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Abstract

Expected Utility Theory (EUT) is an axiomatic theory of choice under risk that
has held a central role in economic theory since the 1940s. Throughout this work
we will give a thorough description of the von Neumann-Morgenstern theory,
which is the cornerstone of EUT and Games Theory. Using the theory and its
axiomatisation, we will review its main drawbacks in order to give a proper model
of Rational Choice. Furthermore, we will briefly introduce Risk Management,
which is a crucial process used to make investment decisions. The process consists
in identifying and analysing the amount of risk involved in an investment, and
either accepting that risk or mitigating it.
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Introduction

Humans are constantly facing decisions that involve risk. In these situations,
we try to analyse the probabilities of each possible alternative in order to choose
those that yield the greatest profit or have the best outcome according to our pref-
erences. Expected Utility (EU) theory addresses the decision-making problem by
modelling rational choice. Each possible outcome is assessed in terms of its utility
and associated to a utility function — its numerical representation—. The von
Neumann-Morgenstern utility hypothesis provides the necessary and sufficient
conditions under which the Expected Utility theory holds. These conditions are
widely accepted to be axioms for the rational choice, however, it has been proved
that some of these conditions are violated by real decision-makers. In chapter 3 we
will review the most relevant of these violations, and use it to give an extension to
the model so it can accommodate the irrational behaviour.
The introduction of the concept of expected utility is usually attributed to Daniel
Bernoulli [5]. He arrived at this concept as a resolution of the so-called St. Pe-
tersburg paradox, for which a fair coin is flipped until the first time heads up. If
this is at the kth flip, then the gambler receives 2k dollars. The question that arose
from that is how much to pay for participation in this gamble. Bernoulli suggested
that the gambler’s goal is not to maximise his expected gain, but to maximise the
expectation of the logarithm of the gain. The idea that homo economicus considers
the expected utility of the gamble, and not the expected value, is a cornerstone of
Expected Utility theory.
There are few explicit EU calculations in economics before von Neumann-Morgen-
stern (vNM) [24] who chose to determine the utility value of a randomised strategy
in this mathematically convenient way. Like Bernoulli, vNM are concerned with
the case in which probabilities are part of the decision problem.
In the first chapter we will introduce preferences and its utility representation,
giving also a brief introduction to the choice functions, another approach to mod-
elling individual choice behaviour. Chapter two is the core of this work in which
we will thoroughly go through EU theory and decision under risk. As we said be-
fore, in chapter three we will review the main violations of the theory, and extend
it to the Subjective EU theory, which will be the base for the last chapter. In which
robust representation of risk measures are used to model behaviour towards risk
in the monetary market. To finish this work, we will give the foundation of the
Conic Finance theory, which is based on the theory related to risk measures.
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Chapter 1

Preference and utility

In this first chapter we begin by introducing the theory of the individual
decision-making. The decision problem starts with a set of possible mutually
exclusive alternatives from which the individual must choose. We will denote this
set of alternatives by X . One approach to modelling individual choice behaviour
is the preference relation, which treats the decision maker’s tastes and the second
approach is the choice function, which treats the individual’s choice behaviour.
We will establish some rules and axioms to understand how these work on the
first two sections of the chapter. To do so, we will mainly follow Mas-Colell [23]
and Föllmer and Schied [14]. Besides, in the third section, we will give an intro-
duction to the representation of the preferences using utility functions, which is
the baseline to start the study on the expected utility and the collective decision-
making.

1.1 Preference relations

Let X be a non-empty set of possible choices and x, y ∈ X . When an eco-
nomic agent faces two possible choices, the decision will be made according to its
preferences. This can be formalised as follows:

Definition 1.1. A preference order (or relation) on X is a binary relation � with the
following properties.

• Asymmetry: If x � y, then y � x.

• Negative transitivity: Let z ∈ X , if x � y and y � z, then x � z.

Remark 1.1. If x � y, we say that x is strictly preferred to y.

Remark 1.2. A preference relation is asymmetric if, and only if, it is antisymmetric (if
x � y and y � x then x = y) and irreflexive (x � x never holds).

2



3 1.1. Preference relations

While the asymmetry just states an order between choices, negative transitivity
states that if there is a preference between two choices, then if we add a third
choice, there is still a choice which is the least preferable or most preferable.

Proposition 1.1. The binary relation � is negatively transitive if, and only if, x � y
implies that, for all z ∈ X , x � z or z � y.

Proof. Observe that "x � y implies that ∀z ∈ X , x � z or z � y" is equivalent to "if
there exists a z ∈ X such that x � z and z � y, then x � y", which is equivalent to
the definition of negative transitivity.

Definition 1.2. The preference relation � on X induces a weak preference �, defined by

x � y⇐⇒y � x

and an indifference relation ∼, defined by

x ∼ y⇐⇒x � y and y � x

Remark 1.3. Since weak preference and indifference are defined from strict preference,
then asymmetry and negative transitivity of � are equivalent to the following properties
of � and ∼:

i) Completeness of �: For every x, y ∈ X , either x � y or y � x or both.

ii) Transitivity of �: If x � y and y � z, then x � z.

iii) Indifference ∼ is:

a) Reflexive: for all x, x ∼ x.

b) Symmetric: x ∼ y implies y ∼ x.

c) Transitive: If x ∼ y and y ∼ z, then x ∼ z.

iv) If x ∼ w, y ∼ z and x � y, then w � y and x � z.

Definition 1.3. If a binary relation � on a set X is complete, transitive and asymmetric,
we say that the set is a completely (or totally) ordered set.

In much microeconomic theory, individuals’ preferences are assumed to be
rational. This hypothesis is embodied in the assumptions of completeness and tran-
sitivity. That is, the preference relation � is rational if it is complete and transitive.

The completeness axiom is arguably a very strong assumption in preference
and utility theory, since it implies that an individual can state his preferences and
that they are temporally stable. However, some objections could be made to it. For
a variety of reasons, a rational individual could not be able to choose. For instance,



Chapter 1. Preference and utility 4

if an individual is given the choice between shooting his dog or shooting his cat,
he will balk. On the other hand, given the impossibility of facing the agent with a
sequence of pairwise choices in which his preferences appear to cycle, transitivity
is also a strong assumption; yet there are several possible objections to it. One
of these is the so-called problem of just perceptible differences, which refers to the
indifference transitivity. On Feldman and Serrano [10] we can see an example of
the problem:

Example 1.1. Let x1 be a cup of coffee with one grain of sugar in it; x2 a cup with two
grains in it; and so on. It’s almost certain that you can’t taste the difference between any
xk and xk+1, for any k ∈ Z, and so you must be indifferent between them. Therefore, you
must be indifferent between x0 and x100000000, which is probably false.

We can also find an example for non-transitive preferences in Fishburn [12], it
goes as follows:

Example 1.2. A professor is about to change jobs. His four most important factors are
salary, prestige of the university, department reputation, and location. They are roughly
equal, and substantially outweigh other factors. He eventually receives four offers and
ranks these under each factor on a scale of 1 (minimally acceptable) to 4 (couldn’t be
better) in the following way:

Salary Prestige Reputation Location

Offer 1 4 3 1 2
Offer 2 3 2 4 1
Offer 3 2 1 3 4
Offer 4 1 4 2 3

He finds that if one offer is better than another one on at least three factors, then he prefers
the former. Therefore he finds the following order: Offer 1 � Offer 2 � Offer 3 � Offer
4. But he also finds that Offer 4 � Offer 1, which leads him to a non-transitive preference
order as it cycles. We can also see that Offer 1 � Offer 3 and Offer 2 ∼ Offer 4.

1.2 Choice functions

The second approach to modelling individual choice behaviour, as presented
at the beginning of this chapter, is the choice function. These functions are used to
relate the preferences of an individual to its choice behaviour. Preference is linked
to hypothetical choice and choice is linked to revealed preference. We will assume
that choice is induced from preference. Let F be a family of non-empty subsets of
X . As per Suzumura [33], an intended interpretation is that each an every subset



5 1.2. Choice functions

S ∈ F denotes the set of available states that could possibly be presented to the
agent under an appropriate specification of the environmental conditions.

Definition 1.4. The pair (X , F ) is a choice space.

Definition 1.5. A choice function on a choice space (X , F ) is a function C defined as

C : F → F
S 7→ C(S) ⊆ S

We assume that the choice function C is non-empty valued, C(S) 6= ∅, for all
S. When C(S) contains a single element, that element is the individual’s choice
among the alternatives in S. But it may also contain more than one element, and
when it does, the elements of C(S) are the alternatives that the individual might
choose. If that is the case, the set C(S) would contain all those alternatives that the
individual would choose if he was repeatedly told to face the problem of choosing
an alternative from S. As explained by Arrow [3], each element of C(S) is to be
preferred to all elements of S not in C(S) and indifferent to all elements of C(S).

Definition 1.6. The choice function C defined on F satisfies de weak axiom of revealed
preference1 if for any S, S’ ∈ F with x, y ∈ S, S’ we have x ∈ C(S) and y ∈ C(S’), then
x ∈ C(S’).

To put that into words, under the conditions that both x and y are in S and
x ∈ C(S), it is revealed that x is weakly preferred to y. Now if y ∈ C(S′) and x ∈ S′,
since x is no worse than y, x should also be among the most preferred things in
S′. That is, if C({x, y}) = {x}, then it is not possible that C({x, y, z}) = {y}.

Definition 1.7. Given a choice function C(·) defined on a family F , the revealed weakly
preference order �∗ is defined by

x �∗ y⇐⇒ there exists S ⊆ F s.t. x, y ∈ S and x ∈ C(S).

Definition 1.8. Given a preference relation � on X and a non-empty subset S ∈ F , the
set of acceptable alternatives from S according to � is

C∗(S,�) = {x ∈ S : there is no y ∈ S such that y � x}2

1The weak axiom was first presented by Samuelson [30] as follows: "if any individual selects
batch one over batch two; he does not at the same time select two over one"

2In some cases, the set C(S;�) may contain no elements at all. For example, suppose that X =
[0, ∞) with x ∈ X representing dollars. Suppose S = {1, 2, 3, ...}. If you always prefer more money
to less, or x � y whenever x > y, then C(S;�) will be empty.
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This definition is just saying that the individual is happy to choose anything
that isn’t bettered by something else available. That is, the most preferred alterna-
tives in S.

Definition 1.9. Given a rational preference relation � on X , a non-empty subset S ∈ F
and a choice function C(·), we say that the rational order � rationalises C(·) relative to F
if, for all S ∈ F

C(S) = C∗(S,�)

Proposition 1.2. Let � be a rational preference relation. Let F be a family of non-empty
subsets of X , and C(·) a choice function defined on F . Then the choice function C∗(S,�)
induced by � satisfies the weak axiom for all S ∈ F .

Proof. Suppose we have x, y ∈ S and x ∈ C∗(S,�). This implies that x � y. Let S′

be another subset in F s.t. x, y ∈ S′, and we have y ∈ C∗(S′,�). Then, for all z ∈
S’, y � z, but we know that x � y. Therefore, x � z and so x ∈ C∗(S′,�).

