RTP801 regulates motor cortex synaptic transmission and learning

Leticia Pérez-Sísqués a,b,*,1, Núria Martín-Flores a,b,2,*, Mercè Masana a,b,3,4, Júlia Solana-Balaguer a,b, Arnau Llobet a, Joan Romaní-Aumedes a,b, Mercè Canal a,b,3, Genís Campoy-Campos a,b, Esther García-García a,b,3,4, Núria Sánchez-Fernández a, Sara Fernández-García a,b,3,4, James P. Gilbert e, Manuel José Rodríguez a,b,c,3,4, Heng-Ye Man e, Elena Feinstein 3, David L. Williamson g, David Soto a,b, c, Xavier Gasull a,b, e, Jordi Alberch a,b,c, Cristina Malagelada a,b,3,5,6

a Department of Biomedicine, Faculty of Medicine, University of Barcelona, Catalonia, Spain
b IDIBAPS: Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, 08036, Catalonia, Spain
c Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, 08036, Catalonia, Spain
d Department of Biology, Pharmacology and Experimental Therapeutics, Boston University, Boston, MA 02215, USA
e Quark Pharmaceuticals, Inc. Newark, CA 94560, USA
f Kinesiology Program, School of Behavioral Sciences and Education, Penn State Harrisburg, Middletown, PA 17057, USA

A R T I C L E I N F O

Keywords:
GluA1
Motor learning
mTOR
Plasticity
RTP801

A B S T R A C T

Background: RTP801/REDD1 is a stress-regulated protein whose upregulation is necessary and sufficient to trigger neuronal death in in vitro and in vivo models of Parkinson’s and Huntington’s diseases and is up regulated in compromised neurons in human postmortem brains of both neurodegenerative disorders. Indeed, in both Parkinson’s and Huntington’s disease mouse models, RTP801 knockdown alleviates motor-learning deficits.

Results: We investigated the physiological role of RTP801 in neuronal plasticity and we found RTP801 in rat, mouse and human synapses. The absence of RTP801 enhanced excitatory synaptic transmission in both neuronal cultures and brain slices from RTP801 knock-out (KO) mice. Indeed, RTP801 KO mice showed improved motor learning, which correlated with lower spine density but increased basal filopodia and mushroom spines in the motor cortex layer V. This paralleled with higher levels of synaptosomal GluA1 and TrkB receptors in homogenates derived from KO mice motor cortex, proteins that are associated with synaptic strengthening.

Conclusions: Altogether, these results indicate that RTP801 has an important role modulating neuronal plasticity and motor learning. They will help to understand its role in neurodegenerative disorders where RTP801 levels are detrimentally upregulated.

1. Background

Synaptic plasticity is the ability to fine tune neuronal connectivity and dynamics upon demand, for example in situations in which individuals have to adjust movements in challenging environments. This process is known as motor learning and involves the acquisition of a novel motor skill that, once learned, persists after training period ends (Peters et al., 2017; Sanes and Donoghue, 2000; Xu et al., 2009).

Abbreviations: AD, Alzheimer’s disease; HD, Huntington’s disease; KO, knock out; mTOR, mechanistic target of rapamycin; M1, primary motor cortex; LV, motor cortex layer V; mhtt, mutant huntingtin; MEAs, microelectrode arrays; mEPSC, miniature excitatory postsynaptic currents; PD, Parkinson’s disease; iPSC, induced pluripotent stem cells; PSD, postsynaptic density; TEM, transmission electron microscopy; TSC1/2, tuberous sclerosis complex; SNpc), substantia nigra pars compacta; WT, wild type.

* These authors contributed equally to this work.

1 These authors at: Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, Address: Casanova 143, north wing 3rd floor, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain.
2 E-mail addresses: leticiaperezsisques@gmail.com (L. Pérez-Sísqués), cristina.malagelada@ub.edu (C. Malagelada).
3 Current affiliation: Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK.
4 Current affiliation: HIPRA Headquarters, Amer (Girona) 17170, Catalonia, Spain.

https://doi.org/10.1016/j.expneurol.2021.113755
Received 25 January 2021; Received in revised form 24 April 2021; Accepted 8 May 2021
Available online 11 May 2021
0014-4886/© 2021 Published by Elsevier Inc.
The central hub for motor learning is the motor cortex, an interconnected structure with other brain regions such as the striatum, the thalamus, brainstem or the spinal cord (reviewed in Shepherd and Huganir, 2007). The complex process of acquiring new motor skills induces synaptic plasticity in the motor cortex and requires dendritic spine formation, consolidation and/or elimination, all leading to a necessary synaptic remodeling and strengthening (Fu et al., 2012; Peters et al., 2017; Sanes and Donoghue, 2000; Xu et al., 2009). Pyramidal neurons from the motor cortex and striatal medium spiny neurons (MSNs) predominantly undergo plastic changes along motor learning (Costa et al., 2004; Tja et al., 2017). Regarding the motor cortex, projection pyramidal neurons from Layer V (LV) are the main excitatory input to the striatum involved in the corticostriatal pathway (Anderson et al., 2010; Costa et al., 2004; Hintiryan et al., 2016; Shepherd and Huganir, 2007). These plastic changes leading to motor learning involve, at least, increased levels of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR) at dendritic spines (Kida et al., 2016; Roth et al., 2020). However, the mechanisms by which these events are regulated are not yet clearly elucidated.

In many neurodegenerative diseases, along with neurological and psychiatric symptoms, motor dysfunction is a hallmark of disease progression. Among these disorders, we find Parkinson’s disease (PD), Huntington’s disease (HD), or amyotrophic lateral sclerosis, (Shepherd, 2013). Motor dysfunction is due, in part, to an impairment in the synaptic plasticity of the circuitries that control movement by interconnecting motor cortex and basal ganglia and the thalamus, and also the cerebellum (Calabresi et al., 2007, 2000; Guo et al., 2015; Xu et al., 2017).

