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b Institut de Recerca en Nutrició I Seguretat Alimentària (INSA-UB), Universitat de Barcelona. Av Prat de La Riba, 171, 08921, Santa Coloma de Gramenet, Spain 
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A B S T R A C T   

Virgin olive oil (VOO) is a highly appreciated product fundamental in the Mediterranean diet. Since its sensory 
attributes are greatly influenced by the olive cultivar, the varietal authentication of VOOs is needed to protect 
consumers from misleading information. The present study aims to evaluate the suitability of sesquiterpene 
hydrocarbon (SH) fingerprint as VOO cultivar marker beyond geographical, agronomical and processing con-
ditions. The study was mainly focused on Mediterranean Arbequina oils. SH profile of more than 400 VOOs from 
6 counties and 38 different cultivars and coupages was analysed by Headspace Solid Phase Microextraction-Gas 
Chromatography-Mass Spectrometry (HS-SPME-GC-MS). Partial Least Square-Discriminant Analysis (PLS-DA) 
classification models were built with the aligned chromatograms. A binary PLS-DA model was built to distinguish 
‘Arbequina’ oils from those of other cultivars (non-‘Arbequina’ class) and it was externally validated. The results 
of the external validation showed a 95.1% of overall correct classification confirming the suitability of SH 
fingerprint as a screening method for the authentication of Arbequina VOO. Also, the discrimination capacity of 
SH fingerprinting to authenticate VOOs from other cultivars was preliminary explored and promising results 
were obtained.   

1. Introduction 

Qualitative characteristics of virgin olive oil (VOO) are not only 
determined by the processing and storage conditions but also by the 
cultivar and geographical origin (Dias et al., 2014; Montealegre et al., 
2010). Hence, oils within the same commercial category can present 
very different compositional and sensory characteristics depending on 
the olive cultivar. Monovarietal VOOs that include information about 
the olive cultivar on the label, as well as VOOs included into a given 
Protected Designation of Origin which are required to use specific 
traditional olive cultivars (Council Regulation (EC) 510/2006), increase 

consumers’ perceived quality and lead them to pay a higher price 
(Cabrera et al., 2015; Cicerale et al., 2016). Therefore, verifying the 
label-declared cultivar in VOO has become relevant to protect con-
sumers from misleading information (Bajoub et al., 2018) and, 
currently, it can only be achieved by auditing traceability documents. 

The varietal characterization of VOOs has been widely studied by 
addressing several major and minor compounds and by applying mul-
tiple analytical techniques and chemometric approaches (Montealegre 
et al., 2010; Aparicio et al., 2013; Bajoub et al., 2018). However, except 
DNA based methods (Agrimonti et al., 2011), which are costly to be used 
for routine analysis (Bajoub et al., 2018), reliable markers for VOO 
cultivar authentication are still unavailable. This is largely due to the 
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high concomitant influence of other factors on VOO composition, such 
as the degree of maturation, phytosanitary status, harvest year or pro-
cessing and storage conditions (García-González & Aparicio, 2010; 
Montealegre et al., 2010; Vichi et al., 2018). In this regard, most of the 
available studies on VOO cultivar authentication are addressed to 
monovarietal VOOs produced within a limited geographical area 
(Osorio-Bueno et al., 2005; Papadia et al., 2011; Piccinonna et al., 2016; 
Sacco et al., 2000; Sayago et al., 2019). They have been fundamental to 
demonstrate the genetic influence on VOO composition with other fac-
tors being similar, but they do not take into account the effect of tech-
nological and, in particular, environmental conditions beyond the olive 
cultivar itself. This is not fully representative for the actual VOO pro-
duction, in which the same olive cultivar may be cultivated in different 
regions or countries (Tous, 2017). Marini et al. (2004) developed 
authentication models relying on a representative number of samples (n 
> 500) from cultivars produced in different regions of Southern Italy, 
achieving a satisfactory classification by applying supervised chemo-
metric methods to several official quality and purity parameters. How-
ever, the need for multiple analytical techniques or time-expensive 
procedures hinders its application for the screening of large number of 
samples, and moreover, its suitability should be confirmed also for VOOs 
from other major production areas. Hence, there is a need for screening 
tools capable of authenticating VOOs according to their cultivar beyond 
geographical and technological factors. 

