

El transcriptoma no codificante en Síndrome de Rett: nuevas funciones para las regiones transcritas ultraconservadas y *circRNAs*

Aida Obiols Guardia

ADVERTIMENT. La consulta d'aquesta tesi queda condicionada a l'acceptació de les següents condicions d'ús: La difusió d'aquesta tesi per mitjà del servei TDX (**www.tdx.cat**) i a través del Dipòsit Digital de la UB (**diposit.ub.edu**) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d'investigació i docència. No s'autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d'un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (**www.tdx.cat**) y a través del Repositorio Digital de la UB (**diposit.ub.edu**) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB. No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR o al Repositorio Digital de la UB (framing). Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la persona autora.

WARNING. On having consulted this thesis you're accepting the following use conditions: Spreading this thesis by the TDX (**www.tdx.cat**) service and by the UB Digital Repository (**diposit.ub.edu**) has been authorized by the titular of the intellectual property rights only for private uses placed in investigation and teaching activities. Reproduction with lucrative aims is not authorized nor its spreading and availability from a site foreign to the TDX service or to the UB Digital Repository. Introducing its content in a window or frame foreign to the TDX service or to the UB Digital Repository is not authorized (framing). Those rights affect to the presentation summary of the thesis as well as to its contents. In the using or citation of parts of the thesis it's obliged to indicate the name of the author.

UNIVERSITAT DE BARCELONA FACULTAT DE MEDICINA PROGRAMA EN BIOMEDICINA

El transcriptoma no codificante en Síndrome de Rett: nuevas funciones para las regiones transcritas ultraconservadas y *circRNAs*

Tesis doctoral

Aida Obiols Guardia

Directores

Dra. Sònia Guil Domènech

Dr. Manel Esteller Badosa

Barcelona, 2020

Cancer Epigenetics and Biology Program Programa d'Epigenètica i Biologia del Càncer Programa de Epigenética y Biología del Cáncer

UNIVERSITAT DE BARCELONA FACULTAT DE MEDICINA PROGRAMA EN BIOMEDICINA

El transcriptoma no codificante en Síndrome de Rett: nuevas funciones para las regiones transcritas ultraconservadas y *circRNAs*

Memoria presentada por Aida Obiols Guardia para optar al grado de Doctora por la Universitat de Barcelona

DOMENEC GUIL DOMENECH	JIL [irmado igitalmente por
LI CONILA SUMA	MENEC 9	UIL DOMENECH
H SONIA - 39173163T	SONIA -	9173163T
39173163T Fecha: 2020.05.17 11:25:47 +02'00'	173163T	echa: 2020.05.17 1:25:47 +02'00'

Aida Obiols Guardia

Dra. Sònia Guil Domènech Codirectora

Codirector y tutor

Doctoranda

ÍNDICES

Índice de contenidos

ABREVIACION	ES	1
RESUMEN		9
INTRODUCCIÓ	N	15
1. El Síndro	ome de Rett	17
1.1. Pat	ología y criterios de diagnóstico: RTT clásico y variante	es
atípicas	·····	
1.2. Neu	irobiología de la enfermedad de RTT	
1.2.1.	Receptores de glutamato de tipo AMPA y edicion del	ARN 20
1.3. Bas	es genéticas del Síndrome de Rett	
1.3.1.	Estructura génica y proteica de MeCP2	
1.3.2.	Funciones y vías moleculares de MeCP2	
2. Modelos	RTT	
2.1. Mo	delos animales	32
2.2. Mo	delos celulares humanos <i>in vitro</i>	
3. El ARN i	no codificante	
3.1. ARI microARNs	Ns no codificantes pequeños (<i>sncRNAs</i>): el caso de los s (<i>miRNAs</i>)	s 37
3.1.1.	Biogénesis de los <i>miRNAs</i>	
3.1.2.	miRNAs en enfermedades neurológicas	39
3.2. ARI	Ns no codificantes largos <i>(IncRNAs)</i>	42
3.2.1.	Regiones transcritas ultraconservadas (T-UCRs)	45
3.2.2.	ARNs circulares (<i>circRNAs</i>)	49
3.2.3.	IncRNAs en enfermedades neurológicas	52
3.2.3.	1. T-UCRs en enfermedades neurológicas	53
3.2.	3.1.1. El caso de <i>Evf</i> 2	53
3.2.3.2	2. circRNAs en enfermedades neurológicas	56
OBJETIVOS		59
METODOLOGÍ	۹	63
1. Muestras b	iológicas	65
1.1. Muesti	as de tejido cerebral de ratón	65
1.2. Líneas	celulares	65

1.2.1. Generación de una línea neural humana KO para MeCP2 66
1.3. Muestras post-mortem de tejido cerebral humano67
2. Análisis de expresión69
2.1. Análisis transcripcionales mediante chips (arrays) de expresión 69
2.2. Análisis de expresión génica mediante <i>RT-PCR</i> cuantitativa (<i>RT-qPCR</i>)71
2.3. Detección de proteínas mediante inmunoblot77
3. Análisis de edición del ARN79
4. Análisis específico de metilación en exones "flip" y "flop" de GRIA3 80
5. Análisis de localización de ARN82
5.1. Fragmentación núcleo-citoplasma82
5.2. Hibridación in situ fluorescente82
RESULTADOS
1. Modelo murino87
1.1. Identificación y análisis de <i>T-UCRs</i> y <i>circRNAs</i> con expresión alterada en hipocampo y córtex frontal de ratones RTT
1.1.1. Selección de <i>T-UCR</i> s candidatos
1.1.1.1. Análisis mediante <i>RT-qPCR</i> de la expresión de <i>T-UCRs</i> candidatos en hipocampo y córtex frontal de ratones RTT92
1.1.1.2. Análisis de alteraciones en el sistema <i>Evf</i> 2 en córtex frontal e hipocampo de ratones RTT96
1.1.1.3. Análisis de alteraciones en la expresión y edición del ARN de <i>Gria3</i> en córtex frontal e hipocampo de ratones RTT
1.1.2. Selección de <i>circRNAs</i> candidatos
1.1.2.1. Análisis mediante <i>RT-qPCR</i> de la expresión de <i>circRNAs</i> candidatos en hipocampo y córtex frontal de ratones RTT107
1.1.2.2. Caracterización de los niveles de expresión de <i>Sirt2</i> en el modelo RTT de ratón109
2. Modelo celular112
2.1. Caracterización del modelo celular neural humano <i>knockout</i> para MeCP2112
2.2. Identificación y análisis de <i>T-UCRs</i> y <i>circRNAs</i> con expresión alterada en el modelo celular neural humano <i>knockout</i> para MeCP2.114
2.2.1. Análisis de alteraciones en la expresión y edición del ARN de <i>GRIA3</i> en el modelo celular neural humano <i>knockout</i> para MeCP2.

2.2.1.1. Análisis de metilación en exones "flip" y "flop" en el modelo celular neural humano <i>knockout</i> para MeCP2
2.2.2. Identificación y análisis de <i>circRNAs</i> con expresión alterada en el modelo celular neural <i>knockout</i> para MeCP2
2.2.2.1.Selección de circRNAs candidatos
2.2.2.1.1. Análisis mediante <i>RT-qPCR</i> de la expresión de <i>circRNAs</i> candidatos en el modelo celular neural humano <i>knockout</i> para MeCP2122
2.2.2.1.2. Caracterización de los niveles de expresión de SIRT2 en el modelo celular neural humano <i>knockout</i> para MeCP2 124
2.2.2.1.3. Estudio de localización celular de <i>circRNAs</i> en células neurales
3. Muestras de pacientes <i>post-mortem</i>
3.1. Estudio proteómico de muestras <i>post-mortem</i> de hipocampo de pacientes RTT129
3.2. Análisis de alteraciones en la expresión y edición del ARN de <i>GRIA3</i> en muestras cerebrales <i>post-mortem</i> de pacientes RTT132
3.2.1. Análisis de metilación en exones "flip" y "flop" en muestras <i>post-mortem</i> de hipocampo de pacientes RTT
DISCUSIÓN139
1. Las poblaciones de <i>T-UCRs</i> y <i>circRNAs</i> presentan niveles de expresión alterados en los modelos murino y humano <i>in vitro</i> del Síndrome de Rett
 Integración de distintos modelos de la enfermedad de Rett para el establecimiento de rutas alteradas comunes
3. Modelos con supresión de MeCP2 muestran alteraciones en distintos niveles de expresión del gen <i>SIRT2</i>
4. GRIA3 y T-UCRs 478/479: candidatos potencialmente relevantes en el Síndrome de Rett
5. Perspectivas de futuro de los ARNs no codificantes en enfermedades del neurodesarrollo
CONCLUSIONES
REFERENCIAS

Índice de figuras

Figura 1. Mecanismos de <i>splicing,</i> edición R/G y topología de las subunidades que forman los receptores de glutamato de tipo AMPA
Figura 2. Estructura génica y proteica de MeCP2
Figura 3. Mutaciones puntuales de MeCP2 recurrentes en pacientes RTT 28
Figura 4. Funciones moleculares de MeCP2
Figura 5. Generación de células madre pluripotentes inducidas y posterior diferenciación a células neurales progenitoras a partir de fibroblastos de pacientes RTT
Figura 6. Mecanismo de regulación de la biogénesis de <i>miR-134</i> por parte de MeCP2 en células neurales41
Figura 7. Clasificación de IncRNAs en función de su origen de transcripción 44
Figura 8. Posibles localizaciones genómicas de las regiones ultraconservadas
Figura 9. Origen y mecanismos de acción de los ARNs circulares
Figura 10. Modelo de cooperación del <i>IncRNA Evf2</i> y las proteínas Dlx2 y MeCP2 en la regulación de la transcripción de los genes adyacentes <i>DLX5</i> y <i>DLX6</i>
Figura 11. Diseño de cebadores para la amplificación de especies circulares por <i>RT-qPCR</i> 72
Figura 12. Análisis del reactoma de genes huésped correspondientes a <i>T</i> - <i>UCR</i> s con expresión alterada en córtex frontal e hipocampo del modelo RTT de ratón
Figura 13. Niveles de expresión relativos de <i>T-UCRs</i> candidatos en córtex frontal e hipocampo de ratones pre-sintomáticos (3-4 semanas) y sintomáticos (8-9 semanas)
Figura 14. Niveles de expresión relativos de genes huésped correspondientes a <i>T-UCRs</i> candidatos en córtex frontal e hipocampo de ratones presintomáticos (3-4 semanas) y sintomáticos (8-9 semanas)
Figura 15. Posición relativa de <i>T-UCRs</i> candidatos en referencia a sus genes huésped correspondientes95
Figura 16. Organización genómica de los genes <i>Dlx5, Dlx6, Evf</i> 2 y las regiones ultraconservadas <i>uc.220, uc.221, ei</i> y <i>eii</i>
Figura 17. Niveles de expresión relativos de <i>T-UCRs uc.220</i> y <i>uc.221</i> en córtex frontal e hipocampo de ratones pre-sintomáticos (3-4 semanas) y sintomáticos (8-9 semanas)

Figura 19. Representación intrónica/exónica de exones mutuamente excluyentes "flip" y "flop" y *T-UCRs uc.478/479* en el locus de *Gria3......* 100

Figura 25. Caracterización de los niveles de expresión de Sirt2 en córtex frontal e hipocampo de ratones *WT* y *KO* para MeCP2......111

Figura 34. Caracterización proteómica en muestras <i>post-mortem</i> de hipocampo de pacientes RTT131
Figura 35. Validación de los niveles de expresión de la proteína S100b en muestras de hipocampo de ratones <i>WT</i> y <i>KO</i> para MeCP2132
Figura 36. Caracterización de los niveles de expresión de <i>GRIA3</i> y <i>T-UCRs uc.478/479</i> y cuantificación de la edición del ARN de <i>GRIA3</i> en muestras <i>post-mortem</i> de hipocampos de pacientes RTT
Figura 37. Caracterización de los niveles de expresión de <i>GRIA3</i> y <i>T-UCRs uc.478/479</i> y cuantificación de la edición del ARN de <i>GRIA3</i> en muestras <i>post</i> - <i>mortem</i> de cerebelos de pacientes RTT
Figura 38. Análisis de metilación en exones "flip" y "flop" del gen <i>GRIA3</i> en muestras <i>post-mortem</i> de hipocampo de pacientes RTT
Figura 39. Estudios farmacológicos clínicos y no clínicos y sus mecanismos de acción en Síndrome de Rett

Índice de tablas

Tabla 1. Criterios de diagnóstico del Síndrome de Rett clásico y variantesatípicas.18
Tabla 2. Secuencia del ARN guía y su complementaria para la edición génicadel gen MECP2 mediante el sistema CRISPR/Cas9
Tabla 3. Muestras de tejido cerebral humanas <i>post-mortem</i> usadas en losdistintos análisis
Tabla 4. Lista de cebadores empleados para los análisis de expresión por RT-PCR cuantitativa.77
Tabla 5. Lista de anticuerpos empleados para los análisis de expresiónproteica por western blot
Tabla 6. Lista de <i>T-UCRs</i> y genes huésped candidatos con niveles deexpresión alterados en hipocampo y/o córtex frontal de ratones KO paraMeCP2
Tabla 7. Lista de circRNAs y genes huésped candidatos con niveles deexpresión alterados en hipocampo y/o córtex frontal de ratones KO paraMeCP2
Tabla 8. Lista de <i>circRNAs</i> y genes huésped candidatos con niveles deexpresión alterados en células neurales progenitoras y librementediferenciadas durante 30 días KO para MeCP2

ABREVIACIONES

ABREVIACIONES

Α

ADAR	Del inglés, Adenosine deaminase acting on RNA
ADN	Ácido desoxiribonucleico
AGO	Del inglés, Argonaute
AMPA	Del inglés, α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
APP	Del inglés, Amyloid beta precursor protein
ARN	Ácido ribonucleico
Arx	Del inglés, Aristaless-related homeobox

В

B2m	Del inglés, Beta-2-microglobulin
BA10	Del inglés, Brodmann Area 10
BACE1	Del inglés, Beta-secretase 1
BDNF	Del inglés, Brain-derived neurotrophic factor
BDNF-AS	Del inglés, Brain-derived neurotrophic factor transcript antisense
Birc6	Del inglés, Baculoviral IAP repeat-containing 6
Btrc	Del inglés, Beta-transducin repeat containing protein

С

Cask	Del Inglés, Calcium/calmodulin dependent serine protein kinase
CDKL5	Del inglés, Cyclin dependent kinase like 5
CDR1	Del Inglés, Cerebellar degeneration related protein 1
ceRNA	Del inglés, Competitive endogenous RNA
circRNA	Del inglés, Circular RNA
C-MYC	
CNIH3	Del Inglés, Cornichon family AMPA receptor auxiliary protein 3
CPT1b	Del Inglés, Carnitine palmitoyltransferase 1B
CREB	Del inglés, CAMP responsive element binding protein
CRISPR/Cas9	Del Inglés, Clustered regularly interspaced short palindromic repeats/CRISPR associated system 9
CTD	Del inglés, C-terminal domain

D

DGCR8	Del inglés, DiGeorge syndrome critical region gene
DLX1	Del inglés, Distal-less homeobox 1
DLX2	Del inglés, Distal-less homeobox 2
DLX3	Del inglés, Distal-less homeobox 3
DLX4	Del inglés, Distal-less homeobox 4
DLX5	Del inglés, Distal-less homeobox 5

DLX6	Del inglés, Distal-less homeobox 6
Dnah2	Del inglés, Dynein axonemal heavy chain 2

Е

EGF	Del inglés, Epidermal growth factor
eRNA	Del inglés, <i>Enhancer RNA</i>
EZH2	Del inglés, Enhancer of zeste 2 polycomb repressive complex 2 subunit

F

FGF	Del inglés, Fibroblast growth factor
FOXG1	Del inglés, Forkhead box G1
FOXP1	Del inglés, Forkhead box P1
FOXP2	Del inglés, Forkhead box P2

G

GABA	Del inglés, Gamma aminobutyric acid
Gabrr2	Del inglés, GABA receptor subunit rho-2
GAPDH	Del inglés, Glyceraldehyde-3-phosphate dehydrogenase
GFP	Del inglés, Green fluorescent protein
Gli3	Del inglés, GLI family zinc finger 3
GRIA1	Del inglés, Glutamate ionotropic receptor AMPA type subunit 1
GRIA2	Del inglés, Glutamate ionotropic receptor AMPA type subunit 2
GRIA3	Del inglés, Glutamate ionotropic receptor AMPA type subunit 3
GRIA4	Del inglés, Glutamate ionotropic receptor AMPA type subunit 4
Gsk3b	Del inglés, Glycogen synthase kinase-3B

н

HDAC3	Del inglés, Histone deacetilase 3
HMGD	Del inglés, High mobility group protein-like domain 1
Hnrph1	Del inglés, Heterogeneous nuclear ribonucleoprotein H
HSPA12B	Del inglés, Heat shock protein family A member 12B
HULC	Del inglés, Hepatocellular Carcinoma Up-Regulated Long Non-Coding RNA
HuR	Del inglés, <i>Hu Antigen R</i>
1	

I

ID	Del inglés, Intermediate domain
iPSC	Del inglés, induced pluripotent stem cell

κ

KDM1A	Del inglés, Lysine Demethylase 1A
KLF4	Del inglés, Kruppel like factor 4
КО	Del inglés, Knockout

L

Del inglés, LIM domain kinase 1
Del inglés, long intergenic non-coding RNA
Del inglés, long non-coding RNA
Del inglés, Ribosomal protein L13

Μ

MALAT-1	Del inglés, Metastasis Associated Lung Adenocarcinoma Transcript 1
Map1a	Del inglés, Microtubule-associated protein 1 A
MAP6	Del inglés, Microtubule-associated protein 6
MAPT	Del inglés, Microtubule-associated protein tau
MBD	Del inglés, Methyl binding domain
MBNL1	Del inglés, Muscleblind Like Splicing Regulator 1
MeCP2	Del inglés, Methyl-CpG-binding protein 2
miRNA	Del inglés, <i>microRNA</i>
MIIt3	Del inglés, Myeloid/lymphoid or mixed-lineage leukemia; translocated to, 3
mRNA	Del inglés, messenger RNA
mTOR	Del inglés, Mechanistic target of rapamycin kinase
N	
NAT	Del inglés, Natural antisense transcript

	Der ingres, Natural antisense transcript
NCoR	Del inglés, Nuclear receptor corepressor 1
ncRNA	Del inglés, <i>non-coding RNA</i>
NF-ĸB	Del inglés, <i>Nuclear factor kappa B</i>
NID	Del inglés, NCoR1/2 interaction domain
NMDA	Del inglés, N-methyl-D-aspartate
NTD	Del inglés, <i>N-terminal domain</i>

0

Del inglés, Octamer-binding transcription factor 4	OCT4	Del inglés, Octamer-binding transcription factor 4
--	------	--

Ρ

PABPN1	Del inglés, Poly(A) Binding Protein Nuclear 1
piRNA	Del inglés, piwi-interactins RNA
Pol I	Del inglés, RNA polymerase I

Pol II	Del inglés, RNA polymerase II
Pol III	Del inglés, RNA polymerase III
pre-miRNA	Del inglés, precursor-microRNA
pri-miRNA	Del inglés, primary-microRNA
PSEN1	Del inglés, Presenilin 1
PUM2	Del inglés, Pumilio RNA binding family member 2

Q

Qk

Del inglés, Quaking

R

RISC	Del inglés, RNA induced silencing complex
RNF220	Del inglés, Ring finger protein 220
RNU6B	Del inglés, RNA, U6 small nuclear 6
rRNA	Del inglés, <i>ribosomal RNA</i>
RTT	Rett Syndrome

S

SCN1A	Del inglés, Sodium Voltage-Gated Channel Alpha Subunit 1
Sfpq	Del inglés, Splicing factor, proline- and glutamine-rich
Shh	Del inglés, Sonic hedgehog signaling molecule
siRNA	Del inglés, small interfering RNA
SIRT2	Del inglés, Sirtuin 2
SMRT/NCoR2	Del inglés, Nuclear receptor corepressor 2
SNC	Sistema nervioso central
sncRNA	Del inglés, small non-coding RNA
SOX2	Del inglés, SRY-box transcription factor 2
Sox5	Del inglés, SRY-box transcription factor 5
STMN1	Del inglés, Stathmin 1

т

TBR2	Del inglés,	T-box brain protein 2
TCF4	Del inglés,	Transcription factor 4
TIMP-1	Del inglés,	TIMP metallopeptidase inhibitor 1
Tra2a	Del inglés,	Transformer-2 protein homolog alpha
TRD	Del inglés,	Transcription repression domain
tRNA	Del inglés,	Transfer RNA
T-UCR	Del inglés,	Transcribed-ultraconserved region

U	
UBE2A	Del inglés, Ubiquitin protein ligase E2A
UBE3A	Del inglés, Ubiquitin protein ligase E3A
UBE3A-ATS	
UCR	Del inglés, Ultraconserved region
UTR	Del inglés, Untranslated region
W	
WT	Del inglés, W <i>ildtype</i>
Y	
YB1	Del inglés, Y-box binding protein 1
_	
Z	
Zeb2	Del inglés, Zinc finger E-box binding homeobox 2

RESUMEN

RESUMEN

Diversos estudios transcripcionales actuales ponen de manifiesto la importancia funcional de la porción no codificante de nuestro genoma, observándose un papel crucial en todos los niveles de la regulación génica. Uno de los tipos de ARNs no codificantes en cuyo estudio nuestro grupo se encuentra focalizado son las llamadas regiones transcritas ultraconservadas (transcribed ultraconserved regions; T-UCRs), trancritos considerados como ARNs no codificantes largos y cuyas secuencias comparten un 100% de homología en humano, ratón y rata. Dichas especies muestran un patrón de expresión específico de tejido, siendo por lo general muy abundantes en el cerebro y, aunque se ha observado que podrían actuar como trans-reguladores antisentido de la biogénesis de microARNs, sus funciones y mecanismos de acción son todavía desconocidos. Por otro lado, datos recientes muestran también la relevancia de ARNs circulares (circular RNAs; circRNAs) en una gran variedad de enfermedades como el cáncer, enfermedades cardíacas o enfermedades neurológicas, siendo el cerebro el tejido con mayor enriquecimiento de circRNAs en relación a otras regiones. Pese a no haberse podido determinar todavía la función biológica de muchas de estas especies, se sabe que podrían tener efectos directos sobre la transcripción lineal o actuar como "esponjas" de microARNs, regulando así la interacción de estos últimos con sus respectivos ARNs mensajeros diana.

En el presente proyecto, se ha buscado diseccionar los respectivos papeles de *T-UCRs* y *circRNAs* en vías relacionadas con la fisiopatología del Síndrome de Rett (RTT), enfermedad severa del neurodesarrollo en la que destacan síntomas como la progresiva pérdida del habla, afectaciones motoras graves, complicaciones cardiacas o una respiración irregular crítica.

Aproximadamente el 90% de casos RTT son debidos a mutaciones causantes de pérdida de función en la proteína MeCP2 (methyl-CpGbinding protein 2), considerada principalmente como represor transcripcional por su capacidad de unión a citosinas metiladas en dinucleótidos 5'CpG y con gran variedad de funciones en la regulación de la expresión génica. Una de las consecuencias observadas por la deficiencia de MeCP2 es el deseguilibrio entre sinapsis inhibitorias y excitatorias que se establecen en las redes neuronales. GABA y glutamato son, respectivamente, los neurotransmisores inhibitorios y excitatorios predominantes en el cerebro de los mamíferos, por lo que se hace imprescindible el estudio de alteraciones en ambas vías como posibles dianas de tratamiento. Entre los diversos tipos de receptores de glutamato que se conocen se encuentran los de tipo AMPA, cuyas subunidades proteicas son productos codificados por los genes GRIA1, GRIA2, GRIA3 y GRIA4. Las cuatro subunidades se encuentran sujetas a splicing alternativo dándo lugar a variantes mutuamente excluyentes conocidas como flip/flop. Además, en los casos de GRIA2, 3 y 4 se produce un mecanismo post-transcripcional conocido como edición del pre-ARNm, por el cual se lleva a cabo un cambio aminoacídico (Arg>Gly) capaz de modular las propiedades del receptor.

Datos obtenidos en chips de expresión realizados en el presente proyecto han mostrado alteraciones tanto en la población de ARNs circulares como de regiones transcritas ultraconservadas bajo condiciones de supresión de MeCP2, destacándose un enriquecimiento de sus respectivos genes huésped en rutas asociadas a la función y dinámica del citoesquelético y la neurotransmisión glutamatérgica. Más especificamente, el caso de *GRIA3* es uno de los que mayor interés suscita debido a la desregulación observada en los *T-UCRs uc.478 y uc.479*, transcritos solapantes de ambos exones alternativos, que

también son contiguos a la zona en la que se produce la edición del pre-ARNm.

El propósito último es explorar la utilidad de *T-UCRs* y *circRNAs* como potenciales dianas terapéuticas y/o biomarcadores de enfermedades neurológicas graves como el Síndrome de Rett.

INTRODUCCIÓN

INTRODUCCIÓN

1. El Síndrome de Rett

1.1. Patología y criterios de diagnóstico: RTT clásico y variantes atípicas

En 1966, el pediatra de origen austríaco Andreas Rett advirtió por primera vez en 22 jóvenes de sexo femenino un trastorno neurológico progresivo distinto de otras lesiones cerebrales descritas anteriormente^{1,2}. Sin embargo, no fue hasta 1983 cuando el profesor Bengt Hagberg junto a su equipo identificó la misma sintomatología en 35 nuevos casos y dio el nombre a dicha afectación de Síndrome de Rett³, permitiendo así el reconocimiento de la enfermedad en el consorcio médico. A día de hoy, el Síndrome de Rett (RTT; OMIM #312750) es reconocido como un trastorno severo del neurodesarrollo ligado al cromosoma X, siendo la segunda causa más común de retraso mental en el sexo femenino tras el Síndrome de Down⁴ y con una prevalencia aproximada de 1/10000-20000 niñas nacidas vivas⁵. En términos genéticos, la enfermedad de RTT está principalmente causada por la aparición de mutaciones de novo en el gen MECP2 (methyl-CpG*binding protein 2*)⁶, codificante para la proteína MeCP2 y cuyo papel en el sistema nervioso central (SNC) es esencial.

En lo que se refiere a los criterios diagnósticos de la patología, éstos fueron revisados y redefinidos en el año 2010 por miembros de *RettSearch*, consorcio formado por investigadores de 13 países distintos expertos en la enfermedad⁷ (tabla 1). Generalmente, las pacientes RTT muestran un desarrollo aparentemente normal hasta cumplir entre 6 y 18 meses de vida⁸, aunque ciertas publicaciones demuestran la existencia de algunas indicaciones de la enfermedad en

estadios más tempranos⁹. Tras este primer periodo de supuesta normalidad, las niñas RTT manifiestan una ralentización del crecimiento y una rápida regresión de las habilidades adquiridas, mostrando signos habituales de la enfermedad como la pérdida del habla y el contacto interpersonal, así como la aparición de movimientos estereotípicos repetitivos de las manos y/o rasgos autistas. El deterioro del sistema motor es también uno de los síntomas principales durante la progresión de la afectación, a menudo acompañado por alteraciones cardíacas y respiratorias, convulsiones y escoliosis severa¹⁰.

	CRITERIOS DIAGNÓSTICOS RTT 2010
Reque	ridos para RTT clásico o típico
1.	Período de regresión seguido de recuperación o estabilización
2.	Todos los criterios principales y todos los criterios de exclusión
3.	Criterios de apoyo no requeridos, aunque a menudo presentes en RTT
Reque	ridos para variantes RTT atípicas
1.	Período de regresión seguido de recuperación o estabilización
2.	2 de los criterios principales
3.	5 de los 11 criterios de apoyo
Criteri	os principales
1.	Pérdida parcial o completa de las habilidades manuales
2.	Pérdida parcial o completa del lenguaje hablado
3.	Anomalías en la marcha: Deterioro (dispraxia) o ausencia de capacidad
4.	Movimientos estereotípicos de las manos como automatismos de retorcerse /
	apretar las manos, aplaudir / golpear, articular y lavar / frotar
Criteri	os de exclusión para RTT clásico
1.	Daño cerebral secundario al trauma (peri- o post-natal), enfermedad
	neurometabólica, o infección severa causante de problemas neurológicos
2.	Desarrollo psicomotor gravemente anómalo en los primeros 6 meses de vida
Criteri	ios de apoyo para RTT atípico
1.	Trastornos respiratorios al despertar
2.	Bruxismo al despertar
3.	Patrón del sueño alterado
4.	Tono muscular anómalo
5.	Alteraciones vasomotoras periféricas
6.	Escoliosis/citosis
7.	Retraso del crecimiento
8.	Manos y pies pequenos y trios
9.	Kisas/gritos inapropiados Respuesto al delas disminuida
10.	respuesta al dolor disminuida Comunicación visual intensa "anuntando a los olos"
11.	Comunicación visual intensa-"apuntando a los ojos"

Tabla 1. Criterios de diagnóstico del Síndrome de Rett clásico y variantes atípicas. Los criterios establecidos por el consorcio *RettSearch* para el diagnóstico del Síndrome de Rett se dividieron en 5 grupos: síntomas requeridos para un diagnóstico de RTT clásico, síntomas requeridos para el diagnóstico de alguna variante atípica de la enfermedad, rasgos principales de la patología, signos que deben ser excluidos en un diagnóstico de Síndrome de Rett clásico y fenotipos comunes en casos de RTT atípico. Adaptada de Neul, J. L. *et al.*, 2010 (7).

En el transcurso del estudio y profundización en las causas y consecuencias del Síndrome de Rett, se han descrito casos de pacientes que no necesariamente presentan todos los signos incluidos en los criterios de diagnóstico de la forma clásica de la afectación (tabla 1). Estos casos fueron clasificados como variantes atípicas, entre las cuales se distinguen tres subgrupos clínicos. En la variante Zappella, como primer ejemplo, se observa una recuperación de algunas habilidades lingüísticas por parte de las pacientes¹¹, mientras que portadoras de la variante Rolando¹² o también llamada variante congénita pueden presentar síntomas más severos que las afectadas por RTT clásico. En el caso de la tercera variante, conocida como variante Hanefeld¹³, se destacan ataques epilépticos sustanciales ya en los primeros meses de vida, lo cual es extremadamente inusual en la forma típica del síndrome.

1.2. Neurobiología de la enfermedad de RTT

La microcefalia y respectiva reducción del volumen cerebral es uno de los rasgos comúnmente descritos en la patología. Dicha malformación se asocia al desarrollo anómalo y mayor empaquetamiento de las células neurales, en las que se observa un tamaño significativamente inferior, así como una menor densidad espinal y complejidad dendrítica^{14–16}. No obstante, cabe destacar que estudios de imagen por resonancia magnética en pacientes RTT demuestran una reducción diferencial del volumen de algunas zonas cerebrales concretas como los lóbulos parietal y temporal, frente a otras que parecen no estar afectadas como sería el córtex occipital¹⁷.

Por lo que respecta a las alteraciones observadas en la función del SNC, varios modelos RTT presentan deficiencias relevantes en la sinaptogénesis, así como alteraciones importantes en el balance de las

sinapsis excitatorias e inhibitorias (E/I), mecanismo determinante en la correcta actividad de las redes neuronales¹⁸. El ácido gammaaminobutírico (GABA) es el neurotransmisor inhibitorio principal en la transferencia de información en el SNC de mamíferos, mientras que el glutamato es el neurotransmisor excitatorio más importante¹⁹. Para la adecuada regulación de dicha comunicación neuronal son esenciales los receptores de GABA y glutamato, presentes en los terminales sinápticos y capaces de modificar las propiedades de la membrana celular. El correcto equilibrio entre estos dos tipos de neurotransmisión es imprescindible para el adecuado funcionamiento de la actividad neuronal, por lo que las alteraciones en la actividad de ambos sistemas o en su interacción se han asociado a varias patologías neurológicas y psiguiátricas²⁰. En el caso específico del Síndrome de Rett se han podido recapitular varios rasgos de la afectación al promoverse la eliminación selectiva de MeCP2 en neuronas inhibitorias GABAérgicas²¹. Así mismo, la depleción de MeCP2 selectiva en neuronas excitatorias glutamatérgicas da lugar también a diversos RTT²². fenotipos complementarios observados en modelos demostrando la relevancia de ambos sistemas en el desarrollo de la enfermedad.

1.2.1. Receptores de glutamato de tipo AMPA y edición del ARN

Como se ha mencionado, los receptores de glutamato juegan un papel fundamental en la transmisión sináptica excitatoria del SNC de mamíferos. El glutamato se presenta en altas concentraciones en las membranas neuronales post-sinápticas, promoviendo la activación de canales iónicos de tres subtipos: de tipo AMPA (α -amino-3-hydroxy-5methyl-4-isoxazolepropionic acid), de tipo NMDA (*N-methyl-D*aspartate) y receptores de Kainato²³.

Concretamente, los receptores de glutamato de tipo AMPA son responsables de la rápida transmisión sináptica excitatoria en el cerebro y se componen a partir del ensamblaje de 4 subunidades distintas (GRIA1-4 o GluA1-4) codificadas por los genes GRIA1-4 y dispuestas diversas combinaciones. formando homotetrámeros en 0 heterotetrámeros. En sinapsis glutamatérgicas en hipocampo, por ejemplo, los principales receptores post-sinápticos están compuestos por heterotetrámeros GluA1/GluA2 y GluA2/GluA3. De manera importante, todas las subunidades están sujetas a splicing alternativo de dos exones mutuamente excluyentes, dando lugar a dos isoformas conocidas como *flip* y *flop*²⁴ (figura 1A). Dichas variantes muestran distintas propiedades cinéticas, observándose, entre otros ejemplos, un ratio más rápido de desensibilización de la membrana en las subunidades formadas por la variante *flop* que en las isoformas *flip*²⁵.

Además del splicing alternativo, la complejidad y variabilidad de las subunidades que forman los receptores de glutamato de tipo AMPA vienen determinadas por un mecanismo conocido como edición del ARN, al que se encuentran sujetos los transcritos de los genes GRIA2, GRIA3 y GRIA4 en distintas posiciones de su secuencia. Este mecanismo de edición implica modificaciones en sitios puntuales de las moléculas de ARN que no están codificadas en la cadena de ADN original, incrementando así la variabilidad transcripcional en la célula²³. La edición del ARN en células eucariotas es generalmente un mecanismo post-transcripcional de deaminación que convierte Adenosinas (A) en Inosinas (I) o Citidinas (C) en Uridinas (U)²⁶, aunque en mamíferos el proceso más común es la conversión de A en 127. Normalmente, la Inosina es leída por los ribosomas como una Guanosina, pudiendo implicar, en última instancia, el cambio del aminoácido para el cual codifica el codón, siempre y cuando el nucleótido editado se localice en una secuencia codificante.
Esta reacción de edición del ARN es llevada a cabo por un tipo de enzimas denominadas ADAR (*adenosine deaminase acting on RNA*). En mamíferos se han descrito tres tipos de enzimas ADAR: ADAR1, ADAR2 y ADAR3, caracterizadas por presentar distinta distribución subcelular y tisular, así como también diferentes funciones²⁸.

En el caso de las subunidades GluA2-4, se han descrito dos posiciones sujetas a edición del ARN, en las que se produce la conversión aminoacídica de glutamina (Q) a arginina (R) en el primer caso (posición Q/R) y de arginina (R) a glicina (G) en el segundo caso (posición R/G). El cambio en Q/R es específicamente catalizado por ADAR2^{29,30}, mientras que la segunda posición (R/G) puede ser editada por ADAR1 y ADAR2^{31,32}. De manera importante, el cambio R/G se produce dos nucleótidos antes del sitio de splicing que da lugar a las variantes flip y flop (figura 1A), de modo que la edición en esa posición junto con el splicing alternativo influyen en las propiedades cinéticas de los receptores. De hecho, estudios en hipocampo de rata muestran que los mecanismos de edición del ARN en la posición R/G y el splicing de los exones flip/flop se encuentran estrechamente coordinados por la actividad neuronal, observándose además una relación lineal entre los transcritos editados (G) y la inserción del exón "flip". En referencia a las funciones neuronales, se ha demostrado que aquellos receptores formados por subunidades editadas (G) presentan una mejor recuperación a la desensibilización, generándose canales que responden más rápido a nuevos estímulos de glutamato³³. Además, se ha observado un incremento de los niveles de edición en la posición R/G a medida que se da la maduración neuronal³⁴, así como la posible implicación de los mecanismos de splicing y edición del ARN en el transporte de los transcritos de receptores de glutamato de tipo AMPA a las zonas dendríticas, afectando así a la regulación sináptica³⁵.

Figura 1. Mecanismos de *splicing*, edición R/G y topología de las subunidades que forman los receptores de glutamato de tipo AMPA. A. Las subunidades GluA1-4 de los receptores de glutamato de tipo AMPA se encuentran sujetas a *splicing* alternativo de dos exones mutuamente excluyentes dando lugar dos variantes distintas llamadas *flip* y *flop*. De manera post-transcripcional, dos nucleótidos antes del sitio de *splicing* que da lugar a las dos isoformas de las subunidades GluA2-4, se lleva a cabo un mecanismo conocido como edición del ARN, produciéndose un cambio aminoacídico de Glicina a Arginina que proporciona distintas propiedades cinéticas a los receptores. B. Las distintas subunidades GluA1-4 disponen de una cola N-terminal extracelular, tres dominios intra-membranales y una cola C-terminal intracelular. Tanto la zona de *splicing* flip/flop como la posición de edición R/G se encuentran en el *loop* extracelular de las subunidades proteicas.

Dada la importancia del mecanismo de edición del ARN en los receptores de glutamato para la correcta actividad del SNC, la desregulación de este proceso se ha relacionado, en consecuencia, con casos patológicos severos como la esclerosis lateral amiotrófica³⁶, la esquizofrenia³⁷ o la enfermedad de Alzheimer³⁸. Entre otros ejemplos, datos publicados recientemente relacionados concretamente con la subunidad GluA2 muestran una relación directa entre la aparición de mutaciones puntuales muy cercanas a la zona de edición Q/R del transcrito y la alteración de dicha edición en diversos pacientes con afectaciones del neurodesarrollo³⁹.

1.3. Bases genéticas del Síndrome de Rett

Antes de revelarse la causa genética del Síndrome de Rett, varios autores ya defendieron la idea de que la enfermedad debía resultar de una mutación dominante en alguna región del cromosoma X, pues afectaba casi de forma exclusiva al sexo femenino y los varones hemizigotos morían prematuramente⁴⁰⁻⁴⁴. Hoy sabemos que la forma clásica de la enfermedad es, en su mayoría (aproximadamente el 90% de los casos), consecuencia de mutaciones esporádicas que provocan la pérdida de función en una de las copias del gen MECP2, codificante para la proteína MeCP2 (Methyl-CpG Binding Protein 2), el cual se encuentra en la región Xg28 del genoma. La alteración de la única copia existente del gen en pacientes masculinos impide el correcto desarrollo neural y provoca, en su mayoría, la no viabilidad de estos casos. No obstante, existen registros de varones afectados por la forma típica de la enfermedad, siendo esto posible en dos situaciones: en pacientes afectados por el Síndrome de Klinefelter (XXY) y que, por tanto, tienen una copia extra no mutada del cromosoma X, o en pacientes portadores de un mosaicismo somático de la mutación del gen⁴⁵⁻⁴⁷.

Por otro lado, en los casos RTT se observa una mayor frecuencia de mutaciones *de novo* en aquellos cromosomas X transmitidos por vía paterna, representando hasta un 94-96% de las copias mutadas. Este hecho demuestra la baja probabilidad de que la descendencia masculina pueda recibir la copia alterada del cromosoma X por vía materna, con lo que algunos autores proponen la existencia de una protección natural del sexo masculino a la forma esporádica del Síndrome de Rett⁴⁸.

Por lo que se refiere a las causas genéticas de las formas atípicas de la enfermedad, se han descrito mutaciones en genes distintos a *MECP2*. En pacientes con las variantes Hanefeld y Rolando, son los genes *CDKL5* y *FOXG1* los que se ven afectados^{49,50}. Sin embargo, la variante Zappella está causada también por la disrupción del gen *MECP2*⁵¹. Por otro lado, gracias a técnicas de secuenciación de nueva generación llevadas a cabo en nuestro grupo, también se han podido detectar mutaciones en otros genes distintos a los mencionados, como por ejemplo *GABBR2, SEMA6B* o *CACNA1I*, que por ellas mismas o en combinación parecen ser causa de fenotipos RTT⁵².

1.3.1. Estructura génica y proteica de MeCP2

MECP2 es un gen constituido por 4 exones cuya transcripción y *splicing* alternativo dan lugar a dos transcritos distintos: *MECP2_e1* y *MECP2_e2*. La variante *MECP2_e1* incluye los exones 1, 3 y 4, omitiendo el exón 2, mientras que la variante *MECP2_e2* incluye todos los exones observados a nivel genómico (figura 2).

MECP2_e1, cuyo inicio de traducción se encuentra en el exón 1, se expresa principalmente en el cerebro de mamíferos adultos y parece ser el transcrito más importante para el correcto desarrollo neural. Por otro lado, la variante *e2* contiene su inicio de traducción en el exón 2 y es más abundante en tejidos como la placenta, el hígado y el músculo esquelético. Cabe destacar que la supresión específica de la isoforma *MECP2_e2* no ha mostrado tener relevancia en los fenotipos RTT⁵³. Sin embargo, un estudio reciente sugiere que dicha variante *MECP2_e1*⁴⁶.

Figura 2. Estructura génica y proteica de MeCP2. El *splicing* alternativo del gen *MECP2* da lugar a dos isoformas distintas: *MECP2_e1* y *MECP2_e2*. MeCP2_e1 contiene 498 aminoácidos y 21 residuos únicos en la zona N-terminal, mientras que MeCP2_e2 contiene 486 aminoácidos y 9 residuos únicos en la zona N-terminal. La secuencia proteica restante es común en las dos isoformas y puede dividirse en los siguientes dominios: dominio N-terminal (NTD), dominio de unión a dinucleótidos CpG metilados (MBD), dominio intermedio (ID), dominio de represión transcripcional y dominio C-terminal (CTD). Parcialmente adaptada de Sharma, K. *et al.*, 2018.

MeCP2 es una proteína nuclear identificada por primera vez en 1992 y cuya característica principal es su capacidad de unión a dinucleótidos CpG metilados en el genoma⁵⁴. En la especie humana, esta proteína se encuentra estructurada en seis dominios bien definidos. El dominio encargado de la unión de la proteína a dinucleótidos CpG metilados fue el primero en ser caracterizado en 1993⁵⁵, recibiendo el nombre en inglés de *Methyl Binding Domain (MBD)*. En 1997 se aisló el segundo dominio funcionalmente relevante de la proteína, formado por los residuos aminoacídicos necesarios para la represión transcripcional y denominado por ello *Transcription Repression Domain (TRD)*. *HMGD1 (High Mobility Group Protein-like Domain 2), CTD-* α (*C-Terminal Domain Alpha*) y *CTD-* β (*C-Terminal Domain Beta*) son los dominios restantes que completan la estructura de la proteína (figura 2).

Por lo que respecta a los niveles proteicos, MeCP2 se expresa ampliamente en todos los tejidos. No obstante, los niveles de esta proteína son relativamente mayores en el cerebro, principalmente en neuronas post-migratorias maduras⁵⁶. A nivel celular, parece mantener una baja expresión durante la embriogénesis y aumentar de manera progresiva a medida que se da la maduración neuronal post-natal^{57,58}.

A día de hoy se han reportado más de 4600 variantes distribuidas a lo largo de la región codificante del gen *MECP2*⁵⁹. La mayoría de mutaciones patogénicas, las cuales representan el 71% de todas las variantes descritas, se encuentran localizadas en los dominios *MBD* (25%) y *TRD* (34%) y suelen englobar mutaciones puntuales de cambio de sentido (*missense*) o sin sentido (*nonsense*), siendo estas últimas causa de la aparición de un producto proteico truncado. Además, cabe destacar la recurrencia de 8 mutaciones específicas, las cuales engloban el 47% de todas las mutaciones observadas en MeCP2: Arg106Trp (R106W), Arg133Cys (R133C), Thr158Met (T158M),

Arg168* (R168X), Arg255* (R255X), Arg270* (R270X), Arg294* (R294X) y Arg306Cys (R306C) (figura 3), donde * representa un codón *stop*.

Figura 3. Mutaciones puntuales de MeCP2 recurrentes en pacientes RTT. Las 8 mutaciones más comunes descritas para MeCP2 en pacientes RTT son Arg106Trp, Arg133Cys, Thr158Met, Arg168*, Arg255*, Arg270*, Arg294* y Arg306Cys. Todas se encuentran distribuidas entre los dominios *MBD, ID* y *TRD* de la proteína.

1.3.2. Funciones y vías moleculares de MeCP2

MeCP2 ha sido el centro de numerosos estudios enfocados en desenmascarar las funciones y vías moleculares en las que dicha proteína se ve implicada. Varios modelos animales han demostrado la relevancia de MeCP2 para una correcta función neuronal, pues la depleción del gen en modelos de ratón adultos causa defectos muy similares a los observados en pacientes RTT^{60,61}. Notablemente, modelos animales con niveles normales de MeCP2 en el SNC pero escasa expresión en tejidos periféricos no presentan, en general, fenotipos patológicos⁶².

El papel por el cual se identificó y caracterizó por primera vez MeCP2 fue su capacidad de unión a ADN metilado⁵⁴, confirmándose tal función a lo largo de los años mediante gran variedad de técnicas *in vitro*^{63–65} e *in vivo*^{66,67}. Por lo que respecta a las zonas de unión de MeCP2 en el genoma de mamíferos, ha sido todo un reto poder delimitarlas con exactitud debido a la gran abundancia de dicha proteína y el alto número de sitios de unión potenciales. Estudios recientes han demostrado que, además de dinucleótidos CG metilados (mCG), MeCP2 es capaz de unirse también a dinucleótidos CA metilados (mCA) e hidroximetilados (hmCA), cuya representación en el genoma del cerebro adulto es particularmente elevada⁶⁸. De hecho, mediante ensayos *in vitro* para identificar las secuencias metiladas no formadas por dinucleótidos CG que fueran susceptibles de unión por parte de MeCP2, se pudieron llegar a limitar las secuencias preferibles a mCA en primer lugar y trinucleótidos mCAC en segundo lugar.

La función y estabilidad de la proteína MeCP2 se pueden ver afectadas por múltiples modificaciones post-traduccionales, incluyendo, entre otras, la fosforilación dependiente de la actividad neuronal^{69,70}. La despolarización de la membrana da lugar a la fosforilación de la Serina 86 (Ser86), la Treonina 148 o Serina 149 (Thr148/Ser149) y la Serina 164 (Ser164) en la proteína, mientras que dicha modificación se pierde en la Serina 80 (Ser80)^{69,71}. Cambios en estos patrones de fosforilación, cuyas posiciones se encuentra cerca o en el mismo dominio *MBD*, parecen ser causa de que la capacidad de unión de MeCP2 al ADN se vea afectada^{71,72}. No obstante, no se han descrito hasta el momento mutaciones asociadas a la patología RTT en sitios de fosforilación dependiente de actividad neuronal, por lo que la relevancia funcional de esta modificación es todavía una incógnita. De manera general, MeCP2 se ha descrito como una proteína multifuncional involucrada en varios procesos de la regulación de la expresión génica en múltiples niveles⁷³,

incluyendo roles en la represión y activación transcripcional⁷⁴, el splicing alternativo^{75,76}, la remodelación de la cromatina y el procesamiento de microARNs⁷⁷ (figura 4). Sin embargo, ensavos de depleción y sobreexpresión de MeCP2 demuestran que su función más destacable es su actividad represora y sugieren que la activación transcripcional de diversos genes sería una consecuencia indirecta de los niveles alterados de dicha proteina⁷⁸. Para su acción represora, es necesaria la interacción de MeCP2 compleios con co-represores como NCoR1/SMRT⁷⁹, que a su vez es capaz de reclutar factores como la desacetilasa de histonas 3 (Histone deacetilase 3; HDAC3)⁸⁰, cuva función es la eliminación de marcas acetilo para favorecer así una estructura más compacta de la cromatina.

Figura **Funciones** 4. moleculares de MeCP2. Se han descrito distintos papeles en los que la proteína MeCP2 se ve implicada. Entre ellos destacan su capacidad para compactar la estructura de la cromatina, su acción represora mediante ല reclutamiento del complejo co-represor NCOR-SMRT, la activación de la transcripción mediante el reclutamiento del co-activador CREB1. la regulación splicing del alternativo a través de la interacción del factor de transcripción YB1 o su papel en el procesamiento de microARNs mediante su interacción con la proteína DGCR8. Parcialmente adaptada de Lyst, M.J. y Bird, A., 2015 (75).

Como se ha mostrado anteriormente, la mayoría de las mutaciones mapeadas en MeCP2 causantes del Síndrome de Rett se encuentran en el dominio MBD y el extremo C-terminal del dominio TRD. Curiosamente, el grupo de mutaciones situadas en la parte C-terminal coinciden con la región de interacción de MeCP2 con el complejo corepresor NCoR1/2 (NCoR1/2 Interaction Domain; NID), causando así la disrupción de la actividad represora de la proteína⁸¹. Cabe destacar que varios trabajos cuyo objetivo ha sido desvelar la función principal que ejerce MeCP2 en el SNC y cómo la alteración de ésta puede causar enfermedades devastadoras como el Síndrome de Rett, sugieren un modelo primordial en las bases moleculares de la patología, conocido como modelo puente. Dicho modelo propone que las alteraciones genéticas principales observadas en MeCP2 y causantes de la patología interrumpen su capacidad de reclutamiento del complejo NCoR1/2 en regiones metiladas del genoma, impidiéndose así la correspondiente acción represiva en los genes diana⁸².

2. Modelos RTT

La generación de modelos animales y líneas celulares humanas para los estudios de distintas vías moleculares alteradas en enfermedades neurológicas ha sido y sigue siendo un mecanismo imprescindible en este tipo de patologías, principalmente debido a la dificultad de acceso al tejido cerebral.

En el caso del Síndrome de Rett, se han desarrollado diversos modelos *in vitro* e *in vivo* como herramientas que permitan elucidar los principales aspectos involucrados en la enfermedad y poder así diseñar nuevas estrategias terapéuticas.

2.1. Modelos animales

Con el objetivo de conocer por completo el papel que ejerce MeCP2 en el desarrollo y función cerebral, así como los mecanismos moleculares involucrados en la fisiopatología de la enfermedada de Rett, se han generado varios modelos animales, en su mayoría modelos de ratón.

Los modelos murinos más comunes para el estudio de la enfermedad son aquellos en los que se ha causado la supresión completa de la proteína MeCP2. En 2001 se obtuvo el primer ratón *KO* para *Mecp2* mediante la deleción de los exones 3 y 4 del gen con el uso de la tecnología *Cre-LoxP*⁸³. Por otro lado, se desarrolló también una línea de ratón generada a partir de la deleción única del exón 3, la cual mostraba de nuevo un fenotipo idéntico al primer modelo, demostrando que la eliminación del exón 3 es suficiente para inducir la supresión de la proteína⁸⁴ y replicar los respectivos síntomas. En 2006, Pelka *et al.* generaron otra línea de ratón nulo para MeCP2 a través de la eliminación del dominio de unión a CpGs metiladas (*MBD*), así como la alteración del dominio de represión transcripcional (*TRD*) a través de la modificación de un sitio de *splicing*⁸⁵.

Además de modelos con supresión completa de la proteína, muchos grupos han desarrollado modelos en los que se han inducido mutaciones puntuales en el gen *Mecp2* relacionadas con la enfermedad de Rett. Entre otras, seis de las mutaciones más comunes en pacientes RTT tienen a día de hoy su correspondiente línea de ratón (R106W, R133C, T158M, R168X, R255X y R306C)⁸⁶.

Finalmente, también se dispone de algunos modelos de ratón de Síndrome de Rett en los que se ha provocado la eliminación condicional (*KO* condicional) de MeCP2 con el uso de la herramienta *Cre-loxP*, restringiendo la depleción de la proteína en tipos específicos de células neurales^{21,87–91}.

Es importante tener en cuenta que, aunque los modelos animales no reflejan de manera exacta las condiciones fisiopatológicas observadas en pacientes humanos, son una herramienta extraordinariamente valiosa, ya que son capaces de recapitular muchos de los síntomas clínicos y alteraciones moleculares y celulares observados en los afectados⁸⁶. Además, dichos modelos permiten también el estudio de la enfermedad en fases pre-sintomáticas, descifrando así posibles biomarcadores de diagnóstico prematuro relevantes para potenciales tratamientos que podrían paliar algunos fenotipos RTT desde la infancia⁹². Cabe destacar que muchos grupos de investigación eligen trabajar, pese a tratarse de una enfermedad predominante en el sexo femenino, con ratones macho hemizigotos (MeCP2-/y) en lugar de hembras heterozigotas (MeCP2^{-/+}) por dos razones principales. Por un lado, las hembras presentan un patrón mosaico de expresión de MeCP2 mutado debido a la inactivación de uno de los cromosomas X por un mecanismo de compensación de dosis génica, siendo por ello un modelo mucho más complejo para los estudios experimentales⁹³. Por otro lado, los ratones de sexo masculino desarrollan un fenotipo RTT severo mucho antes que las cepas de sexo femenino⁹⁴, facilitando así el estudio del desarrollo de la enfermedad en tiempos más reducidos. No obstante, es importante ser conscientes de que los modelos animales hembra mutantes para MeCP2 son los más relevantes a nivel clínico para el estudio de enfermedades ligadas al cromosoma X como es el Síndrome de Rett.

Por lo que respecta a otros animales, también se han desarrollado modelos RTT de rata⁹⁵, de *zebrafish*⁹⁶, de mosca⁹⁷ e incluso se dispone de un modelo primate no-humano⁹⁸.

2.2. Modelos celulares humanos in vitro

Pese a la gran utilidad de los modelos animales para dilucidar vías potencialmente alteradas en un gran número de enfermedades, así como el desarrollo de terapias o estrategias de diagnóstico, es imprescindible la verificación de la información obtenida en modelos humanos. Hasta el momento, el traslado del conocimiento obtenido en modelos animales a pacientes es limitado, pues las estrategias terapéuticas existentes no cuentan todavía con la efectividad necesaria pese a las constantes propuestas y esfuerzos dedicados a tratamientos derivados de los datos observados en modelos animales. Es por ello por lo que ha sido necesaria la generación de líneas celulares humanas in vitro que "imitan" las alteraciones observadas en pacientes de esas patologías. Especialmente en condiciones neurológicas, en las que el acceso al tejido afectado es por el momento inviable, excepto mediante el uso de muestras post-mortem, la generación de líneas celulares pluripotentes inducidas (induced pluripotent stem cells; iPSCs) a partir de células humanas somáticas ha resultado ser un sistema realmente útil⁹⁹.

En referencia al Síndrome de Rett, las primeras *iPSCs* generadas a partir de ratones y pacientes humanas RTT se llevó a cabo en 2009¹⁰⁰. Sin embargo, el primer grupo que hizo uso de tal herramienta como modelo de la enfermedad fue el liderado por Marchetto en 2010¹⁰¹, trabajo en el cual se generaron neuronas derivadas de *iPSCs* reprogramadas a partir de fibroblastos obtenidos de cuatro pacientes RTT con distintas mutaciones en *MECP2* (figura 5).

Figura 5. Generación de células madre pluripotentes inducidas y posterior diferenciación a células neurales progenitoras a partir de fibroblastos de pacientes RTT. Las células fibroblásticas aisladas de niñas RTT con cuatro mutaciones distintas en MeCP2 fueron infectadas con vectores retrovirales de reprogramación (Sox2, Oct4, c-Myc y Klf4), generándose así *iPSCs*. Mediante protocolos de diferenciación neural de dichas células pluripotentes se pudieron obtener finalmente células neurales que reproducían las condiciones genéticas de las pacientes. Parcialmente adaptada de Marchetto et *al.*, 2010 (101).

En 2015, Dijuric *et al.* desarrollaron por primera vez una línea neuronal derivada de *iPSCs* a partir de células de una paciente RTT con mutación específica de la isoforma e1 de MeCP2¹⁰². Por otro lado, en un estudio realizado en astrocitos derivados de *iPSCs* RTT se demostraba el efecto directo que puede tener dicha línea celular sobre las neuronas y la capacidad de éstos de inducir alteraciones en la patología¹⁰³.

Todos estos modelos han permitido la obtención de líneas neurales que exhibían rasgos genéticos y fenotípicos característicos de la enfermedad, siendo la reducción de las espinas dendríticas y del soma, la alteración electrofisiológica, la disminución del número de sinapsis¹⁰¹ o los defectos en la maduración neuronal¹⁰⁴ varios ejemplos de ello. Es importante destacar que las *iPSCs* de pacientes de sexo femenino mantienen la memoria epigenética de sus tejidos originarios como el patrón de inactivación del cromosoma X¹⁰⁵, lo que permite la reproducción específica de la enfermedad en cada paciente y, por tanto, la posibilidad de acceder a tratamientos más personalizados.

Finalmente, un trabajo reciente ha descrito la generación de una línea neuronal humana en la que se había llevado a cabo la introducción de cuatro mutaciones puntuales en el gen *MECP2*, todas ellas relacionadas con el desarrollo del Síndrome de Rett, a través del uso de la herramienta *CRISPR/Cas9*¹⁰⁶. Este sistema permite a la comunidad investigadora acercarse a la realidad de las enfermedades neurogenéticas de un modo más simple y manipulable.

3. EI ARN no codificante

Las técnicas y análisis transcripcionales desarrollados a lo largo de los últimos años han permitido poner de manifiesto la importancia funcional de la porción no codificante de nuestro genoma, observándose un papel crucial en todos los niveles de la regulación génica¹⁰⁷. Dicha indicación ha suscitado un mayor interés por parte de la comunidad científica respecto al mal denominado "ADN basura", resultando en la aparición de múltiples estudios cuyo propósito principal ha sido desvelar los papeles y mecanismos en los que el ARN no codificante (non-coding RNA; ncRNA) se encuentra involucrado. Pese a encontrarnos todavía muy lejos de alcanzar un conocimiento completo de todo lo que envuelve al transcriptoma no codificante, su implicación en diferentes etapas de la regulación de la expresión génica ha sido ampliamente demostrada, incluyendo su relevancia en el control transcripcional y reestructuración de la cromatina, en el procesamiento dado por mecanismos como el splicing o la edición génica, e incluso a nivel traduccional. No es, por tanto, sorprendente que dichos transcritos puedan verse involucrados de manera sustancial en diversas enfermedades desórdenes humanas. incluyendo varios neurológicos¹⁰⁸.