We have now seen that the individual’s decision-making doesn’t need to be
based on a process of introspection and well-thought preferences but can be given
an entirely behaviour foundation. The choice behaviour is the result of direct
observation. But we have also seen that both approaches are compatible and, in
fact, putting them together allows us to give a more thorough description of the
individuals’ behaviour.

1.3 Numerical representation and utility functions

Once we have described how ordered preferences can represent individuals’
behaviour towards a choice problem, we need to make them explicit. We need a
form of quantification of these preferences. Quantification facilitates us the search
of an optimal, or at least near-optimal, decision. The numerical representation of
a preference relation, on a set X , is what we call a utility function. A more vulgar
approach is that the numbers associated to the different elements of the set X are
called utilities, and a utility function tells us the utility associated to each element
x ∈ X .

Definition 1.10. A numerical representation of a preference order � is a function U :
X → R such that, for all x,y ∈ X ,

x � y⇐⇒U(x) > U(y)

or equivalently,
x � y⇐⇒U(x) ≥ U(y)
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What 1.10 means is that an agent would make the same choice whether he
uses his preference order or his utility function. For example, an individual has
the following preference: "I prefer taller basketball players", then the set X can be
conceived as all basketball players and the function U would represent the height
of the players.
We must note that utility representations are strictly increasing and, hence, not
unique. Any other function that assigns numbers to the alternatives on the set and
orders them in the same way the utility function does, will also be a representation
for it. Before proving this statement, we have to introduce de binary relation �U .

Definition 1.11. Let U be a real valued function, U: X → R. The binary relation �U

defined as
x �U y⇐⇒U(x) > U(y)

is a preference relation on X .

It is trivial to see that, indeed, asymmetry and negative transitivity are both sat-
isfied.

Proposition 1.3. Utility representation is not unique. In fact, if U is a utility function,
then for any strictly increasing function φ : R→ R, ψ ≡ φ ◦ U is also a utility function
for the same preference relation. The utility function is unique up to strictly increasing
transformation.3

Proof. We only need to prove uniqueness. Given two strictly increasing utility
functions U(x) and V(x) that represent the same preferences, we look for a strictly
increasing function φ : R → R such that V(x) = φ ◦ U(x) = φ[U(x)], for any
x ∈ X . We identify φ as φ(t) = V[U−1(t)]. More rigorously, for each t > 0 within
the range U(X ) of U, there is xt ∈ X s.t. t = U(xt). Define φ(t) = V(xt). We now
show that φ is well defined. If there is another y ∈ X s.t. U(y) = U(xt), since U
and V represent the same preferences, then V(y) = V(xt), implying φ(t) = V(y).
That is, although xt may not be unique for each t, the so-defined value φ(t) is
unique. Then, for any x and y, we have

φ[U(x)] = V[U−1(U(x))] = V(x) , φ[U(y)] = V[U−1(U(y))] = V(y) (1.1)

If φ is not strictly increasing, then we can find two values t1 and t2, t1 < t2, s.t.
φ(t1) ≥ φ(t2). We can then find two arbitrary elements x1 and x2 s.t. U(x1) = t1

and U(x2) = t2. We have that x2 �U x1, but by (2.1), we have

V(x1) = φ[U(x1)] = φ(t1) ≥ φ(t2) = φ[U(x2)] = V(x2)

i.e., x1 �V x2, which contradicts the fact that U and V represent the same prefer-
ences. Hence. φ must be strictly increasing.

3This proposition and its proof can be found on page 42 of Susheng [37]
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Now we want to characterise those preference relations for which there ex-
ists a numerical representation. Problems on how to numerically represent the
preferences arise when we work with non-countable or infinite sets. Under what
assumptions do utility representations exist? All finite sets with a preference re-
lation associated have one, but also all countable, infinite sets do. We will give a
three-part proof, following Rubenstein [29], of the existence of numerical repre-
sentation, starting with a lemma regarding the existence of minimal elements.

Lemma 1.1. In any finite set S ⊆ X , there is a minimal (maximal) element.

Proof. By induction on the size of S. If S has only one element, that element is,
by completeness, minimal. Now, let S be a subset of cardinality n + 1 and x ∈ S.
The set S− {x} has a cardinality of n and by the inductive assumption, it has a
minimal element y. If x � y, then y is minimal in S. If y � x, then by transitivity,
for all z ∈ S− {x}, z � x, and thus x is minimal.

Proposition 1.4. If � is a preference relation on a finite set X , then � has a utility
representation with values being natural numbers.

Proof. We will construct, by induction, a sequence of sets. Let S1 be the subset
of elements that are minimal in X . By the lemma, S1 is not empty. Assume we
have constructed the sets S1, . . . ,Sk, k ∈ N. If X = S1 ∪ S2 ∪ . . . ∪ Sk, we are done.
If not, define Sk+1 to be the set of minimal elements in X − S1 − S2 − · · · − Sk.
By the lemma, Sk+1 is not empty. Since X is finite, we must be done after |X |
steps. Define U(x) = k if x ∈ Sk. Thus, U(x) is the step number at which x is
"eliminated". To verify that U represents�, let a � b. Then, a /∈ S1∪S2∪ . . .∪SU(b)

and thus U(a) > U(b). If a ∼ b, then clearly U(a) = U(b).

The existence of representation is guaranteed if X is countable.

Proposition 1.5. If X is countable, then any preference order on the set has a utility
representation with range (-1,1).

Proof. Let {xn} be an enumeration of all elements in X. We will construct the
utility function by induction. Set U(x1) = 0. Assume that you have completed
the definition of the values U(x1), . . . , U(xn−1) so that xk � xl⇐⇒U(xk) ≥ U(xl).
If xn is indifferent to xk for some k < n, then assign U(xn) = U(xk). If not,
by transitivity, all numbers in the non-empty set {U(xk)|xk � xn} ∪ {−1} are
below all numbers in the non-empty set {U(xk)|xn � xk} ∪ {1}. Choose U(xn)

to be between the two sets. This guarantees that for any k < n we have xn �
xk⇐⇒U(xn) ≥ U(xk). Thus, the function we defined on {x1, . . . , xn} represents
the preferences of those elements. To complete the proof that U represents �. take
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any two elements x, y ∈ X . For some k and l we have x = xk and y = xl . The
above applied to n = max{k, l} yields xk � xl⇐⇒U(xk) ≥ U(xl).

We have established when a preference relation is representable, but when is it
that we cannot represent the preferences? An example of it are the lexicographic
preferences.

Example 1.3. The lexicographic order, denoted by �L, is defined in the set X = [0, 1]×
[0, 1] by (x2, y2) �L (x1, y1) if either x2 > x1 , or x1 = x2 and y2 ≥ y1. Suppose that �L

has a utility representation U : [0, 1]× [0, 1]→ R. Given any x ∈ [0, 1], since (x, 1) �L

(x, 0), we must have U(x, 1) > U(x, 0)). Let us denote I(x) = (U(x, 0), U(x, 1)), a
non-empty and open interval that contains a rational number qx. For each x ∈ [0, 1], we
would have a rational number qx, and for x′ 6= x, as I(x) ∩ I(x′) = ∅, qx′ 6= qx. That
is, we would have an injection of the real numbers into the rational numbers, which is
impossible. Hence, �L has no utility representation.

We will now have a look at the continuity of preferences and its numerical
representation. The basic intuition of the continuity of a preference relation is that
if x � y, small deviations from x or y should not change the ordering.

Definition 1.12. Let X be a topological space. A preference relation� is called continuous
if, for all x ∈ X

{y ∈ X | y � x} and {y ∈ X | x � y}

are closed subsets of X .

We will be mainly following Debreu [7] to show when a utility representation
is continuous.

Definition 1.13. The upper (lower) topology on an ordered set X is the weakest topology
for which the set {x ∈ X |x � y} ({x ∈ X |x � y}) is closed for every y in X .

Definition 1.14. A collection B of elements of a topology on a set X is called a base (or
basis) if

1. The union of all elements of B is equal to X .

2. For every two elements U, V ∈ B, the intersection U ∩V is a union of elements of
B.

Definition 1.15. A topological space X is separable if there exists an infinite sequence
{an}n∈N⊂X such that, given any point b ∈ X and any non-empty open subset U of b,
we have ai ∈ U for some i. That is to say, X is separable if it has a countable dense subset.

Theorem 1.1. Let X be a topological space which satisfies at least one of the following
two properties:
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• X has a countable base of open sets

• X is separable and connected

Then every continuous preference order on X admits a continuous numerical representa-
tion

The proof for the theorem can be found in Debreu [7]. The theorem together
with the following proposition, set the necessary background to prove the exis-
tence of a continuous numerical representation of a continuous preference rela-
tion.

Proposition 1.6. Let X be a completely ordered set. If there is an increasing function
V : X → R, then there is an increasing function U : X → R that is upper (lower)
semi-continuous4 in the upper (lower) topology.5

Theorem 1.2. Let X be a topological space with a countable base of open sets. and � a
continuous preference order defined on X . If the sets {x ∈ X |x � y} and {x ∈ X |x � y}
are closed for every y ∈ X , then there is a continuous, increasing function U : X → R

representing the preference order.

Proof. Firstly, we will construct an increasing function V : X → R. We will denote
each member of the countable base by On, for n = 1, 2, 3, . . .. Let N(x) be the set
of integers such that, for an element, x ∈ X

N(x) = {n|On ≺ {x}}

and set
V(x) = ∑

n∈N(x)

1
2n

If z � y, then N(y) is a subset of N(z) and V(z) ≥ V(y). Thus V is increasing,
for if z � y, y belongs to the open set {x ∈ X |x ≺ z}. For some n, we have
y ∈ On ≺ {z}. For that n, we don’t have On ≺ {y}. Hence, N(y) is a subset of
N(z) and V(z) > V(y).
We can now apply the proposition 1.6 and obtain an increasing function U : X →
R upper semi-continuous in the upper topology.
Analogously, and by substituting � by � we get the lower semi-continuous func-
tion in the lower topology. Since the given topology on X is stronger than or equal
to both these topologies, U is both upper and lower semi-continuous in the given
topology and, hence, continuous.

4Let X be a topological space. A function f : X → R is said to be upper (resp. lower) semi-
continuous if, and only if, { f (x) ≥ a} (resp. { f (x) ≤ a}) is closed for every a ∈ R.

5Proof to this proposition can be found on Debreu [7]



11 1.3. Numerical representation and utility functions

In this first chapter we have presented the environment needed to jump into
the Theory of the Expected Utility and Von Neumann-Morgenstern’s represen-
tations. So far, we have seen some relevant results regarding preference repre-
sentations. These results guarantee the existence of continuous utility functions
representing preferences on ordered sets. In the next chapter we will define the
sets on which we will work in a different way, as we will treat them as lotteries
with a probability associated.



