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Abstract: The global COVID-19 spread has forced countries to implement non-pharmacological
interventions (NPI) (i.e., mobility restrictions and testing campaigns) to preserve health systems.
Spain is one of the most severely impacted countries, both clinically and economically. In an effort
to support policy decision-making, we aimed to assess the impacts of different NPI on COVID-19
epidemiology, healthcare costs and Gross Domestic Product (GDP). A modified Susceptible-Exposed-
Infectious-Removed epidemiological model was created to simulate the pandemic evolution. Its
output was used to populate an economic model to quantify healthcare costs and GDP variation
through a regression model which correlates NPI and GDP change from 42 countries. Thirteen
scenarios combining different NPI were consecutively simulated in the epidemiological and economic
models. Both increased testing and stringency could reduce cases, hospitalizations and deaths. While
policies based on increased testing rates lead to higher healthcare costs, increased stringency is
correlated with greater GDP declines, with differences of up to 4.4% points. Increased test sensitivity
may lead to a reduction of cases, hospitalizations and deaths and to the implementation of pooling
techniques that can increase throughput testing capacity. Alternative strategies to control COVID-19
spread entail differing economic outcomes. Decision-makers may utilize this tool to identify the most
suitable strategy considering epidemiological and economic outcomes.

Keywords: SEIR; COVID-19; health policy; economic impact; molecular test

1. Introduction

As of 18 March 2021, over 120 million COVID-19 confirmed cases have been reported
globally, leading to over 2.6 million deaths [1]. Since the first COVID-19 cases reported
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in France and Germany at the end of January 2020 [2], the COVID-19 pandemic spread
rapidly across Europe, forcing most governments to implement different approaches to
social restrictions during Q2 2020 [3,4]. Those restrictions managed to reduce the spread
of the pandemic, albeit at the expense of decreasing GDP 12.6% vs. Q1 2020 on average
for the European Organization for Economic Co-operation and Development (OECD)
countries [5].

With subsequent waves of COVID-19 cases currently taking place across European
countries, and while vaccination rates are still low, policy makers are challenged with
difficult decision-making that will impact not only the spread of the COVID-19 pandemic,
but also the socioeconomic future of their countries. In order to achieve a balance between
health and socioeconomic concerns for current and future COVID-19 waves, while vac-
cination immunity is not yet reached, interventions to control the pandemic need to be
carefully assessed [6].

Spain was one of the first and most severely impacted countries by the COVID-19
pandemic in Europe [1,2,5,7]. Despite its health system being among the world’s best
performing [8], the rapid spread of the first COVID-19 wave overwhelmed the health
system, resulting in the government declaring the State of Emergency on 14 March 2020,
and imposing one of the strictest lockdowns in Europe, in line with those imposed in Italy
and France [3,4,9]. These restrictions managed to reduce the spread of COVID-19, but
led to a 17.8% drop in GDP vs. Q1 2020, placing Spain in the top three OECD countries
with the steepest GDP decline during Q2 2020 [5]. With an already fragile economy and
exhausted health system, Spain has been facing waves of COVID-19 cases, leaving national
and regional governments continually facing difficult policy decisions [7].

Massive testing strategies have been identified as the main alternative to social restric-
tions to manage the spread of COVID-19 [6,10]. From the very beginning of the COVID-19
pandemic, South Korea and Singapore employed testing rates of over 100 and 700 tests per
case, respectively [4,10,11]. Spain, on the other hand, employed less than 10 tests per case
during the first wave [4]. However, many SARS-CoV-2 tests initially showed high rates of
false negatives, which have discouraged their use in massive testing strategies [12–15].

Several models have been published attempting to estimate the impact of different
non-pharmacological interventions (NPI) (i.e., mobility restrictions and testing campaigns)
on the pandemic and economic outcomes to better understand what measures may best
help flatten the ‘new cases’ curve [12,16–18]. However, none of them used real data
correlating the GDP variation with the NPI established or specifically exploring the impact
of different strategies in Spain. In an effort to support decision-making processes, we aim
to assess the epidemiological, direct healthcare costs, and GDP impacts of different social
restrictions and testing strategies that may help control the COVID-19 pandemic based on
the particular Spanish case.