Generalmente, los ARNs no codificantes se clasifican en dos grandes grupos de acuerdo con su tamaño: ARNs no codificantes pequeños (small non-coding RNAs; sncRNA), cuya longitud es menor a 200 pares de bases, y ARNs no codificantes largos (long non-coding RNAs; IncRNAs), formados por más de 200 pares de bases. Los sncRNAs han sido los mejor caracterizados tanto a nivel estructural como funcional y, aunque tradicionalmente sólo se consideraban parte de este grupo los ARNs de transferencia (transfer RNA; tRNA), ARNs pequeños nucleares (small nuclear RNAs; snRNAs), ARNs pequeños nucleolares (small nucleolar RNAs; snoRNAs) y ARNs ribosomales (ribosomal RNA; rRNA), hoy en día se destacan principalmente tres subgrupos: los microARNs (microRNAs: miRNAs), ARNs asociados a PIWI (piwiinteractins RNAs; piRNAs) y ARNs pequeños de interferencia (small interfering RNA; siRNAs)¹⁰⁹. Por lo que respecta a los IncRNAs, su clasificación resulta complicada debido a la alta variabilidad en su estructura y funcionalidad. No obstante, el conocimiento cada vez mayor de las funciones llevadas a cabo por varias de estas moléculas ha permitido a algunos autores agrupar dichas especies en base a sus mecanismos de acción^{110–112}.

3.1. ARNs no codificantes pequeños (*sncRNAs*): el caso de los microARNs (*miRNAs*)

3.1.1. Biogénesis de los miRNAs

Los microARNs o *miRNAs* forman el conjunto de ARN no codificante más estudiado tanto en condiciones de normalidad como en un contexto de enfermedad. Dichas especies son descritas como moléculas con una longitud media de 22 nucleótidos y una función esencial en la regulación de la expresión génica. Generalmente, los *miRNAs* actúan como represores directos uniéndose por complementariedad de bases al extremo no traduccional 3' (*3'UTR*) de sus ARN mensajeros (*messenger RNAs; mRNAs*) diana¹¹³, aunque datos recientes muestran también un papel activador bajo condiciones específicas^{114,115}. En humanos, las secuencias que dan lugar a los *miRNAs* se encuentran generalmente en intrones tanto de genes codificantes como no codificantes¹¹⁶. No obstante, también pueden localizarse en regiones exónicas o intergénicas¹¹⁷ del genoma. Además, con frecuencia se pueden encontrar secuencias de distintos *miRNAs* agrupadas formando unidades transcripcionales policistrónicas o *clusters*.

Por lo que respecta a su biogénesis, los miRNAs son sintetizados a partir del ADN genómico por las polimerasas de ARN II y III (Pol II/Pol III)^{118,119} y pueden ser procesados a través de dos vías distintas, conocidas como vía canónica y vía no canónica. En la vía canónica, que es la predominante, la transcripción da lugar a un primer transcrito conocido como microARN primario o pri-miRNA, una molécula larga (muchas veces mayor a 1 kb) cuya estructura se encuentra formando un lazo o loop y dejando los extremos 3' y 5' en forma de cadena sencilla de ARN¹²⁰. El pri-miRNA es reconocido y procesado en el núcleo por el complejo microprocesador, formado por la ribonucleasa de tipo III Drosha y otra proteína de unión a ARN conocida como DGCR8 (DiGeorge Syndrome Critical Region 8)^{121,122}. La escisión producida por Drosha da lugar al microARN precursor o pre-miRNA, el cual es exportado al citoplasma mediante un complejo formado por la exportina 5 y RanGTP. Allí, el proceso de maduración se completa gracias a la acción de la RNasa III Dicer, que elimina el lazo o loop terminal del pre*miRNA* y genera un dúplex de 22 nucleótidos al que se conoce ya como microARN maduro¹²³. Finalmente, una de las cadenas que forma el dúplex se unirá a una de las proteínas que forman la familia Argonauta

(AGO), generándose así el complejo *RISC* (*RNA induced silencing complex*), mientras la otra cadena del dúplex, llamada cadena pasajera, es degradada. Una vez formado el complejo *RISC*, el *miRNA* maduro de cadena simple es capaz de interaccionar de manera parcialmente complementaria con sus *mRNAs* diana provocando, generalmente, la degradación de dichos transcritos o la inhibición de su traducción.

3.1.2. miRNAs en enfermedades neurológicas

El uso de modelos animales cuya biogénesis de microARNs ha sido específicamente comprometida han desvelado un papel esencial de dichos transcritos en el desarrollo y función del cerebro^{124,125}. Asimismo, la abundancia y la especificidad espacio-temporal de miRNAs en el cerebro observadas en diversos estudios transcriptómicos demuestran la relevancia de la función reguladora de éstos durante el desarrollo neuronal, desde la neurogénesis en los estadios más tempranos hasta la sinaptogénesis, así como el mantenimiento de la correcta funcionalidad neural^{126,127}. Sin embargo, pese a que se estima que aproximadamente un 70% de todos los miRNAs maduros descritos en humanos se expresan en el sistema nervioso¹²⁸, solo una pequeña porción de estos transcritos han sido completamente caracterizados. Algunos de esos ejemplos son el miRNA miR-92, cuyo gen diana principal (TBR2) está directamente relacionado con el grosor del córtex cerebral¹²⁹; los *miRNAs miR-9* y *miR-124*, identificados como dos de los miRNAs más abundantes en el cerebro y cuyo papel en la diferenciación de los diferentes linajes neurales ha sido demostrado¹³⁰; o miRNAs como miR-129 y miR-219, con funciones importantes en la plasticidad y regulación sináptica131,132.

Dada la significancia funcional de un gran número de especies de miRNAs en el sistema nervioso, no es sorprendente que muchos se encuentren desregulados en varias enfermedades neurológicas. En el caso concreto del Síndrome de Rett, diversos trabajos evidencian niveles alterados de la población de miRNAs en modelos en los que la expresión de MeCP2 se ve afectada¹³³⁻¹³⁵. Uno de los casos más interesantes es el aumento de los niveles transcripcionales de los miRNAs 30a, 381 y 495 en muestras de cerebelo de ratones KO para MeCP2 con 6 semanas de edad, pues dichos miRNAs ejercen una función reguladora sobre el gen Bdnf¹³⁵. BDNF es una de las neurotrofinas mejor caracterizadas por su esencial implicación en la modulación de varios aspectos del desarrollo neuronal, así como la transmisión sináptica y la plasticidad neural^{136,137}. Es por ello por lo que dicha proteína se ha visto directamente afectada en gran variedad de enfermedades neuropsiguiátricas, neurodegenerativas V del neurodesarrollo, incluyendo en este último grupo el Síndrome de Rett, donde los niveles de BDNF se encuentran anormalmente reducidos¹³⁸. Otro *miRNA* cuya expresión se ve afectada por los niveles de MeCP2 es miR-137. Dicho miRNA está involucrado en la regulación de la diferenciación y proliferación de células madre neurales y se ha demostrado su activación bajo condiciones de deficiencia de MeCP2¹³³.

Por otro lado, estudios recientes muestran la capacidad de MeCP2 de regular la expresión génica no solo a través de su unión a ADN metilado y el reclutamiento de represores transcripcionales, sino también mediante su actuación directa en el procesamiento de *miRNAs* en neuronas⁷⁷. El mecanismo descrito por los autores sugiere la capacidad de interacción de MeCP2 con la proteína DGCR8, compitiendo así con Drosha por la unión a dicha proteína y evitando la correspondiente formación del complejo microprocesador, lo que resulta en la interrupción de la biogénesis y consecuente disminución de los niveles

de varios *miRNAs*. Esta situación se da bajo condiciones específicas de reposo neuronal, en las que la Serina 80 (Ser80) de MeCP2 se encuentra fosforilada y la afinidad de ésta por *DGCR8* se ve aumentada. Por el contrario, la despolarización de la membrana neuronal provocaría la desfosforilación de Ser80 de MeCP2 y la "desrepresión" del mecanismo de procesamiento de *miRNAs* (figura 6). Como ejemplo, los autores demuestran en el mismo trabajo una correlación negativa entre los niveles de MeCP2 fosforilado y los del *miRNA miR-134*, indicando la necesidad de MeCP2 fosforilado para la desregulación del procesamiento de dicho *miRNA*. La alteración de la biogénesis de *miR-134* provocaría un cambio en los niveles de sus *mRNAs* diana, entre los que se encuentran *CREB*, *LIMK1* y *PUM2* y cuyo papel en el desarrollo y plasticidad neural es crítico^{126,139,140}.

Figura 6. Mecanismo de regulación de la biogénesis de *miR-134* por parte de MeCP2 en células neurales. En condiciones de reposo, MeCP2 fosforilado en Ser80 es capaz de unirse a la proteína DGCR8 y prevenir la escisión de Drosha, resultando en la disminución de los niveles de *miR-134* y la consecuente "desrepresión" de ciertos genes diana neuronales. Bajo despolarización neuronal, se produce la desfosforilación de MeCP2 y la liberación de DGCR8 permite el procesamiento más eficiente de los *pri-miRNAs.*

Otro *miRNA* cuyo procesamiento parece ser regulado, en este caso de manera positiva, por MeCP2 es *miR-199a*. Los niveles alterados de MeCP2 contribuyen a la desregulación de *miR-199a*, de modo que la vía de señalización de mTOR, imprescindible en el control de la actividad neuronal y la conectividad sináptica y en la cual dicho *miRNA* está directamente implicado, se ve afectada¹⁴¹. En sentido opuesto, se ha demostrado también la regulación post-transcripcional de MeCP2 por parte de varios *miRNAs*. Algunos ejemplos son el *miRNA* miR-130a¹⁴², implicado en la regulación del crecimiento de las neuritas y la densidad de la espina dendrítica; *miR-132*¹⁴³, con un papel importante también en la regulación de la maduración dendrítica; *miR-200a* y *miR-302*¹⁴⁴.

Finalmente, es importante mencionar el relevante papel de algunos *miRNAs* en la regulación de los niveles de MeCP2 durante el desarrollo. En este conjunto se destacan transcritos como *miR-483-5p*, cuya unión específica al ARN mensajero de *MECP2* parece mantener la baja expresión de la proteína en estadios fetales¹⁴⁵, así como el *miR-132*, en este caso con una importante función en la regulación de MeCP2 durante periodos post-natales^{146,147}.

3.2. ARNs no codificantes largos (IncRNAs)

Generalmente, aquellos ARNs con un tamaño mayor a 200 pares de bases y sin capacidad de ser traducidos a proteína son clasificados como ARNs no codificantes largos (*IncRNAs*)¹⁴⁸. No obstante, pese a que estudios previos reconocían los *IncRNAs* como transcritos no codificantes, trabajos recientes muestran la existencia de *IncRNAs* con marcos de lectura abiertos, lo que sugiere que sí podrían ser moléculas potencialmente traduccionales¹⁴⁹.

La mayoría de IncRNAs se transcriben mediante la acción de la ARN polimerasa II, aunque algunos de ellos lo hacen mediante la ARN polimerasa III. Del mismo modo que los ARNs mensajeros, también disponen de cola poli-A y cabeza 5', además de poder estar sujetos a splicing alternativo¹⁵⁰. Dichos transcritos poseen una pobre conservación evolutiva en lo que a secuencia se refiere, por lo que se podría pensar que la mayoría de ellos no ejercen un papel biológico relevante. No obstante, se ha observado una mayor especificidad tisular y celular en la expresión de los IncRNAs en comparación con los ARNs codificantes para proteína¹⁵¹. En muchos casos, existe la idea generalizada de que la importancia funcional de dichos transcritos radica en su estructura, mientras otros defienden que su transcripción ya es motivo de relevancia, cosas que no se reflejan en una conservación de la secuencia nucleotídica.

Los ARNs no codificantes largos forman un grupo ampliamente heterogéneo cuyo papel se encuentra lejos de ser completamente caracterizado¹⁵² y la clasificación de los cuales ha sido siempre un reto. Una de las categorizaciones clásicas usadas para agrupar los *IncRNAs* se basa en la localización en la que dichos transcritos ejercen su función en relación a su propio lugar de transcripción, distinguiéndose así dos grupos distintos¹⁵³: ARNs que actúan en *cis (cis-acting RNAs),* es decir, cuya actividad se da en y dependientemente de las posiciones a partir de las cuales se transcriben; ARNs que actúan en *trans (trans-acting RNAs),* cuya función es ejercida en lugares distintos e independientes de sus lugares de transcripción.

Por lo que se refiere a su origen de transcripción, hoy en día se distinguen hasta siete grupos distintos: ARNs intrónicos, ARNs originados a partir de elementos de ADN como potenciadores o promotores, ARNs antisentido, ARNs "sentido" o *sense*, ARNs intergénicos y ARNs bidireccionales (figura 7).

Por otro lado, también se han observado distintas clases de *IncRNAs* teniendo en cuenta su estructura, a partir de la cual se destacan dos grandes grupos: los *IncRNAs* lineales y aquellos cuyo esqueleto es circular (*circular RNAs; circRNAs*). Entre los lineales, un caso especial es el de los ARNs transcritos a partir de regiones ultraconservadas (*transcribed ultraconserved regions; T-UCRs*), cuya secuencia es completamente idéntica en humano, ratón y rata.

Figura 7. Clasificación de IncRNAs en función de su origen de transcripción. Los ARNs antisentido se transcriben a partir de la cadena opuesta y es solapante a la secuencia del gen codificante. Los *IncRNAs* transcritos a partir de potenciadores se localizan en regiones potenciadoras o *enhancers*. Los *IncRNAs* intergénicos se sitúan en regiones genómicas entre genes. Los bidireccionales se encuentran en la cadena opuesta al gen codificante, cuyo inicio de transcripción se encuentra a menos de 1000 bases de distancia. Los *IncRNAs* intrónicos se localizan en regiones intrónicas de genes codificantes.

Debido su elevada conservación y facilitándose así la transferencia de conocimiento entre modelos de estudio, el presente proyecto se centra en la capacidad reguladora de las poblaciones de ARNs transcritos a partir de regiones ultraconservadas (*T-UCRs*) y ARNs circulares (*circRNAs*), especialmente en vías moleculares relacionadas con MeCP2 y relevantes en enfermedades del neurodesarrollo como el Síndrome de Rett.

3.2.1. Regiones transcritas ultraconservadas (T-UCRs)

En 2004, Gill Bejerano y su equipo describieron por primera vez la presencia de 481 segmentos genómicos cuya longitud superaba los 200 pares de bases y la secuencia de los cuales se encontraba 100% conservada al comparar regiones ortólogas de genomas de humano, rata y ratón¹⁵⁴, denominando dichos elementos como regiones ultraconservadas (ultraconserved regions; UCRs). Notablemente, dichas regiones parecen no acumular mutaciones en células somáticas ni siquiera bajo condiciones de inestabilidad genómica¹⁵⁵. Por lo que respecta a su distribución, se han mapeado UCRs en todos los cromosomas, excepto en el 21 y el cromosoma Y. Además, se encuentran situados especialmente cerca de genes que codifican para factores de transcripción expresados durante la embriogénesis¹⁵⁶, lo que sugiere una probable función relevante en la regulación de la expresión de genes vitales para el desarrollo. No obstante, pese a la idea de un papel esencial por parte de dichos elementos en el desarrollo, la depleción de cuatro potenciadores ultraconservados en un estudio realizado en ratones no mostró ningún tipo de fenotipo deletéreo aparente en estos animales¹⁵⁷. Por su parte, Dickel et al. centraron su estudio en las consecuencias in vivo que podían resultar de la depleción de ciertos elementos ultraconservados inusualmente

largos y muy próximos al gen *Arx (Aristaless-related homeobox)*, en el cual se han descrito mutaciones causantes de diversos fenotipos neurológicos severos^{158,159}. Sorprendentemente, los resultados de dicho estudio daban lugar, de nuevo, a ratones viables y fértiles¹⁶⁰. No obstante, sí se pudieron observar ciertas anomalías no letales como el crecimiento reducido de los animales o un desarrollo del cerebro deficiente.

Figura 8. Posibles localizaciones genómicas de las regiones ultraconservadas. Dichos segmentos se han encontrado en cinco situaciones distintas a lo largo del genoma: completamente dentro de un exón, en regiones intrónicas, ocupando parte de un exón y de un intrón, en zonas intergénicas o incluyendo un exón completo en su secuencia.

En base a la localización de las regiones ultraconservadas en el genoma, éstas se pueden clasificar en cinco grupos distintos: exónicas, intrónicas, intergénicas, parcialmente exónicas o incluyentes de exón (figura 8).

Los productos originados a partir de la transcripción de estos elementos se conocen como regiones transcritas ultraconservadas (*Transcribed-Ultra Conserved Regions; T-UCRs*) y representan aproximadamente el 93% de las *UCRs* en humanos¹⁶¹. Estos elementos pueden ser, además, generados en la misma dirección en la que se transcriben sus genes huésped, siendo entonces transcritos "sentido" o *sense*, o pueden ser transcritos en dirección opuesta, recibiendo el nombre de transcritos anti-sentido o *anti-sense*¹⁶².

Curiosamente, pese a que los *T-UCRs* son clasificados como *IncRNAs*, su extrema conservación en cuanto a secuencia no coincide con lo generalmente observado en este tipo de ARNs. Además, los patrones de expresión de los *IncRNAs* específicos de tejido o especie se han correlacionado positivamente con el grado de conservación de su secuencia, por lo que se sugiere que los *T-UCRs* podrían expresarse simultáneamente en múltiples tejidos o especies¹⁶³.

Por lo que respecta a las funciones de las regiones transcritas ultraconservadas, se ha demostrado, especialmente en modelos tumorales, el papel de éstas en la regulación génica a través de distintos mecanismos de acción. En primer lugar, varios estudios han revelado la capacidad de ciertos *T-UCRs* de interaccionar de manera directa con *mRNAs* diana. *T-UCRs* como *uc.338* y *uc.454* son dos ejemplos de regulación negativa por interacción directa con las regiones 3'UTR de sus respectivos *mRNAs* diana, *TIMP-1* y *HSPA12B*^{164,165}, genes notablemente implicados en cáncer colorrectal y cáncer de pulmón de células pequeñas, respectivamente. También se ha demostrado la capacidad de unión directa de *uc.323* al gen *EZH2*, favoreciéndose así la transcripción del gen *CPT1b* y resultando en la mejora de la hipertrofia de miocitos cardíacos¹⁶⁶.

Por otro lado, los *T-UCRs* son capaces de unirse también a algunos *miRNAs* y modular así los niveles de los transcritos regulados por éstos. Un ejemplo es el caso de *uc.173*, capaz de provocar la degradación del *miRNA miR-291a-3p* e inhibir la apoptosis en células neurales¹⁶⁷. Como ejemplo de otro mecanismo de regulación por parte de las regiones transcritas ultraconservadas, un estudio llevado a cabo en nuestro grupo describía en 2014 la interacción entre *uc.283A* y el transcrito inmaduro *pri-miR-195*, evitando de esta manera el procesamiento de éste por parte del complejo formado por Drosha y DGCR8¹⁶⁸.

Pese al escaso conocimiento del que se dispone todavía respecto a los mecanismos y vías en los que los elementos ultraconservados se ven implicados, el número significativo de *T-UCRs* desregulados en enfermedades humanas parece sugerir su importancia en procesos fisiológicos y fisiopatológicos. En particular, la alteración de éstos transcritos no codificantes ha sido ampliamente asociada con procesos carcinogénicos^{169,170}, identificándose *T-UCRs* fuertemente implicados en diferentes tipos de cáncer como el neuroblastoma¹⁷¹, la leucemia linfocítica crónica¹⁶¹, el cáncer de próstata¹⁷², el cáncer cervical¹⁷³ o el cáncer de vejiga¹⁷⁴. De hecho, se ha asociado la expresión diferencial de hasta 286 *T-UCRs* (de un total de 481) a diversos tumores, algunos de ellos alterados de manera específica en un tipo concreto, como *uc.8* en cáncer de vejiga¹⁷⁴ o *uc.38* en cáncer de mama¹⁷⁵.

Si bien es cierto que la mayoría de estudios han enfocado su investigación en desenmascarar las funciones de los T-UCRs en cáncer, algunos autores demuestran también la relevancia de éstos en otras enfermedades y condiciones fisiológicas. Por ejemplo, el T-UCR uc. 173 se ha relacionado significativamente con el proceso apoptótico, observándose una correlación entre la alteración de los niveles de dicho transcrito y la apoptosis inducida por plomo en células neurales y renales^{167,176}. Por otro lado, se han observado también alteraciones en la expresión de varios T-UCRs en la enfermedad de Chron, destacándose la implicación del uc.261 en la inflamación de la mucosa intestinal¹⁷⁷. En términos fisiológicos, algunos autores demuestran la participación de algunos de estos transcritos en distintos procesos, como el T-UCR uc.417, asociado con la pérdida de función del tejido adiposo marrón y la termogénesis¹⁷⁸, o uc.372, capaz de unirse e inhibir los miRNAs miR-195/miR-4668 y regular genes relacionados con la síntesis de lípidos¹⁷⁹.

3.2.2. ARNs circulares (circRNAs)

Bajo ciertas condiciones, algunas moléculas de ARN son capaces de unir de manera covalente sus extremos 5' y 3' a través, generalmente, de un mecanismo conocido como back-splicing formando un transcrito circular al que se le da el nombre de ARN circular (circular RNA; circRNA). Del mismo modo que los ARNs mensajeros lineales, el backsplicing requiere tanto de las señales de splicing como de la maquinaria del espliceosoma necesarias para la vía canónica¹⁸⁰. No obstante, la frecuencia de eventos de back-splicing es, en general, menor y menos eficiente que los mecanismos canónicos. Cabe destacar que aquellos intrones flangueantes de exones que contienen abundantes secuencias repetitivas son más susceptibles de ser circularizados¹⁸¹, aunque publicaciones recientes sugieren que no todas las secuencias complementarias presentes en ambos lados de exones e intrones promueven necesariamente la circularización de estos¹⁸². En otros casos, algunas proteínas de unión a ARN pueden servir como factores reguladores de este proceso¹⁸³, así como las secuencias ricas en dinucleótidos GU cerca del sitio aceptor de splicing 5' pueden favorecer también la circularización¹⁸⁴. Los ARNs circulares pueden ser exónicos, intrónicos o pueden contener intrones y exones (figura 9A), aunque los más abundantes son exónicos y se encuentran altamente conservados en mamíferos¹⁸⁵. Se ha observado que aquellos *circRNAs* generados únicamente a partir de exones se localizan principalmente en el citoplasma, sugiriendo un papel en la regulación a nivel posttranscripcional¹⁸⁶. Pese a que dichas moléculas son transcritas a partir de regiones codificantes, en general no son capaces de ser traducidas a proteínas debido a la falta de marcos de lectura abiertos o de entradas internas de ribosomas. Sin embargo, existen evidencias de la potencial capacidad traduccional de algunos circRNAs¹⁸⁷.

En el caso de los *circRNAs* intrónicos y aquellos que contienen tanto exones como intrones, están localizados predominantemente en el núcleo, lo que sugiere un papel más directo durante la transcripción génica.

Figura 9. Origen y mecanismos de acción de los ARNs circulares. A. Mediante el mecanismo de *back-splicing*, los intrones flanqueantes de uno o más exones son emparejados gracias a la existencia de secuencias repetitivas inversas, la acción de proteínas de unión a ARN o la existencia de secuencias ricas en dinucleótidos GU cerca del sitio de *splicing* 5'. Estos procesos pueden dar lugar a ARNs circulares exónicos, intrónicos o contenientes de ambos. B. Se han descrito distintas posibles funciones por parte de los ARNs circulares, pudiendo tener efecto sobre la transcripción lineal de su propio *gen huésped*, como esponjas de microARNs o proteínas, interaccionando con y transportando proteínas e incluso regulando la traducción. Adaptada de Lei, K. *et al.*, 2018.

Por lo que respecta a su función, diversos estudios constatan que los ARNs circulares ejercen un papel regulador importante en la célula (figura 9B). Distintos autores han demostrado la capacidad de interacción de estos transcritos con *miRNAs* y proteínas de unión a ARN, impidiendo así su unión con sus ARNs mensajeros diana^{188,189}, o incluso llevando a cabo una función transportadora en compartimentos celulares específicos¹⁹⁰. Es importante añadir que, además de actuar como reguladores en *trans*, la propia generación de estos *circRNAs* podría estar también afectando en *cis* a los productos transcripcionales lineales de sus propios genes huésped compitiendo con la vía de *splicing* canónica¹⁸³. Por otro lado, algunos de estos transcritos circulares son también capaces de favorecer la expresión de sus genes huésped¹⁹¹ o incluso insertarse en el genoma como pseudogenes, pudiendo así cambiar la estructura genómica y sugiriendo un mecanismo alternativo de regulación de la expresión génica en *cis*¹⁹².

Dadas todas las evidencias mostradas hasta el momento del papel fundamental que pueden tener muchas especies circulares en la célula, es razonable que se hayan observado alteraciones de esta población en varios tipos de patología. De hecho, son varias las publicaciones que desvelan la relevancia de algunos *circRNAs* en enfermedades como el cáncer, observándose tanto especies oncogénicas^{193–195} como supresoras tumorales^{196,197}, enfermedades cardiovasculares^{198,199} o enfermedades neurodegenerativas como el alzheimer^{200,201}, la enfermedad de Parkinson²⁰² o la esclerosis múltiple^{203,204}, entre otras.

3.2.3. IncRNAs en enfermedades neurológicas

Varios estudios han demostrado la importancia de los ARNs no codificantes largos en el desarrollo neuronal²⁰⁵⁻²⁰⁷, observándose también una expresión irregular de muchos de ellos en varias enfermedades del neurodesarrollo entre las que se incluyen patologías como desórdenes del espectro autista, síndrome de X frágil, síndrome de Down, síndrome de Rett o Síndrome de Angelman y Prader-Willi²⁰⁸. No obstante, solo un pequeño número de estos transcritos han sido completamente identificados y validados funcionalmente. En el caso concreto del Síndrome de Rett, un estudio publicado por nuestro gurpo en 2013 mostraba, mediante ensayos de microarrays específicos de IncRNAs, la desregulación de hasta 701 de estos transcritos en cerebros completos de ratones deficientes para MeCP2 con 9 semanas de edad²⁰⁹. En el mismo trabajo se destaca el incremento significativo de los niveles del IncRNA AK081227, cuya transcripción se produce a partir de un intrón del gen Gabrr2 (GABA receptor subunit rho-2). Gabrr2 es codificante de una subunidad del receptor GABA-C, siendo por tanto sustancial en el correcto desarrollo de las señales inhibitorias GABAérgicas²¹⁰. El incremento en los niveles de *AK081227* se pudo asociar con la disminución de la transcripción de Gabrr2 en ratones KO para MeCP2.

Por otro lado, se ha demostrado que los niveles transcripcionales del gen *BDNF*, factor crucial en el desarrollo y plasticidad del sistema nervioso central, se encuentran significativamente disminuidos en pacientes RTT²¹¹. En la cadena anti-sentido de *BDNF* se transcribe el ARN no codificante *BDNF-AS*, capaz de reprimir la transcripción de *BDNF* mediante la alteración estructural de la cromatina, reduciendo así los niveles endógenos de la proteína BDNF y alterando, por tanto, la función de ésta²¹². Además, *BDNF-AS* se ha visto diferencialmente

expresado en pacientes con desorden del espectro autista²¹³, datos que refuerzan la necesidad del estudio de la repercusión de dicho transcrito en enfermedades como el Síndrome de Rett.

3.2.3.1. *T-UCRs* en enfermedades neurológicas

Existen muy pocas publicaciones enfocadas en el estudio del papel que ejerce la población de *T-UCRs* en el SNC de mamíferos. En 2016, *Jiang* y su equipo mostraron niveles alterados de 78 de éstos transcritos en la médula espinal de ratones con dolor neuropático²¹⁴, así como el *T-UCR uc.48* se ha visto también involucrado en la neuropatía simpática diabética²¹⁵. Por otro lado, se ha demostrado que 107 *T-UCRs* se encuentran activamente expresados en el córtex cerebral de ratas²¹⁶ y estudios bioinformáticos y de expresión sugieren un papel relevante por parte de este tipo de ARN no codificante en el desarrollo del cerebro de mamíferos¹⁶³. La población de *T-UCRs* se ha visto también alterada en ratas con hipertensión espontánea a las que se les provocó un accidente cerebrovascular, aunque la significancia funcional de dicha alteración es todavía desconocida²¹⁷.

3.2.3.1.1. El caso de *Evf*2

Los genes de la familia *Dlx (distal-less homeobox)* en vertebrados forman parte de una familia proteica de homeodominios con un papel crítico en la diferenciación y migración neuronal. Estos genes se expresan en grupos pareados (*Dlx 1/2, Dlx 3/4, Dlx 5/6*)²¹⁸ y se han identificado regiones intergénicas en los pares *Dlx1/2* y *Dlx5/6* que contienen elementos potenciadores específicos altamente conservados, llamados *ei* y *eii* en el par *Dlx 5/6*, y con una función

determinante en el control de la expresión de estos genes^{219,220}. *Evf2* es un ARN no codificante largo, transcrito a partir de la cadena anti-sentido de *Dlx6* y parcialmente codificado por una de las regiones intergénicas ultraconservadas del par *Dlx5/Dlx6*. Dicho *lncRNA* es capaz de cooperar con la proteína *Dlx2* para la regulación en *trans* de la actividad de los genes *Dlx5/Dlx6*²²¹ (figura 10). Por otro lado, datos recientes muestran también una regulación negativa de la transcripción de *Dlx6* por parte de *Evf2* debido a la propia transcripción anti-sentido de este último, mecanismo conocido como inhibición anti-sentido competitiva en *cis*. Además, en modelos murinos adultos, la pérdida de *Evf2* resulta en la aparición de defectos en los circuitos GABAérgicos en hipocampo, confirmándose así la significancia biológica de *Evf2* en el sistema nervioso²²².

Es importante destacar la identificación del gen DLX5 como gen diana de MECP2. En un estudio realizado en líneas celulares linfoblastoides de pacientes RTT y mediante el uso de un modelo murino de la enfermedad, se demostró el papel esencial de la proteína MeCP2 para la metilación de la lisina 9 de la Histona H3 en el locus Dlx5/Dlx6 y favorecer así el silenciamiento génico debido a la compactación de la cromatina²²³. En correspondencia con esta función, cerebros de ratones con depleción de MeCP2 mostraban una expresión de DIx5 dos veces mayor que los ratones control. Siendo Dlx5 relevante en la regulación de enzimas sintetizadoras de ácido y-aminobutírico (GABA), las alteraciones transcripcionales observadas en Dlx5 en condiciones de pérdida de MeCP2 podrían provocar defectos en la actividad neuronal GABAérgica en pacientes con Síndrome de Rett. Por otro lado, en un trabajo todavía más reciente, se manifiestan distintas evidencias de que *Evf2* es necesario para el reclutamiento de MeCP2 en los elementos ultraconservados situados en las regiones intergénicas (ei y eii) de *Dlx5/Dlx6* durante el desarrollo de la zona cerebral anterior ventral²²². En condiciones de depleción de *Evf2*, se observó un incremento de los niveles de *Dlx5*, confirmándose la función represiva de MeCP2 sobre la transcripción de este gen (figura 10). No obstante, los autores del mismo trabajo observaron también que, aunque en uno de los segmentos ultraconservados de *Dlx5/Dlx6* (*eii*) se perdía la unión de MeCP2 y también de HDAC1 (proteína deacetilasa de histonas que interactúa con MeCP2 en su función represiva), ésta última permanecía invariable en el otro elemento ultraconservado (*ei*), sugiriendo un mecanismo regulatorio alternativo en esa posición.

Figura 10. Modelo de cooperación del *IncRNA Evf2* y las proteínas DIx2 y MeCP2 en la regulación de la transcripción de los genes adyacentes *DLX5* y *DLX6*. A. El reclutamiento de Dlx1/2 por parte de *Evf2* favorece la transcripción de los genes *DLX5 y DLX6*. Por otro lado, el reclutamiento de MeCP2 en los elementos ultraconservados ei y eii de *DLX5/DLX6* parece ocurrir de manera competitiva con Dlx1/2 y reprime la expresión de *DLX5*. Debido a su transcripción anti-sentido, Evf2 también puede regular en *cis* de manera negativa la expresión del gen *DLX6*. Adaptada de Berghoff, E.G. *et al.*, 2013. La vía de señalización Sonic Hedgehog (*Shh*) es uno de los mecanismos clave para la regulación de eventos esenciales durante el proceso de desarrollo. *Evf*2 forma parte de una de las dianas directas en esta vía, a través de la cual la señalización de *Shh* en la zona cerebral anterior ventral embrionaria inicia una cascada transcripcional en la que se ven implicados los genes *DLX*, *Evf*2 *y MECP*2, entre otros, para el desarrollo correcto de neuronas GABAérgicas.

3.2.3.2. circRNAs en enfermedades neurológicas

En el cerebro de mamíferos se ha observado un enriquecimiento de ARNs circulares en comparación con otros tejidos¹⁸⁹. Concretamente en humanos y ratones, los tejidos con mayor abundancia de especies circulares son el cerebro²²⁴, los testículos²²⁵ y las plaquetas²²⁶. Más específicamente, en el cerebro humano se han descrito más de 2000 genes capaces de generar diez o más especies circulares en cada caso. Además, el perfil de expresión de los *circRNAs* es diferente en función de la región cerebral y durante distintas etapas del desarrollo, observándose un incremento significativo de estas especies en cerebros humanos fetales y adultos en comparación con los niveles detectados en estadios embrionarios²²⁷. Cabe destacar también que, en los casos de *circRNAs* formados a partir de regiones codificantes, se han observado incluso niveles más altos de estos que de sus respectivas isoformas lineales²²⁴.

Muchos *circRNAs* cuya expresión es especialmente abundante en el cerebro se han asociado con funciones relevantes en la neurotransmisión, así como en la maduración neuronal y la actividad sináptica. La función sináptogénica de estos se ve respaldada por la localización de sus propios genes huésped, particularmente

abundantes en sinaptosomas y además con papeles relacionados con la actividad sináptica¹⁸⁹. Además de sus correspondientes genes lineales, la disposición de varias especies circulares en las neuronas muestra su más que probable importancia en funciones relacionadas con la sinapsis, pues estudios de hibridación *in situ* han revelado la presencia de altos niveles de esos transcritos en zonas específicas como las dendritas.

Uno de los ejemplos mejor descritos de ARN circular implicado en vías esenciales para el correcto desarrollo y funcionamiento neuronal es el caso de *CDR1as* (transcrito anti-sentido de *CDR1*, gen relacionado con degeneración del cerebelo)²²⁸. *CDR1as* contiene más de 70 sitios de unión al *miRNA* miR-7, pudiendo actuar por tanto como esponja de dicho *miRNA* y afectando a los niveles de los ARNs diana de éste. Uno de esos transcritos diana es *UBE2A* (*ubiquitin protein ligase A*), esencial para la "limpieza" de péptidos amiloides y la degradación de proteínas no necesarias, dañadas y/o neurotóxicas en las células neurales. Recientemente se ha demostrado la relación entre la desregulación del sistema *CDR1as-miR-7-UBE2A* y la enfermedad de Alzheimer²²⁹. Por otro lado, se ha demostrado también la importancia de la regulación por parte de *CDR1as* y *miR-7* en la degradación de *APP* y *BACE1*, ambos genes relacionados también con la enfermedad de Alzheimer, a través de la inhibición de la traducción de *NF-кB*²³⁰.

Cabe destacar que últimas evidencias sitúan los ARNs circulares como importantes biomarcadores de distintas patologías debido a su estabilidad, sus patrones de expresión específicos y su capacidad de expresión bajo ciertas condiciones concretas²³¹. Siendo estas especies fácilmente identificables en fluidos como la sangre²³², la saliva²³³ o el plasma²³⁴, es necesaria una mayor exploración del potencial uso de estos transcritos como biomarcadores en enfermedades neurológicas debido a la inaccesibilidad del tejido cerebral.
OBJETIVOS

OBJETIVOS

Usando tanto un modelo murino de la enfermedad, muestras *postmortem* de pacientes RTT y a través del diseño y generación de un modelo neural humano *in vitro* deficiente para MeCP2, el principal objetivo del presente proyecto ha sido identificar nuevas rutas moleculares reguladoras en las que participen *T-UCRs*, *circRNAs* y otros transcritos no codificantes, afectados por los niveles alterados de MeCP2. Para ello, se proponen los siguientes objetivos específicos:

- Establecer el patrón de expresión de las poblaciones de *circRNAs* y *T-UCRs* en las regiones cerebrales más afectadas del modelo Rett de ratón (*KO*) en comparación con la cepa *wildtype (WT)*.
- Establecer el patrón de expresión de las poblaciones de *circRNAs* y *T-UCRs* en un modelo de células progenitoras neuronales deficiente para MeCP2 generado en nuestro grupo.
- 3. Caracterizar aquellos *circRNAs* y *T-UCRs* con mayor interés en el contexto de la enfermedad de RTT en el modelo murino, el modelo humano *in vitro* y en muestras cerebrales *post-mortem* de pacientes con Síndrome de Rett.
- 4. Entender el posible papel de los *T-UCRs uc.478* y *uc.479* en la regulación de la edición del ARN de *GRIA3* y los efectos de dicha regulación en la modulación de las propiedades de los receptores de glutamato de tipo AMPA.

5. Estudiar nuevas vías reguladoras en las que participen distintas clases de *ncRNAs* junto con su impacto en la expresión de genes codificantes.

METODOLOGÍA

METODOLOGÍA

1. Muestras biológicas

1.1. Muestras de tejido cerebral de ratón

Hembras (Mecp2 B6.129P2 murinas heterozigotas +/-) (C) (Ref:003890) procedentes de *Mecp2*tm1.1Bird/J The Jackson Laboratory fueron apareadas con machos C57BL/6J. La descendencia fue genotipada mediante PCR y las muestras de tejido cerebral fueron obtenidas a partir de machos hemizigotos deficientes de Mecp2 (Mecp2 -/y), llamados también KO para Mecp2, y machos de tipo salvaje (WT) de la misma camada. Las muestras se obtuvieron de animales presintomáticos (3-4 semanas de edad) y animales sintomáticos (8-9 semanas de edad). Todos los procedimientos y experimentos con ratones fueron aprobados por el comité de ética para experimentos con animales del centro IDIBELL, bajo las pautas establecidas en las leyes españolas de bienestar animal. Los ratones fueron sacrificados siguiendo las pautas de puntos finales para animales utilizados en investigación biomédica. Los tejidos se congelaron en hielo seco inmediatamente después de su extracción y fueron almacenados a -80 °C hasta su uso.

1.2. Líneas celulares

Se obtuvo comercialmente la línea celular progenitora neural humana ReNcell® VM (SCC008, *Sigma-Aldrich*), con capacidad de diferenciación a células neuronales y gliales. Todas las placas en las que se sembraron las células fueron siempre pretratadas con 20 µg/ml de laminina (CC095, Merck Millipore) para su correcta adherencia de acuerdo con las instrucciones del fabricante. Para el mantenimiento de dicha línea celular en su estado progenitor, ésta fue cultivada en medio Dulbecco's Modified Eagle's Medium suplementado con F-12 (DMEM/F12, 11320033, Gibco). Dicho medio fue suplementado con 2% de B-27 (17504001, Life Technologies), 0,1% de solución de heparina al 0.2% (07980, Stemcell Technologies), 1% de antibiótico/antimicótico (L001-100, biowest), 0,001% de factor de crecimiento epidérmico EGF (SRP302, Sigma) y 0,00125% de factor de crecimiento básico de fibroblastos FGF2 (SRP4037, Sigma-Aldrich). Para la libre diferenciación de la línea neural progenitora a células neurales maduras, fueron retirados del medio los factores EGF y FGF2. Las células se cultivaron en condiciones estándar a 37°C con un 5% (v/v) de dióxido de carbono. Todas las líneas celulares fueron testadas para comprobar la ausencia de micoplasma.

Para la expansión celular a distintas placas, se utilizó la solución de separación *ACCUTASE* (L0950-100, *biowest*), recomendada para un mejor mantenimiento de la estructura neural en lugar de la tripsina.

Para la criogenización de aquellas células que se quisieron preservar hasta su uso, se utilizó el medio específico de congelación *ReNcell Neural Stem Cell Freezing Medium* (SCM007, *Merck Millipore)* y se guardaron en nitrógeno líquido.

1.2.1. Generación de una línea neural humana *in vitro KO* para MeCP2

Con el objetivo de deplecionar la proteína MeCP2 en la línea humana neural progenitora *in vitro*, previamente en el grupo se llevó a cabo un protocolo de edición génica mediante el sistema *CRISPR/Cas9*, cuyos

detalles se podrán encontrar en la tesis doctoral de Edilene Siqueira. En resumen, tras varias pruebas de transfección y la selección del ARN guía con mayor eficiencia (tabla 2), se pudo obtener una línea neural progenitora con alteraciones en la secuencia del gen *MECP2* y, en consecuencia, *KO* para el producto proteico correspondiente. La transfección del ARN guía en las células neurales progenitoras (ReNcells VM) se llevó a cabo mediante el uso de *Basic Nucleofector Kit for Primary Mammalian Neurons* (VPI-1003, *Lonza*) de acuerdo con las recomendaciones del fabricante. Tras la nucleofección, las células transfectadas y, por tanto, positivas para *GFP*, fueron seleccionadas mediante el proceso de *Fluorescence Activated Cell Sorting (FACS)* y se dejaron crecer durante dos semanas.

ARN guía CRISPR/Cas9

oligonucleótidos	Secuencia (5'-3')
ARN guia	AAAAGCCTTTCGCTCTAAAG
ARN guía_complementario	CTTTAGAGCGAAAGGCTTTT

Tabla 2. Secuencia del ARN guía y su complementaria para la edición génica del gen *MECP2* mediante el sistema CRISPR/Cas9.

1.3. Muestras *post-mortem* de tejido cerebral humano

Las muestras de tejido cerebral humanas *post-mortem* utilizadas en el presente proyecto fueron obtenidas del *NIH (National Institutes of Health) NeuroBioBank*, pudiéndose acceder a tres regiones cerebrales distintas: hipocampo, cerebelo y sección BA10 de cortex frontal. Las características de cada una de las muestras se encuentran expuestas en la tabla 3.

Muestras	de te	ejido	cerebral	usadas	en	análisis	proteómico
					-		

ID	Región	Edad donante (años)	Sexo	Mutación MECP2
RTT1	Hipocampo	28	Femenino	NM_004992.3c.1162_1179del
RTT2	Hipocampo	20	Femenino	NM_004992.3c.806delG
RTT3	Hipocampo	6	Femenino	NM_004992.3: c.965C>T (p.Pro322Leu)
CTL1	Hipocampo	29	Femenino	Sin mutación en MECP2
CTL2	Hipocampo	24	Femenino	Sin mutación en MECP2
CTL3	Hipocampo	10	Femenino	Sin mutación en MECP2
CTL4	Hipocampo	7	Femenino	Sin mutación en MECP2

Muestras de tejido cerebral usadas en análisis de expresión y edición de *GRIA3*

ID	Región	Edad donante (años)	Sexo	Mutación MECP2
RTT1	Hipocampo	28	Femenino	NM_004992.3c.1162_1179del
RTT2	Hipocampo	20	Femenino	NM_004992.3c.806delG
RTT4	Hipocampo, Cerebelo, BA10	8	Femenino	NM_004992.3c.316C>T (p.Arg106Trp)
RTT5	Cerebelo, BA10	17	Femenino	NM_004992.3c.768delA (p.Ala257Leu) y c.773insA (p.Glu258Lys)
RTT6	Cerebelo, BA10	24	Femenino	NM_004992.3c.763C>T (p.Arg255X)
RTT7	Cerebelo, BA10	10	Femenino	NM_004992.3c.808C>T (p.Arg270X)
CTL1	Hipocampo	29	Femenino	Sin mutación en MECP2
CTL3	Hipocampo, BA10	10	Femenino	Sin mutación en MECP2
CTL4	Hipocampo, Cerebelo	7	Femenino	Sin mutación en MECP2
CTL5	Cerebelo, BA10	16	Femenino	Sin mutación en MECP2
CTL6	Cerebelo, BA10	25	Femenino	Sin mutación en MECP2
CTL7	Cerebelo, BA10	20	Femenino	Sin mutación en MECP2

Tabla 3. Muestras de tejido cerebral humanas *post-mortem* **usadas en los** distintos análisis. Cada muestra de paciente con Síndrome de Rett (RTT) y las obtenidas de personas no afectadas por la enfermedad (CTL) se identificó con un número (ID). Cada región fue utilizada para uno o varios experimentos distintos en función de la cantidad disponible de tejido. También se determinó la edad, el sexo y la mutación específica en MECP2 descrita para cada una de las muestras.

2. Análisis de expresión

2.1. Análisis transcripcionales mediante chips (*arrays*) de expresión

El ARN total de los tejidos obtenidos de animales fue extraído mediante el kit de aislamiento de ARN $miRCURY^{TM}$ - cell & plant (300110, Exiqon) de acuerdo con las recomendaciones del fabricante. El ARN total obtenido de líneas celulares neurales humanas fue extraído con el uso del kit *Maxwell RSC miRNA Tissue* (AS1460, *Promega*) con el dispositivo automático Maxwell RSC (*Promega*) de acuerdo con las instrucciones del fabricante.

Se usaron 20 mg de tejido de hipocampo y córtex frontal de 3 animales sintomáticos (8 semanas de edad) y 3 animales pre-sintomáticos (4 semanas de edad) por condición (*WT* y *KO*). En el caso de las líneas celulares neurales se usaron tres réplicas biológicas para cada una de las condiciones temporales (progenitores y células neurales de libre diferenciación) y génicas (*WT* y *KO* para MeCP2). Tras la extracción, el ARN fue tratado con DNasa (*RQ1 RNase-Free DNasa; Promega*) y se evaluó su integridad mediante el sistema de electroforesis de microcapilaridad *BioAnalyzer* (*Agilent Technologies*) con el kit *Agilent RNA Nano 6000* de acuerdo con las instrucciones del fabricante. El análisis de integridad del ARN fue llevado a cabo para todas las muestras aisladas usando un total de 5 ng de ARN por muestra.

La preparación e hibridación del chip de expresión (*microarray*) de regiones transcritas ultraconservadas (*T-UCRs*) con muestras de tejido cerebral del modelo animal se llevó a cabo, siguiendo su propio procedimiento, en el laboratorio del profesor George Calin, en el MD Anderson Cancer Center de la universidad de Texas en Houston, EEUU.

La preparación e hibridación de los chips de expresión de ARNs circulares en muestras de tejido cerebral del modelo animal, así como en progenitores neurales y celulas libremente diferenciadas fue llevada a cabo en base a los protocolos estándar de la compañía Arraystar. En resumen, el ARN total fue digerido con RNasa R (*Epicentre, Inc.*) para eliminar los ARNs lineales y enriquecer los transcritos circulares. A continuación. los ARNs circulares fueron amplificados y transcritos a ARN fluorescente con el uso de cebadores al azar (Arraystar Super RNA Labeling Kit; Arraystar). Los ARNs marcados fueron hibridados en el array de ARNs circulares humanos de Arraystar V2 (AS-S-CR-H-V2.0, 8x15K, Arraystar). Tras el lavado de los portaobjetos, los chips fueron escaneados con el escáner Agilent G2505C. Para el análisis de las imágenes adquiridas del array se usó el programa Agilent Feature Extraction (versión 11.0.1.1). La normalización de cuantiles y el subsecuente procesamiento de datos se llevaron a cabo con el paquete limma del programa R. Los ARNs circulares expresados de manera diferencial con significancia estadística entre dos grupos fueron identificados mediante filtro por Volcano Plot. Los ARNs circulares diferencialmente expresados entre dos muestras se identificaros a través del filtro de cambio (Fold Change).

En el caso del *array* llevado a cabo para el análisis de expresión de *IncRNAs* en progenitores neurales y células libremente diferenciadas fue también llevado a cabo en base a los protocolos estándar de la compañía *Arraystar*. En resumen, el ARN mensajero fue purificado del ARN total tras la eliminación del ARN ribosómico (*mRNA-ONLY*[™] *Eukaryotic mRNA Isolation Kit, Epicentre*). A continuación, cada muestra fue amplificada y trascrita a ARN complementario fluorescente sin sesgo de 3 'utilizando una mezcla de oligo (dT) y cebadores aleatorios (*Arraystar Flash RNA Labeling Kit, Arraystar*). Los ARNs complementarios marcados fueron hibridados en el array para *IncRNAs*

humanos V4 (8 x 60K, *Arraystar*). Tras el lavado de los portaobjetos, el *array* fue escaneado con el escáner de Agilent G2505C. Para el análisis de las imágenes adquiridas del *array* se usó el programa *Agilent Feature Extraction* (versión 11.0.1.1). La normalización de cuantiles y el procesamiento de los datos se realizaron mediante el uso del programa *GeneSpring* GX v12.1 (*Agilent Technologies*). Los *IncRNAs* expresados diferencialmente con significancia estadística fueron identificados a través del filtro por *Volcano plot* entre dos grupos.

2.2. Análisis de expresión génica mediante *RT-PCR* cuantitativa (*RT-qPCR*)

Para el análisis de expresión de ARNm, *circRNAs* y *T-UCRs* el ARN total fue retrotranscrito con el kit *RevertAid RT Reverse Transcription* (K1691, *Thermo Scientific*). Las reacciones de PCR en tiempo real fueron llevadas a cabo por triplicado en el sistema *Applied Biosystems 7900HT Fast Real-Time PCR*, usando un total de 5-25 ng de cDNA por muestra, 6 µl de *SYBR® Green PCR Master Mix* (*Applied Biosystems*) y cebadores a 416 nM en un volumen final de 12 µl en placas de 384 pocillos. Todos los datos fueron adquiridos y analizados con el programa *QuantStudio Design & Analysis v1.3.1* y normalizados respecto a los controles endógenos *B2m* y *L13* en muestras murinas y humanas, respectivamente. Los niveles relativos de ARN se calcularon mediante el uso del método comparativo de Cts ($\Delta\Delta$ Ct).

Par la detección de especies circulares, los cebadores fueron diseñados de manera divergente y priorizando el solapamiento de uno de ellos con la unión entre dos exones (figura 11).

71

Figura 11. Diseño de cebadores para la amplificación de especies circulares por *RT-qPCR*. A diferencia de los cebadores convergentes comúnmente utilizados para la amplificación y detección de transcritos lineales, la amplificación de transcritos circulares requiere del diseño de cebadores divergentes usando como referencia la unión de los extremos 5' y 3' del primer y último exón.

Transcritos lineales

Cebadores	Secuencia (5'-3')
hcircSIRT2_0050945_Fw	TGGATGGAAGAACATAGATACCC
hcircSIRT2_0050945_Rv	GCTGACGCAGTGTGATGTGT
hcircSIRT2_0050946_Fw	GCTGGCCAGAACATAGATACC
hcircSIRT2_0050946_Rv	GCTGACGCAGTGTGATGTGT
hcircSIRT2_0050948_Fw	TTCAAGCCAACCATCTGTCA
hcircSIRT2_0050948_Rv	GTGGATGGAGAGCGAAAGTC
hCNIH3_Fw	ATGCTGTCTCTGGTGCTGTG
hCNIH3_Rv	CATGAACAGGATTGCACTGG
hEZH_Fw	GCGGAAGCGTGTAAAATCAG
hEZH_Rv	CGCTGTTTCCATTCTTGGTT
hGria3 flip exon Fw	TGGTACGATAAGGGGGAATG
hGria3 flip exon Rv	ATAGAAAACGCCTGCCACAT
hGria3 flop exon Fw	GGCCTCTTGGACAAATTGAA
hGria3 flop exon Rv	ATAGAAAACGCCTGCCACAT
hGria3_Fw	TCACTACATGCTCGCTAACCT
hGria3_Rv	CCATGCATGACTCTTTCCAG
hKDM1A_Fw	ACCACAACAGACCCAGAAGG
hKDM1A_Rv	TGGAGAGTAGCCTCAAATGTCA
hPSEN1_Fw	GCTGTTTTGTGTCCGAAAGG
hPSEN1_Rv	TCTGCCATATTCACCAACCA
hSIRT2_Fw	CCGGCCTCTATGACAACCTA
hSIRT2_Rv	GGAGTAGCCCCTTGTCCTTC
hTCF4_Fw	AGCAATAATCCCCGAAGGAG
hTCF4_Rv	GGCAAACCTGGAGGAACTTT
hUBE3A_Fw	AGCCTACGCTCAGATCAAGG
hUBE3A_Rv	TTTTACAAGCTGTGGCCATTC
mBirc6_Fw	CAGGATGGGACGTGGAACAA
mBirc6_Rv	CCCATTGACAGCACCACTCA
mBtrc_Fw	CCAGGCTTTGCATAAACCAA
mBtrc_Rv	CACAATCATGCTGGAAGTGC
mCask_Fw	CGCCAACTATCACTCCAGGT
mCask_Rv	AGCTCGACAGCTTCTTCCAG
mDlx2_Fw	ATGTCTCCTACTCCGCCAAA
mDlx2_Rv	GGAGTAGATGGTGCGTGGTT
mDlx5_Fw	CTTATGGCAAAGCGCTCAAC

mDlx5_Rv	CTCCGCCACTTCTTTCTCTG
mDlx6_Fw	CCAGTCCTACCACAACAGCA
mDlx6_Rv	TCCGTTGAACCTGATTTCC
mDnah2_Fw	CTTGCGGACCTGCACTCCTA
mDnah2_Rv	GAGTCTCCAGGTTGGGTAGGT
mFoxp1_Fw	CAGTCTTGTGGCGTTCTGC
mFoxp1_Rv	CGTCTCACCCCTGAGCTTTTA
mGli3_Fw	CCTTCCATCCTCCTGTACCA
mGli3_Rv	TCTGGATACGTCGGGCTACT
mGria3 flip exon Fw	AGCAGAGAAAGCCGTGTGAT
mGria3 flip exon Rv	GAGTCCTTGGCTCCACATTC
mGria3 flop exon Fw	AGCAGAGAAAGCCGTGTGAT
mGria3 flop exon Rv	AAGAGGCCTTGCTCATTCAG
mGria3_Fw	ACAGAAGGCAGGAAAAACGA
mGria3_Rv	ATGTTTCCCCAGGATCACAA
mHnrph1_Fw	CGGCTTAGAGGACTCCCTTT
mHnrph1_Rv	TATCCCATTTGGCACGATTT
mMap1a_Fw	TAGAACCCGAGGGAGACCTT
mMap1a_Rv	GCAGGAAACAGTGAGGAAGG
mMIIt3_Fw	GGAGTCTGATGAGGCAGAGG
mMIIt3_Rv	TTCATGATGGAGAGGGGAAG
mQk_Fw	GCGGTGGCTACTAAAGTTCG
mQk_Rv	CAAGCAAAGGCGATTACCAG
mSfpq_Fw	GGTGGTGGTGGCATAGGTTA
mSfpq_Rv	TTCCTCTAGGACCCTGTCCA
mShh_Fw	CCAATTACAACCCCGACATC
mShh_Rv	AGAGATGGCCAAGGCATTTA
mSirt2_Fw	CGCTGCTACACGCAGAACAT
mSirt2_Rv	CATCCAGCCCATCGTGTATT
mSox5_Fw	GGGAAACTGTGCTTTTCCAG
mSox5_Rv	GCTTGTCACCATGGCTACCT
mTra2a_Fw	CGAGGGCAGAGAGTCTCGCTC
mTra2a_Rv	CGAGAATGGGATTCAGAATGT
mZeb2_Fw	CCAATCCCAGGAGGAAAAAC
mZeb2_Rv	GAGGGTTTGCAAGGCTATCA

Cebadores	Secuencia (5'-3')
uc.12_Fw	CCACAGGTACCGGGAACATA
uc.12_Rw	GGCTCAAGTGGGAACATACC
uc.19_Fw	TTATCGCCTTTTTCCCTCCT
uc.19_Rv	TAATGCGATTAGCGGTCTCA
uc.75_Fw	AAATTGAAAAATCCCATCTCACA
uc.75_Rv	TCATTTGGGCAAATTTTACG
uc.77_Fw	CTGTCACACTGCTCCCAAGA
uc.77_Rv	TCAGCCAAAGATGCTTGAAA
uc.78_Fw	TTGAAGGTGGCTGTTTCTGA
uc.78_Rv	GAGCTAATGCCCCGTGTTTA
uc.186_Fw	TATCCCATTTGGCACGATTT
uc.186_Rw	TCATTTCTGGGCTTGTGATG
uc203_Fw	CAATGATGACCTGACCATGC
uc203_Rv	GATGGTAAGACGAACGGACAA
uc.208_Fw	GGACCCATTCATTCTTCCAG
uc.208_Rv	GAATTGGGGAAGAATACACGAA
uc.220_Fw	AATTGCCTCCTTCCAGAAAGT
uc.220_Rw	CCCAAGTAAAAGTGCCTTCG
uc.221_Fw	CCCCAGGATCAATTCTGAAC
uc.221_Rw	CAGCGGGCTACATGAAAAAT
uc.223_Fw	TTTCTTCTGACCAATTTCTCCTG
uc.223_Rv	CTCTCACCAGTCCTGCATCA
uc.224_Fw	TGGTTGTGCACGCTTTATTC
uc.224_Rv	CATGAGGCATTAGCCATGTG
uc.308_Fw	AGCGGCTGTTGTAATCCAAT
uc.308_Rv	ACCATTCGGGCAGATTTATG
uc.309_Fw	GCTCATTTCTGGCAGGTTTT
uc.309_Rv	GAACTTGATCGATGGCTGCT
uc.336_Fw	TCTCTGGAGGCAGACACAAA
uc.336_Rv	GCTTCCGAGTGAATGCCTAA
uc.436_Fw	TCCACCGTTCTTTCTTACCG
uc.436_Rv	TCCGATTGTGTTTTCTCCAA
uc.472_Fw	AAGCAGCATCTATTTTGTGCAG
uc.472_Rv	TCCTTTGGAATGTTATATTTTTGGA
uc.478_Fw	GGCCTCTTGGACAAATTGAA

Trancritos de regiones ultraconservadas

uc.478_Rv	GGTGACATTGAGGCTGACCT
uc.479_Fw	CCCCTGCTTTATCGCTTTCT
uc.479_Rv	CGTTCTTCACGTGGGAAATAA

Trancritos circulares

Cebadores	Secuencia (5'-3')
mcircBirc6_Fw	TTCTGGAGCTCCTCAGTCAGT
mcircBirc6_Rv	CCTGCGGCGGAGTCGTT
mcircDnah2_Fw	CTCATCTCAGACCTGCGGAATC
mcircDnah2_Rv	CGCATTGTTAGTCATGCCAC
mcircFoxp1_Fw	GTGAGACGTGACCTTTGGAG
mcircFoxp1_Rv	GCCATAAAAAGCCTGGGGTC
mcircMap1a_Fw	TCAGCTCAGAGGTTCACCAT
mcircMap1a_Rv	ACCTGGGCGAAGTTTTGATA
mcircMllt3_Fw	ACATTCTGCAGCAGGTCCTT
mcircMllt3_Rv	TGCCTCATCAGACTCCTCCT
mcircSirt2_Fw	CCAACCATCTGCCACTACTTC
mcircSirt2_Rv	CCCACCAAACAGATGACCTT
hcircEZH2_Fw	AGAATGGAAACAGCGAAGGA
hcircEZH2_Rv	CTGGCCCATGATTATTCTCC
hcircPSEN1_Fw	GGTCCACTTCGTATGCTGGT
hcircPSEN1_Rv	GCTGTCTAAGGACCGCAAAG
hcircTCF4_Fw	TGCCATGGAGGTACAGACAA
hcircTCF4_Rv	GCCCATATCCATGTCACCTC
hcircUBE3A_Fw	TTGAAGCTAGCCGAATAGGG
hcircUBE3A_Rv	TGATCCCTACCATCAATCAGC
hcircKDM1A_Fw	AGCCAACGGACAAGCTGTAG
hcircKDM1A_Rv	TCCTTCTCTGCTTTGGCATT
hcircCNIH3_Fw	CATGAATGCCGACACTTTGA
hcircCNIH3_Rv	CATGAACAGGATTGCACTGG

Tabla 4. Lista de cebadores empleados para los análisis de expresión por *RT-PCR* cuantitativa.