Chapter 2

Von Neumann-Morgenstern’s
representation and the EU Theory

John von Neumann and Oskar Morgenstern showed in von Neumann and
Morgenstern [24] that under some axioms of rational behaviour, an agent that
faces a problem with risky outcomes, will behave in the way that he is maximising
the expected value of a utility function related to these outcomes. For example,
when an individual buys a stock or a bond, he generally does not know precisely
the future value of his investment. Nonetheless, decisions have to be made under
such conditions of uncertainty, and the question is whether there is a consistent
way of thinking about how to make decisions under these conditions. As ex-
plained in Hauser and Urban [16], von Neumann-Morgenstern theory explicitly
includes risk in its axiomatic foundations. Risk is modelled by transforming the
independent variable by a function that reflects the decision-maker’s response to
uncertain outcomes. The theory bases the selection of the transformation func-
tion on the decision-maker’s response to a choice between risky situations and a
riskless situation. Let’s show that with an example.

Example 2.1. An individual is presented with a lottery for which he has to choose between
two cars that cost the same and are equally safe. The first car has a guaranteed mileage
of 5 l/100km and the mileage of the second car is uncertain, as it is equally likely to be
6 l/100km or 4 l/100km. We can see that the expected value for both cars is the same but
the choice depends on the risk aversion of the individual. If he prefers the first car, he is
risk averse. If he prefers the second one, he is risk prone. Otherwise, he is risk neutral. In
von Neumann-Morgenstern utility theory, U(l/km) is scaled to represent this behaviour.

When the agent lacks perfect foresight, he assigns probabilities to the different
possible options and thus, the set X can be now identified with a subsetM of the
setM1(S,A) of all probability distributions on a measurable space (S,A), where

12
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A is a σ-algebra1. An element in M is called a lottery, which is a probability
measure, that is to say a lottery µ (µ : S → [0, 1]) is a function that assigns a non-
negative number µ(x) to each prize x, where ∑x∈X µ(x) = 1. We will assume that
M is convex2.

2.1 Von Neumann-Morgenstern utility functions

Definition 2.1. A von Neumann-Morgenstern (vNM for short) representation is a nu-
merical representation U of a preference relation � onM if it is of the form

U(µ) =
∫

u(x)dµ(x) for all µ ∈ M,

where u is a real function on S.

The vNM utility function is the mathematical expectation, over the realisations
of x, of the values of u(x). The function U is linear in the measurable space M.
That is,

U(αµ + (1− α)λ) = αU(µ) + (1− α)U(λ)

for all µ, λ ∈ M and α ∈ [0, 1]. And we say that U is affine onM.

2.2 Expected utility theory

Expected utility theory deals with choosing among acts where the decision-
maker does not know for sure which consequence will result from a chosen act.
When faced with several acts, the decision-maker will choose the one with the
highest expected utility (Eatwell, Milgate and Newman [8]). It was first introduced
by Daniel Bernoulli [5], and was presented as a resolution to the so-called St.
Petersburg paradox. The paradox goes as follows: consider a game in which a
player bets on how many tosses of a coin will be needed before it turns up heads.

1Recall that a σ-algebra is defined as follows. A σ-algebra A of subsets of S is a collection of
subsets satisfying the following conditions:

a) ∅ ∈ A

b) if B ∈ A then its complement Bc is also in A

c) If B1, B2, . . . is a countable collection of sets in A then so is their union
∞⋃

n=1
Bn

2A set C ⊂ R is convex if the line segment of any two points in C lies in C, i.e. for all x1, x2 ∈ C
and θ ∈ [0, 1]

θx1 + (1− θ)x2 ∈ C
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The initial stake is at 2 euros and it is doubled every time a head appears, that is
he receives 2k euros if the coin comes up heads on the kth toss. What would be a
fair price to pay for entering the game? To answer this we need to have a look at
what would be the average payout. The expected value of the gain is:

1
2
· 2 + 1

4
· 4 + 1

8
· 8 + . . . = 1 + 1 + 1 + . . . = ∞

euros, so any finite amount of money can be wagered and the player will still come
out ahead on average. Considering solely the expected value of the net change in
one’s monetary wealth, one should therefore play the game at any price if of-
fered the opportunity. The paradox is the discrepancy between what people seem
willing to pay to enter the game and the infinite expected value. The classical res-
olution of the paradox involves the explicit introduction of the utility function, the
expected utility hypothesis, and the presumption of diminishing marginal utility
of money, which refers to the fact that the additional benefit a person derives from
a given increase of money, diminishes with every increase in the wealth that he
already has.
Decision-making under risk considers the special case where the formulation of
the problem for the DM includes probabilities for the events, so that he only has to
derive the utilities of consequences. Within the framework of expected utility the-
ory, for the evaluation of an act, only its probability distribution over consequences
has to be taken into account. In the vNM approach, with probabilities known in
advance, one may just describe acts as probability distributions over consequences
instead of, for example, as functions from the states of the consequences, which
is the Savage approach. As we can see in von Neumann and Morgenstern [24],
in expected utility theory under risk, a preference relation � is characterised by
three axioms. The first one was already presented in the first chapter of this thesis.

Axiom 2.1 (Weak order). A preference order � onM is complete (that is, for every µ,
λ ∈M either µ � λ or µ � λ) and transitive (that is, for every µ, λ, ν ∈M, µ � λ and
λ � ν imply µ � ν).

The next axiom is called the Archimedean axiom and it imposes a sort of conti-
nuity on the preference relation. It requires that no alternative in M is infinitely
more, or less, desirable than any other alternative.

Axiom 2.2 (Archimedean axiom). A preference relation� onM satisfies the Archimedean
axiom if for all µ, λ, ν ∈ M, µ � λ � ν, then there exist α, β ∈ (0,1) such that

αµ + (1− α)ν � λ

and
λ � βµ + (1− β)ν
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Since µ is strictly better than λ, then no matter how bad ν is, we can always
find a mixture of µ and ν so it is better than λ. And similarly, the other way
around. To help understand this, let’s consider an example in which we might
think that the axiom does not hold. Suppose that µ gives you 100e for sure, λ

10e for sure and ν consists of your death. Then you might think that ν is so much
worse to λ that no probability α can make αµ + (1− α)ν better than λ, even if it is
really close to 1. Nonetheless, this is not true. Imagine that you are told you can
have 10e now or, if you choose to drive to a nearby location, then you will get
100e. Every rational being would take the car and go for the hundred euros even
though it increases the chances of dying.
The axiom is sometimes called continuity axiom, because it can act as a substitute
for the continuity of � in a suitable topology onM. More precisely, suppose that
M is endowed with a topology for which convex combinations are continuous
curves. Then, continuity of the preference order � in this topology automatically
implies the Archimedean axiom. An alternative approach for this axiom was given
by Herstein and Milnor [17], the mixture continuity condition. In order to give
the description of this alternative condition, we first need to define the following
preference sets:

A := {α ∈ [0, 1] | αµ + (1− α)ν � λ}

B := {α ∈ [0, 1] | λ � αµ + (1− α)ν}

for λ, µ, ν ∈ S , where S is a mixture set3. Mixture continuity requires that,
whenever µ, λ, ν ∈ S with µ � λ and λ � ν, both A and B must be closed.
The third axiom is the independence axiom, it imposes a form of separability on
the preference relation.

Axiom 2.3 (Independence). A preference relation � on M satisfies the independence
axiom if, for all µ, λ, ν ∈ M and α ∈ (0, 1],

µ � λ⇐⇒αµ + (1− α)ν � αλ + (1− α)ν

The independence axiom requires that the preference between the lotteries µ

and λ be the same whether they are compared directly or embedded in larger,
compound, lotteries that are otherwise identical.

3A set S is said to be a mixture set if for any µ, λ ∈ S and for any α we can associate another
element, which we write as αµ + (1− α)λ, which is again in S , and where

1. 1µ + (1− 1)λ = µ

2. αµ + (1− α)λ = (1− α)λ + αµ

3. β[αµ + (1− α)λ] + (1− β)λ = (αβ)µ + (1− βα)λ

for all µ, λ ∈ S and all α, β.
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Theorem 2.1. If a preference relation � on M satisfies the three axioms we presented
above, then there exists an affine numerical representation U of �. Furthermore, the
function U is unique up to positive affine transformations, i.e., any other affine numerical
representation V with these properties is of the form V = cU + d for some c > 0 and
d ∈ R.

Proof. It is easy to see that, if U is an affine function that represents �, so will be
any increasing affine transformation V. Assuming that the axioms hold, we first
need a few lemmas to help us prove the theorem. The proof for this lemmas can
be found on Herstein and Milnor [17].

Lemma 2.1. For every µ, λ ∈ M, if µ � λ, then

i) for every α ∈ (0, 1), µ � αµ + (1− α)λ � λ

ii) for every α, β ∈ (0, 1) s.t. α > β, µ � αµ + (1− α)λ � βµ + (1− β)λ � λ

Lemma 2.2. For every µ, λ ∈ M, if µ ∼ λ, then for every α ∈ [0, 1],

µ ∼ αµ + (1− α)λ ∼ λ

Lemma 2.3. For every µ, λ, ν ∈ M, and every α ∈ (0, 1),

µ � λ⇐⇒αµ + (1− α)ν � αλ + (1− α)ν

Lemma 2.4. Assume that µ, λ, ν ∈ M are such that µ � λ and µ � ν � λ. Then there
exists a unique α = α(µ, λ, ν) ∈ [0, 1] such that

ν ∼ αµ + (1− α)λ

After having established the background with these lemmas, we can now pro-
ceed to give the proof for the theorem. We will construct the affine numerical
representation U. We first fix two lotteries λ and ρ, λ � ρ, and define

M(λ, ρ) := {µ ∈ M | λ � µ � ρ}

If µ ∈ M(λ, ρ), Lemma 2.4 yields a unique α ∈ [0, 1] s.t. µ ∼ αλ + (1− α)ρ. We
set now U(µ) := α. We want to prove that such U is a numerical representation
of the preference order � onM(λ, ρ), and to do so, we must show that for µ, ν ∈
M(λ, ρ), we have U(µ) > U(ν)⇐⇒µ � ν. Observe that if U(µ) > U(ν), by
Lemma 2.1, we have

µ ∼ U(µ)λ + (1−U(µ))ρ � U(ν)λ + (1−U(ν))ρ ∼ ν
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and, hence, µ � ν. Contrariwise, if µ � ν, it is clear that we cannot have U(ν) >

U(µ), so it suffices to rule out the case U(µ) = U(ν). Suppose U(µ) = U(ν),
then by definition we have µ ∼ ν, which contradicts µ � ν. Therefore, U is
indeed a numerical representation of � restricted to M(λ, ρ). We will show now
that M(λ, ρ) is a convex set. Take µ, ν ∈ M(λ, ρ) and α ∈ [0, 1]. Then by the
independence axiom and Lemma 2.3,