2. Materials and Methods

Two models were utilized to estimate the clinical and economic impact of different NPI
(lockdown/mobility restrictions and testing rates) on the COVID-19 pandemic in Spain.
First, a dynamic modified Susceptible-Exposed-Infectious-Removed (SEIR) epidemiological
model was developed to simulate the pandemic’s evolution and estimate the number of
new cases, hospitalizations and deaths. Then, the results from the epidemiological model
were used in a second model to estimate direct healthcare costs and change in GDP.

2.1. Epidemiological Model

A dynamic, modified SEIR model was developed to simulate the number of new
COVID-19 cases for the subsequent 90 days in Spain (Figure 1). Given the continuous
changing environment of the pandemic, the 90-day timeframe was considered the most
appropriate timeframe to provide estimates with lower error levels. The Spanish popu-
lation was distributed into the following compartments based on their infection status:
Susceptible (S), Exposed (E), Hidden infectious (H), Confirmed infectious (C) and Removed
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(R). Compared with the classic SEIR model, the infectious compartment was divided in two
sub-compartments: hidden and confirmed. Hidden were those individuals who had not
been tested and therefore were unaware they had the disease, making them the drivers for
infection spread. Once tested, they transitioned to the confirmed infectious compartment,
which consisted of patients who had tested positive and were assumed to isolate with no
further disease transmission (Figure S1).
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Figure 1. Diagram of the modified SEIR model. β represents the transmission rate and is adjusted based on whether the
infectious individual is asymptomatic (βa = 0.002), pre-symptomatic (βs = 0.186) or symptomatic (βpre = 0.01); C(t) is the
number of contacts at that moment t; α is the incubation time (α = 0.18); δ is the diagnosis rate and depends on the number
of tests executed at that moment t [T(t)], the sensitivity of the test and the spread of the infection; γ is the recovery rate,
which is adjusted based on whether the patient is mild (γ = 0.07) or severe (γR = 0.02) and the death rate for severe patients
(γD = 0.009).

Susceptible individuals are those who have never been infected, but may become
infected when coming in contact with an infectious individual. Their transition to exposed
is driven by: the number of daily contacts of the susceptible individual, estimated by an age-
adjusted contact matrix (Figure S2) [19]; age-adjusted herd immunity [20]; the sensitivity
to become infected based on the age range (fitted data); the seasonality (fitted data);
and the transmission rate (β) of the hidden patient, which is adjusted based on whether
the infectious individual is asymptomatic (βa = 0.002), pre-symptomatic (βs = 0.186) or
symptomatic (βpre = 0.01).

Once a susceptible individual becomes infected, they transition to the exposed com-
partment, which corresponds to the incubation phase, so they cannot transmit the disease
and would turn out negative if tested. New Exposed individuals in the moment n + 1
follow the formula:

E(n+1) = (Cij Sn) (T)T (hn)T (Sens)T

where Cij is the contact matrix between different age groups; Sn represents stringency
measures; and Tn is the transition vector. It is estimated as follows:

1. The simulation is initiated at the hidden compartment at the moment n for each age
group and type (asymptomatic, pre-symptomatic, symptomatic);

2. Then, the migration coefficient (constant number of pre-symptomatic individuals
who are outside of the population) is added;

3. Then, multiplied by the respective transmission probability (βa βpre or βs) and by the
seasonal adjustment.

hn represents herd immunity for different age groups; and Sens represents the sen-
sibility of the vector by age, (ranging from 0.1 for the 0–4 age group to 1.5 for the 80+
age group).



Viruses 2021, 13, 917 4 of 16

The transition from exposed to infectious is driven by the incubation time (α = 0.18),
5.6 days on average. After the incubation period, these individuals may become asymp-
tomatic or pre-symptomatic, with different likelihood depending on age [21]. Individuals
will remain pre-symptomatic for 2.7 days on average and then become symptomatic.

The transition from the hidden to the confirmed compartment is driven by the diagno-
sis rate (δ). Every day, a certain number of tests with a specific sensitivity are performed
(which will depend on the scenario, as described in section “Scenarios Definition”). The
tested population consists of a constant share of symptomatic individuals, a random share
of hidden asymptomatic and pre-symptomatic, and non-infected individuals.