2.3. Detección de proteínas mediante inmunoblot

Se usaron 20 mg de tejidos de ratón y muestras post-mortem humanas y las células fueron recogidas en frío mediante raspado/scraping. Todas las muestras fueron resuspendidas en tampón Laemli 1X (62.5 mM Tris-HCl pH=6.8, 25% glicerol, 2% SDS, 0.01% de azul de bromofenol, 5% de β-mercaptoetanol), sonicadas v hervidas durante 5 minutos a 95 °C. La concentración de cada muestra se determinó cuantificando la absorbancia a 260nm con el espectrofotómetro de UV NanoDrop™ One/OneC Microvolume y mediante el uso de la equivalencia entre la cantidad de histonas y ADN (6 unidades de absorbancia a 260nm (ADN) = 1µg / µl de proteína). Las proteínas fueron transferidas a una membrana de nitrocelulosa (Whatman, GE Healthcare) e incubadas toda la noche a 4 °C y en agitación con el anticuerpo primario diluido en leche descremada (232100, BD Difco) al 5% en PBS y 0,1% Tween-20. Tras tres lavados con PBS con 0,1% Tween-20, las membranas fueron incubadas durante 1 hora a temperatura ambiente en agitación constante con el anticuerpo secundario conjugado con horseradish peroxidase diluido con 5% de leche descremada en PBS y 0,1% Tween-20. Tras 3 lavados con PBS, los resultados se revelaron empleando reactivos ECL (Enhanced Chemiluminescence; Luminata-HRT; Merck-Millipore). Se empleó Lamin B1, β-actina y α-tubulina como controles endógenos, según el caso.

Anticuerpo	Referencia	Casa comercial	Dilución
ADAR2	HPA018277	Atlas antibodies	1:400
GRIA3	#4676	Cell signaling	1:2000
HISTONA H3	ab1791	Abcam	1:500
LAMIN B1	ab16048	Abcam	1:5000
MAP6	#4265	Cell signaling	1:1000
MAPT	ab64193	Abcam	1:1000
MeCP2	ab2829	Abcam	1:1000
S100b	Z0311	Dako	1:1000
SIRT2 humano	ab51023	Abcam	1:1000
Sirt2 ratón	ab211033	Abcam	1:2000
STMN1	#3352	Cell signaling	1:500
α-Tubulina	ab40742	Abcam	1:5000
α-Tubulina acetilada	T6793	Sigma-Aldrich	1:2000
β-ACTINA <i>HRP</i>	A3854	Sigma-Aldrich	1:30000
Anti- mouse HRP	NA9310	GE healthcare	1:5000
Anti-rabbit HRP	A0545	Sigma-Aldrich	1:10000

Tabla 5. Lista de anticuerpos empleados para los análisis de expresión proteica por *western blot*.

3. Análisis de edición del ARN

Para conocer los niveles de edición de la posición R/G en el ARN de *Gria3,* la posición susceptible de edición fue amplificada con cebadores específicos usando 250 ng de ADN complementario de cada muestra con *Immolase Taq polymerase (*BIO-21047, *Bioline)* durante 35 ciclos. Los productos de PCR resultantes fueron purificados con el kit *NucleoSpin® Gel and PCR Clean-up (*740609.50, *Macherey-Nagel)* y clonados en el vector *pGEM®-T Easy* (A1360, *Promega*) de acuerdo con el protocolo de los fabricantes. Tras 24 horas de ligación, los plásmidos conteniendo los fragmentos de interés se transformaron en bacterias *E. coli* competentes. Posteriormente, las bacterias se sembraron en placas de LB-Agar con 100 µg/ml de ampicilina (BIA0104, *Apollo Scientific Limited*), 20 µl de *IPTG* (1M; BIMB1008, *Apollo Scientific Limited*) y 20 µl de *X-gal* (50mg/ml; AS471851 *Apollo Scientific*) y se incubaron a 37°C durante toda la noche.

Al día siguiente, se picaron para cada muestra un total de 96 colonias blancas (que habían incorporado el plásmido con el fragmento de interés) y se cultivaron individualmente en placas de 96 pocillos con 1 ml de medio LB a 37°C con agitación constante durante 90 minutos. Los insertos de cada colonia fueron amplificados de nuevo con Immolase Tag polymerase (BIO-21047, Bioline) durante 35 ciclos y con el uso de cebadores específicos del plásmido pGem-T. Los productos de PCR resultantes fueron precipitados con 87,7% de etanol absoluto y 12,3% de acetato de sodio (NaAc) 3M. Los fragmentos resultantes se secuenciaron empleando 1 µl de ADN por colonia y con el uso del kit BigDye® Terminator v3.1 Cycle Sequencing (4337457, Life Technologies) y el cebador T7: TAATACGACTCACTATAGGG, específico para el vector pGem-T. Para la reacción de secuenciación, el ADN se desnaturalizó a 96°C por 1 minuto, seguido de 30 ciclos de 96°C, 10 segundos; 50°C, 5 segundos; 55°C, 4 minutos; y un ciclo de extensión final de 55°C, 7 minutos. Los productos amplificados se purificaron empleando el kit *BigDye XTerminator Purification* (*Thermofisher Scientific*), de acuerdo con las instrucciones del fabricante. Los productos de PCR resultantes fueron secuenciados con el equipo 3730 DNA Analyzer (Applied Biosystems) y analizados con el programa *BioEdit v7.2.5*. Tras el análisis de las secuencias, el porcentaje de cambio de Adeninas (A) a Inosinas (I), siendo éstas últimas leídas como Guaninas (G) por la transcriptasa reversa, en la posición de interés fue calculado y analizado estadísticamente con la prueba exacta de Fisher.

4. Análisis específico de metilación en exones "flip" y "flop" de *GRIA3*

1 µg total de ADN genómico fue tratatado con bisulfito con el kit *EZ DNA Methylation Gold (Zymo Research, Orange, CA, USA)* para convertir las citosinas no metiladas en uracilos de acuerdo con el protocolo del fabricante. El estado de metilación de las CpGs localizadas en las zonas de los exones "flip" y "flop" de *GRIA3* en líneas celulares neurales y muestras *post-mortem* humanas de hipocampo se determinó a través de la secuenciación genómica por bisulfito de un fragmento de 200-300 pares de bases amplificado mediante una PCR convencional usando *Immolase Taq polymerase (*BIO-21047, *Bioline)* con cebadores específicos para cada caso. Los productos de PCR resultantes fueron purificados con el kit *NucleoSpin® Gel and PCR Clean-up (*740609.50, *Macherey-Nagel)* y clonados en el vector *pGEM®-T Easy* (A1360, *Promega*) de acuerdo con el protocolo de los fabricantes. Tras 24 horas de ligación, los plásmidos conteniendo los fragmentos de interés se transformaron en bacterias *E. coli* competentes. Posteriormente, las bacterias se sembraron en placas de LB-Agar con 100 µg/ml de ampicilina (BIA0104, *Apollo Scientific Limited*), 20 µl de *IPTG* (1M; BIMB1008, *Apollo Scientific Limited*) y 20 µl de *X-gal* (50mg/ml; AS471851 *Apollo Scientific*) y se incubaron a 37°C durante toda la noche.

Al día siguiente, se picaron para cada muestra un total de 96 colonias blancas (que habían incorporado el plásmido con el fragmento de interés) y se cultivaron individualmente en placas de 96 pocillos con 1 ml de medio LB a 37°C con agitación constante durante 90 minutos. Los insertos de cada colonia fueron amplificados de nuevo con Immolase Tag polymerase (BIO-21047, Bioline) durante 35 ciclos y con el uso de cebadores específicos del plásmido pGem-T. Los productos de PCR resultantes fueron precipitados con 87,7% de etanol absoluto y 12,3% de acetato de sodio (NaAc) 3M. Los fragmentos resultantes se secuenciaron empleando 1 µl de ADN por colonia y con el uso del kit BigDye® Terminator v3.1 Cycle Sequencing (4337457, Life Technologies) y el cebador T7: TAATACGACTCACTATAGGG, específico para el vector pGem-T. Para la reacción de secuenciación, el ADN se desnaturalizó a 96°C por 1 minuto, seguido de 30 ciclos de 96°C, 10 segundos; 50°C, 5 segundos; 55°C, 4 minutos; y un ciclo de extensión final de 55°C, 7 minutos. Los productos amplificados se purificaron empleando el kit BigDye XTerminator Purification (Thermofisher Scientific), de acuerdo con las instrucciones del fabricante. Los productos de PCR resultantes fueron secuenciados con el equipo 3730 DNA Analyzer (Applied Biosystems) y analizados con el programa BioEdit v7.2.5. Para cada muestra, se secuenciaron un mínimo de 8 clones. Las citosinas se representaron gráficamente empleando un programa desarrollado por el Dr. Balazs Balint.

5. Análisis de localización de ARN

5.1. Fragmentación núcleo-citoplasma

El fraccionamiento subcelular se llevó a cabo con el kit *PARIS*TM (AM1921, *Life Technologies*). A continuación, se realizó *RT-qPCR* de cantidades iguales de ARN de cada fracción y los resultados fueron normalizados teniendo en cuenta la cantidad total de ARN recuperado de cada fracción. La pureza del fraccionamiento se confirmó a nivel proteico mediante *western blot* con el uso de anticuerpos contra la histona H3, de localización nuclear, y α -TUBULINA, de localización citoplásmica. El enriquecimiento de ARN en cada fracción fue analizado por *RT-qPCR* usando *GAPDH y RNU6B* como controles.

5.2. Hibridación in situ fluorescente

Las líneas celulares neurales humanas fueron sembradas en placas de 6 pocillos con cubreobjetos y pretratadas con laminina para la correcta adherencia de las células. Dos días después de la siembra en el caso de progenitores neurales y 30 días después en el caso de células en diferenciación, se recuperaron los cubreobjetos con las células. Tras dos lavados con PBS 1X, las células fueron fijadas durante 10 minutos con paraformaldehido al 4%. A continuación, se llevaron a cabo de nuevo dos lavados con PBS 1X y se realizó la preparación de las muestras para la hibridación in situ fluorescente de sondas específicas para el ARN circular humano de SIRT2 hsa circ 0050946 (VPTZ76X, Thermofisher scientific). Para ello, se utilizó el kit ViewRNA™ ISH Cell (QVC0001. Assay Thermofisher scientific) siguiendo las recomendaciones del fabricante y el horno para el sistema de hibridación HybEZ™ II (bio-techne).

Una vez terminado el protocolo de hibridación in situ, se llevó a cabo la inmunotinción de la proteína específica de neurona TUJ 1 (Neuronspecific class III beta-tubulin) con un anticuerpo específico (T8660, Sigma-Aldrich) para delimitar la estructura neuronal de cada muestra y la marcación fluorescente del núcleo con DAPI (4'.6-diamidino-2phenylindole). Para ello, tras fijarse de nuevo las células con 4% de paraformaldehido durante 10 minutos a temperatura ambiente, se lavaron los cubreobjetos tres veces con PBS 1X y las células fueron bloqueadas con solución de bloqueo (5% de suero de cabra y 0,1% de tritón 100X en PBS 1X) durante una hora a temperatura ambiente. Una vez llevado a cabo el blogueo, los cubreobjetos fueron incubados con el anticuerpo primario de TUJ 1 diluido (1:1000) en solución de blogueo a 4º C durante toda la noche evitando la luz y rodeados de papel húmedo. Al día siguiente los cubreobjetos se lavaron tres veces en PBS y fueron incubados con el anticuerpo secundario (anti-mouse HRP. NA9310; GE healthcare) diluido (1:5000) en solución de bloqueo durante 45 minutos a temperatura ambiente. Tras tres lavados más con PBS, las muestras se incubaron con DAPI diluido (1:10000) en agua mili Q durante 15 minutos a temperatura ambiente. Se llevó a cabo finalmente un último lavado con PBS y se procedió al montaje de los cubreobjetos en portaobjetos añadiendo 10 µl de medio de montaje acuoso Fluorsave (345789, Merck Millipore). Los portaobjetos se dejaron secar a temperatura ambiente toda la noche en condiciones de oscuridad y guardados posteriormente a 4 °C. Al día siguiente, se pudieron visualizar y capturar las imágenes de interés mediante microscopía de fluorescencia (Leica DM4). Finalmente, dichas imágenes se trataron y analizaron con el uso del programa ImageJ.

83

RESULTADOS

RESULTADOS

1. Modelo murino

1.1. Identificación y análisis de *T-UCRs* y *circRNAs* con expresión alterada en hipocampo y córtex frontal de ratones RTT

En primer lugar y mediante el uso de chips (arrays) de expresión, se evaluaron los niveles transcripcionales de las poblaciones de circRNAs y T-UCRs en muestras de hipocampo y córtex frontal de ratones KO para MeCP2, comparándose siempre con muestras de los mismos tejidos procedentes de ratones WT de la misma camada a modo de controles. Por lo que respecta a las muestras hibridadas en el array de T-UCRs, se incluyeron tres réplicas biológicas WT y KO tanto de animales sintomáticos (8-9 semanas de edad) como pre-sintomáticos (3-4 semanas de edad) de cada tejido. Sin embargo, para el análisis de expresión de circRNAs únicamente se evaluaron muestras correspondientes a hipocampo y córtex frontal de ratones sintomáticos. Los datos más significativos entre los obtenidos en el estudio se muestran en el anexo de la presente tesis.

1.1.1. Selección de *T-UCRs* candidatos

Los análisis realizados en el *array* de expresión con sondas específicas para transcritos de regiones ultraconservadas mostraron la desregulación de varias de estas especies tanto en hipocampo como en córtex frontal de ratones *KO* para MeCP2 en comparación con los animales *WT*. Con los datos obtenidos, se llevó a cabo el estudio del reactoma (vías biológicas en las que se encuentran enriquecidos

determinados genes de interés) de aquellos genes huésped correspondientes *T-UCRs* que presentaban alteraciones en su expresión bajo condiciones de supresión de MeCP2. En dicho análisis se incluyeron todos los genes candidatos presentados en los resultados del *array*, agrupando animales pre-sintomáticos y sintomáticos, con independencia de los niveles de cambio observados (*fold change*) y en cada una de las regiones de estudio (córtex frontal e hipocampo) por separado (figura 12).

Α.

CÓRTEX FRONTAL

Β.

HIPOCAMPO

Reactoma

Puntuación de enriquecimiento (-log10(p-valor))

Figura 12. Análisis del reactoma de genes huésped correspondientes a *T-UCRs* con expresión alterada en córtex frontal (A) e hipocampo (B) del modelo RTT de ratón. Enriquecimiento diferencial de dichos genes de acuerdo con las reacciones celulares en las que se encuentran implicados (se muestran las diez principales). El eje Y muestra los términos de via molecular y el eje X muestra la significancia estadística. El estudio se llevó a cabo a través de la herramienta *online* reactome.org.

De manera notable, se observó un enriquecimiento de genes con papeles relevantes en mecanismos relacionados con la expresión génica y el procesamiento del ARN en las muestras correspondientes a ambas regiones cerebrales de animales RTT (figura 12A). Es importante destacar que estos resultados son perfectamente comparables y similares a datos de enriquecimiento mostrados previamente para el número total de *T-UCRs* descritos¹⁵⁴, en los que también se resaltaban vías como el *splicing* o la regulación transcripcional como las más representativas para estos genes. No obstante, el caso de las muestras procedentes de hipocampo generó un especial interés debido a la sobrerrepresentación de genes con funciones implicadas en vías relevantes en el sistema neural, en concreto relacionadas con la señalización por glutamato como el tráfico de receptores de glutamato de tipo AMPA (figura 12B).

Entre todos aquellos *T-UCRs* cuyos niveles se encontraban alterados bajo condiciones de deficiencia de MeCP2, se seleccionaron algunos candidatos de interés utilizando como criterio principal el papel biológico ejercido por sus *genes huésped*, priorizando aquellos que tuvieran relevancia en vías relacionadas con la función o desarrollo neural (tabla 6). Los *T-UCRs* en los que finalmente se llevó a cabo un análisis más exhaustivo de sus niveles transcripcionales fueron *uc.309*, *uc.472*, *uc.203*, *uc.12*, *uc.186*, *uc.478/479*, *uc.75/77/78*, *uc.336* y *uc.208/209*, correspondientes a los *genes huésped Btrc*, *Cask*, *Qk*, *Sfpq*, *Hnrph1*, *Gria3*, *Zeb2*, Sox5 y *Tra2a*, respectivamente.

Gen huésped (cadena)	Nombre completo en inglés	Papel biológico	<i>T-UCR</i> (cadena)	Localización del <i>T-UCR</i> en relación a su gen huésped
Btrc (+)	Beta-Transducin Repeat Containing E3 Ubiquitin Protein Ligase	Papel en ubiquitinación dependiente de fosforilación. Requerido para el procesamiento de proteínas como NF-KB ²³⁵ y GLI3 ²³⁶ . Relación con malformaciones en manos y pies ²³⁷ .	uc.309 (-)	Intrón
Cask (-)	Calcium/ Calmodulin Dependent Serine Protein Kinase	Importante para el anclaje y transporte de los canales iónicos de las membranas celulares ²³⁸ . Contribuye al desarrollo neural y mutaciones en este gen se han asociado a discapacidad intelectual y microcefalia, entre otros fenotipos ²³⁹ .	uc.472 (+)	Exón, 3'UTR
Qk (-)	Quaking	Fundamental en la regulación del <i>splicing</i> , la exportación de ARNm desde el núcleo, la traducción de proteínas y la estabilidad del ARNm. Implicación en la mielinización, la diferenciación de oligodendrocitos.y papel en el desarrollo de la esquizofrenia ²⁴⁰ .	uc.203 (-)	Exón, 3'UTR
Sfpq (+)	Splicing factor proline/ glutamine rich	Factor esencial requerido para la formación del espliceosoma. Alteraciones en este gen pueden producir, entre otras enfermedades, demencia frontotemporal ²⁴¹ .	uc.12 (-)	Intrón

Hnrph1 (+)	Heterogeneous nuclear ribonucleoprotein H1	Implicación en el procesamiento del ARN mensajero precursor y otros aspectos relacionados con el metabolismo y transporte del ARNm.	uc.186 (-)	Exón/ intrón
Gria3 (+)	Glutamate receptor, ionotropic, AMPA3	Subunidad de receptores de glutamato de tipo AMPA, receptores principales en la neurotransmisión excitatoria. Alteraciones en este gen se asocian, entre otros desórdenes, a retraso mental sindrómico ligado al cromosoma X ²⁴² .	uc.478 (+) uc.479 (+)	Exón alternativo/intrón Exón alternativo/intrón
Zeb2 (-)	Zinc finger E-box binding homeobox 2	Papel esencial en la regulación del desarrollo del sistema nervioso ²⁴³ .	uc.75 (+) uc.77 (+) uc.78 (+)	Exón, 3'UTR Intrón Intrón
Sox5 (-)	SRY (sex determining region Y)-box 5	Factor de transcripción involucrado en el desarrollo embrionario y la determinación del linaje celular. Influencia en la migración de oligodendrocitos en la médula espinal y el cerebro anterior ²⁴⁴	uc.336 (+)	Intergénico upstream
Tra2a (-)	Transformer 2 alpha	Papel esencial en la regulación del <i>splicing.</i> Implicación en la patogénesis del síndrome de temblor/ataxia asociado a X frágil ²⁴⁵ .	uc.208 (-) uc.209 (+)	Intrón Intrón

Tabla 6. Lista de *T-UCRs* y genes huésped candidatos con niveles de expresión alterados en hipocampo y/o córtex frontal de ratones *KO* para MeCP2.

1.1.1.1. Análisis mediante *RT-qPCR* de la expresión de *T-UCRs* candidatos en hipocampo y córtex frontal de ratones RTT

Tras la selección de aquellos *T-UCRs* en los que llevar a cabo un estudio más exhaustivo de su potencial influencia en el desarrollo de la enfermedad, se analizaron los niveles de expresión de éstos y de sus genes huésped correspondientes mediante *RT-PCR* cuantitativa o *RT-qPCR*. La validación de cada *T-UCR* se realizó en el tejido específico en el que se habían observado alteraciones transcripcionales a partir de los datos del *array*.

Figura 13. Niveles de expresión relativos de *T-UCRs* candidatos en córtex frontal (A) e hipocampo (B) de ratones pre-sintomáticos (3-4 semanas) y sintomáticos (8-9 semanas). Los gráficos representan la mediana de 6-8 réplicas de distintos animales con el rango intercuartílico (*IC* 95%) por condición (*p<0,005, **<0,01, test de Mann-Whitney bilateral). Se empleó *B2m* como control endógeno.

Tanto en córtex frontal como en hipocampo se constataron variaciones estadísticamente significativas (test de Mann Whitney, *p*<0,05) en la expresión de algunos *T-UCRs* (figura 13), así como también en los niveles de algunos de sus genes huésped correspondientes (figura 14) en fase pre-sintomática y/o sintomática de animales *KO*. Ejemplos como los *T-UCRs uc.309* (figura 13A), *uc.186 y uc.77* (figura 13B) mostraron una expresión significativamente alterada en córtex frontal o en hipocampo de animales *KO*, apreciándose también variaciones relevantes de alguna especie en ambos tejidos, como es el caso de *uc.336* (figura 13A,B). Dichos resultados certificaron la desregulación en la expresión de varios transcritos ultraconservados en tejidos notablemente afectados en ratones deficientes para MeCP2.

Figura 14. Niveles de expresión relativos de genes huésped correspondientes a *T-UCRs* candidatos en córtex frontal (A) e hipocampo (B) de ratones presintomáticos (3-4 semanas) y sintomáticos (8-9 semanas). Los gráficos representan la mediana de 6-8 réplicas de distintos animales con el rango intercuartílico (*IC* 95%) por condición (*p<0,005, **<0,01, Test de Mann-Whitney bilateral). Se empleó *B2m* como control endógeno.

Por lo que respecta a los genes lineales codificantes anotados para cada uno de los *T-UCRs*, se pudieron confirmar también alteraciones significativas en su expresión en ambos tejidos, sugiriéndose una desregulación transcripcional potencialmente coordinada por la propia perturbación en la transcripción de sus *T-UCRs* y pudiendo implicar efectos colaterales relevantes en procesos moleculares esenciales para el desarrollo y función neural. Cabe destacar los cambios significativamente relevantes observados en los niveles del gen *Gria3* en ambos tejidos de ratones RTT sintomáticos (figura 14A,B), cuyo impacto en la adecuada funcionalidad de las redes sinápticas es especialmente determinante.

Las posiciones relativas de los transcritos ultraconservados candidatos para este estudio en referencia a sus genes huésped se encuentran representadas en la figura 15.

Figura 15. Posición relativa de *T-UCRs* candidatos en referencia a sus genes huésped correspondientes.

1.1.1.2. Análisis de alteraciones en el sistema *Evf*2 en córtex frontal e hipocampo de ratones RTT

A través de los resultados obtenidos en el array de expresión llevado a cabo para la detección de especies ultraconservadas cuya transcripción resultara alterada en el modelo RTT de ratón, se observó una sutil desregulación en los niveles de los T-UCRs uc.220 v uc.221, transcritos cuyo gen huésped correspondiente anotado era Dlx5. Tras lanzar las secuencias (obtenidas de la herramienta web ucbase 2.0. https://ucbase.unimore.it/) de ambos transcritos contra el genoma de ratón en el navegador genómico online UCSC (https://genome.ucsc.edu/), se demostró que la localización de dichos T-UCRs correspondía con zonas solapantes a la secuencia genómica del IncRNA Evf2, llamado también DIx6os1 en ratón. Más específicamente, la secuencia descrita para el T-UCR uc.220 se encuentra en una zona intrónica de Evf2 y "aguas arriba" (upstream) al gen Dlx6 y en sentido opuesto. Por otro lado, la secuencia descrita para el T-UCR uc.221 es parcialmente solapante con el primer exón correspondiente a Evf2, se encuentra "aguas abajo" (downstream) de Dlx6 y coincide con gran parte del elemento potenciador ultraconservado ei (figura 16).

Figura 16. Organización genómica de los genes *Dlx5, Dlx6, Evf2* y las regiones ultraconservadas *uc.220, uc.221, ei* y *eii*. Las coordenadas son referentes al navegador genómico *UCSC* (GRCh/mm10).

Dada la relevante localización genómica de ambos T-UCRs y las pequeñas alteraciones transcripcionales observadas en los resultados del chip de expresión, se decidió llevar a cabo el análisis mediante RT*aPCR* de los niveles de dichos transcritos en muestras de córtex frontal e hipocampo de ratón (figura 17). También se comprobó la posible desregulación en los niveles de expresión de los genes DIx5, DIx6, Evf2 y otros candidatos relacionados con la vía de señalización de Sonic hedgehog (Shh) (figura 18). Como se ha mencionado previamente en la introducción de este proyecto, Shh es esencial para la especificidad interneuronal durante el desarrollo, proceso en el que se ha demostrado su interacción con genes de la familia Dlx, así como con los transcritos no codificantes Evf2 y Evf1 (isoforma alternativa de Evf2). Más concretamente, en ensayos in vivo realizados en estados embrionarios de ratón se demostraba que Shh es capaz de activar la expresión de Evf2, Dlx2, Dlx5 y Dlx6 en el prosencéfalo o también llamado cerebro anterior²⁴⁶. Siendo conscientes de dichos datos y sabiendo que MeCP2 tiene la capacidad de interactuar también con Evf2 en la regulación de la transcripción de Dlx5/6, se decidió llevar a cabo el estudio de los niveles de expresión de factores directamente relacionados con la vía de señalización de Shh con el objetivo de comprobar posibles alteraciones resultantes de la deficiencia de MeCP2. Entre los candidatos vía. de dicha se seleccionó como transcrito importantemente representativo el del gen Gli3 (Gli Family Zinc Finger 3). Gli3 es un factor de transcripción que parece ser importante para la especificación celular en la zona cerebral dorsal, región en la gue se generan principalmente neuronas glutamatérgicas. Sin embargo, la función de Shh es esencial en el direccionamiento para la formación celular de la región ventral, en la que se generan principalmente neuronas inhibitorias GABAérgicas. En ambos casos, Shh y Gli3 son capaces de inhibirse mutuamente y el balance en la expresión de ambos genes es primordial para el correcto desarrollo cerebral²⁴⁷.

Figura 17. Niveles de expresión relativos de *T-UCRs uc.220* y *uc.221* en córtex frontal (A) e hipocampo (B) de ratones pre-sintomáticos (3-4 semanas) y sintomáticos (8-9 semanas). Los gráficos representan la mediana de 6-8 réplicas de distintos animales con el rango intercuartílico (*IC* 95%) por condición (*p<0,005, **<0,01, Test de Mann-Whitney bilateral). Se empleó *B2m* como control endógeno.

Α.

Figura 18. Niveles de expresión relativos de genes codificantes de la familia *Dl*x, la vía de *Shh* y el *IncRNA Evf2* en córtex frontal (A) e hipocampo (B) de ratones pre-sintomáticos (3-4 semanas) y sintomáticos (8-9 semanas). Los gráficos representan la mediana de 6-8 réplicas de distintos animales con el rango intercuartílico (*IC* 95%) por condición (*p<0,005, **<0,01, Test de Mann-Whitney bilateral). Se empleó *B2m* como control endógeno.

Los análisis de expresión de *uc.220* y *uc.221* en muestras de ratón no mostraron alteraciones significativas de estos transcritos. No obstante, sí se observaron cambios relevantes en los niveles de algunos genes como el *lncRNA Evf2* y el transcrito *Gli3* en córtex frontal de ratones *KO*.

Dichos resultados muestran, por tanto, alteraciones transcripcionales en genes importantemente relacionados con el neurodesarrollo en condiciones de deficiencia de MeCP2, lo que indica la necesidad de profundizar en el estudio de dichas vías y cómo éstas pueden estar directamente afectadas por la desregulación de determinadas especies no codificantes como los *T-UCRs*.

99

1.1.1.3. Análisis de alteraciones en la expresión y edición del ARN de *Gria3* en córtex frontal e hipocampo de ratones RTT

Como se muestra en la tabla 6, dos de los *T-UCRs* candidatos de interés seleccionados a partir de los datos del *array* en el modelo animal fueron *uc.478* y *uc.479*, cuyas localizaciones genómicas son parcialmente solapantes a los exones "flop" y "flip", respectivamente, del gen *Gria3* (figura 19) gen codificante de la subunidad 3 que forma parte de los receptores de glutamato de tipo AMPA. Dada la demostrada importancia de dichos receptores en el correcto balance de las transmisiones sinápticas inhibitorias y excitatorias, se decidió llevar a cabo, en primer lugar, el análisis de posibles alteraciones transcripcionales de ambos *T-UCRs*, así como del transcrito total de *Gria3* y de las isoformas específicas *flip* y *flop* (figura 20).

Figura 19. Representación intrónica/exónica de exones mutuamente excluyentes "flip" (verde) y "flop" (naranja) y *T-UCRs uc.478/479* en el locus de *Gria3.*

Pese a no observarse cambios significativos en los niveles de expresión de los *T-UCRs uc.478* y *uc.479*, se aprecia una tendencia negativa en la regulación de *uc.479* en córtex frontal de animales sintomáticos *KO* para MeCP2 (figura 20A).

Figura 20. Niveles de expresión relativos de *T-UCRs uc.478/479, Gria3* total y transcritos alternativos *flip/flop* en córtex frontal (A) e hipocampo (B) de ratones pre-sintomáticos (3-4 semanas) y sintomáticos (8-9 semanas). Los gráficos representan la mediana de 6-8 réplicas de distintos animales con el rango intercuartílico (*IC* 95%) por condición (*p<0,005, **<0,01, Test de Mann-Whitney bilateral). Se empleó *B2m* como control endógeno.

Asimismo, en dicho tejido se muestran alteraciones relevantes en la expresión del transcrito total de Gria3 y también de las isoformas flip y flop particularmente (figura 20A), sugiriéndose una regulación aberrante tanto de los niveles de estabilidad del ARN mensajero total de Gria3 como de la selección de los exones alternativos durante el splicing del pre-ARNm bajo condiciones de ausencia de MeCP2. Dada la importante disposición genómica de ambos T-UCRs y la demostrada relevancia de los mecanismos de splicing alternativo de los exones "flip" y "flop" y de edición de la posición R/G (situada en el primer exón constitutivo tan solo dos nucleótidos upstream del sitio aceptor de splicing) en la posterior función del receptor, se hipotetizó una posible alteración en los niveles de edición del ARN de Gria3 resultante de la desregulación del mecanismo transcripcional en dicha zona. Por ello, se llevó a cabo el análisis estadístico por secuenciación de los niveles de edición del transcrito de Gria3, en el que se compararon muestras de hipocampo de ratones WT y KO para MeCP2 (figura 21). Lamentablemente, dicho estudio no llegó a optimizarse para muestras procedentes de córtex frontal debido a problemas recurrentes con la secuenciación de dichas muestras, pese a un mayor interés en esta región debido a los datos significativos observados en los análisis de expresión previos. En lo referente al estudio de los niveles proteicos de Gria3 en muestras procedentes del modelo animal, tampoco se pudo llegar a poner a punto el anticuerpo necesario para la detección de dicha proteína. Sin embargo, sería necesario llevar a cabo dicho estudio en futuros experimentos.

HIFUCAWFO							
	WT			КО			
	FLOP	FLIP	TOTAL		FLOP	FLIP	TOTAL
R (no editado)	4,2 % (3/71)	7 % (5/71)	11,3 % No editado (8/71)	R (no editado)	1,4 % (1/73)	4,1 % (3/73)	5,5 % No editado (4/73)
G (editado)	15,5 % (11/71)	73,2 % (52/71)	88,7 % Editado (63/71)	G (editado)	28,8 % (21/73)	65,8 % (48/73)	94,5 % Editado (69/73)
TOTAL	19,7 % Flop (14/71)	80,3 % Flip (57/71)		TOTAL	30,1 % Flop (22/73)	69,9 % Flip (51/73)	
p-valor test de Fisher 0,1864 (bil			p-valor test de Fi (bilateral)	sher >0,9	999		

Просамаро

Figura 21. Cuantificación de los niveles de edición de las variantes *flip/flop* del gen *Gria3* en muestras de hipocampo de ratones sintomáticos (8-9 semanas) *WT* y *KO* para MeCP2. Se empleó la prueba exacta de Fisher bilateral para medir la significancia estadística de los análisis de edición.

Los resultados obtenidos en el estudio de la edición del ARN de *Gria3* en la posición R/G mostraron un pequeño incremento, aunque no significativo, de los niveles totales de dicho proceso en animales *KO* (del 88,7% de transcritos totales editados al 94,5%). Por otro lado, también se observó un cambio en el balance de expresión de las isoformas *flip/flop* bajo condiciones de supresión de MeCP2, favoreciéndose la transcripción (del 19,7% al 30,1%) y con ello también el aumento de la edición (del 15,5% al 28,8%) de la variante *flop* de *Gria3*.

1.1.2. Selección de circRNAs candidatos

Los resultados obtenidos a partir del chip de expresión realizado para la caracterización de la población de *circRNAs* en tejidos cerebrales de ratones RTT mostraron también alteraciones en la transcripción de un gran número de estas especies. En especial se destacan variaciones en muestras de hipocampo, en las que se observó una mayor proporción de transcritos circulares con una expresión significativamente reducida en comparación a las muestras *WT* (figura 22B).

Figura 22. Caracterización de la población de *circRNAs* alterados en regiones de córtex frontal (A) e hipocampo (B) de ratones deficientes para MeCP2. *Volcano plots* indicando la expresión diferencial (izquierda= decreciente, derecha=creciente) en córtex frontal e hipocampo entre ratones *WT* y *KO*. Las líneas verdes verticales corresponden a un cambio de 1,5 arriba y abajo, respectivamente, y la línea verde horizontal representa un p-valor de 0,05 (*t-test* no pareado bilateral).

Por otro lado, es importante remarcar que el estudio del reactoma realizado para los genes huésped correspondientes a los transcritos circulares significativamente alterados mostró un enriquecimiento de éstos en procesos biológicos relacionados con el sistema neuronal (figura 23A,C), especialmente en muestras procedentes de hipocampo (figura 23C). En las categorías obtenidas destacaron, del mismo modo que en el análisis de *T-UCRs*, aquellas directamente relacionadas con los receptores de glutamato. También es necesario resaltar la significativa representación de dichos genes en compartimentos celulares como el axón neuronal principal, así como en zonas esenciales para el correcto desarrollo del citoesqueleto (figura 23 B,D).

CORTEX FRONTAL

Reactoma

Α.

В.

GO componente celular

Puntuación de enriquecimiento (-log10(p-valor))

Puntuación de enriquecimiento (-log10(p-valor))

HIPOCAMPO

Figura 23. Análisis del reactoma y componente celular de genes huésped correspondientes a *T-UCRs* con expresión alterada en córtex frontal (A) e hipocampo (B) del modelo RTT de ratón. Enriquecimiento diferencial de dichos genes de acuerdo con las reacciones celulares en las que se encuentran implicados, así como los compartimentos celulares en los que se localizan (se muestran las diez principales). El eje Y muestra los términos de ontología génica y el eje X muestra la significancia estadística.

Del mismo modo que con la población de *T-UCRs*, se llevó a cabo de nuevo una selección de *circRNAs* candidatos para su posterior análisis. En base a los valores de cambio (*fold change*) observados para estas especies en ratones *KO*, así como las funciones biológicas descritas para sus genes lineales correspondientes, se siguió con un estudio más exhaustivo de aquellos potencialmente relevantes en vías relacionadas con el neurodesarrollo (tabla 7).

Gen huésped (cadena)	Nombre completo en inglés	Papel biológico	circRNA
Birc6 (+)	Baculoviral IAP repeat-containing 6	Inhibición de la apoptosis facilitando la degradación de proteínas apoptóticas por ubiquitinación. Implicación en neurodegeneración causada por ácido kaínico ²⁴⁸ .	mmu_circRNA_013298
Sirt2 (+)	Sirtuin 2	Desacetilación de histonas. Implicación en varios trastornos neurodegenerativos como la degeneración Walleriana (degeneración de axones y sinapsis tras lesión) ²⁴⁹ .	mmu_circRNA_41253
Dnah2 (-)	Dynein axonemal heavy chain 2	Permite la actividad motora de microtúbulos y tiene función ATPasa.	mmu_circRNA_23592
Foxp1 (-)	Forkhead Box P1	Factor de transcripción con funciones importantes en la regulación de la especificidad celular y tisular durante el desarrollo. Asociación con retraso mental con deterioro lingüístico con o sin rasgos autistas ²⁵⁰ .	mmu_circRNA_40615

circRNAs con expresión alterada en muestras de hipocampo

Mllt3 (+)	Myeloid/lymphoid or mixed-lineage leukemia; translocated to, 3	Mediación en la activación transcripcional.	mmu_circRNA_37101
		Contribución en el desarrollo de neuronas corticales ²⁵¹ .	

Gen huésped (cadena)	Nombre completo en inglés	Papel biológico	circRNA
Sirt2 (+)	Sirtuin 2	Desacetilación de histonas. Implicación en varios trastornos neurodegenerativos como la degeneración Walleriana (degeneración de axones y sinapsis tras lesión) ²⁴⁹ .	mmu_circRNA_41253
Map1a (+)	Microtubule- associated protein 1 A	Permite el anclaje de receptores de glutamato de tipo NMDA (<i>N-methyl-D- aspartate</i>) al citoesqueleto. Papel fundamental en el mantenimiento de la plasticidad sináptica ²⁵² .	mmu_circRNA_34414

circRNAs con expresión alterada en muestras de córtex frontal

Tabla 7. Lista de *circRNAs* y genes huésped candidatos con niveles de expresión alterados en hipocampo y/o córtex frontal de ratones *KO* para MeCP2.

1.1.2.1. Análisis mediante *RT-qPCR* de la expresión de *circRNAs* candidatos en hipocampo y córtex frontal de ratones RTT

Los resultados de la validación de los niveles transcripcionales de las especies circulares seleccionadas por su potencial significación funcional en vías esenciales para el neurodesarrollo mostraron cambios significativos en la expresión de varios candidatos, especialmente en muestras de córtex frontal de ratones afectados (figura 24A).

Figura 24. Niveles de expresión relativos de *circRNAs* candidatos (izquierda) y sus genes huésped (derecha) correspondientes en córtex frontal (A) e hipocampo (B) de ratones pre-sintomáticos y sintomáticos. Los gráficos representan la mediana de 6-8 réplicas de distintos animales con el rango intercuartílico (*IC* 95%) por condición (*p<0,005, **<0,01, test de Mann-Whitney bilateral). Se empleó *B2m* como control endógeno.

FI también estudio de expresión manifestó alteraciones transcripcionales importantes en varios de los genes lineales correspondientes a los circRNAs candidatos, mostrándose de nuevo niveles aberrantes de transcritos sustanciales en vías relacionadas con la función v desarrollo neural. Entre ellos destacan transcritos como Birc6, con expresión significativamente desregulada en córtex frontal e hipocampo; Map1a, con cambios también relevantes en córtex frontal de animales pre-sintomaticos y sintomáticos; y Sirt2, con niveles notablemente incrementados en hipocampos de ratones sintomáticos con supresión de MeCP2.

1.1.2.2. Caracterización de los niveles de expresión de *Sirt2* en el modelo RTT de ratón

Tras la exploración de la función biológica de los genes lineales correspondientes a *circRNAs* cuya expresión se mostraba desregulada en el *array* y una selección de aquellos que pudieran ser relevantes en vías relacionadas con el neurodesarrollo, uno de los que suscitaron mayor interés fue el gen *Sirt2*, cuya importancia en la funcionalidad neuronal ha sido previamente demostrada²⁵³. SIRT2 forma parte de una familia de enzimas conocidas como sirtuinas y cuyo papel principal es la catálisis de la desacetilación de histonas, así como de otros sustratos²⁵⁴. De manera importante, publicaciones previas muestran un incremento significativo de los niveles proteicos de HDAC6, con función desacetilasa de α -tubulina igual que SIRT2, en neuronas y astrocitos deficientes para MeCP2^{255,256}. Dichas observaciones refuerzan la potencial relevancia del papel que podría desempeñar SIRT2 en la enfermedad de Rett.

La validación mediante *RT-qPCR* en muestras de ratón para la especie circular *circSirt2 (mmu_circRNA_41253)* mostró una disminución significativa en los niveles de dicho transcrito en córtex frontal de animales pre-sintomáticos *KO* para MeCP2 (figura 25B). No obstante, no se apreciaron cambios relevantes en referencia al ARN lineal. Por otro lado, también en muestras procedentes de córtex frontal, aunque en este caso de animales sintomáticos, se pudo observar un aumento considerable de la proteína Sirt2 bajo un contexto de ausencia de MeCP2. Dichos resultados sugieren un posible papel del transcrito circular de *Sirt2* en *cis* en la regulación a un nivel traduccional. Finalmente, cabe destacar también la disminución en los niveles de α-Tubulina acetilada en correspondencia con el incremento en los niveles de *Sirt2*, siendo la α-Tubulina una proteína diana directa de la acción desacetilasa de Sirt2 (figura 25B).

Figura 25. Caracterización de los niveles de expresión de Sirt2 en córtex frontal (B) e hipocampo (C) de ratones *WT* y *KO* para MeCP2. A. Organización exónica/intrónica de los transcritos lineal (negro) y circular (azul) en el locus de *Sirt2*. Las coordenadas son referentes al navegador genómico *UCSC* (GRCh/mm10). Solo los exones potencialmente circularizados y las regiones 5' y 3' del transcrito lineal de *Sirt2* se encuentran incluidos. **B**, **C**. Arriba: Los niveles de expresión de los transcritos *Sirt2* y *circSirt2* fueron analizados mediante *RT-qPCR* en córtex frontal (B) e hipocampo (C) de ratones pre-sintomáticos (3-4 semanas) y sintomáticos (8-9 semanas) *WT* y *KO* para MeCP2. Los gráficos representan la mediana de 6-8 réplicas de distintos animales con el rango intercuartílico (*IC* 95%) por condición (*p<0,005, **<0,01, test de Mann-Whitney bilateral). Se empleó *B2m* como control endógeno. Abajo: Análisis por *western blot* de proteínas MeCP2, Sirt2, α-Tubulina acetilada, α-Tubulina y β-actina como control endógeno de carga en córtex frontal (B) e hipocampo (C) de ratones pre-sintomáticos *WT* y *KO* para MeCP2.

En referencia a los análisis llevados a cabo en muestras de hipocampo (figura 25C), los resultados no mostraron alteraciones destacables en la expresión del transcrito circular o los niveles proteicos de Sirt2 en animales *KO*. Sí se observó, sin embargo, un aumento en la transcripción del transcrito lineal en ratones sintomáticos.

2. Modelo celular

2.1. Caracterización del modelo celular neural humano knockout para MeCP2

En paralelo a los análisis realizados en el modelo RTT de ratón del que se disponía en el grupo, se llevó a cabo el diseño y generación de una línea neural progenitora (ReNcell VM) deficiente para MeCP2 a través de la aplicación del sistema de edición génica CRISPR/Cas9. Como resultado del corte de doble hebra provocado en la secuencia genómica de MECP2, se pudo observar la deleción de seis nucleótidos en dicho gen (figura 26A), resultando en la aparición de un codón stop prematuro y la subsecuente traducción aberrante de la proteína (figura 26B). El producto final fue descrito de la siguiente manera tras la secuenciación traducción silico y in del transcrito generado: NM 004992.3c.398 403del. NP 004983:p.(Arg133Ter). Los resultados del análisis por western blot para la detección de la proteína MeCP2 revelaron la supresión de ésta en el modelo celular in vitro generado, tanto en su estado progenitor como tras la inducción de la libre diferenciación de dicha línea durante 30 días (figura 26C).

112

Figura 26. Modelo celular humano KO para MeCP2. A. Secuenciación de la zona alterada del gen *MECP2* mediante el sistema de edición génica *CRISPR/Cas9.* La secuencia fue alineada con la secuencia de referencia del gen *MECP2* (NM_004992.3) con el uso de la herramienta *CLUSTALW.* **B.** Traducción *in silico* de la secuencia codificante del gen *MECP2* en condiciones normales (arriba) y con la alteración producida por el corte de la enzima *Cas9*, generando un codón *stop* prematuro (abajo). **C.** Análisis por *western blot* de proteínas MeCP2 y LAMIN B1 como control de carga endógeno en líneas neurales progenitoras (izquierda) y células en diferenciación libre (derecha) antes (*WT*) y después (*KO*) de la alteración genómica de *MECP2*.

Células neurales en diferenciación libre

Progenitores neurales

Cabe señalar que la especificidad del ARN guía usado en el sistema *CRISPR/Cas9* no es completa, de modo que su potencial hibridación en zonas genómicas distintas a las regiones diana de interés podría causar la aparición de *offtargets* y, por tanto, un sesgo en los análisis resultantes. Por ese motivo, se llevó a cabo el estudio por secuenciación de las zonas con mayor probabilidad de hibridación por parte del ARN guía diseñado para *MECP2*, comprobándose así la estabilidad genómica de dichas regiones. Los resultados no mostraron alteraciones en dichas secuencias (ver tesis de Edilene Siqueira en el grupo).

2.2. Identificación y análisis de *T-UCRs* y *circRNAs* con expresión alterada en el modelo celular neural humano *knockout* para MeCP2

Pese a la alta conservación descrita en los patrones de expresión de un gran número de transcritos circulares entre la especie murina y la especie humana, especialmente en el sistema nervioso central²⁵⁷, el traslado de los datos obtenidos en un modelo animal al sistema humano tiene varias limitaciones. Por tanto, se hace imprescindible la ejecución de los estudios llevados a cabo en el modelo animal también en un modelo humano, razón por la cual se realizó de nuevo el análisis transcripcional de *circRNAs* mediante chips de expresión comerciales en el modelo neural *in vitro* generado en el laboratorio. Del mismo modo, se interrogaron también otros *IncRNAs* lineales en las mismas muestras, entre los que se encontraron varios *T-UCRs* con niveles de expresión alterados.

En este caso, los análisis de expresión diferencial se llevaron a cabo mediante distintas comparaciones. Por un lado, las líneas KO para MeCP2 se equipararon con líneas WT en las mismas condiciones de tiempo de diferenciación (estado progenitor o células neurales de libre diferenciación). Por otro lado, el estudio de posibles cambios transcripcionales se llevó a cabo también confrontando los niveles de los transcritos interrogados en células neurales con 30 días de diferenciación con células neurales progenitoras bajo las mismas condiciones génicas (WT o KO).

2.2.1. Análisis de alteraciones en la expresión y edición del ARN de *GRIA3* en el modelo celular neural humano *knockout* para MeCP2.

Tras los datos observados en referencia a las posibles alteraciones transcripcionales del gen Gria3 y los transcritos ultraconservados uc.478 y uc.479 solapantes con los exones "flop" y "flip" de dicho gen en el modelo animal, se llevaron a cabo también análisis de expresión y de edición del ARN de *GRIA3* en el modelo humano generado en el laboratorio (figura 27). En este caso, el estudio se realizó en distintos puntos temporales durante el proceso de diferenciación de dicha línea neural: estado progenitor y células en proceso de diferenciación durante 3, 7, 14 y 30 días. El análisis mostró cambios significativos en un contexto de deficiencia de MeCP2 para las variantes flip/flop de GRIA3 (figura 27B) y el T-UCR uc.479 (figura 27C) tanto en estado progenitor como con 30 días de maduración de la línea neural. En referencia a los niveles transcripcionales del T-UCR uc.478, los valores de Ct observados eran prácticamente indetectables en estas muestras, imposibilitando la cuantificación de dicho transcrito de manera fiable. Por lo que respecta a los niveles de edición del ARN de GRIA3 en la posición R/G, se observó una caída significativa en la línea celular KO para MeCP2 (de un 70% de edición aproximadamente en muestras WT a un 50% en condiciones KO) en el mayor estado de maduración analizado (30 días), siendo además la variante flip la más abundante en ambos casos de nuestro modelo celular (figura 27D). Por otro lado, el análisis por western blot de la proteína GRIA3 en estas mismas muestras también revelaba, de la misma forma que el estudio de los niveles de ARNm, una disminución en las células diferenciadas en las que MeCP2 había sido suprimido (figura 27E).

Figura 27. Caracterización de los niveles de expresión de GRIA3 y T-UCRs uc.478/479 y cuantificación de la edición del ARN de GRIA3 en el modelo celular neural humano. A. Niveles de expresión relativos de GRIA3 total. B. Niveles de expresión relativos de los transcritos alternativos flip y flop. C. Niveles de expresión relativos del T-UCR uc.479. Los niveles de expresión fueron analizados por RT-gPCR en células neurales progenitoras y libremente diferenciadas durante 3, 7, 14 y 30 días, WT y KO para MECP2. Los gráficos representan la media de tres réplicas con la desviación estándar por condición (*p<0,05, **p<0,01, test bilateral de Mann-Whitney) y normalizados respecto a la línea WT. Se empleó RPL13 como control endógeno. D. Niveles de edición de los transcritos flip y flop en células neurales progenitoras y libremente diferenciadas durante 3, 7, 14 y 30 días, WT y KO para MECP2. Los gráficos representan la mediana de tres réplicas con el rango intercuartílico (IC 95%) por condición (*p<0,05, **p<0,01, test bilateral de Mann-Whitney). E. Izquierda: Análisis por western blot de las proteínas GRIA3 y β-ACTINA como control de carga endógeno en células neurales progenitoras y en diferenciación libre durante 30 días, WT y KO para MeCP2. La imagen muestra duplicados de cada condición. Derecha: Medida cuantitativa correspondiente a los niveles proteicos de GRIA3 observados en los progenitores neurales y células en diferenciación libre.

2.2.1.1. Análisis de metilación en exones "flip" y "flop" en el modelo celular neural humano *knockout* para MeCP2

Estudios recientes han demostrado el papel crítico de MeCP2 en la regulación del *splicing* alternativo en células neurales²⁵⁸. Es por ello por lo que los cambios significativos observados en la expresión de las isoformas *flip* y *flop* de *GRIA3* en condiciones de ausencia de MeCP2 fueron indicio para el estudio comparativo de los niveles de metilación de dinucleótidos CpG localizados en regiones cercanas a ambos exones. Para dicha validación, se interrogaron un total de siete posiciones en zonas colindantes al exón "flip" (figura 28A) y doce en la región "flop" (figura 28B), comparando los niveles de metilación en células *KO* para MeCP2 con células *WT*, tanto en estado progenitor como tras 30 días de diferenciación libre.

Los resultados del análisis de metilación mostraron, por un lado, altos niveles de metilación en las posiciones interrogadas del exón "flop" (figura 28B), además de no observarse diferencias significativas en dichos valores en la comparación de las condiciones WTy KO. Por otro lado, en lo que respecta al exón "flip", éste presentaba zonas con niveles de metilación más bajos en los extremos del exón, y se observó un cambio especialmente notable en los valores de dicha modificación epigenética en la tercera posición interrogada (CpG3) en células libremente diferenciadas, con un mayor estado de metilación en dicha región en condiciones KO (figura 28A).

Figura 28. Análisis de metilación en exones "flip" (A) y "flop" (B) del gen *GRIA3* en el modelo celular neural humano. Los valores de metilación para cada posición CpG se muestran en %.

2.2.2. Identificación y análisis de *circRNAs* con expresión alterada en el modelo celular neural *knockout* para MeCP2

Los resultados en el modelo humano *in vitro* también mostraron la desregulación de varios transcritos circulares en un contexto de ausencia de MeCP2, especialmente en un estado diferenciado (figura 29B). Además, se observó también el aumento en los niveles de un gran número de dichas especies tras 30 días de diferenciación en condiciones *WT* (figura 29C), demostrándose la potencial significancia funcional de varios *circRNAs* durante el neurodesarrollo. Sin embargo, la cantidad de transcritos circulares con una expresión incrementada durante la maduración de las líneas neurales con supresión de MeCP2 era menor (figura 29D) en comparación con las líneas *WT*, sugiriéndose alteraciones relevantes en el proceso de diferenciación en dichas células.

Figura 29. Caracterización de la población de *circRNAs* alterados en el modelo **celular neural humano.** *Volcano plots* indicando la expresión diferencial (izquierda= decreciente, derecha=creciente) entre líneas *WT* y *KO* en el mismo estado de desarrollo (A,B) y entre líneas en distinto estado de diferenciación y en las mismas condiciones genéticas (C,D). Las líneas verdes verticales corresponden a un cambio de 1,5 arriba y abajo, respectivamente, y la línea verde horizontal representa un p-valor de 0,05 (*t-test* no pareado bilateral).

Dadas las distribuciones de los genes huésped observadas en los volcano plots que se muestran en la figura 29, decidimos llevar a cabo el análisis del reactoma y ontologías génicas poniendo especial atención hacia los genes lineales correspondientes a ARNs circulares con expresión alterada durante el proceso de diferenciación en células WT y KO. En lo que a ello respecta, los cambios más destacables se observaron en los genes huésped correspondientes a especies circulares con expresión negativa durante el proceso de diferenciación. Concretamente, en células WT se observó un enriquecimiento de genes con expresión disminuida relacionados en gran parte con procesos del ciclo celular. Dichos resultados cobran sentido teniendo en cuenta que las líneas neurales pierden su capacidad de división durante el proceso de diferenciación. Sin embargo, las líneas KO mostraban categorías asociadas a la respuesta celular a estrés, vías apoptóticas y muerte celular, comprobándose la función crítica de MeCP2 en el correcto desarrollo neural.

Reactoma WT

Reactoma KO

Α.

Puntuación de enriquecimiento (-log10(p-valor))

Puntuación de enriquecimiento (-log10(p-valor))

Figura 30. Análisis de reactoma de genes huésped correspondientes a *circRNAs* con regulación negativa durante el proceso de diferenciación de células *WT* (A) y *KO* (B) para MeCP2 en el modelo celular neural humano.

2.2.2.1.Selección de *circRNAs* candidatos

Tras llevar a cabo de nuevo el protocolo de selección de candidatos relevantes para su posterior validación por *RT-qPCR*, se decidió continuar con el análisis de los niveles de expresión de las formas circulares y lineales de los genes *EZH2*, *PSEN1*, *TCF4*, *UBE3A*, *KDMA1* y *CNIH3* (tabla 8).

Gen huésped (cadena)	Nombre completo en inglés	Papel biológico	circRNA
EZH2 (+)	Enhancer Of Zeste 2 Polycomb Repressive Complex 2 Subunit	Implicación en el mantenimiento del estado represivo transcripcional. Papel en sistema hematopoyético y sistema nervioso central ²⁵⁹ .	hsa_circRNA_104517
PSEN1 (+)	Presenilin 1	Actividad peptidasa. Pacientes con forma hereditaria de la enfermedad de Alzheimer son portadores de mutaciones en presenilinas 1 y 2 ²⁶⁰ .	hsa_circRNA_101396
TCF4 (-)	Transcription Factor 4	Factor de transcripción involucrado en el inicio de la diferenciación neuronal ²⁶¹ .	hsa_circRNA_047733
UBE3A (-)	Ubiquitin Protein Ligase E3A	Actividad coactivadora de la transcripción y actividad ligasa. La deleción de la copia materna de este gen causa síndrome de Angelman, caracterizado por disfunciones motoras e intelectuales severas ²⁶² .	hsa_circRNA_005147
KDM1A (+)	Lysine Demethylase 1A	Función en el silenciamiento génico a través de actividad demetilasa de histonas. Asociado con neurodegeneración hipocampal y cortical ²⁶³ .	hsa_circRNA_100098

CNIH3 (+)	Cornichon Family AMPA Receptor Auxiliary Protein 3	Regulación del tráfico y propiedades de apertura de receptores de glutamato de tipo AMPA.	hsa_circRNA_016598
-----------	--	--	--------------------

Tabla 8. Lista de *circRNAs* y genes huésped candidatos con niveles de expresión alterados en células neurales progenitoras y libremente diferenciadas durante 30 días *KO* para MeCP2.

2.2.2.1.1. Análisis mediante *RT-qPCR* de la expresión de *circRNAs* candidatos en el modelo celular neural humano *knockout* para MeCP2

Los análisis de expresión de los candidatos seleccionados revelaron alteraciones estadísticamente significativas tanto en los niveles de las variantes circulares (figura 31A) como en sus formas lineales (figura 31B) en varias situaciones. Por un lado, se observaron cambios sustanciales al compararse líneas celulares *KO* para MeCP2 con líneas *WT*, especialmente en condiciones progenitoras. Entre ellos destacan los transcritos circular y lineal de los genes *EZH*2 y *CNIH*3, así como *circPSEN1* y *circKDM1A*. Por otro lado, se mostraron también niveles de expresión alterados de todos los candidatos analizados debido al proceso de diferenciación neural.