λ � αλ + (1− α)ν � αµ + (1− α)ν

Using the same argument, it follows that αµ + (1− α)ν � ρ, which implies con-
vexity of the setM(λ, ρ). Therefore U(αµ + (1− α)ν) is well defined. We have to
show that it is also equal to αU(µ) + (1− α)U(ν)):

αµ + (1− α)ν ∼ α(U(µ)λ + (1−U(µ))ρ) + (1− α)(U(ν)λ + (1−U(ν))ρ)

= [αU(µ) + (1− α)U(ν)]λ + [1− αU(µ)− (1− α)U(ν)]ρ

Then, by the definition of U and the uniqueness of α in Lemma 2.4, we have that

U(αµ + (1− α)ν) = αU(µ) + (1− α)U(ν)

Thus, U is indeed well defined and an affine numerical representation of �.
To end the proof we just have to prove the uniqueness of U up to positive affine
transformations. Let V be another affine numerical representation of� onM(λ, ρ),
and define

W(µ) :=
V(µ)−V(ρ)

V(λ)−V(ρ)

Then W is a positive affine transformation of V, and W(ρ) = 0 = U(ρ) as well as
W(λ) = 1 = U(λ). Hence, affinity of W and the definition of U imply

W(µ) = W(U(µ)λ + (1−U(µ))ρ) = U(µ)W(λ) + (1−U(µ))W(ρ) = U(µ)

for all µ ∈ M(λ, ρ). Therefore, W = U. Finally, we have to show that U can be
extended as a numerical representation to the full space M. To this end, we first
take λ̃, ρ̃ ∈ M such that M(λ̃, ρ̃) ⊃ M(λ, ρ). As we have seen throughout the
present proof, there exists an affine numerical representation V of � ∈ M(λ̃, ρ̃),
and we may assume that V(λ) = 1 and V(ρ) = 0; otherwise we apply a positive
affine transformation to V. By the previous step of the proof, V coincides with U
onM(λ, ρ), and so V is a unique consistent extension of U. Since each lottery be-
longs to some setM(λ̃, ρ̃), the affine numerical representation U can be uniquely
extended to all ofM.

There is an important case where such affine numerical representation will
already be of vNM form. We formalise this by the next corollary, but first we need
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to introduce the notion of a simple probability distribution. A simple probability
distribution is a probability measure µ on S which can be written as a finite convex
combination of Dirac measures4: there exist x1, . . . , xN ∈ S and α1, . . . , αN ∈ (0, 1]
s.t.

µ =
N

∑
i=1

αiδxi

Corollary 2.1. Suppose that M is the set of all simple probability distributions on S
and that � is a preference relation on M that satisfies the three axioms. Then there
exists a vNM representation U. Moreover, both U and u are unique up to positive affine
transformations.

Proof. Let U be an affine numerical representation. We define u(x) := U(δx), for
x ∈ S. If µ ∈ M is of the form µ = α1δx1 + . . . + αNδxN , then affinity of U implies

U(µ) = U(
N

∑
i=1

αi(δxi)) =
N

∑
i=1

αiU(δxi) =
∫

u(x)dµ(x)

On a finite set, all probability measures are simple. Thus, on a finite set S, any
affine numerical representation is already a vNM representation. Problems arise
when we work with non-finite sets, in which a vNM representation may not exist.
Let’s show that with an example.

Example 2.2. LetM be the set of all Borel probability measures5 on S = [0, 1], and denote
by λ the Lebesgue measure on S. According to the Lebesgue decomposition theorem, every
µ ∈ M can be decomposed as

µ = µS + µa

where µS is singular with respect to λ and µa is absolutely continuous. We define a
function U :M→ [0, 1] by

U(µ) :=
∫

xdµa(x)

4A Dirac measure is a measure δx on a set X (with any σ-algebra of subsets of X) defined for a
given x ∈ X and any measurable set A ⊆ X by

δx(A) = 1A(x) =

{
0, x /∈ A

1, x ∈ A

5A Borel probability measure on a metric space (X, d) is a map µ : B(X)→ [0, ∞) such that

i) µ(∅) = 0

ii) A1, A2, . . . ∈ B mutually disjoint⇒ µ(
⋃∞

i=1 Bi) = ∑∞
i=1 µ(Bi)

iii) µ(X) = 1

Where B(X) is the smallest σ-algebra containing the open sets.
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U is an affine function onM. Hence, U induces a preference order� onM which satisfies
the three axioms. But � cannot have a vNM representation. Since U(δx) = 0 for all x
(because λ is singular with respect to all δx), the only possible choice for the function u
would be u ≡ 0. So the preference relation would be trivial in the sense that µ ∼ λ for all
µ ∈ M, in contradiction, for instance, to U(λ) = 1

2 and U(δ 1
2
) = 0.

In addition to the axioms we have described in this section, we can add another
one, the so-called sure-thing principle. This one was defined by Savage in 1954 in
the famous Foundations of Statistics [31]. The axiom goes as follows: "If the person
would not prefer f to g, either knowing that the event B prevailed, or knowing that
the event ∼B prevailed (denoting the complement of B), then he does not prefer
f to g. Moreover (provided that he does not regard B as virtually impossible) if
he would definitely prefer g to f , knowing that B prevailed, and, if he would not
prefer f to g, knowing that B did not prevail, then he definitely prefers g to f ".
In our notation, consider first the set M1(S,B) of all probability measures on a
separable metric space S, endowed with the σ-field B of Borel sets. For µ, ν ∈ M
and A ∈ B such that µ(A) = 1:

δx � ν for all x ∈ A=⇒µ � ν

and
ν � δx for all x ∈ A=⇒ν � µ

This is automatically implied by the existence of a vNM representation.

2.3 Decision under risk

In the previous section, we presented the theory of the expected utility within
the framework of the three axioms. The central behavioural concept in expected
utility is that of risk aversion, which we introduced in the first example of chap-
ter two. Formally, a situation is said to involve risk if the randomness facing
an economic agent can be expressed in terms of specific numerical probabilities.
The expected utility concept of risk aversion is a property of attitudes to wealth
(the utility function over wealth is concave) rather than of attitudes to risk per se
(independent of the marginal utility of wealth) (Rabin [27]). In this section, we
concentrate on risky alternatives whose outcomes are amounts of money, which
represent individual financial assets with their pay-off distribution, at a fixed time,
known. The analytical power of the expected utility formulation hinges on spec-
ifying the utility function u in such manner that it captures interesting economic
attributes to choice behaviour. An individual would always prefer shifting proba-
bility mass from lower to higher outcome levels if, and only if, u was an increasing
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function of x. Hence, we will assume that u is strictly increasing and, also, con-
tinuous. Such a shift of probability mass is known as a first order stochastically
dominating shift.

Definition 2.2. For any lotteries µ and ν, we say that µ first order stochastically dom-
inates (FOSD) ν if, and only if, the decision-maker weakly prefers µ to ν under every
increasing function u:6 ∫

u(x)dµ(x) ≥
∫

u(x)dν(x).

Besides, we will assume thatM contains all point masses δx for x ∈ S and that
each µ ∈ M has a well-defined expectation

m(µ) :=
∫

xdµ(x) ∈ R

.

Definition 2.3. The expected value m(µ) is called the fair price of an asset when µ is the
distribution of its pay-off. When µ is the distribution of the payments to be received by an
insured party in an insurance contract, m(µ) is called the fair premium.

Let’s formally define what risk aversion is.

Definition 2.4. An individual is risk averse if a certain outcome δm(µ) is always preferred
to a risky prospect µ for which E(µ) = m(µ). That is δm(µ) � µ unless δm(µ) = µ. If the
individual is indifferent between these two lotteries, we say that he is risk neutral, but we
say that he is strictly risk averse if indifference holds only when the two lotteries are the
same.

We can see in Mas-Colell [23] that it follows directly from the definition of risk
aversion that the decision-maker is risk averse if, and only if,

U(δm(µ)) = u(
∫

xdµ(x)) ≥
∫

u(x)dµ(x) = U(µ)

This inequality is called Jensen’s inequality and it is the defining property of a
concave function. Therefore, in the context of expected utility theory, we see

6(Mas-Colell [23]) This definition simply states that every individual with increasing utility func-
tion prefers µ to ν regardless of his risk preferences. If we take into consideration the distributions
of monetary pay-offs, we say that µ FOSD ν if, and only if, µ(x) ≤ ν(x) for every x. This may not
be obvious to see. Given these lotteries, denote λ(x) = µ(x)− ν(x) and suppose λ(x̃) > 0 for some
x̃. Now define u(·) as u(x) = 1 if x > x̃ and u(x) = 0 otherwise. We can see that

∫
u(x)dλ(x) =

−λ(x̃) < 0, so the implied condition is proved. Now, given µ and ν, and considering λ as defined
before, we integrate it by parts:

∫
u(x)dλ(x) = [u(x)λ(x)]∞0 −

∫
u′(x)λ(x)dx. Since λ(0) = 0 and

λ(x) = 0 for large x, the first term is zero. Then.
∫

u(x)dλ(x) ≥ 0⇐⇒
∫

u′(x)λ(x)dx ≤ 0. Thus, if
λ(x) ≤ 0 for all x and u(·) is increasing, then the second term is lesser or equal than 0, and we have
finished.
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that risk aversion is equivalent to the concavity of u, and that strict risk aversion is
equivalent to the strict concavity of u.
Strict concavity means that the marginal utility of money is decreasing, that is to
say the utility gain from an extra euro, at any level of wealth x, is smaller than the
utility loss of having an euro less. The risk of gaining or losing an euro with even
probability is not worth taking the risk.

Definition 2.5. A preference relation � onM is called monotone if

x > y=⇒δx � δy

It is pretty straightforward to see that the fact that function u is increasing
implies monotonicity and the other way around. Take x > y, then u(x) = U(δx) >

U(δy) = u(y) which shows that U is increasing.
We have characterised the utility function used in uncertainty scenarios with

risky outcomes.

Definition 2.6. A function u : S→ R is called a utility function if it is strictly concave,
strictly increasing, and continuous on S.

Let’s now introduce the concept of certainty equivalent, a key concept for the
analysis of risk aversion.

Definition 2.7. The certainty equivalent of µ ∈ M, denoted by c(µ), is the amount of
money for which the individual is indifferent between the lottery µ and the certain amount
c(µ), that is

u(c(µ)) =
∫

u(x)dµ(x)

There is indifference between the lottery µ and the sure amount of money c(µ),
that is δc(µ) ∼ µ. Since our function u is strictly increasing, every µ has at most one
certainty equivalent. Note that risk aversion, in this setting, can be characterised
by m(µ) ≥ c(µ), and

m(µ) > c(µ)⇐⇒δm(µ) 6= µ

Since m(µ) ≥ c(µ) will always hold, we can now define the risk premium of µ. The
risk premium can be viewed as the amount that an individual would be ready to
pay for replacing the asset by its expected value m(µ).