RTP801/RED1, coded by the DDIT4 gene, is a stress-regulated protein that is sufficient and necessary to induce neuron death (Malagelada et al., 2006; Shoshani et al., 2002). It is elevated in cellular and animal models of PD in response to dopaminergic neurotoxins (Malagelada et al., 2006; Ryu et al., 2005) and is highly upregulated in neurelemalin positive neurons in the substantia nigra pars compacta (SNpc) of both sporadic (Malagelada et al., 2006) and parkin mutant PD patients (Romani-Aumedes et al., 2014). RTP801 induces neuron death by a sequential inactivation of mTOR and the survival kinase Akt (Malagelada et al., 2008) via the tuberous sclerosis complex 1/2 (TSC1/2). Regarding HD, RTP801 levels are highly increased in HD human brains, in differentiated neurons derived from induced pluripotent stem cells (iPSC) from HD patients (Martin-Flores et al., 2016) and in striatal synapses from HD mouse models (Martin-Flores et al., 2020). Besides, in neuronal models of the disease, RTP801 mediates mutant huntingtin (mht)-induced toxicity (Martin-Flores et al., 2016). Importantly, RTP801 contributes to motor-learning dysfunction in patients with HD and PD since RTP801 knockdown prevents from the appearance of motor learning deficits in the A53T and R6/1 models of these diseases, respectively (Martin-Flores et al., 2020; Zhang et al., 2018).

This suggests that RTP801 deregulation is a common hallmark in neurodegeneration. Indeed, RTP801 coding gene DDIT4 was recently described as one of the top three commonly deregulated transcripts in postmortem brain samples from PD and HD patients (Labadorf et al., 2018). Furthermore, RTP801 is sufficient to cause neuronal atrophy and depressive-like behavior (Ota et al., 2014) and it has a regulatory role in cortical development, neuronal differentiation (Malagelada et al., 2011) and peripheral nervous system myelination (Noseda et al., 2013). However, its physiological role in synaptic plasticity has not been resolved yet.

For this reason, here we investigated the potential synaptic function of RTP801 in the corticostriatal pathway under physiological conditions. By using cellular and murine models and postmortem human brains and performing behavioral, histological, electrophysiological and biochemical analysis, our results describe the implication of RTP801 in motor learning behavior and synaptic plasticity.

2. Methods

2.1. Animals

Transgenic RTP801 knockout mouse strain was generated by Lexicon Inc. as described in (Brafman et al., 2004). RTP801 knockout mice were obtained by homzygous pairing. Thus, wild type mice were bred from the RTP801 KO founder strains to obtain a C57Bl6/129sv background. RTP801 knock out and wild type mice were housed under controlled conditions (22 °C, 40–60% humidity in a 12-h light/dark cycle) with water and food available ad libitum. All the animals analyzed in this study were 2 months-old adult mice.

For further biochemical analyses, Golgi staining and TEM, mice were euthanized by cervical dislocation and tissue was dissected out. For immunohistochemistry, animals were processed as described elsewhere (Creus-Muncunill et al., 2016). Briefly, animals were anesthetized with 60 mg/kg doletal and intracardially perfused with 4% PFA. Coronal 25 μm-thick brain sections were obtained with a cryostat.

2.2. Rat primary cultures

Rat cortical and hippocampal primary cultures were obtained from embryonic day 18 Sprague-Dawley rats as previously described (Canal et al., 2016). Cells were either transduced with lentiviral particles carrying a control shRNA or a specific shRNA against RTP801 or transfected with lipofectamine 2000 (Thermo Fisher Scientific) with pCMS vectors expressing eGFP (donated by Dr. Lloyd Greene, Columbia University) or eGFP-fused RTP801 protein (Romani-Aumedes et al., 2014). The sequences to downregulate or overexpress RTP801 were previously described in (Malagelada et al., 2006).

2.3. Mouse primary cultures

Mouse primary cortical cultures were obtained from embryonic day 15 mice. Coverslips were coated for 1 h with 0.1 mg/ml poly-o-lysine (Merck) and then 3.5 h with 0.018 mg/ml laminin (Thermo Fisher Scientific). Briefly, cortices were dissected out and chemically digested with 41.66 μM Trypsin for 10 min. Following mechanical digestion, cells were plated on coverslips at a density of 25,000 cells/cm² and maintained in Neurobasal-A medium supplemented with B27, GlutaMAX (all from Gibco), 33.3 mM Glucose and 1% penicillin-streptomycin (Sigma) in a 5% CO₂ atmosphere and 37 °C.

2.4. Crude synaptosomal fractionation

Tissue (rat, mice or postmortem human brains) or cultured cells were homogenized in Krebs-Ringer buffer (125 mM NaCl, 1.2 mM KCl, 22 mM NaHCO3, 1 mM NaH2PO4, 1.2 mM MgSO4, 1.2 mM CaCl2, 10 mM Glucose, 0.32 M Sucrose; pH 7.4). For samples in Fig. 7, mice were sacrificed one week after behavioral testing. Initial lysate was first centrifuged at 1,000 g for 10 min. Supernatant (homogenate) was centrifuged for 20 min at 16,000 g to obtain the cytosolic fraction (supernatant) and the crude synaptosomal fraction (pellet), that was resuspended in Krebs-Ringer buffer.

2.5. Western blotting

Samples were resolved in NuPAGE™Novex™ polyacrylamide gels and proteins were transferred to nitrocellulose membranes with the iBlot system (all from Thermo Fisher Scientific). Indicated primary antibodies were incubated overnight at 4 °C diluted in Tris-buffered saline containing 0.1% Tween-20 and 5% BSA. Secondary antibodies (Thermo Fisher Scientific) were diluted in TBS-Tween with non-fat dry milk and proteins were transferred to nitrocellulose membranes with the iBlot system (all from Thermo Fisher Scientific). Indicated primary antibodies were incubated overnight at 4 °C diluted in Tris-buffered saline containing 0.1% Tween-20 and 5% BSA. Secondary antibodies (Thermo Fisher Scientific) were diluted in TBS-Tween with non-fat dry milk and proteins were transferred to nitrocellulose membranes with the iBlot system (all from Thermo Fisher Scientific). Indicated primary antibodies were incubated overnight at 4 °C diluted in Tris-buffered saline containing 0.1% Tween-20 and 5% BSA. Secondary antibodies (Thermo Fisher Scientific) were diluted in TBS-Tween with non-fat dry milk.
were used: RTP801 (1:500, Proteintech), HRP-conjugated anti-beta actin (1:100,000; Sigma), PSD-95 (1:1000; Thermo Fisher Scientific), SV2a and GFP (1:1000; Santa Cruz Biotechnology), GluA1, GluA2, Stargazin (1:1000; Merck Millipore), GluN2B (1:1000; Cell Signaling Technology), BDNF (1:1000; Icosagen) and TrkB (1:1000; BD Biosciences).