Cabe destacar que, de manera general, los transcritos circulares interrogados y sus genes huésped correspondientes presentan cambios de expresión en la misma dirección, siendo solo el gen *KDM1A* el que muestra una tendencia inversa entre ambas especies, sugiriéndose un posible caso de expresión antagónica.

Figura 31. Niveles de expresión relativos de *circRNAs* candidatos (A) y genes *huésped* correspondientes (B) en progenitores neurales y células neurales en diferenciación libre *WT* y *KO* para MeCP2. Los gráficos representan la mediana de 3 réplicas y el rango intercuartílico (*IC* 95%) por condición (*p<0,005, **<0,01, test de Mann-Whitney bilateral). Se empleó *RPL13* como control endógeno.

2.2.2.1.2. Caracterización de los niveles de expresión de SIRT2 en el modelo celular neural humano *knockout* para MeCP2

Dada la desregulación observada en muestras de córtex frontal de ratones RTT tanto en los niveles de transcrito de la forma lineal y circular como en la expresión proteica de Sirt2, se decidió llevar a cabo el mismo análisis en la línea neural humana *in vitro* generada. Para ello. se buscaron en primer lugar aquellos transcritos circulares descritos para SIRT2 en el genoma humano mediante el uso de la herramienta online circbase (http://www.circbase.org/). Tras el diseño de cebadores específicos para cada una de las formas descritas (siete variantes en total), se pudieron detectar y analizar finalmente los niveles de expresión de tres transcritos circulares: hsa circ 0050945, hsa circ 0050946 y hsa circ 0050948 (figura 32A). Los estudios por RT-gPCR mostraron alteraciones significativas tanto en la expresión de la forma lineal como de todos los *circRNAs* interrogados cuando se compararon líneas WT con el modelo KO para MeCP2, especialmente en su estado progenitor (figura 32B). Además, se apreciaron tendencias de cambio opuestas en los niveles de los transcritos circulares hsa_circ_0050945 y hsa_circ_0050946 en comparación con el gen huésped durante el proceso de diferenciación de las células KO, lo que sugería una regulación antagónica de la expresión. Por lo que respecta a los niveles proteicos de SIRT2, se observó un aumento notable de éstos en líneas neurales progenitoras y especialmente en células con 30 días de diferenciación libre en un contexto de deficiencia de MeCP2 (figura 32C). Dichos resultados contrarrestaban con unos valores de expresión muy similares en células diferenciadas WT y KO del ARN mensajero, advirtiéndose, del mismo modo que en el modelo animal, una posible regulación en la traducción de la proteína. En lo que a ello respecta, es importante destacar también el descenso significativo de

la acetilación de α-Tubulina en dicho modelo celular, correlacionándose muy bien con el incremento de los valores proteicos de SIRT2.

В.

Figura 32. Caracterización de los transcritos circulares y lineal del gen *Sirt*2 en progenitores neurales y células neurales en diferenciación libre *WT* y *KO* para MeCP2. A. Organización exónica/intrónica de los transcritos líneal (negro) y circulares (azul) en el locus de *Sirt*2. Las coordenadas son referentes al navegador genómico *UCSC* (GRCh37/hg19). B. Los niveles de expresión de los transcritos circulares y lineal de *Sirt*2 fueron analizados mediante *RT-qPCR* en pogenitores neurales y células en libre diferenciación durante 30 días *WT* y *KO* para MeCP2. Los gráficos representan la mediana de 6-8 réplicas y el rango intercuartílico (*IC* 95%) *or* condición (*p<0,005, **<0,01, test de Mann-Whitney bilateral). Se empleó *RPL13* como control endógeno. C. Análisis por *western blot* de proteínas MeCP2, SIRT2, α-TUBULINA ACETILADA, α-TUBULINA y β-ACTINA como control endógeno de carga en progenitores neurales (izquierda) y células en diferenciación libre (derecha) *WT* y *KO* para MeCP2.

2.2.2.1.3. Estudio de localización celular de *circRNAs* en células neurales

En los estudios de expresión previos llevados a cabo en este proyecto, se observó una correlación negativa en los niveles de algunos transcritos lineales y *circRNAs* interrogados al compararse líneas neurales en estado de diferenciación con células progenitoras. Genes como *PSEN1* o *SIRT2* son ejemplos de dicha advertencia, añadiéndose además en este último caso cambios relevantes a nivel traduccional o de estabilidad proteica en condiciones *KO* para MeCP2. Tras

exponerse estos datos, se quiso explorar la posibilidad de que algunas de estas especies circulares pudieran ejercer un papel regulador posttranscripcional sobre su gen huésped, razón por la cual se creyó necesario determinar su localización celular específica.

Publicaciones recientes demuestran el enriquecimiento de varios ARNs circulares en sinaptoneurosomas en comparación con el resto del cerebro²⁵⁷, lo que sugiere un papel específico de estas moléculas en los procesos sinápticos. Sin embargo, todavía se carece de información en lo que se refiere al papel de los ARNs no codificantes en distintos circuitos cerebrales, subtipos neuronales, su localización en compartimentos subcelulares y su presencia en la glía. Por ello, es esencial determinar la importancia funcional que representa la ubicación de los transcritos circulares en las neuronas y, más importante, en las enfermedades neurológicas. Con el objetivo de delimitar la localización neuronal de hsa_circ_0050946, uno de los ARNs circulares de mayor interés resultantes del gen SIRT2 debido a su perfil de expresión más inverso en relación al transcrito lineal, se llevó a cabo en primer lugar un proceso de hibridación fluorescente in situ para la visualización específica de dicho transcrito (figura 33A) en células WT y KO con 14 días de libre diferenciación. Adicionalmente, tras el fraccionamiento subcelular realizado en estas mismas células. se comprobó de nuevo la disposición diferencial de dicha variante entre núcleo v citoplasma (figura 33B).

Ambos estudios mostraron una distribución principalmente citoplásmica del transcrito *hsa_circ_0050946* en ambas condiciones *WT* y *KO*, observándose además en las imágenes resultantes de la hibridación *in situ* una localización específica en el soma neuronal. Esto sería compatible con un papel de dicho *circRNA* en la regulación traduccional de la proteína SIRT2, y estudios en marcha en el laboratorio abordarán esta posibilidad.

Α.

Figura 33. Localización celular de *hsa_circ_0050946* (*circSIRT2*) en células neurales. A. Imágenes de hibridación *in situ* fluorescente mostrando la distribución del ARN circular *hsa_circ_0050946* (*circSIRT2*) en células neurales con 14 días de maduración en condiciones *WT* (arriba) y *KO* (abajo) para MeCP2 (40X) y el encuadre (*inset*) de señalización específica a la derecha de cada condición. Las señales emitidas por las sondas del transcrito circular se muestran en color rojo, con las marcaciones del núcleo con *DAPI* en azul y la estructura neuronal con *TUJ 1* (*Neuron-specific class III beta-tubulin*) en verde. **B.** Fraccionamiento núcleo/citoplasma de células neurales con 14 días de diferenciación en condiciones *WT* y *KO* para MeCP2. Análisis por *RT-qPCR* de la expresión de *hsa_circ_0050946* (*circSIRT2*) en cada compartimento celular (izquierda) y comprobación por *western blot* de la pureza del fraccionamiento (derecha). N=Núcleo. C=Citoplasma.

3. Muestras de pacientes post-mortem

3.1. Estudio proteómico de muestras *post-mortem* de hipocampo de pacientes RTT

Con tal de ampliar y validar la información obtenida en los modelos animal y celular, se realizó también un estudio proteómico en muestras de cerebros de pacientes con síndrome de Rett. Para ello, se llevó a cabo un estudio comparativo entre cuatro muestras adquiridas *postmortem* de hipocampos de pacientes RTT y cuatro muestras del mismo tejido procedentes de sujetos no afectados, tratando de delimitar un rango de edad lo más similar posible entre pacientes y controles.

Los resultados mostraron un número de proteínas cuya expresión se veía significativamente reducida en hipocampos de pacientes RTT en comparación a hipocampos sanos (figura 34A), así como también una lista de péptidos sobrerrepresentados en hipocampos afectados por la enfermedad (figura 34B). Cabe destacar que el análisis de ontologías génicas en lo que se refiere al compartimento celular mostró el enriquecimiento de proteínas con regulación decreciente en muestras RTT en regiones específicamente neuronales como áreas sinápticas y, en particular, componentes relacionados con receptores de tipo AMPA. Por otro lado, se observó una importante representación de proteínas con expresión significativamente incrementada en regiones relacionadas con el citoesqueleto, sugiriéndose un desarrollo morfológico neural aberrante en los casos RTT. De manera representativa, se decidió llevar a cabo la validación mediante western blot de la expresión proteica de ciertos candidatos relacionados con la estabilidad de los microtúbulos como MAPT (Microtubule Associated Protein Tau), MAP6 (Microtubule Associated Protein 6) y STMN1 (Stathmin 1), todos ellos con niveles incrementados en hipocampos de
pacientes RTT. En relación a la validación por *western blot* de la proteína S100B, cuya disminución fue la más destacable en el estudio proteómico, lamentablemente no se consiguió poner a punto el anticuerpo con muestras humanas. No obstante, se pudo llevar a cabo dicha comprobación en muestras de hipocampo de ratones sintomaticos, confirmándose, tal y como se mostraba en el análisis del proteoma en hipocampos humanos *post-mortem*, la reducción significativa de los niveles de dicha proteína en condiciones de ausencia de MeCP2 (figura 35).

۸				
Nombre de la proteína en inglés	Nombre del gen	Acceso Uniprot	log2(Rett/Ctrl)	p-val ajustado
Protein S100-B	S100B	P04271	-2,70775763	0,01922416
ADP-ribosylation factor-like protein 15	ARL15	Q9NXU5	-1,27314675	0,01922416
Leucine-rich repeat-containing protein 7	LRRC7	Q96NW7	-1,210758	0,02973914
Engulfment and cell motility protein 2	ELMO2	Q96JJ3	-1,20179324	0,01922416
Dolichyl-diphosphooligosaccharideprotein glycosyltransferase		504044		
subunit 2	RPN2	P04844	-1,2001666	0,01922416
Giutamate receptor 3	GRIA3	P42263	-1,15042678	0,01922416
Tubulin beta-3 chain	TUBB3	Q13509	-1,04225768	0,01922416
Disintegrin and metalloproteinase domain-containing protein 11	ADAM11	075078	-1,04038073	0,04232514
Catecnol O-metnyltransferase	COMT	P21964	-0,98648784	0,02760286
Gamma-aminobutyric acid receptor subunit gamma-2	GABRG2	P18507	-0,96989588	0,02503716
Dual specificity mitogen-activated protein kinase kinase 4	MAP2K4	P45985	-0,93027271	0,01967203
Alphocalcin-like protein 4	PDC4L4	Q90M19	-0,0000576	0,04802789
403 hbosomai proteinisa prataia 4P	RFS13	P02277	-0,04004209	0,04923533
Leucine-nch repeat-containing protein 4B	ABBC2	Q9N199	-0,82281357	0,04232514
Redex, regulatory protein EAM212A	EAM212A	015145	0.76609715	0,01967203
Colled coll domain containing protein 122 (Sundatin)	VDCEO	QIBRAD	-0,70098715	0,04232314
Coronin 28	00000	090000	-0,66120045	0,04867456
Execut complex component 2	EVOC2	Q90Q03	0,67902001	0,03770345
Serine/threonine-protein phosphatase 24 65 kDa regulatory subunit A	EXOCZ	Q30KF1	-0,00007433	0,02700200
alpha isoform	PPP2R1A	P30153	-0,64841821	0,02653616
Serine/threonine-protein kinase DCLK2	DCLK2	Q8N568	-0.64483401	0.04326695
Mitochondrial 2-oxoglutarate/malate carrier protein	SLC25A11	Q02978	-0,63013339	0.04232514
Disks large-associated protein 3	DLGAP3	O95886	-0,61958448	0,04923533
Type I inositol 3,4-bisphosphate 4-phosphatase	INPP4A	Q96PE3	-0,60846155	0,04867456
Leucine-rich repeat-containing protein 59	LRRC59	Q96AG4	-0,55593273	0,04232514
60S acidic ribosomal protein P2	RPLP2	P05387	-0,50746057	0,04802789
B. Nombre de la proteína en inglés	Nombre del gen	Acceso	log2(Rett/Ctrl)	p-val aiustado
B. Nombre de la proteína en inglés	Nombre del gen	Acceso Uniprot	log2(Rett/Ctrl)	p-val ajustado
B. Nombre de la proteína en inglés Proteasome subunit beta type-7	Nombre del gen PSMB7	Acceso Uniprot Q99436 P35611	0,5742325	p-val ajustado 0,03222336 0.04232514
B. Nombre de la proteína en inglés Proteasome subunit beta type-7 Alpha-adducín Heterorgenegue suclear strongeloporteins 42/81	Nombre del gen PSMB7 ADD1 HNRNPA2B1	Acceso Uniprot Q99436 P35611 P22626	log2(Rett/Ctrl) 0,5742325 0,63589194 0,67967187	p-val ajustado 0,03222336 0,04232514 0,02760286
B. Nombre de la proteína en inglés Proteasome subunit beta type-7 Alpha-adducín Heterogeneous nuclear ribonucleoproteíns A2/B1 Nehulate	Nombre del gen PSMB7 ADD1 HNRNPA2B1 NFBI	Acceso Uniprot Q99436 P35611 P22626 Q76041	log2(Rett/Ctrl) 0,5742325 0,63589194 0,67967187 0,71944281	p-val ajustado 0,03222336 0,04232514 0,02760286 0,02760286
B. Nombre de la proteína en inglés Proteasome subunit beta type-7 Alpha-adducin Heterogeneous nuclear ribonucleoproteins A2/B1 Nebulette Dna. I homoiora subfamilu B member 2	Nombre del gen PSMB7 ADD1 HNRNPA2B1 NEBL DNAJB2	Acceso Uniprot Q99436 P35611 P22626 O76041 P25686	log2(Rett/Ctrl) 0,5742325 0,63589194 0,67967187 0,71944281 0,72186931	p-val ajustado 0,03222336 0,04232514 0,02760286 0,02760286 0,02653616
B. Nombre de la proteína en inglés Proteasome subunit beta type-7 Alpha-adducin Heterogeneous nuclear ríbonucleoproteins A2/B1 Nebulette DnaJ homolog subfamily B member 2 28 kba heat- and acid-stable phosphorontein	Nombre del gen PSMB7 ADD1 HNRNPA2B1 NEBL DNAJB2 PDAP1	Acceso Uniprot Q99436 P35611 P22626 O76041 P25686 O13442	log2(Rett/Ctrl) 0,5742325 0,63589194 0,67967187 0,71944281 0,72186931 0,75558493	p-val ajustado 0,03222336 0,04232514 0,02760286 0,02653616 0,04232514
B. Nombre de la proteína en inglés Proteasome subunit beta type-7 Alpha-adducín Heterogeneous nuclear ribonucleoproteíns A2/B1 Nebulotte DnaJ homolog subfamily B member 2 28 KDa heat- and acid-stable phosphoproteín Nuclear migration proteín nutCo	Nombre del gen PSMB7 ADD1 HNRNPA2B1 NEBL DNAJB2 PDAP1 NUDC	Acceso Uniprot Q99436 P35611 P22626 O76041 P25686 Q13442 Q9Y266	log2(Rett/Ctrl) 0,5742325 0,63589194 0,67967187 0,71944281 0,72186931 0,8538493 0,83133366	p-val ajustado 0,03222336 0,04232514 0,02760286 0,02653616 0,04232514 0,01967203
B. Nombre de la proteína en inglés Proteasome subunit beta type-7 Alpha-adducin Heterogeneous nuclear ribonucleoproteins A2/B1 Nebulette DnaJ homolog subfamily B member 2 28 kDa heat- and acid-stable phosphoprotein Nuclear migration proteín nudC Crysteine-rich proteín 2	Nombre del gen PSMB7 ADD1 HNRNPA2B1 NEBL DNAJB2 PDAP1 NUDC CRIP2	Acceso Uniprot Q99436 P35611 P22626 O76041 P25686 Q13442 Q9Y266 P52943	log2(Rett/Ctrl) 0.5742325 0.63589194 0.67967187 0.71944281 0.72186931 0.75558493 0.83133366 0.83303251	p-val ajustado 0,03222336 0,04232514 0,02760286 0,02653616 0,04232514 0,01967203 0,02653616
B. Nombre de la proteína en inglés Proteasome subunit beta type-7 Alpha-adducín Heterogeneous nuclear ribonucleoproteíns A2/B1 Nebulette DnaJ homolog subfamily B member 2 28 kDa heat- and acid-stable phosphoproteín Nuclear migration proteín nudC Cysteline-rich proteín 2 Secretoaranin-1/PE-11/GAWK peetide: CCB peptide	Nombre del gen PSMB7 ADD1 HNRNPA2B1 NEBL DNAJB2 PDAP1 NUDC CRIP2 CHGB	Acceso Uniprot Q99436 P35611 P25626 Q13442 Q9Y266 P52943 P05060	log2(Rett/Ctrl) 0,5742325 0,63589194 0,67967187 0,71944281 0,72558493 0,83133366 0,83303251 0,84375762	p-val ajustado 0,03222336 0,04232514 0,02760286 0,02760286 0,02653616 0,04867456
B. Nombre de la proteína en inglés Proteasome subunit beta type-7 Alpha-adducin Heterogeneous nuclear ribonucleoproteins A2/B1 Nobulette DnaJ homolog subfamily B member 2 28 kDa heat- and acid-stable phosphoprotein Nuclear migration protein nudC Cysteine-rich protein 2 Secretogranin-1;PE-11,GAWK peptide;CCB peptide Tropomyosin alpha-1 chain	Nombre del gen PSMB7 ADD1 HNRNPA2B1 NEBL DNAJB2 PDAP1 NUDC CRIP2 CHGB TPM1	Acceso Uniprot 935611 P25656 076041 P25686 Q13442 Q9Y266 P52943 P05060 P09493	log2(Rett/Ctrl) 0,5742325 0,63589194 0,67967187 0,71944281 0,72186931 0,75558493 0,83133366 0,83303251 0,84375762 0,91620672	p-val ajustado 0,0322336 0,04232514 0,02760286 0,02760286 0,02653616 0,04232514 0,01967203 0,02653616 0,04867456 0,04326695
 B. Nombre de la proteína en inglés Proteasome subunit beta type-7 Alpha-adducin Heterogeneous nuclear ribonucleoproteins A2/B1 Nebulote DnaJ homolog subfamily B member 2 28 KDa heat- and acid-stable phosphoprotein Nuclear migration protein nudC Cysteine-rich protein 2 Secretogranin-1;PE-11;GAWK peptide;CCB peptide Tropomyosin alpha-1 chain Transcription elongation factor A protein-like 5 	Nombre del gen PSMB7 ADD1 HINRNPA2B1 NEBL DNAJB2 PDAP1 NUDC CRIP2 CHGB TPM1 TCEAL5	Acceso Uniprot Q99436 P35611 P22626 O76041 P25686 Q13442 Q9Y266 P52943 P05060 P09493 Q5H9L2	log2(Rett/Ctrl) 0,5742325 0,63589194 0,67967187 0,71944281 0,72186931 0,75558493 0,83133366 0,83303251 0,84375762 0,91620672 0,92273116	p-val ajustado 0,03222336 0,04232514 0,02760286 0,02653616 0,04232514 0,01967203 0,04263616 0,04867456 0,04867456 0,04807789
 B. Nombre de la proteína en inglés Proteasome subunit beta type-7 Alpha-adducin Heterogeneous nuclear ribonucleoproteins A2/B1 Nebulette DnaJ homolog subfamily B member 2 28 kDa heat- and acid-stable phosphoprotein Nuclear migration protein nudC Cysteline-rich protein 2 Secretogranin-1/FE-11;GAWK peptide: CCB peptide Tropomyosin alpha-1 chain Transcription elongation factor A protein-like 5 Calponin-3 	Nombre del gen PSMB7 ADD1 HINRIPA2B1 NEBL DNAJB2 PDAP1 NUDC CRIP2 CHGB TPM1 TCEAL5 CNN3	Acceso Uniprot Q99436 P35611 P25626 Q76041 P25686 Q13442 Q97266 P52943 P05060 P05493 Q5H9L2 Q15417	log2(Rett/Ctrl) 0,5742325 0,63589194 0,67967187 0,71944281 0,75558493 0,83133366 0,83303251 0,84375762 0,91620672 0,92273116 0,97524395	p-val ajustado 0,03222336 0,04232514 0,02760286 0,02653616 0,042653616 0,01967203 0,02653616 0,04867456 0,04867456 0,04802789 0,04802789 0,01922416
B. Nombre de la proteina en inglés Proteasome subunit beta type-7 Alpha-adducin Heterogeneous nuclear ribonucleoproteins A2/B1 Nebulette DnaJ homolog subfamily B member 2 28 kDa heat- and acid-stable phosphoprotein Nuclear migration protein nudC Cysteline-rich protein 2 Secretogranin-1;PE-11;GAWK peptide;CCB peptide Tropomyosin alpha-1 chain Transcription elongation factor A protein-like 5 Calponin-3 Tubulin-specific chaperone A	Nombre del gen PSMB7 ADD1 HNRNPA2B1 NEBL DNAJB2 PDAP1 NUDC CRIP2 CHGB TPM1 TCEAL5 CNN3 TBCA	Acceso Uniprot Q99436 P35611 P22626 O76041 P25686 Q13442 Q9Y266 P52943 P05060 P09493 Q5H9L2 Q15417 O75347	log2(Rett/Ctrl) 0,5742325 0,63589194 0,67967187 0,71944281 0,75558493 0,83133366 0,83303251 0,84375762 0,91620672 0,92273116 0,97524395 0,99221943	p-val ajustado 0,03222336 0,04232514 0,02760286 0,02653616 0,04232514 0,04853616 0,04867456 0,04802789 0,04802789 0,01922416
 B. Nombre de la proteína en inglés Proteasome subunit beta type-7 Alpha-adducin Heterogeneous nuclear ribonucleoproteíns A2/B1 Nebuletle DnaJ homolog subfamily B member 2 28 KDa heat- and acid-stable phosphoproteín Nuclear migration protein nudC Cysteine-rich protein 2 Secretogranin-1;PE-11;GAWK peptide;CCB peptide Tropomyosin alpha-1 chain Transcription elongation factor A protein-like 5 Calponin-3 Tubulin-specific chaperone A Microtubule-associated protein tau 	Nombre del gen PSMB7 ADD1 HINRNPA2B1 NEBL DNAJB2 PDAP1 NUDC CRIP2 CHGB TPM1 TCEAL5 CNN3 TBCA MAPT	Acceso Uniprot Q99436 P35611 P25686 Q16041 P25686 Q13442 Q9Y266 P52943 P05060 P09493 Q5H9L2 Q15417 P10636	log2(Rett/Ctrl) 0,5742325 0,63589194 0,67967187 0,71944281 0,72186931 0,75558493 0,8313366 0,83303251 0,84375762 0,91620672 0,92273116 0,97524395 0,99251943 1,01418616	p-val ajustado 0,03222336 0,04232514 0,02760286 0,02760286 0,0453616 0,04867456 0,04867456 0,04867456 0,04867458 0,04282514 0,04222514
 B. Nombre de la proteína en inglés Proteasome subunit beta type-7 Alpha-adducin Heterogeneous nuclear riboucleoproteíns A2/B1 Nebulette Dna J homolog subfamily B member 2 28 kDa heat- and acid-stable phosphoproteín Nuclear migration proteín nudC Cysteline-rich proteín 2 Secretogranin-1/FE-11:GAWK peptide;-CCB peptide Tropomyosin alpha-1 chain Transcription elongation factor A protein-like 5 Calponin-3 Tubulin-specific chaperone A Microtubule-associated priote in tau Phosphoglucomutase-2 	Nombre del gen PSMB7 ADD1 HINRIPA2B1 NEBL DNAJB2 PDAP1 NUDC CRIP2 CHGB TPM1 TCEAL5 CNN3 TBCA MAPT PGM2	Acceso Uniprot Q99436 P35611 P22626 O76041 P25686 P52943 P05060 P09493 Q5H9L2 Q15417 O75347 P10636 Q96G03	log2(Rett/Ctrl) 0,5742325 0,63589194 0,67967187 0,71944281 0,75558493 0,83133366 0,83303251 0,84375762 0,91620672 0,92273116 0,97524395 0,99251943 1,01418616 1,04037252	p-val ajustado 0,03222336 0,04232514 0,02760286 0,026026 0,04635616 0,04632514 0,04637456 0,04867456 0,0482789 0,04802789 0,04802789 0,04922416 0,04232514 0,02776272
 B. Nombre de la proteína en inglés Proteasome subunit beta type-7 Alpha-adducin Heterogeneous nuclear ribonucleoproteins A2/B1 Nebulatte Dna J homolog subfamily B member 2 28 kDa heat- and acid-stable phosphoprotein Nuclear migration protein nudC Cysteline-rich protein 2 Secretogranin-1;PE-11;GAWK peptide;CCB peptide Transcription elongation factor A protein-like 5 Calponin-3 Tubulin-specific chaperone A Microtubule-associated protein tau Phosphoglucomutase-2 Alpha-synuclein 	Nombre del gen PSMB7 ADD1 HNRNPA2B1 NEBL DNAJB2 PDAP1 NUDC CRIP2 CHGB TPM1 TCEAL5 CNN3 TBCA MAPT PGM2 SNCA	Acceso Uniprot Q99436 P35611 P22626 O76041 P25686 Q13442 Q97266 P52943 P05060 P09493 Q519L2 Q15417 O75347 P10636 Q96G03 P37840	log2(Rett/Ctrl) 0,5742325 0,63589194 0,67967187 0,71944281 0,72186931 0,75558493 0,83303251 0,84375762 0,91620672 0,92273116 0,97524395 0,92251943 1,01418616 1,04037252 1,15634215	p-val ajustado 0,03222336 0,04232514 0,02760286 0,02653616 0,04922514 0,01967203 0,02653616 0,04867456 0,04802789 0,04802789 0,04322514 0,04232514 0,04232514
 B. Nombre de la proteína en inglés Proteasome subunit beta type-7 Aipha-adducin Heterogeneous nuclear ribonucleoproteins A2/B1 Nobulete DnaJ homolog subfamily B member 2 28 kDa heat- and acid-stable phosphoprotein Nuclear migration protein nudC Cysteine-rich protein 2 Secretogranin-1;PE-11,GAWK peptide;CCB peptide Tropomyosin alpha-1 chain Transcription elongation factor A protein-like 5 Calponin-3 Tubulin-specific chaperone A Microtubule-associated protein tau Phosphoglucomutase-2 Alpha-synuclein Microtubule-associated protein 6 	Nombre del gen PSMB7 ADD1 HNRNPA2B1 NEBL DNAJB2 PDAP1 NUDC CRIP2 CHGB TPM1 TCEAL5 CNN3 TBCA MAPT PGM2 SNCA MAP6	Acceso Uniprot Q99436 P35611 P25626 O76041 P25686 Q13442 Q9Y266 P52943 P05060 P09493 Q5H9L2 Q15417 O75347 P10636 Q96G03 P37840 Q96LE9	log2(Rett/Ctrl) 0,5742325 0,63589194 0,67967187 0,71944281 0,75558493 0,75558493 0,83303251 0,84375762 0,91620672 0,912620672 0,92273116 0,97524395 0,99251943 1,01418616 1,04037252 1,15634215 1,1751326	p-val ajustado 0,03222336 0,04232514 0,02760286 0,02760286 0,01967203 0,01967203 0,04867456 0,04487456 0,04487456 0,04802789 0,01922416 0,02776272 0,01922416
 B. Nombre de la proteina en inglés Proteasome subunit beta type-7 Alpha-adducin Heterogeneous nuclear ribonucleoproteins A2/B1 Nebulette Dna J homolog subfamily B member 2 28 kDa heat- and acid-stable phosphoprotein Nuclear migration protein nudC Cysteine-rich protein 2 Secretogranin-1/FE-11;GAWK peptide;CCB peptide Tropomyosin alpha-1 chain Transcription elongation factor A protein-like 5 Calponin-3 Tubulin-specific chaperone A Microtubule-associated protein fau Phosphoglucomutase-2 Alpha-synuclein Microtubule-associated protein 6 Four and a half LIM domains protein 1 	Nombre del gen PSMB7 ADD1 HINRIPA2B1 NEBL DNAJB2 PDAP1 NUDC CRIP2 CHGB TPM1 TCEAL5 CNN3 TBCA MAPT PGM2 SNCA MAP6 FHL1	Acceso Uniprot Q99436 P35611 P22626 O76041 P25686 P52943 P05060 P09493 Q519L2 Q15417 O75347 P10636 Q96G03 P37840 Q96JE9 Q13642	log2(Rett/Ctrl) 0,5742325 0,63589194 0,67967187 0,71944281 0,72186931 0,75558493 0,83133366 0,83303251 0,84375762 0,91620672 0,92273116 0,97524395 0,99251943 1,01418616 1,04037252 1,15634215 1,1751326 1,33250407	p-val ajustado 0,03222336 0,04232514 0,02760286 0,02653616 0,0432514 0,04827456 0,04827456 0,04827456 0,0482785 0,04822514 0,01922416 0,02776272 0,01922416 0,0276272 0,01922416 0,04867456
 B. Nombre de la proteína en inglés Proteasome subunit beta type-7 Alpha-adducin Heterogeneous nuclear ribonucleoproteins A2/B1 Nebulette DnaJ homolog subfamily B member 2 28 kDa heat- and acid-stable phosphoprotein Nuclear migration protein nudC Cysteline-rich protein 2 Secretogranin-1/FE-11;GAWK peptide;CCB peptide Tropomyosin alpha-1 chain Transcription elongation factor A protein-like 5 Calponin-3 Tubulin-specific chaperone A Microtubule-associated protein fau Phosphoglucomutase-2 Alpha-synuclein Microtubule-associated protein 6 Four and a half LIM domains protein 1 LIM and SH3 domain protein 1 	Nombre del gen PSMB7 ADD1 HNRIPA2B1 NEBL DNAJB2 PDAP1 NUDC CRIP2 CHGB TFM1 TCEAL5 CNN3 TBCA MAPT PGM2 SNCA MAP6 FHL1 LASP1	Acceso Uniprot Q99436 P35611 P22626 O76041 P25686 Q13442 Q9Y266 P52943 P05060 P09493 Q519L2 Q15417 O75347 P10636 Q96603 P37840 Q96JE9 Q13642 Q14847	log2(Rett/Ctrl) 0,5742325 0,63589194 0,67967187 0,71944281 0,72186931 0,75558493 0,83133366 0,83303251 0,84375762 0,91620672 0,92273116 0,97524395 0,99251943 1,01418616 1,04037252 1,15634215 1,1751326 1,33250407 1,34995608	p-val ajustado 0,03222336 0,04232514 0,02760286 0,02653816 0,0432514 0,0487456 0,04867456 0,04802789 0,04326495 0,04322514 0,01922416 0,02776272 0,0267105 0,0267105 0,02607105 0,0262716
 B. Nombre de la proteina en inglés Proteasome subunit beta type-7 Alpha-adducin Heterogeneous nuclear ribonucleoproteins A2/B1 Nobulette DnaJ homolog subfamily B member 2 28 kDa heat- and acid-stable phosphoprotein Nuclear migration protein nudC Cysteline-rich protein 2 Secretogranin-1;PE-11;GAWK peptide;CCB peptide Tropomyosin alpha-1 chain Transcription elongation factor A protein-like 5 Calponin-3 Tubulin-specific chaperone A Microtubule-associated protein tau Phosphoglucomutase-2 Alpha-synuclein Microtubule-associated protein 1 LIM and SH3 domain protein 1 EF-hand domain-containing protein D2 	Nombre del gen PSMB7 ADD1 HNRNPA2B1 NEBL DNAJB2 PDAP1 NUDC CRIP2 CHGB TPM1 TCEAL5 CNN3 TBCA MAPT PGM2 SNCA MAP6 FHL1 LASP1 EFHD2	Acceso Uniprot Q99436 P35611 P25626 O76041 P25686 P52943 P05060 P09493 Q5H9L2 Q15417 P10636 Q96C03 P37840 Q96JE9 Q13642 Q	log2(Rett/Ctrl) 0,5742325 0,63589194 0,67967187 0,71944281 0,72186931 0,75558493 0,83133366 0,83303251 0,84375762 0,91620672 0,91620672 0,92273116 0,97524395 0,992273116 1,04037252 1,15634215 1,1751326 1,33250407 1,34995608 1,36721622	p-val ajustado 0,0322236 0,04232514 0,02760286 0,02653616 0,0487456 0,0487456 0,04827456 0,0432514 0,0432514 0,04232514 0,04232514 0,04232514
 B. Nombre de la proteina en inglés Proteasome subunit beta type-7 Alpha-adducin Heterogeneous nuclear ribonicleoproteins A2/B1 Nebulette Dna J homolog subfamily B member 2 28 kDa heat- and acid-stable phosphoprotein Nuclear migration protein nudC Cysteine-rich protein 2 Secretogranin-1/F2E-11;GAWK peptide;CCB peptide Tropomyosin alpha-1 chain Transcription elongation factor A protein-like 5 Calponin-3 Tubulin-specific chaperone A Microtubule-associated protein fau Phosphoglucomutase-2 Alpha-synuclein Microtubule-associated protein 1 LIM and SH3 domain protein 1 EF-hand domain-containing protein 12 Myristoylated dianine-rich C-kinase substrate 	Nombre del gen PSMB7 ADD1 HINRIPA2B1 NEBL DNAJB2 PDAP1 NUDC CRIP2 CHGB TPM1 TCEAL5 CNN3 TBCA MAPT PGM2 SNCA MAP6 FHL1 LASP1 EFHD2 MARCKS	Acceso Uniprot Q99436 P35611 P22626 O76041 P25686 P52943 P05060 P09493 Q519L2 Q15417 O75347 P10636 Q96G03 P37840 Q96JE9 Q13642 Q1642	log2(Rett/Ctrl) 0,5742325 0,63589194 0,67967187 0,71944281 0,72186931 0,75558493 0,83133366 0,83303251 0,84375762 0,91620672 0,92273116 0,97524395 0,99251943 1,01418616 1,04037252 1,15634215 1,1751326 1,33250407 1,34995608 1,36721622 1,34995608	p-val ajustado 0,03222336 0,04232514 0,02760286 0,02653616 0,0432514 0,04827456 0,04827456 0,04802789 0,01922416 0,0276272 0,01922416 0,0276272 0,01922416 0,04867456 0,02607105 0,01922416 0,04232514
B. Nombre de la proteina en inglés Proteasome subunit beta type-7 Alpha-adducin Heterogeneous nuclear ribonucleoproteins A2/B1 Nebulette DnaJ homolog subfamily B member 2 28 kDa heat- and acid-stable phosphoprotein Nuclear migration protein nudC Cysteline-rich protein 2 Secretogranin-1/FE-11;GAWK peptide;CCB peptide Tropomyosin alpha-1 chain Transcription elongation factor A protein-like 5 Calponin-3 Tubulin-specific chaperone A Microtubule-associated protein fau Phosphoglucomutase-2 Alpha-synuclein Microtubule-associated protein 1 LIM and SH3 domain protein 1 EF-hand domain-containing protein 1 EF-hand domain-containing protein 1 Frothymosin alpha, - terminally	Nombre del gen PSMB7 ADD1 HNRIPA2B1 NEBL DNAJB2 PDAP1 NUDC CRIP2 CHGB TFM1 TCEAL5 CNN3 TBCA MAPT PGM2 SNCA MAP6 FHL1 LASP1 EFHD2 MARCKS	Acceso Uniprot Q99436 P35611 P22626 O76041 P25686 Q13442 Q97266 P52943 P05060 P09493 Q519L2 Q15417 O75347 P10636 Q96603 P37840 Q966159 Q13642 Q14847 Q96619 P29966	log2(Rett/Ctrl) 0,5742325 0,63589194 0,67967187 0,71944281 0,72186931 0,75558493 0,83303251 0,84375762 0,91620672 0,92273116 0,97524395 0,99251943 1,01418616 1,04037252 1,15634215 1,1751326 1,33250407 1,34995608 1,36721622 1,38120799	p-val ajustado 0,03222336 0,04232514 0,02760286 0,02653816 0,04232514 0,01967203 0,02653816 0,04867456 0,04802789 0,04802789 0,04232514 0,01922416 0,02776272 0,0267705 0,02607105 0,02607105 0,02607105
 B. Nombre de la proteina en inglés Proteasome subunit beta type-7 Alpha-adducin Heterogeneous nuclear ribonucleoproteins A2/B1 Nebulette Dna homolog subfamily B member 2 28 kDa heat- and acid-stable phosphoprotein Nuclear migration protein nudC Cysteline-rich protein 2 Secretogranin-1;PE-11;GAWK peptide;CCB peptide Tropomyosin alpha-1 chain Transcription elongation factor A protein-like 5 Calponin-3 Tubulin-specific chaperone A Microtubule-associated protein tau Phosphoglucomutase-2 Alpha-synucielin Microtubule-associated protein 1 LIM and SH3 domain protein 1 EF-hand domain-containing protein 12 Myristoylated alanine-rich C-kinase substrate Prothymosin alpha,Prothymosin alpha-1 	Nombre del gen PSMB7 ADD1 HNRNPA2B1 NEBL DNAJB2 PDAP1 NUDC CRIP2 CHGB TPM1 TCEAL5 CNN3 TBCA MAPT PGM2 SNCA MAP6 FHL1 LASP1 EFHD2 MARCKS PTMA	Acceso Uniprot Q99436 P35611 P22626 O76041 P25686 P52943 P05060 P09493 Q5H9L2 Q15417 O75347 P10636 Q96C03 P37840 Q96JE9 Q13642 Q14847 Q96C19 P29966 P09454	log2(Rett/Ctrl) 0,5742325 0,63589194 0,67967187 0,71944281 0,72186931 0,75558493 0,83303251 0,84375762 0,91620672 0,92273116 0,97524395 0,92273116 1,04037252 1,15634215 1,1751326 1,33250407 1,34995608 1,36721622 1,38120799 1,41268823 1,6720425	p-val ajustado 0,0322236 0,04232514 0,02760286 0,02653616 0,04232514 0,01967203 0,04867456 0,04802789 0,04322614 0,04232514 0,04232514 0,04232514 0,04232514 0,04232514 0,04232514 0,04232514 0,04232514 0,04232514 0,02973914
 B. Nombre de la proteina en inglés Proteasome subunit beta type-7 Alpha-adducin Heterogeneous nuclear ribonucleoproteins A2/B1 Nebulette Dna J homolog subfamily B member 2 28 KDa heat- and acid-stable phosphoprotein Nuclear migration protein nudC Cysteine-rich protein 2 Secretogranin-1;PE-11;GAWK peptide;CCB peptide Tropomyosin alpha-1 chain Transcription elongation factor A protein-like 5 Calponin-3 Tubulin-specific chaperone A Microtubule-associated protein 1 LIM and SH3 domain protein 1 EF-hand domain-containing protein 1 EF-hand domain-containing protein D2 Myristoylated alanine-rich C-kinase substrate Prothymosin alpha;Prothymosin alpha, N-terminally processed;Thymosin alpha, N-terminally perocessed;Thymosin alpha, N-terminally 	Nombre del gen PSMB7 ADD1 HINRIPA2B1 NEBL DNAJB2 PDAP1 NUDC CRIP2 CHGB TPM1 TCEAL5 CNN3 TBCA MAPT PGM2 SNCA MAP6 FHL1 LASP1 EFHD2 MARCKS PTMA DCD ACAD2	Acceso Uniprot 099436 P35611 P22626 O76041 P25686 P52943 P05060 P09493 Q519L2 Q15417 O75347 P10636 Q96G03 P37840 Q96JE9 Q13642 Q16454 P29966 P06454 P81605 Q06454	log2(Rett/Ctrl) 0,5742325 0,63589194 0,67967187 0,71944281 0,72186931 0,75558493 0,83133366 0,83303251 0,84375762 0,91620672 0,92273116 0,97524395 0,99251943 1,01418616 1,04037252 1,15634215 1,1751326 1,33250407 1,34995608 1,36721622 1,34995608 1,36721622 1,3499509 1,41269823 1,52004953 1,5200455 1,5200455 1,5200455 1,5200455 1,520045 1,5200	p-val ajustado 0,03222336 0,04232514 0,04232514 0,04232514 0,04827456 0,04827456 0,04827456 0,04827456 0,04827456 0,04922416 0,01922416 0,02776272 0,01922416 0,04867456 0,04867456 0,04867456 0,04867456 0,0487456 0,0487456 0,02973914
 B. Nombre de la proteina en inglés Proteasome subunit beta type-7 Alpha-adducin Heterogeneous nuclear ribonucleoproteins A2/B1 Nebulette DnaJ homolog subfamily B member 2 28 kDa heat - and acid-stable phosphoprotein Nuclear migration protein nudC Cysteline-rich protein 2 Secretogranin-1/FE-11/GAWK peptide: CCB peptide Tropomyosin alpha-1 chain Transcription elongation factor A protein-like 5 Calponin-3 Tubulin-specific chaperone A Microtubule-associated protein 14 Phosphoglucomutase-2 Alpha-synuclein Microtubule-associated protein 1 LIM and SH3 domain protein 1 LIM and SH3 domain protein 12 Myristoylated alanine-rich C-kinase substrate Prothymosin alpha,Prothymosin alpha, N-terminally processed; Thymosin alpha-1 Dermcidin; Survival-promoting peptide; DCD-11 Achase anchor protein 12 	Nombre del gen PSMB7 ADD1 HNRIPA2B1 NEBL DNAJB2 PDAP1 NUDC CRIP2 CHGB TPM1 TCEAL5 CNN3 TBCA MAPT PGM2 SNCA MAP5 FHL1 LASP1 EFHD2 MARCKS PTMA DCD AKAP12 CTM14	Acceso Uniprot Q99436 P35611 P22626 O76041 P25686 P52943 P05060 P09493 Q519L2 Q15417 O75347 P10536 Q96G03 P37840 Q96L59 Q13642 Q14847 Q96C19 P29966 P06454 P81605 Q02952 Q12654	log2(Rett/Ctrl) 0,5742325 0,63589194 0,67967187 0,71944281 0,72186931 0,75558493 0,83133366 0,83303251 0,84375762 0,91620672 0,92273116 0,97524395 0,92251943 1,01418616 1,04037252 1,15634215 1,1751326 1,33250407 1,34995608 1,36721622 1,38120799 1,41269823 1,51531664 1,61531664	p-val ajustado 0,03222336 0,04232514 0,02760286 0,02653616 0,04232514 0,0482750 0,04827456 0,04827456 0,04827456 0,04827456 0,04922416 0,04232514 0,01922416 0,02776272 0,0267105 0,0267105 0,0267105 0,0267105 0,0267105 0,0267105 0,0267105 0,0267105 0,02760286

GO componente celular-

MAPT (TAU)

CTL RTT MAP6

CTL RTT STMN1

CTL RTT

relativa

1.0 eñal

1.5

10

0.4

ntensidad de 1.5

ntensidad de eñal relativa

Intensidad de señal relativa

ACTINA

STMN1

B-ACTINA

D.

E.

НІРОСАМРО PM (kDA) CONTROL RT 55 kDA TAU β-ΑCTINA 42 kDA ~ 110 kDA MAP6 42 kDA

19 kDA

42 kDA

Figura 34. Caracterización proteómica en muestras post-mortem de hipocampo de pacientes RTT. A. Lista de proteínas con niveles reducidos en relación con muestras control. B. Lista de proteínas con niveles incrementados en relación con muestras control. C, D. Enriquecimiento diferencial de acuerdo con la categoría de componente celular de GO (se muestran las diez principales) de genes codificantes correspondientes a proteínas con expresión decreciente (C) o incrementada (D) en hipocampos de pacientes RTT. El eje Y muestra los términos de ontología génica y el eje X muestra la significancia estadística. E. Izquierda: Análisis por western blot de las proteínas TAU, MAP6, STMN1 y β-ACTINA como control de carga endógeno en muestras post-mortem de hipocampos control y de pacientes RTT. La imagen muestra tres réplicas de cada condición. Derecha: Medida cuantitativa correspondiente a los niveles proteicos de dichas proteínas.

Figura 35. Validación de los niveles de expresión de la proteína S100b en muestras de hipocampo de ratones *WT* y *KO* para MeCP2. Análisis por *western blot* de las proteínas MeCP2, S100b, y β -actina como control de carga endógeno en hipocampos de ratones sintomáticos *WT* y *KO* para MeCP2.

3.2. Análisis de alteraciones en la expresión y edición del ARN de *GRIA3* en muestras cerebrales *post-mortem* de pacientes RTT

A la vista de los resultados obtenidos en el análisis proteómico, y habiéndose detectado GRIA3 como una de las proteínas significativamente reducidas en las muestras RTT, procedimos a estudiar la expresión de GRIA3 y los T-UCRs uc.478/479 en los hipocampos de pacientes del mismo modo que hemos mostrado en los modelos murino y humano. Por otro lado, también se llevó a cabo dicho análisis en muestras correspondientes al área del cerebelo y en ambos casos se procedió también al estudio de los niveles de edición en la zona R/G, así como de expresión proteica de GRIA3.

Por lo que respecta a las muestras de hipocampo, a partir de los resultados obtenidos se advirtieron cambios en la expresión de las isoformas *flip* y *flop* de *GRIA3* (figura 36B), observándose un incremento de los niveles de ambos transcritos en muestras RTT, especialmente de la variable *flip*. Sin embargo, los niveles de transcrito total del gen no exhibían ninguna diferencia entre ambas condiciones.

En referencia a los ARNs ultraconservados uc.478 y uc.479 (figura 36C), y de la misma forma que las variables flip y flop, también se mostraron variaciones incrementales significativas, en este caso principalmente en el T-UCR uc.478, bajo un contexto de ausencia de MeCP2. De forma destacable, se mostró un aumento importante en los valores de edición total del ARN de GRIA3 en la posición R/G en pacientes RTT (de 52% a 90,4%), además de alteraciones también en el balance de transcripción de las variantes flip/flop tal y como se había observado en muestras de hipocampo del modelo murino (figura 36D). Es relevante remarcar que, pese a tratarse normalmente del exón minoritario, el aumento en la selección del exón "flop" en las muestras procedentes de pacientes RTT se asoció significativamente con el incremento observado en los niveles de edición del gen. Por otro lado, el análisis por western blot en estas mismas muestras de la expresión la enzima ADAR2, encargada principal del mecanismo de edición del ARN, no mostraba cambios notables (figura 36E), sugiriendo por tanto que las variaciones observadas en los niveles de edición no parecen ser causa de alteraciones en dicha enzima. En lo referente a los niveles proteicos de la subunidad GRIA3, éstos se encontraron significativamente reducidos en hipocampos de pacientes (figura 36E), contrarrestando con los valores de expresión inalterados del ARN mensajero, advirtiéndose una regulación de dicha proteína posiblemente de manera post-transcripcional.

En el caso de aquellas muestras obtenidas del cerebelo no se apreciaron, en general, alteraciones remarcables (figura 37).

Figura 36. Caracterización de los niveles de expresión de GRIA3 v T-UCRs uc.478/479 y cuantificación de la edición del ARN de GRIA3 en muestras postmortem de hipocampos de pacientes RTT. A. Niveles de expresión relativos de GRIA3 total. B. Niveles de expresión relativos de transcritos alternativos flip y flop. C. Niveles de expresión relativos de T-UCRs uc.478/479. Los niveles de expresión fueron analizados por RT-gPCR en muestras control y correspondientes a pacientes RTT. Los gráficos representan la media de tres réplicas con la desviación estándar por condición (*p<0,05, **p<0,01, test bilateral de Mann-Whitney). Se empleó RPL13 como control endógeno. D. Niveles de edición de los transcritos flip y flop. Los datos se obtuvieron por secuenciación con el uso de cebadores complementarios a los exones constitutivos contiguos a los alternativos "flip" y "flop". En cada una de las secuencias se pudo determinar qué exón se había incluido en el splicing y si la posición R/G se encontraba editada. Los datos corresponden a la media de tres réplicas por condición en las que se analizaron un mínimo de 60 secuencias (test bilateral exacto de Fisher). E. Izquierda: Análisis por western blot de las proteínas GRIA3, ADAR2 y β-ACTINA como control de carga endógeno. La imagen muestra triplicados de cada condición. Derecha: Medida cuantitativa correspondiente a los niveles proteicos de GRIA3 y ADAR2 observados en muestras control (CTL) y muestras correspondientes a pacientes RTT.

Figura 37. Caracterización de los niveles de expresión de GRIA3 y T-UCRs uc.478/479 y cuantificación de la edición del ARN de GRIA3 en muestras postmortem de cerebelos de pacientes RTT. A. Niveles de expresión relativos de GRIA3 total. B. Niveles de expresión relativos de transcritos alternativos flip y flop. C. Niveles de expresión relativos de T-UCRs uc.478/479. Los niveles de expresión fueron analizados por RT-qPCR en muestras control y correspondientes a pacientes RTT. Los gráficos representan la media de tres réplicas con la desviación estándar por condición (*p<0,05, **p<0,01, test bilateral de Mann-Whitney). Se empleó RPL13 como control endógeno. D. Niveles de edición de los transcritos flip y flop. Los datos se obtuvieron por secuenciación con el uso de cebadores complementarios a los exones constitutivos contiguos a los alternativos "flip" y "flop". En cada una de las secuencias se pudo determinar qué exón se había incluido en el splicing y si la posición R/G se encontraba editada. Los datos corresponden a la media de tres réplicas por condición en las que se analizaron un mínimo de 60 secuencias (test bilateral exacto de Fisher). E. Izquierda: Análisis por western blot de las proteínas GRIA3, ADAR2 y β-ACTINA como control de carga endógeno. La imagen muestra triplicados de cada condición. Derecha: Medida cuantitativa correspondiente a los niveles proteicos de GRIA3 y ADAR2 observados en muestras control (CTL) y muestras correspondientes a pacientes RTT

3.2.1. Análisis de metilación en exones "flip" y "flop" en muestras post-mortem de hipocampo de pacientes RTT

Del mismo modo que en líneas celulares neurales, se llevó a cabo también el análisis de los niveles de metilación en posiciones CpG localizadas en zonas cercanas a los exones "flip" y "flop" del gen *GRIA3*. En este caso, se interrogaron un total de trece posiciones en el exón "flip" (figura 38A) y doce en la región "flop" (figura 38B), comparando los niveles de metilación muestras *post-mortem* de hipocampo de pacientes RTT con muestras control.

De un modo similar a los datos obtenidos en líneas celulares, los resultados del análisis de metilación en muestras *post-mortem* mostraron también altos niveles de metilación en las posiciones interrogadas del exón "flop", sin exponer cambios relevantes en dichos valores en la comparación entre pacientes y controles (figura 38B). Por otro lado, en lo que respecta al exón "flip", se volvieron a observar niveles de metilación más bajos en los extremos del exón (CpGs 8, 9 y 13 en muestras *post-mortem*; CpGs 2, 3 y 7 en líneas neurales) y se destaca la disminución específica de dicha modificación en las CpGs 7 y 8 de muestras RTT (figura 38A)

Figura 38. Análisis de metilación en exones "flip" (A) y "flop" (B) del gen *GRIA3* en muestras *post-mortem* de hipocampo de pacientes RTT. Los gráficos representan la mediana de tres réplicas con el rango intercuartílico (*IC 95%*) por condición (*p<0,05, **p<0,01, test bilateral de Mann-Whitney). Los valores de metilación para cada posición CpG se muestran en %.

DISCUSIÓN

DISCUSIÓN

La envergadura funcional de la proteína MeCP2 para el correcto desarrollo y competencia neuronal es un hecho indiscutible, dado que alteraciones en la dosis de dicho producto proteico en el sistema nervioso central son causa de afectaciones de extrema severidad como es el caso del Síndrome de Rett. No obstante, pese a ser objeto de estudio intensivo. las dianas directas de MeCP2 son todavía imprecisas. Considerado principalmente como represor transcripcional, varias evidencias indican que MeCP2 también participa en procesos tales como la activación transcripcional, la remodelación de la cromatina y el splicing de ARN. Así, además de unir ADN metilado y una plétora de proteínas, MeCP2 también puede interactuar con ARN. análisis Además. transcripcionales recientes demuestran la desregulación significativa del transcriptoma no codificante en el Síndrome de Rett, hecho que ha causado la ampliación de las áreas de interés en el campo y ha incrementado el número de estudios que abordan el impacto directo de la función de MeCP2 en la población de ARN en el cerebro normal o alterado.

En el presente proyecto, el objetivo principal se ha basado en la exploración del papel que desempeñan las regiones transcritas ultraconservadas (T-UCRs) y los ARNs circulares (circRNAs), dos tipos de transcritos no codificantes que no habían sido examinados previamente en la enfermedad de RTT, en vías moleculares clave comúnmente alteradas dicha afectación. Asimismo. en las desregulaciones observadas candidatos en los estudiados y especialmente su potencial implicación en rutas notablemente afectadas en la enfermedad como la transmisión sináptica excitatoria glutamatérgica o la dinámica del citoesqueleto, los convierte en posibles protagonistas para el abordaje de nuevas estrategias terapéuticas

dirigidas a la modificación de dichas vías y/o el uso de dichos transcritos como biomarcadores de la patología, pudiendo extenderse dicha información a tumores cerebrales u otras enfermedades del espectro autista.

1. Las poblaciones de *T-UCRs* y *circRNAs* presentan niveles de expresión alterados en los modelos murino y humano *in vitro* del Síndrome de Rett

Tanto los transcritos circulares como los resultantes de regiones genómicas ultraconservadas muestran un patrón de expresión específico de tejido y son, por lo general, especialmente abundantes en el cerebro. A pesar de ello, se ignoran todavía sus funciones e influencia en distintas patologías, incluidas entre ellas las afectaciones neurológicas, generándose por tanto la necesidad de una investigación más exhaustiva del papel de dichas especies en la fisiopatología de enfermedades severas como es el Síndrome de Rett.

Tras el análisis a gran escala de alteraciones en los niveles transcripcionales de las poblaciones de *T-UCRs* y *circRNAs* mediante el uso de chips de expresión, se pudo comprobar la desregulación de un importante número de dichas especies en hipocampo y córtex frontal, tejidos cerebrales notablemente afectados, procedentes del modelo murino RTT del que se disponía en nuestro grupo, así como en líneas neurales humanas *in vitro* con supresión de MeCP2 generadas en el laboratorio. Cabe decir que la decisión del uso de chips de expresión como método de análisis frente a otras herramientas como la secuenciación completa del transcriptoma (*RNA-seq*) fue debido a la sensibilidad que dicha metodología aporta al estudio concreto de las especies interrogadas en el presente proyecto. La baja abundancia generalizada que presentan transcritos como los *circRNAs* y *T-UCRs*

en relación a los niveles de ARNs mensajeros dificulta la cuantificación precisa de una parte significativa de dichas especies cuando el análisis de expresión diferencial se aborda mediante el uso de *RNA-seq*. No obstante, la fiabilidad de los chips de expresión no se ve tan comprometida por los niveles inferiores de transcrito. Además, en aquellos *arrays* en los que se interroga la población de *circRNAs*, se llevan a cabo protocolos previos de enriquecimiento de dichas especies como el uso de sondas específicas contra la unión de los extremos 5' y 3' en la circularización o la eliminación enzimática del ARN lineal de las muestras procesadas. Del mismo modo, los chips de expresión diseñados para la detección de *T-UCRs* permiten una mayor focalización de estas especies mediante el uso de múltiples sondas para cada una de ellas, permitiendo también una mayor precisión en la cuantificación de su expresión.

Una vez seleccionados los candidatos potencialmente más relevantes en función de los mecanismos y rutas moleculares en los que pueden verse implicados, éstos fueron validados mediante técnicas de RT-PCR cuantitativa, a partir de las cuales se observaron también diferencias significativas en la expresión de genes codificantes (genes huésped), muchos de ellos implicados en vías asociadas con el neurodesarrollo. directamente relacionados con los ARNs no codificantes interrogados. Dichas observaciones se exponen especialmente en los análisis llevados a cabo para especies circulares. Estudios previos ya demostraban, de hecho, que una gran proporción de circRNAs con expresión en células neurales son originados a partir de genes con implicación en funciones sinápticas¹⁸⁹. Por otro lado, cabe destacar que las alteraciones observadas en los niveles de varios de los genes lineales analizados sugiere, del mismo modo que se había descrito anteriormente¹⁸³, un proceso co-transcripcional de especies circulares y sus genes huésped, generándose una competición mutua por el uso

de la maquinaria de *splicing* y comprometiéndose así la expresión de ambos transcritos de manera simultánea. En lo que a ello se refiere, los resultados expuestos muestran una correlación generalmente positiva entre los niveles de los transcritos circulares interrogados y sus correspondientes genes lineales, indicando una probable desregulación de la transcripción global del locus analizado que repercutiría en ambas especies por igual. No obstante, *KDM1A* (figura 31) o *SIRT2* (figura 32) son ejemplos de correlación inversa entre ambas especies circular y lineal en líneas neurales humanas, sugiriéndose dos posibles casos interesantes de expresión antagónica.

Tras la presentación de estos datos preliminares, resulta imprescindible la realización de futuros ensayos funcionales en estos mismos modelos de estudio para determinar con exactitud el mecanismo de acción de estos transcritos todavía desconocidos. Esto se hace especialmente evidente en el caso de los *T-UCRs*, ya que, pese a la existencia de numerosas evidencias de su importancia en condiciones normales y patológicas (principalmente en cáncer), solo se han podido aportar ciertos detalles moleculares de una mínima proporción de esta población²⁶⁴. En conclusión, se han podido identificar determinadas especies del tipo ARN circular y transcritos ultraconservados exponiéndose, por primera vez, su implicación en vías notablemente alteradas en el Síndrome de Rett (vías de señalización sináptica, de procesamiento del ARN, así como de formación y soporte del citoesqueleto).