Previous research has evidenced that the presence of sesquiterpene 
hydrocarbons (SHs) in VOO is highly dependent the olive cultivar and 
the growing area (Bortolomeazzi et al., 2001; Damascelli & Palmisano, 
2013; Quintanilla-Casas et al., 2020; Vichi et al., 2006, 2010, 2018) 
while it is barely affected by technological factors such as olive 
post-harvest processing and oil storage conditions (Vichi et al., 2018). 
Specifically, the effect of genetic factors on VOO SHs was demonstrated 
when oils from different cultivars, produced in the same geographical 
region, presented significant differences in the SH composition (Guinda 
et al., 1996; Osorio-Bueno et al., 2005; Vichi et al., 2010). 

Also recently, a fingerprinting approach has been applied to SH 
chromatograms obtained by SPME-GC-MS (Quintanilla-Casas et al., 
2020). In a fingerprinting approach, chemometric tools are applied to 
highly dimensional analytical data, such as a chromatogram, to find 
specific patterns of a certain quality characteristic that are known as 
fingerprints, not requiring peak identification or quantitation (Ballin & 
Laursen, 2019; Berrueta et al., 2007; Bosque-Sendra et al., 2012; 
Quintanilla-Casas et al., 2020). Compared to the target approach, 
chromatographic fingerprinting considers more information as the 
whole analytical signal is used, and overcomes drawbacks related to the 
SH identification or quantitation as they are a wide category of com-
pounds with high structural diversity but very similar mass spectra 
(Degenhardt et al., 2009; Quintanilla-Casas et al., 2020). This was 

demonstrated in our previous study, in which Partial Least Discriminant 
Analysis (PLS-DA) was able to find features in the SH fingerprint that 
were common between samples from the same region even if they 
belonged to different cultivars, and thus, models to authenticate VOO 
geographical origin could be developed by selecting the country of 
origin as the grouping variable to supervise the PLS-DA (Quintanilla--
Casas et al., 2020). But, since the SH composition in olive fruit is known 
to be driven by both genetic and environmental factors, our hypothesis 
was that if the cultivar type was selected as the variable to supervise the 
PLS-DA analysis, the PLS-DA model would find different features on the 
SH fingerprint of VOO that would be characteristic of the cultivar. 

On this basis, the aim of the present work was to assess the suitability 
of SH fingerprint as VOO cultivar marker beyond geographical, agro-
nomical and processing conditions. For this purpose, we developed and 
validated a varietal authentication model based on the SH fingerprint 
obtained by SPME-GC–MS, particularly focusing on the discrimination 
of ‘Arbequina’ VOOs from the rest of VOOs, using a sample set of more 
than 400 VOOs from different cultivars produced under real processing 
conditions in different harvest seasons and in various EU and non-EU 
countries and regions. Moreover, to explore whether analogous 
models could also be developed to distinguish VOOs from other culti-
vars, the discrimination capacity of SH fingerprinting was preliminarily 
assessed for the seven main cultivars included in the sample set. 

2. Material and methods 

2.1. Sampling 

The sample set was composed by 404 traceable VOOs and EVOOs 
from different countries and geographical regions (Table 1). They were 
obtained in the framework of the Projects OLEUM (EC H2020 Pro-
gramme 2014–2020) and Autenfood (ACCIÓ- Programa Operatiu 
FEDER Catalunya 2014–2020), and under the surveys implemented by 
the Institut de Recerca i Tecnologia Agroalimentària (IRTA). Of these 
samples, 178 were from ‘Arbequina’ cultivar and 226 were monovarietal 
oils from 37 other cultivars (n = 144) and coupages (which are blends of 
different cultivars) that did not contain ‘Arbequina’ oil (n = 82). The 
VOO and EVOO samples pertained to virgin and extra virgin olive oil 
categories according to the European Commission regulation (ECC) No 
2591/91 of July 11, 1991 and its amendments and were produced at real 
industrial conditions during 4 different campaigns (harvests from 2015/ 
16 to 2018/19). More information about VOO and EVOO samples is 
available in Table S1 (Supplementary material). Samples were stored 
under N2 atmosphere at − 20 ◦C until analysis. The full sample set was 
analysed in four main batches throughout 2017–2019. 