Finally, the removed compartment is divided into two sub-compartments: recovered
and deceased. Hidden asymptomatic individuals who do not get tested, are assumed to
transition to the recovered compartment 14 days later, on average. The transition from
confirmed to removed depends on the severity of the symptoms (asymptomatic, mild or
severe), which is adjusted by age. Asymptomatic and confirmed mild individuals will
recover based on the recovery rate (γ = 0.07), but a share of confirmed mild will experience
severe symptoms and require hospitalizations (µ = 0.037). Finally, a constant share of
severe individuals will either transition to recovered (γR = 0.02) or deceased (γD = 0.009)
(Tables S1 and S2).

In each compartment, the population was stratified by age using 5-year intervals. The
model assumes the population remains constant from 31 January 2020, date of the first
COVID-19 case in Spain, until the end of the simulation, assuming that no reinfection may
occur. The model was populated and calibrated by adjusting the number of estimated
confirmed patients to the number of actual confirmed patients as reported by Spanish
Authorities, up to 11 September 2020 [22]. This dataset is published by the Spanish
Government and is collected from the regional health authorities throughout the country
on a daily basis using an electronic survey. Each positive patient has a unique identifier
and, as part of the survey, authorities must report if this is a first infection or a re-infection.
Therefore, no duplicates were expected. The SEIR demographic data were retrieved from
the Spanish National Institute of Statistics.

The forecasting accuracy of the epidemiological model was assessed using the number
of new confirmed cases, hospitalizations, and deaths reported by the Spanish Authorities on
19 October 2020. Our base case estimated 433,067 new confirmed cases for the first 30 days;
this value was actually reached approximately 37 days after starting the simulation [22],
therefore, proving a relatively accurate predictive capacity. However, the number of
hospitalizations and deaths was overestimated with rates of 24.6% and 4.8%, respectively,
considering the overall population. An adjustment was therefore made with a more
conservative approach based upon the latest data reported by the Spanish Authorities
placing the rate of hospitalization at 5.8% of total confirmed cases. By adjusting the rate of
hospitalizations to 5.8%, the model predicted a death rate of 1.1%, well aligned with that
reported by the Spanish Authorities. This adjustment in the hospitalization rate and the
potential impact on the model results was evaluated in a deterministic one-way sensitivity
analysis (Table S3).

2.2. Scenario Definitions

In order to explore the impact of different NPI, three variables were modified within
the SEIR model, generating a total of 13 scenarios (Figure 2):

• Level of restrictions/lockdown (stringency) based on the Government Response
Stringency Index, a composite measure on a 0-to-100 scale (100 being the strictest)
based on nine response indicators including school/workplace closures and travel
bans among others, which is fully described and available for download from the Our
World in Data website [3,4];

• Number of molecular tests per case [4];
• Test sensitivity was assumed to be 96% (i.e., 4% false negative rate) in all scenarios

(lower 95% confidence interval of the SARS-CoV-2 transcription-mediated amplifica-



Viruses 2021, 13, 917 5 of 16

tion (TMA) Procleix® test sensitivity) [23]. In two meta-analyses, other molecular tests
had shown lower sensitivities [24,25]; conservatively, the sensitivity in the model was
decreased to 89% and 73.3% to explore the relevance of this parameter [24,25].
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Figure 2. Scenarios considered by level of stringency, testing rate and test sensitivity. * Testing rate for scenario 1 (base case)
is 10.6 tests per positive. ** All scenarios except 5 and 6 consider a sensitivity of 96%.

The base case (scenario 1) was built considering a stringency of 62 [3,4], testing rate
of 10.6 tests/positive [4], reflecting the situation reported the week prior to 11 September
2020 in Spain, and assuming 96% sensitivity [23].

A total of 10 alternative scenarios (2–4 and 7–13) were built adopting deviations
from the base case in terms of stringency (moderate increase to 73 and high increase to
85, equivalent to the restrictions from April–May 2020 and March–April 2020 in Spain,
respectively) and increased testing rate, aligned with that observed in other countries (with
×2, ×3, ×6 and ×10 increases) [4]. Finally, scenarios 5 and 6 explored the impact of test
sensitivity, decreasing it from 96% to 89% and 73.3%, respectively [24,25].

For each scenario, new exposed cases, hospitalizations, Intensive Care Unit (ICU)
admissions, and deaths were estimated in the epidemiological model and used as inputs
for the economic model.