2.6. Immunofluorescence

Cells were fixed in 4% PFA and permeabilized with 0.25% Triton-X. Blocking and antibody incubation was performed with Superblock (Thermo Fisher Scientific). Primary antibodies were incubated overnight at 4 °C and secondary antibodies for 2 h at room temperature. For mouse brain immunofluorescence, sections were washed with PBS and incubated for 30 min in NH3CN. Next, sections were blocked with 0.3% Triton-100 10% NGS in PBS for 2 h prior incubation with the primary antibodies diluted in blocking solution overnight at 4 °C. Later, sections were washed and incubated for 2 h with the secondary antibodies. Slices were then washed with PBS. Both cells and tissue samples were mounted with Prolong Gold antifade mountant (Thermo Fisher Scientific). The following antibodies were used: GFP (1:500), SV2a (1:100) (both from Santa Cruz Biotechnology), PSD-95 (1:50; Thermo Fisher Scientific), GluA1 (1:250-1:500; Merck Millipore) and RTP801 (1:100; Proteintech). AlexaFluor-488 or − 555 secondary antibodies (1:500) and Hoechst33342 (1:5000) were from Thermo Fisher Scientific. Images were obtained with a Leica LCS SL or a Zeiss LSM880 confocal microscopes with a 1024 × 1024 pixel resolution and a 63× magnification and were analyzed with ImageJ. For in vitro experiments in cortical neurons, at least 25 dendrites per group from three independent experiments were analyzed. For in vitro experiments in hippocampal neurons, at least 12 neurons per group were analyzed from three independent experiments. For double-labeled GluA1-PSD-95-positive clusters in brain slices, images were acquired with 4× digital zoom (33.74 × 33.74 μm). For each mouse three representative images from two different coronal sections were analyzed. Colocalization was considered when there was at least one common pixel between GluA1 and PSD-95 detected puncta.

2.7. Nissl staining

Slices were stained for 45 min with 0.2 mg/ml Cresyl violet (Sigma) in a 0.1 M acetic acid 0.1 M sodium acetate solution. Next, slices were washed in distilled water and then dehydrated with ethanol (70, 95%, 5 min each), washed with xylol and mounted with DPX media. Images were obtained with a 10× magnification with a Zeiss Axiolab.

2.8. Behavioral assessment

2.8.1. Footprint test

Mice’s fore and hindlimbs were painted in blue and red, respectively, with non-toxic ink. Animal’s gait was then recorded letting them walk through a tunnel on white paper (10 cm wide, 40 cm long). The test was performed three times on the same day. In each trial three consecutive steps were measured for each parameter (stride, sway, stance, overlap).

Open field test: mice were placed in a 40x40x40 cm arena. The center area was considered as the central squared 20 × 20 cm space. Light intensity was 24 lx though-out the periphery and 29 lx in the center. Mice’s movement was tracked and recorded for 10 min using SMART 3.0 Software (Panlab). Other parameters related to anxiety-like behaviors, like number of groomings, rearings and defecations were also monitored.

2.8.2. Accelerating rotarod

One day after the Open field test mice were subjected to the Accelerating rotarod test. Mice were placed on a 3 cm rod with an increasing speed from 4 to 40 rpm over 5 min. Latency to fall was recorded as the

2.8.3. Clasping behavior

Hindlimb clasping was measured by picking up mice at the base of the tail. In order to classify this phenotype we used the scale described in (Guyenet et al., 2010) with minor modifications: 0 means no hind paw retraction, 1, one hindlimb retracted, 2, both hindlimbs partially retracted, and 3 when the 2 hindlimbs were totally retracted.

2.9. Golgi staining and spine density and morphology analyses

Golgi-Cox impregnation was performed with fresh brain hemispheres from, mice sacrificed one week after behavioral testing with FD Rapid GolgiStain kit (FD Neurotechnologies) following manufacturer’s instructions. 100 μm slices were obtained with a Leica vibratome and mounted on gelatin-coated slides before final staining.

For spine density analyses only pyramidal neurons from layer V in the primary motor cortex or medium spiny neurons (MSNs) from the dorsolateral striatum were taken into account. Spine density was quantified in dendritic segments of at least 10 μm and 30 different secondary/tertiary dendrites per animal were analyzed. Analyzed dendrites were 50% apical, 50% basal.

Spine morphology analyses were performed in motor cortex layer V pyramidal neurons. Spines in 5 apical and 5 basal secondary/tertiary dendrites were analyzed for each animal (6 WT and 4 KO), in segments of at least 10 μm long. A total of 100–125 apical and 100–125 basal spines were analyzed per animal. Branched, filopodia and stubby spines were visually categorized. For headed spines, head area was measured in all headed spines and thin/mushroom classification was performed depending on the mean head area for each genotype (spines with head area greater than the mean were considered as mushroom spines and smaller ones were categorized as thin spines). In spine density and morphology analyses, animal genotype was blind for the experimenter.

2.10. Transmission electron microscopy

2 months old RTP801 knock out (n = 4) and wild type mice (n = 4) were sacrificed one week after behavioral testing and motor cortex was dissected from coronal sections. From these sections, the lower half of the motor cortex, including Layer V and VI, was isolated and fixed overnight in 2% glutaraldehyde 2% paraformaldehyde in 0.12 M phosphate buffer. After fixation, tissue was processed and analyzed as previously described in (Bosch et al., 2016). Electron micrographs were randomly taken at 25,000× with a TEM JEOI. J1010 (tungsten filament), with a CCD Orius (Gatan) and software Digital Micrograph (Gatan). Spine density, pre/postsynaptic area and postsynaptic density area, length and thickness were determined (n = 45–50 images for each animal) withImageJ software. In all TEM analyses, animal genotype was blind for the experimenter.