Finalmente, aunque no menos importante, en apartados previos se han descrito distintos ejemplos de microARNs especialmente relevantes en la enfermedad de Rett por su relación directa o indirecta con MeCP2, entre ellos *miR-30a*, *miR-381* y *miR-495*. Por otro lado, en diversos estudios se ha demostrado también la función que pueden ejercer las especies circulares como esponjas de *miRNAs*, pudiendo regular por

tanto su papel en distintas vías moleculares. De hecho, datos procedentes de los chips de expresión llevados a cabo en el presente provecto nos informan de microARNs con potenciales sitios de unión para cada uno de los circRNAs diferencialmente expresados en muestras con ausencia de MeCP2. Lamentablemente, no se ha contado con el tiempo suficiente en el desarrollo de la presente tesis para el estudio minucioso de estas interacciones y sus posibles implicaciones en rutas alteradas en la patología. Sin embargo, el análisis general de la información obtenida a partir de los chips de expresión nos permite hacer ciertas conjeturas en relación a la relevancia que podrían tener estos microARNs y su asociación con los *circRNAs* desregulados. De hecho, podemos destacar como principal ejemplo de interés el ARN circular originado a partir del gen EZH2 (hsa_circRNA_104517), seleccionado como uno de los putativos candidatos para el análisis exhaustivo de su implicación en la fisiopatología de la enfermedad. Dicho circRNA cuenta con potenciales sitios de unión para los transcritos *miR-30a* y *miR-495*, cuyos niveles se han visto anormalmente incrementados en cerebelos de ratones KO para MeCP2¹³⁵ y los cuales ejercen su función sobre el gen BDNF, con relevancia ampliamente demostrada en el Síndrome de Rett. Dichas observaciones estarían en consonancia con las alteraciones en la expresión de *circEZH*2 en progenitores neurales y células libremente diferenciadas (figura 31A), en las que se muestra una disminución significativa de dicha especie bajo condiciones de supresión de MeCP2, resultando en la posibilidad de una mayor disponibilidad en la célula de miR-30a y miR-495. Otros ejemplos como miR-184, miR-199a, miR-132 y miR-134 también aparecen como posibles interactores de especies circulares con expresión alterada. De manera interesante, miR-134, con función relevante en el desarrollo neural y cuya regulación se ha visto influenciada por MeCP2, presenta putativos sitios de unión con circRNAs con expresión incrementada durante la diferenciación neural de células *KO* para MeCP2. No obstante, no se observan especies circulares con niveles disminuidos durante ese mismo proceso que dispongan de sitios de unión para dicho *miRNA*. Esto podría indicar una menor disponibilidad de *miR-134* y la posible "desrepresión" final y la alteración de genes diana como *LIMK1*²⁶⁵, regulador del citoesqueleto con función en el desarrollo del axón, o *PUM2*²⁶⁶, involucrado en la morfogénesis dendrítica y la función sináptica. Los ejemplos expuestos ponen de manifiesto, en definitiva, el valor del estudio de las implicaciones no solo de la regulación co-transcripcional de *circRNAs* sobre sus propios genes huésped, sino también la ejercida sobre otras especies no codificantes como los microARNs, pudiendo ser causa de la desregulación de diversas vías de señalización esenciales en el desarrollo de la enfermedad de Rett.

2. Integración de distintos modelos de la enfermedad de Rett para el establecimiento de rutas alteradas comunes

En el proceso de investigación de las alteraciones moleculares y fenotípicas características de las distintas patologías, así como el diseño de potenciales tratamientos para cada una de ellas, se hace imprescindible disponer de diversos modelos para cada afectación en los que se reproduzcan los resultados observados y, por tanto, se refuercen las conclusiones obtenidas en el análisis. Por ello, en la presente tesis se exponen distintas aproximaciones para el estudio de rutas moleculares comúnmente alteradas en la enfermedad de RTT mediante el uso de tres herramientas distintas, siempre teniendo en cuenta las ventajas y las limitaciones y que presentan cada uno de los modelos descritos.

Los modelos murinos representan una de las herramientas más utilizadas en la investigación biomédica. Su proximidad a la especie humana debido a la gran similaridad de sus genomas, compartiendo hasta un 95% de los genes codificantes para proteína, convierte a este modelo animal en una gran aplicación para mimetizar en un ambiente in vivo muchas de las enfermedades humanas conocidas. Sin embargo, existen diversas limitaciones que se deben tener en consideración cuando se hace un análisis de las observaciones hechas en dicho modelo. Es importante ser siempre conscientes de que no se trata de un modelo humano, por lo que las diferencias entre especies no se pueden pasar por alto en las variables añadidas a cualquier experimento. De hecho, en relación al presente estudio, es muy relevante destacar que el transcriptoma no codificante y las regiones reguladoras están, por lo general, mucho menos conservadas en ratón²⁶⁷. En nuestro caso, no obstante, cabe decir que, por un lado, las especies circulares parecen estar altamente conservadas en el cerebro de los mamíferos²⁵⁷ y, por otro lado, la mayor ventaja en relación al estudio de T-UCRs es precisamente la ultraconservación de su secuencia, lo que permite suponer una mejor traslación de los resultados obtenidos en el modelo animal hacia las observaciones en humanos. Entre otras limitaciones en el uso de modelos murinos, como la disparidad observada en muchas ocasiones en la respuesta a fármacos y la toxicocinética o el coste que representa el adecuado mantenimiento de dichos animales²⁶⁷, es relevante destacar en el caso específico del Síndrome de Rett el uso en la gran mayoría de casos de animales de sexo masculino tratándose de una patología que afecta principalmente al sexo femenino. Como se ha mencionado también en la introducción, los modelos murinos femeninos con mutaciones en Mecp2 presentan mayores desviaciones en los rasgos fenotípicos debido al sesgo que provoca el proceso de inactivación de uno de los cromosomas X, lo que hace que los animales macho hemizogotos mutantes para *Mecp2* en los que la proteína se encuentra completamente suprimida sean una herramienta ventajosa para la investigación en este caso. No obstante, es necesario tener consciencia de que los modelos animales de sexo femenino en este caso serían los clínicamente más relevantes⁸⁶.

En referencia a las herramientas in vitro, éstas nos permiten abordar el análisis en el tipo celular y la especie concreta en la que se lleva a cabo la investigación. Además, el estudio de potenciales estrategias terapéuticas y sus mecanismos de acción se simplifican en esta clase de aproximación. Esto es especialmente relevante en patologías relacionadas con el sistema nervioso central, en las que el acceso al tejido afectado es un obstáculo importante. En nuestro caso, decidimos diseñar y generar una línea celular neural estable en la que se suprimió la proteína MeCP2 mediante técnicas de edición génica CRISPR/Cas9. Esto nos permitió afrontar las distintas indagaciones de un modo más específico, sencillo, manipulable y ético en comparación con el modelo animal. Cabe destacar también la ventaja que supone dicha aplicación en términos de coste y tiempo respecto al modelo de ratón. Sin embargo, como cualquier otro modelo también presenta desventajas específicas, entre las que se destaca la imposibilidad de poner en un contexto in vivo las líneas celulares manipuladas. Dicha restricción es especialmente relevante en células neurales, en las que la comunicación y transmisión molecular con otros tipos celulares son imprescindibles para el correcto desarrollo y función de la red neuronal.

Finalmente, disponer de tejidos cerebrales humanos *post-mortem* de jóvenes afectadas por la enfermedad de Rett nos permitió llevar a cabo el análisis de determinadas alteraciones moleculares bajo el contexto genético exacto de dichas pacientes. Estas muestras representan una herramienta extremadamente valiosa para abordar de manera más precisa el estudio y conocimiento de las potenciales causas de la patología. No obstante, cabe mencionar que se trata, de nuevo, de un modelo que no dispone del ambiente *in vivo* necesario para la reproducción exacta de la afectación. Por otro lado, el hecho de tratarse de una enfermedad severa en la que la esperanza de vida de las pacientes no es alta, dificulta la disponibilidad de muestras *post-mortem* de personas sanas con edades similares que se puedan usar como control de estudio. En lo que a ello respecta, la aplicación de células pluripotentes inducidas generadas a partir de fibroblastos de pacientes Rett y la diferenciación de éstas a líneas neurales, sugiere una gran ventaja frente a otros modelos, ya que se trata de una herramienta también paciente específica y con mayor accesibilidad en el contexto genético de dichas células o alteraciones genéticas observadas durante el proceso de reprogramación son algunos de los obstáculos observados en dicho modelo²⁶⁸.

En definitiva, el estudio de la desregulación de diversos mecanismos moleculares en la investigación biomédica, así como las posibles estrategias terapéuticas aplicables a los distintos trastornos conocidos, requiere el uso en paralelo de múltiples aproximaciones que reafirmen cada uno de los resultados obtenidos, incrementándose así de manera significativa la robustez en las conclusiones. En lo que a ello se refiere, en la presente tesis se demuestran alteraciones en rutas moleculares comúnmente alteradas en el Síndrome de Rett como las implicadas en la dinámica del citoesqueleto y la transmisión sináptica glutamatérgica, poniéndose de manifiesto en los tres modelos expuestos: modelo de ratón *in vivo*, líneas humanas neurales *in vitro* y muestras *post-mortem* de pacientes, permitiéndonos confirmar de manera más firme la desregulación de dichas vías.

3. Modelos con supresión de MeCP2 muestran alteraciones en distintos niveles de expresión del gen *SIRT2*

Uno de los ejemplos en los que se ha hecho énfasis en la presente tesis es la desregulación en la expresión de las formas circulares y lineales, así como de los niveles proteicos del gen *SIRT2*, bajo un contexto de deficiencia de MeCP2 en ambos modelos murino y humano *in vitro*. Como se ha mencionado en apartados previos, SIRT2 forma parte de la familia de enzimas sirtuinas, la función principal de las cuales es la catálisis de la desacetilación de histonas y otras dianas moleculares²⁵⁴. Aunque todas las sirtuinas se encuentran activamente expresadas en regiones cerebrales, SIRT2 es especialmente abundante²⁶⁹ en dicho tejido y se ha descrito su implicación en vías neuronales como la diferenciación de oligodendrocitos²⁷⁰, la motilidad neuronal²⁷¹ o la neuroinflamación²⁷².

Investigaciones previas habían mostrado ya antes un incremento significativo de los niveles proteicos de HDAC6, con función desacetilasa de α-tubulina igual que SIRT2, en neuronas y astrocitos deficientes para MeCP2²⁵⁶. Los autores confirmaban también en las mismas muestras la disminución de la acetilación de α-tubulina, sugiriendo finalmente una posible modulación post-transcripcional de los niveles de HDAC6 por parte de MeCP2, repercutiendo así en los niveles de α-tubulina acetilada y dando respuesta a la posible causa de la inestabilidad en los microtúbulos observada en otros modelos RTT. En lo que a ello respecta, estudios llevados a cabo en cultivos primarios de fibroblastos procedentes de pacientes RTT reafirmaban el deterioro de la red de microtúbulos en dichas líneas en comparación con los controles²⁷³. También en astrocitos deficientes para MeCP2 se observaba una inestabilidad de la dinámica de dichas estructuras citoesqueleticas que se asociaba, además, con una reducción en la

expresión de STMN2²⁷⁴, cuya función está relacionada con el ensamblaje y la dinámica de los microtúbulos, así como con el desarrollo neuronal. Reforzando dichas alteraciones demostradas experimentalmente, análisis bioinformáticos llevados cabo sobre genes comúnmente desregulados en distintas muestras con deficiencia de MeCP2 también indicaban la representación de éstos en mecanismos directamente relacionados con la formación y función del citoesqueleto²⁷⁵.

Curiosamente, en otro trabajo publicado en referencia a la asociación entre la deficiencia de MeCP2 y la reducción de los niveles de αtubulina acetilada, se mostraban cambios significativos en HDAC6 pero no se observaban variaciones en la expresión específica de SIRT2, sugiriéndose por tanto que la sobreexpresión de HDAC6 y no de SIRT2 era responsable de la mayor desacetilación de α-tubulina en los modelos RTT expuestos²⁵⁵. Dichos resultados discrepan, sin embargo, con los datos observados en los análisis de la presente tesis, los cuales muestran un aumento significativo de la dosis proteica de SIRT2 tanto en córtex frontal del modelo animal (figura 25) como en el modelo neural humano generado (figura 32). Esto plantea, de la misma manera que se ha manifestado en otras patologías neurológicas como las enfermedades de Huntington o de Parkinson^{276,277}, un papel potencialmente nocivo de dicha proteína en el desarrollo de la enfermedad de RTT. También en ambos modelos se observó una importante disminución de la acetilación de α-tubulina, dando soporte a otras evidencias de alteraciones en el citoesqueleto de líneas celulares con dosis anómalas de MeCP2. Finalmente, en el análisis proteómico llevado a cabo en muestras de hipocampos *post-mortem* de pacientes afectadas por la enfermedad de RTT se exponen, en consonancia con la información previa aportada, cambios relevantes en los niveles de proteínas esenciales para el correcto desarrollo del citoesqueleto,

especialmente de la red de microtúbulos, como MAPT, MAP6 o STMN1, confirmándose una vez más la desregulación de mecanismos críticos para la estructura celular neural en casos de ausencia de MeCP2.

Por otro lado y con especial interés, las alteraciones mostradas en la expresión de especies circulares del gen SIRT2 en muestras de córtex frontal del modelo animal y en líneas neurales humanas, siendo los cambios del transcrito lineal poco destacables y las diferencias proteicas notablemente significativas, nos permiten plantear un sistema regulador post-transcripcional de la expresión de SIRT2 en el que puedan verse involucradas dichas formas circularizadas del propio gen, afectando así en última instancia a funciones celulares esenciales en las que SIRT2 juega un papel crítico. Un ejemplo de regulación posttranscripcional ejercida sobre su propio gen huésped es el descrito para *circMbl.* En este caso, se trata de un mecanismo de control de los niveles de la proteína MBNL1 (Muscleblind Like Splicing Regulator 1), proteína de unión a ARN con función reguladora del splicing y cuyos niveles alterados han sido asociados a modificaciones severas de funciones cerebrales²⁷⁸.. Cuando las dosis de dicho producto se encuentran en exceso, éste es capaz de reducir la transcripción de su propio ARN mensajero promoviendo la producción del transcrito circular circMbl, el cual se une y actúa como esponja de la propia proteína MBNL1¹⁸³. Por otro lado, el transcrito *circPABPN1* también tiene función reguladora la traducción de su propio gen huésped, PABPN1, impidiendo la unión de HuR, proteína reguladora de los patrones de expresión proteicos, al ARN mensajero de PABPN1279, gen asociado a afectaciones severas como la distrofia muscular. En relación con este último ejemplo, es importante hacer énfasis en la dinámica temporal observada en los resultados obtenidos para la expresión de SIRT2. Como se aprecia tanto en muestras de córtex frontal de ratón como en líneas neurales humanas, los cambios más relevantes en los niveles de los transcritos circulares de *SIRT2* se destacan en etapas tempranas del desarrollo (muestras de ratones pre-sintomáticos y progenitores neurales). Sin embargo, el incremento más notable de la dosis proteica de SIRT2 se muestra en animales ya sintomáticos y en células libremente diferenciadas. Dichos datos podrían indicar una regulación indirecta por parte de las especies circulares, con alteraciones tempranas en su expresión, en la traducción en etapas futuras de sus formas lineales, posiblemente a través de la interacción con otras moléculas.

El alto enriquecimiento de especies circulares en tejidos neurales y la acumulación de dichos transcritos durante el desarrollo cerebral, probablemente debido a la no división de las células neuronales maduras, ha sido demostrado en varias publicaciones^{280,281}. Además, se ha observado que la localización de estos circRNAs es principalmente citoplasmática, y, más específicamente, se han expuesto evidencias de la especial abundancia de estas especies en sinaptoneurosomas en relación al cerebro completo, sugiriéndose el papel de dichas moléculas en procesos sinápticos. Ciertamente, análisis de ontologías génicas llevados a cabo en genes huésped correspondientes a ARNs circulares con expresión alterada en muestras de córtex frontal e hipocampo del modelo RTT murino mostraban el enriquecimiento de éstos en componentes celulares específicamente neurales como el axón (figura 23). De manera importante, el estudio del reactoma de estos mismos genes en muestras de hipocampo exponía también su sobrerrepresentación en categorías relacionadas con receptores glutamatérgicos de tipo AMPA, poniendo de manifiesto la relevancia de los transcritos circulares en procesos de señalización sináptica. Por otro lado, en este estudio de localización celular, se ha podido confirmar la ubicación citoplásmica de una de las formas circulares correspondientes al gen SIRT2 con

mayor interés por su expresión inversa especialmente significativa respecto al transcrito lineal en el modelo neural humano: *hsa_circ_0050946*. En lo que a ello respecta, tanto técnicas bioquímicas de fraccionamiento como experimentos de hibridación *in situ* corroboraron este dato, proponiéndose, junto a la demostración del incremento en la dosis proteica observado en estas mismas muestras, una posible función reguladora a nivel traduccional de SIRT2 por parte de dicho *circRNA*.

Dada la importante información que puede aportar la ubicación celular de los transcritos circulares en lo que a su función respecta, es primordial llevar a cabo un estudio más exhaustivo no solo de los compartimentos subcelulares en los que se encuentran dichas moléculas, sino también de los mecanismos que permiten su localización específica, así como determinar la relación con sus propios genes huésped mediante ensayos de co-localización. En relación al Síndrome de Rett y otros trastornos neurológicos, el establecimiento de la distribución de los ARNs circulares, así como si existen cambios significativos de esta localización en condiciones fisiopatológicas, es primordial debido a la relevancia que tiene la estructura celular y la especificidad de sus compartimentos en la funcionalidad neuronal.

Aunque las evidencias expuestas sugieren la relevancia de *SIRT2* como gen candidato, cabe destacar la importancia del estudio minucioso de los mecanismos de acción a través de todas sus formas de expresión, así como también de otros candidatos con posible implicación en el neurodesarrollo, prestando especial atención a la potencial función reguladora ejercida por las especies no codificantes, cuya información respecto a su repercusión en las alteraciones observadas es todavía escasa.

4. *GRIA3* y *T-UCRs* 478/479: candidatos potencialmente relevantes en el Síndrome de Rett

El mantenimiento del equilibrio adecuado entre sinapsis inhibitorias y excitatorias en las redes neurales es condición indispensable para la correcta función y desarrollo del sistema nervioso. Para ello, juegan un papel crucial los neurotransmisores inhibitorios y excitatorios, entre los cuales destacan principalmente el ácido y-aminobutírico o GABA y el glutamato, respectivamente, así como los receptores de dichas moléculas en los distintos tipos neuronales. Este equilibrio de transmisiones en los circuitos sinápticos se ha visto notablemente alterado en varias afectaciones del espectro autista, en las que la hiperexcitabilidad neuronal parece ser un factor común²⁸². No es sorprendente, por tanto, que en estudios neurobiológicos de modelos con niveles desregulados de MeCP2 también se hayan demostrado perturbaciones importantes en la sincronización de estos sistemas de neurotransmisión²⁸³. En un trabajo publicado por nuestro propio grupo recientemente, estudios de electrofisiología llevados a cabo en cultivos neuronales primarios de ratones deficientes para MeCP2 mostraban cambios significativos en la frecuencia de las corrientes postsinápticas excitatorias en miniatura tras el tratamiento de estas líneas con SB216763, inhibidor de la vía de la guinasa Gsk3b (Glycogen synthase kinase-3B), cuya actividad en ratones KO para MeCP2 se había visto incrementada de manera anómala. La reducción de la frecuencia de dichas corrientes excitatorias tras la inhibición de Gsk3b ponía de manifiesto, en concordancia con otras investigaciones, alteraciones en este tipo de neurotransmisión en ratones afectados por la enfermedad, así como la potencial capacidad de SB216763 para modificar dicha vía²⁸⁴. De manera importante, cabe decir que no se observaron, sin embargo, alteraciones notables en la neurotransmisión inhibitoria modulada por GABA en estos mismos cultivos primarios, sugiriéndose una mayor prevalencia de las deficiencias en las rutas sinápticas excitatorias glutamatérgicas bajo condiciones de supresión de MeCP2. En lo que a ello respecta, existen controversias cuando se trata de determinar la contribución de los distintos tipos neuronales en la fisiopatología de la enfermedad de RTT. De hecho, pese a que diversos trabajos presentaban el deterioro en la señalización excitatoria como la principal condición en modelos RTT^{101,285}, la supresión condicional de MeCP2 solo en neuronas GABAérgicas de ratón reproducía también la gran parte de los rasgos observados en el modelo animal nulo para dicha proteína²¹. Frente a dicho debate, Meng et al. ponen de manifiesto la relevancia de ambos circuitos en la enfermedad de RTT, atribuyendo distintos fenotipos a las alteraciones en la neurotransmisión inhibitoria o excitatoria para cada caso²². Entre otros ejemplos, signos como la ansiedad o el temblor observados en modelos animales de la patología, parecen estar asociados a una mayor contribución de las alteraciones en las transmisiones excitatorias. Sin embargo, los autores concluyen que los circuitos ubicados en el cerebelo son más vulnerables a perturbaciones en el sistema inhibitorio, afectando principalmente a la coordinación motora. Por otro lado, otras características fenotípicas comunes en RTT como la ataxia o la letalidad prematura se han visto reproducidas tanto bajo supresión condicional de MeCP2 en neuronas glutamatérgicas como en células GABAérgicas, confirmando la importancia del equilibrio ambas vías de correcto entre neurotransmisión para dichos síntomas.

Los datos expuestos se presentan en consonancia con las evidencias obtenidas en los análisis de enriquecimiento llevados a cabo en el presente proyecto, en los que se interrogaron los genes huésped de los transcritos no codificantes con expresión diferencial en condiciones de ausencia de MeCP2. De manera destacable, los resultados muestran categorías relacionadas con vías específicas de receptores de

glutamato, destacándose la desregulación especialmente notable de vías excitatorias no solo en lo que se refiere a los transcritos codificantes implicados, sino también a las especies no codificantes que se generan de dichos loci. Sin embargo, no se observaron rutas asociadas a la neurotransmisión inhibitoria modulada por neuronas GABAérgicas. Con mayor detalle, generaron especial interés las alteraciones observadas en los niveles de ciertas regiones ultraconservadas solapantes con el transcrito que da lugar a la subunidad 3 de receptores de glutamato de tipo AMPA (GluA3 o GRIA3) en chips de expresión, por lo que se decidió profundizar en el estudio de un posible sistema regulador que pudiera implicar a dichas especies en vías determinantes para la enfermedad de RTT. En lo que a ello respecta, las desregulaciones de los T-UCRs uc.478/479 y el gen GRIA3 en los distintos modelos presentados en este proyecto revelaron un posible papel regulador desempeñado por este tipo de ARNs no codificantes en distintos niveles críticos, incluidos mecanismos posttranscripcionales como la edición del ARN o la traducción. Por un lado, los datos obtenidos sugieren una posible correlación positiva entre la expresión del T-UCR uc.479 y los niveles de edición en la posición R/G del transcrito GRIA3 bajo condiciones de ausencia de MeCP2 en hipocampos del modelo murino, líneas neurales humanas y muestras post-mortem de hipocampos procedentes de pacientes RTT. No obstante, cabe decir que los resultados obtenidos en los análisis realizados en muestras humanas post-mortem revelan una mayor significancia en las diferencias específicas de los niveles del T-UCR uc.478 y la variante flop en relación a las observaciones hechas en el modelo celular. Además, también se puede apreciar una relación clara entre la alteración en la expresión de *uc.478* y la inclusión del exón "flop" en el splicing alternativo con el aumento sustancial de los niveles de edición de dicha variante, mostrándose un incremento del 7,5% de isoformas flop editadas en muestras control al 31,6% en hipocampos

procedentes de pacientes RTT (figura 36D). De manera importante y en relación a estos últimos datos, un trabajo reciente centrado en el análisis molecular en este caso de la subunidad GluA2 de receptores de glutamato de tipo AMPA, ya indicaba, reforzando así las evidencias expuestas en el estudio del mecanismo de edición de *GRIA3* en hipocampos *post-mortem*, una mayor efectividad funcional y posterior repercusión en las propiedades del receptor de la edición en la posición R/G cuando ésta se da en la variante *flop* y no en el transcrito *flip*²⁸⁶.

Por otro lado, los resultados obtenidos en líneas neurales humanas libremente diferenciadas y en muestras humanas *post-mortem* demuestran alteraciones en el mecanismo de edición con tendencias totalmente opuestas entre ambos modelos. En el primer caso, se observa una desregulación negativa en los niveles de edición en un contexto de ausencia de MeCP2. No obstante, los análisis en hipocampos de pacientes RTT muestran cambios incrementales de dicho proceso. Pese a la aparente contradicción en dichos resultados, es importante destacar que cada modelo representa un contexto muy diferente respecto al otro, impidiendo la adecuada comparación de los datos obtenidos en cada uno de ellos. Sin embargo, cabe resaltar que en ambos casos se expone la desregulación del sistema de edición del gen *GRIA3* en condiciones de supresión de MeCP2.

En referencia a la dosis proteica de GRIA3, ésta se vio también claramente comprometida en ambos modelos humanos *in vitro* y muestras *post-mortem* de hipocampo pese al mantenimiento de los niveles del transcrito lineal, sugiriéndose alteraciones en la regulación post-transcripcional de su expresión. En conjunto, los datos obtenidos proponen que GRIA3 y los procesos que regulan su expresión y función constituyen una importante diana de estudio para la comprensión de trastornos comúnmente observados en enfermedades del

neurodesarrollo como el desequilibrio en el sistema de transmisión sináptica inhibitoria/excitatoria.

Como se ha mencionado en la parte introductoria de este provecto, el mecanismo de edición del ARN en las subunidades GluA2-GluA4 de los receptores excitatorios de glutamato de tipo AMPA es especialmente relevante en la determinación de las propiedades de dichos receptores. En lo que a ello se refiere, el notable aumento de los niveles de transcrito editado en la posición R/G, especialmente en la variante flop, de GRIA3 en hipocampos post-mortem de pacientes RTT podrían indicar, del mismo modo que se había visto previamente para la subunidad GluA2, una transición más rápida del canal del receptor de un estado cerrado a un estado abierto tras la unión de glutamato a dicho receptor. Además, dado que el proceso de edición también parece acelerar la entrada del canal a un estado de desensibilización, este nivel de regulación post-transcripcional estaría afectando al control de la excitabilidad sináptica tras los estímulos correspondientes. Dicho esto y destacando las evidencias expuestas previamente por nuestro mismo grupo respecto a las perturbaciones en la red sináptica excitatoria en ratones RTT, así como los cambios significativos observados en el presente proyecto de los niveles de edición de GRIA3 en condiciones de ausencia de MeCP2, es razonable sugerir que dicho mecanismo y su regulación son un potencial foco de interés clave en la neurobiología de la enfermedad. No obstante, todavía es necesario esclarecer el proceso molecular específico que se esconde tras estas observaciones y determinar el papel exacto que desempeñan transcritos no codificantes como los T-UCRs uc.478 y uc.479 en mecanismos como la edición del ARN, el splicing alternativo e incluso la traducción proteica.

En referencia a cuál es la implicación de MeCP2 en estos procesos y cómo se encuentra esto afectado en condiciones patológicas, se trata de cuestiones que permanecen todavía sin respuesta. Sin embargo, los estudios de metilación en posiciones CpG dispuestas en y alrededor de los exones "flip" y "flop" de GRIA3 nos permiten desarrollar ciertas hipótesis en relación al papel que podría estar ejerciendo MeCP2 en la zona. Los datos obtenidos en este caso revelan, en primer lugar, una disminución notable de los niveles de metilación en los sitios de splicing 5' y 3' del exón "flip", mientras que los valores de metilación en el exón "flop" se mantienen generalmente altos, indicando un posible motivo para la selección mayoritaria de la variante flip que se observa en los resultados de expresión y de edición de GRIA3 en los tres modelos expuestos. Además, publicaciones previas demuestran también que en el proceso de *splicing* alternativo se favorece la inclusión de aquellos exones con altos niveles de metilación intragénica como los que se observan en la zona central del exón "flip", en los que por otro lado se promovería la unión de complejos contenedores de MeCP2⁷⁶. Dichas observaciones se presentan en consonancia con estudios que demuestran la asociación entre la mayor interacción de MeCP2 en zonas intergénicas altamente metiladas y la reducción de la eficiencia del proceso de elongación mediada por *Pol II*, resultando en la provisión de más tiempo para la maquinaria de splicing para poder reconocer e incluir dichos exones en el transcrito final. Por otro lado, es importante resaltar de nuevo la correlación entre el aumento significativo de la cantidad del T-UCR uc.478 y de la variante flop de GRIA3 y el incremento en los niveles de edición en la posición R/G en muestras *post-mortem* de pacientes RTT. En lo que a ello respecta, los niveles elevados de metilación observados en dicho exón podrían sugerir, en condiciones de normalidad, la unión de MeCP2 en esa zona y la consecuente inhibición de la transcripción del T-UCR uc.478 de alguna forma todavía no conocida.

Finalmente, en relación a los cambios en la regulación de la edición o de la cantidad proteica de GRIA3, en cuyo caso parece existir una relación inversa con el proceso de edición, la presencia de dichas especies ultraconservadas podría ser marcador de los niveles de ambos procesos. No obstante, será imprescindible llevar a cabo análisis específicos para determinar el modo en el que los *T-UCRs* interrogados pueden afectar de manera causal o no a los niveles de edición del transcrito de *GRIA3*.

En resumen, los datos presentados en este estudio abren la puerta a la descripción de posibles rutas moleculares y sistemas de regulación clave no explorados antes en patologías neurológicas con la involucración de especies no codificantes como los *T-UCRs* en los que enfocar la investigación, así como el diseño y desarrollo de posibles estrategias terapéuticas.

5. Perspectivas de futuro de los ARNs no codificantes en enfermedades del neurodesarrollo

A día de hoy, no existe un tratamiento eficiente y definitivo para muchas enfermedades neurológicas extremadamente severas. El caso del Síndrome de Rett no es una excepción y, pese a los numerosos estudios dirigidos al uso de tratamientos para paliar algunas manifestaciones graves de la enfermedad como las afecciones respiratorias o trastornos motores²⁸⁷ y mejorar así la calidad de vida de los pacientes, todavía queda lejos el desarrollo de una cura. Dado que la gran mayoría de casos se producen a causa de la pérdida funcional de la proteína MeCP2, varios proyectos han centrado sus esfuerzos en el restablecimiento de los niveles de dicha proteína, especialmente en modelos murinos^{288–291}. Entre ellos encontramos estudios realmente prometedores como el desarrollo de moléculas que permitan la

reactivación a nivel genómico del alelo de *MECP2* en el cromosoma X inactivo²⁹² o la transferencia de un constructo capaz de expresar dicho gen mediante el uso de vectores virales²⁹³. No obstante, uno de los retos en este tipo de terapias es evitar el incremento excesivo de la dosis génica de *MECP2*, causando en ese caso una toxicidad no deseada²⁹⁴.

Por otro lado, además de MeCP2 per se, moléculas directamente relacionadas con vías en las que éste se ve implicado y cuya alteración en condiciones patológicas ha sido demostrada, también forman parte de dianas terapéuticas en modelos RTT. Entre ellas destacan la inhibición de moléculas HDAC o la activación de la vía de señalización de CREB. Otro de los ejemplos más destacados es la manipulación de la expresión de *BDNF*, ya que la disminución significativa en sus niveles y, por tanto, su relevancia en el desarrollo de la enfermedad se ha comprobado en distintos estudios²⁹⁵. En referencia a las estrategias terapéuticas enfocadas a la mejora principalmente sintomática de la enfermedad, Gomathi et al. revisan en una publicación muy reciente todos los estudios farmacológicos clínicos (testados en pacientes) y no clínicos (en fase experimental en modelos animales e in vitro), así como sus mecanismos de acción, hasta el momento descritos para el Síndrome de Rett²⁹⁶ (figura 39). Entre las estrategias no clínicas se destacan aquellas dirigidas a la restauración de la expresión génica de MECP2 o ensayos *in vivo* de terapia génica llevados a cabo en ratones deficientes para dicha proteína^{294,297}, aunque también hay una gran lista de opciones enfocadas a la mejora de determinados síntomas. Por otro lado, los estudios clínicos se encuentran, por el momento, dedicados a la determinación de la eficacia de tratamientos paliativos de manifestaciones severas y comunes de la enfermedad como la disfunción motora, la epilepsia o las alteraciones en la comunicación.

En ambos casos se ha testado el uso de modificadores génicos y epigenéticos como el folato²⁹⁸ o la gentamicina²⁹⁹, terapias con factores de crecimiento como *IGF-1*³⁰⁰ o moduladores de receptores NMDA^{301,302}, entre otros. Cabe destacar también la multitud de estrategias terapéuticas dirigidas a la modificación de distintos tipos de neurotransmisiones, entre los que se observan tratamientos serotonérgicos³⁰³, dopaminérgicos³⁰⁴, adrenérgicos³⁰⁵, colinérgicos³⁰⁶ y, por supuesto, GABAérgicos³⁰⁷ y glutamatérgicos³⁰⁸.

Figura 39. Estudios farmacológicos clínicos y no clínicos y sus mecanismos de acción en Síndrome de Rett. Representación de las distintas estrategias terapéuticas llevadas a cabo en modelos celulares *in vitro*, modelos animales y pacientes afectados de la enfermedad de Rett. Los códigos de colores se asocian, generalmente, a los distintos mecanismos de acción de los fármacos. En rosa, modificadores genéticos o epigenéticos de la expresión de MeCP2. En verde, inhibidores de desacetilasas de histonas y terapias de factores de crecimiento. En azul, moduladores de la expresión de BDNF. En naranja, modificadores de receptores NMDA. En violeta, moléculas moduladoras de distintas transmisiones sinápticas. En negro, modificadores de electrolitos, potenciadores metabólicos y efectores mitocondriales. En granate, distintas aproximaciones terapéuticas en células pluripotentes inducidas en Síndrome de Rett. Adaptada de Gomathi, M. *et al.*, 2020.

Como ya se ha mencionado en otros apartados, se ha demostrado que el ARN no codificante participa en múltiples funciones celulares, incluyendo la regulación génica, vías metabólicas y procesos de señalización³⁰⁹. Dada su relevancia biológica y las distintas evidencias de la alteración de dicha población en diversas patologías³¹⁰⁻³¹², su potencial valor terapéutico, así como la posibilidad de su uso como biomarcadores diagnósticos son dos aspectos en los que es importante profundizar. Sin embargo, en lo que respecta a estrategias terapéuticas en las que las distintas subpoblaciones del transcriptoma no codificante sea protagonista, éstas son muy limitadas a día de hoy. El cáncer es una de las patologías en las que este tipo de transcritos, especialmente el grupo de miRNAs, han sido el principal foco de interés para determinados tratamientos. La inhibición de miRNAs con potencial oncogénico como miR-155 en linfomas de células T o la restauración de los niveles de miR-34 en cáncer de pulmón o hepático son ejemplos, entre otros, de estrategias terapéuticas en fases avanzadas de ensayos clínicos³¹³. También varios IncRNAs significativamente asociados a fases clave de procesos tumorales como MALAT-1314 o HULC315 han emergido como dianas de interés para su uso como biomarcadores o para propósitos terapéuticos dirigidos a la modulación de su expresión.

En relación a trastornos neurológicos y del neurodesarrollo, el estudio y desarrollo de posibles tratamientos moleculares cuyas dianas estén centradas en ARNs no codificantes es todavía extremadamente escaso. No obstante, la demostrada implicación de ciertos *IncRNAs* en vías clave para este tipo de patologías los incluye cada vez de manera más evidente en el foco de interés. En el caso específico del Síndrome de Rett, pese a no haber sido estudiados en profundidad, se podrían sugerir importantes *IncRNAs* con gran potencial terapéutico. Uno de estos casos es el del transcrito antisentido del gen *BDNF (BDNF-AS)*, el cual presenta actividad represiva sobre el propio ARN mensajero de

BDNF²¹². Las intervenciones, por tanto, dirigidas a la inhibición de dicho IncRNA permitirían aumentar los niveles de BDNF, los cuales se encuentran notablemente reducidos en la enfermedad. De manera importante, mediante el estudio masivo de IncRNAs circulantes en pacientes con patologías del espectro autista se han podido identificar distintos transcritos con expresión significativamente diferencial, entre los cuales se encuentra BDNF-AS²¹³, reforzando el potencial valor diagnóstico y terapéutico de dicho IncRNA en patologías como el Síndrome de Rett. De hecho, va se ha podido demostrar el éxito de tratamientos dirigidos a la modulación de la expresión de determinados ARNs no codificantes para la mejora sintomática de algunas afectaciones con signos solapantes a los observados en RTT. Estos son los casos del Síndrome de Angelman y el Síndrome de Dravet, en los que el silenciamiento de los ARNs no codificantes antisentido de los genes UBE3A³¹⁶ y SCN1A³¹⁷, respectivamente, mostraba mejoras fenotípicas relevantes en los modelos de estudio. Dichas evidencias justifican la profundización en la investigación y desarrollo de posibles estrategias moleculares enfocadas hacia otros transcritos no codificantes cuya probable relevancia en el Síndrome de Rett ha sido expuesta en el presente proyecto, como el IncRNA ultraconservado *Evf2* o las especies circulares originadas a partir del gen SIRT2. Es importante destacar en este caso la necesidad y utilidad de modelos celulares para el diseño y desarrollo de este tipo de estrategias, especialmente en patologías relacionadas con el tejido cerebral.

Aunque por el momento no se ha explorado bien la aplicación de los *circRNAs* como biomarcadores, su estabilidad, patrones de expresión celular específicos o el hecho de que hayan podido ser identificados en varios fluidos biológicos como la sangre³¹⁸, la saliva³¹⁹ y el plasma²³⁴, sugieren una buena herramienta en el uso diagnóstico de dichas moléculas para distintas afectaciones. En el caso de las enfermedades
neurológicas, éstos adquieren un especial interés debido a la inaccesibilidad del tejido cerebral tanto para pruebas diagnósticas como a nivel terapéutico. En lo que a ello respecta, estudios previos han demostrado que la barrera hematoencefálica se muestra significativamente comprometida en enfermedades como el Alzheimer o la Esclerosis Lateral Amniotrofica^{320,321}, favoreciéndose así la circulación de posibles ARNs circulares específicos de cerebro y su detección en tejidos periféricos. En cuanto a las posibles estrategias terapéuticas dirigidas a la modulación de transcritos circulares asociados a determinadas patologías, Lesca M. y su equipo revisan distintas aproximaciones para dicho objetivo, distinguiendo dos vertientes: la modulación (sobreexpresión, inhibición o corrección) de circRNAs nativos de manera endógena o la producción e incorporación de especies circulares artificiales³²². Cabe decir que algunas de estas metodologías no han sido todavía llevadas a cabo experimentalmente.

CONCLUSIONES

CONCLUSIONES

- Los perfiles de expresión de determinados *T-UCRs* y *circRNAs* se encuentran alterados en córtex frontal e hipocampo de ratones cuya expresión del gen *Mecp2* se encuentra deplecionada, poniéndose de manifiesto la posible relevancia de dichos transcritos no codificantes en el desarrollo de la enfermedad de Rett.
- 2. Todos los modelos utilizados en el presente proyecto muestran la desregulación en niveles de ARNs no codificantes derivados de genes implicados en la dinámica y función citoesquelética y la señalización sináptica glutamatérgica como rutas principales, sugiriendo el papel relevante del trancriptoma no codificante en vías comúnmente alteradas en la enfermedad de Rett y su potencial uso como dianas terapéuticas y/o biomarcadores de la patología.
- 3. Las diferencias en los niveles de expresión de las formas circulares y lineal de *SIRT2*, así como el aumento en los niveles proteicos, observados en el modelo murino y líneas neurales humanas con deficiencia de MeCP2, sugieren un posible papel relevante de dichas moléculas tanto en la maduración neuronal como en la fisiopatología del Síndrome de Rett.
- 4. Las alteraciones de la expresión de los *T-UCRs uc.478/479* en tres modelos distintos de la enfermedad, así como la posible coregulación transcripcional de su propio gen huésped *GRIA3*, demuestran la relevancia del estudio de la regulación ejercida por *T-UCRs* en vías de señalización alteradas en un contexto de deficiencia de MeCP2.

- Las correlaciones observadas entre los niveles de expresión de los *T-UCRs uc.478/479* y de edición de la posición R/G del ARN de *GRIA3* en humanos plantean que los cambios en los niveles de edición podrían estar regulados por dichas especies no codificantes.
- 6. Las variaciones en la edición del ARN de *GRIA3* en las líneas neurales humanas y en hipocampos *post-mortem* de pacientes con Síndrome de Rett podrían ser responsables de la alteración de algunas propiedades en los receptores de glutamato relevantes para la correcta función neuronal.

REFERENCIAS

REFERENCIAS

- 1. Rett, A. [On a unusual brain atrophy syndrome in hyperammonemia in childhood]. *Wien. Med. Wochenschr.* **116**, 723–726 (1966).
- 2. Rett, A. On a remarkable syndrome of cerebral atrophy associated with hyperammonaemia in childhood. *Wiener Medizinische Wochenschrift* **166**, 322–324 (2016).
- Hagberg, B., Aicardi, J., Dias, K. & Ramos, O. A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett's syndrome: report of 35 cases. *Ann. Neurol.* 14, 471–9 (1983).
- 4. Krajnc, N. Management of epilepsy in patients with rett syndrome: Perspectives and considerations. *Therapeutics and Clinical Risk Management* vol. 11 925–932 (2015).
- 5. Laurvick, C. L. *et al.* Rett syndrome in Australia: A review of the epidemiology. *J. Pediatr.* **148**, 347–352 (2006).
- Amir, R. E. *et al.* Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl- CpG-binding protein 2. *Nat. Genet.* 23, 185– 188 (1999).
- 7. Neul, J. L. *et al.* Rett Syndrome: Revised Diagnostic Criteria and Nomenlcature. *Annu. Neurol.* **68**, 944–950 (2010).
- 8. Chahrour, M. & Zoghbi, H. Y. The Story of Rett Syndrome: From Clinic to Neurobiology. *Neuron* **56**, 422–437 (2007).
- 9. Einspieler, C., Kerr, A. M. & Prechtl, H. F. R. Abnormal general movements in girls with Rett disorder: The first four months of life. in *Brain and Development* vol. 27 (2005).
- 10. Weng, S. M., Bailey, M. E. S. & Cobb, S. R. Rett syndrome: From bed to bench. *Pediatr. Neonatol.* **52**, 309–316 (2011).
- 11. Zappella, M. The Rett girls with preserved speech. *Brain Dev.* **14**, 98–101 (1992).
- 12. Rolando, S. Rett syndrome: Report of eight cases. *Brain Dev.* **7**, 290–296 (1985).
- 13. Hanefeld, F. The clinical pattern of the Rett syndrome. *Brain Dev.* **7**, 320–5 (1985).
- Armstrong, D., Dunn, J. K., Antalffy, B. & Trivedi, R. Selective dendritic alterations in the cortex of rett syndrome. *J. Neuropathol. Exp. Neurol.* 54, 195–201 (1995).

- Fukuda, T., Itoh, M., Ichikawa, T., Washiyama, K. & Goto, Y. I. Delayed maturation of neuronal architecture and synaptogenesis in cerebral cortex of Mecp2-deficient mice. *J. Neuropathol. Exp. Neurol.* 64, 537– 544 (2005).
- 16. Nguyen, M. V. C. *et al.* MeCP2 is critical for maintaining mature neuronal networks and global brain anatomy during late stages of postnatal brain development and in the mature adult brain. *J. Neurosci.* **32**, 10021–10034 (2012).
- Carter, J. C. *et al.* Selective cerebral volume reduction in Rett syndrome: A multiple-approach MR imaging study. *Am. J. Neuroradiol.* **29**, 436– 441 (2008).
- Banerjee, A. *et al.* Jointly reduced inhibition and excitation underlies circuit-wide changes in cortical processing in Rett syndrome. *Proc. Natl. Acad. Sci. U. S. A.* **113**, E7287–E7296 (2016).
- Samardzic, J., Jadzic, D., Hencic, B., Jancic, J. & Strac, D. S. Introductory Chapter: GABA/Glutamate Balance: A Key for Normal Brain Functioning. in *GABA And Glutamate - New Developments In Neurotransmission Research* (InTech, 2018). doi:10.5772/intechopen.74023.
- Jacob, T. C., Moss, S. J. & Jurd, R. GABAA receptor trafficking and its role in the dynamic modulation of neuronal inhibition. *Nature Reviews Neuroscience* vol. 9 331–343 (2008).
- 21. Chao, H. T. *et al.* Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. *Nature* **468**, 263–269 (2010).
- 22. Meng, X. *et al.* Manipulations of MeCP2 in glutamatergic neurons highlight their contributions to rett and other neurological disorders. *Elife* **5**, (2016).
- 23. Filippini, A., Bonini, D., La Via, L. & Barbon, A. The Good and the Bad of Glutamate Receptor RNA Editing. *Molecular Neurobiology* (2017) doi:10.1007/s12035-016-0201-z.
- 24. Sommer, B. *et al.* Flip and flop: A cell-specific functional switch in glutamate-operated channels of the CNS. *Science (80-.).* **249**, 1580–1585 (1990).
- Lambolez, B., Ropert, N., Ferrais, D., Rossier, J. & Hestrin, S. Correlation between kinetics and RNA splicing of α-amino-3-hydroxy-5methylisoxazole-4-propionic acid receptors in neocortical neurons. *Proc. Natl. Acad. Sci. U. S. A.* **93**, 1797–1802 (1996).
- 26. Gerber, A. P. & Keller, W. RNA editing by base deamination: More enzymes, more targets, new mysteries. *Trends in Biochemical Sciences* vol. 26 376–384 (2001).

- 27. Bass, B. L. RNA Editing by Adenosine Deaminases That Act on RNA. *Annu. Rev. Biochem.* **71**, 817–846 (2002).
- Orlandi, C., Barbon, A. & Barlati, S. Activity regulation of adenosine deaminases acting on RNA (ADARs). *Molecular Neurobiology* vol. 45 61–75 (2012).
- Lai, F., Chen, C. X., Carter, K. C. & Nishikura, K. Editing of glutamate receptor B subunit ion channel RNAs by four alternatively spliced DRADA2 double-stranded RNA adenosine deaminases. *Mol. Cell. Biol.* 17, 2413–2424 (1997).
- O'Connell, M. A., Gerber, A. & Keller, W. Purification of human doublestranded RNA-specific editase 1 (HRED1) involved in editing of brain glutamate receptor B pre-mRNA. *J. Biol. Chem.* 272, 473–478 (1997).
- Higuchi, M. *et al.* Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. *Nature* 406, 78–81 (2000).
- Wang, Q. *et al.* Stress-induced Apoptosis Associated with Null Mutation of ADAR1 RNA Editing Deaminase Gene. *J. Biol. Chem.* 279, 4952– 4961 (2004).
- Balik, A., Penn, A. C., Nemoda, Z. & Greger, I. H. Activity-regulated RNA editing in select neuronal subfields in hippocampus. *Nucleic Acids Res.* 41, 1124–1134 (2013).
- 34. Orlandi, C. *et al.* AMPA receptor regulation at the mRNA and protein level in rat primary cortical cultures. *PLoS One* **6**, e25350 (2011).
- 35. La Via, L. *et al.* Modulation of dendritic AMPA receptor mRNA trafficking by RNA splicing and editing. *Nucleic Acids Res.* **41**, 617–631 (2013).
- Kwak, S. & Kawahara, Y. Deficient RNA editing of GluR2 and neuronal death in amyotropic lateral sclerosis. *Journal of Molecular Medicine* vol. 83 110–120 (2005).
- Barbon, A. *et al.* Chronic phencyclidine administration reduces the expression and editing of specific glutamate receptors in rat prefrontal cortex. *Exp. Neurol.* 208, 54–62 (2007).
- 38. Khermesh, K. *et al.* Reduced levels of protein recoding by A-to-I RNA editing in Alzheimer's disease. *RNA* **22**, 290–302 (2016).
- Salpietro, V. *et al.* AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders. *Nat. Commun.* 10, (2019).
- 40. Ellison, K. A. *et al.* Examination of X chromosome markers in Rett syndrome: exclusion mapping with a novel variation on multilocus linkage analysis. *Am. J. Hum. Genet.* **50**, 278–87 (1992).
- 41. Schanen, C. A severely affected male born into a Rett syndrome kindred supports X- linked inheritance and allows extension of the exclusion map [1]. *American Journal of Human Genetics* vol. 63 267–269 (1998).

- 42. Schanen, N. C. *et al.* A new Rett syndrome family consistent with Xlinked inheritance expands the X chromosome exclusion map. *Am. J. Hum. Genet.* **61**, 634–641 (1997).
- 43. Zoghbi, H. Genetic aspects of Rett syndrome. *J. Child Neurol.* **3 Suppl**, S76-8 (1988).
- 44. Zoghbi, H. Y., Percy, A. K., Schultz, R. J. & Fill, C. Patterns of X chromosome inactivation in the Rett syndrome. *Brain Dev.* **12**, 131–5 (1990).
- 45. Schönewolf-Greulich, B. *et al.* Mosaic MECP2 variants in males with classical Rett syndrome features, including stereotypical hand movements. *Clin. Genet.* **95**, 403–408 (2019).
- 46. Takeguchi, R. *et al.* MeCP2_e2 partially compensates for lack of MeCP2_e1: A male case of Rett syndrome. *Mol. Genet. Genomic Med.* (2019) doi:10.1002/mgg3.1088.
- 47. Villard, L. MECP2 mutations in males. *Journal of Medical Genetics* vol. 44 417–423 (2007).
- 48. Trappe, R. *et al.* MECP2 mutations in sporadic cases of Rett syndrome are almost exclusively of paternal origin. *Am. J. Hum. Genet.* **68**, 1093–1101 (2001).
- 49. Ariani, F. *et al.* FOXG1 Is Responsible for the Congenital Variant of Rett Syndrome. *Am. J. Hum. Genet.* **83**, 89–93 (2008).
- 50. Tao, J. *et al.* Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5/STK9) gene are associated with severe neurodevelopmental retardation. *Am. J. Hum. Genet.* **75**, 1149–1154 (2004).
- 51. De Bona, C. *et al.* Preserved speech variant is allelic of classic Rett syndrome. *Eur. J. Hum. Genet.* **8**, 325–330 (2000).
- 52. Lucariello, M. *et al.* Whole exome sequencing of Rett syndrome-like patients reveals the mutational diversity of the clinical phenotype. *Hum. Genet.* **135**, 1343–1354 (2016).
- 53. Itoh, M. *et al.* Methyl CpG-binding protein isoform MeCP2-e2 is dispensable for rett syndrome phenotypes but essential for embryo viability and placenta development. *J. Biol. Chem.* **287**, 13859–13867 (2012).
- 54. Lewis, J. D. *et al.* Purification, sequence, and cellular localization of a novel chromosomal protein that binds to Methylated DNA. *Cell* **69**, 905–914 (1992).
- Nan, X., Meehan, R. R. & Bird, A. Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. *Nucleic Acids Res.* 21, 4886–4892 (1993).

- 56. Jung, B. P. *et al.* The expression of methyl CpG binding factor MeCP2 correlates with cellular differentiation in the developing rat brain and in cultured cells. *J. Neurobiol.* **55**, 86–96 (2003).
- 57. Balmer, D., Goldstine, J., Rao, Y. M. & LaSalle, J. M. Elevated methyl-CpG-binding protein 2 expression is acquired during postnatal human brain development and is correlated with alternative polyadenylation. *J. Mol. Med.* **81**, 61–68 (2003).
- 58. Kishi, N. & Macklis, J. D. MECP2 is progressively expressed in postmigratory neurons and is involved in neuronal maturation rather than cell fate decisions. *Mol. Cell. Neurosci.* **27**, 306–321 (2004).
- 59. Krishnaraj, R., Ho, G. & Christodoulou, J. RettBASE: Rett syndrome database update. *Hum. Mutat.* **38**, 922–931 (2017).
- 60. Cheval, H. *et al.* Postnatal inactivation reveals enhanced requirement for MeCP2 at distinct age windows. *Hum. Mol. Genet.* **21**, 3806–3814 (2012).
- 61. McGraw, C. M., Samaco, R. C. & Zoghbi, H. Y. Adult neural function requires MeCP2. *Science* vol. 333 186 (2011).
- 62. Ross, P. D. *et al.* Exclusive expression of MeCP2 in the nervous system distinguishes between brain and peripheral Rett syndrome-like phenotypes. *Hum. Mol. Genet.* ddw269 (2016) doi:10.1093/hmg/ddw269.
- 63. Valinluck, V. *et al.* Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). *Nucleic Acids Res.* **32**, 4100–4108 (2004).
- 64. Mellén, M., Ayata, P., Dewell, S., Kriaucionis, S. & Heintz, N. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. *Cell* **151**, 1417–1430 (2012).
- Sperlazza, M. J., Bilinovich, S. M., Sinanan, L. M., Javier, F. R. & Williams, D. C. Structural Basis of MeCP2 Distribution on Non-CpG Methylated and Hydroxymethylated DNA. *J. Mol. Biol.* 429, 1581–1594 (2017).
- 66. Nan, X., Campoy, F. J. & Bird, A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. *Cell* **88**, 471–481 (1997).
- Kudo, S. *et al.* Heterogeneity in residual function of MeCP2 carrying missense mutations in the methyl CpG binding domain. *J. Med. Genet.* 40, 487–493 (2003).
- 68. Lister, R. *et al.* Global epigenomic reconfiguration during mammalian brain development. *Science (80-.).* **341**, (2013).

- 69. Zhou, Z. *et al.* Brain-Specific Phosphorylation of MeCP2 Regulates Activity-Dependent Bdnf Transcription, Dendritic Growth, and Spine Maturation. *Neuron* **52**, 255–269 (2006).
- 70. Ebert, D. H. *et al.* Activity-dependent phosphorylation of MeCP2 threonine 308 regulates interaction with NCoR. *Nature* **499**, 341–345 (2013).
- 71. Tao, J. et al. Phosphorylation of MeCP2 at Serine 80 regulates its chromatin association and neurological function. PNAS March vol. 24 (2009).
- 72. Stefanelli, G. *et al.* Brain phosphorylation of MeCP2 at serine 164 is developmentally regulated and globally alters its chromatin association. *Sci. Rep.* **6**, (2016).
- 73. Lyst, M. J. & Bird, A. Rett syndrome: A complex disorder with simple roots. *Nature Reviews Genetics* vol. 16 261–274 (2015).
- 74. Chahrour, M. *et al.* MeCP2, a key contributor to neurological disease, activates and represses transcription. *Science (80-.).* **320**, 1224–1229 (2008).
- 75. Young, J. I. *et al.* Regulation of RNA splicing by the methylationdependent transcriptional repressor methyl-CpG binding protein 2. *Proc. Natl. Acad. Sci. U. S. A.* **102**, 17551–17558 (2005).
- 76. Maunakea, A. K., Chepelev, I., Cui, K. & Zhao, K. Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. *Cell Res.* **23**, 1256–1269 (2013).
- 77. Cheng, T. L. *et al.* MeCP2 Suppresses Nuclear MicroRNA Processing and Dendritic Growth by Regulating the DGCR8/Drosha Complex. *Dev. Cell* **28**, 547–560 (2014).
- 78. Kinde, B., Wu, D. Y., Greenberg, M. E. & Gabel, H. W. DNA methylation in the gene body influences MeCP2-mediated gene repression. *Proc. Natl. Acad. Sci. U. S. A.* **113**, 15114–15119 (2016).
- 79. Kokura, K. *et al.* The Ski Protein Family Is Required for MeCP2mediated Transcriptional Repression. *J. Biol. Chem.* **276**, 34115–34121 (2001).
- Fischle, W. *et al.* Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. *Mol. Cell* 9, 45–57 (2002).
- Lyst, M. J. *et al.* Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. *Nat. Neurosci.* 16, 898–902 (2013).
- 82. Tillotson, R. & Bird, A. The Molecular Basis of MeCP2 Function in the Brain. *J. Mol. Biol.* (2019) doi:10.1016/j.jmb.2019.10.004.

- 83. Guy, J., Hendrich, B., Holmes, M., Martin, J. E. & Bird, A. A mouse Mecp2-null mutation causes neurological symptoms that mimic rett syndrome. *Nat. Genet.* **27**, 322–326 (2001).
- 84. Chen, R. Z., Akbarian, S., Tudor, M. & Jaenisch, R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. *Nat. Genet.* **27**, 327–331 (2001).
- 85. Pelka, G. J. *et al.* Mecp2 deficiency is associated with learning and cognitive deficits and altered gene activity in the hippocampal region of mice. *Brain* **129**, 887–898 (2006).
- 86. Vashi, N. & Justice, M. J. Treating Rett syndrome: from mouse models to human therapies. *Mammalian Genome* vol. 30 90–110 (2019).
- 87. Fyffe, S. L. *et al.* Deletion of Mecp2 in Sim1-Expressing Neurons Reveals a Critical Role for MeCP2 in Feeding Behavior, Aggression, and the Response to Stress. *Neuron* **59**, 947–958 (2008).
- 88. Samaco, R. C. *et al.* Loss of MeCP2 in aminergic neurons causes cellautonomous defects in neurotransmitter synthesis and specific behavioral abnormalities. *Proc. Natl. Acad. Sci. U. S. A.* **106**, 21966– 21971 (2009).
- Huang, T. W. *et al.* Progressive changes in a distributed neural circuit underlie breathing abnormalities in mice lacking MeCP2. *J. Neurosci.* 36, 5572–5586 (2016).
- 90. Wan, M. *et al.* Rett syndrome and beyond: Recurrent spontaneous and familial MECP2 mutations at CpG hotspots. *Am. J. Hum. Genet.* **65**, 1520–1529 (1999).
- 91. Chao, H. T., Zoghbi, H. Y. & Rosenmund, C. MeCP2 Controls Excitatory Synaptic Strength by Regulating Glutamatergic Synapse Number. *Neuron* **56**, 58–65 (2007).
- 92. Cordone, V., Pecorelli, A., Amicarelli, F., Hayek, J. & Valacchi, G. The complexity of Rett syndrome models: Primary fibroblasts as a diseasein-a-dish reliable approach. *Drug Discov. Today Dis. Model.* (2019) doi:10.1016/j.ddmod.2019.11.001.
- 93. Warby, S. Modeling classic female Rett Syndrome in male mice. *Clin. Genet.* **62**, 368–375 (2002).
- 94. Calfa, G., Percy, A. K. & Pozzo-Miller, L. Experimental models of rett syndrome based on Mecp2 dysfunction. *Experimental Biology and Medicine* vol. 236 3–19 (2011).
- 95. Wu, Y. *et al.* Characterization of Rett Syndrome-like phenotypes in Mecp2-knockout rats. *J. Neurodev. Disord.* **8**, (2016).
- 96. Cortelazzo, A. *et al.* Proteomic analysis of the Rett syndrome experimental model mecp2Q63X mutant zebrafish. *J. Proteomics* **154**, 128–133 (2017).

