)) ÑI, 1, 9

( j Ñ  y) Ñ (y Ñ j), (y Ñ j) Ñ ( j Ñ  y), j Ñ   j from RÑ1 ´ 3,
Ax 1-3

1 ( j Ñ  y) Ñ (y Ñ   j) Ax 1
2   j Ñ j Ax 3
3 (  j Ñ j) Ñ ((y Ñ   j) Ñ (y Ñ j)) RÑ2
4 (y Ñ   j) Ñ (y Ñ j) 2, 3 ´ MP
5 ( j Ñ  y) Ñ (y Ñ j) 1, 4, RÑ2 ´ MP

1 ( j Ñ  j) Ñ (j Ñ   j) Ax 1
2  j Ñ  j RÑ1
3 j Ñ   j 1, 2 ´ MP

1 (j Ñ   y) Ñ ( y Ñ  j) Ax 1
2 j Ñ   j Ax 3
3 (j Ñ   j) Ñ ((y Ñ j) Ñ (y Ñ   j)) RÑ2
4 (y Ñ j) Ñ (y Ñ   j) 2, 3 ´ MP
5 (y Ñ j) Ñ ( j Ñ  y) 1, 4, RÑ2 ´ MP

  E and contraposition are valid in FR˚
Ñ 

1   ja

2   j Ñ j axiom

3 ja ÑE, 1, 2
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1 yb

...
...

r jtku hyp
...

...

s  ya

s + 1 j Ñ  ya´tku ÑI, r, s

s + 2 (j Ñ  y) Ñ (y Ñ  j) axiom

s + 3 y Ñ  ja´tku ÑE, s + 1, s + 2

s + 4  jaYb´tku ÑE, 1, s + 3

$FR˚
Ñ 
(j Ñ  j) Ñ  j

1 j Ñ  jtku hyp

2 jt2u hyp

3  jt1,2u ÑE, 1, 2

4  jt1u  I, 2, 3

5 (j Ñ  j) Ñ  j ÑI, 1, 4

$FR˚
Ñ 
  j Ñ j

1   jt1u hyp

2 jt1u   E, 1

3   j Ñ j ÑI, 1, 2
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$R+˝ (j ˝ y) Ø  (j Ñ  y)

1 (j Ñ  y) Ñ (j Ñ  y) R1
2 j Ñ ((j Ñ  y) Ñ  y) 1, R3 ´ MP
3 ((j Ñ  y) Ñ  y) Ñ (  y Ñ  (j Ñ  y)) R12
4 j Ñ (  y Ñ  (j Ñ  y)) 2, 3, R2 ´ MP(ˆ2)
5 y Ñ   y R13
6 (  y Ñ  (j Ñ  y)) Ñ (y Ñ  (j Ñ  y)) R2, 5 ´ MP
7 j Ñ (y Ñ  (j Ñ  y)) 4, 6, R2 ´ MP
8 (j Ñ (y Ñ  (j Ñ  y))) Ñ (j ˝ y Ñ  (j Ñ  y)) ˝2
9 j ˝ y Ñ  (j Ñ  y) 7, 8 ´ MP

1 (y Ñ j ˝ y) Ñ ( (j ˝ y) Ñ  y) Thm (Remark 2.4.4)
2 (j Ñ (y Ñ j ˝ y)) Ñ (j Ñ ( (j ˝ y) Ñ  y)) 1, R2 ´ MP
3 j Ñ (y Ñ j ˝ y) ˝1
4 j Ñ ( (j ˝ y) Ñ  y) 2, 3 ´ MP
5  (j ˝ y) Ñ (j Ñ  y) 4, R3 ´ MP
6 (j Ñ  y) Ñ   (j Ñ  y) R13
7  (j ˝ y) Ñ   (j Ñ  y) 5, 6, R2 ´ MP
8  (j Ñ  y) Ñ   (j ˝ y) 7, R12 ´ MP
9   (j ˝ y) Ñ j ˝ y Thm (Remark 2.4.4)