2.2. Headspace-solid phase microextraction (HS-SPME) 

The SH fingerprint of VOO samples was analysed using a Combi-pal 
autosampler (CTC Analytics, Zwingen, Switzerland) at the conditions 
reported by Vichi et al. (2006). An aliquot of 2 g of oil was weighed into 

Abbreviations 

COW Correlation Optimized Warping 
EIC Extracted Ion Chromatogram 
LV Latent Variables 
PC Principal Component 
PCA Principal Component Analysis 
PLS-DA Partial Least Discriminant Analysis 
RMSEcv Root Mean Squared Error of Cross Validation 
SEcv Standard Error of Cross-Validation 
SH sesquiterpene hydrocarbon 
SIM Selected Ion Monitoring 
SPME-GC-MS Solid Phase Microextraction coupled to Gas 

Chromatography-Mass Spectrometry 
VOO Virgin olive oil  

Table 1 
Number and geographical origin of VOO and EVOO samples from ‘Arbequina’ 
and non-‘Arbequina’ cultivars.  

Origin  ‘Arbequina’ (n) Other cultivarsa (n) 

Argentina  4 37 
Chile  1 1 
Italy  1 35 
Morocco  9 29 
Portugal  3 13 
Spain Catalonia 155 93  

Andalusia 2 15  
Other regions 3 3 

total samples  178 226  

a 37 different cultivars plus 20 coupages. 
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a 10 mL vial fitted with a PTFE/silicone septum and kept at 70 ◦C under 
constant agitation. After 10 min of sample conditioning, a divinylben-
zene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber (2 cm 
length, 50/30 μm film thickness) provided by Supelco (Bellefonte, PA) 
was exposed to the sample headspace for 60 min. Then, it was desorbed 
in the gas chromatograph injection port at 260 ◦C for 10 min. During the 
desorption step, the injector was maintained in split-less mode during 5 
min. 

2.3. Gas chromatography-mass spectrometry (GC-MS) 

The SHs fingerprint was acquired by an Agilent 6890N Network GC 
system coupled to a quadrupolar mass selective analyser Agilent 5975C 
Inert MSD (Agilent Technologies, Santa Clara, California, USA) using 
helium as carrier gas, at a flow of 1.5 mL/min. Analytes were separated 
on a Supelcowax-10 capillary column (60 m × 0.25 mm i.d., 0.25 μm 
film thickness) (Supelco, Bellefonte, PA). Column temperature was held 
at 40 ◦C for 3 min, increased to 100 ◦C at 4 ◦C/min, then to 200 ◦C at 
5 ◦C/min and to 260 ◦C at 15 ◦C/min, holding the last temperature for 5 
min. The temperatures of the ion source and the transfer line were 230 
and 280 ◦C, respectively. Mass spectra were recorded at 5.1 scan/s and 
the electron energy was 70 eV. Acquisition was performed in the 
selected ion monitoring (SIM) mode, by analysing the Extracted Ion 
Chromatogram (EIC) of each of the following SH specific ions: m/z 93, 
119, 157, 159, 161, 189 and 204, which had been reported to be specific 
for SHs (Vichi et al., 2010). Therefore, only the chromatographic data 
belonging to SH compounds was studied. 

2.4. Fingerprinting approach 

The intensities of scans between minutes 21 and 42 (3197 scans) 
were considered for each ion (3197 scans × 7 ions = 22379 variables per 
sample). A data matrix was built for each ion, with scans’ intensities of 
each EIC (columns) from each sample (rows). For each selected ion, the 
EICs of the 404 samples were aligned by Correlation Optimized Warping 
(COW) algorithm in Matlab® (Nielsen et al., 1998). Then, the 7 matrices 
of the aligned chromatograms were concatenated conforming a two-way 
unfolded matrix (404 samples × 22379 variables). 