Definition 2.8. The risk premium of µ ∈ M is defined as

ρ(µ) := m(µ)− c(µ)
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Definition 2.9. For any fixed amount of money x and a positive number ε, the probabil-
ity premium, denoted by π(x, ε), is the excess in winning probability over fair odds that
makes the individual indifferent between the certain outcome x and a gamble between the
two outcomes x + ε and x− ε. That is

u(x) = (
1
2
+ π(x, ε))u(x + ε) + (

1
2
− π(x, ε))u(x− ε)

The satisfaction of the inequality π(x, ε) ≥ 0 for all x and ε > 0 is also equiva-
lent to risk aversion. We can compute π, for any given x and ε, starting from the
equation in def. 2.9, as follows:

u(x) =
1
2
[u(x + ε) + u(x− ε)] + π[u(x + ε) + u(x− ε)

=⇒u(x)− 1
2
[u(x + ε) + u(x− ε)] = π[u(x + ε)− u(x− ε)]

=⇒π =
u(x)− 1

2 [u(x + ε) + u(x− ε)]

u(x + ε)− u(x− ε)

We can now illustrate the use of the risk aversion concept with a couple of
examples of cases on demand of assets and insurance.

Example 2.3 (Demand for a risky asset (Ross [28])). Suppose that there are two assets;
one is a safe asset with a return of 1 euro per euro invested and the other one is a risky asset
with a random return of z euros per euro invested. The random return z has a distribution
function µ(z) that we assume satisfies

∫
zdµ(z) > 1. The individual has an initial wealth

of w and it can be divided in any way between the two assets. Consider then, λ ∈ [0, 1]
such that (1 − λ)w is the amount of money invested in the risky asset and λw in the
safe asset. Thus, for any realisation z of the random return, the individual’s portfolio pays
(1− λ)wz + λw. The question is how to choose λ. The answer will depend on µ, w, and
the utility function u. We turned the problem into a utility maximisation problem, which
is

max
λ∈[0,1]

∫
u((1− λ)wz + λw)dµ(z) (2.1)

Take now α = (1− λ)w so eq. 2.1 is equal to
∫

u(w + α(z− 1))dµ(z) and w ≥ α ≥ 0.
If the agent is risk-neutral, so that u(x)=βx for some constant β, the marginal returns to
investment become βw + βα(

∫
zdµ(z)− 1). And these are always positive in our case.

The risk neutral investor cares only about the expected rate of return, so he optimally puts
all his wealth into the asset with the highest expected return. The objective function is
concave in α because the concavity of u implies that∫

u′′(w + α(z− 1))(z− 1)2dµ(z) ≤ 0. If α∗ is optimal, it must satisfy the first order
condition

ψ(α∗) =
∫

u′(w + α∗(z− 1))(z− 1)dµ(z) = 0
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Note that since
∫

zdµ(z) > 1, at α∗ = 0, the marginal return to investing a bit more
in the risky asset is ψ(0) =

∫
(z − 1)u′(w) > 0. Hence, α∗ = 0 cannot satisfy the

first order condition. Then, we can conclude that the optimal portfolio has α∗ > 0, which
implies that w(1− λ∗) > 0 and λ∗ < 1. It is illustrated here that if a risk is actuarially
favourable7, then a risk averter will always accept at least a small amount of it.

Example 2.4 (Demand for insurance). Consider a strictly risk-averse decision maker
who has an initial wealth of w, but has a risk of a loss of Y euros, with w ≥ Y ≥ 0. One
unit of insurance costs q euros and pays 1 euro if the loss occurs. If n units of insurance are
bought, the wealth of the individual will be w− nq (nq is the premium of the insurance)
if there is no loss, and w− nq− Y + n if the loss occurs. Defining as λ the probability of
the loss, the DM’s expected wealth is

(1− λ)(w− nq) + λ(w− nq−Y + n) = w− λY + n(λ− q)

He has to choose the optimal level of n. That is

max
n≥0

(1− λ)u(w− nq) + λu(w−Y + n(1− q))

Denoting by V(n) the objective function and n∗ the optimum amount, the first order
condition is

dV
dn

= −u′(w− n∗q)(1− λ)q + u′(w−Y + n∗(1− q))(1− q)λ = 0

The first order condition says that the marginal benefit of an extra euro of insurance in
the bad state multiplied by the probability of loss, is equal to the marginal cost of the extra
euro of insurance in the good state. If we suppose now that q is actuarially fair8, meaning
q = λ, then the first order condition is

−u′(w− n∗q) + u′(w−Y + n∗(1− q)) = 0

Which gives us

w−Y + n∗(1− q) = w− n∗q⇐⇒n∗ = Y

We can conclude that the DM would take a complete insurance if the insurance was
actuarially fair. The DM’s final wealth is then w − λY, regardless of the occurrence of
the loss.

7The cost of an asset is less than the asset’s expected value.
8The price of the insurance policy exactly equals the expected monetary losses.
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2.4 Absolute and relative risk aversion

In order to determine the optimal trade-off between the expected gain and
the degree of risk, it is useful to quantify the effect of risk on welfare. This is
particularly useful when the agent subrogates the risky decision to others, as is the
case when we consider public safety policy or portfolio management by pension
funds, for example. It is important to quantify the degree of risk aversion in order
to help people to know themselves better, and to help them make better decision
in the face of uncertainty.
Kenneth J. Arrow and John W. Pratt [3] [26] not only identify the risk aversion with
the concavity of a utility function u(x), they also provide a way to measure the
degree of concavity and, hence, the strength or intensity of risk aversion. Arrow
and Pratt give two related measures and both are extensively used in current
economic analysis. Considering a level of wealth x, u′(x) is the marginal utility of
wealth, and u′′(x) is the rate of change of marginal utility with respect to wealth.
Since u(x) is a strictly increasing function, we have u′(x) > 0. Suppose that an
individual with a level of wealth x0 is offered a chance to win or lose an amount q
at fair odds. He can choose between the sure amount x0 and an uncertain amount,
being it equally probable to get x0 + q and x0− q. A risk averter will always prefer
the sure amount, translated into expected utility formulation,

u(x0) >
1
2

u(x0 + q) +
1
2

u(x0 − q)

and
u(x0)− u(x0 − q) > u(x0 + q)− u(x0)

As we can see, the utility differences corresponding to equal changes in wealth are
decreasing as the wealth increases and, thus, u′(x) is strictly decreasing as x increases
(?).
One could think that —as the condition (?) is necessary and sufficient for risk
aversion— using its rate of change, u′′(x), as a risk measure would be a good
idea. But it suffers from a severe formal defect. As we have seen earlier on this
work (Theorem 2.1), the utility functions are defined only up to positive affine
transformations. Adding a constant to the utility does not change the marginality
nor its rate of change, but multiplying u(x) by a constant also multiplies u′′(x)
by the same constant, which implies that the value of the rate of change has no
significance by itself.
Thus, we seek to find a measure based on the rate of change of the marginality
of the utility function but modified so it remains unaltered before positive affine
transformations. In that sense, we will define the Arrow-Pratt coefficient of abso-
lute risk aversion.
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Definition 2.10. The Arrow-Pratt measure of absolute risk aversion (ARA) is de-
fined as

A(x) = −u′′(x)
u′(x)

Under risk aversion, function A is positive. The absolute risk aversion directly
measures the insistence of an individual for more-than-fair odds, at least when
the bets are small. To measure a decision-maker’s aversion to risk, it is natural to
consider his risk premium for a small, actuarially neutral lottery. We are asking
how much the agent is ready to pay to get rid of a zero-mean lottery that has a
random pay-off of ε̃. The answer to this question will be referred to as the risk
premium ρ associated with that risk. If the lottery is accepted, the expected utility
is given by E(u(x + ε̃)). Then, the risk premium for the lottery (asset) ε̃ is defined
as

u(x− ρ) = E(u(x + ε̃)) (2.2)

.
If ε̃ has an expectation that differs from 0, we usually use the certainty equiv-

alent, which as commented in def. 2.7, is the sure increase in wealth that has the
same effect on welfare than bearing the risk. Since we know E(ε̃) = 0, and by
taking the Taylor expansion around ρ = 0 of the left hand side of eq. 2.2, we get

u(x− ρ) = u(x)− ρu′(x) + O(ρ2),

and by doing the same with the right hand side around ε̃ = 0,

E(u(x + ε̃)) = E(u(x) + ε̃u′(x) +
1
2

ε̃2u′(x) + O(ε̃3)) = u(x) +
1
2

σ2
ε̃ u′′(x) + o(σ2

ε̃ ).

It follows that
ρ =

1
2

A(x)σ2
ε̃ + o(σ2

ε̃ ), (2.3)

where

A(x) = −u′′(x)
u′(x)

= − d
dx

log u′(x)

Hence, A(x) is the factor by which an economic agent with utility function u
weighs the risk, measured by half the variance of ε̃. That is, A(x) is twice the
risk premium per unit of variance for infinitesimal risks and, thus, variance might
appear to be a good measure of the degree of riskiness of a lottery. An example
of this is the use of a mean-variance decision criterion for modelling behaviour
under risk. In a mean-variance model, we assume that individual risk attitudes
depend only upon the mean and the variance of the underlying risks. However,
the validity of these models is dependent on the degree of accuracy of the approx-
imation of the risk premium, which can be considered accurate only when the
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risk is small or in very special cases. Nonetheless, in most cases, the risk premium
associated with any risk will also depend upon the other moments of the distribu-
tion of the risk, not just its mean and variance; e.g., two risks with the same mean
and variance, but one with a distribution that is skewed9 to the right and the other
one skewed to the left, should not be expected to have the same risk premium.
Now suppose that two agents, with utility functions u and v respectively, have
the same amount of money x, which is arbitrary. The agent v is more risk-averse
than the agent u if any risk that is undesirable for agent u is also undesirable for
agent v, i.e. the risk premium of any risk is larger for agent v than for agent u
(Eeckhoudt, Gollier and Schlesinger [9]).

Proposition 2.1. The following three condition are equivalent:

i) The risk premium of any risk is larger for agent v than for agent u.

ii) For all x, Av(x) ≥ Au(x).

iii) v(·) is a concave transformation of function u(·), i.e. ∃φ(·) with φ′ > 0 and φ′′ ≤ 0
s.t. v(x) = φ(u(x)) for all x.

Proof. We just need to prove that i) implies ii), ii) implies iii) and iii) implies i):

• i)=⇒ii). It is immediate from eq. 2.3.

• ii)=⇒iii). We have Av(x) ≥ Au(x). We say that v is more concave than u
in the sense of Arrow-Pratt, and it is equivalent to the condition that v is a
concave transformation of u: there exists an increasing and concave function
φ s.t. v(x) = φ(u(x)). Indeed, we have that

v′(x) = φ′(u(x))u′(x) and v′′(x) = φ′′(u(x))(u′(x))2 + φ′(u(x))u′′(x)

which implies that

Av(x) = Au(x) +
−φ′′(u(x))u′(x)

φ′(u(x))

Thus, Av is uniformly larger than Au if, and only if, φ is concave.