2.3. Economic Model
2.3.1. Direct Healthcare Costs

Direct healthcare costs included testing, hospitalizations, ICU and primary care visits.
In order to estimate the costs of testing, two different approaches were considered: indi-
vidual testing and pooled testing. The pooling technique, broadly used in blood donor
screening, consists of testing samples from several patients together leading to savings in
costs and resources [26]. At the time this project was initiated, the TMA Procleix® assay
was the only SARS-CoV-2 test for which pooling had been approved in Spain [23]. The cost
of pooling 8 samples together or “8-pooling” was estimated assuming that symptomatic
patients would be tested individually, therefore the probability of re-testing was calculated
based on the prevalence of hidden pre-symptomatic and asymptomatic patients [27]:

Probability of a pooling test being positive = 1 − (1 − λ)ω

where λ represents the proportion of hidden asymptomatic and pre-symptomatic in the
population and ω the number of individual samples being pooled on each pooling test
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(ω = 8). Additionally, each person tested (either individually of pooled) would require a
primary care visit for the sample extraction.

In order to estimate the cost of hospitalization, it was assumed that length of stay and
ICU were 10.4 and 23 days, respectively [28–31]. For primary care costs, in addition to
the cost for sample collection for testing, it was assumed that 50% of patients with mild
symptoms would require a face-to-face visit, while the other 50% would have a consultation
over the phone. Uncertainty around this assumption was also evaluated using one-way
sensitivity analyses and results are presented in Table S4.

All unitary costs were updated to 2020 using the Consumer Price Index, when appli-
cable, and are detailed in Table S5.

2.3.2. Correlation between GDP Variation and NPI

The correlation between GDP change and NPI for each scenario was assessed through
a multiple linear regression model based on data from 42 countries available on the OECD
website [5]. The dependent variable was Q2 2020-vs. Q2 2019 GDP change, and the
independent variables were the level of testing (positivity rate) [4], pandemic spread (case
fatality rate) [4], economic structure (proxied by the share of manufacturing gross added
value on total GDP) [32], and level of restrictions (Stringency Index) [3,4]. Initial correlation
between the dependent variable and each of the independent variables is presented in
Figure S3. The following multiple linear regression model was built:

Y = β0 + β1*Positivity rate + β2*Case fatality rate + β3*% industry over GDP + β4*Stringency Index

where Y represents the percentage difference on GDP from the same quarter of the previous
year; β0 is the constant; β1 is the coefficient for the positivity rate; β2 is the coefficient for
case fatality rate; β3 is the coefficient for the industry share over the GDP; and β4 is the
coefficient for Stringency Index. The estimated values for these coefficients are presented
in Table S4.

The out-of-sample fit of the econometric model was assessed using data for Q3 2020.
The value estimated with our regression model was obtained based on the average testing
rate (23.5 test/case) and Stringency Index (61.1) during July–September 2020. The estimated
GDP was aligned with that recently reported for Q3 2020 in Spain [287,812 million € (M€) vs.
287,363 M€ corresponding to a 7.7% and 7.8% decline compared to Q3 2019, respectively].

To estimate Q4 2020 GDP for each scenario, Q4 2019 GDP was adjusted applying
the estimated coefficients for Stringency Index and positivity rate obtained through the
multiple linear regression model.

3. Results
3.1. Epidemiological Outcomes

With no changes in testing or stringency (scenario 1), the model estimated 2.38 million
new exposed cases in the subsequent 90 days (Table 1), with a 2.1% error (calculated as the
sum of square error between reported and modeled new confirmed cases, adjusted with
e−t function so that the recent error had a higher weight than the old one, divided by the
number of cases error).

Both increased testing and stringency reduced cases, hospitalizations, and deaths.
Scenario 4 (high testing rate increase with no stringency increase) and scenario 7 (moderate
stringency increase with no testing rate increase) would lead to similar reductions of cases,
hospitalizations, and deaths. A 3-fold testing rate increase with no stringency increase
(scenario 2) would begin to bend the curve (Figure 3).
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Table 1. Total number of new exposed cases, hospitalizations and deaths estimated by scenario.