10  (j Ñ  y) Ñ j ˝ y 8, 9, R2 ´ MP
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B Theorem checking program

The following program takes as input a file with the number n of elements (which as-
sumes are 0, 1, 2, ..., n), m of designated elements (which assumes are n ´ m + 1, ..., n) and
operations of an L-matrix M, it also takes the tables defining the operations. A formula
j in polish notation (explained at the end of this annex) is introduced and the program
checks it it is a valid formula and if all possible assignments to the variables (any symbol
which is not for a connective is taken as a variable) to determine whether (M j or not. In
case *M j it gives an interpretation for which j is not satisfied.

1 #include <math.h>
2 #include <stdio.h>
3 #include <string.h>
4

5 int isConnective (char);
6

7 struct formula {
8 int nchar;
9 char fwrite [30];

10 int var;
11 int con;
12 int assoc [20][3];
13 };
14

15

16 int main (void){
17 int choose , go, elem , desig , con , i, j, k, interp1 , interp2;
18 struct formula form;
19 FILE *ent;
20 char listcon , ent_name [25], var [4];
21 int imp [10][10] , conj [10][10] , disj [10][10] , neg[10], aux_form [30], interp

[4];
22

23 var [0]=’p’;
24 var [1]=’q’;
25 var [2]=’r’;
26 var [3]=’s’;
27

28 printf("\nEnter file name\n");
29 scanf(" %s", ent_name);
30 ent = fopen(ent_name , "r");
31 if (ent == NULL) {
32 printf("\nMemory error.\n");
33 return 23;
34 }
35 fscanf(ent , "%d", &elem);
36 if(elem > 10 || elem < 2){
37 printf("\nInvalid number of elements\n");
38 return 23;
39 }
40 fscanf(ent , "%d", &desig);
41 if(desig >= elem || desig < 1){
42 printf("\nInvalid number of designated elements\n");
43 return 23;
44 }
45 fscanf(ent , "%d", &con);
46 if(con < 1 || con > 4){
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47 printf("\nInvalid number of connectives\n");
48 return 23;
49 }
50 for (k = 0; k < con; k++){
51 fscanf(ent , " %c", &listcon);
52 if(listcon == ’C’){
53 for(i=0; i<elem; i++)
54 for(j=0; j<elem; j++)
55 fscanf(ent , "%d", &imp[i][j]);
56 } else {
57 if(listcon == ’K’) {
58 for(i=0; i<elem; i++)
59 for(j=0; j<elem; j++)
60 fscanf(ent , "%d", &conj[i][j]);
61 } else {
62 if(listcon == ’A’) {
63 for(i=0; i<elem; i++)
64 for(j=0; j<elem; j++)
65 fscanf(ent , "%d", &disj[i][j]);
66 } else {
67 if(listcon == ’N’){
68 for(i=0; i<elem; i++)
69 fscanf(ent , "%d", &neg[i]);
70 }
71 }
72 }
73 }
74 }
75 do {
76 for (i=0; i<20; i++){
77 aux_form[i]=0;
78 }
79 do{
80 do{
81 printf("\nEnter formula with less than 4 variables\n");
82 scanf(" %s", form.fwrite);
83 form.nchar = strlen(form.fwrite);
84 }while(form.nchar >30 || form.nchar <2);
85 form.var = 0;
86 for(i = 0; i < form.nchar; i++){
87 if(! isConnective(form.fwrite[i])){
88 k = 0;
89 for (j = 0; j < form.var && j < 4; j++)
90 if (form.fwrite[i] != var[j]) ++k;
91 if (k == form.var && k < 4) {
92 var[k] = form.fwrite[i];
93 ++form.var;
94 }
95 else if (k == 4)
96 ++form.var;
97 }
98 }
99 printf("The formula has %d variable(s)\n", form.var);