- 97. Hess-Homeier, D. L., Fan, C. Y., Gupta, T., Chiang, A. S. & Certel, S. J. Astrocyte-Specific regulation of hMeCP2 expression in Drosophila. *Biol. Open* **3**, 1011–1019 (2014).
- 98. Chen, Y. *et al.* Modeling Rett Syndrome Using TALEN-Edited MECP2 Mutant Cynomolgus Monkeys. *Cell* **169**, 945-955.e10 (2017).
- 99. Russo, F. B. Induced pluripotent stem cells for modeling neurological disorders. *World J. Transplant.* **5**, 209 (2015).
- 100. Hotta, A. *et al.* Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. *Nat. Methods* **6**, 370–376 (2009).
- 101. Marchetto, M. C. N. *et al.* A model for neural development and treatment of rett syndrome using human induced pluripotent stem cells. *Cell* **143**, 527–539 (2010).
- Djuric, U. *et al.* MECP2e1 isoform mutation affects the form and function of neurons derived from Rett syndrome patient iPS cells. *Neurobiol. Dis.* 76, 37–45 (2015).
- 103. Williams, E. C. *et al.* Mutant astrocytes differentiated from Rett syndrome patients-specific iPSCs have adverse effects on wildtype neurons. *Hum. Mol. Genet.* **23**, 2968–2980 (2014).
- 104. Kim, K. Y., Hysolli, E. & Park, I. H. Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome. *Proc. Natl. Acad. Sci. U. S. A.* **108**, 14169–14174 (2011).
- 105. Tchieu, J. *et al.* Female human iPSCs retain an inactive X chromosome. *Cell Stem Cell* **7**, 329–342 (2010).
- 106. Huong Le, T. T. *et al.* Efficient and precise CRISPR/Cas9-mediated MECP2 modifications in human-induced pluripotent stem cells. *Front. Genet.* **10**, (2019).
- 107. Esteller, M. Non-coding RNAs in human disease. *Nat Rev Genet* **12**, 861–874 (2011).
- 108. Qureshi, I. A. & Mehler, M. F. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. *Nat. Rev. Neurosci.* **13**, 528–41 (2012).
- 109. Hombach, S. & Kretz, M. Non-coding RNAs: Classification, biology and functioning. *Adv. Exp. Med. Biol.* **937**, 3–17 (2016).
- 110. Kung, J. T. Y., Colognori, D. & Lee, J. T. Long noncoding RNAs: Past, present, and future. *Genetics* vol. 193 651–669 (2013).
- 111. Morris, K. V. & Mattick, J. S. The rise of regulatory RNA. *Nature Reviews Genetics* vol. 15 423–437 (2014).
- 112. Wang, K. C. & Chang, H. Y. Molecular Mechanisms of Long Noncoding RNAs. *Molecular Cell* vol. 43 904–914 (2011).

- 113. Bartel, D. P. MicroRNAs: Target Recognition and Regulatory Functions. *Cell* vol. 136 215–233 (2009).
- 114. Vasudevan, S., Tong, Y. & Steitz, J. A. Switching from repression to activation: MicroRNAs can up-regulate translation. *Science (80-.).* **318**, 1931–1934 (2007).
- 115. Mortensen, R. D., Serra, M., Steitz, J. A. & Vasudevan, S. Posttranscriptional activation of gene expression in Xenopus laevis oocytes by microRNA-protein complexes (microRNPs). *Proc. Natl. Acad. Sci. U. S. A.* **108**, 8281–8286 (2011).
- 116. Ha, M. & Kim, V. N. Regulation of microRNA biogenesis. *Nature Reviews Molecular Cell Biology* vol. 15 509–524 (2014).
- 117. De Rie, D. *et al.* An integrated expression atlas of miRNAs and their promoters in human and mouse. *Nat. Biotechnol.* **35**, 872–878 (2017).
- 118. Lee, Y. *et al.* MicroRNA genes are transcribed by RNA polymerase II. *EMBO J.* **23**, 4051–4060 (2004).
- 119. Borchert, G. M., Lanier, W. & Davidson, B. L. RNA polymerase III transcribes human microRNAs. *Nat. Struct. Mol. Biol.* **13**, 1097–1101 (2006).
- 120. Lee, Y., Jeon, K., Lee, J. T., Kim, S. & Kim, V. N. MicroRNA maturation: Stepwise processing and subcellular localization. *EMBO J.* **21**, 4663–4670 (2002).
- Denli, A. M., Tops, B. B. J., Plasterk, R. H. A., Ketting, R. F. & Hannon, G. J. Processing of primary microRNAs by the Microprocessor complex. *Nature* 432, 231–235 (2004).
- 122. Han, J. *et al.* The Drosha-DGCR8 complex in primary microRNA processing. *Genes Dev.* **18**, 3016–3027 (2004).
- 123. Zhang, H., Kolb, F. A., Jaskiewicz, L., Westhof, E. & Filipowicz, W. Single processing center models for human Dicer and bacterial RNase III. *Cell* **118**, 57–68 (2004).
- 124. Liu, J. *et al.* Argonaute2 is the catalytic engine of mammalian RNAi. *Science (80-.).* **305**, 1437–1441 (2004).
- Davis, T. H. *et al.* Conditional loss of dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. *J. Neurosci.* 28, 4322– 4330 (2008).
- 126. Schratt, G. M. *et al.* A brain-specific microRNA regulates dendritic spine development. *Nature* **439**, 283–289 (2006).
- 127. Shi, Y. *et al.* MicroRNA regulation of neural stem cells and neurogenesis. in *Journal of Neuroscience* vol. 30 14931–14936 (2010).

- 128. Adlakha, Y. K. & Saini, N. Brain microRNAs and insights into biological functions and therapeutic potential of brain enriched miRNA-128. *Molecular Cancer* vol. 13 (2014).
- 129. Nowakowski, T. J. *et al.* MicroRNA-92b regulates the development of intermediate cortical progenitors in embryonic mouse brain. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 7056–7061 (2013).
- Krichevsky, A. M., Sonntag, K.-C., Isacson, O. & Kosik, K. S. Specific MicroRNAs Modulate Embryonic Stem Cell-Derived Neurogenesis. *Stem Cells* 24, 857–864 (2006).
- Sosanya, N. M. *et al.* Degradation of high affinity HuD targets releases Kv1.1 mRNA from miR-129 repression by mTORC1. *J. Cell Biol.* 202, 53–69 (2013).
- Kocerh, J. *et al.* MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction. *Proc. Natl. Acad. Sci. U. S. A.* **106**, 3507– 3512 (2009).
- 133. Szulwach, K. E. *et al.* Cross talk between microRNA and epigenetic regulation in adult neurogenesis. *J. Cell Biol.* **189**, 127–141 (2010).
- 134. Urdinguio, R. G. *et al.* Disrupted microrna expression caused by Mecp2 loss in a mouse model of Rett syndrome. *Epigenetics* (2010) doi:10.4161/epi.5.7.13055.
- 135. Wu, H. *et al.* Genome-wide analysis reveals methyl-CpG-binding protein 2-dependent regulation of microRNAs in a mouse model of Rett syndrome. *Proc. Natl. Acad. Sci. U. S. A.* **107**, 18161–18166 (2010).
- 136. Huang, E. J. & Reichardt, L. F. Neurotrophins: Roles in Neuronal Development and Function. *Annu. Rev. Neurosci.* **24**, 677–736 (2001).
- 137. Chapleau, C. A., Larimore, J. L., Theibert, A. & Pozzo-Miller, L. Modulation of dendritic spine development and plasticity by BDNF and vesicular trafficking: Fundamental roles in neurodevelopmental disorders associated with mental retardation and autism. *J. Neurodev. Disord.* 1, 185–196 (2009).
- 138. Li, W. & Pozzo-Miller, L. BDNF deregulation in Rett syndrome. *Neuropharmacology* vol. 76 737–746 (2014).
- 139. Gao, J. *et al.* A novel pathway regulates memory and plasticity via SIRT1 and miR-134. *Nature* **466**, 1105–1109 (2010).
- 140. Fiore, R. *et al.* Mef2-mediated transcription of the miR379-410 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels. *EMBO J.* **28**, 697–710 (2009).
- Tsujimura, K. *et al.* MiR-199a Links MeCP2 with mTOR Signaling and Its Dysregulation Leads to Rett Syndrome Phenotypes. *Cell Rep.* 12, 1887–1901 (2015).

- 142. Zhang, Y. *et al.* MiR-130a regulates neurite outgrowth and dendritic spine density by targeting MeCP2. *Protein Cell* **7**, 489–500 (2016).
- 143. Lyu, J. W., Yuan, B., Cheng, T. L., Qiu, Z. L. & Zhou, W. H. Reciprocal regulation of autism-related genes MeCP2 and PTEN via microRNAs. *Sci. Rep.* **6**, (2016).
- 144. Rodrigues, D. C. *et al.* MECP2 Is Post-transcriptionally Regulated during Human Neurodevelopment by Combinatorial Action of RNA-Binding Proteins and miRNAs. *Cell Rep.* **17**, 720–734 (2016).
- 145. Han, K. *et al.* Human-specific regulation of MeCP2 levels in fetal brains by microRNA miR-483-5p. *Genes Dev.* **27**, 485–490 (2013).
- 146. Klein, M. E. *et al.* Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. *Nat. Neurosci.* **10**, 1513–1514 (2007).
- 147. Alvarez-Saavedra, M. *et al.* miRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock. *Hum. Mol. Genet.* **20**, 731–751 (2011).
- 148. Guo, X. *et al.* Advances in long noncoding RNAs: Identification, structure prediction and function annotation. *Briefings in Functional Genomics* vol. 15 38–46 (2016).
- Bazin, J. *et al.* Global analysis of ribosome-associated noncoding RNAs unveils new modes of translational regulation. *Proc. Natl. Acad. Sci. U.* S. A. **114**, E10018–E10027 (2017).
- 150. Gullerova, M. Long non-coding RNA. in *Genomic Elements in Health, Disease and Evolution: Junk DNA* 83–108 (Springer-Verlag London Ltd, 2015). doi:10.1007/978-1-4939-3070-8_4.
- 151. Derrien, T. *et al.* The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. *Genome Res.* **22**, 1775–1789 (2012).
- Dykes, I. M. & Emanueli, C. Transcriptional and Post-transcriptional Gene Regulation by Long Non-coding RNA. *Genomics, Proteomics and Bioinformatics* vol. 15 177–186 (2017).
- 153. Gil, N. & Ulitsky, I. Regulation of gene expression by cis-acting long noncoding RNAs. *Nature Reviews Genetics* vol. 21 102–117 (2020).
- 154. Bejerano, G. *et al.* Ultraconserved elements in the human genome. *Science (80-.).* **304**, 1321–1325 (2004).
- De Grassi, A. *et al.* Ultradeep sequencing of a human ultraconserved region reveals somatic and constitutional genomic instability. *PLoS Biol.* **8**, (2010).
- 156. Sandelin, A. *et al.* Arrays of ultraconserved non-coding regions span the loci of key developmental genes in vertebrate genomes. *BMC Genomics* **5**, (2004).

- 157. Ahituv, N. *et al.* Deletion of ultraconserved elements yields viable mice. *PLoS Biol.* **5**, 1906–1911 (2007).
- 158. Kitamura, K. *et al.* Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. *Nat. Genet.* **32**, 359–369 (2002).
- 159. Gécz, J., Cloosterman, D. & Partington, M. ARX: a gene for all seasons. *Current Opinion in Genetics and Development* vol. 16 308–316 (2006).
- 160. Dickel, D. E. *et al.* Ultraconserved Enhancers Are Required for Normal Development. *Cell* **172**, 491-499.e15 (2018).
- Calin, G. A. *et al.* Ultraconserved Regions Encoding ncRNAs Are Altered in Human Leukemias and Carcinomas. *Cancer Cell* **12**, 215– 229 (2007).
- 162. Mudgapalli, N., Shaw, B. P., Chava, S. & Challagundla, K. B. The Transcribed-Ultra Conserved Regions: Novel non-coding RNA players in neuroblastoma progression. *Non-coding RNA* vol. 5 (2019).
- Zhou, J. *et al.* Conserved expression of ultra-conserved noncoding RNA in mammalian nervous system. *Biochim. Biophys. Acta - Gene Regul. Mech.* 1860, 1159–1168 (2017).
- 164. Wang, C. *et al.* TUC.338 promotes invasion and metastasis in colorectal cancer. *Int. J. Cancer* **140**, 1457–1464 (2017).
- Zhou, J. *et al.* uc.454 Inhibited Growth by Targeting Heat Shock Protein Family A Member 12B in Non-Small-Cell Lung Cancer. *Mol. Ther.* -*Nucleic Acids* 12, 174–183 (2018).
- 166. Sun, Y. *et al.* Transcribed Ultraconserved Regions, Uc.323, Ameliorates Cardiac Hypertrophy by Regulating the Transcription of CPT1b (Carnitine Palmitoyl transferase 1b). *Hypertens. (Dallas, Tex. 1979)* **75**, 79–90 (2020).
- 167. Nan, A. *et al.* A transcribed ultraconserved noncoding RNA, Uc.173, is a key molecule for the inhibition of lead-induced neuronal apoptosis. *Oncotarget* **7**, 112–124 (2016).
- Liz, J. *et al.* Regulation of pri-miRNA processing by a long noncoding RNA transcribed from an ultraconserved region. *Mol. Cell* 55, 138–147 (2014).
- Fabris, L. & Calin, G. A. Understanding the Genomic Ultraconservations: T-UCRs and Cancer. in *International Review of Cell* and Molecular Biology vol. 333 159–172 (Elsevier Inc., 2017).
- 170. Terracciano, D. *et al.* The role of a new class of long noncoding RNAs transcribed from ultraconserved regions in cancer. *Biochimica et Biophysica Acta Reviews on Cancer* vol. 1868 449–455 (2017).

- 171. Mestdagh, P. *et al.* An integrative genomics screen uncovers ncRNA T-UCR functions in neuroblastoma tumours. *Oncogene* **29**, 3583–3592 (2010).
- 172. Hudson, R. S. *et al.* Transcription signatures encoded by ultraconserved genomic regions in human prostate cancer. *Mol. Cancer* **12**, (2013).
- 173. Wang, L. *et al.* Expression of uc.189 and its clinicopathologic significance in gynecological cancers. *Oncotarget* **9**, 7453–7463 (2018).
- Olivieri, M. *et al.* Long non-coding RNA containing ultraconserved genomic region 8 promotes bladder cancer tumorigenesis. *Oncotarget* 7, 20636–20654 (2016).
- 175. Zhang, L.-X. *et al.* uc.38 induces breast cancer cell apoptosis via PBX1. *Am. J. Cancer Res.* **7**, 2438–2451 (2017).
- Qin, J. *et al.* LncRNA Uc.173 is a key molecule for the regulation of leadinduced renal tubular epithelial cell apoptosis. *Biomed. Pharmacother.* **100**, 101–107 (2018).
- 177. Qian, X. X. *et al.* Noncoding transcribed ultraconserved region (T-UCR) uc.261 participates in intestinal mucosa barrier damage in Crohn's Disease. *Inflamm. Bowel Dis.* **22**, 2840–2852 (2016).
- 178. Cui, X. *et al.* A transcribed ultraconserved noncoding RNA, uc.417, serves as a negative regulator of brown adipose tissue thermogenesis. *FASEB J.* **30**, 4301–4312 (2016).
- 179. Guo, J. *et al.* Ultraconserved element uc.372 drives hepatic lipid accumulation by suppressing miR-195/miR4668 maturation. *Nat. Commun.* **9**, 612 (2018).
- 180. Starke, S. *et al.* Exon circularization requires canonical splice signals. *Cell Rep.* **10**, 103–111 (2015).
- 181. Liang, D. & Wilusz, J. E. Short intronic repeat sequences facilitate circular RNA production. *Genes Dev.* **28**, 2233–2247 (2014).
- 182. He, J., Xie, Q., Xu, H., Li, J. & Li, Y. Circular RNAs and cancer. *Cancer Letters* vol. 396 138–144 (2017).
- 183. Ashwal-Fluss, R. *et al.* CircRNA Biogenesis competes with Pre-mRNA splicing. *Mol. Cell* **56**, 55–66 (2014).
- 184. Zhang, Y. *et al.* Circular Intronic Long Noncoding RNAs. *Mol. Cell* **51**, 792–806 (2013).
- 185. Ji, P. *et al.* Expanded Expression Landscape and Prioritization of Circular RNAs in Mammals. *Cell Rep.* **26**, 3444-3460.e5 (2019).
- 186. Wilusz, J. E. A 360° view of circular RNAs: From biogenesis to functions. *Wiley Interdisciplinary Reviews: RNA* vol. 9 (2018).

- 187. Pamudurti, N. R. *et al.* Translation of CircRNAs. *Mol. Cell* **66**, 9-21.e7 (2017).
- 188. Hansen, T. B. *et al.* Natural RNA circles function as efficient microRNA sponges. *Nature* **495**, 384–388 (2013).
- You, X. *et al.* Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. *Nat. Neurosci.* **18**, 603–610 (2015).
- 190. Patop, I. L., Wüst, S. & Kadener, S. Past, present, and future of circ <scp>RNA</scp> s. *EMBO J.* **38**, (2019).
- 191. Li, Z. *et al.* Exon-intron circular RNAs regulate transcription in the nucleus. *Nat. Struct. Mol. Biol.* **22**, 256–264 (2015).
- 192. Dong, R. *et al.* CircRNA-derived pseudogenes. *Cell Research* vol. 26 747–750 (2016).
- 193. Bai, N. *et al.* CircFBLIM1 act as a ceRNA to promote hepatocellular cancer progression by sponging miR-346. *J. Exp. Clin. Cancer Res.* **37**, (2018).
- 194. Yang, C. *et al.* Silencing circular RNA UVRAG inhibits bladder cancer growth and metastasis by targeting the microRNA-223/fibroblast growth factor receptor 2 axis. *Cancer Sci.* **110**, 99–106 (2019).
- 195. Li, G. *et al.* Circ-U2AF1 promotes human glioma via derepressing neuro-oncological ventral antigen 2 by sponging hsa-miR-7-5p. *J. Cell. Physiol.* **234**, 9144–9155 (2019).
- Li, P. *et al.* CircRNA-Cdr1as Exerts Anti-Oncogenic Functions in Bladder Cancer by Sponging MicroRNA-135a. *Cell. Physiol. Biochem.* 46, 1606–1616 (2018).
- 197. Zhong, L. *et al.* Circular RNA circC3P1 suppresses hepatocellular carcinoma growth and metastasis through miR-4641/PCK1 pathway. *Biochem. Biophys. Res. Commun.* **499**, 1044–1049 (2018).
- 198. Holdt, L. M. *et al.* Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. *Nat. Commun.* **7**, (2016).
- 199. Bao, X. *et al.* A potential risk factor of essential hypertension in casecontrol study: Circular RNA hsa_circ_0037911. *Biochem. Biophys. Res. Commun.* **498**, 789–794 (2018).
- Wang, Z. *et al.* Identifying circRNA-associated-ceRNA networks in the hippocampus of Aß1-42-induced Alzheimer's disease-like rats using microarray analysis. *Aging (Albany. NY).* **10**, 775–788 (2018).
- Mo, D. The role of Aβ circRNA in Alzheimer's disease. *bioRxiv* 260968 (2018) doi:10.1101/260968.

- Kumar, L. *et al.* Functional Characterization of Novel Circular RNA Molecule, circzip-2 and Its Synthesizing Gene zip-2 in C. elegans Model of Parkinson's Disease. *Mol. Neurobiol.* 55, 6914–6926 (2018).
- Iparraguirre, L. *et al.* Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis. *Hum. Mol. Genet.* 26, 3564–3572 (2017).
- 204. Cardamone, G. *et al.* Not only cancer: the long non-coding RNA MALAT1 affects the repertoire of alternatively spliced transcripts and circular RNAs in multiple sclerosis. *Hum. Mol. Genet.* **28**, 1414–1428 (2019).
- 205. Lin, N. *et al.* An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. *Mol. Cell* **53**, 1005–1019 (2014).
- Ng, S. Y., Bogu, G. K., Soh, B. S. & Stanton, L. W. The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis. *Mol. Cell* 51, 349–359 (2013).
- Mo, C. F. *et al.* Loss of non-coding RNA expression from the DLK1-DIO3 imprinted locus correlates with reduced neural differentiation potential in human embryonic stem cell lines. *Stem Cell Res. Ther.* 6, (2015).
- 208. Zhang, S. F., Gao, J. & Liu, C. M. The Role of Non-Coding RNAs in Neurodevelopmental Disorders. *Frontiers in Genetics* vol. 10 (2019).
- 209. Petazzi, P. *et al.* Dysregulation of the long non-coding RNA transcriptome in a Rett syndrome mouse model. *RNA Biol.* **10**, 1197–1203 (2013).
- 210. Harvey, V. L., Duguid, I. C., Krasel, C. & Stephens, G. J. Evidence that GABA rho subunits contribute to functional ionotropic GABA receptors in mouse cerebellar Purkinje cells. *J. Physiol.* **577**, 127–39 (2006).
- Chang, Q., Khare, G., Dani, V., Nelson, S. & Jaenisch, R. The disease progression of Mecp2 mutant mice is affected by the level of BDNF expression. *Neuron* 49, 341–348 (2006).
- 212. Modarresi, F. *et al.* Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. *Nat. Biotechnol.* **30**, 453–459 (2012).
- 213. Wang, Y. *et al.* Genome-wide differential expression of synaptic long noncoding RNAs in autism spectrum disorder. *Transl. Psychiatry* **5**, (2015).
- 214. Jiang, B.-C., Yang, T., He, L.-N., Tao, Y.-X. & Gao, Y.-J. Altered T-UCRs expression profile in the spinal cord of mice with neuropathic pain. *Transl. Perioper. pain Med.* **1**, 1–10 (2016).

- 215. Wu, B. *et al.* LncRNA uc.48+ siRNA improved diabetic sympathetic neuropathy in type 2 diabetic rats mediated by P2X7 receptor in SCG. *Auton. Neurosci. Basic Clin.* **197**, 14–18 (2016).
- 216. Mehta, S. L., Dharap, A. & Vemuganti, R. Expression of transcribed ultraconserved regions of genome in rat cerebral cortex. *Neurochem. Int.* **77**, 86–93 (2014).
- 217. Mehta, S. L. & Vemuganti, R. Ischemic stroke alters the expression of the transcribed ultraconserved regions of the genome in rat brain. *Stroke* **49**, 1024–1028 (2018).
- 218. Panganiban, G. & Rubenstein, J. L. R. Developmental functions of the Distal-less/Dlx homeobox genes. *Development* **129**, 4371–4386 (2002).
- 219. Zerucha, T. *et al.* A highly conserved enhancer in the Dlx5/Dlx6 intergenic region is the site of cross-regulatory interactions between Dlx genes in the embryonic forebrain. *J. Neurosci.* **20**, 709–721 (2000).
- 220. Ghanem, N. *et al.* Regulatory roles of conserved intergenic domains in vertebrate Dlx bigene clusters. *Genome Res.* **13**, 533–543 (2003).
- 221. Feng, J. *et al.* The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. *Genes Dev.* **20**, 1470–1484 (2006).
- 222. Bond, A. M. *et al.* Balanced gene regulation by an embryonic brain noncoding RNA is critical for GABA circuitry in adult hippocampus. *Nat Neurosci* **12**, 1020–1027 (2011).
- 223. Horike, S. I., Cai, S., Miyano, M., Cheng, J. F. & Kohwi-Shigematsu, T. Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. *Nat. Genet.* **37**, 31–40 (2005).
- 224. Gruner, H., Cortés-López, M., Cooper, D. A., Bauer, M. & Miura, P. CircRNA accumulation in the aging mouse brain. *Sci. Rep.* **6**, 1–14 (2016).
- 225. Dong, W. W., Li, H. M., Qing, X. R., Huang, D. H. & Li, H. G. Identification and characterization of human testis derived circular RNAs and their existence in seminal plasma. *Sci. Rep.* **6**, (2016).
- 226. Alhasan, A. A. *et al.* Circular RNA enrichment in platelets is a signature of transcriptome degradation. *Blood* **127**, e1–e11 (2016).
- Chen, B. J., Huang, S. & Janitz, M. Changes in circular RNA expression patterns during human foetal brain development. *Genomics* **111**, 753– 758 (2019).
- 228. Memczak, S. *et al.* Circular RNAs are a large class of animal RNAs with regulatory potency. *Nature* **495**, 333–338 (2013).

- Zhao, Y., Alexandrov, P. N., Jaber, V. & Lukiw, W. J. Deficiency in the ubiquitin conjugating enzyme UBE2A in Alzheimer's Disease (AD) is linked to deficits in a natural circular miRNA-7 sponge (circRNA; ciRS-7). *Genes (Basel).* 7, (2016).
- 230. Shi, Z. *et al.* The circular RNA ciRS-7 promotes APP and BACE1 degradation in an NF-κB-dependent manner. *FEBS J.* **284**, 1096–1109 (2017).
- 231. Abu, N. & Jamal, R. Circular RNAs as promising biomarkers: A minireview. *Frontiers in Physiology* vol. 7 (2016).
- 232. Sebastian, M., Panagiotis, P., Oliver, P. & Nikolaus, R. Identification and Characterization of Circular RNAs As a New Class of Putative Biomarkers in Human Blood. *PLoS One* (2015).
- 233. Bahn, J. H. *et al.* The landscape of MicroRNA, piwi-interacting RNA, and circular RNA in human saliva. *Clin. Chem.* **61**, 221–230 (2015).
- 234. Li, H. *et al.* Comprehensive circular RNA profiles in plasma reveals that circular RNAs can be used as novel biomarkers for systemic lupus erythematosus. *Clin. Chim. Acta* **480**, 17–25 (2018).
- 235. Suzuki, H. *et al.* Homodimer of two F-box proteins βTrCP1 or βTrCP2 binds to IκBα for signal-dependent ubiquitination. *J. Biol. Chem.* **275**, 2877–2884 (2000).
- 236. Wang, B. & Li, Y. Evidence for the direct involvement of βTrCP in Gli3 protein processing. *Proc. Natl. Acad. Sci. U. S. A.* **103**, 33–38 (2006).
- 237. Lyle, R. *et al.* Split-hand/split-foot malformation 3 (SHFM3) at 10q24, development of rapid diagnostic methods and gene expression from the region. *Am. J. Med. Genet. Part A* **140**, 1384–1395 (2006).
- 238. Gao, R. *et al.* The CNTNAP2-CASK complex modulates GluA1 subcellular distribution in interneurons. *Neurosci. Lett.* **701**, 92–99 (2019).
- Cristofoli, F., Devriendt, K., Davis, E. E., Van Esch, H. & Vermeesch, J. R. Novel CASK mutations in cases with syndromic microcephaly. *Hum. Mutat.* 39, 993–1001 (2018).
- Åberg, K., Saetre, P., Jareborg, N. & Jazin, E. Human QKI, a potential regulator of mRNA expression of human oligodendrocyte-related genes involved in schizophrenia. *Proc. Natl. Acad. Sci. U. S. A.* **103**, 7482– 7487 (2006).
- 241. Lu, J., Shu, R. & Zhu, Y. Dysregulation and dislocation of SFPQ disturbed DNA organization in Alzheimer's disease and frontotemporal dementia. *J. Alzheimer's Dis.* **61**, 1311–1321 (2018).
- 242. Wu, Y. *et al.* Mutations in ionotropic AMPA receptor 3 alter channel properties and are associated with moderate cognitive impairment in humans. *Proc. Natl. Acad. Sci. U. S. A.* **104**, 18163–18168 (2007).

- 243. Epifanova, E., Babaev, A., Newman, A. G. & Tarabykin, V. Role of Zeb2/Sip1 in neuronal development. *Brain Research* vol. 1705 24–31 (2019).
- Baroti, T. *et al.* Transcription factors Sox5 and Sox6 exert direct and indirect influences on oligodendroglial migration in spinal cord and forebrain. *Glia* 64, 122–138 (2016).
- 245. Cid-Samper, F. *et al.* An Integrative Study of Protein-RNA Condensates Identifies Scaffolding RNAs and Reveals Players in Fragile X-Associated Tremor/Ataxia Syndrome. *Cell Rep.* **25**, 3422-3434.e7 (2018).
- 246. Cajigas, I. *et al.* The Evf2 Ultraconserved Enhancer IncRNA Functionally and Spatially Organizes Megabase Distant Genes in the Developing Forebrain. *Mol. Cell* **71**, 956-972.e9 (2018).
- 247. Motoyama, J. & Aoto, K. Important Role of Shh Controlling Gli3 Functions during the Dorsal-Ventral Patterning of the Telencephalon. in *Hedgehog-Gli Signaling in Human Disease* 177–186 (Springer US, 2007). doi:10.1007/0-387-33777-6_14.
- Sokka, A.-L. *et al.* Bruce/apollon promotes hippocampal neuron survival and is downregulated by kainic acid. *Biochem. Biophys. Res. Commun.* 338, 729–35 (2005).
- 249. Fujita, Y. & Yamashita, T. Sirtuins in neuroendocrine regulation and neurological diseases. *Frontiers in Neuroscience* vol. 12 (2018).
- 250. Li, X. *et al.* An Autism-Related, Nonsense Foxp1 Mutant Induces Autophagy and Delays Radial Migration of the Cortical Neurons. *Cereb. Cortex* **29**, 3193–3208 (2019).
- 251. Büttner, N., Johnsen, S. A., Kügler, S. & Vogel, T. Af9/Mllt3 interferes with Tbr1 expression through epigenetic modification of histone H3K79 during development of the cerebral cortex. *Proc. Natl. Acad. Sci. U. S. A.* **107**, 7042–7047 (2010).
- 252. Takei, Y., Kikkawa, Y. S., Atapour, N., Hensch, T. K. & Hirokawa, N. Defects in synaptic plasticity, reduced nmda-receptor transport, and instability of postsynaptic density proteins in mice lacking microtubule-associated protein 1a. *J. Neurosci.* **35**, 15539–15554 (2015).
- 253. Erburu, M. *et al.* SIRT2 inhibition modulate glutamate and serotonin systems in the prefrontal cortex and induces antidepressant-like action. *Neuropharmacology* **117**, 195–208 (2017).
- 254. Cen, Y., Y. Youn, D. & A. Sauve, A. Advances in Characterization of Human Sirtuin Isoforms: Chemistries, Targets and Therapeutic Applications. *Curr. Med. Chem.* **18**, 1919–1935 (2011).
- 255. Gold, W. A., Lacina, T. A., Cantrill, L. C. & Christodoulou, J. MeCP2 deficiency is associated with reduced levels of tubulin acetylation and can be restored using HDAC6 inhibitors. *J. Mol. Med.* **93**, 63–72 (2014).

- Delépine, C. *et al.* Altered microtubule dynamics and vesicular transport in mouse and human MeCP2-deficient astrocytes. *Hum. Mol. Genet.* (2016) doi:10.1093/hmg/ddv464.
- Rybak-Wolf, A. *et al.* Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. *Mol. Cell* 58, 870– 885 (2014).
- 258. Cheng, T. L. *et al.* Regulation of mRNA splicing by MeCP2 via epigenetic modifications in the brain. *Sci. Rep.* **7**, (2017).
- 259. Li, X. *et al.* SOX19b regulates the premature neuronal differentiation of neural stem cells through EZH2-mediated histone methylation in neural tube development of zebrafish. *Stem Cell Res. Ther.* **10**, 389 (2019).
- Wong, T. H., Seelaar, H., Melhem, S., Rozemuller, A. J. M. & van Swieten, J. C. Genetic screening in early-onset Alzheimer's disease identified three novel presenilin mutations. *Neurobiol. Aging* 86, 201.e9-201.e14 (2020).
- 261. Li, H. *et al.* Disruption of TCF4 regulatory networks leads to abnormal cortical development and mental disabilities. *Mol. Psychiatry* **24**, 1235–1246 (2019).
- 262. Avagliano Trezza, R. *et al.* Loss of nuclear UBE3A causes electrophysiological and behavioral deficits in mice and is associated with Angelman syndrome. *Nat. Neurosci.* **22**, 1235–1247 (2019).
- 263. Christopher, M. A. *et al.* LSD1 protects against hippocampal and cortical neurodegeneration. *Nat. Commun.* **8**, 805 (2017).
- 264. Pereira Zambalde, E. *et al.* Highlighting transcribed ultraconserved regions in human diseases. *Wiley Interdisciplinary Reviews: RNA* vol. 11 e1567 (2020).
- 265. Cuberos, H. *et al.* Roles of LIM kinases in central nervous system function and dysfunction. *FEBS Letters* vol. 589 3795–3806 (2015).
- Dong, H. *et al.* Pumilio2 regulates synaptic plasticity via translational repression of synaptic receptors in mice. *Oncotarget* 9, 32134–32148 (2018).
- 267. von Scheidt, M. *et al.* Applications and Limitations of Mouse Models for Understanding Human Atherosclerosis. *Cell Metabolism* vol. 25 248– 261 (2017).
- 268. Guo, W., Fumagalli, L., Prior, R. & van den Bosch, L. Current advances and limitations in modeling ALS/FTD in a dish using induced pluripotent stem cells. *Frontiers in Neuroscience* vol. 11 671 (2017).
- 269. Maxwell, M. M. *et al.* The Sirtuin 2 microtubule deacetylase is an abundant neuronal protein that accumulates in the aging CNS. *Hum. Mol. Genet.* **20**, 3986–96 (2011).

- 270. Li, W. *et al.* Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating α-tubulin. *J. Neurosci.* 27, 2606–2616 (2007).
- 271. Pandithage, R. *et al.* The regulation of SIRT2 function by cyclindependent kinases affects cell motility. *J. Cell Biol.* **180**, 915–929 (2008).
- 272. Pais, T. F. *et al.* The NAD-dependent deacetylase sirtuin 2 is a suppressor of microglial activation and brain inflammation. *EMBO J.* **32**, 2603–2616 (2013).
- Delépine, C., Nectoux, J., Bahi-Buisson, N., Chelly, J. & Bienvenu, T. MeCP2 deficiency is associated with impaired microtubule stability. *FEBS Lett.* 587, 245–253 (2013).
- 274. Nectoux, J. *et al.* Altered microtubule dynamics in Mecp2-deficient astrocytes. *J. Neurosci. Res.* **90**, 990–998 (2012).
- 275. Bedogni, F. *et al.* Rett syndrome and the urge of novel approaches to study MeCP2 functions and mechanisms of action. *Neuroscience and Biobehavioral Reviews* vol. 46 187–201 (2014).
- 276. Quinti, L. *et al.* SIRT2- and NRF2-Targeting Thiazole-Containing Compound with Therapeutic Activity in Huntington's Disease Models. *Cell Chem. Biol.* **23**, 849–861 (2016).
- 277. Liu, Y. *et al.* Emerging Role of Sirtuin 2 in Parkinson's Disease. *Frontiers in Aging Neuroscience* vol. 11 (2020).
- 278. Chen, G. *et al.* Altered levels of the splicing factor muscleblind modifies cerebral cortical function in mouse models of myotonic dystrophy. *Neurobiol. Dis.* **112**, 35–48 (2018).
- 279. Abdelmohsen, K. *et al.* Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. *RNA Biol.* **14**, 361–369 (2017).
- Westholm, J. O. *et al.* Genome-wide Analysis of Drosophila Circular RNAs Reveals Their Structural and Sequence Properties and Age-Dependent Neural Accumulation. *Cell Rep.* 9, 1966–1980 (2014).
- 281. Cortés-López, M. *et al.* Global accumulation of circRNAs during aging in Caenorhabditis elegans. *BMC Genomics* **19**, (2018).
- 282. Rubenstein, J. L. R. & Merzenich, M. M. Model of autism: Increased ratio of excitation/inhibition in key neural systems. *Genes, Brain and Behavior* vol. 2 255–267 (2003).
- Lu, H. *et al.* Loss and Gain of MeCP2 Cause Similar Hippocampal Circuit Dysfunction that Is Rescued by Deep Brain Stimulation in a Rett Syndrome Mouse Model. *Neuron* **91**, 739–747 (2016).

- 284. Jorge-Torres, O. C. *et al.* Inhibition of Gsk3b Reduces Nfkb1 Signaling and Rescues Synaptic Activity to Improve the Rett Syndrome Phenotype in Mecp2-Knockout Mice. *Cell Rep.* **23**, 1665–1677 (2018).
- 285. Dani, V. S. *et al.* Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett Syndrome. *Proc. Natl. Acad. Sci. U. S. A.* **102**, 12560–12565 (2005).
- 286. Wen, W., Lin, C. Y. & Niu, L. R/G editing in GluA2Rflop modulates the functional difference between GluA1 flip and flop variants in GluA1/2R heteromeric channels. *Sci. Rep.* **7**, (2017).
- 287. Katz, D. M. *et al.* Rett Syndrome: Crossing the Threshold to Clinical Translation. *Trends in Neurosciences* vol. 39 100–113 (2016).
- Guy, J., Gan, J., Selfridge, J., Cobb, S. & Bird, A. Reversal of neurological defects in a mouse model of Rett syndrome. *Science (80-.*). 315, 1143–1147 (2007).
- 289. Robinson, L. *et al.* Morphological and functional reversal of phenotypes in a mouse model of Rett syndrome. *Brain* (2012) doi:10.1093/brain/aws096.
- Alvarez-Saavedra, M., Sáez, M. A., Kang, D., Zoghbi, H. Y. & Young, J. I. Cell-specific expression of wild-type MeCP2 in mouse models of Rett syndrome yields insight about pathogenesis. *Hum. Mol. Genet.* 16, 2315–2325 (2007).
- 291. Jugloff, D. G. M. *et al.* Targeted delivery of an Mecp2 transgene to forebrain neurons improves the behavior of female Mecp2-deficient mice. *Hum. Mol. Genet.* **17**, 1386–1396 (2008).
- 292. Bhatnagar, S. *et al.* Genetic and pharmacological reactivation of the mammalian inactive X chromosome. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 12591–12598 (2014).
- Gray, S. J. *et al.* Preclinical differences of intravascular aav9 delivery to neurons and glia: A comparative study of adult mice and nonhuman primates. *Mol. Ther.* **19**, 1058–1069 (2011).
- 294. Gadalla, K. K. *et al.* Improved survival and reduced phenotypic severity following AAV9/MECP2 gene transfer to neonatal and juvenile male Mecp2 knockout mice. *Mol. Ther.* **21**, 18–30 (2013).
- 295. Deogracias, R. *et al.* Fingolimod, a sphingosine-1 phosphate receptor modulator, increases BDNF levels and improves symptoms of a mouse model of Rett syndrome. *Proc. Natl. Acad. Sci. U. S. A.* **109**, 14230–14235 (2012).
- 296. Gomathi, M., Padmapriya, S. & Balachandar, V. Drug Studies on Rett Syndrome: From Bench to Bedside. *J. Autism Dev. Disord.* (2020) doi:10.1007/s10803-020-04381-y.

- Garg, S. K. *et al.* Systemic delivery of MeCP2 rescues behavioral and cellular deficits in female mouse models of Rett syndrome. *J. Neurosci.* 33, 13612–13620 (2013).
- 298. Glaze, D. G. *et al.* A study of the treatment of rett syndrome with folate and betaine. *J. Child Neurol.* **24**, 551–556 (2009).
- 299. Pitcher, M. R. *et al.* Rett syndrome like phenotypes in the R255X Mecp2 mutant mouse are rescued by MECP2 transgene. *Hum. Mol. Genet.* **24**, 2662–2672 (2015).
- O'Leary, H. M. *et al.* Placebo-controlled crossover assessment of mecasermin for the treatment of Rett syndrome. *Ann. Clin. Transl. Neurol.* 5, 323–332 (2018).
- Mierau, S. B., Patrizi, A., Hensch, T. K. & Fagiolini, M. Cell-Specific Regulation of N-Methyl-D-Aspartate Receptor Maturation by Mecp2 in Cortical Circuits. *Biol. Psychiatry* 79, 746–754 (2016).
- 302. Smith-Hicks, C. L. *et al.* Randomized open-label trial of dextromethorphan in Rett syndrome. *Neurology* **89**, 1684–1690 (2017).
- Toward, M. A., Abdala, A. P., Knopp, S. J., Paton, J. F. R. & Bissonnette, J. M. Increasing brain serotonin corrects CO2 chemosensitivity in methyl-CpG-binding protein 2 (Mecp2)-deficient mice. *Exp. Physiol.* 98, 842–849 (2013).
- Szczesna, K. *et al.* Improvement of the rett syndrome phenotype in a mecp2 mouse model upon treatment with levodopa and a dopadecarboxylase inhibitor. *Neuropsychopharmacology* **39**, 2846–2856 (2014).
- 305. Mellios, N. *et al.* β2-Adrenergic receptor agonist ameliorates phenotypes and corrects microRNA-mediated IGF1 deficits in a mouse model of Rett syndrome. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 9947–9952 (2014).
- Ricceri, L., De Filippis, B., Fuso, A. & Laviola, G. Cholinergic hypofunction in MeCP2-308 mice: Beneficial neurobehavioural effects of neonatal choline supplementation. *Behav. Brain Res.* 221, 623–629 (2011).
- Zhong, W. *et al.* Effects of early-life exposure to THIP on phenotype development in a mouse model of Rett syndrome. *J. Neurodev. Disord.* **8**, (2016).
- Gogliotti, R. G. *et al.* MGlu7 potentiation rescues cognitive, social, and respiratory phenotypes in a mouse model of Rett syndrome. *Sci. Transl. Med.* 9, (2017).
- 309. Mattick, J. S. & Makunin, I. V. Non-coding RNA. *Human molecular genetics* vol. 15 Spec No 1 (2006).

- 310. Anastasiadou, E., Jacob, L. S. & Slack, F. J. Non-coding RNA networks in cancer. *Nature Reviews Cancer* vol. 18 5–18 (2017).
- 311. Tan, L., Yu, J. T., Hu, N. & Tan, L. Non-coding RNAs in Alzheimer's disease. *Molecular Neurobiology* vol. 47 382–393 (2013).
- 312. Uchida, S. & Dimmeler, S. Long noncoding RNAs in cardiovascular diseases. *Circulation Research* vol. 116 737–750 (2015).
- Vicentini, C., Galuppini, F., Corbo, V. & Fassan, M. Current role of noncoding RNAs in the clinical setting. *Non-coding RNA Research* vol. 4 82–85 (2019).
- 314. Lin, R., Maeda, S., Liu, C., Karin, M. & Edgington, T. S. A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. *Oncogene* **26**, 851–858 (2007).
- 315. Xie, H., Ma, H. & Zhou, D. Plasma HULC as a promising novel biomarker for the detection of hepatocellular carcinoma. *Biomed Res. Int.* (2013) doi:10.1155/2013/136106.
- 316. Meng, L. *et al.* Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. *Nature* **518**, 409–412 (2015).
- 317. Hsiao, J. *et al.* Upregulation of Haploinsufficient Gene Expression in the Brain by Targeting a Long Non-coding RNA Improves Seizure Phenotype in a Model of Dravet Syndrome. *EBioMedicine* **9**, 257–277 (2016).
- 318. Huang, Z. K. *et al.* Microarray Expression Profile of Circular RNAs in Peripheral Blood Mononuclear Cells from Active Tuberculosis Patients. *Cell. Physiol. Biochem.* **45**, 1230–1240 (2018).
- Lin, X., Lo, H. C., Wong, D. T. W. & Xiao, X. Noncoding RNAs in human saliva as potential disease biomarkers. *Frontiers in Genetics* vol. 6 (2015).
- Sweeney, M. D., Sagare, A. P. & Zlokovic, B. V. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. *Nature Reviews Neurology* vol. 14 133–150 (2018).
- 321. Garbuzova-Davis, S. *et al.* Impaired blood-brain/spinal cord barrier in ALS patients. *Brain Res.* **1469**, 114–128 (2012).
- 322. Holdt, L. M., Kohlmaier, A. & Teupser, D. Circular RNAs as therapeutic agents and targets. *Frontiers in Physiology* vol. 9 (2018).

ANEXOS

Tabla S1. T-UCRs con expresión alterada en el modelo de ratón RTT.

Región Fold change (KO/WT) ID T-UCR Edad camada p-valor Host gene uc.78 4 semanas Córtex frontal -16,59352012 0.0000925 Zfhx1b (Zeb2) uc.404 4 semanas Córtex frontal -14,31122471 0.0054785 Intergénico uc.392 4 semanas Córtex frontal -6,71207822 0,01348259 Intergénico uc.162 4 semanas Córtex frontal -4.96426171 0.00024169 Intergénico uc.288 Córtex frontal -4,78641168 0.0021748 C10orf11 4 semanas uc.333 4 semanas Córtex frontal -4.744807004 0.0000723 Flj23342 uc.389 Córtex frontal -4,706579628 0,02717143 Flj12476 4 semanas uc.342 Córtex frontal -4.362227395 0.00083289 Hoxc4 4 semanas uc.10 -4,279630858 0,00286536 4 semanas Córtex frontal Intergénico uc 126 4 semanas Córtex frontal -4,206016454 0,002271 Intergénico uc.264 4 semanas Córtex frontal -4,150070776 0,01825341 Hnrpk uc.159 0.00837038 4 semanas Córtex frontal -3.916401889 Intergénico uc.321 0,00847969 4 semanas Córtex frontal -3,661494394 Intergénico uc.82 4 semanas Córtex frontal -3.373470086 0.02557971 Intergénico uc.336 Córtex frontal -2,97521437 0,00040563 Sox5 4 semanas uc.183 4 semanas Córtex frontal -2.87698495 0.0009819 Fbxw1b uc.291 C10orf11 4 semanas Córtex frontal -2,861296928 0,00496594 uc.269 Córtex frontal -2.648826567 0.00168572 Kiaa1608 4 semanas uc.402 -2,620348909 0,00060709 Ab023222 4 semanas Córtex frontal uc.67 4 semanas Córtex frontal -2,580595788 0,00507958 Intergénico uc.333 4 semanas Córtex frontal -2,535777242 0.04056432 Flj23342 Flj20321 uc.3 4 semanas Córtex frontal -2.5110560790.0347543 uc.377 Prpf39 4 semanas Córtex frontal -2,495662889 0,00827115 uc.374 4 semanas Córtex frontal -2,417897903 0,0002667 Mipol1 uc.385 -2,369821948 0,00040759 Meis2 4 semanas Córtex frontal

T-UCRs con regulación negativa bajo condiciones de supresión de MeCP2

uc.137	4 semanas	Córtex frontal	-2.320002194	0.02896411	AI122120
uc.299	4 semanas	Córtex frontal	-2.309920203	0.00430897	Pax2
uc.155	4 semanas	Córtex frontal	-2.24267637	0.00060459	Interaénico
uc.130	4 semanas	Córtex frontal	-2,217463835	0,02121552	Intergénico
uc.177	4 semanas	Córtex frontal	-2.202826573	0.00025455	Ranbp17
uc.77	4 semanas	Córtex frontal	-2,184869895	0.00151857	Zfhx1b
uc.291	4 semanas	Córtex frontal	-2,053410183	0,0145055	C10orf11
uc.340	4 semanas	Córtex frontal	-2,024405028	0,00072574	Intergénico
uc.343	4 semanas	Córtex frontal	-1,998551386	0.0111491	Hoxc4
uc.427	4 semanas	Córtex frontal	-1,885411543	0,03307661	Intergénico
uc.336	4 semanas	Córtex frontal	-1,868402578	0,00949441	Sox5
uc.27	4 semanas	Córtex frontal	-1,858089286	0,00494824	Intergénico
uc.319	4 semanas	Córtex frontal	-1,83454285	0,02184271	Intergénico
uc.1	4 semanas	Córtex frontal	-1,740924376	0,0047116	Pex14
uc.462	4 semanas	Córtex frontal	-1,714953197	0,0041561	Pola
uc.372	4 semanas	Córtex frontal	-1,712043966	0,00197634	Bc042045
uc.450	4 semanas	Córtex frontal	-1,695167727	0,00099663	Intergénico
uc.341	4 semanas	Córtex frontal	-1,691346567	0,0210238	Hoxc10
uc.285	4 semanas	Córtex frontal	-1,686324504	0,00602014	Ccar1
uc.161	4 semanas	Córtex frontal	-1,672852669	0,03706973	Ap3b1
uc.259	4 semanas	Córtex frontal	-1,666172442	0,00248187	Intergénico
uc.377	4 semanas	Córtex frontal	-1,629868346	0,01431785	Prpf39
uc.137	4 semanas	Córtex frontal	-1,562189859	0,020799	AI122120
uc.475	4 semanas	Córtex frontal	-1,541547471	0,02288383	Ogt
uc.77	4 semanas	Hipocampo	-2,096009142	0,03332319	Zfhx1b
uc.411	4 semanas	Hipocampo	-1,767022493	0,0274584	Aatf
uc.418	4 semanas	Hipocampo	-1,59085915	0,0162718	Sfrs1
uc.117	4 semanas	Hipocampo	-1,532625481	0,04196895	Intergénico
uc.70	4 semanas	Hipocampo	-1,518775202	0,04678512	Arhgap15
uc.418	4 semanas	Hipocampo	-1,513376467	0,03885515	Sfrs1

uc 126	8 semanas	Córtex frontal	-2 560900982	0 01304357	Intergénico
uc 185	8 semanas	Córtex frontal	-2 47359215	0.00472364	Clk4
uc 414	8 semanas	Córtex frontal	-2 24440085	0.01340883	Thra
uc 40	8 semanas	Cortex frontal	2 167305439	0.0110068	Ak074867
uc.49	8 somanas	Cortex frontal	2 151007222	0,00110000	Sfra1
uc 185	8 semanas	Cortex frontal	2 150977476	0,00010700	CIVA
uc. 105		Contex frontal	2,130977470	0,00075211	Sfro1
uc.419		Contex frontal	-2,145700007	0,03243139	DIADOA
uc. 102			-2,129304078	0,03550725	Pluo04
UC.1/4	o semanas	Cortex frontal	-2,125448083	0,0261548	Matr3
UC.474	8 semanas		-2,088919916	0,00266136	201201
uc.209	8 semanas	Cortex frontal	-2,085980535	0,00819363	Ira2a
uc.419	8 semanas	Córtex frontal	-2,059204947	0,01430914	Sfrs1
uc.203	8 semanas	Córtex frontal	-2,040334512	0,00207106	Qki
uc.12	8 semanas	Córtex frontal	-2,019044852	0,00563875	Sfpq
uc.102	8 semanas	Córtex frontal	-1,972236559	0,04055857	Ptd004
uc.44	8 semanas	Córtex frontal	-1,97168558	0,03320983	Znf238
uc.443	8 semanas	Córtex frontal	-1,965170134	0,03995709	Hnrpm
uc.37	8 semanas	Córtex frontal	-1,939566973	0,02721827	D1s155e
uc.456	8 semanas	Córtex frontal	-1,936433201	0,0041428	Sfrs6
uc.183	8 semanas	Córtex frontal	-1,926355025	0,01037175	Fbxw1b
uc.419	8 semanas	Córtex frontal	-1,918877779	0,04987149	Sfrs1
uc.414	8 semanas	Córtex frontal	-1,908147348	0,00768576	Thra
uc.366	8 semanas	Córtex frontal	-1,903058023	0,02233704	Strn3
uc.50	8 semanas	Córtex frontal	-1,888356824	0,01105641	Sfrs7
uc.474	8 semanas	Córtex frontal	-1,877281546	0,00190345	Znf261
uc.420	8 semanas	Córtex frontal	-1,852367378	0,01932727	Ddx5
uc.333	8 semanas	Córtex frontal	-1,845797555	0,00530975	Flj23342
uc.185	8 semanas	Córtex frontal	-1,838898704	0.00339994	Clk4
uc.75	8 semanas	Córtex frontal	-1,793658897	0,00588264	Zfhx1b
uc.472	8 semanas	Córtex frontal	-1,792572398	0,00270811	Cask
uc.185	8 semanas	Córtex frontal	-1,780618929	0,02391164	Clk4
--------	-----------	----------------	--------------	------------	-------------
uc.203	8 semanas	Córtex frontal	-1,753642334	0,01443836	Qki
uc.186	8 semanas	Córtex frontal	-1,753102766	0,0041162	Hnrph1
uc.285	8 semanas	Córtex frontal	-1,723868239	0,01905824	Ccar1
uc.49	8 semanas	Córtex frontal	-1,718111673	0,01876735	Ak074867
uc.477	8 semanas	Córtex frontal	-1,715971402	0,02705271	Plp1
uc.189	8 semanas	Córtex frontal	-1,713445032	0,00563503	Sfrs3
uc.151	8 semanas	Córtex frontal	-1,710564637	0,03121929	Zfr
uc.420	8 semanas	Córtex frontal	-1,708614151	0,01662601	Ddx5
uc.44	8 semanas	Córtex frontal	-1,690019551	0,0262307	Znf238
uc.46	8 semanas	Córtex frontal	-1,683235875	0,01842575	Hnrpu
uc.413	8 semanas	Córtex frontal	-1,679338187	0,02821728	Pparbp
uc.217	8 semanas	Córtex frontal	-1,667419539	0,01741006	Intergénico
uc.144	8 semanas	Córtex frontal	-1,640931318	0,03666656	Hnrpdl
uc.44	8 semanas	Córtex frontal	-1,638939723	0,03501057	Znf238
uc.376	8 semanas	Córtex frontal	-1,630199261	0,0031955	Prpf39
uc.419	8 semanas	Córtex frontal	-1,613008381	0,04529655	Sfrs1
uc.50	8 semanas	Córtex frontal	-1,607680166	0,01563908	Sfrs7
uc.101	8 semanas	Córtex frontal	-1,600272207	0,00376667	Sp3
uc.313	8 semanas	Córtex frontal	-1,577774968	0,01107783	Tial1
uc.407	8 semanas	Córtex frontal	-1,575169109	0,04125726	Nfat5
uc.48	8 semanas	Córtex frontal	-1,57462173	0,01486909	Pum2
uc.193	8 semanas	Córtex frontal	-1,566225434	0,00582075	Syncrip
uc.50	8 semanas	Córtex frontal	-1,564948034	0,01361937	Sfrs7
uc.169	8 semanas	Córtex frontal	-1,561686443	0,01435145	Nr2f1
uc.475	8 semanas	Córtex frontal	-1,551071464	0,03756092	Ogt
uc.75	8 semanas	Córtex frontal	-1,52982545	0,02299861	Zfhx1b
uc.471	8 semanas	Córtex frontal	-1,525611522	0,02501478	Ddx3x
uc.263	8 semanas	Córtex frontal	-1,510657245	0,01749804	Hnrpk
uc.319	8 semanas	Córtex frontal	-1,508912406	0,02959115	Intergénico

uc.336	8 semanas	Hipocampo	-4,132944344	0,03160258	Sox5
uc.385	8 semanas	Hipocampo	-2,739529766	0,01230439	Meis2
uc.389	8 semanas	Hipocampo	-2,264776427	0,00174998	Flj12476
uc.342	8 semanas	Hipocampo	-2,212125208	0,00151853	Hoxc4
uc.456	8 semanas	Hipocampo	-1,945091459	0,03593549	Sfrs6
uc.49	8 semanas	Hipocampo	-1,87422617	0,00244271	Ak074867
uc.84	8 semanas	Hipocampo	-1,832916098	0,0018178	Intergénico
uc.377	8 semanas	Hipocampo	-1,831445437	0,00972061	Prpf39
uc.209	8 semanas	Hipocampo	-1,740283355	0,04923426	Tra2a
uc.336	8 semanas	Hipocampo	-1,725020404	0,04419277	Sox5
uc.186	8 semanas	Hipocampo	-1,610589863	0,00870518	Hnrph1
uc.334	8 semanas	Hipocampo	-1,6102213	0,00997584	Hnt
uc.420	8 semanas	Hipocampo	-1,58834202	0,04235036	Ddx5
uc.456	8 semanas	Hipocampo	-1,583727343	0,0131559	Sfrs6