9The degree of skewness refers to the distortion or asymmetry of the probability distribution
of a real-valued random variable. The skewness of a random variable X is the third standardised
moment µ̃3, defined as

µ̃3 = E
[(

X− µ

σ

)3]
=

µ3

σ3

where µ is the mean, σ the standard deviation and µ3 is the third central moment.



27 2.4. Absolute and relative risk aversion

• iii)=⇒i). Consider a lottery µ and let ρv and ρu denote the risk premiums
for the lottery µ of each agent. We have, by the definition of utility,

v(x− ρv) = E(v(x + µ)) = E(φ(u(x + µ)))

Define the random variable λ as λ = u(x+ µ). Since φ is concave, by Jensen’s
inequality: E(φ(λ)) < φ(E(λ)). It follows that

v(x− ρv) ≤ φ(E(λ)) = φ(u(x− ρu)) = v(x− ρu)

And thus, since v is increasing, ρv is larger than ρu.

Risk aversion is driven by the fact that marginal utility is decreasing with
wealth. But, how is the risk premium for an actuarially neutral risk, µ, affected
by a change in the initial wealth? Intuitively, we can argue that richer people are
less willing to pay to eliminate a fixed risk. For example, if we have a lottery for
which it is equally probable to gain 100e or none; it might be life-threatening for
an individual with initial wealth of 101e, but it is essentially trivial for an agent
with initial wealth of 1000000e. In that sense, we say that an agent with utility
function u exhibits decreasing absolute risk aversion (resp. increasing) if it is less
risk averse (resp. more risk averse) at higher levels of wealth. Decreasing or in-
creasing absolute risk aversion are referred to jointly as monotone absolute risk
aversion.

Definition 2.11. For every a ≥ 0, define a utility function ua by ua(x) = u(x + a). Then
u exhibits decreasing absolute risk aversion (resp. increasing) if, for all a ≥ 0, u is
more risk averse (resp. less) than ua. It exhibits constant absolute risk aversion if it shows
both increasing and decreasing absolute risk aversion.

We can now characterise the monotonicity of the absolute risk aversion with
the following theorem (Nielsen [25]).

Theorem 2.2. Let u be a strictly increasing, risk averse utility function. The following
three statements are equivalent:

i) u exhibits decreasing (resp. increasing) absolute risk aversion.

ii) u is differentiable with u′ > 0 and the cumulative risk aversion function − log u′(x)
is concave (resp. convex).

iii) The index of ARA associated with u is decreasing (resp. increasing).
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Proof. We will start by presenting a couple of lemmas which will be needed to
prove the theorem

Lemma 2.5. Let u be a strictly increasing function. Suppose that u exhibits decreasing or
increasing absolute risk aversion. Then u is differentiable with u′ > 0.

Lemma 2.6. Let u and v be two differentiable utility functions with positive first deriva-
tive. The u is more risk averse than v iff u′/v′ is continuous and

log u′(r)− log u′(s) ≥ log v′(r)− log v′(s)

for r, s ∈ S, r < s.

Now we can give the proof for the theorem.

• i)=⇒ii). We firstly observe that u′ must be continuous. If there was a point x
where u′ was discontinuous, then log ◦u′ would be discontinuous at x. From
lemmas 2.5 and 2.6 we get that log u′(x) − log u′(x + h) is continuous and
decreasing (incresing) for all h ≥ 0, then u′ is discontinuous at x + h, for all
h ≥ 0. However, since u is risk averse, u′ is decreasing, which implies that
it is continuous almost everywhere. This is a contradiction, so u′ is indeed
continuous. Now, let n ∈ N, set h = 2−n and Dn =

{ a
2n ∈ S s.t. a ∈ Z

}
. The

function log u′(x)− log u′(x + h) is decreasing on
{

x ∈ Dn : x + h ∈ Dn
}

.
Therefore, the function − log ◦u′ is concave (convex) on Dn. It follows that it
is concave on the set

D =
∞⋃

n=1

Dn =

{
a

2n ∈ S s.t. n ∈N and a ∈ Z

}
Since D is dense in S, this function is concave (convex) on S.

• ii)=⇒iii). Since − log ◦u′ is concave (convex), it is absolutely continuous
with the ARA index equal to its derivative. The function u has the ARA
index A(x) = (− log ◦u′)′, which is decreasing (increasing).

• iii)=⇒i). Since we have

log u′(x)− log u′(x + h) =
∫ x+h

x
A(t)dt

u is differentiable with u′ > 0, and A(x) is decreasing (increasing), the func-
tion log u′(x) − log u′(x + h) is continuous and decreasing (increasing) for
all h ≥ 0.
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Definition 2.12. In general, the growth rate for a function f (x) is defined as

d f (x)
dx
· 1

f (x)
=

d log f (x)
dx

Since marginal utility u′(x) declines in wealth, its growth rate is negative. The absolute
value of this negative growth rate, which is the measure of absolute risk aversion, is called
the decay rate.

Absolute risk aversion is the rate of decay for marginal utility; it measures the
rate at which marginal utility decreases when wealth is increased by one euro. But
using different monetary units would change the ARA, i.e. the index of absolute
risk aversion is not unit-free. Hence, it can be really useful, for a more accurate
economic analysis, to use a unit-free measure. To this end, we can define the
index of relative risk aversion as the rate at which utility decreases when wealth
is increased by one percent.

Definition 2.13. The measure of relative risk aversion (RRA) is defined as

R(x) = − xu′′(x)
u′(x)

= xA(x)

Let ρ̃(µ) be the relative risk premium corresponding to a proportional risk µ;
that is, a decision-maker with assets x and utility function u would be indifferent
between receiving a risk xµ and receiving the non-random amount E(xµ)− xρ̃(µ).
It is implicitly defined via the equation u(x− xρ̃) = E(u(x + xµ)), and we get the
following equality,

ρ̃(µ) =
1
x

ρ(xµ)

For a small, actuarially neutral, proportional risk µ, we have, by eq. 2.3,

ρ̃(µ) =
1
2

σ2
µR(x) + o(σ2

µ).

If µ is not actuarially neutral, we would have ρ̃(µ) = 1
2 σ2

µR(x + xm(µ)) + o(σ2
µ).

The relative risk premium is also a unit-free measure, unlike the absolute risk
premium. Obviously, if we normalise the initial wealth to unity, the relative and
absolute risk premiums are equal.

To finish with this section, we will give two examples of classical utility func-
tions. The first one is the so-called constant absolute risk aversion (CARA). These
are exponential functions characterised by

u(x) = − e−ax

a
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where a is a positive scalar. Since A(x) = (log u′)′(x), we get that A(x) = a for
all x. The fact that risk aversion is constant, is often useful in analysing choices
among several alternatives. This assumption eliminates the income effect when
dealing with decisions to be made about a risk whose size is invariant to changes
in wealth.
The second example is the so-called constant relative risk aversion (CRRA), which
is also called hyperbolic absolute risk aversion (HARA). The set of all CRRA utility
functions is completely defined by

u(x) =

 x1−γ

1−γ , for γ ≥ 0, γ 6= 1,

log(x), for γ = 1

This class of utility functions eliminates any income effects when making decisions
about risks whose size is proportional to one’s level of wealth. The assumption
that relative risk aversion is constant simplifies many of the problems often en-
countered in macroeconomics and finance.



Chapter 3

Critique of the EU theory

Expected utility theory has been generally accepted as a normative model of
rational choice. The theory suggests that people should act according to certain
decision rules, but not that they will necessarily do so in reality. Traditional utility
theory states that in decisions made without uncertainty, an individual should
choose the alternative resulting in the highest level of utility, and decisions under
uncertainty should be made according to the expected utility, maximising it. At
first, it was also widely applied as a descriptive model of economic behaviour,
however it has been shown that people infringe normative decision theory in many
ways. The two most common examples of these violations are the Allais paradox
and the Ellsberg paradox, but there are a few more. One of these is the so-called
framing effect which was described by Tversky and Kahneman [36]. This effect
consists in a violation of the invariance of decisions, which is described as follows:
different representations of the same choice should yield the same preference, i.e.,
if two decision situations involve the same outcomes with the same probabilities
resulting from the corresponding alternatives, then the person’s decision should
be identical for both. They also described the endowment effect and loss aversion:
people’s maximum willingness to pay to acquire an object is typically lower than
the least amount they are willing to accept to give up the same object when they
own it, even when there is no cause of attachment or if it was obtained minutes
ago. In this chapter we will review these violations of the expected utility theory
to understand how people’s behaviour towards choice is, sometimes, not rational
according to the theory that axiomatises it. Expected utility can be justified on
the basis of a set of relatively simple axioms. The virtue of this approach is that
it allows you to obtain a better understanding of what underlies the acceptance
of the rule of maximising expected utility. If you accept all the axioms, then
you are logically compelled to accept the maximisation of expected utility as the
choice criterion, but if you reject one or more of the axioms, then EU does not

31
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necessarily follow. By studying how reasonable people respond to paradoxes and
infringements of the axioms, we may have a better basis for deciding whether to
accept the axioms and, hence, the EU theory.

3.1 The Framing effect

This is perhaps, the most fundamental critique, not merely of the EU theory,
but of the much standard economic theory of optimal decision-making. People’s
perception and evaluation of outcomes is importantly affected by a reference point,
which may be the person’s status quo, or something to which his attention is drawn
by the way the issue is framed. Following Tversky and Kahneman [36], the frame
that a decision-maker adopts is controlled partly by the formulation of the prob-
lem and partly by the norms, habits, and personal characteristics of the DM. Ra-
tional choice requires that the preference between options should not reverse with
changes of frame. Giving empirical evidence, they show that systematic reversals
of preference are obtained when varying the framing of acts, contingencies, or
outcomes. Let’s show it with an example.

Example 3.1. Two groups of people were given two surveys. In both surveys, respondents
had to choose between two programmes to combat the outbreak of an unusual disease,
which was expected to kill 600 people. The exact scientific estimate of the consequences of
the programmes in the first survey was as follows:

Programme A: 200 people will be saved.

Programme B: there is a 1/3 probability of saving 600 people, and 2/3 that no people

will be saved.

In the second survey, given the same cover story of the first one, the programmes were
presented as follows:

Programme C: 400 people will die.

Programme D: there is a 1/3 probability that nobody will die, and 2/3 that 600 people

will die.

This test resulted in 72% of the people choosing programme A over B, and 78%
of people choosing D over C, which is a contradiction in the sense of the EU theory.
The expected value of all programmes is the same, but not the frame. The certain
death of 400 people is less acceptable than the 2/3 chances of 600 people dying,
and certainly saving 200 people is more attractive than a risky prospect of equal
expected value. The preferences in both surveys illustrate a common pattern:
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choices involving gains are often risk averse and choices involving losses are often
risk-taking. They observed this pattern in several groups of respondents, which
pointed in the direction of a framing effect and contradictory attitudes towards
risk involving gains and losses.