Scenario * Stringency Increase Testing Rate
Increase Exposed Cases Hospitalizations Deaths

Scenario 1: Base case SI = 62 10.6 tests/case * 2,382,172 97,488 18,676
Scenario 2 No increase SI = 62 Mild (×3) * 1,569,006 72,111 15,730
Scenario 3 No increase SI = 62 Moderate (×6) * 957,706 51,212 13,069
Scenario 4 No increase SI = 62 High (×10) * 584,371 37,099 11,058
Scenario 5 No increase SI = 62 High (×10) ** 632,381 38,996 11,343
Scenario 6 No increase SI = 62 High (×10) *** 767,814 44,206 12,100
Scenario 7 Moderate increase SI = 73 None * 607,053 38,502 11,440
Scenario 8 Moderate increase SI = 73 Mild (×2) * 532,199 35,450 10,964
Scenario 9 Moderate increase SI = 73 Moderate (×3) * 475,356 33,066 10,577
Scenario 10 Moderate increase SI = 73 High (×10) * 275,255 24,230 9005
Scenario 11 High increase SI = 85 None * 254,751 23,398 8902
Scenario 12 High increase SI = 85 Mild (×2) * 239,284 22,674 8757
Scenario 13 High increase SI = 85 Moderate (×3) * 226,320 22,064 8631

SI: Stringency Index. * All scenarios except 5 and 6 consider a level of sensitivity of 96%. ** 89% sensitivity. *** 73.3% sensitivity.
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When looking into test sensitivity, scenario 5 (89% sensitivity) and 6 (73.3% sensitivity)
would lead to 48,010 and 183,442 more cases than scenario 4 (96% sensitivity), respectively
(Table 1).

3.2. Economic Outcomes

Scenarios with increased stringency (11–13) entailed the lowest total direct costs
ranging from 315 M€-to-443 M€, whereas those with moderate (7–10) and no increase
(1–6) led to higher direct costs, 586 M€-to-1303 M€ and 1784 M€-to-2993 M€, respectively,
depending on the testing rate.

Scenarios 5 and 6, using less sensitive tests, resulted in 179 M€ and 682 M€ increases
in total direct costs compared with scenario 4 (same testing rate and stringency, but higher
sensitivity), respectively (Table 2).
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Table 2. Direct costs by type of cost for each scenario.

Scenario * Stringency Increase Testing Rate
Increase Hospitalization ICU Primary

Care
Individual

Testing Total

Scenario 1:
Base case SI = 62 10.6 tests/case * 504.3 M€ 347.6 M€ 140.7 M€ 791.2 M€ 1783.7 M€

Scenario 2 No increase SI = 62 Mild (×3) * 373.0 M€ 257.1 M€ 101.6 M€ 1563.3 M€ 2295.1 M€
Scenario 3 No increase SI = 62 Moderate (×6) * 264.9 M€ 182.6 M€ 67.6 M€ 1908.5 M€ 2423.6 M€
Scenario 4 No increase SI = 62 High (×10) * 191.9 M€ 132.3 M€ 45.2 M€ 1940.9 M€ 2310.3 M€
Scenario 5 No increase SI = 62 High (×10) ** 201.7 M€ 139.0 M€ 48.2 M€ 2100.3 M€ 2489.3 M€
Scenario 6 No increase SI = 62 High (×10) *** 228.7 M€ 157.6 M€ 56.4 M€ 2550.1 M€ 2992.8 M€

Scenario 7 Moderate increase
SI = 73 None * 199.2 M€ 137.3 M€ 47.5 M€ 201.6 M€ 585.6 M€

Scenario 8 Moderate increase
SI = 73 Mild (×2) * 183.4 M€ 126.4 M€ 43.9 M€ 353.5 M€ 707.2 M€

Scenario 9 Moderate increase
SI = 73 Moderate (×3) * 171.0 M€ 117.9 M€ 40.6 M€ 473.6 M€ 803.2 M€

Scenario 10 Moderate increase
SI = 73 High (×10) * 125.3 M€ 86.4 M€ 27.1 M€ 1064.4 M€ 1303.3 M€

Scenario 11 High increase SI = 85 None * 121.0 M€ 83.4 M€ 26.1 M€ 84.6 M€ 315.2 M€
Scenario 12 High increase SI = 85 Mild (×2) * 117.3 M€ 80.8 M€ 25.6 M€ 158.9 M€ 382.7 M€
Scenario 13 High increase SI = 85 Moderate (×3) * 114.1 M€ 78.7 M€ 24.9 M€ 225.5 M€ 443.2 M€

ICU: Intensive Care Unit; SI: Stringency Index. * All scenarios except 5 and 6 consider a level of sensitivity of 96%. ** 89% sensitivity. ***
73.3% sensitivity.