T-UCRs con regulación positiva bajo condiciones de supresión de MeCP2

ID T-UCR	Edad camada	Región	Fold change (KO/WT)	p-valor	Host gene
uc.49	4 semanas	Córtex frontal	3,18745079	0,00066543	Ak074867
uc.173	4 semanas	Córtex frontal	2,4936189	0,03097128	Ube2b
uc.481	4 semanas	Córtex frontal	2,39802062	0,01342991	Stag2
uc.184	4 semanas	Córtex frontal	2,36229742	0,00679949	Cpeb4
uc.420	4 semanas	Córtex frontal	2,30197283	0,01826638	Ddx5
uc.481	4 semanas	Córtex frontal	2,29866226	0,00993697	Stag2
uc.325	4 semanas	Córtex frontal	2,22015524	0,00076048	Elp4
uc.154	4 semanas	Córtex frontal	2,20685511	0,01101704	Intergénico
uc.45	4 semanas	Córtex frontal	2,18607159	0,02417923	Hnrpu
uc.46	4 semanas	Córtex frontal	2,17053901	0,04572333	Hnrpu
uc.75	4 semanas	Córtex frontal	2,10754846	0,02195548	Zfhx1b
uc.75	4 semanas	Córtex frontal	2,07490283	0,00727807	Zfhx1b
uc.45	4 semanas	Córtex frontal	2,05408069	0,03879256	Hnrpu
uc.477	4 semanas	Córtex frontal	2,05214988	0,00140702	Plp1
uc.188	4 semanas	Córtex frontal	2,00544688	0,03295593	Sca1
uc.471	4 semanas	Córtex frontal	2,0020993	0,00614675	Ddx3x
uc.120	4 semanas	Córtex frontal	2,00209401	0,00152085	Znf288
uc.268	4 semanas	Córtex frontal	1,99652125	0,02766155	Intergénico
uc.184	4 semanas	Córtex frontal	1,91712881	0,00571459	Cpeb4
uc.188	4 semanas	Córtex frontal	1,90767656	0,03105065	Sca1
uc.184	4 semanas	Córtex frontal	1,89832241	0,01748245	Cpeb4
uc.246	4 semanas	Córtex frontal	1,87119241	0,01735082	Ext1
uc.313	4 semanas	Córtex frontal	1,86055489	0,01648131	Tial1
uc.45	4 semanas	Córtex frontal	1,85562043	0,04853469	Hnrpu

uc.184	4 semanas	Córtex frontal	1.83215685	0.01107565	Cpeb4
uc 203	4 semanas	Córtex frontal	1 80786409	0.00982088	Qki
uc 212	4 semanas	Córtex frontal	1 80505585	0.04986754	Intergénico
uc 75	4 semanas	Córtex frontal	1 79734291	0.00527894	Zfhx1h
uc 414	4 semanas	Córtex frontal	1 79591581	0.02239028	Thra
uc 472	4 semanas	Córtex frontal	1 79405068	0.026013	Cask
uc 9	4 semanas	Córtex frontal	1 75776388	0.02243018	Intergénico
uc 420	4 semanas	Córtex frontal	1 7526674	0.00724907	Ddx5
uc 50	4 semanas	Córtex frontal	1 74804995	0.02435505	Sfrs7
uc 188	4 semanas	Córtex frontal	1 74476607	0.02183866	Sca1
uc 477	4 semanas	Córtex frontal	1 70686241	0.00110195	Pin1
uc 414	4 semanas	Córtex frontal	1 68655107	0.0266867	Thra
uc 478	4 semanas	Córtex frontal	1 66406212	0.01550877	Gria3
uc 360	4 semanas	Córtex frontal	1 63947003	0 02973974	Nova1
uc 420	4 semanas	Córtex frontal	1 62277347	0.04690881	Ddx5
uc 203	4 semanas	Córtex frontal	1,59786172	0.01148535	Qki
uc 300	4 semanas	Córtex frontal	1 57895204	0.0224696	Pax2
uc 331	4 semanas	Córtex frontal	1 5761781	0.00224027	Dla2
uc 144	4 semanas	Córtex frontal	1,5336263	0.00734568	Hnrndl
uc 253	4 semanas	Córtex frontal	1 51616546	0.00770918	C9orf39
uc.376	4 semanas	Córtex frontal	1,51014527	0,03661128	Prpf39
ис.299	4 semanas	Hipocampo	2.1229933	0.02628851	Pax2
uc.196	4 semanas	Hipocampo	2.01562657	0.02674779	Intergénico
uc.78	4 semanas	Hipocampo	1,96076069	0.03956117	Zfhx1b
uc.47	4 semanas	Hipocampo	1,94681348	0.03488228	Intergénico
uc.185	4 semanas	Hipocampo	1.83046617	0.04194855	Clk4
uc.298	4 semanas	Hipocampo	1,79497457	0.02120055	Intergénico
uc.475	4 semanas	Hipocampo	1,78449292	0,00470688	Oqt
uc.155	4 semanas	Hipocampo	1,75794047	0.03840378	Intergénico
uc.414	4 semanas	Hipocampo	1,74435102	0,01233943	Thra
				,	

uc.88	8 semanas	Córtex frontal	4,25311507	0,00264932	Intergénico
uc.47	8 semanas	Córtex frontal	3,41077298	0,00748443	Intergénico
uc.120	8 semanas	Córtex frontal	2,63052803	0,00066535	Znf288
uc.236	8 semanas	Córtex frontal	2,23302605	0,00061798	Intergénico
uc.325	8 semanas	Córtex frontal	2,04646049	0,00159401	Elp4
uc.175	8 semanas	Córtex frontal	1,87078766	0,00227029	Ebf
uc.269	8 semanas	Córtex frontal	1,73541905	0,00805964	Kiaa1608
uc.248	8 semanas	Córtex frontal	1,6864388	0,00413447	Intergénico
uc.91	8 semanas	Córtex frontal	1,67538952	0,0322789	Fap
uc.435	8 semanas	Córtex frontal	1,64616561	0,00731848	Tcf4
uc.82	8 semanas	Córtex frontal	1,55886425	0,0416467	Intergénico
uc.220	8 semanas	Hipocampo	1,72638555	0,00701222	Intergénico
uc.292	8 semanas	Hipocampo	1,64593516	0,01456089	MIr2
uc.161	8 semanas	Hipocampo	1,63516456	0,02438515	Ap3b1
uc.221	8 semanas	Hipocampo	1,60962907	0,04354181	Intergénico
uc.120	8 semanas	Hipocampo	1,57606951	0,00662134	Znf288

Tabla S2. ARNs circulares con expresión alterada en el modelo de ratón RTT. Fold change delimitado en -2/2. Se marcan en negrita los candidatos seleccionados.

circRNAs con regulación negativa bajo condiciones de supresión de MeCP2

ID circRNA	Edad camada	Región	Fold change (KO/WT)	p-valor	Coordenadas	Host gene
mmu_circRNA_41204	8 semanas	Córtex frontal	-7,8997088	0,049802202	chr7:16917596-16917698	Calm3
mmu_circRNA_34414	8 semanas	Córtex frontal	-4,8400058	0,003039767	chr2:121298596-121299046	Map1a
mmu_circRNA_28662	8 semanas	Córtex frontal	-4,6657898	0,035529555	chr15:66244503-66261906	Kcnq3
mmu_circRNA_28367	8 semanas	Córtex frontal	-3,7219849	0,045917804	chr15:33048054-33066227	Intergénico
mmu_circRNA_41725	8 semanas	Córtex frontal	-3,3096274	0,047871589	chr7:78229486-78260414	Ntrk3
mmu_circRNA_39430	8 semanas	Córtex frontal	-3,2016176	0,046225342	chr5:127677204-127678140	Glt1d1
mmu_circRNA_38216	8 semanas	Córtex frontal	-3,1879374	0,036346571	chr5:21683155-21683465	Napepld
mmu_circRNA_25826	8 semanas	Córtex frontal	-3,1635476	0,029844062	chr12:109544702-109545041	Meg3
mmu_circRNA_18944	8 semanas	Córtex frontal	-2,9421169	0,015771498	chr1:79717201-79729712	Wdfy1
mmu_circRNA_41227	8 semanas	Córtex frontal	-2,9254296	0,040917004	chr7:25641456-25641826	Bckdha
mmu_circRNA_19217	8 semanas	Córtex frontal	-2,8769367	0,001045127	chr19:4288591-4294928	Adrbk1
mmu_circRNA_35121	8 semanas	Córtex frontal	-2,6357962	0,039604806	chr3:16189477-16205424	Ythdf3
mmu_circRNA_29553	8 semanas	Córtex frontal	-2,5742145	0,001765323	chr16:32884123-32898470	Fyttd1
mmu_circRNA_43571	8 semanas	Córtex frontal	-2,5653234	0,008094709	chr8:121804946-121806598	Klhdc4
mmu_circRNA_36624	8 semanas	Córtex frontal	-2,5176999	0,024354168	chr4:33943551-33945405	Cnr1
mmu_circRNA_45832	8 semanas	Córtex frontal	-2,35095	0,040730193	chrX:151878717-151883309	Huwe1
mmu_circRNA_32069	8 semanas	Córtex frontal	-2,3404508	0,007807572	chr18:82618742-82624486	Zfp236
mmu_circRNA_011334	8 semanas	Córtex frontal	-2,2972891	0,040013619	chr15:91497392-91516494	Slc2a13
mmu_circRNA_19397	8 semanas	Córtex frontal	-2,2752553	0,029433957	chr5:140899658-140901133	Card11
mmu_circRNA_013105	8 semanas	Córtex frontal	-2,2168391	0,009529251	chr19:46384219-46385088	Actr1a
mmu_circRNA_24711	8 semanas	Córtex frontal	-2,213899	0,029000515	chr12:12358044-12364846	Fam49a
mmu_circRNA_41253	8 semanas	Córtex frontal	-2,2063919	0,021510244	chr7:28776857-28778990	Sirt2
mmu_circRNA_19057	8 semanas	Córtex frontal	-2,204738	0,013411022	chr12:8698087-8713939	Pum2
mmu_circRNA_28074	8 semanas	Córtex frontal	-2,2014316	0,031719201	chr14:121973608-121994470	Ubac2
mmu_circRNA_39586	8 semanas	Córtex frontal	-2,1816995	0,042748733	chr5:140669021-140680945	lqce

mmu_circRNA_000661	8 semanas	Córtex frontal	-2,1639235	0,032997874	chr1:66471975-66491131	Unc80
mmu_circRNA_21011	8 semanas	Córtex frontal	-2,142	0,041406887	chr1:151980425-152006767	1700025G04Rik
mmu_circRNA_20201	8 semanas	Córtex frontal	-2,0835111	0,001513206	chr1:60181462-60206416	Nbeal1
mmu_circRNA_006254	8 semanas	Córtex frontal	-2,0766354	0,044002542	chr2:33064003-33105023	Garnl3
mmu_circRNA_012853	8 semanas	Córtex frontal	-2,076346	0,034761088	chr11:65074436-65075210	Arhgap44
mmu_circRNA_24466	8 semanas	Córtex frontal	-2,0310278	0,009793892	chr11:118811277-118859872	Rbfox3
mmu_circRNA_34966	8 semanas	Córtex frontal	-2,021365	0,045674253	chr2:166116871-166132854	Sulf2
mmu_circRNA_29770	8 semanas	Córtex frontal	-2,0029068	0,042015548	chr16:45711495-45711709	TagIn3
mmu_circRNA_018331	8 semanas	Córtex frontal	-2,0008974	0,029963131	chr13:42055399-42055542	Hivep1
mmu_circRNA_23592	8 semanas	Hipocampo	-24,6814264	4,68668E-05	chr11:69486958-69495264	Dnah2
mmu_circRNA_44599	8 semanas	Hipocampo	-20,018546	0,000680258	chr9:72194945-72233329	RP23-292F17.7
mmu_circRNA_43210	8 semanas	Hipocampo	-18,3175873	0,000874177	chr8:84949881-84950676	Rtbdn
mmu_circRNA_44963	8 semanas	Hipocampo	-16,4025091	8,67787E-05	chr9:100994567-100999273	Pccb
mmu_circRNA_27257	8 semanas	Hipocampo	-11,9967008	0,005362127	chr14:26608089-26612061	Dennd6a
mmu_circRNA_42971	8 semanas	Hipocampo	-11,6325535	0,005383463	chr8:65694850-65699162	March1
mmu_circRNA_37101	8 semanas	Hipocampo	-9,6419851	0,024732259	chr4:87782286-87791982	Milt3
mmu_circRNA_27840	8 semanas	Hipocampo	-8,7826514	8,08334E-05	chr14:77840167-77861242	Dnajc15
mmu_circRNA_013298	8 semanas	Hipocampo	-8,3202146	0,006999075	chr17:74668758-74670382	Birc6
mmu_circRNA_30183	8 semanas	Hipocampo	-8,0236569	0,002171916	chr17:5264031-5291283	Arid1b
mmu_circRNA_35781	8 semanas	Hipocampo	-7,8534595	0,004854954	chr3:89564858-89609736	Kcnn3
mmu_circRNA_40286	8 semanas	Hipocampo	-7,348709	0,002126684	chr6:52812102-52894071	Jazf1
mmu_circRNA_23670	8 semanas	Hipocampo	-7,2288818	0,000171299	chr11:72863874-72868070	Zzef1
mmu_circRNA_45188	8 semanas	Hipocampo	-7,1190544	0,000832161	chr9:113188224-113214256	Intergénico
mmu_circRNA_24439	8 semanas	Hipocampo	-6,9739166	0,041257862	chr11:116545833-116546968	Ube2o
mmu_circRNA_27548	8 semanas	Hipocampo	-6,9714911	0,00035825	chr14:52120472-52126384	Rpgrip1
mmu_circRNA_30780	8 semanas	Hipocampo	-6,9511931	0,000652253	chr17:65852119-65859134	Ralbp1
mmu_circRNA_28233	8 semanas	Hipocampo	-6,4874362	7,41712E-05	chr15:10447695-10463980	Dnajc21
mmu_circRNA_37699	8 semanas	Hipocampo	-6,4606388	0,000200818	chr4:129712103-129730325	Khdrbs1
mmu_circRNA_36335	8 semanas	Hipocampo	-6,3711268	0,000688707	chr3:153187037-153189340	Intergénico
mmu_circRNA_29066	8 semanas	Hipocampo	-6,3377952	0,007572674	chr15:99510581-99514450	Faim2

mmu_circRNA_22648	8 semanas	Hipocampo	-5,7127995	0,001897426	chr10:115294870-115302791	Rab21
mmu_circRNA_28640	8 semanas	Hipocampo	-5,5897495	8,57805E-05	chr15:62175466-62244857	Pvt1
mmu_circRNA_28874	8 semanas	Hipocampo	-5,3645533	0,040674886	chr15:83983443-83988958	Efcab6
mmu_circRNA_21715	8 semanas	Hipocampo	-5,2895689	0,032331741	chr10:18677824-18699410	Arfgef3
mmu_circRNA_41543	8 semanas	Hipocampo	-5,1841513	0,000932678	chr7:61945130-61981768	A330076H08Rik
mmu_circRNA_43574	8 semanas	Hipocampo	-5,1747012	0,000377998	chr8:122305357-122307641	Zfpm1
mmu_circRNA_42046	8 semanas	Hipocampo	-5,1268521	0,003780223	chr7:105651071-105652306	Timm10b
mmu_circRNA_40341	8 semanas	Hipocampo	-5,0488183	0,047460339	chr6:60815616-60818365	Snca
mmu_circRNA_27126	8 semanas	Hipocampo	-4,9779693	0,009220137	chr14:16818689-16819151	Rarb
mmu_circRNA_37880	8 semanas	Hipocampo	-4,9006144	0,010949474	chr4:143162055-143180991	Prdm2
mmu_circRNA_20422	8 semanas	Hipocampo	-4,8869352	0,003015746	chr1:83275617-83280585	Sphkap
mmu_circRNA_37444	8 semanas	Hipocampo	-4,8806478	0,002581714	chr4:110478464-110507282	Agbl4
mmu_circRNA_34416	8 semanas	Hipocampo	-4,8493806	0,029746476	chr2:121321654-121334836	Ppip5k1
mmu_circRNA_35065	8 semanas	Hipocampo	-4,7720367	0,01592657	chr2:180683808-180692048	Dido1
mmu_circRNA_32425	8 semanas	Hipocampo	-4,7160893	0,00172491	chr19:30143359-30158649	Gldc
mmu_circRNA_42371	8 semanas	Hipocampo	-4,6870792	0,005674922	chr7:130418447-130481715	Ate1
mmu_circRNA_28349	8 semanas	Hipocampo	-4,5402067	0,004668663	chr15:31478294-31480422	March6
mmu_circRNA_44470	8 semanas	Hipocampo	-4,5339643	0,00430214	chr9:65053768-65078105	Dpp8
mmu_circRNA_19397	8 semanas	Hipocampo	-4,5122118	0,027255693	chr5:140899658-140901133	Card11
mmu_circRNA_24172	8 semanas	Hipocampo	-4,3498941	0,035247722	chr11:98756107-98764405	Thra
mmu_circRNA_28238	8 semanas	Hipocampo	-4,2576408	0,00373584	chr15:11071498-11122027	Adamts12
mmu_circRNA_40834	8 semanas	Hipocampo	-4,2400882	0,003300768	chr6:119002576-119005081	Cacna1c
mmu_circRNA_22794	8 semanas	Hipocampo	-4,1877358	0,006866209	chr10:128349752-128353211	Cs
mmu_circRNA_28662	8 semanas	Hipocampo	-4,1619627	0,027548721	chr15:66244503-66261906	Kcnq3
mmu_circRNA_38978	8 semanas	Hipocampo	-4,076814	0,004216762	chr5:92187234-92189344	Uso1
mmu_circRNA_34423	8 semanas	Hipocampo	-4,0556515	0,008206957	chr2:121394346-121413480	Catsper2
mmu_circRNA_39272	8 semanas	Hipocampo	-4,0429797	0,023914309	chr5:121408196-121409204	Naa25
mmu_circRNA_28915	8 semanas	Hipocampo	-3,9422732	0,000629365	chr15:88919530-88939038	Ttll8
mmu_circRNA_42047	8 semanas	Hipocampo	-3,887587	0,002426175	chr7:105651071-105657284	Timm10b
mmu_circRNA_43431	8 semanas	Hipocampo	-3,8840982	0,030060258	chr8:107361425-107361545	Mir5098

mmu_circRNA_38270	8 semanas	Hipocampo	-3,8399742	8,31695E-05	chr5:24689379-24706584	Nub1
mmu_circRNA_35871	8 semanas	Hipocampo	-3,7967199	0,001035823	chr3:99187480-99214774	Wars2
mmu_circRNA_40689	8 semanas	Hipocampo	-3,7495885	0,008467469	chr6:103641893-103717631	Chl1
mmu_circRNA_24171	8 semanas	Hipocampo	-3,6990835	0,025984408	chr11:98753289-98764405	Thra
mmu_circRNA_42101	8 semanas	Hipocampo	-3,5938395	0,000768257	chr7:110788609-110791347	Ampd3
mmu_circRNA_36527	8 semanas	Hipocampo	-3,5255259	0,006690446	chr4:21781735-21825077	Usp45
mmu_circRNA_32154	8 semanas	Hipocampo	-3,3531454	0,010057938	chr19:3612197-3622726	Lrp5
mmu_circRNA_19784	8 semanas	Hipocampo	-3,35018	0,015021256	chr1:24451761-24461529	Col19a1
mmu_circRNA_009788	8 semanas	Hipocampo	-3,3442126	0,018274707	chr2:90690066-90696724	Nup160
mmu_circRNA_34336	8 semanas	Hipocampo	-3,3294246	0,02097586	chr2:119946824-119958363	Mga
mmu_circRNA_29220	8 semanas	Hipocampo	-3,3156712	0,001365033	chr16:11150594-11159124	Zc3h7a
mmu_circRNA_013166	8 semanas	Hipocampo	-3,2349403	0,004473105	chr6:56875676-56875744	Fkbp9
mmu_circRNA_30338	8 semanas	Hipocampo	-3,1951781	0,001264193	chr17:25585542-25612444	Lmf1
mmu_circRNA_20282	8 semanas	Hipocampo	-3,1890205	0,001402872	chr1:66521454-66530853	Unc80
mmu_circRNA_34447	8 semanas	Hipocampo	-3,1500523	0,002786754	chr2:122095589-122098256	Spg11
mmu_circRNA_39954	8 semanas	Hipocampo	-3,1484458	8,81729E-05	chr6:29551851-29568993	Tnpo3
mmu_circRNA_29434	8 semanas	Hipocampo	-3,1431348	0,029095372	chr16:20688538-20689332	Eif4g1
mmu_circRNA_43769	8 semanas	Hipocampo	-3,0917884	0,00038666	chr9:10167117-10172122	Cntn5
mmu_circRNA_41926	8 semanas	Hipocampo	-3,0631088	0,001993206	chr7:97509590-97519205	Ints4
mmu_circRNA_21271	8 semanas	Hipocampo	-3,0549064	0,008016115	chr1:171135992-171138755	Sdhc
mmu_circRNA_27862	8 semanas	Hipocampo	-3,0514256	0,011031461	chr14:78982235-79038201	Vwa8
mmu_circRNA_34071	8 semanas	Hipocampo	-2,9920968	0,002872339	chr2:91810029-91875826	Ambra1
mmu_circRNA_36583	8 semanas	Hipocampo	-2,9608423	6,77385E-05	chr4:32561777-32563367	Bach2
mmu_circRNA_39615	8 semanas	Hipocampo	-2,9572348	0,000183419	chr5:143068316-143087621	Rnf216
mmu_circRNA_35639	8 semanas	Hipocampo	-2,8887761	0,039129619	chr3:80702457-80710844	Gria2
mmu_circRNA_004911	8 semanas	Hipocampo	-2,8850403	0,010133772	chr17:56588797-56588866	Safb
mmu_circRNA_23283	8 semanas	Hipocampo	-2,8423878	0,021522632	chr11:50071170-50087461	Rnf130
mmu_circRNA_22730	8 semanas	Hipocampo	-2,8395142	0,038796601	chr10:121371143-121381291	Gns
mmu_circRNA_23144	8 semanas	Hipocampo	-2,8317686	0,023810787	chr11:30426016-30446380	4930505A04Rik
mmu_circRNA_23184	8 semanas	Hipocampo	-2,8174998	0,024148217	chr11:32738361-32740265	Fbxw11

mmu_circRNA_37985	8 semanas	Hipocampo	-2,8077289	0,009721459	chr4:152356080-152361042	Chd5
mmu_circRNA_27545	8 semanas	Hipocampo	-2,7746056	0,00862077	chr14:50816196-50817470	Parp2
mmu_circRNA_29120	8 semanas	Hipocampo	-2,7253009	0,005701967	chr15:103519948-103528344	Pde1b
mmu_circRNA_003170	8 semanas	Hipocampo	-2,7132109	0,025526518	chr2:18101457-18126229	MIIt10
mmu_circRNA_004325	8 semanas	Hipocampo	-2,6895643	0,03865778	chrX:10579314-10585652	Tspan7
mmu_circRNA_35734	8 semanas	Hipocampo	-2,6518203	0,016351686	chr3:88350015-88351581	Smg5
mmu_circRNA_41269	8 semanas	Hipocampo	-2,628898	0,004355731	chr7:29788048-29789436	Zfp30
mmu_circRNA_21915	8 semanas	Hipocampo	-2,6138174	0,000659606	chr10:43921386-43936091	Rtn4ip1
mmu_circRNA_19499	8 semanas	Hipocampo	-2,6028059	0,007363528	chr8:107063674-107064202	Tmed6
mmu_circRNA_40398	8 semanas	Hipocampo	-2,6007104	0,028897454	chr6:71851771-71868803	Immt
mmu_circRNA_38243	8 semanas	Hipocampo	-2,5945463	0,013553504	chr5:23450151-23486400	Kmt2e
mmu_circRNA_37775	8 semanas	Hipocampo	-2,5792617	0,002046104	chr4:134828011-134837034	Tmem57
mmu_circRNA_33117	8 semanas	Hipocampo	-2,5692002	0,045699205	chr2:22957017-22971259	Abi1
mmu_circRNA_42626	8 semanas	Hipocampo	-2,5667718	0,000445809	chr8:18861476-18870927	Agpat5
mmu_circRNA_20008	8 semanas	Hipocampo	-2,5586914	0,029397159	chr1:43954576-43960967	Tpp2
mmu_circRNA_37299	8 semanas	Hipocampo	-2,5050562	0,027970888	chr4:103951833-104161950	Dab1
mmu_circRNA_29569	8 semanas	Hipocampo	-2,4799102	0,005732283	chr16:33083018-33091362	LmIn
mmu_circRNA_013105	8 semanas	Hipocampo	-2,3977441	0,006175462	chr19:46384219-46385088	Actr1a
mmu_circRNA_27520	8 semanas	Hipocampo	-2,360498	0,02243142	chr14:47064219-47096174	Samd4
mmu_circRNA_35077	8 semanas	Hipocampo	-2,3575719	0,021835981	chr2:181411695-181424388	Zbtb46
mmu_circRNA_27989	8 semanas	Hipocampo	-2,356297	0,017091164	chr14:103656932-103688403	Slain1
mmu_circRNA_41253	8 semanas	Hipocampo	-2,3437634	0,023827469	chr7:28776857-28778990	Sirt2
mmu_circRNA_017967	8 semanas	Hipocampo	-2,3135384	0,00319623	chr1:45344955-45345054	Col3a1
mmu_circRNA_26330	8 semanas	Hipocampo	-2,3034637	0,010198319	chr13:52896176-52898736	Auh
mmu_circRNA_45942	8 semanas	Hipocampo	-2,2945953	0,031076109	chrX:162471794-162526396	Reps2
mmu_circRNA_36264	8 semanas	Hipocampo	-2,2909208	4,71982E-05	chr3:144780081-144780723	Clca1
mmu_circRNA_34713	8 semanas	Hipocampo	-2,2837278	0,012340683	chr2:144635757-144636572	Dtd1
mmu_circRNA_19357	8 semanas	Hipocampo	-2,2706628	0,003693805	chr5:8329978-8367361	Adam22
mmu_circRNA_30037	8 semanas	Hipocampo	-2,261102	0,002783416	chr16:91664197-91671465	Son
mmu_circRNA_39558	8 semanas	Hipocampo	-2,2468073	0,002799236	chr5:138150606-138152969	Zfp113

mmu_circRNA_30959	8 semanas	Hipocampo	-2,2359676	0,027948437	chr17:78667121-78677417	Strn
mmu_circRNA_43695	8 semanas	Hipocampo	-2,2323661	0,003535008	chr9:4502373-4519539	Gria4
mmu_circRNA_33289	8 semanas	Hipocampo	-2,2067025	0,02956692	chr2:32809100-32812105	Stxbp1
mmu_circRNA_26309	8 semanas	Hipocampo	-2,2023676	0,002729842	chr13:49545966-49560287	Cenpp
mmu_circRNA_21743	8 semanas	Hipocampo	-2,1825433	0,005773914	chr10:21000505-21058250	Ahi1
mmu_circRNA_35086	8 semanas	Hipocampo	-2,1804508	0,002510584	chr2:181631434-181632087	Prpf6
mmu_circRNA_24089	8 semanas	Hipocampo	-2,1749116	0,006051429	chr11:94013622-94071686	Spag9
mmu_circRNA_29330	8 semanas	Hipocampo	-2,1671782	0,038181634	chr16:16336852-16346145	Dnm1l
mmu_circRNA_001643	8 semanas	Hipocampo	-2,150082	0,04685234	chr11:72712156-72714483	Ankfy1
mmu_circRNA_43007	8 semanas	Hipocampo	-2,1304751	0,018541217	chr8:70321503-70323470	Cers1
mmu_circRNA_43589	8 semanas	Hipocampo	-2,1207324	0,001656926	chr8:123124147-123124476	Cpne7
mmu_circRNA_42295	8 semanas	Hipocampo	-2,1190328	0,042455361	chr7:125728308-125761849	D430042O09Rik
mmu_circRNA_45232	8 semanas	Hipocampo	-2,1164498	0,002685822	chr9:117911879-117929181	Zcwpw2
mmu_circRNA_21914	8 semanas	Hipocampo	-2,1100093	0,025437483	chr10:43530597-43533157	1700021F05Rik
mmu_circRNA_39246	8 semanas	Hipocampo	-2,0894643	0,015103946	chr5:120654805-120655129	Rasal1
mmu_circRNA_28138	8 semanas	Hipocampo	-2,082637	0,002128547	chr15:3333346-3347601	Ghr
mmu_circRNA_37690	8 semanas	Hipocampo	-2,0748471	0,021049112	chr4:129465229-129466990	Bsdc1
mmu_circRNA_28225	8 semanas	Hipocampo	-2,0693071	0,042360473	chr15:8688287-8688425	Slc1a3
mmu_circRNA_45525	8 semanas	Hipocampo	-2,0628283	0,019819313	chrX:74228320-74230753	Flna
mmu_circRNA_42955	8 semanas	Hipocampo	-2,0560808	0,042579028	chr8:61372507-61374367	Sh3rf1
mmu_circRNA_25734	8 semanas	Hipocampo	-2,0500403	0,000152189	chr12:101981913-101985350	Cpsf2
mmu_circRNA_25780	8 semanas	Hipocampo	-2,047451	0,004834933	chr12:104705052-104707032	Dicer1
mmu_circRNA_44131	8 semanas	Hipocampo	-2,0474031	0,020703642	chr9:50619754-50621190	Pih1d2
mmu_circRNA_41475	8 semanas	Hipocampo	-2,0349883	0,015008658	chr7:59243349-59288780	Ube3a
mmu_circRNA_24450	8 semanas	Hipocampo	-2,0144385	0,018155166	chr11:117735971-117740009	Tnrc6c
mmu_circRNA_28158	8 semanas	Hipocampo	-2,0095229	0,00523889	chr15:4516618-4517327	Plcxd3

circRNAs con regulación positiva bajo condiciones de supresión de MeCP2

ID circRNA	Edad camada	Región	Fold change (KO/WT)	p-valor	Coordenadas	Host gene
mmu_circRNA_36847	8 semanas	Córtex frontal	3,6183311	0,048985075	chr4:58815258-58841605	AI314180
mmu_circRNA_44267	8 semanas	Córtex frontal	3,5145983	0,049904204	chr9:56653599-56674509	Lingo1
mmu_circRNA_34803	8 semanas	Córtex frontal	3,0987232	0,02477574	chr2:154859677-154867033	а
mmu_circRNA_44468	8 semanas	Córtex frontal	2,8451112	0,044224027	chr9:65036968-65075888	Dpp8
mmu_circRNA_005985	8 semanas	Córtex frontal	2,8208894	0,045457127	chr11:50296198-50296265	Canx
mmu_circRNA_25585	8 semanas	Córtex frontal	2,5970815	0,042015384	chr12:88850278-88853112	Nrxn3
mmu_circRNA_31398	8 semanas	Córtex frontal	2,4771506	0,032727342	chr18:22409920-22517823	Asx/3
mmu_circRNA_21284	8 semanas	Córtex frontal	2,3359488	0,043925225	chr1:172484280-172484970	lgsf9
mmu_circRNA_21703	8 semanas	Córtex frontal	2,2999289	0,03588679	chr10:17908033-17916032	Heca
mmu_circRNA_42808	8 semanas	Córtex frontal	2,2315057	0,028308034	chr8:40454497-40456695	Zdhhc2
mmu_circRNA_24162	8 semanas	Córtex frontal	2,2307144	0,04475945	chr11:98163799-98169452	Med1
mmu_circRNA_43623	8 semanas	Córtex frontal	2,1852258	0,045970685	chr8:125837936-125839693	Pcnxl2
mmu_circRNA_22765	8 semanas	Córtex frontal	2,1247337	0,030578612	chr10:125294594-125302081	Slc16a7
mmu_circRNA_003795	8 semanas	Córtex frontal	2,123049	0,029285342	chr1:155847109-155848727	Cep350
mmu_circRNA_45982	8 semanas	Hipocampo	6,3645488	0,022888887	chrX:169976921-169987766	Mid1
mmu_circRNA_40615	8 semanas	Hipocampo	3,3163131	0,044238514	chr6:99260344-99308438	Foxp1
mmu_circRNA_37907	8 semanas	Hipocampo	2,9402897	0,045285409	chr4:147756119-147807183	Gm13157
mmu_circRNA_19440	8 semanas	Hipocampo	2,4706235	0,022856927	chr6:128931669-128944342	Mir7649
mmu_circRNA_36873	8 semanas	Hipocampo	2,4247805	0,002086505	chr4:59493185-59524476	Ptbp3
mmu_circRNA_20658	8 semanas	Hipocampo	2,4128951	0,046894658	chr1:110924995-110954872	Cdh19
mmu_circRNA_27013	8 semanas	Hipocampo	2,3594196	0,020458933	chr13:119492633-119493015	Gm7120
mmu_circRNA_24245	8 semanas	Hipocampo	2,3227644	0,044090369	chr11:104512900-104522822	Cdc27
mmu_circRNA_004229	8 semanas	Hipocampo	2,2314344	0,039810615	chr2:113363835-113365829	Fmn1
mmu_circRNA_20118	8 semanas	Hipocampo	2,2216643	0,044213764	chr1:55701929-55717475	Pici1
mmu_circRNA_29548	8 semanas	Hipocampo	2,2091525	0,043821861	chr16:32618217-32621297	Tfrc

mmu_circRNA_37908	8 semanas	Hipocampo	2,2065575	0,009068923	chr4:147807089-147828796	Zfp933
mmu_circRNA_21585	8 semanas	Hipocampo	2,1890645	0,005916376	chr1:192930477-193027017	Syt14
mmu_circRNA_007853	8 semanas	Hipocampo	2,1844277	0,035603296	chr10:14004200-14086082	Hivep2
mmu_circRNA_27199	8 semanas	Hipocampo	2,1717584	0,034201411	chr14:21783678-21793674	Samd8
mmu_circRNA_35627	8 semanas	Hipocampo	2,1317118	0,045303158	chr3:79479486-79481879	Fnip2
mmu_circRNA_43373	8 semanas	Hipocampo	2,1010687	0,010447092	chr8:99190204-99230522	Cdh8
mmu_circRNA_40622	8 semanas	Hipocampo	2,0998459	0,034905688	chr6:99308343-99651791	Gm20696
mmu_circRNA_36144	8 semanas	Hipocampo	2,094444	0,016418716	chr3:129996680-130005096	Sec24b
mmu_circRNA_007835	8 semanas	Hipocampo	2,0307971	0,014975017	chr13:64243633-64248466	Cdc14b

Tabla S3. T-UCRs con expresión alterada en el modelo celular neural con supresión de MeCP2. Fold change delimitado en -3/3

T-UCRs con regulación negativa bajo condiciones de supresión de MeCP2

ID T-UCR	Estado de diferenciación	Fold change (KO/WT)	p-valor	Coordenadas	Host gene
uc.326	Progenitores neurales	-9,8582309	7,41799E-05	chr11:31785679-31785994	ELP4
uc.335	Progenitores neurales	-9,1505255	0,000388323	chr12:16715413-16715627	LMO3
uc.327	Progenitores neurales	-3,9403019	0,00171028	chr11:31786283-31786551	ELP4
uc.7	Progenitores neurales	-3,7858901	0,000120431	chr1:10836132-10836388	CASZ1
uc.98	Progenitores neurales	-3,4519681	0,022420074	chr2:172956517-172956755	Intergénico
uc.277	Progenitores neurales	-3,2573942	0,003483212	chr9:128607709-128607985	PBX3
uc.3	Progenitores neurales	-2,7386679	0,000114407	chr1:10751164-10751389	CASZ1
uc.475	Progenitores neurales	-2,7145394	0,040285739	chrX:70766054-70766451	OGT
uc.263	Progenitores neurales	-2,6473729	0,012842059	chr9:86590283-86590490	HNRNPK
uc.4	Progenitores neurales	-2,6039643	0,00428919	chr1:10758248-10758607	CASZ1
uc.280	Progenitores neurales	-2,3023546	0,006035004	chr9:128678005-128678225	PBX3
uc.125	Progenitores neurales	-2,2841665	0,034051932	chr3:137068316-137068581	Intergénico
uc.61	Progenitores neurales	-2,2477042	0,042977887	chr2:60687572-60687898	BCL11A
uc.346	Progenitores neurales	-2,2406799	0,025113305	chr12:106976509-106976711	RP11-144F15.1
uc.205	Progenitores neurales	-2,213889	0,019175419	chr7:20829788-20830040	Intergénico
uc.416	Progenitores neurales	-2,1860808	0,003403195	chr17:46670886-46671172	HOXB5
uc.408	Progenitores neurales	-2,1146775	0,000106657	chr16:72821044-72821296	ZFHX3
uc.98	30 días de diferenciación	-8,198274	0,008197768	chr2:172956517-172956755	Intergénico
uc.280	30 días de diferenciación	-4,2286698	0,001269111	chr9:128678005-128678225	PBX3
ис.255	30 días de diferenciación	-3,870307	0,002541368	chr9:23691767-23691999	ELAVL2
uc.326	30 días de diferenciación	-3,8306215	0,012339893	chr11:31785679-31785994	ELP4
uc.110	30 días de diferenciación	-3,6374397	0,010865771	chr2:237071381-237071624	Intergénico
uc.276	30 días de diferenciación	-3,3781824	0,0061762	chr9:128605811-128606243	PBX3
ис.256	30 días de diferenciación	-3,0738178	0,000702526	chr9:23692233-23692439	ELAVL2
uc.61	30 días de diferenciación	-2,718492	0,008987382	chr2:60687572-60687898	BCL11A

uc.331	30 días de diferenciación	-2,6854462	0,003632176	chr11:83195158-83195376	DLG2
uc.254	30 días de diferenciación	-2,1605418	0,014877647	chr9:23496724-23497003	Intergénico
uc.328	30 días de diferenciación	-2,1198216	0,035270855	chr11:31825662-31825893	PAX6
uc.49	30 días de diferenciación	-2,1075798	0,043706599	chr2:33813408-33813615	FAM98A
uc.247	30 días de diferenciación	-2,0992029	0,036707197	chr9:969153-969514	Intergénico

T-UCRs con regulación positiva bajo condiciones de supresión de MeCP2

ID T-UCR	Estado de diferenciación	Fold change (KO/WT)	p-valor	Coordenadas	Host gene
uc.176	Progenitores neurales	11,9844608	0,026594255	chr5:167332694-167332940	TENM2
uc.223	Progenitores neurales	5,902368	0,016999473	chr7:114058184-114058452	FOXP2
uc.224	Progenitores neurales	3,7179252	0,025697938	chr7:114063018-114063313	FOXP2
uc.477	Progenitores neurales	2,9148382	0,042319715	chrX:103041490-103041699	PLP1
uc.458	Progenitores neurales	2,0399402	0,038583344	chr22:36148491-36148695	RBFOX2
uc.479	30 días de diferenciación	6,8845069	0,000244237	chrX:122613750-122614052	GRIA3
uc.176	30 días de diferenciación	5,0355956	0,016043688	chr5:167332694-167332940	TENM2
uc.224	30 días de diferenciación	4,1532121	0,003634512	chr7:114063018-114063313	FOXP2
uc.185	30 días de diferenciación	3,1289569	0,02119709	chr5:178044306-178044717	CLK4
uc.226	30 días de diferenciación	3,0448108	0,014566962	chr7:114209317-114209522	FOXP2
uc.452	30 días de diferenciación	3,0057502	0,020470481	chr19:31827946-31828150	TSHZ3
uc.223	30 días de diferenciación	2,7879245	0,001759048	chr7:114058184-114058452	FOXP2
uc.20	30 días de diferenciación	2,2045638	0,044924898	chr1:45002371-45002640	RNF220
uc.265	30 días de diferenciación	2,0270021	0,010561005	chr9:108118470-108118687	SLC44A1

ID T-UCR	Genotipo	Fold change (30 días/progenitores neurales)	p-valor	Coordenadas	Host gene
uc.361	WT	-5,9723535	0,007510861	chr14:29233134-29233401	Intergénico
uc.37	WT	-5,0487968	0,003375262	chr1:115280052-115280254	CSDE1
uc.475	WT	-4,7918601	0,000292202	chrX:70766054-70766451	OGT
uc.174	WT	-4,5009821	0,011936911	chr5:138643653-138643913	MATR3
uc.128	WT	-4,481064	0,002272687	chr3:147049637-147049936	Intergénico
uc.193	WT	-4,2981174	0,005916853	chr6:86321685-86322004	SYNCRIP
uc.291	WT	-4,1924678	0,031806195	chr10:78283623-78283854	C10orf11
uc.153	WT	-4,1471292	0,037290787	chr5:72195685-72195925	TNPO1
uc.7	WT	-4,0528237	0,000120933	chr1:10836132-10836388	CASZ1
uc.418	WT	-3,9193052	0,007632992	chr17:56082227-56082444	RP11-159D12.5
uc.264	WT	-3,8817514	0,038538975	chr9:86590491-86590758	HNRNPK
uc.97	WT	-3,5146599	0,009378345	chr2:172822630-172823072	HAT1
uc.352	WT	-3,4361388	0,012054302	chr13:72694164-72694364	Intergénico
uc.447	WT	-3,172676	0,033352309	chr19:30767780-30768053	ZNF536
uc.61	WT	-3,0017167	0,00664705	chr2:60687572-60687898	BCL11A
uc.160	КО	-7,3518753	0,030827314	chr5:77268843-77269165	Intergénico
uc.247	КО	-7,2784032	0,010265131	chr9:969153-969514	Intergénico
uc.128	КО	-5,7677779	3,97643E-05	chr3:147049637-147049936	Intergénico
uc.352	КО	-5,5552626	0,039184474	chr13:72694164-72694364	Intergénico
uc.61	КО	-5,3173592	3,50449E-05	chr2:60687572-60687898	BCL11A
uc.37	КО	-4,9070139	0,000309669	chr1:115280052-115280254	CSDE1
uc.447	КО	-4,786825	0,043735036	chr19:30767780-30768053	ZNF536
uc.97	КО	-4,707197	0,005273044	chr2:172822630-172823072	HAT1
uc.2	KO	-4,3551047	0,012884111	chr1:10732542-10732749	CASZ1
uc.49	КО	-4,1280191	0,002558529	chr2:33813408-33813615	FAM98A

T-UCRs con regulación negativa durante el proceso de diferenciación

uc.153	KO	-4,1202804	0,010756794	chr5:72195685-72195925	TNPO1
uc.330	KO	-4,1060129	0,005148195	chr11:66393895-66394102	RBM4
uc.202	KO	-3,7432534	0,027803215	chr6:100973982-100974212	ASCC3
uc.154	KO	-3,7243576	0,003420787	chr5:72210014-72210217	TNPO1
uc.314	KO	-3,6488661	0,041809094	chr10:124852202-124852404	Intergénico
uc.189	KO	-3,5478219	0,002438391	chr6:36567516-36568089	SRSF3
uc.84	KO	-3,4112559	0,007498907	chr2:157194705-157194914	NR4A2
uc.291	KO	-3,1925188	0,007447235	chr10:78283623-78283854	C10orf11
uc.344	KO	-3,1865081	0,002187042	chr12:54426885-54427139	HOXC5
uc.110	KO	-3,1420827	0,001504845	chr2:237071381-237071624	Intergénico
uc.174	KO	-3,1208023	0,001419501	chr5:138643653-138643913	MATR3

ID T-UCR	Genotipo	Fold change (30 días/progenitores neurales)	p-valor	Coordenadas	Host gene
uc.184	WT	9,0794856	0,000763225	chr5:173385291-173385521	CPEB4
uc.350	WT	5,438456	0,000912403	chr13:72256099-72256339	DACH1
uc.422	WT	5,1344224	0,006646504	chr18:22748187-22748413	ZNF521
uc.479	WT	4,9297537	0,000123499	chrX:122613750-122614052	GRIA3
uc.373	WT	4,9057348	0,018513503	chr14:36581806-36582200	Intergénico
uc.308	WT	4,3903369	0,000322209	chr10:103245811-103246088	BTRC
uc.359	WT	4,302964	0,00112616	chr14:26914967-26915291	NOVA1
uc.266	WT	4,2405656	0,046428096	chr9:109378291-109378534	Intergénico
uc.423	WT	4,0267381	0,036623915	chr18:22756354-22756577	ZNF521
uc.230	WT	3,8697657	1,57818E-05	chr7:115319460-115319698	Intergénico
uc.15	WT	3,6854783	0,046473622	chr1:38561075-38561308	Intergénico
uc.176	WT	3,6826595	0,023491639	chr5:167332694-167332940	TENM2
uc.477	WT	3,441789	0,010511161	chrX:103041490-103041699	PLP1
uc.223	WT	3,3293231	0,000691795	chr7:114058184-114058452	FOXP2
uc.198	WT	3,3107701	0,029869753	chr6:98719888-98720195	Intergénico
uc.256	WT	3,3030476	0,000120999	chr9:23692233-23692439	ELAVL2
uc.456	WT	3,3017125	0,002767767	chr20:42087755-42088075	SRSF6
uc.467	WT	3,1598668	0,048713621	chrX:25008353-25009084	POLA1
uc.104	WT	3,0566574	0,000678815	chr2:174986933-174987149	OLA1
uc.255	WT	3,0508469	0,016418305	chr9:23691767-23691999	ELAVL2
uc.131	WT	3,0506885	0,025735727	chr3:157990039-157990246	RSRC1
uc.74	WT	3,022101	0,011618846	chr2:144825962-144826500	GTDC1
uc.458	WT	3,0180209	0,005654401	chr22:36148491-36148695	RBFOX2
uc.479	КО	21,0750128	1,45502E-05	chrX:122613750-122614052	GRIA3
uc.236	КО	16,2214547	0,000592384	chr8:37250468-37250735	Intergénico

T-UCRs con regulación positiva durante el proceso de diferenciación

uc.185	КО	13,5419172	0,000935416	chr5:178044306-178044717	CLK4
uc.77	КО	11,109609	0,033567899	chr2:145185764-145186060	ZEB2
uc.335	КО	10,1622604	0,000205005	chr12:16715413-16715627	LMO3
uc.416	KO	8,7840809	0,00014595	chr17:46670886-46671172	HOXB5
uc.184	KO	8,2859197	0,001732163	chr5:173385291-173385521	CPEB4
uc.15	КО	6,8249971	0,002391983	chr1:38561075-38561308	Intergénico
uc.354	KO	6,428113	0,021652736	chr13:78976828-78977063	Intergénico
uc.456	КО	6,1641628	0,000465264	chr20:42087755-42088075	SRSF6
uc.19	КО	5,8075768	0,001338984	chr1:44990311-44990567	RNF220
uc.480	КО	5,7996677	0,010777634	chrX:123235271-123235473	STAG2
uc.376	КО	5,7382237	0,024485038	chr14:45565749-45566039	PRPF39
uc.226	KO	5,259023	0,000153854	chr7:114209317-114209522	FOXP2
uc.216	КО	5,2535658	1,75907E-05	chr7:50358154-50358466	IKZF1
uc.282	КО	5,1595482	0,008288575	chr9:140042489-140042696	GRIN1
uc.265	КО	4,8928851	0,00507937	chr9:108118470-108118687	SLC44A1
uc.182	КО	4,6940501	0,038377607	chr5:170703078-170703317	RANBP17
uc.333	КО	4,5095535	0,010154807	chr11:124644646-124644916	MSANTD2
ис.63	КО	4,4674709	0,008932458	chr2:61752500-61752778	XPO1
uc.482	КО	4,4216502	0,033132352	chrX:139170487-139170782	Intergénico
uc.12	КО	4,345015	0,012369375	chr1:35650226-35650427	SFPQ
uc.406	КО	4,3132256	0,015531955	chr16:69680363-69680574	NFAT5
uc.123	КО	4,2916948	0,023783861	chr3:136983543-136984035	Intergénico
uc.117	КО	4,2635861	0,000774714	chr3:70871839-70872090	Intergénico
uc.307	КО	4,1723022	0,027244471	chr10:103243982-103244214	BTRC
uc.473	КО	4,1473171	0,000131943	chrX:70373223-70373445	NLGN3
uc.266	КО	4,1369385	0,005687824	chr9:109378291-109378534	Intergénico
uc.476	КО	4,1332942	0,00107353	chrX:81789598-81789836	Intergénico
uc.470	КО	4,1283961	0,009187134	chrX:25401215-25401556	Intergénico
uc.229	КО	4,0829464	2,52443E-05	chr7:115134644-115134940	Intergénico
uc.92	КО	4,0595465	0,003465647	chr2:164450678-164450987	FIGN

uc.198	КО	4,058212	0,003109562	chr6:98719888-98720195	Intergénico
uc.172	КО	4,0175976	0,036440155	chr5:93650718-93650936	KIAA0825
uc.74	КО	4,0026036	5,11856E-05	chr2:144825962-144826500	GTDC1
uc.73	КО	3,9742378	1,64528E-05	chr2:144762312-144762513	GTDC1
uc.208	КО	3,9126471	0,01185132	chr7:23561669-23561887	TRA2A
uc.422	КО	3,7405894	0,000448676	chr18:22748187-22748413	ZNF521
uc.350	КО	3,7049103	0,042555595	chr13:72256099-72256339	DACH1
uc.151	КО	3,6998359	0,000789992	chr5:32380136-32380350	ZFR
uc.71	КО	3,6881501	0,02728107	chr2:144712855-144713103	GTDC1
uc.394	КО	3,6057376	6,81368E-07	chr15:97236099-97236301	Intergénico
uc.206	КО	3,5038344	1,17384E-06	chr7:21003764-21004263	Intergénico
uc.203	КО	3,4602689	0,020975413	chr6:163991703-163991905	QKI
uc.359	КО	3,4006255	0,003286895	chr14:26914967-26915291	NOVA1
uc.275	KO	3,3946281	0,004312111	chr9:128584115-128584370	PBX3
uc.102	KO	3,3647418	0,006503996	chr2:174946408-174946746	OLA1
uc.312	KO	3,363903	0,000993358	chr10:120076536-120076858	FAM204A
uc.225	KO	3,3361499	2,69324E-05	chr7:114072854-114073055	FOXP2
uc.212	КО	3,315565	0,00011172	chr7:27141937-27142142	HOXA2
uc.209	КО	3,3003311	0,000231346	chr7:23561887-23562137	TRA2A
uc.308	КО	3,2716052	0,004472542	chr10:103245811-103246088	BTRC
uc.326	KO	3,2533488	0,007175226	chr11:31785679-31785994	ELP4
uc.415	KO	3,2241394	0,004724063	chr17:46663905-46664112	HOXB3
uc.121	КО	3,2228609	0,011396049	chr3:114575473-114575766	ZBTB20
uc.443	KO	3,1693799	0,018309226	chr19:8527268-8527507	HNRNPM
uc.285	КО	3,1539435	0,001032515	chr10:70515990-70516222	CCAR1
uc.467	КО	3,1479046	0,046569846	chrX:25008353-25009084	POLA1
uc.438	КО	3,1310632	0,007960211	chr18:72357873-72358114	ZNF407
uc.353	КО	3,0534543	0,046909565	chr13:72771552-72771875	Intergénico
uc.104	KO	3,0493104	0,005976697	chr2:174986933-174987149	OLA1
uc.36	KO	3,0440095	0,006594378	chr1:109240427-109240691	PRPF38B

uc.407	KO	3,0328203	0,001326594	chr16:69681154-69681480	NFAT5
uc.129	KO	3,0327746	0,003646694	chr3:152164386-152164598	MBNL1
uc.463	KO	3,0127287	0,004490041	chrX:24915881-24916156	POLA1

Tabla S4. ARNs circulares con expresión alterada en el modelo celular neural con supresión de MeCP2. Fold change delimitado en -3/3.

ID circRNA	Estado de diferenciación	Fold change (KO/WT)	p-valor	Coordenadas	Host gene
hsa_circRNA_000324	Progenitores neurales	-3,864529	0,002216465	chr11:65211304-65211570	NEAT1
hsa_circRNA_000482	Progenitores neurales	-3,5699032	0,042035476	chr8:142264087-142264728	SLC45A4
hsa_circRNA_001681	Progenitores neurales	-3,4518601	0,019436176	chr7:22330793-22357656	RAPGEF5
hsa_circRNA_015962	Progenitores neurales	-3,274361	0,033833744	chr1:201966446-201969143	RNPEP
hsa_circRNA_004926	Progenitores neurales	-3,239797	0,026146788	chr20:61485367-61491660	TCFL5
hsa_circRNA_001311	Progenitores neurales	-3,1608342	0,028488728	chr3:53262071-53262344	ТКТ
hsa_circRNA_000644	Progenitores neurales	-3,1138553	0,044519746	chr18:77592249-77592394	XLOC_012735
hsa_circRNA_103392	Progenitores neurales	-3,0421645	0,04336106	chr3:53267171-53269190	ТКТ
hsa_circRNA_001589	30 días de diferenciación	-12,5495384	0,000158433	chr6:26234499-26234709	HIST1H1D
hsa_circRNA_007352	30 días de diferenciación	-10,1395611	0,010036061	chrX:1712336-1714425	AKAP17A
hsa_circRNA_405665	30 días de diferenciación	-9,8757263	0,003184849	chr18:18945987-18975522	GREB1L
hsa_circRNA_100632	30 días de diferenciación	-9,4310076	0,01109436	chr10:76910271-76928416	SAMD8
hsa_circRNA_102293	30 días de diferenciación	-8,4570484	0,003935653	chr18:8718421-8720494	MTCL1
hsa_circRNA_405330	30 días de diferenciación	-7,8772784	0,011052183	chr15:44060686-44061844	PDIA3
hsa_circRNA_104052	30 días de diferenciación	-7,2825302	0,035406856	chr6:4891946-4892613	CDYL
hsa_circRNA_000324	30 días de diferenciación	-6,6460082	0,000185301	chr11:65211304-65211570	NEAT1
hsa_circRNA_001691	30 días de diferenciación	-6,2079976	0,010391233	chr7:26233194-26236101	HNRNPA2B1
hsa_circRNA_103657	30 días de diferenciación	-6,0891042	0,000957205	chr4:75040222-75041120	MTHFD2L
hsa_circRNA_403876	30 días de diferenciación	-5,9323484	0,017182601	chr7:99001020-99002576	PDAP1
hsa_circRNA_003653	30 días de diferenciación	-5,8771322	0,012445266	chr18:18945987-18983955	GREB1L
hsa_circRNA_061346	30 días de diferenciación	-5,5222603	0,00995638	chr21:27372329-27425664	APP
hsa_circRNA_092556	30 días de diferenciación	-5,407058	0,018155012	chr6:26056122-26056299	HIST1H1C
hsa_circRNA_037563	30 días de diferenciación	-5,3640636	0,020718368	chr16:2807472-2810500	SRRM2
hsa_circRNA_405746	30 días de diferenciación	-5,2410139	0,020560586	chr19:16611602-16612362	C19orf44
hsa_circRNA_100313	30 días de diferenciación	-5,23419	0,022792083	chr1:117957334-117963271	MAN1A2

circRNAs con regulación negativa bajo condiciones de supresión de MeCP2

hsa_circRNA_074595 30 días de diferenciación -5,0537293 0 hsa_circRNA_007148 30 días de diferenciación -4,934698 0 hsa_circRNA_101504 30 días de diferenciación -4,8652908 0 hsa_circRNA_073329 30 días de diferenciación -4,8460408 0 hsa_circRNA_089762 30 días de diferenciación -4,8294604 0 hsa_circRNA_074598 30 días de diferenciación -4,7949451 0 hsa_circRNA_000120 30 días de diferenciación -4,7858395 0 hsa_circRNA_007593 30 días de diferenciación -4,7837363 0 hsa_circRNA_103514 30 días de diferenciación -4,6306835 0			
hsa_circRNA_007148 30 días de diferenciación -4,934698 0 hsa_circRNA_101504 30 días de diferenciación -4,8652908 0 hsa_circRNA_073329 30 días de diferenciación -4,8460408 0 hsa_circRNA_089762 30 días de diferenciación -4,8294604 0 hsa_circRNA_074598 30 días de diferenciación -4,7949451 0 hsa_circRNA_000120 30 días de diferenciación -4,7858395 0 hsa_circRNA_007593 30 días de diferenciación -4,7837363 0 hsa_circRNA_103514 30 días de diferenciación -4,6306835 0	0,011445677 0	chr5:150496687-150502572	ANXA6
hsa_circRNA_101504 30 días de diferenciación -4,8652908 0 hsa_circRNA_073329 30 días de diferenciación -4,8460408 0 hsa_circRNA_089762 30 días de diferenciación -4,8294604 0 hsa_circRNA_074598 30 días de diferenciación -4,7949451 0 hsa_circRNA_000120 30 días de diferenciación -4,7858395 0 hsa_circRNA_007593 30 días de diferenciación -4,7837363 0 hsa_circRNA 103514 30 días de diferenciación -4,6306835 0),030531061 d	chr3:171851260-171969331	FNDC3B
hsa_circRNA_073329 30 días de diferenciación -4,8460408 0 hsa_circRNA_089762 30 días de diferenciación -4,8294604 0 hsa_circRNA_074598 30 días de diferenciación -4,7949451 0 hsa_circRNA_000120 30 días de diferenciación -4,7858395 0 hsa_circRNA_007593 30 días de diferenciación -4,7837363 0 hsa_circRNA_103514 30 días de diferenciación -4,6306835 0	0,013421833	chr15:44046021-44048964	PDIA3
hsa_circRNA_089762 30 días de diferenciación -4,8294604 0 hsa_circRNA_074598 30 días de diferenciación -4,7949451 0 hsa_circRNA_000120 30 días de diferenciación -4,7858395 0 hsa_circRNA_007593 30 días de diferenciación -4,7837363 0 hsa_circRNA_103514 30 días de diferenciación -4,6306835 0	0,001398889	chr5:90059121-90074914	GPR98
hsa_circRNA_074598 30 días de diferenciación -4,7949451 0 hsa_circRNA_000120 30 días de diferenciación -4,7858395 0 hsa_circRNA_007593 30 días de diferenciación -4,7837363 0 hsa_circRNA_103514 30 días de diferenciación -4,6306835 0	0,004960903	chrM:7586-7982	JA760602
hsa_circRNA_000120 30 días de diferenciación -4,7858395 0 hsa_circRNA_007593 30 días de diferenciación -4,7837363 0 hsa_circRNA_103514 30 días de diferenciación -4,6306835 0	0,008813048 d	chr5:150496687-150512748	ANXA6
hsa_circRNA_007593 30 días de diferenciación -4,7837363 0 hsa_circRNA_103514 30 días de diferenciación -4,6306835 0	0,014172912	chr1:117944807-118009049	MAN1A2
hsa circRNA 103514 30 días de diferenciación -4,6306835 0	0,015222602	chr19:19118155-19119237	SUGP2
– –	0,039096018 d	chr3:171965322-171969331	FNDC3B
hsa_circRNA_401782 30 días de diferenciación -4,6049131 (0,022143058	chr17:34144719-34149837	TAF15
hsa_circRNA_000348 30 días de diferenciación -4,5645091 (0,035080501	chr11:92085261-92088570	FAT3
hsa_circRNA_101382 30 días de diferenciación -4,5055918 (0,023383449	chr14:71428942-71445365	PCNX
hsa_circRNA_005855 30 días de diferenciación -4,46791 (0,004771586	chr19:16198836-16199930	TPM4
hsa_circRNA_102039 30 días de diferenciación -4,4122157 (0,021311721	chr17:34147027-34149837	TAF15
hsa_circRNA_101654 30 días de diferenciación -4,3861 (0,037908149	chr15:93557925-93558139	CHD2
hsa_circRNA_405650 30 días de diferenciación -4,3712094 (0,002408383	chr18:8714136-8720494	MTCL1
hsa_circRNA_101002 30 días de diferenciación -4,3270328	0,01272338	chr12:6646474-6646556	GAPDH
hsa_circRNA_013729 30 días de diferenciación -4,2939719 (0,012360595	chr1:117910084-117957453	MAN1A2
hsa_circRNA_402294 30 días de diferenciación -4,2376649 (0,036036102	chr2:65466985-65482828	ACTR2
hsa_circRNA_000457 30 días de diferenciación -4,2296378 (0,007443543 c	hr12:123465675-123467085	ARL6IP4
hsa_circRNA_007878 30 días de diferenciación -4,2172975 (),041851267	chr3:47956306-47960331	MAP4
hsa_circRNA_103512 30 días de diferenciación -4,2113505 (0,007426752 0	chr3:171830241-171851336	FNDC3B
hsa_circRNA_104624 30 días de diferenciación -4,209548 (0,014175013	chr8:52773404-52773806	PCMTD1
hsa_circRNA_000897 30 días de diferenciación -4,1755562	0,00866282	chr19:13054580-13054850	CALR
hsa_circRNA_102885 30 días de diferenciación -4,1326642 (0,001612954 0	chr2:200173482-200298237	SATB2
hsa_circRNA_067967 30 días de diferenciación -4,1025149	0,00922797 0	hr3.1717583/13-171851336	ENDC3B
hsa_circRNA_006859 30 días de diferenciación -4,0996085		51110.1717.00040-171001000	
hsa_circRNA_102468 30 días de diferenciación -4,0971965	0,030819	chr5:73930508-73932323	ENC1
hsa_circRNA_103668 30 días de diferenciación -4,082485 (0,030819 0,00879623	chr5:73930508-73932323 chr19:16192722-16192856	ENC1 TPM4
hsa_circRNA_102469 30 días de diferenciación -4,074681 (0,030819 0,00879623 0,030303352	chr5:73930508-73932323 chr19:16192722-16192856 chr4:77065301-77065626	ENC1 TPM4 NUP54