2.11. Electrophysiology

2.11.1. Rat neuronal cultures

Miniature excitatory postsynaptic currents (mEPSCs) were measured in rat primary hippocampal neurons plated on glass coverslips as previously described (Gilbert et al., 2016). mEPSCs were visually categorized. For headed spines, head area was measured in all headed spines and thin/mushroom classification was performed depending on the mean head area for each genotype (spines with head area greater than the mean were considered as mushroom spines and smaller ones were categorized as thin spines). In spine density and morphology analyses, animal genotype was blind for the experimenter.

2.11.2. Mouse cortical cultures

Electrophysiological recordings of cultured cortical pyramidal neurons—chosen in basis of their characteristic pyramidal morphology—were performed at 14 DIV. Whole-cell patch-clamp currents were recorded at room temperature (25–26 °C) in extracellular solution containing (in mM): 130 NaCl, 3.5 KCl, 10 HEPES, 15 glucose and 2 CaCl2 (pH 7.4; osmolarity 305 mOsm/Kg with sorbitol). AMPAR-
mediated miniature excitatory postsynaptic currents (mEPSCs) were isolated adding to the extracellular solution 1 µM tetrodotoxin to block evoked synaptic transmission, 100 µM picrotoxin to block GABA_A receptors and 50 µM APV to block NMDA receptors. Recording electrodes were fabricated from borosilicate glass with a final resistance of 4–5 MΩ and filled with an internal solution containing (in mM): 120 K-Glucose, 16 KCl, 10 HEPES, 0.2 ethylene glycol tetraacetic acid (EGTA), 2 MgATP, 0.3 Na₂GTP (pH 7.2; osmolality 291 with sorbitol). Recordings were acquired at a sampling rate of 5KHz and were filtered at 2 Hz. Miniature events were detected and analyzed with the WaveMetrics Igor Pro open-source software package Neuroematic (Rothman and Silver, 2018). Frequency was determined by dividing the number of detected events by the recorded time (in seconds).

2.12. Electrophysiological field recordings

Two month-old (female and male) mouse brain sagittal sections were obtained on a vibratome (Microm HM 650 V, Thermo Scientific, Waltham, MA, USA) at 350 µm thickness in oxygenated (95% O₂, 5% CO₂) ice-cold aCSF and then transferred to a oxygenated 32 °C recovery solution for 15 min as previously described (Choi et al., 2019). Then, slices were transferred to oxygenated aCSF at room temperature and left for at least 1 h before electrophysiological field recording. Following recovery, mouse 350 µm thick brain slices were placed in a multi electrode array (MEA) recording dish and fully submerged in oxygenated aCSF at 37 °C. Electrophysiological data were recorded with a MEA set-up from Multi Channel Systems MCS GmbH (Reutlingen, Germany) composed of a 60 channels USB-MEA60-inv system. Experiments were carried out with 60MEA200/30R-ITO MEA dishes consisting of 60 planar electrodes (30 µm diameter) arranged in an 8 × 8 array and placed in the motor cortex slice surface. Raw traces were recorded for 5 min from 58 electrodes simultaneously, sampled at 5 kHz. Raw data were high-pass filtered with a 200-Hz Butterworth 2nd order filter, the noise level calculated by the standard deviation of the recorded signal on each electrode and spikes were identified as currents with a negative amplitude larger than −30 mV and slope values between 0.2 and 1. To quantify burst activity in spike-trains we applied the MaxInterval Method (Legendy and Salcman, 1985) with the following parameter values: maximum beginning ISI, 200 ms; maximum end ISI, 200 ms; minimum interburst interval, 20 ms, minimum burst duration 20 ms; minimum number of spikes in a burst, 5. Software for recording and signal processing was MC Rack from Multi Channel Systems. Using a digital camera during recording assessed the position of the brain slices on the electrode field to analyze information from electrodes specifically positioned on cortical layer V (Fig. 2 H).

2.13. Experimental design and statistical analyses

Graphs show results reported as mean ± SEM. Data was assessed for normality using D’Agostino-Pearson, Shapiro-Wilk or Kolmogorov-Smirnov. Statistical analyses were performed using unpaired, two-tailed Student’s t-test for normally distributed data, Mann-Whitney test for non-parametric data and Two-way ANOVA followed by Bonferroni’s post-hoc tests to compare multiple groups, as appropriate and indicated in the figure legends. Values of P < 0.05 were considered as statistically significant.

3. Results

3.1. RTP801 is localized in the synapses of murine and human samples and modulates synaptic transmission in vitro

We first explored whether RTP801 was localized in synapses and whether it was involved in synaptic function, connectivity and transmission. Hence, we first isolated cortical and striatal crude synaptosomes from adult postmortem human brain, adult rat and mouse brains and from cultured rat cortical neurons. In all samples we observed the presence of RTP801 or its enrichment in crude isolated synaptic terminals in comparison to the initial homogenates (Fig. 1 A), corroborating our own previous results (Martín-Flores et al., 2020). Interestingly, in cultured cortical neurons, we observed that RTP801 was expressed in the soma, dendrites and dendritic spines (Fig. 1 B).

We next investigated whether RTP801 depletion affected spine density and synaptic transmission. For this, we knocked down the expression of RTP801 in cortical primary cultures at 14DIV, using lentivirus expressing a specific shRNA for RTP801 or scramble shRNA as control. We observed that RTP801 silencing induced a significant decrease in spine density relative to the scramble shRNA transduced neurons (Fig. 1 C). We next analyzed whether RTP801 expression abrogation affected synapse function by evaluating the frequency and the amplitude of mEPSCs of cortical cultures derived from WT and RTP801 KO mice. Interestingly, in the complete absence of RTP801 expression using cultured cortical neurons from RTP801 KO mice, we observed that both the amplitude (Fig. 1 D1, D2 & D.3) and frequency (Fig. 1 D1, D2 & D.4) of mEPSCs were higher than the ones registered in WT cortical sister cultures.