2.5. Chemometrics 

2.5.1. Data pre-processing and exploration 
The pre-processing of the aligned data matrix was performed with 

SIMCA software v13.0© (Umetrics AB, Sweden). Multiple pre- 
processing treatments were tested (mean centring, scaling to unit vari-
ance, log10, derivatives) until finding the optimal one for each data set. 
A Principal Component Analysis (PCA) was performed for the explora-
tion of data (n = 404) and to identify potential outliers (according to 
Hotelling’s T2 range and distance to the model parameters). 

2.5.2. Partial least squares discriminant analysis (PLS-DA): Arbequina vs 
non-Arbequina oils 

A binary PLS-DA model was built after applying a first derivative and 
log 10 pre-processing to classify the 404 samples into the ‘Arbequina’ 
and the non-‘Arbequina’ classes, the latter including coupages and 
monovarietal oils from other cultivars,. 

The model was internally validated through leave 10%-out cross- 
validation. The optimal number of Latent Variables (LV) of the PLS- 
DA model were selected according to the lowest Root Mean Squared 
Error of Cross Validation (RMSEcv) criteria. To assess the model over-
fitting, permutation test and ANOVA on the cross-validated predictive 
residuals (p-value) were carried out. The Q2 values and the percentage 
of correct classifications were assessed to evaluate the suitability of each 
PLS-DA model. 

2.5.3. External validation 
The binary PLS-DA model was then externally validated by predict-

ing the class of samples that had not been used to develop the model. For 
this, the full data set (n = 404) was randomly split into a training set 
(80% of the sample set, n = 323) and a validation set (20% of the sample 
set, n = 81), maintaining a balance in the proportions of ‘Arbequina’ and 
non-‘Arbequina’ samples and of samples from different analytical 
batches and geographical origins (Table S2, Supplementary material). 
This was carried out seven times, obtaining seven different training and 
validation sets. The efficiency of the classification was assessed as mean 
percentage of correct classification. 

2.5.4. Evaluation of PLS-DA regression coefficients 
The regression coefficients of the binary PLS-DA model developed 

with the full sample set were evaluated to explore the contribution of the 
variables obtained by each m/z ion. Regression coefficients were 
considered as significant when a jack-knife standard error of cross- 
validation (SEcv) was lower than the given coefficient value. 

2.5.5. Multi-class PLS-DA model for 7 cultivars 
Once the Arbequina vs non-Arbequina model was found suitable, it 

was explored whether SHs fingerprinting would be suitable to develop 
models to verify the identity of other cultivars. Thus, a multi-class PLS- 
DA model was developed as a preliminary model (after autoscaling, 
log10 and first derivative pre-processing) to evaluate the discrimination 
of the 7 cultivars included in the sample set that were represented by at 
least 10 samples (n = 256). The model was fitted and internally vali-
dated as described above. 

3. Results and discussion 

3.1. Data pre-processing and exploratory analysis 

Seven ions (m/z 93, 119, 157, 159, 161, 189 and 204) were selected 
according to previous studies that indicated them to be specific of SH 
(Vichi et al., 2010). The data points of the EIC within the interval of 
elution of SH (21–42 min) were used as variables (22379 variables), 
following the fingerprinting approach applied by Quintanilla-Casas et al. 
(2020). 

To solve the retention time shifting between samples, the EICs were 
aligned by Correlation Optimized Warping (COW) algorithm in Mat-
lab®. This alignment algorithm was selected since it was specifically 
designed for chromatographic data. The COW method aligns the chro-
matographic profiles by piecewise linear stretching and compression, 
also known as warping, of the time axis of one of the profiles (Nielsen 
et al., 1998). Once aligned, the matrix obtained (22379 variables and 
404 samples) was imported to SIMCA software v13.0c (Umetrics AB, 
Sweden) to develop and optimize the classification models. 