3.2 The Endowment effect

As we introduced at the beginning of the chapter, the endowment effect is
the finding that people are more likely to retain an object than acquire the same
object when they do not own it. It was first described by Tehler [34], and then
was demonstrated experimentally by Kahneman, Knetsch and Tehler [18]. They
stated that this effect is a manifestation of loss aversion, the generalisation that
losses are weighted substantially more than objectively commensurate gains in the
evaluation of prospects and trades. To demonstrate the loss aversion relative to a
reference point, they asked subjects to give a monetary value to a cheap decorative
mug. The catch was that some subjects had been given the mug beforehand,
but not all the participants. The mugs were assigned randomly, so there was no
apparent reason that the underlying preferences should differ between those with
mugs and those without. They found, however, that the subjects who had the
mug prior to the valuation, gave a much higher value on it than those who didn’t
have it. In two separate experiments they found evidence of people tending to give
much higher values on items they possessed, or were endowed with. In the first one,
the median value for the mug among the subjects that had one was 7.12$, and 3.12$
among those who didn’t have one. In the second one, the values were 7.00$ and
3.50$. In the theoretical models of the reference-dependent preferences (such as
the work of Tversky and Kahneman [35]), the determination of the reference point
around which losses and gains are encoded was left undetermined. It was taken to
be the status quo, the current level of assets, or a level of aspiration or expectation.
Model extensions have added discipline to this fact; we will introduce the model
of Kőszegi and Rabin [19], which gives expectations-based mechanisms for the
determination of stochastic reference distributions. It predicts that when risk is
expected, and hence the referent is stochastic, behaviour will be different from
when risk is unexpected and the referent is certain. In particular, when the referent
is stochastic and the individual is offered a certain amount, the model predicts
near risk neutrality. Contrarily, when the referent is a fixed certain amount and
the individual is offered a gamble, it predicts risk aversion. Therefore, the Kőszegi
and Rabin model features an endowment effect for risk. Let’s build up the model.
As commented above, the KR model is based on the Reference-Dependent model
and Prospect theory of Tversky and Kahneman. A person’s utility depends not
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only on his K-dimensional consumption bundle c, but also on a reference bundle
r. He has an intrinsic consumption utility m(c) that corresponds to the outcome-
based utility. Overall utility is given by

u(c|r) ≡ m(c) + n(c|r),

where n(c|r) is the so-called gain-loss utility. Both consumption utility and gain-
loss utility are separable across dimensions, so that m(c) ≡ ∑k mk(ck) and n(c|r) ≡
∑k nk(ck|rk).1 The person’s gain-loss utility in dimension k depends solely and in
a universal way on how consumption utility in that dimension compares to the
consumption utility from the reference level. Hence, they assume that nk(ck|rk) ≡
γ(mk(ck)−mk(rk)), where the function γ(·) satisfies the properties of the Tversky
and Kahneman’s value function:

1. γ(x) is continuous for all x, twice differentiable for x 6= 0, and γ(0) = 0.

2. γ(x) is strictly increasing.

3. If y > x > 0, then γ(y) + γ(−y) < γ(x) + γ(−x).

4. γ′′(x) ≤ 0 for x > 0, and γ′′(x) ≥ 0 for x < 0.

5. γ′−(0)
γ′+(0)

≡ λ > 1, where γ′+(0) ≡ lim
x→0

γ′(|x|) and γ′−(0) ≡ lim
x→0

γ′(−|x|).

Loss aversion is captured by assumption 3 for large stakes and assumption 5 for
small stakes. Assumption 4 captures another important feature of gain-loss util-
ity, diminishing sensitivity: the marginal change in gain-loss sensations is greater
for changes that are close to one’s reference level than for changes that are fur-
ther away. In their model, Kőszegi and Rabin specify a person’s utility for a
riskless outcome as u(c|r), where c = (c1, c2, . . . , cK) ∈ RK is consumption and

1We need three definitions before introducing the theorem for that assumption. A preference
relation � has jointly separable indices if for any E ⊆ I and all x, y, z, z′ ∈ X, xEz � yEz⇐⇒xEz′ �
yEz′, where

xEy :=

{
xi, i ∈ E

yi, i /∈ E

A preference relation � on X = ZT+1 is stationary if for all c ∈ Z, x, y ∈ ZT , (c, x0, . . . , xT−1) �
(c, y0, . . . , yT−1)⇐⇒(x0, . . . , xT−1, c) � (y0, . . . , yT−1, c). And we say that � is sensitive if all the
indices are non-null (an index i is null if for all x, y, z ∈ X, xiz ∼ yiz).
[Fishburn [11]]. A complete, transitive preference � on a set X := ×t∈T Z is continuous, stationary,
sensitive, and has jointly separable indices iff there is a number δ > 0 and a continuous non-constant
function u : Z → R s.t. � is represented by U(z0, z1, . . .) = ∑t δtu(zt). Moreover, δ is unique and u
is unique up to affine transformations.
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r = (r1, r2, . . . , rk) ∈ RK is a reference level of consumption. If c is drawn according
to the probability measure µ, the person’s utility is given by

U(µ|r) =
∫

u(c|r)dµ(c)

But for them, the reference point itself is stochastic, so they suppose that the
person’s reference point is the probability measure η over RK, then the utility is
as follows

U(µ|η) =
∫ ∫

u(c|r)dη(r)dµ(c)

with

u(c|r) = m(c) + γ(m(c)−m(r))

As they claim, this formulation captures the notion that the sense of gain or loss
from a given consumption outcome derives from comparing it with all outcomes
possible under the reference lottery. The important assumption of m(c) and n(c|r)
being separable, together with loss aversion, is the essential point of many impli-
cations of reference-dependent utility, including the endowment effect. In evalu-
ating an outcome, the DM assesses gain-loss utility in each dimension separately.
This utility function replicates a number of properties commonly associated with
reference-dependent preferences. In the following proposition, it is established
that fixing the outcome, a lower reference point makes a person happier; and
preferences exhibit a status quo bias, a preference for the current state of affairs.

Proposition 3.1. If γ satisfies the properties 1-5, then the following hold.

i) For all µ, η, η′, such that for all k ∈ {1, . . . , K}, the marginal η′k first-order stochas-
tically dominates ηk, U(µ|η) ≥ U(µ|η′).

ii) For any c, c’∈ RK, c 6= c′, u(c|c′) ≥ u(c′|c′)=⇒(uc|c) > u(c′|c).

iii) Suppose γ satisfies that for all x 6= 0, γ′′(x) = 0.2 Then, for any µ, µ′ such that
µ 6= µ′, U(µ|µ′) ≥ U(µ′|µ′)=⇒U(µ|µ) > U(µ′|µ).

Points ii) and iii) mean that if a person is willing to abandon his reference
point for an alternative, then he strictly prefers the alternative if that is his refer-
ence point. When the function m(·) is linear, the utility u(c|r) exhibits the same
properties as γ(·).

2When we are interested in characterising the implications of reference dependence where
only loss aversion plays a role, we define an alternative assumption to assumption 4: for all
x 6= 0, γ′′(x) = 0.
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Proposition 3.2. If m is linear and γ satisfies properties 1-5, then there exists {νk}k∈K

satisfying the properties, such that for all c and r,

u(c|r)− u(r|r) = ∑
k∈K

νk(ck − rk)

This equivalence does not hold when the changes are large or marginal con-
sumption utilities change quickly. This is a good thing, as when large losses in
consumption or wealth involved, diminishing marginal utility of wealth is likely
to counteract the diminishing sensitivity in losses emphasised in prospect theory.
Now consider a certain referent r, and a binary consumption gamble with out-
comes c1 ≥ r with probability α, and c2 ≤ r with probability 1− α. The KR utility
is

U(µ|r) = αu(c1|r) + (1− α)u(c2|r)

If c1 ≥ r > c2, the model predicts loss aversion to be present in the second term.
The utility becomes

U(µ|r) = α[c1 + 1 · (c1 − r)] + (1− α)[c2 + λ(c2 − r)]

Comparing this to the utility of the certain amount, U(r|r) = r, we have U(µ|r) >
U(r|r), and the probability premium will be obtained for some µ̃, with corre-
sponding probability α̃ s.t. U(µ̃|r) = U(r|r):

α̃ =
r− c2 − λ(c2 − r)

c1 − c2 + [(c1 − r)− λ(c2 − r)]

Then, we can see a relationship between risk aversion elicited as α̃ and loss aver-
sion, λ. For someone who is not loss averse, λ = 1, α̃ = r−c2

c1−c2
. Then r =

α̃c1 + (1− α̃)c2. Risk neutral behaviour is exhibited by individuals who are not
loss averse. For a loss averse individual, λ > 1 and α̃ > r−c2

c1−c2
for c1 > r > c2 ≥ 0.

The gamble µ̃ will have a higher expected value than r. Moreover, dα̃
dλ > 0 s.t.

probability premiums are increasing in the degree of loss aversion. If endowed
with a fixed amount in a probability premium task and trading for a gamble, a
loss averse person will appear risk averse.

3.3 The Allais paradox

The Allais paradox is the best-known violation of the Independence axiom, and
the most famous example of the supposed inconsistency of the EU theory. Mau-
rice Allais [1] was one of the earliest researchers to demonstrate a deviation from
the EU theory. He showed that people overweight outcomes that are considered
certain, relative to outcomes which are merely probable. This phenomenon was



37 3.3. The Allais paradox

labelled by Tversky and Kahneman [35] as the certainty effect. Allais distributed
two surveys in which people were presented a pair of choice problems. We will
follow the example described by Tversky and Kahneman, which differs from the
original in that it refers to moderate rather than to extremely large gains. In the
first survey, which we will denote as A, respondents were asked to choose between
the following two lotteries:

A :

{
µ1 = 0.33δ2500 + 0.66δ2400 + 0.01δ0

λ1 = δ2400

The first lottery yields 2500ewith a probability of 0.33, 2400ewith a probability of
0.66 and draws a blank with the remaining probability. The second lottery yields
2400e for sure. In the second survey (B), the respondents were presented with the
following choice problem:

B :