We corroborated our in vitro results using cultured hippocampal neurons, a well characterized plasticity model. In line with previous results, we found that RTP801 colocalized with PSD-95, an excitatory postsynaptic scaffold protein, but not with the presynaptic marker SV2A, indicating that RTP801 is localized in the postsynaptic compartment (Fig. S1 A-B). Moreover, ectopic RTP801 expression attenuated the amplitude of mEPSCs without affecting the frequency, along with a decrease of PSD-95 and AMPAR receptor subunit GluA1 puncta intensity (Fig. S1 C-E).

3.2. Synaptic and behavioral characterisation of RTP801 KO mice brains

Previous data pointed out that the total abrogation of RTP801 expression did not influence significantly either the brain structure or the basal behavior of the RTP801 KO mice in comparison to WT animals (Braffman et al., 2004; Ota et al., 2014). However, we previously demonstrated that RTP801 regulated the timing of cortical neurogenesis and neuron differentiation/migration (Malagelada et al., 2011) using in utero electroporation techniques. For this reason, to validate the use of the RTP801 KO mouse to study its putative synaptic role, we characterized its brain morphology in comparison to WT animals. We first confirmed the lack of RTP801 expression in the KO animals in motor cortex homogenates (Fig. 2 A). Macroscopically, although there were no differences in the mice body weight between genotypes (Fig. 2 B), we observed that KO animals presented a decreased brain weight (Fig. 2 C). However, internal structural organization did not present major alterations either in cortical layers, hippocampus or even in the striatum, as judged by Nissl staining (Fig. 2 D). Primary motor cortex (M1) layer thickness did not differ either between genotypes (Fig. 2 E) but RTP801 KO mice showed an expected decreased cell density in the M1 LV (Fig. 2 F).

We next investigated whether cortical spine density was affected in the adult brain of RTP801 KO mice using Golgi-Cox staining. Analyses were performed in the M1 LV pyramidal neurons, the main excitatory and direct projection to the ipsi- and contralateral striatum in the corticostrital pathway (Anderson et al., 2010; H¨ıtiryan et al., 2015; Shepherd, 2013; Xu et al., 2009). As previously seen by knocking down RTP801 in cortical cultured neurons (see Fig. 1 C), we observed a reduction in the density of spines in LV neurons in naïve RTP801 KO mice compared to WT animals (Fig. 2 G).

Next, we assessed whether RTP801 modulates synaptic transmission in cortical brain slices from naïve WT and KO animals. We thus measured neuronal spike rate and bursting in M1 LV using multielectrode array (MEA) (Fig. 2 H). We found an increased spike rate in the M1 LV of KO animals when compared with WT (Fig. 2 I.1), with no differences between male and female animals (Fig. S2 A). Analysis of spike-
train patterns showed a higher burst rate and proportion of spikes included in bursts in KO primary motor cortex slices when compared with WT (Fig. 2 I.2-I.3). We found no other differences in the burst parameters analyzed (Fig. S2 B–D). These results support the hypothesis that neuronal excitability is increased in LV motor cortex in KO mice as an attempt to compensate the decreased number of synaptic spines. Importantly, this does not have any epileptogenic effect.

To study whether synaptic structural and functional changes in RTP801 KO mice correlated with behavioral alterations, we next investigated whether the lack of RTP801 affected coordination, locomotion and motor learning. We first tested WT and KO mice for hindlimb claspers, a marker of disease progression in a number of mouse models of neurodegeneration, including HD (Chou et al., 2008; Mangiarini et al., 1996). We observed that RTP801 KO male mice displayed a claspers phenotype, not present in male WT mice. The tendency in females was similar but not significant (Fig. S3 A). We next explored
whether general locomotor activity was altered using the Open Field animals in the accelerating rotarod. Both female and male KO mice typic behavior, we did not find any differences in grooming or wall and distance traveled in the RTP801 KO mice relative to WT (Fig. 3 C). We B), suggesting gait impairment in the KO animals. We next examined length of the stride, stance, sway and the overlap (Fig. 3 A-B and Fig. S3 graphs are presented as mean ± SEM. * P < 0.05, **P < 0.001; two-tailed Student t-test versus WT (C, F). *P < 0.05; Mann-Whitney test versus WT (1.1-3). Data in (B, E) was analyzed by two-way ANOVA.

whether gait, as a measure of coordination and muscle function, was affected in RTP801 KO mice. These animals showed a decrease in the length of the stride, stance, sway and the overlap (Fig. 3 A-B and Fig. S3 B), suggesting gait impairment in the KO animals. We next examined whether general locomotor activity was altered using the Open Field test. Despite gait impairment, we did not find any differences in the total distance traveled in the RTP801 KO mice relative to WT (Fig. 3 C). We did not find differences in the distance traveled in the center or the time spent in the center, suggesting that RTP801 KO mice do not exhibit anxiety-like behavior. Regarding other general exploratory and stereotypic behavior, we did not find any differences in grooming or wall and vertical rearing, either (Fig. 3 C).

To evaluate motor skill learning, we trained the WT and RTP801 KO animals in the accelerating rotarod. Both female and male KO mice showed the same trend to improve motor learning in this behavioral paradigm (Fig. S3 D). Together, RTP801 KO mice significantly improved performance in this task compared to WT animals (Genotype effect, ** P = 0.0058) (Fig. 3 D). Moreover, although we did not observe any differences in the early learning phase (day 1), we did find a significantly higher learning rate in the KO animals at day 2 that is sustained at day 3 (Fig. 3 D). In addition, we confirmed that the training associated with learning a motor task did not modulate the levels of RTP801 in WT mice (Fig. S4). Hence, these results indicate that motor learning does not modulate RTP801 levels but RTP801 is involved in motor learning acquisition.

3.3. RTP801 modulates spine density and structure in the primary motor cortex of trained animals

We next investigated whether the improvement in motor learning in the RTP801 KO mice affected differentially spine density and structure. Hence, since motor learning plasticity involves projections from the motor cortex to the dorsal striatum, we explored spine density and morphology in pyramidal neurons from the M1 LV and in medium spiny neurons (MSNs) from the dorsal striatum, one week after finishing the accelerating rotarod test (Fig. 4 A). Similar to non-trained naïve RTP801 KO mice, trained RTP801 KO mice showed a decrease in the density of spines in LV pyramidal neurons (Fig. 4 B), specifically in their basal dendrites. Interestingly, spine density of either cortical LV apical dendrites or dendrites in striatal MSNs did not change (Fig. 4 C–D).