For all scenarios, testing represented a relevant share of direct costs; however, these
could be reduced using pooling techniques (Figure 4). Through all scenarios, performing
50% and 80% of tests via 8-pooling would reduce the testing costs between 11% and 17%,
respectively. Additionally, fewer tests would be required to screen the same number of
individuals (Figure 5). Implementing 50% and 80% of 8-pooling would almost double
(×1.8) or more than triple (×3.3) testing capacity, respectively.
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Figure 4. Pooling Costs * Re-test probability if pooling is implemented, calculated based on the prevalence of asymptomatic
and pre-symptomatic individuals. M€: million €.
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3.2.1. Potential Impact of NPI on GDP

Results from the regression model indicated that lower positivity rates (higher testing
rate), lower case fatality rate, higher GDP industry share, and lower Stringency Index
correlated with lower GDP decline during Q2 2020 (Table S4 and Figure S3).

When applying the coefficients for stringency and testing rates to the different scenar-
ios, a difference of up to 4.4% points is observed for Q4 2020 GDP (Figure 6). For instance,
scenario 4 (high testing rate increase with no stringency increase) is associated with a 8.9%
drop in GDP, 1.9% points lower than our base case (scenario 1), whereas scenarios 7 and
11 (moderate and high stringency increase, respectively, with no testing rate increase) are
associated with GDP drops of 10.1% and 11.4%, respectively, 1.2% and 2.5% points higher
than our base case.
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Figure 6. Potential Q4 GDP 2020 evolution for different scenarios of testing and stringency. GDP in million €; % change vs.
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3.2.2. Economic Value of Testing

Based on the correlations observed between lower positivity rates (higher testing rate),
despite the high cost of testing, particularly for those scenarios which manage to bend the
curve by increasing the testing rate (i.e., scenarios 3 and 4) a potential positive impact on
GDP is observed of Q4 2020. Additionally, when comparing scenarios 4 and 7, leading to
similar health outcomes (Table 1 and Figure 4) although reflecting very different policies
(high testing rate increase vs. moderate stringency increase), in spite of the increased
testing costs for scenario 4, this seems to be associated with a positive impact on GDP vs.
scenario 7 (Figure 7).
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4. Discussion

The decentralized system that governs health policy decisions in Europe has led to
each country, and even each region within some countries, implementing different NPI
to face the COVID-19 pandemic [3,4,33]. This hinders the definition of a single scenario
that may be representative for Europe, and even for Spain, as a whole. In spite of the
regional diversity, we assume the scenario that best represents the situation in Spain
during Q4 2020 would be close to scenario 7 (moderate stringency increase with no testing
rate increase) [3,4]. Other European countries like Austria, Italy, France and Germany
implemented stricter lockdowns during Q4 2020, closer to scenario 11 (high stringency
increase), whereas Belgium or the UK showed lower levels of restrictions for most of Q4
2020, close to our base case, and even lower for some of the Nordic countries [3]. Testing
rates are also variable across countries ranging from <3 to >80 cases/positive, Iceland
and Denmark being the countries with the highest testing rates and with strategies that
would be close to scenario 4 (high testing rate increase with no stringency increase) [3,4].
Whether these measures will be sufficient to fully control the spread of COVID-19 before
high vaccination rates are reached and the macroeconomic impact these may entail is still
unknown. However, according to the correlations observed through our regression model
for Q4 2020, some countries fall into scenarios that may entail negative macroeconomic
impacts (like scenario 7 and 11) when compared to others with less stringency and/or
increased testing rates (i.e., scenarios 2–4 or 8–10).

The SEIR epidemiological model shows that an increased testing rate in September
2020, without any further restrictions, would have reduced the rate of new cases in Spain.
Scenario 2 (mild testing rate increase) already illustrates a curve that is starting to bend
(Figure 3). Further increase in the testing rate could lead to reductions in the number of cases
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in line with that observed when stringency is increased. For instance, when comparing
scenarios 4 (high testing increase) and 7 (moderate stringency increase), scenario 4 results
in slightly fewer cases, hospitalizations and deaths (and associated costs) at the expense of
higher testing costs, but overall, resulting in a positive impact of 9743M€ in GDP for the
Spanish case. All scenarios relying on increased testing strategies show positive correlations
with GDP; whereas the opposite trend is observed for those with increased stringency.