hsa_circRNA_405718	30 días de diferenciación	-4,0642321	0,010732023	chr19:4947116-4951008	UHRF1
hsa_circRNA_103667	30 días de diferenciación	-4,0346229	0,020629207	chr4:77055327-77065626	NUP54
hsa_circRNA_401174	30 días de diferenciación	-3,997288	0,002281905	chr13:94482406-94482798	GPC6
hsa_circRNA_071106	30 días de diferenciación	-3,9878319	0,003351937	chr4:148778703-148803083	ARHGAP10
hsa_circRNA_000782	30 días de diferenciación	-3,9675574	0,01984222	chr10:31661946-31750166	ZEB1
hsa_circRNA_005087	30 días de diferenciación	-3,9440946	0,031424729	chr1:27269150-27269556	NUDC
hsa_circRNA_009618	30 días de diferenciación	-3,9153546	0,020114319	chr1:8923293-8928116	ENO1
hsa_circRNA_103515	30 días de diferenciación	-3,8885255	0,020027069	chr3:171969049-172025291	FNDC3B
hsa_circRNA_092377	30 días de diferenciación	-3,8843024	0,008288817	chr1:245018859-245019265	HNRNPU
hsa_circRNA_008636	30 días de diferenciación	-3,8782605	0,019086716	chr15:67523567-67529158	AAGAB
hsa_circRNA_077007	30 días de diferenciación	-3,8780971	0,014051677	chr6:74229605-74230755	EEF1A1
hsa_circRNA_062161	30 días de diferenciación	-3,8226741	0,003883386	chr22:17978441-17979767	CECR2
hsa_circRNA_003265	30 días de diferenciación	-3,8046613	0,000849653	chr14:101403739-101415933	SNORD113-5
hsa_circRNA_102888	30 días de diferenciación	-3,7727931	0,001777852	chr2:200233327-200298237	SATB2
hsa_circRNA_101874	30 días de diferenciación	-3,7704693	0,039992592	chr16:74493579-74497377	GLG1
hsa_circRNA_089763	30 días de diferenciación	-3,7532572	0,008842201	chrM:8366-14149	JA760600
hsa_circRNA_102638	30 días de diferenciación	-3,7410021	0,027672674	chr2:20507738-20527139	PUM2
hsa_circRNA_404013	30 días de diferenciación	-3,7364969	0,040554308	chr8:37704371-37704693	BRF2
hsa_circRNA_100505	30 días de diferenciación	-3,7125144	0,011150828	chr1:243776972-244006584	AKT3
hsa_circRNA_001387	30 días de diferenciación	-3,7071595	0,013888155	chr4:1902352-1936989	WHSC1
hsa_circRNA_103536	30 días de diferenciación	-3,6898626	0,020415473	chr3:183896644-183896910	AP2M1
hsa_circRNA_007250	30 días de diferenciación	-3,6622163	0,005651105	chr2:10931920-10933328	PDIA6
hsa_circRNA_100634	30 días de diferenciación	-3,6309616	0,024722524	chr10:79613111-79614128	DLG5
hsa_circRNA_101324	30 días de diferenciación	-3,6254112	0,025010276	chr14:23791389-23792692	PABPN1
hsa_circRNA_103584	30 días de diferenciación	-3,6171796	0,024023808	chr4:1902352-1932497	WHSC1
hsa_circRNA_000328	30 días de diferenciación	-3,601775	0,03333632	chr11:65622881-65623563	CFL1
hsa_circRNA_103382	30 días de diferenciación	-3,5960343	0,027559522	chr3:50289531-50290616	GNAI2
hsa_circRNA_103517	30 días de diferenciación	-3,5917525	0,032528575	chr3:172013152-172028671	FNDC3B
hsa_circRNA_017215	30 días de diferenciación	-3,5788541	0,040497938	chr1:243242289-243265046	LINC01347
hsa_circRNA_100015	30 días de diferenciación	-3,5740342	0,020349636	chr1:1737913-1749314	GNB1

hsa_circRNA_004649	30 días de diferenciación	-3,5640249	0,028265188	chr1:243858892-244006584	AKT3
hsa_circRNA_100014	30 días de diferenciación	-3,5561443	0,043848029	chr1:1735857-1770677	GNB1
hsa_circRNA_100467	30 días de diferenciación	-3,5444363	0,01903619	chr1:225742607-225755116	ENAH
hsa_circRNA_102942	30 días de diferenciación	-3,5364448	0,03190002	chr2:232099936-232100094	ARMC9
hsa_circRNA_401327	30 días de diferenciación	-3,5327561	0,007702413	chr14:105905008-105920647	MTA1
hsa_circRNA_000461	30 días de diferenciación	-3,5272863	0,032827241	chr12:124911167-124934413	NCOR2
hsa_circRNA_100311	30 días de diferenciación	-3,5118917	0,016151427	chr1:117944807-117948267	MAN1A2
hsa_circRNA_008771	30 días de diferenciación	-3,4858943	0,037013532	chr19:1218415-1219412	STK11
hsa_circRNA_102224	30 días de diferenciación	-3,4850949	0,027867367	chr17:79555969-79564342	NPLOC4
hsa_circRNA_100922	30 días de diferenciación	-3,4787247	0,04078666	chr11:85707868-85742653	PICALM
hsa_circRNA_038539	30 días de diferenciación	-3,4774248	0,017174222	chr16:22477517-22496137	SMG1P1
hsa_circRNA_007919	30 días de diferenciación	-3,4563111	0,025858675	chr17:953289-1003975	ABR
hsa_circRNA_103619	30 días de diferenciación	-3,4452401	0,011504549	chr4:37633006-37640126	RELL1
hsa_circRNA_092547	30 días de diferenciación	-3,4343486	0,023176031	chr4:144464661-144465125	SMARCA5
hsa_circRNA_005008	30 días de diferenciación	-3,4316942	0,0133085	chr16:51680350-51680428	HNRNPA1P48
hsa_circRNA_001937	30 días de diferenciación	-3,4157994	0,032592317	chr16:53155459-53155541	CHD9
hsa_circRNA_001802	30 días de diferenciación	-3,4153566	0,028157053	chr8:52773420-52773806	PCMTD1
hsa_circRNA_404771	30 días de diferenciación	-3,4085446	0,015919857	chr10:71142242-71146174	HK1
hsa_circRNA_023339	30 días de diferenciación	-3,4058609	0,005180282	chr11:70263118-70265962	CTTN
hsa_circRNA_100924	30 días de diferenciación	-3,3936991	0,047723199	chr11:85722072-85742653	PICALM
hsa_circRNA_006008	30 días de diferenciación	-3,3732862	0,003818065	chr16:24762046-24788679	TNRC6A
hsa_circRNA_100925	30 días de diferenciación	-3,3724814	0,032107176	chr11:85723323-85742653	PICALM
hsa_circRNA_063089	30 días de diferenciación	-3,3409188	0,004057938	chr22:36680448-36702653	МҮН9
hsa_circRNA_104721	30 días de diferenciación	-3,3383587	0,01886608	chr8:144922100-144922202	NRBP2
hsa_circRNA_000615	30 días de diferenciación	-3,3380246	0,023667278	chr15:64791491-64792365	ZNF609
hsa_circRNA_005328	30 días de diferenciación	-3,3296711	0,029160628	chr6:163876310-163899928	QKI
hsa_circRNA_100926	30 días de diferenciación	-3,3071775	0,031499762	chr11:85733409-85742653	PICALM
hsa_circRNA_102452	30 días de diferenciación	-3,3058022	0,008872985	chr19:11548696-11548945	PRKCSH
hsa_circRNA_103112	30 días de diferenciación	-3,3028453	0,008366687	chr21:17135209-17138460	USP25
hsa_circRNA_055855	30 días de diferenciación	-3,3012278	0,036096435	chr2:100623093-100628033	AFF3

hsa_circRNA_104294	30 días de diferenciación	-3,2833283	0,001306234	chr7:5643126-5643661	FSCN1
hsa_circRNA_032393	30 días de diferenciación	-3,2815765	0,031804693	chr14:71434914-71445365	PCNX
hsa_circRNA_069821	30 días de diferenciación	-3,2553432	0,022324579	chr4:57138486-57138658	KIAA1211
hsa_circRNA_102231	30 días de diferenciación	-3,252788	0,016965226	chr17:79813017-79813462	P4HB
hsa_circRNA_102225	30 días de diferenciación	-3,2521294	0,035490119	chr17:79555969-79575848	NPLOC4
hsa_circRNA_007624	30 días de diferenciación	-3,2449794	0,047216255	chr1:94047857-94057950	BCAR3
hsa_circRNA_001735	30 días de diferenciación	-3,2441774	0,015182202	chr7:102038066-102045130	PRKRIP1
hsa_circRNA_100136	30 días de diferenciación	-3,2425815	0,014082061	chr1:31532050-31532424	PUM1
hsa_circRNA_087856	30 días de diferenciación	-3,2373609	0,042658654	chr9:110062421-110084399	RAD23B
hsa_circRNA_000760	30 días de diferenciación	-3,2367891	0,027652958	chr17:36865777-36868169	MLLT6
hsa_circRNA_100923	30 días de diferenciación	-3,2298853	0,048585732	chr11:85718584-85742653	PICALM
hsa_circRNA_103565	30 días de diferenciación	-3,2203447	0,032710281	chr3:196842797-196846401	DLG1
hsa_circRNA_102813	30 días de diferenciación	-3,2045553	0,009237661	chr2:122363276-122363756	CLASP1
hsa_circRNA_402113	30 días de diferenciación	-3,20214	0,024742142	chr19:46324641-46327133	SYMPK
hsa_circRNA_000286	30 días de diferenciación	-3,199756	0,032296159	chr11:34101174-34111003	CAPRIN1
hsa_circRNA_100352	30 días de diferenciación	-3,199094	0,035859939	chr1:155408117-155408859	ASH1L
hsa_circRNA_003949	30 días de diferenciación	-3,188284	0,022144125	chr7:136935976-136939721	PTN
hsa_circRNA_104706	30 días de diferenciación	-3,1857728	0,039080294	chr8:141828375-141900868	PTK2
hsa_circRNA_050900	30 días de diferenciación	-3,1795801	0,03163174	chr19:39191239-39200116	ACTN4
hsa_circRNA_000416	30 días de diferenciación	-3,1728746	0,001027117	chr12:69214104-69222711	MDM2
hsa_circRNA_103267	30 días de diferenciación	-3,1675085	0,00946809	chr22:50810448-50832564	PPP6R2
hsa_circRNA_101728	30 días de diferenciación	-3,1635026	0,009852063	chr16:16345819-16346379	NOMO3
hsa_circRNA_100927	30 días de diferenciación	-3,1625042	0,033798275	chr11:85737333-85742653	PICALM
hsa_circRNA_100919	30 días de diferenciación	-3,1618794	0,040459115	chr11:85707868-85712201	PICALM
hsa_circRNA_101790	30 días de diferenciación	-3,1616246	0,015893734	chr16:29458122-29458347	BOLA2
hsa_circRNA_104708	30 días de diferenciación	-3,1524243	0,040478762	chr8:141874410-141900868	PTK2
hsa_circRNA_103572	30 días de diferenciación	-3,1385559	0,00512876	chr3:197592293-197602646	LRCH3
hsa_circRNA_100928	30 días de diferenciación	-3,1379891	0,038997329	chr11:85742510-85742653	PICALM
hsa_circRNA_001124	30 días de diferenciación	-3,1341225	0,01346537	chr2:242644067-242651486	ING5
hsa_circRNA_103587	30 días de diferenciación	-3,1334502	0,017598066	chr4:1918597-1920350	WHSC1

hsa_circRNA_102090	30 días de diferenciación	-3,1306384	0,005780974	chr17:42936447-42937911	EFTUD2
hsa_circRNA_104566	30 días de diferenciación	-3,12365	0,029063672	chr8:18656804-18662408	PSD3
hsa_circRNA_104288	30 días de diferenciación	-3,1133692	0,031298269	chr7:2402279-2402762	EIF3B
hsa_circRNA_008702	30 días de diferenciación	-3,1060672	0,046299409	chr1:1747194-1770677	GNB1
hsa_circRNA_405582	30 días de diferenciación	-3,1017082	0,025736752	chr17:40986531-40991029	PSME3
hsa_circRNA_400780	30 días de diferenciación	-3,0995436	0,049934887	chr11:68125117-68157520	LRP5
hsa_circRNA_000758	30 días de diferenciación	-3,0981854	0,032424005	chr17:34151081-34165557	TAF15
hsa_circRNA_104730	30 días de diferenciación	-3,0951984	0,030049714	chr9:4286037-4286523	GLIS3
hsa_circRNA_102787	30 días de diferenciación	-3,0850827	0,019586243	chr2:100623093-100625394	AFF3
hsa_circRNA_040698	30 días de diferenciación	-3,0827661	0,045432505	chr16:84767040-84779279	USP10
hsa_circRNA_100016	30 días de diferenciación	-3,0792396	0,046079819	chr1:1747194-1749314	GNB1
hsa_circRNA_005255	30 días de diferenciación	-3,0607799	0,045521303	chr3:48019354-48040369	MAP4
hsa_circRNA_400275	30 días de diferenciación	-3,0602539	0,002219485	chr1:82302569-82302742	LPHN2
hsa_circRNA_401701	30 días de diferenciación	-3,0567932	0,042922013	chr17:5365638-5367009	DHX33
hsa_circRNA_101231	30 días de diferenciación	-3,0562248	0,009089464	chr13:21742126-21742538	SKA3
hsa_circRNA_104820	30 días de diferenciación	-3,0545455	0,047889935	chr9:96233422-96259881	FAM120A
hsa_circRNA_101121	30 días de diferenciación	-3,0532269	0,044787086	chr12:98921663-98931350	TMPO
hsa_circRNA_101934	30 días de diferenciación	-3,0367238	0,026538855	chr17:1268152-1273035	YWHAE
hsa_circRNA_006491	30 días de diferenciación	-3,0345779	0,005571767	chr18:42281139-42281797	SETBP1
hsa_circRNA_407262	30 días de diferenciación	-3,029921	0,027194168	chrX:3735585-3747433	LOC389906
hsa_circRNA_045775	30 días de diferenciación	-3,0289211	0,038964068	chr17:74093876-74097944	EXOC7
hsa_circRNA_104923	30 días de diferenciación	-3,0239525	0,024776333	chr9:128246721-128268696	MAPKAP1
hsa_circRNA_101505	30 días de diferenciación	-3,022082	0,031938829	chr15:44048846-44055404	PDIA3
hsa_circRNA_102747	30 días de diferenciación	-3,0156321	0,030228492	chr2:65473657-65492309	ACTR2
hsa_circRNA_092472	30 días de diferenciación	-3,0155293	0,013966003	chr19:48248829-48248993	GLTSCR2
hsa_circRNA_104821	30 días de diferenciación	-3,0146002	0,041405804	chr9:96233422-96261168	FAM120A
hsa_circRNA_102683	30 días de diferenciación	-3,0139865	0,019439191	chr2:36668400-36669878	CRIM1
hsa_circRNA_052621	30 días de diferenciación	-3,0092924	0,006446546	chr2:10928822-10930959	PDIA6
hsa_circRNA_004727	30 días de diferenciación	-3,0036483	0,020286481	chr9:131882791-131885417	PPP2R4
hsa_circRNA_040466	30 días de diferenciación	-3,0034703	0,048303112	chr16:74493579-74503971	GLG1

hsa_circRNA_101538	30 días de diferenciación	-3,0034522	0,000214384	chr15:60648117-60656722	ANXA2
hsa_circRNA_103516	30 días de diferenciación	-3,0025643	0,023316272	chr3:171969049-172028671	FNDC3B

circRNAs con regulación positiva bajo condiciones de supresión de MeCP2

ID circRNA	Estado de diferenciación	Fold change (KO/WT)	p-valor	Coordenadas	Host gene
hsa_circRNA_100900	Progenitores neurales	3,4948991	0,003114595	chr11:77649696-77652297	INTS4
hsa_circRNA_011286	30 días de diferenciación	4,0337347	0,015218263	chr1:31899500-31907527	SERINC2
hsa_circRNA_406457	30 días de diferenciación	4,0013476	0,015902743	chr4:25193245-25198922	SEPSECS-AS1
hsa_circRNA_104503	30 días de diferenciación	3,908918	0,013817197	chr7:138203933-138255748	TRIM24
hsa_circRNA_006862	30 días de diferenciación	3,7494726	0,009464691	chr1:212216334-212220759	DTL
hsa_circRNA_077877	30 días de diferenciación	3,7181148	0,013028027	chr6:133135707-133138703	RPS12
hsa_circRNA_100260	30 días de diferenciación	3,6741484	0,017407614	chr1:70736538-70781249	ANKRD13C
hsa_circRNA_100770	30 días de diferenciación	3,6396469	0,010764022	chr11:22225349-22249132	ANO5
hsa_circRNA_092366	30 días de diferenciación	3,6303861	0,011891004	chr1:31994030-32006486	Intergénico
hsa_circRNA_062032	30 días de diferenciación	3,6290986	0,023263723	chr21:47407412-47424963	COL6A1
hsa_circRNA_016950	30 días de diferenciación	3,6275292	0,006419682	chr1:233231500-233363117	PCNXL2
hsa_circRNA_028935	30 días de diferenciación	3,6214906	0,012742753	chr12:121220457-121221555	SPPL3
hsa_circRNA_000573	30 días de diferenciación	3,6157212	0,017916335	chr14:104847269-104847527	Intergénico
hsa_circRNA_102639	30 días de diferenciación	3,5882793	0,011615578	chr2:20939730-20939965	C2orf43
hsa_circRNA_039172	30 días de diferenciación	3,5717486	0,015781236	chr16:31488182-31489281	TGFB1I1
hsa_circRNA_101155	30 días de diferenciación	3,4664988	0,005937231	chr12:112371689-112381173	TMEM116
hsa_circRNA_001046	30 días de diferenciación	3,4503114	0,013669955	chr12:46622935-46624417	SLC38A1
hsa_circRNA_091722	30 días de diferenciación	3,4188213	0,017585768	chrX:151934651-151936377	MAGEA3
hsa_circRNA_026462	30 días de diferenciación	3,4187081	0,014543779	chr12:53068519-53069224	KRT1
hsa_circRNA_406993	30 días de diferenciación	3,4101741	0,011149098	chr7:107126327-107126712	COG5
hsa_circRNA_406295	30 días de diferenciación	3,4047326	0,018073844	chr3:67718636-67721428	SUCLG2-AS1
hsa_circRNA_075379	30 días de diferenciación	3,3920201	0,012216193	chr5:180663927-180670906	GNB2L1
hsa_circRNA_404524	30 días de diferenciación	3,3847497	0,00678272	chr1:67402200-67402350	MIER1
hsa_circRNA_405776	30 días de diferenciación	3,3809945	0,015222217	chr19:37579940-37587017	ZNF420
hsa_circRNA_400982	30 días de diferenciación	3,3762074	0,016155443	chr12:63083478-63114069	PPM1H

hsa_circRNA_406686	30 días de diferenciación	3,3415855	0,014641253	chr5:141008234-141008739	HDAC3
hsa_circRNA_101739	30 días de diferenciación	3,3357488	0,012054219	chr16:19063007-19068019	TMC7
hsa_circRNA_402437	30 días de diferenciación	3,3253	0,014375892	chr2:201790558-201796171	ORC2
hsa_circRNA_059711	30 días de diferenciación	3,3116023	0,014397383	chr20:30330343-30389603	TPX2
hsa_circRNA_101779	30 días de diferenciación	3,3096317	0,013691323	chr16:27712909-27720241	KIAA0556
hsa_circRNA_404938	30 días de diferenciación	3,2942027	0,013127182	chr11:116627861-116631668	BUD13
hsa_circRNA_003145	30 días de diferenciación	3,2885951	0,010115472	chr13:108175911-108179689	FAM155A
hsa_circRNA_103160	30 días de diferenciación	3,287055	0,01371999	chr22:19462590-19463125	UFD1L
hsa_circRNA_017969	30 días de diferenciación	3,2836771	0,01867892	chr10:22856779-22862386	PIP4K2A
hsa_circRNA_062996	30 días de diferenciación	3,2727928	0,009020159	chr22:33260901-33265112	SYN3
hsa_circRNA_405942	30 días de diferenciación	3,2722448	0,018775533	chr2:109489906-109492898	CCDC138
hsa_circRNA_000276	30 días de diferenciación	3,2662955	0,014411812	chr11:5711031-5717503	TRIM5
hsa_circRNA_406073	30 días de diferenciación	3,2637535	0,01429905	chr2:242396161-242415402	FARP2
hsa_circRNA_049851	30 días de diferenciación	3,2592271	0,02288906	chr19:15939756-15946230	XLOC_012981
hsa_circRNA_075215	30 días de diferenciación	3,2507265	0,010958046	chr5:176938577-176940848	DDX41
hsa_circRNA_084735	30 días de diferenciación	3,2377315	0,015221776	chr8:71039047-71057083	NCOA2
hsa_circRNA_000750	30 días de diferenciación	3,2329602	0,013685911	chr7:132990021-133002144	EXOC4
hsa_circRNA_407246	30 días de diferenciación	3,2322391	0,019675714	chr9:131707278-131707502	NUP188
hsa_circRNA_407311	30 días de diferenciación	3,2291493	0,011378447	chrX:100169614-100170072	XKRX
hsa_circRNA_074216	30 días de diferenciación	3,2200294	0,018565041	chr5:138784244-138842320	ECSCR
hsa_circRNA_003454	30 días de diferenciación	3,2171791	0,015698175	chr15:72208710-72231268	MYO9A
hsa_circRNA_010015	30 días de diferenciación	3,2037221	0,022451078	chr1:12627938-12632881	DHRS3
hsa_circRNA_402801	30 días de diferenciación	3,1979296	0,028954982	chr3:20212215-20212724	SGOL1
hsa_circRNA_004121	30 días de diferenciación	3,1741361	0,017248253	chr2:102027080-102038934	RFX8
hsa_circRNA_101257	30 días de diferenciación	3,1736527	0,016142218	chr13:41826780-41837620	MTRF1
hsa_circRNA_011588	30 días de diferenciación	3,1653472	0,02047379	chr1:36211051-36212593	CLSPN
hsa_circRNA_025984	30 días de diferenciación	3,1552026	0,014508048	chr12:46751970-46754992	SLC38A2
hsa_circRNA_092589	30 días de diferenciación	3,1405411	0,018802767	chrX:40988349-40990765	USP9X
hsa_circRNA_102766	30 días de diferenciación	3,1371138	0,027679084	chr2:74056531-74087278	STAMBP
hsa_circRNA_003806	30 días de diferenciación	3,1343358	0,019311899	chr3:87017739-87018273	VGLL3

hsa_circRNA_011084	30 días de diferenciación	3,1274339	0,016176007	chr1:27992571-27998724	IF16
hsa_circRNA_405043	30 días de diferenciación	3,1190551	0,018955552	chr12:95498782-95535315	FGD6
hsa_circRNA_406780	30 días de diferenciación	3,1093633	0,01529872	chr6:43193384-43194133	DNPH1
hsa_circRNA_000410	30 días de diferenciación	3,1087521	0,016006527	chr5:77299605-77299759	AP3B1
hsa_circRNA_020967	30 días de diferenciación	3,1084948	0,018608802	chr11:5289579-5290906	HBE1
hsa_circRNA_025500	30 días de diferenciación	3,1055054	0,020401081	chr12:12672795-12715448	DUSP16
hsa_circRNA_001169	30 días de diferenciación	3,1042979	0,020963785	chr20:48804894-48805015	CEBPB-AS1
hsa_circRNA_006970	30 días de diferenciación	3,1008333	0,015728597	chr5:34918468-34923339	BRIX1
hsa_circRNA_102873	30 días de diferenciación	3,1006842	0,022120624	chr2:188348850-188368497	TFPI
hsa_circRNA_405561	30 días de diferenciación	3,0988606	0,029793884	chr17:29183972-29192818	ATAD5
hsa_circRNA_000190	30 días de diferenciación	3,0971643	0,013141806	chr1:224553580-224559125	CNIH4
hsa_circRNA_102011	30 días de diferenciación	3,0945951	0,019691245	chr17:26512204-26512291	NLK
hsa_circRNA_009723	30 días de diferenciación	3,0930038	0,010687104	chr1:10459084-10480201	PGD
hsa_circRNA_000432	30 días de diferenciación	3,0828267	0,01472331	chr12:102542007-102559661	PARPBP
hsa_circRNA_024081	30 días de diferenciación	3,0799753	0,01548511	chr11:95620775-95621425	MTMR2
hsa_circRNA_407088	30 días de diferenciación	3,0796834	0,000786016	chr8:72181974-72229924	EYA1
hsa_circRNA_405140	30 días de diferenciación	3,075888	0,018206833	chr13:44346195-44346638	ENOX1
hsa_circRNA_067718	30 días de diferenciación	3,0738426	0,021925003	chr3:149563797-149677923	RNF13
hsa_circRNA_087962	30 días de diferenciación	3,0690941	0,014844596	chr9:113734352-113800365	LPAR1
hsa_circRNA_000480	30 días de diferenciación	3,0666276	0,019495058	chr13:46559797-46563115	ZC3H13
hsa_circRNA_405536	30 días de diferenciación	3,0624492	0,017868428	chr17:7806826-7807115	CHD3
hsa_circRNA_036088	30 días de diferenciación	3,059269	0,009774637	chr15:69745158-69747884	RPLP1
hsa_circRNA_400037	30 días de diferenciación	3,0588685	0,01720517	chr17:74080841-74081041	EXOC7
hsa_circRNA_102914	30 días de diferenciación	3,0504058	0,026470565	chr2:217329319-217340174	SMARCAL1
hsa_circRNA_101251	30 días de diferenciación	3,0486955	0,013555092	chr13:40293372-40301685	COG6
hsa_circRNA_058188	30 días de diferenciación	3,0458124	0,016319002	chr2:217329319-217332769	SMARCAL1
hsa_circRNA_406376	30 días de diferenciación	3,0426426	0,016627514	chr3:145701394-145708714	Intergénico
hsa_circRNA_406313	30 días de diferenciación	3,0269211	0,014899529	chr3:100348441-100438902	TFG
hsa_circRNA_000361	30 días de diferenciación	3,0248866	0,011246243	chr3:17059499-17059748	PLCL2
hsa_circRNA_091412	30 días de diferenciación	3,023458	0,01552344	chrX:118750908-118754014	SEPT6

hsa_circRNA_041939	30 días de diferenciación	3,0227721	0,027200675	chr17:7491497-7491864	SOX15
hsa_circRNA_100412	30 días de diferenciación	3,0211761	0,015366976	chr1:179316734-179319566	SOAT1
hsa_circRNA_405046	30 días de diferenciación	3,0163714	0,013281985	chr12:97178494-97222866	C12orf55
hsa_circRNA_038632	30 días de diferenciación	3,009682	0,009262547	chr16:23691404-23701688	PLK1
hsa_circRNA_008323	30 días de diferenciación	3,0034358	0,023573372	chr22:31947382-31971378	SFI1

ID circRNA	Genotipo	Fold change (30 días/progenitores neurales)	p-valor	Coordenadas	Host gene
hsa_circRNA_101460	WT	-7,6768939	0,022904962	chr15:22925975-22926065	CYFIP1
hsa_circRNA_015962	WT	-7,0043062	0,006603383	chr1:201966446-201969143	RNPEP
hsa_circRNA_007940	WT	-6,7954947	0,005145598	chr7:98988515-98988876	ARPC1B
hsa_circRNA_004926	WT	-4,3516109	0,012462592	chr20:61485367-61491660	TCFL5
hsa_circRNA_404823	WT	-3,2756601	0,002886009	chr10:128973475-128975403	FAM196A
hsa_circRNA_004299	WT	-3,2732926	0,00552436	chr7:98985661-98987635	ARPC1B
hsa_circRNA_000482	WT	-3,2613697	0,046143418	chr8:142264087-142264728	SLC45A4
hsa_circRNA_001584	WT	-3,2172199	0,009157024	chr6:26056274-26056412	HIST1H1C
hsa_circRNA_001311	WT	-3,2076768	0,036455259	chr3:53262071-53262344	ТКТ
hsa_circRNA_006458	WT	-3,0566792	0,023316677	chr20:61488746-61490878	TCFL5
hsa_circRNA_068482	WT	-3,0274068	0,024562692	chr3:186756529-186769134	ST6GAL1
hsa_circRNA_103135	WT	-3,0143832	0,017915726	chr21:42598192-42629253	BACE2
hsa_circRNA_001589	КО	-4,8293604	0,0029616	chr6:26234499-26234709	Intergénico
hsa_circRNA_007940	KO	-4,0885908	0,000296026	chr7:98988515-98988876	ARPC1B
hsa_circRNA_092556	KO	-3,468843	0,027771415	chr6:26056122-26056299	HIST1H1C
hsa_circRNA_103421	KO	-3,32753	0,010870075	chr3:98600383-98600611	DCBLD2
hsa_circRNA_000496	КО	-3,2028978	0,008294234	chr13:78272063-78272153	SLAIN1
hsa_circRNA_103110	КО	-3,0285102	0,022148117	chr21:16386664-16415895	NRIP1

circRNAs con regulación negativa durante el proceso de diferenciación

ID circRNA	Genotipo	Fold change (30 días/progenitores neurales)	p-valor	Coordenadas	Host gene
hsa_circRNA_100632	WT	37,793719	0,00073009	chr10:76910271-76928416	SAMD8
hsa_circRNA_101120	WT	26,6589495	0,004935423	chr12:97886238-97924637	RMST
hsa_circRNA_104811	WT	26,6362213	4,4929E-07	chr9:87356806-87367000	NTRK2
hsa_circRNA_104721	WT	23,5100648	0,003765374	chr8:144922100-144922202	NRBP2
hsa_circRNA_102787	WT	17,5819626	0,000188867	chr2:100623093-100625394	AFF3
hsa_circRNA_405665	WT	15,3136717	0,002787185	chr18:18945987-18975522	GREB1L
hsa_circRNA_007352	WT	13,6065995	0,004005373	chrX:1712336-1714425	AKAP17A
hsa_circRNA_055855	WT	13,1405516	0,000453169	chr2:100623093-100628033	AFF3
hsa_circRNA_405746	WT	12,336197	0,003503154	chr19:16611602-16612362	C19orf44
hsa_circRNA_007148	WT	12,1525833	0,003066046	chr3:171851260-171969331	FNDC3B
hsa_circRNA_103514	WT	12,0230632	0,002423691	chr3:171965322-171969331	FNDC3B
hsa_circRNA_002082	WT	11,7114288	0,025846733	chr11:65271199-65272066	MALAT1
hsa_circRNA_000178	WT	11,6572217	0,025260114	chr14:70236227-70236759	SRSF5
hsa_circRNA_104052	WT	11,4879878	0,019838984	chr6:4891946-4892613	CDYL
hsa_circRNA_073593	WT	10,4578458	9,81541E-05	chr5:112111325-112151290	APC
hsa_circRNA_000543	WT	10,1468997	0,031654007	chr11:65272490-65272586	XLOC_12_002352
hsa_circRNA_103517	WT	9,8679429	0,005220628	chr3:172013152-172028671	FNDC3B
hsa_circRNA_103515	WT	9,7850862	0,002363823	chr3:171969049-172025291	FNDC3B
hsa_circRNA_406550	WT	9,1921479	0,006235268	chr4:151023634-151023964	DCLK2
hsa_circRNA_103749	WT	8,7530869	0,0057398	chr4:151023629-151023964	DCLK2
hsa_circRNA_101379	WT	8,7082564	0,017333119	chr14:70459133-70480208	SMOC1
hsa_circRNA_406654	WT	8,5973037	0,000582995	chr5:121726783-121739560	SNCAIP
hsa_circRNA_005328	WT	8,193781	0,013717056	chr6:163876310-163899928	QKI
hsa_circRNA_104474	WT	7,9744645	0,025607599	chr7:128282270-128289036	LINC01000
hsa_circRNA_082178	WT	7,9058058	0,028317866	chr7:128281294-128289036	LINC01000

circRNAs con regulación positiva durante el proceso de diferenciación

hsa_circRNA_007211	WT	7,2267116	0,030056845	chr1:674213-678730	AK310751	
hsa_circRNA_018224	WT	7,2168397	0,030509561	chr10:38724057-38734535	LINC00999	
hsa_circRNA_101654	WT	7,2035447	0,016557065	chr15:93557925-93558139	CHD2	
hsa_circRNA_100504	WT	7,1989425	0,006761922	chr1:243736227-244006584	AKT3	
hsa_circRNA_079926	WT	7,1555566	0,030161166	chr7:39821342-39829143	LINC00265	
hsa_circRNA_100259	WT	6,9667969	0,001622459	chr1:67356836-67371058	WDR78	
hsa_circRNA_005921	WT	6,9000811	0,030746944	chr7:128281256-128289036	LINC01000	
hsa_circRNA_009181	WT	6,8910324	0,032062809	chr1:667396-678730	LOC100133331	
hsa_circRNA_017202	WT	6,8888259	0,031324524	chr1:243222779-243242354	LINC01347	
hsa_circRNA_017215	WT	6,7756904	0,0306031	chr1:243242289-243265046	LINC01347	
hsa_circRNA_103657	WT	6,7546427	0,010024829	chr4:75040222-75041120	MTHFD2L	
hsa_circRNA_003653	WT	6,7346394	0,010671111	chr18:18945987-18983955	GREB1L	
hsa_circRNA_101380	WT	6,5504807	0,006487303	chr14:70477470-70490164	SMOC1	
hsa_circRNA_100799	WT	6,4966229	0,002920037	chr11:36248634-36248980	LDLRAD3	
hsa_circRNA_000348	WT	6,4494776	0,018828147	chr11:92085261-92088570	FAT3	
hsa_circRNA_406400	WT	6,4327571	0,002680005	chr3:178624189-178627494	Intergénico	
hsa_circRNA_004077	WT	6,1405982	0,042816332	chr16:77850817-77859358	VAT1L	
hsa_circRNA_101550	WT	6,1154927	0,024068016	chr15:63988322-64008672	HERC1	
hsa_circRNA_000541	WT	6,0829255	0,000328327	chr14:56746393-56757174	PELI2	
hsa_circRNA_400294	WT	5,9926022	0,011374341	chr1:103540173-103548528	COL11A1	
hsa_circRNA_005433	WT	5,9856844	0,025215751	chr4:119529812-119549381	LOC729218	
hsa_circRNA_100886	WT	5,652103	0,009629985	chr11:73418464-73431944	RAB6A	
hsa_circRNA_005093	WT	5,6379377	0,003483334	chr3:178626309-178627494	Intergénico	
hsa_circRNA_004649	WT	5,6193385	0,009586939	chr1:243858892-244006584	AKT3	
hsa_circRNA_007878	WT	5,5048866	0,041453889	chr3:47956306-47960331	MAP4	
hsa_circRNA_029994	WT	5,4651268	0,000668453	chr13:36379835-36382457	DCLK1	
hsa_circRNA_103516	WT	5,4636395	0,001376768	chr3:171969049-172028671	FNDC3B	
hsa_circRNA_102460	WT	5,3718258	0,048642802	chr19:13183860-13186485	NFIX	
hsa_circRNA_100505	WT	5,2876942	0,02021611	chr1:243776972-244006584	AKT3	
hsa_circRNA_102762	WT	5,2544152	0,011512037	chr2:72958135-72960247	EXOC6B	
hsa_circRNA_003949	WT	5,171381	0,000352659	chr7:136935976-136939721	PTN	
--------------------	----	-----------	-------------	---------------------------	---------	
hsa_circRNA_101382	WT	5,1222039	0,017861219	chr14:71428942-71445365	PCNX	
hsa_circRNA_004079	WT	5,0837768	0,018881541	chr2:230705537-230725247	TRIP12	
hsa_circRNA_104690	WT	5,0427466	0,005079111	chr8:131164981-131193126	ASAP1	
hsa_circRNA_061346	WT	5,0346973	0,020616301	chr21:27372329-27425664	APP	
hsa_circRNA_065768	WT	4,9677409	0,016061221	chr3:50000008-50114685	RBM6	
hsa_circRNA_104729	WT	4,8055424	0,00627344	chr9:4117767-4118881	GLIS3	
hsa_circRNA_403236	WT	4,8049382	0,014798763	chr4:146767107-146824367	ZNF827	
hsa_circRNA_103820	WT	4,7815271	0,024768838	chr5:38523520-38530768	LIFR	
hsa_circRNA_092547	WT	4,7536801	0,02953866	chr4:144464661-144465125	SMARCA5	
hsa_circRNA_037563	WT	4,7487053	0,047366213	chr16:2807472-2810500	SRRM2	
hsa_circRNA_006542	WT	4,7318486	0,002740578	chr12:107208473-107219598	RIC8B	
hsa_circRNA_000120	WT	4,7245229	0,03393907	chr1:117944807-118009049	MAN1A2	
hsa_circRNA_104596	WT	4,6703084	0,002911018	chr8:38314873-38315052	FGFR1	
hsa_circRNA_100467	WT	4,6417861	0,039297008	chr1:225742607-225755116	ENAH	
hsa_circRNA_401016	WT	4,5763193	0,000431506	chr12:99166819-99194903	ANKS1B	
hsa_circRNA_104689	WT	4,5514491	0,004675275	chr8:131164981-131181313	ASAP1	
hsa_circRNA_084010	WT	4,5244485	0,00402724	chr8:38297823-38315052	FGFR1	
hsa_circRNA_005660	WT	4,469925	0,018687374	chr19:13135834-13136366	NFIX	
hsa_circRNA_032393	WT	4,4331286	0,015820172	chr14:71434914-71445365	PCNX	
hsa_circRNA_406216	WT	4,4133315	0,017591704	chr3:4344838-4346286	SUMF1	
hsa_circRNA_076859	WT	4,4101568	0,004265867	chr6:56468634-56506899	DST	
hsa_circRNA_004607	WT	4,3590235	0,009556841	chr1:85816097-85824530	DDAH1	
hsa_circRNA_102761	WT	4,3402431	0,001765374	chr2:72945231-72960247	EXOC6B	
hsa_circRNA_103340	WT	4,3062962	0,011634293	chr3:47079155-47108608	SETD2	
hsa_circRNA_100039	WT	4,2606396	0,025295526	chr1:8616533-8674745	RERE	
hsa_circRNA_101790	WT	4,2463451	0,044395204	chr16:29458122-29458347	BOLA2	
hsa_circRNA_400029	WT	4,2382143	0,001653743	chr16:89628179-89628539	RPL13	
hsa_circRNA_003781	WT	4,2175411	0,009975613	chr21:48063446-48064400	PRMT2	
hsa_circRNA_406544	WT	4,2169405	0,035093205	chr4:144464665-144465125	SMARCA5	

hsa_circRNA_103255	WT	4,2108283	0,001531139	chr22:46493805-46494438	MIRLET7BHG
hsa_circRNA_403839	WT	4,1736376	0,037596938	chr7:74148264-74149874	GTF2I
hsa_circRNA_405788	WT	4,1113831	0,008626275	chr19:44128265-44131942	CADM4
hsa_circRNA_018225	WT	4,1028385	0,033052203	chr10:38726471-38734535	LINC00999
hsa_circRNA_103512	WT	4,1021648	0,010859633	chr3:171830241-171851336	FNDC3B
hsa_circRNA_072654	WT	4,0788588	0,009163272	chr5:64084777-64100213	CWC27
hsa_circRNA_003910	WT	4,0729512	0,003907112	chr3:3819408-3830758	SUMF1
hsa_circRNA_103267	WT	4,0528817	0,00460867	chr22:50810448-50832564	PPP6R2
hsa_circRNA_067967	WT	4,0155507	0,010880365	chr3:171758343-171851336	FNDC3B
hsa_circRNA_102888	WT	4,0121757	0,022125304	chr2:200233327-200298237	SATB2
hsa_circRNA_102942	WT	3,9796066	0,022122753	chr2:232099936-232100094	ARMC9
hsa_circRNA_001772	WT	3,9777531	0,001068512	chr4:2258718-2258811	MXD4
hsa_circRNA_102885	WT	3,9749345	0,017410977	chr2:200173482-200298237	SATB2
hsa_circRNA_002387	WT	3,9509296	0,002456835	chr3:170906490-170912424	TNIK
hsa_circRNA_007019	WT	3,9408282	0,001430669	chr1:240421244-240555862	FMN2
hsa_circRNA_405815	WT	3,9202789	0,000118875	chr19:57967026-57967550	VN1R1
hsa_circRNA_104403	WT	3,8953632	0,00237029	chr7:74239461-74251505	GTF2IRD2
hsa_circRNA_406327	WT	3,8878975	0,049949602	chr3:114069116-114070725	ZBTB20
hsa_circRNA_086376	WT	3,8775661	0,002860381	chr9:14146687-14179779	NFIB
hsa_circRNA_013162	WT	3,8569534	0,01555316	chr1:93029198-93073284	EVI5
hsa_circRNA_401418	WT	3,8367034	0,001040792	chr15:52876941-52885933	FAM214A
hsa_circRNA_003265	WT	3,8278694	0,000920003	chr14:101403739-101415933	SNORD113-5
hsa_circRNA_005067	WT	3,8166025	0,049240322	chr1:32381491-32385259	RP11-84A19.4
hsa_circRNA_100884	WT	3,8116683	0,027324081	chr11:73418464-73429763	RAB6A
hsa_circRNA_007927	WT	3,7949679	0,027071166	chr7:72604105-72607065	GTF2IP1
hsa_circRNA_103758	WT	3,7894632	0,036686773	chr4:151727422-151729550	LRBA
hsa_circRNA_406590	WT	3,7705013	0,000286943	chr5:15616097-15616181	FBXL7
hsa_circRNA_007326	WT	3,7511173	0,005501275	chr14:24679553-24679974	CHMP4A
hsa_circRNA_103717	WT	3,7423505	0,004722169	chr4:108614926-108622441	PAPSS1
hsa_circRNA_101697	WT	3,7233792	0,01067259	chr16:8839857-8851663	ABAT

hsa_circRNA_102293	WT	3,714074	0,048999941	chr18:8718421-8720494	MTCL1
hsa_circRNA_405929	WT	3,7111824	0,011149343	chr2:96517441-96525822	ANKRD36C
hsa_circRNA_066845	WT	3,6891075	0,04036796	chr3:114069120-114619189	ZBTB20
hsa_circRNA_073329	WT	3,6734653	0,010427369	chr5:90059121-90074914	GPR98
hsa_circRNA_028021	WT	3,6464467	0,003781694	chr12:107236366-107254190	RIC8B
hsa_circRNA_000827	WT	3,6456983	0,03446313	chr18:9204473-9211782	ANKRD12
hsa_circRNA_040466	WT	3,6436045	0,048497068	chr16:74493579-74503971	GLG1
hsa_circRNA_002861	WT	3,6381939	0,00332167	chr1:56977647-56990226	PPAP2B
hsa_circRNA_005882	WT	3,6313194	0,001869981	chr2:168920009-168986268	STK39
hsa_circRNA_001143	WT	3,6276833	0,016808049	chr3:47079055-47079155	SETD2
hsa_circRNA_103750	WT	3,6047187	0,029671056	chr4:151153488-151161628	DCLK2
hsa_circRNA_006893	WT	3,5902009	0,007188323	chr3:169831147-169840532	PHC3
hsa_circRNA_103427	WT	3,5895835	0,032266076	chr3:107429298-107435696	BBX
hsa_circRNA_100311	WT	3,5733702	0,025376054	chr1:117944807-117948267	MAN1A2
hsa_circRNA_104222	WT	3,5719919	0,023619694	chr6:151116991-151122005	PLEKHG1
hsa_circRNA_102352	WT	3,5440704	0,00404832	chr18:39595439-39609405	PIK3C3
hsa_circRNA_092476	WT	3,533038	0,000515892	chr19:57967020-57967550	AC004076.9
hsa_circRNA_008336	WT	3,5156981	0,006752407	chr7:33397466-33427756	BBS9
hsa_circRNA_104064	WT	3,5117542	0,006129032	chr6:16326624-16328701	ATXN1
hsa_circRNA_050146	WT	3,5018957	0,03179164	chr19:18860590-18864395	CRTC1
hsa_circRNA_001123	WT	3,4991593	0,000789834	chr2:61340904-61345251	KIAA1841
hsa_circRNA_012133	WT	3,4919474	0,00085234	chr1:44467984-44468657	SLC6A9
hsa_circRNA_405992	WT	3,482709	0,001777554	chr2:171879381-171902872	TLK1
hsa_circRNA_102985	WT	3,4716988	0,018588876	chr20:2967410-2969120	PTPRA
hsa_circRNA_104401	WT	3,4542553	0,031816411	chr7:74119495-74133260	GTF2I
hsa_circRNA_090986	WT	3,4500834	0,006719625	chrX:70368695-70387650	NLGN3
hsa_circRNA_000615	WT	3,4052782	0,048589092	chr15:64791491-64792365	ZNF609
hsa_circRNA_104804	WT	3,4009673	0,047215511	chr9:86292641-86293514	UBQLN1
hsa_circRNA_004052	WT	3,3968362	0,001216145	chr20:43545396-43547918	PABPC1L
hsa_circRNA_103618	WT	3,3942075	0,039968374	chr4:36230203-36231267	ARAP2

hsa_circRNA_104565	WT	3,3863746	0,03250643	chr8:18622958-18662408	PSD3
hsa_circRNA_100016	WT	3,3779461	0,041329145	chr1:1747194-1749314	GNB1
hsa_circRNA_002487	WT	3,3770153	0,014891692	chr10:34620044-34649187	PARD3
hsa_circRNA_400322	WT	3,3671309	0,010379933	chr1:151849476-151860859	THEM4
hsa_circRNA_104424	WT	3,3477597	0,006501713	chr7:90585011-90613556	CDK14
hsa_circRNA_401988	WT	3,3384962	0,017126342	chr18:60497267-60497464	PHLPP1
hsa_circRNA_101319	WT	3,3271629	0,04784364	chr14:23378691-23380612	RBM23
hsa_circRNA_103069	WT	3,3214004	0,000854079	chr20:43547546-43547918	PABPC1L
hsa_circRNA_002576	WT	3,307123	0,000316905	chr8:90736856-90737869	LOC101929709
hsa_circRNA_403893	WT	3,2960121	0,017807161	chr7:104702610-104722244	KMT2E
hsa_circRNA_104402	WT	3,2902389	0,002391046	chr7:74239461-74248066	GTF2IRD2
hsa_circRNA_103477	WT	3,2775775	0,000597282	chr3:134670212-134670894	EPHB1
hsa_circRNA_100669	WT	3,2654759	0,043638011	chr10:103558598-103567658	MGEA5
hsa_circRNA_404974	WT	3,2589784	0,008160856	chr12:23998916-24048958	SOX5
hsa_circRNA_102158	WT	3,2582047	0,007560015	chr17:60629662-60631116	TLK2
hsa_circRNA_100631	WT	3,2070415	0,026745729	chr10:76910271-76910864	SAMD8
hsa_circRNA_100501	WT	3,2039506	0,000601992	chr1:240341220-240351562	FMN2
hsa_circRNA_103799	WT	3,2036018	0,048653	chr5:14330886-14336836	TRIO
hsa_circRNA_005280	WT	3,1976291	0,000286097	chr2:168869143-168931741	STK39
hsa_circRNA_092573	WT	3,1908408	0,020562808	chr7:131071878-131073731	MKLN1
hsa_circRNA_104400	WT	3,1861976	0,023838245	chr7:74119495-74131270	GTF2I
hsa_circRNA_101427	WT	3,1832178	0,006472015	chr14:91947919-91952074	SMEK1
hsa_circRNA_101083	WT	3,1777481	0,022995403	chr12:56962758-56965639	RBMS2
hsa_circRNA_100913	WT	3,1768141	0,03683808	chr11:85692171-85707972	PICALM
hsa_circRNA_401351	WT	3,1652888	0,008311046	chr15:25328542-25339121	SNURF-SNRPN
hsa_circRNA_102706	WT	3,1640838	0,003434959	chr2:42946127-42950175	MTA3
hsa_circRNA_066568	WT	3,1626131	0,047232508	chr3:78763546-78767033	ROBO1
hsa_circRNA_404687	WT	3,158913	0,011956344	chr1:236332005-236347206	GPR137B
hsa_circRNA_100295	WT	3,1525679	0,039768169	chr1:109910029-109912211	SORT1
hsa_circRNA_402002	WT	3,1516021	0,007790768	chr19:1270926-1274439	CIRBP

hsa_circRNA_079265	WT	3,1450037	0,023756579	chr7:5566778-5569031	ACTB
hsa_circRNA_008882	WT	3,1284419	0,011387517	chrM:13418-13499	MTND5
hsa_circRNA_102295	WT	3,1268711	0,016865167	chr18:9204473-9221997	ANKRD12
hsa_circRNA_103168	WT	3,0903919	0,027438816	chr22:22024201-22029404	PPIL2
hsa_circRNA_100485	WT	3,0894582	0,028924662	chr1:233296028-233344435	PCNXL2
hsa_circRNA_100097	WT	3,0890934	0,047108732	chr1:23356961-23377013	KDM1A
hsa_circRNA_104442	WT	3,0883634	0,001231849	chr7:101870646-101870949	CUX1
hsa_circRNA_103795	WT	3,0795557	0,039619814	chr5:14293120-14336836	TRIO
hsa_circRNA_100038	WT	3,071673	0,030209118	chr1:8601272-8674745	RERE
hsa_circRNA_102773	WT	3,0671915	0,003419383	chr2:85595808-85598685	ELMOD3
hsa_circRNA_070616	WT	3,0650535	0,004185994	chr4:108608194-108622441	PAPSS1
hsa_circRNA_007290	WT	3,0630199	0,039303367	chrX:44383247-44386611	FUNDC1
hsa_circRNA_102184	WT	3,0557754	0,035165741	chr17:65924470-65928135	BPTF
hsa_circRNA_001722	WT	3,0498282	0,005761624	chr7:90376995-90419967	CDK14
hsa_circRNA_401174	WT	3,0451777	0,004483359	chr13:94482406-94482798	GPC6
hsa_circRNA_404686	WT	3,0411165	0,010640652	chr1:236332005-236343328	GPR137B
hsa_circRNA_102987	WT	3,0391087	0,02452275	chr20:3274784-3275275	C20orf194
hsa_circRNA_051799	WT	3,0361954	0,007559365	chr19:49458943-49464519	BAX
hsa_circRNA_101245	WT	3,0333421	0,018799045	chr13:33091993-33101669	N4BP2L2
hsa_circRNA_104406	WT	3,0198879	0,000966088	chr7:74524751-74528329	GTF2IRD2
hsa_circRNA_092377	WT	3,0170542	0,004901614	chr1:245018859-245019265	HNRNPU
hsa_circRNA_405301	WT	3,0116473	0,024494796	chr15:30058468-30064369	TJP1
hsa_circRNA_104032	WT	3,0089302	0,044351668	chr5:179146668-179146782	CANX
hsa_circRNA_078353	WT	3,007441	0,032357077	chr6:155054511-155116273	SCAF8
hsa_circRNA_002164	WT	3,0060919	0,032962025	chr18:23632587-23658124	SS18
hsa_circRNA_401539	WT	3,0004957	0,021650172	chr16:15029016-15029254	NPIP
hsa_circRNA_104811	КО	17,95191	0,001083538	chr9:87356806-87367000	NTRK2
hsa_circRNA_101120	КО	17,4300048	0,000973148	chr12:97886238-97924637	RMST
hsa_circRNA_000543	КО	12,8882922	0,006210701	chr11:65272490-65272586	XLOC_12_002352
hsa_circRNA_002082	КО	12,7912414	0,012368807	chr11:65271199-65272066	MALAT1

hsa_circRNA_101379	КО	8,8652769	0,015885402	chr14:70459133-70480208	SMOC1
hsa_circRNA_000178	КО	8,0666607	0,000337965	chr14:70236227-70236759	SRSF5
hsa_circRNA_104721	КО	7,8337511	0,002034984	chr8:144922100-144922202	NRBP2
hsa_circRNA_073593	КО	6,8171846	0,003684905	chr5:112111325-112151290	APC
hsa_circRNA_102787	КО	5,9601665	0,002866211	chr2:100623093-100625394	AFF3
hsa_circRNA_101380	КО	5,5731195	0,016565213	chr14:70477470-70490164	SMOC1
hsa_circRNA_100259	КО	5,4892151	0,019038177	chr1:67356836-67371058	WDR78
hsa_circRNA_406654	КО	5,0473904	0,001455034	chr5:121726783-121739560	SNCAIP
hsa_circRNA_103829	КО	4,6868586	0,041251927	chr5:43294157-43297268	HMGCS1
hsa_circRNA_104474	КО	4,5339709	0,015998099	chr7:128282270-128289036	LINC01000
hsa_circRNA_082178	КО	4,4737291	0,016328926	chr7:128281294-128289036	LINC01000
hsa_circRNA_101550	КО	4,4681449	0,02031781	chr15:63988322-64008672	HERC1
hsa_circRNA_007211	КО	4,4677807	0,018495765	chr1:674213-678730	AK310751
hsa_circRNA_079926	КО	4,3787159	0,020463341	chr7:39821342-39829143	LINC00265
hsa_circRNA_018224	КО	4,2582094	0,016243457	chr10:38724057-38734535	LINC00999
hsa_circRNA_006542	КО	4,2282817	0,005080792	chr12:107208473-107219598	RIC8B
hsa_circRNA_005921	КО	4,132822	0,018869405	chr7:128281256-128289036	LINC01000
hsa_circRNA_009181	КО	4,1249265	0,017269288	chr1:667396-678730	LOC100133331
hsa_circRNA_017202	КО	4,1153156	0,019705658	chr1:243222779-243242354	LINC01347
hsa_circRNA_103758	КО	4,0127649	0,026696268	chr4:151727422-151729550	LRBA
hsa_circRNA_103749	КО	3,9669494	0,010719896	chr4:151023629-151023964	DCLK2
hsa_circRNA_406550	КО	3,948897	0,01230785	chr4:151023634-151023964	DCLK2
hsa_circRNA_100504	КО	3,9269403	0,00638748	chr1:243736227-244006584	AKT3
hsa_circRNA_055855	КО	3,7360134	0,015254701	chr2:100623093-100628033	AFF3
hsa_circRNA_103831	КО	3,7197112	0,043770504	chr5:43295853-43297268	HMGCS1
hsa_circRNA_017215	КО	3,7179804	0,01946135	chr1:243242289-243265046	LINC01347
hsa_circRNA_103820	КО	3,6643879	0,008168808	chr5:38523520-38530768	LIFR
hsa_circRNA_103517	КО	3,6338291	0,016554922	chr3:172013152-172028671	FNDC3B
hsa_circRNA_086376	КО	3,6187304	0,018773098	chr9:14146687-14179779	NFIB
hsa_circRNA_103757	КО	3,5660015	0,010014982	chr4:151719232-151738409	LRBA

hsa_circRNA_400633	КО	3,4962066	0,029667966	chr10:102114183-102114389	SCD
hsa_circRNA_103756	КО	3,4789839	0,007340311	chr4:151719232-151729550	LRBA
hsa_circRNA_012133	КО	3,4487251	0,004627391	chr1:44467984-44468657	SLC6A9
hsa_circRNA_000541	КО	3,4236708	0,003221522	chr14:56746393-56757174	PELI2
hsa_circRNA_100141	КО	3,3958208	0,031757548	chr1:32381495-32385259	PTP4A2
hsa_circRNA_005328	КО	3,3607623	0,022914109	chr6:163876310-163899928	QKI
hsa_circRNA_102762	КО	3,3591266	0,020293689	chr2:72958135-72960247	EXOC6B
hsa_circRNA_104131	КО	3,2922826	0,000291638	chr6:69703659-69785930	BAI3
hsa_circRNA_005067	КО	3,2853179	0,036802089	chr1:32381491-32385259	RP11-84A19.4
hsa_circRNA_101996	КО	3,2522162	0,033523691	chr17:20107645-20109225	SPECC1
hsa_circRNA_103750	КО	3,2192116	0,000131399	chr4:151153488-151161628	DCLK2
hsa_circRNA_104980	КО	3,1953304	0,029579396	chrX:10031484-10066619	WWC3
hsa_circRNA_007019	КО	3,1942123	0,015768233	chr1:240421244-240555862	FMN2
hsa_circRNA_028021	КО	3,19119	0,024585836	chr12:107236366-107254190	RIC8B
hsa_circRNA_065768	КО	3,1641177	0,001479529	chr3:5000008-50114685	RBM6
hsa_circRNA_005433	КО	3,0950669	0,035638368	chr4:119529812-119549381	LOC729218
hsa_circRNA_103515	КО	3,0818709	0,006800124	chr3:171969049-172025291	FNDC3B
hsa_circRNA_100258	КО	3,0758885	0,021883148	chr1:66378927-66384518	PDE4B
hsa_circRNA_038288	КО	3,052721	0,014697585	chr16:18877942-18882804	SMG1
hsa_circRNA_103168	КО	3,0380122	0,019659838	chr22:22024201-22029404	PPIL2
hsa_circRNA_103754	КО	3,0296775	0,011107372	chr4:151656409-151729550	LRBA
hsa_circRNA_103755	КО	3,019471	0,026847067	chr4:151682934-151729550	LRBA
hsa_circRNA_103477	КО	3,0004196	0,005728706	chr3:134670212-134670894	EPHB1

ID circRNA	Comparación	Tipo de regulación	Fold change	p-valor	Coordenadas	Host gene
hsa_circRNA_104517	Proceso de diferenciación <i>WT</i>	negativa	-2,1223943	0,026020849	chr7:148543561-148544397	EZH2
	Proceso de diferenciación <i>KO</i>	negativa	-2,3616353	0,017805765		
	Células diferenciadas	positiva	2,2586726	0,019234452		
hsa_circRNA_101396	Proceso de diferenciación WT	negativa	-2,0498239	0,032518767	cnr14:73614502-73664837	PSEN1
hsa_circRNA_047733	Células diferenciadas KO vs WT	positiva	2,6455408	0,014270022	chr18:53017589-53018231	TCF4
hsa_circRNA_005147	Células diferenciadas KO vs WT	negativa	-2,202334	0,021995784	chr15:25650607-25660989	UBE3A
hsa_circRNA_100098	Células diferenciadas KO vs WT	negativa	-2,3215737	0,024132189	chr1:23356961-23385660	KDM1A
	Células diferenciadas	positiva	2,3899167	0,019271864		
hsa_circRNA_016598	Proceso de diferenciación WT	negativa	-2,7463217	0,007367609	chr1:224918163-224918276	CNIH3

Tabla S5. circRNAs candidatos seleccionados para el estudio en el modelo celular neural humano