Based on these results, we investigated differences in spine morphology in the M1 LV pyramidal neurons that could explain the increased motor learning in the KO mice. Indeed, RTP801 KO animals displayed more filopodia but less branched spines (Fig. 5 A) but an specific enrichment of synaptic GluA1 (Fig. 7 B), a crucial AMPAR subunit that has been described to be a key mediator in the acquisition of new motor skills (Kida et al., 2016; Roth et al., 2020). On the other hand, GluA2 AMPAR subunit, the prototypical auxiliary subunit of AMPARs stargazin or the N-methyl-D-aspartate receptor (NMDAR) subunit GluN2B did not change in KO mice in comparison to WT (Fig. 7 B–C). Interestingly, although we did not observe differences in the levels of BDNF between genotypes (Fig. S7 A-D), we did observe that levels of TrkB were elevated in total homogenates in the RTP801 KO motor cortex (Fig. 7 D), supporting the idea of a synaptic strengthening.

Furthermore, we also investigated whether the GABAergic neurons were affected in the cortex of the KO mice and we did not find any differences in the levels of the vesicular GABA transporter (VGAT) (McIntire et al., 1997), or the levels of calbindin and parvalbumin by WB. We did not observe either any changes in the levels of the inhibitory postsynaptic scaffolding marker Gephyrin (Fig. S7 E-I). Therefore, GABAergic neurons in the motor cortex in the absence of RTP801 seem to be spared.

By immunostaining WT and KO sections against PSD95 and GluA1 postsynaptic markers, we confirmed these initial biochemical observations specifically in M1 layer V. Indeed, the number of PSD-95 and GluA1 puncta diminished in the KO animals (Fig. 7 E, H) although the area and the intensity of the GluA1 dots were increased (Fig. 7 F-G). Area and intensity of PSD-95 positive dots showed a non-significant increased tendency, as well (Fig. 7 F-G). Altogether, these results suggest a novel synaptic role for RTP801 modulating synaptic strength and motor learning in the motor cortex (Fig. 8).

4. Discussion

Here, we show a novel role for RTP801 in the modulation of synaptic plasticity and motor learning. The lack of RTP801 in mice resulted in decreased spine density and enhanced synaptic transmission in the primary motor cortex together with a better performance in the accelerating rotarod but altered gait and clasping. This improvement in motor
Fig. 3. RTP801 contributes to motor learning and gait but does not alter general locomotor activity. A. Schematic representation of the four different parameters measured in the footprint test: stride, sway, stance and limbs overlap (in blue, forelimb prints and, in red, hindlimb prints). B. Representative examples of footprint tracking from both genotypes. Bar graphs on the right show hindlimb lengths for stride, sway, stance and limbs overlap. Data is represented as mean ± SEM and was analyzed with two-tailed Student’s t-test. * P < 0.05, ** P < 0.01, *** P < 0.001 versus WT group. N = 13 WT (8 males + 5 females) and 12 KO (4 males + 8 females). C. Representative tracking of mice activity recorded for 10 min in an open field test. Bar graphs on the right show total distance traveled in the whole arena (blue), distance traveled in the center (red) and percentage of time spent in the center. Measures are shown as mean ± SEM. There are no statistically significant differences according to the Student’s t-tests performed. N = 18 WT (6 males + 12 females) and 17 KO (7 males + 10 females). D. WT and RTP801 KO mice were subjected to the accelerating rotarod test and the time spent on it was evaluated for three days, four trials per day. Left graph, latency to fall on each trial; Right graph, mean latency to fall for each training day. Data is represented as mean ± SEM and was analyzed by two-way ANOVA followed by Bonferroni’s multiple comparisons test for post hoc analyses. Genotype effect: ** P < 0.01. Multiple comparisons: * P < 0.05, ** P < 0.01, *** P < 0.001 versus WT group in each trial. N = 31 WT (14 males + 17 females) and 30 KO (12 males + 18 females).
learning skills was associated with alterations in dendritic spine structure. Cortical neurons in the motor cortex M1 layer V showed higher number of filopodia- and a mushroom-like morphology and TEM analyses revealed increased postsynaptic and PSD sizes in synaptic contacts from M1 LV pyramidal neurons. A, C. Abrogation of RTP801 expression affects specifically basal dendrites of pyramidal neurons in M1. Spine density was assessed in apical and basal dendrites. Each bar of the graphs represents mean ± SEM of at least 30 dendrites per animal (N = 8 WT and 5 KO), approximately 50% apical and 50% basal. A, D. Loss of RTP801 expression does not affect spine density in the striatum. Spine density was also analyzed in striatal MSNs. Data in the graph represent mean ± SEM of at least 30 dendrites per animal (N = 8 WT and 5 KO). Statistical analyses in a were performed with Mann-Whitney test, **P < 0.01 vs. WT, and by Two-tailed Student’s t-test in c-d; ** P < 0.01 versus WT. Cortical layers (I, II/III, V, VI), corpus callosum (CC) and striatum (STR) are depicted in A. Representative WT and KO dendrites from primary motor cortex and striatum are shown (B, D). Scale bar, 10 μm.

Since the only evidence that RTP801 could modulate synaptic plasticity were found in pathological conditions, here we studied for the first time the putative role of RTP801 in a physiological context. In a context of major depressive disorder, RTP801 KO mice were found resilient to stress-induced synaptic loss in the PFC (Kabir et al., 2017; Ota et al., 2014). Moreover, RTP801 downregulation alleviated stress-induced motor learning dysfunction in a mouse model of genetic PD (Zhang et al., 2018). More recently, our group described that the downregulation of RTP801 restored motor-learning dysfunction in the R6/1 mouse model of HD (Martín-Flores et al., 2020). Hence, the role of downregulation of RTP801 has been proven beneficial in pathological conditions. Our results point out that RTP801 has an important role in spine morphology, neuronal activity and motor behavior in a physiological context.