Testing costs represent an important share of direct costs, particularly when used in
massive screening approaches. Provided the selected test is adequately sensitive and is used
for screening low prevalence groups (i.e., to identify asymptomatic and pre-symptomatic
individuals in an effort to keep re-testing probabilities minimized), testing costs may be
mitigated through the implementation of pooling strategies [23]. Additionally, pooling
techniques may also prove efficient to address the need for increased throughput capacity.

When considering sensitivity, differences of over ×3000 in LoD have been observed
within molecular tests [13,14], and when comparing different techniques, like the antigen
test [34], not initially considered in this project as it was only recommended for symptomatic
patients by the Spanish Authorities at a later stage. Our model shows that reducing
sensitivity, from 96% to 89% and 73.3% [24,25], led to increases of 8.2% and 31.4% in cases,
and 5.1% and 19.2% in hospitalizations, respectively. It is therefore critical to choose the
appropriate test in terms of sensitivity for the particular target population (i.e., symptomatic,
asymptomatic), when considering the impact of screening strategies on healthcare systems.
It is worth mentioning that test specificity was not assessed within this project given that
most tests have shown very high levels of specificity and therefore the global impact of
isolating potential false positives for 14 days is expected to be minimal [13].

Although comparison with prior work is challenging given the lack of previous studies
estimating the impact of NPI on GDP in Spain and due to the different approaches used for
estimating the GDP decline and/or scenarios considered, our results are aligned with those
from previous models. For instance, previous research based on a Susceptible-Infected-
Recovered (SIR) model in the US, estimated that a general lockdown of the population
would lead to a 37.7% drop in GDP. This could be reduced to 24.9% if lockdown was more
stringent for the older population than for the younger active population and to 7% if social
distancing and a testing, tracing, and isolation (TTI) strategy was also implemented [16].
A similar study, also using a SIR model, estimated an improvement in GDP of 6% if 5%
of the US population were tested every week [17]. A modified SEIR model estimating the
economic impact of different interventions in the UK concluded that implementation of
population-scale TTI strategies, could reduce the GDP decline associated with additional
lockdowns in half—from £1180 billion to £503 billion [18].

Spain was selected to assess the impact of the different NPI on the clinical and eco-
nomic outcomes of the pandemic because, together with Italy, these were the first countries
to be hit by the COVID-19 pandemic in Europe. At the end of the first COVID-19 wave
(when this project was initiated), Spain was one of the European countries with the highest
number of cases, hospitalizations and deaths and also one of the countries that imple-
mented the strictest lockdowns in Europe, which overall presented a suitable scenario
to evaluate the potential clinical and economic impact of the different strategies against
the COVID-19 pandemic. However, the fact that the epidemiological model is based on
Spanish data may only prevent our results from being fully and directly extrapolated to
other regions.

The number of confirmed cases estimated by the epidemiological model for the first
30 days was actually reached after 37 days, indicating a relatively accurate predictive
capacity. This delay in reaching the confirmed number of cases may be explained by
additional restrictions applied in some regions, or the slight reduction in testing rates
(8.3 tests/positive the week prior to 19 October 2020) compared to the one considered in
our base case scenario (10.6 tests/positive) [2,4]. Additionally, the number of exposed cases
(2.38 million) would be in line with the figures reported from the first wave, at the end of
which a seroprevalence of 5.0% was reported for the Spanish population (47.3 million) [20].
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A recent update of the seroprevalence study conducted in Spain, reported a preliminary
seroprevalence of 9.9% in November 2020, therefore indicating that over 2.5 million people
may have seroconverted between since June 2020, also in line with our estimates [35].

Regarding the economic model, it is worth mentioning that the regression model was
developed using data from 42 countries on COVID-19 spread, economic structure, NPI,
and GDP change during Q2 2020. While our model does not aim to replace those more
oriented to GDP forecasting such us general equilibrium models, and while reports on Q4
2020 GDP are still pending, this approach may allow exploring the correlation between NPI
and GDP variation by other countries in their efforts to predict macroeconomic COVID-19
impacts. When used for assessing the potential impact of NPI on Q3 2020 GDP in Spain, the
model demonstrated excellent accuracy (i.e., 287,812M€ vs. 287,363M€ corresponding to a
7.7% and 7.8% decline relevant to Q3 2019, respectively). Although the pursued objectives
and the methodological approaches are different, the impact of the different restrictions
is aligned with those predicted by the Bank of Spain (BoS) [36]. The BoS forecasts a GDP
decline in Q4 2020 of ~7.0% and ~12.0% compared to Q4 2019, for scenarios with lenient
and stringent restrictions, respectively, whereas our model estimates a decline between
7.0% (scenario 4) and 11.4% (scenario 11). Although the scenarios considered by the BoS
are not fully aligned with the ones considered herein, differences in the quarter-to-quarter
GDP decline are aligned.