After data pre-processing, a PCA was performed to explore the data 
and to detect potential outliers (3 Principal Components (PCs) accoun-
ted for 80.7% of the total variance explained). According to the Hotel-
ling’s T2 range and distance to the model parameters, no outliers were 
detected. A first examination of the PCA score plot revealed that even 
under a non-supervised analysis, VOOs naturally clustered according to 
their cultivar. In fact, even if there was some overlap, ‘Arbequina’ 
samples tended to shape into a differentiated group at the upper part of 
the plot, while non-‘Arbequina’ samples located at the lower part 
(Fig. 1a), evidencing that the variability linked to the cultivar of origin 
was mainly explained by PC3 (2.0% of total explained variance). Certain 
clustering was also observed for other monovarietal VOOs (Fig. 1b), 
endorsing the behaviour observed for ‘Arbequina’ and non-‘Arbequina’ 
samples. To exclude that this natural clustering was only induced by the 
geographical origin of each cultivar, the score plot was coloured by 
sample’s provenance (Fig. 1c). In this way, it revealed that samples from 
cultivars grown in different regions tended to group by cultivar rather 
than by geographic origin, leading to unclear clusters by country. This 
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suggested that the cultivar had a higher effect on the SH fingerprint than 
the geographical origin. 

3.2. PLS-DA authentication models and internal validation 

A binary PLS-DA classification model was built with the SH finger-
print of 404 samples to distinguish ‘Arbequina’ oils from those of other 
cultivars (non-‘Arbequina’ class). The model with 5 LV was internally 
validated through leave 10%-out cross-validation, resulting in a RMSEcv 
of 0.23 and a 99.8% of correct classification with all samples assigned to 
the correct class, except one (Table 2). Permutation tests, which display 
the prediction capacity of 20 random models, and ANOVA results (p <

Fig. 1. First and third principal components of the PCA model (n = 404 samples, first derivative and log 10 pre-processing; variance explained by each factor is 
shown between parentheses), based on VOO sesquiterpene data, coloured by a) ‘Arbequina’/non-‘Arbequina’ cultivars; b) Olive cultivar; c) Country of origin. (ARG: 
Argentina, CHL: Chile, ESP: Spain, ITA: Italy, MOR: Morocco and POR: Portugal). 

Table 2 
Results of the leave 10%-out cross-validation of the ‘Arbequina’ vs non-‘Arbe-
quina’ PLS-DA classification model.   

N ‘Arbequina’ Other Correct class (%) 

‘Arbequina’ 178 178 0 100 
non-‘Arbequina’ 226 1 225 99.6 
Total 404   99.8 

N = 404, 5 LVs, Q2 = 0.82, RMSEcv = 0.23, ANOVA p-value <0.05. 
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0.05) showed that the model had a high discrimination capacity and was 
not over-fitted. The results were very promising, especially considering 
that the ‘Arbequina’ class included samples from various geographical 
origins, and that the non-‘Arbequina’ class included a high number of 
other monovarietal and coupage oils. 

In view of the encouraging results provided by the binary model 
based on the extensive ‘Arbequina’ and non-‘Arbequina’ sampling, and 
since the PCA exploratory analysis already revealed certain natural 
separation between other cultivars, we investigated whether analogous 
models could potentially be developed to authenticate VOOs from other 
cultivars. As a proof of concept for this scope, we performed a pre-
liminary multi-class PLS-DA model to discriminate between the seven 
cultivars of the sample set that were represented by at least 10 samples. 
Only monovarietal samples were included in this PLS-DA model (n =
256). The results of the leave 10%-out cross-validation were promising 
(Table 3), displaying high percentages of correct classification (gener-
ally above 90%) for most of the cultivars and achieving a global 94.9% 
of correct classification. In addition, the ANOVA (p < 0.05) and the 
permutation test (Q2 values of permuted models < 0) indicated the 
absence of a random classification and of model overfitting. The lowest 
percentage of correct classification was observed for the ‘Frantoio’ set 
(69.2%), probably due to the very different geographical origin of its 
samples (Italy, n = 3 and Argentina, n = 9). The low number of samples 
of this preliminary submodel might have not been enough to compen-
sate such a source of confusion, but we can hypothesize that with a 
suitable sampling the authentication of this cultivar would not be pre-
cluded. Overall, based on these preliminary results, we could infer that 
developing future models to authenticate VOOs from any cultivar based 
on the SH fingerprint would be possible, providing that appropriate 
sampling was available. 