Hence, we initially confirmed that RTP801 was present in the synapses from a wide range of human and murine samples, as we previously described in HD murine models and HD human postmortem samples (Martín-Flores et al., 2020). Interestingly, RTP801 was highly enriched in human and rat crude synaptosomes but not that elevated in synaptic WT mice samples. In line with that, in cortical cultures RTP801 was localized mostly post-synaptically. Interestingly, we found that spine density decreased in cortical cultures when RTP801 expression was transiently downregulated and that was translated with an increase in the amplitude and frequency of mEPSCs in KO cortical cultures. An opposite effect was found when ectopic RTP801 was expressed in
hippocampal primary cultures. However, we could not rescue the electrophysiological phenotype in KO neurons because ectopic RTP801 was toxic for them.

Previous studies pointed out that RTP801 KO mice had normal brains and similar behavior to WT animals (Brafman et al., 2004; Ota et al., 2014). However, no thorough behavioral, biochemical and histological studies were performed in these animals. Macroscopically, we found that the KO mice brain weight less than WT brains, independently of the total body size, and it was likely due to a decrease in the cell density of M1 LV. Noteworthy, this difference can be explained by the...
developmental role of RTP801, which regulates both neurogenesis by regulating neuroprogenitors' proliferation rate and neuronal migration/differentiation in the cortex (Malagelada et al., 2011).

In vivo, the lack of RTP801 reduced spine density in the M1 layer V in the KO mice vs. WT. We observed a similar result when we transiently downregulated RTP801 in cultured cortical neurons (Fig. 1C). Interestingly, KO animals showed higher synaptic performance in KO motor cortex (LV) slices versus WT. These results therefore suggest that the lack of RTP801 decreases spine density but enhances synaptic function.

To investigate the role of RTP801 in synaptic plasticity in vivo we performed several motor behavioral tests and checked circuitries that control movement and motor learning. RTP801 KO mice showed gait impairment but no alterations in general locomotor activity. Importantly, we did not observe any epileptic phenotype in the KO mice. It is noteworthy that gait abnormalities are more likely to be explained by cerebellar dysfunction and more studies will be needed in the future. Despite gait alterations, our data show that motor learning does not impair motor control movement and motor learning. RTP801 KO mice showed gait impairment but no alterations in general locomotor activity. Importantly, we did not observe any epileptic phenotype in the KO mice. It is noteworthy that gait abnormalities are more likely to be explained by cerebellar dysfunction and more studies will be needed in the future.

The most characterized circuitry involved in motor learning is the corticostral pathway. Pyramidal neurons from the M1 along with striatal MSNs predominantly undergo synaptic dynamics under motor learning (Costa et al., 2004; Tjia et al., 2017). Indeed, spine density in the M1 LV neurons from the RTP801 KO mice, specifically in their basal dendrites, was decreased. We did not observe any differences in spine density in the apical dendrites of the same neurons or in the striatal MSNs from the KO mice. Related to the cortex, Ota and colleagues (Ota et al., 2014) did not find spine density differences in the prefrontal cortex (PFC) between WT and RTP801 KO mice in basal conditions. This fact, together with the absence of differences in the striatum in our work, may point towards a region-specific role of RTP801 in the normal (or physiological, non-stressed) mouse brain. Hence, RTP801 could be contributing to motor learning at the basal dendrites of LV pyramidal neurons. However, the role of RTP801 in other regions involved in motor learning such as cerebellum or brainstem is not yet elucidated.

![Fig. 6. Synaptic contacts show structural differences between WT and RTP801 KO animals in the motor cortex after motor skill training. Motor cortex lower layers were analyzed by TEM. A. Postsynaptic area is increased in RTP801 KO mice synaptic contacts. B. Postsynaptic density (PSD) area, length and thickness are increased in RTP801 KO mice synaptic contacts. Histograms show mean ± SEM of the different measures analyzed relative to control mean. Images show a representative PSD for each genotype. C. Increased presence of mitochondria in RTP801 KO synaptic contacts. Graphs show the percentage of mitochondria found in synaptic contacts (either in the pre- or postsynaptic compartment) and in the presynapses or postsynapses separately. Data is represented as mean percentage ± SEM. Images show representative contacts where a mitochondrion (M) is present in either the presynapse (PRE) or postsynapse (POST). All histograms represent data from 45 to 50 images per animal, four animals per genotype. Data in a-c represent data relative to WT mean. Data was analyzed with Mann-Whitney test. * P < 0.05, ** P < 0.01, *** P < 0.001 versus WT control. For all electron micrographs, Scale bar, 250 nm.](image-url)
Precisely, the posterior lobe of the cerebellum is associated with early stages of motor skill learning (Luft and Buitrago, 2005). However, as judged by our accelerated rotarod results (see Fig. 3D), learning during the first session is not affected in the KO animals in comparison to WT. RTP801 modulates the morphology of dendritic spines in M1 LV pyramidal neurons. In this region, we observed a significant increase of filopodia along with a decrease in branched spines in the KO animals. Although the physiological meaning of branched spines is still in debate, filopodia have been proposed to be precursors of spines, to develop an explorative role to increase the probability to form a synapse (Ziv and Smith, 1996; Zuo et al., 2005). However, filopodia-related plasticity must have a fine-tuned regulation, since a high remodeling rate might be troublesome (reviewed in Ozcan, 2017). Indeed, among headed spines, we detected an increase in the percentage and head area of mushroom-like spines from basal dendrites between WT and KO animals. This fact correlates well with the change of spine morphology and the function of the spines, and in the end, with an increase in synaptic strength of the area (Arellano et al., 2007; Yuste et al., 2000).

We confirmed a more complex postsynaptic compartment by TEM. The lack of RTP801 led to an increase in postsynaptic area in the contacts of the region of study, although no differences were detected in the presynaptic compartment. Strikingly, greater postsynaptic density size was detected in RTP801 KO animals in the same area. Interestingly, a positive correlation between the amount of PSD and spine size (Arellano et al., 2007) and the former with synaptic strength (Béïque and Andrade, 2003; Meyer et al., 2014) has been described. Moreover, KO synaptic contacts present more mitochondria, whose presence at the synapse has been related with a role in controlling plasticity processes (Lee et al., 2017).