100 }while(form.var > 4 || form.var == 0);
101

102 // SAVING THE FORMULA //
103

104 form.con = 0;
105 for (i=0; i<form.nchar; i++) {
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106 if (isConnective(form.fwrite[i])) {
107 form.assoc[form.con ][0]=i;
108 form.assoc[form.con ][2]= -1;
109 ++form.con;
110 }
111 }
112

113 for (i=form.con -1; i>= 0; i--){
114 if (isConnective(form.fwrite[form.assoc[i][0]])){
115 j = form.assoc[i][0] + 1;
116

117 while (aux_form[j] == 1 && j<form.nchar) ++j;
118 if(j == form.nchar){
119 printf("Error in formula. Ending process .\n");
120 return 23;
121 }
122 form.assoc[i][1]=j;
123 aux_form[j] = 1;
124

125 if (form.fwrite[form.assoc[i][0]] !=’N’){
126 while (aux_form[j] == 1 && j<form.nchar) ++j;
127 if(j == form.nchar){
128 printf("Error in formula. Ending process .\n");
129 return 23;
130 }
131 form.assoc[i][2]=j;
132 aux_form[j] = 1;
133 }
134 }
135 }
136 k = 1;
137 for(i=1; i<form.nchar; i++)
138 if(aux_form[i]==0){
139 k = 0;
140 i = form.nchar;
141 }
142 if(!k) printf("Invalid formula .\n");
143

144 // FOR EACH INTERPRETATION IS IT TRUE? //
145

146 if (k){
147 for(interp [0] = 0; interp [0] < elem; interp [0]++)
148 for(interp [1] = 0; interp [1] < elem; interp [1]++)
149 for(interp [2] = 0; interp [2] < elem; interp [2]++)
150 for(interp [3] = 0; interp [3] < elem; interp [3]++) {
151 for (i = form.var + 1; i < 4; i++)
152 interp[form.var] += interp[i];
153 if(interp[form.var] == 0 || form.var == 4) {
154 for (i = form.con -1; i >= 0; i--) {
155 if (isConnective(form.fwrite[form.assoc[i][1]])){
156 interp1 = aux_form[form.assoc[i][1]];
157 }
158 else {
159 for (j=0; j<form.var; j++)
160 if (form.fwrite[form.assoc[i][1]]== var[j])
161 interp1 = interp[j];
162 }
163 if (form.fwrite[form.assoc[i][0]] == ’N’){
164 aux_form[form.assoc[i][0]] = neg[interp1 ];
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165 }
166 else{
167 if (isConnective(form.fwrite[form.assoc[i][2]])){
168 interp2 = aux_form[form.assoc[i][2]];
169 }
170 else {
171 for (j=0; j<form.var; j++)
172 if (form.fwrite[form.assoc[i][2]]== var[j])
173 interp2 = interp[j];
174 }
175 if (form.fwrite[form.assoc[i][0]] == ’C’)
176 aux_form[form.assoc[i][0]] = imp[interp1 ][ interp2 ];
177 if (form.fwrite[form.assoc[i][0]] == ’K’)
178 aux_form[form.assoc[i][0]] = conj[interp1 ][ interp2 ];
179 if (form.fwrite[form.assoc[i][0]] == ’A’)
180 aux_form[form.assoc[i][0]] = disj[interp1 ][ interp2 ];
181 }
182 }
183 for (i = 0; i < elem -desig; i++)
184 if (aux_form [0]==i){
185 printf("\nInterpretation ");
186 for(j=0; j < form.var; j++)
187 printf("I(%c)=%d ", var[j], interp[j]);
188 printf("fails to satisfy the formula\n");
189 for (i=0; i<4; i++){
190 interp[i] = 20;
191 }
192 }
193 }
194 }
195 if (interp [0] == elem)
196 printf("\nThe formula is valid\n");
197 }
198 printf("\n... Enter 1 for another formula , 0 to stop\n");
199 scanf("%d", &go);
200 } while (go);
201 fclose(ent);
202 return 1;
203 }
204