3.3. External validation 

Disposing of meaningful results is crucial for the relevant imple-
mentation of any authentication tool. In this case, verifying the real 
predictive ability of the developed model is necessary to exclude 
possible over-optimistic results and to prove the suitability of the 
method to assess VOO varietal origin. To confirm the reliability of the 
predictions obtained by internal validation, we carried out an external 
validation in which models were applied to samples that had not been 
included in their development to classify them as ‘Arbequina’ and non- 
‘Arbequina’ VOOs. For this, we randomly split the sample set into a 
training set (n = 323) and a validation set (n = 81). A PLS-DA model was 
developed with the training set and cross-validated by leave-10%-out, 
and it was then applied to predict the class of the 81 samples conforming 
the validation set. To increase the robustness of the validation, and to 
minimize the effect of the sample sets’ composition, this process was run 
seven times and the results were expressed as mean values of the seven 
sets of external validation. The internal validation results of PLS-DA 
models built with the training sets were in agreement with those of 

the model developed with the global sample set (mean overall correct 
classification of 100%). The results of the external validation, summa-
rized in Table 4, were extremely satisfactory. On average, 93.5% of 
‘Arbequina’ samples and 96.4% of non-‘Arbequina’ samples were 
correctly classified, resulting in a 95.1% of overall correct classification. 

On closer inspection, the external validation revealed that the model 
was not able to correctly classify ‘Arbequina’ oils produced in Argentina. 
Unfortunately, due to the reduced number of ‘Arbequina’ VOOs from 
Argentina, only 3 samples could be randomly included in each training 
set and only one in each validation set, while other non-‘Arbequina’ oils 
from Argentina were much more represented in both sets. This probably 
contributed to the fact that each Argentinian ‘Arbequina’ sample, 
randomly selected in each validation set, was incorrectly classified 
(Table 5). This seems to support our previous hypothesis formulated for 
the internal validation results obtained for the ‘Frantoio’ cultivar by the 
preliminary multi-class PLS-DA model. This outcome could be due to the 
extreme compositional differences reported between VOOs from the 
southern hemisphere and those from the Mediterranean area. Romero 
(2017) reported that ‘Arbequina’ VOO from Argentina and Australia has 
a very different fatty acid composition from other regions and discussed 
about the high temperature effect during the maturation season. In fact, 
the southern hemisphere ‘Arbequina’ oils may present compositions 
whose differences may even be outside of some of the limits set by the 
current trade standards (Aparicio et al., 2013). Apparently, for these 
samples, the geographical origin outperformed the cultivar differences 
(Rondanini et al., 2011; Torres et al., 2009), possibly leading to a better 
matching of the SH pattern of Argentinian ‘Arbequina’ oils with that of 
other Argentinian oils rather than with that of the rest of ‘Arbequina’ 
Mediterranean samples, even if the cultivar was the classification vari-
able. Since only a scarce number of Argentinian ‘Arbequina’ samples 
was available (n = 4), the results are not conclusive in this aspect. 
Varietal misclassification of samples from non-Mediterranean region 
could be presumably resolved by widening the sampling with a repre-
sentative number of VOOs from the region of interest. By this, it would 
be possible to determine if the model would be able to find proper 
common SH traits between Mediterranean and Argentinian ‘Arbequina’ 
oils, or if a specific model ‘Arbequina’ vs non-‘Arbequina’ would be 
required for Argentinian oils. 

Even so, samples from different EU and non-EU Mediterranean 

Table 3 
Results of leave 10%-out cross-validation of the multi-class PLS-DA model for the classification of main cultivars in the sample set.   