Fig. 7. RTP801 modulates synaptic composition in the cortex from motor-trained mice. A-C. Lack of RTP801 expression decreases PSD-95 levels but increases AMPAR subunit GluA1 levels in synaptosomes. Levels of postsynaptic proteins were analyzed in 2-months-old WT and RTP801 KO animals. Crude synaptosomal fractions were obtained from cortical brain lysates and analyzed by western blotting. Representative images of PSD-95 (A), GluA1, GluA2, Stargazin (B), GluN2B (C) and actin are shown. D. Lack of RTP801 expression increases TrkB receptor levels in motor cortex homogenates. In the same WT and KO samples levels of full length TrkB was assessed by western blotting from homogenates. Representative images of TrkB and actin are shown. Denstometric measures (mean ± SEM) of total levels of PSD-95 and TrkB were relativized against actin and synaptic levels of the different proteins in the synaptic fraction were relativized against synaptic marker PSD-95. E-H. M1 LV excitatory postsynaptic characterization in 2-months old WT and RTP801 KO mice after performing behavioral motor tasks. E. Quantification of the number of PSD-95, GluA1 and PSD-95/GluA1 positive puncta per field. F-G. Quantification of PSD-95 and GluA1 puncta mean area (F) and intensity (G). Representative confocal images of a double immunofluorescence of PSD-95 and AMPAR subunit GluA1 in the motor cortex layer 5. Scale bar, 100 μm. All values appear as mean ± SEM and were analyzed with two-tailed Student’s t-test versus WT * P < 0.05 and **P < 0.01.

Fig. 8. RTP801 KO mice show improved motor learning skills accompanied by functional and structural differences at a synaptic level. In comparison to WT mice, RTP801 KO mice show decreased spine density in M1 LV neurons together with an increase in the proportion of filopodia and mushroom-like dendritic spines. At a structural level, we found increased postsynaptic areas and PSD size and increased presence of mitochondria at the synapse in KO primary motor cortex LV together with increased levels of synaptic GluA1 AMPAR subunit.
availability of the local ethics committee (Hospital Clínic of Barcelona (2010/63/UE) and Spanish (RD53/2013) regulations for the care and which RTP801 could mediate this specific AMPAR subunits composition induced by motor skill learning (Roth et al., 2020). The mechanism by
crash in GluA1 levels in dendritic spines in the motor cortex. This therefore, seem to indicate that, although the lack of RTP801 causes a decrease in spine density, the remaining spines are able to compensate the postsynaptic currents and the depolarization of the postsynaptic neuron. In contrast, GluA1 subunit confers calcium permeability to the receptor. Calcium permeable AMPAR (CP-AMPARs) are mostly engaged to synaptic regulation and intracellular signaling (reviewed in (Man, 2011). Therefore, the improved performance observed in the KO mice could be explained at least in part with this change in the AMPA receptors subunit composition. This could favor the presence of CP-AMPARs with high calcium permeability and then, in consequence, signaling activation and synaptic regulation. Interestingly, previous studies have demonstrated that motor learning induces an increase in GluA1 levels in dendritic spines in the motor cortex. This increment in GluA1 subunits are key modulators of synaptic plasticity induced by motor skill learning (Roth et al., 2020). The mechanism by which RTP801 could mediate this specific AMPAR subunits composition at the synapses to modulate motor learning has to be explored yet. Ectopic RTP801 overexpression showed the opposite result, since it reduced GluA1 puncta intensity in cultured hippocampal neurons. Remarkably, RTP801 silencing in R6/1 mice induced an increase of total levels of GluA1 and TrkB neurotrophin receptor. Indeed, in trained RTP801 KO mice we could also observe an increase in total levels of TrkB receptor. This result is in line with other works describing that synaptic activity modulates both BDNF levels and TrkB receptors amount and localization (Guo et al., 2014; Lauterborn et al., 2000).

5. Conclusions

In summary, our work indicates a novel synaptic function for RTP801 in motor learning and in modulating dendritic spine structure, composition and synaptic plasticity. This finding is important since motor learning alterations and synaptic impairment are key features of neurodegenerative diseases such as PD and HD. Altogether, our results point towards RTP801 downregulation as a promising therapeutic strategy to ameliorate motor learning dysfunction in these diseases.

Supplementary data to this article can be found online at https://doi.org/10.1016/j.expneurol.2021.113755.

Ethical approval and consent to participate

All procedures were performed in compliance with the NIH Guide for the Care and Use of Laboratory Animals and approved by the local animal care committee of Universitat de Barcelona following European (2010/63/UE) and Spanish (RD53/2013) regulations for the care and use of laboratory animals.

Human samples were obtained following the guidelines and approval of the local ethics committee (Hospital Clinic of Barcelona’s Clinical Research Ethics Committee).

Consent for publication

Not applicable.

Availability of supporting data

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Funding

Financial support was obtained from the Spanish Ministry of Economy and Competitiveness (grants SAF2014−57160-R (AEI/FEDER, UE) for CM and J.A., SAF2017−88076-R (AEI/FEDER, UE) for J.A & M.J.R., and SAF2017−88812 R (AEI/FEDER, UE) for C.M. We also thank Portal d’Avall S.L. for L.P-S. fellowship. Mice and neuron illustrations were designed by Jorge Padilla Rubio.

Authors’ contributions

L.P-S., N.M—F., M.M., J.S., A.I.L., J.R.-A., J.S., G.C., M.C., D.S., X.G., J.A and C.M. have contributed to the conception and design of the study, acquisition and analysis of data and in drafting the manuscript and figs. G.C., E.G.-G., N-S.F., S-F.G., J.P.G., M.J.R., H-Y.M., E.F. and D.W., have contributed to acquisition and analysis of data and in drafting the manuscript and figures.

Declaration of Competing Interest

None.

Acknowledgements

The authors thank Dr. Silvia Ginés, Dr. Verónica Brito and Dr. Albert Giralt for helpful discussion. We also thank Dr. Albert Martínez from the Faculty of Biology from our same University, for his TEM assessment and guidance. We thank the Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS (Barcelona, Spain) and Dr. Ellen Gelpi for providing human tissue samples. We thank Maria Calvo from the Advanced Microscopy Unit, Scientific and Technological Centers, University of Barcelona, for their support and advice in confocal techniques.

References