205 int isConnective(char a){
206 if (a ==’C’||a ==’K’||a ==’A’||a ==’N’) return 1;
207 return 0;
208 }

Here’s an example of an input file, the one for classical logic, where each operation is
denoted by its letter in polish notation:

1 2 1 4
2

3 C
4 1 1
5 0 1
6

7 K
8 0 0
9 0 1

10

11 A
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12 0 1
13 1 1
14

15 N
16 1 0

Polish notation is a way of writing formulas without delimiting symbols, since the con-
nectives precede their "operands". The connectives are written as follows:

Usual notation  p p ^ q p _ q p Ñ q

Polish notation Np Kpq Apq Cpq

Therefore, for example, the following formulas are written in polish notation like so:

Usual notation Polish notation
p ^ q Ñ q CKpqq

(p Ñ q) Ñ ((r Ñ p) Ñ (r Ñ q)) CCpqCCrpCrq

p Ñ ( p Ñ q) CpCNpq

(p Ñ r) ^ (q Ñ r) Ñ (p _ q Ñ r) CKCprCqrCApqr
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C A matrix model for R

The following tables define a matrix model for R as stated in the proof of Theorem 2.4.6
(designated elements have an asterisk). The elements in blue signal the cases in which
an implication and its antecedent take a designated value (note that then the consequent
also takes a designated value). The elements in red indicate that when both elements of a
conjunction are positive the conjunction is too.

Ñ ´3 ´2 ´1 ´0 +0 +1 +2 +3
´3 +3 +3 +3 +3 +3 +3 +3 +3
´2 ´3 +2 ´3 +2 ´3 ´3 +2 +3
´1 ´3 ´3 +1 +1 ´3 +1 ´3 +3
´0 ´3 ´3 ´3 +0 ´3 ´3 ´3 +3

+0˚ ´3 ´2 ´1 ´0 +0 +1 +2 +3
+1˚ ´3 ´3 ´1 ´1 ´3 +1 ´3 +3
+2˚ ´3 ´2 ´3 ´2 ´3 ´3 +2 +3
+3˚ ´3 ´3 ´3 ´3 ´3 ´3 ´3 +3

 
´3 +3
´2 +2
´1 +1
´0 +0

+0˚ ´0
+1˚ ´1
+2˚ ´2
+3˚ ´3

^ ´3 ´2 ´1 ´0 +0 +1 +2 +3
´3 ´3 ´3 ´3 ´3 ´3 ´3 ´3 ´3
´2 ´3 ´2 ´3 ´2 ´3 ´3 ´2 ´2
´1 ´3 ´3 ´1 ´1 ´3 ´1 ´3 ´1
´0 ´3 ´2 ´1 ´0 ´3 ´1 ´2 ´0

+0˚ ´3 ´3 ´3 ´3 +0 +0 +0 +0
+1˚ ´3 ´3 ´1 ´1 +0 +1 +0 +1
+2˚ ´3 ´2 ´3 ´2 +0 +0 +2 +2
+3˚ ´3 ´2 ´1 ´0 +0 +1 +2 +3

_ ´3 ´2 ´1 ´0 +0 +1 +2 +3
´3 ´3 ´2 ´1 ´0 +0 +1 +2 +3
´2 ´2 ´2 ´0 ´0 +2 +3 +2 +3
´1 ´1 ´0 ´1 ´0 +1 +1 +3 +3
´0 ´0 ´0 ´0 ´0 +3 +3 +3 +3

+0˚ +0 +2 +1 +3 +0 +1 +2 +3
+1˚ +1 +3 +1 +3 +1 +1 +3 +3
+2˚ +2 +2 +3 +3 +2 +3 +2 +3
+3˚ +3 +3 +3 +3 +3 +3 +3 +3
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