N ‘Arbequina’ ‘Picual’ ‘Arbosana’ ‘Moroccan 
Picholine’ 

‘Coratina’ ‘Frantoio’ ‘Argudell’ No 
classa 

Correct class 
(%) 

RMSEcv 

‘Arbequina’ 178 173 0 0 1 0 0 0 4 97.2 0.30 
‘Picual’ 12 0 12 0 0 0 0 0 0 100 0.19 
‘Arbosana’ 11 0 0 10 0 0 0 0 1 90.9 0.16 
‘Moroccan 

Picholine’ 
20 1 0 0 19 0 0 0 0 95.0 0.19 

‘Coratina’ 10 0 0 0 0 10 0 0 0 100 0.15 
‘Frantoio’ 13 0 0 0 0 0 9 0 4 69.2 0.20 
‘Argudell’ 12 2 0 0 0 0 0 10 0 83.3 0.17 
Total 256 176 12 10 20 10 9 10 9 94.9  

N = 256, 7 LVs, Q2 = 0.47, ANOVA p-value <0.05. 
a YPred<0.5. 

Table 4 
Results of external validation of the ‘Arbequina’ vs non-‘Arbequina’ PLS-DA 
models. Results are mean values obtained from seven randomly selected vali-
dation sets.   

n Arbequina Other Correct class (%) 

‘Arbequina’ 36 34 ± 1 2 ± 2 93.5 ± 3.8 
non-‘Arbequina’ 45 2 ± 1 43 ± 2 96.4 ± 1.3 
Total 81   95.1 ± 2.4 

N = 404, 5 LVs, Q2 > 0.80, RMSEcv < 0.27, ANOVA p-value <0.05. 
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regions were correctly assigned to their corresponding varietal class, 
even when their representativeness in the training set was low, such is 
the case of the Portuguese and Moroccan ‘Arbequina’ oils (Table 1). 
These results evidenced the suitability of the model for Mediterranean 

VOO cultivar authentication regardless of the oil’s geographical origin. 
Although the present sampling was specially focused on Spanish 
‘Arbequina’ oils, the results of the external validation proved the effi-
ciency of the authentication model to distinguish ‘Arbequina’ oils pro-
duced also in the rest of the Mediterranean basin. To improve the 
predictive ability of the model for ‘Arbequina’ samples coming from 
other specific geographical origins, new samples from those regions 
should be included in the training set. 

3.4. Exploration of PLS-DA regression coefficients 

To study the variables that contributed the most to the discrimina-
tion between ‘Arbequina’ and other cultivar VOOs, we examined the 
significant regression coefficients of the ‘Arbequina’ vs non-‘Arbequina’ 
PLS-DA model. More than 200 variables resulted relevant to the model 
according to the significance of their regression coefficients (as defined 
according to their value and standard error), highlighting the key 
advantage of high-dimensional data approaches, such as fingerprinting, 
over other conventional approaches such as the target or even multi- 
target ones (Quintanilla-Casas et al., 2020). 

The plotting of regression coefficients against the variables of the 
unfolded matrix (Fig. 2a) revealed that each EIC provided relevant 
variables to the model throughout different regions of the chromato-
gram. In particular, EICs of m/z 93, 119 and 204 provided the highest 
number of variables important for the discrimination of both the 
‘Arbequina’ and the non-‘Arbequina’ classes. The same figure revealed 
that significant regression coefficients corresponded to sections of the 
unfolded matrix presenting either major and very minor variables. As an 
illustration of this, amplifying a section of the EIC of m/z 93 (34–38 min) 
(Fig. 2b), revealed that some of the highest regression coefficients cor-
responded to minor SHs or not well-resolved chromatographic peaks 
that could only be studied through a fingerprinting approach. This is in 
agreement with our previous findings dealing with the application of SH 
fingerprinting for VOO geographical authentication (Quintanilla-Casas 
et al., 2020). 

Table 5 
Number, country and cultivar of origin of samples misclassified in the external 
validation of the binary PLS-DA model, for each validation set. The number of 
misclassified samples is reported with respect to the total number of samples 
from the same country and class (‘Arbequina’ and non-‘Arbequina’) that were 
included in the validation set.   