Previous works have aimed to correlate epidemiological and macroeconomic vari-
ables, for instance the October 2020 International Monetary Fund (IMF) Report includes
a model correlating the level of lockdown measured through the Stringency Index with
the GDP drop and also considers the severity of the pandemic through the COVID-1 cases
per capita [37]. Differently to our model, the IMF one does not investigate the correlation
between testing and GDP drop. However, a recent report from the United Nations Confer-
ence of Trade and Development highlighted the necessity of testing facilities to ensure a
safe return to work and business [38], therefore increased testing may facilitate reopening
economical activities.

Both the epidemiological and economic models developed herein exhibit strengths and
limitations. Our SEIR model predicted a much higher rate of hospitalizations, and deaths
than those actually observed. This may be explained by the fact that data used to inform the
model primarily corresponds to the first wave; different in nature to the second wave. For
instance, testing capacity is now higher, healthcare professionals have more experience and
tools to manage COVID-19; the use of a mask is now mandatory, and the age distribution
of COVID-19 patients seems to have shifted towards a younger population [22,39]; and
although some behavioral changes have been indirectly considered because the model
prediction has been fitted to the actual new confirmed cases, this has not been reflected
in the estimated hospitalization rate. Additionally, the national-level epidemiological
data does not have adequate granularity to fully describe the dynamics of COVID-19 (i.e.,
new daily cases and hospitalizations stratified by age and sex is not currently publicly
available) [40]. However, the overestimated hospitalization rate has been overcome by
adjusting it to 5.8% in line with that reported by the Spanish Authorities for the first 37
days of the model’s prediction, which led to a mortality rate of 1.1%. The impact of this
variable has been further explored through a one-way sensitivity analysis by applying a 20%
increase and decrease to the hospitalization rate; differences of over 300M€ may be expected
should future COVID-19 waves entail lower or higher rates of hospitalization. Another
limitation of the epidemiological model is that confirmed patients have been assumed to be
well isolated and therefore, not able to transmit the infection. Different levels of adherence
to isolation have not been explored due to the lack of evidence on isolation compliance and
its consequences. Another limitation of the scenarios explored herein is that NPI are applied
to the whole population and therefore, alternative options of addressing the highest risk
separately from the overall population have not been considered. Additionally, our model
also considers that no re-infection is possible. While rates of confirmed reinfection are still
low, current evidence suggests that immunity lasts for a minimum of 4–7 months, and
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therefore the impact on our 90-days estimate should be minimal [41–45]. Additionally, the
impact of immunity due to vaccination has not been considered either. With the exception
of Israel, the United States, the United Arab Emirates, the United Kingdom, and Chile,
vaccination rates are still very low (<10%) across most countries [4]; also, even though
recent evidence seems to suggest that vaccination immunity should be as effective as
natural immunity, this is still not fully understood [45]. Future updates to our model when
further evidence is available may be able to address some of these outstanding questions.

The economic models developed herein also entail some limitations. For instance, the
fact that the correlation between NPI and GDP drop has been assessed using data from
countries with very different economies and in different cyclical positions at the beginning
of the pandemic. Additionally, nominal GDP was used for both the regression model and
the subsequent economic impact for each scenario. Another limitation is that test sensitivity
could not be included in the regression model and therefore, only differences in direct
costs can be estimated when exploring this parameter. It is worth mentioning that some
costs have not been accounted for, such as emergency room visits, hospitalizations at home,
subsequent visits to primary care, cost of contact tracing, lockdown-related mental health
costs, or its longer-term effects such as depression or suicides.

5. Conclusions

In spite of the increased availability of vaccines, herd immunity is not expected to be
reached before the end of 2021 [46]. In the meantime, despite the limitations highlighted
above, these models may be useful tools for health policy makers during current and future
waves of COVID-19, should they occur under similar conditions to support informed
decision-making, so that the population is placed in a future that balances both health and
socioeconomic concerns.
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