Validation 
set 

Number of 
misclassified 
samples 

Country of 
origin of the 
misclassified 
samples 

Cultivar of the 
misclassified 
samples 

‘Arbequina’ 
samples 
classified 
as non- 
‘Arbequina’ 

1 1/1 Argentina ‘Arbequina’ 
2 1/1 Argentina ‘Arbequina’ 

1/32 Spain ‘Arbequina’ 
3 1/1 Argentina ‘Arbequina’ 
4 1/1 Argentina ‘Arbequina’ 

1/32 Spain ‘Arbequina’ 
5 1/1 Argentina ‘Arbequina’ 

1/32 Spain ‘Arbequina’ 
6 1/1 Argentina ‘Arbequina’ 

1/32 Spain ‘Arbequina’ 
7 1/1 Argentina ‘Arbequina’ 

Non- 
‘Arbequina’ 
samples 
classified 
as 
‘Arbequina’ 

1 1/22 Spain ‘Empeltre’ 
2 1/7 Italy ‘Casaliva’ 

1/22 Spain ‘Empeltre’ 
3 1/3 Portugal Coupage 

1/22 Spain ‘Empeltre’ 
4 2/22 Spain ‘Empeltre’ 
5 1/7 Italy ‘Casaliva’ 

1/7 Italy Coupage 
3/22 Spain ‘Empeltre’ 

6 1/6 Morocco ‘Moroccan 
Picholine’ 

3/22 Spain ‘Empeltre’ 
7 1/7 Italy Coupage  

Fig. 2. PLS-DA regression coefficients of the Arbequina vs non-‘Arbequina’ model against the variables of the unfolded matrix. ‘Arbequina’ positive and negative 
relevant coefficients (selected from the significant ones according to an arbitrary threshold of 0.2) are highlighted in blue or in red, respectively. a) The sections of the 
unfolded matrix corresponding to each Extracted Ion Chromatogram are marked. b) Section of the ion m/z 93 chromatogram (34.059–38.126 min) plotted against its 
corresponding regression coefficients. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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4. Conclusions 

In conclusion, SH fingerprint proved to be a suitable screening 
method for the varietal authentication of VOO, enabling an extremely 
satisfactory efficiency in the classification of ‘Arbequina’ and non- 
‘Arbequina’ oils produced under real industrial conditions in different 
regions of the Mediterranean basin, as assessed by external validation 
(95.1% of correct classification). Combining SH fingerprinting with PLS- 
DA allowed recognizing characteristic patterns relevant for each cultivar 
class minimizing those variables related with other factors such as the 
geographical origin. This confirmed our hypothesis that genetic and 
environmental factors exert distinct effects on the particularly complex 
SH fingerprint, which may provide suitable markers of both VOO 
geographical (Quintanilla-Casas et al., 2020) and varietal origin (as 
evidenced in this study), which would be revealed by PLS-DA depending 
on the variable selected for supervising the pattern recognition analysis. 
The VOOs produced in the Southern Hemisphere were not satisfactorily 
classified by the PLS-DA model built using mainly Mediterranean sam-
ples, evidencing the need to include more samples from this region to 
improve the predictive ability for ‘Arbequina’ oils from this geograph-
ical origin. 

Furthermore, a preliminary multi-class PLS-DA model to discrimi-
nate between the other cultivars represented in the sample set resulted 
in a 94.9% of overall correct classification by leave 10%-out cross- 
validation, suggesting that successful classification models analogous 
to that developed and validated for ‘Arbequina’ samples could be 
potentially developed to authenticate other VOO cultivars. 

Finally, the exploration of PLS-DA regression coefficients revealed 
that a high number of variables contributed to the discrimination model, 
several of which corresponded to minor SHs or not well-resolved chro-
matographic peaks that could only be studied through a fingerprinting 
approach. This confirmed the advantage of high-dimensional non-tar-
geted data approaches like fingerprinting over other conventional 
approaches. 
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