{
µ2 = 0.33δ2500 + 0.67δ0

λ2 = 0.34δ2400 + 0.66δ0

In survey A, most people chose the lottery λ1, even though its expected value is
lower than the one in µ1, namely 2400e. The empirical test showed that 82% pre-
ferred the sure amount over the largest expected value. In survey B, the expected
value of µ2 is 825e and for the lottery λ2 it is 816e. The data showed that 83%
of respondents preferred the slightly riskier lottery µ2, in accordance with expec-
tations. Moreover, the analysis of individual patterns of choice indicated that a
majority of respondents made the modal choice in both problems, namely 61%.
At least 65% of people chose both λ1 � µ1 and µ2 � λ2. This simultaneous choice
leads to a paradox in the sense that it is inconsistent with the vNM paradigm. Note
that B is obtained from A by eliminating the 0.66 chance of winning 2400e from
both prospects under consideration. Evidently, this change produces a greater
reduction in desirability when it alters the character of the prospect from a sure
gain to a probable one, than when both the original and the reduced prospects are
uncertain. The experiment showed that at least 65% of the respondents violated
the independence axiom, and therefore can be taken as empirical evidence against
the vNM theory as a descriptive theory.
The main explanation for this paradox is the certainty effect. Reducing the prob-
ability of a negative outcome from 0.01 to 0 is usually judged to be a greater
improvement than reducing the probability of that same outcome from, say, 0.34
to 0.33. But that is a psychological approach to the problem; if we want to give a
mathematical explanation to the paradox, we can use subjective distortions of objec-
tive lotteries.
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As Allais claims in Allais and Hagen [2], the subjective distortion of objective prob-
abilities generally seems to depend on whether gain or loss is at issue, as well as
the amounts involved. The same person is perfectly capable of cautiously buying
insurance protection against fire, and losing all his fortune at the races. Whereas
the gambler overestimates the probability of gain and underestimates the likeli-
hood of loss, the prudent people tend to overestimate the probability of loss and
underestimate the probability of gain. Take X as a set of bounded measurable
functions X on some measurable set (Ω,F ). In this approach, which was pre-
sented by Leonard Savage in Foundations of Statistics [31], probabilities are not
known in advance, so we work with uncertainty instead of risk. Following Föllmer
and Schied [14], assuming that X is endowed with a preference relation �. Sav-
age gave seven postulates (completeness and transitivity, monotonicity, sure-thing
principle, absence of indifference, continuity and two independence axioms) to
guarantee that there existed a numerical representation of the special form

U(X) = EQ[u(x)] =
∫

u(X(ω))Q(dω) for all X ∈ X

where Q is a probability measure on (Ω,F ) and u is a function on R. It is the
measure Q that specifies the subjective view of the probabilities of events. This
subjectivity is implicit in the preference relation. Since � is monotone in the sense
that

Y � X if Y(ω) ≥ X(ω) for all ω ∈ Ω

is equivalent to the condition that u is an increasing function. Let P be an objective
probability measure on (Ω,F ), then the preference relation�may be such that the
subjective measure Q is different from P. Suppose that P is a Lebesgue measure
restricted to Ω = [0, 1], and that X is the space of bounded right continuous
increasing functions on [0, 1].

Definition 3.1. A function f : (c, d) → (a, b) is called an inverse function for an in-
creasing function F : (a, b)→ R if

F( f (s)−) ≤ s ≤ F( f (s)+) for all s ∈ (c, d)

Lemma 3.1. Let Y be a random variable on a probability space (Ω,F , P) with a uniform
distribution on (0,1). If f is an inverse function of a normalised increased right-continuous
function F : R→ [0, 1], then

X(ω) := f (Y(ω))

has the distribution function F.
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Proof. Any inverse function for F is measurable because it coincides with the mea-
surable function f+ outside the countable set {s ∈ (0, 1) | f−(s) < f+(s)}.3 To
continue with the proof, we need the following lemma

Lemma 3.2. Let f be an inverse function for F. Then F is an inverse function for f and, in
particular,

F(x+) = inf{s ∈ (c, d) | f (s) > x} for x with F(x) < d, c < d.

Since f (F(x)−) ≤ x, we have f (s) ≤ x for s < F(x), and by the lemma, f (s) ≤
x implies F(x) ≥ F( f (s)) = F( f (s)+) ≥ s. It follows that

(0, F(x)) ⊆ {s ∈ (0, 1) | f (s) ≤ x} ⊆ (0, F(x)]

and, therefore

F(x) = P[Y ∈ (0, F(x))] ≤ P
[
Y ∈ {s | f (s) ≤ x}

]
≤ P

[
Y ∈ (0, F(x)]

]
= F(x)

The assertion follows from the identity P
[
Y ∈ {s | f (s) ≤ x}

]
= P

[
X ≤ x

]
.

Let us denote now µP,X as the distribution of X under P. By the lemma above,
every probability measure on R with bounded support4 is of the form µP,X. If
the agent agrees that, objectively, X ∈ X can be identified with a lottery µP,X,
and having the numerical representation U∗(µP,X) of the preference order, then
it may violate the independence axiom. The agent might take a pessimistic view
and distort P by putting more emphasis on unfavourable scenarios, e.g., the agent
could replace P by the subjective measure Q = αδ0 + (1− α)P. Replacing P by
Q corresponds to a non-linear distortion on the level of lotteries, i.e. µ = µP,X is
distorted to µ∗ = µQ,X given by µ∗ = αδl(µ) + (1− α)µ, where l(µ) := sup{a ∈
R | µ

(
(−∞, a)

)
= 0}. Now, going back to the Allais paradox, taking

µ∗1 = αδ0 + (1− α)µ1 and λ∗1 = λ1

µ∗2 = αδ0 + (1− α)µ2 and λ∗2 = αδ0 + (1− α)λ2

Denoting U∗(µ) =
∫

u(x)dµ∗(x), for the particular choice u(x) = x we have
U∗(µ2) > U∗(λ2) and for α > 9/2409 we get U∗(λ1) > U∗(µ1), in accordance
with what we have seen in the example of the paradox. Thus, we have seen that
the Savage approach to utility theory is able to give an answer to why people act
in an irrational way with respect to the classical EU theory.

3The functions f−(s) and f+(s) are called the left- and right-continuous inverse functions of F,
and are defined as

f−(s) := inf{x ∈ R | F(x) ≥ s} and f+(s) := sup{x ∈ R | F(x) ≤ s}

These are also known as quantile functions.
4The support of a Borel probability measure µ on Rd is the smallest closed set A ⊂ Rd such that

µ(Ac) = 0.
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3.4 The Ellsberg paradox

The Allais paradox derives its force from our tendency to prefer having a good
for certain to having a chance at a greater good. The Ellsberg paradox appeals
to put preference for known risks over unknown ones (Segal [32]). Consider the
following problem:
There are two urns denoted as X and Y. Urn X has 50 red balls and 50 green balls.
Urn Y has 100 total balls, some red and the rest green, but the numbers of each
are unknown. A person is offered a choice between two lotteries:

A: A ball is drawn at random from X; you get 10e if red, 0 if green.

B: A ball is drawn at random from Y; you get 10e if red, 0 if green.

Consider now the next choice problem:

C: A ball is drawn at random from X; you get 10e if green, 0 if red.

D: A ball is drawn at random from Y; you get 10e if green, 0 if red.

Turns out that many people faced with the first choice problem, preferred A. When
faced with the second choice problem, many people preferred lottery C. More re-
markably, when offered both choices in different questions, many people chose A
in the first question and C in the second one. This raises a more basic issue about
their behaviour as such choice is simply inconsistent with any subjective beliefs
about the composition of red and green balls in urn Y. Since the composition of
urn Y is unknown, there are no objective probabilities. Suppose that your subjec-
tive probability of drawing a red ball from Y is p, and hence that of drawing a
green ball is 1−p. Since the two lotteries in each comparison have the same prizes,
a rational person who prefers more to less should prefer the lottery that offers a
higher probability of winning the prize. This is irrespective of whether the prefer-
ences can be represented by expected utility; it is simply a matter of monotonicity.
A person should prefer A to B if p < 1/2, and should prefer C to D if 1− p < 1/2,
that is p > 1/2, which is a contradiction. There is no probability measure sup-
porting these preferences through expected utility maximisation. The behaviour
suggests ambiguity aversion; people dislike the added uncertainty about the risk:
people seem to prefer known unknowns to unknowns unknowns. Now, getting back
to the Savage model presented in the previous section, we can make one further
conceptual step so the Ellsberg paradox can fit into the setting. Let’s consider a
class of measuresQ on (Ω,F ) instead of a single measure Q. The aim of the exten-
sion is to characterise those preference relations on X that admit a representation
of the form

U(x) = inf
Q∈Q

EQ[u(X)]



41 3.4. The Ellsberg paradox

We are going to embed X into a certain space X̃ of functions X̃ with values in the
convex set Mb(R) = {µ ∈ M1(R) | µ([−c, c]) = 1 for some c ≥ 0}. X̃ is defined
as the convex set of all those stochastic kernels5 X̃ (ω, dy) from (Ω,F ) to R for
which there exists a constant c ≥ 0 s.t. X̃ (ω, [−c, c]) = 1, for all ω ∈ Ω. By the
mapping

X ∈ X 7→ δX ∈ X̃

the space X can be embedded into X̃ . Therefore, a preference order on X with a
representation as the one described above, extends to X̃ by

Ũ(X̃ ) = inf
Q∈Q

∫ ∫
u(y)X̃(ω, dy)Q(dω) = inf

Q∈Q
EQ[ũ(X̃)]

where ũ is the affine function onMb(R) defined by

ũ(µ) =
∫

udµ, µ ∈ Mb(R)

Going back to the Ellsberg paradox. Set Ω = {0, 1} and define

X̃0(ω) := pδ10 + (1− p)δ0, X̃1 := (1− p)δ10 + pδ0

and
Z̃i(ω) := δ101{i}(ω) + δ01{1−i}(ω)

Now take Q := {qδ1 + (1− q)δ0 | a ≤ q ≤ b} with [a, b] ⊂ [0, 1]. The functional

Ũ(X̃) := inf
Q∈Q

EQ[ũ(X̃)]

satisfies Ũ(X̃i) > Ũ(Z̃i), i = 0, 1, as soon as a < p < b, in accordance with the
preferences described in the paradox.

5Let (X,A) and (Y,B) be measurable spaces. A stochastic kernel, or Markov kernel, is a map
κ : B × X → [0, 1] with the following properties:

i) For every B ∈ B, the map x 7→ κ(B, x) is A-measurable.

ii) For every x ∈ X, the map B 7→ κ(B, x) is a probability measure on (Y,B).
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Monetary risk measures

A monetary risk measure is a mathematical tool for quantifying the risk of a
random future gain, or loss, which is denoted in discounted units of a reference
instrument, e.g. a currency (Hamel [15]). In chapter 3 we have given an exten-
sion to our model so it can explain the main paradoxes encountered in the theory.
We ended the chapter by introducing a new utility function that is able to solve
the contradiction in the preferences of the Ellsberg paradox This numerical rep-
resentation corresponds to the so-called robust preferences. In fact, the numerical
representation is defined as

U(x) = inf
Q∈Q

(
EQ[u(X)] + γ(Q)

)
The agent considers a whole class of probabilistic models specified by probability
measures Q on the given set of scenarios, but different models Q are taken more
or less seriously, and this is made precise in terms of the penalty function γ(Q). In
evaluating a given financial position, the agent then takes a worst case approach
by taking the infimum of expected utilities over the suitably penalised models.
Besides the monotonicity of the preferences that we presented in the previous
chapter, we need to assume the following three axioms. The first two are suitable
extensions of the two main axioms of vNM theory.

Axiom 4.1 (Weak certainty independence). If for X̃, Ỹ ∈ X̃ , and for some ν ∈ Mb(S)
and α ∈ (0, 1], we have αX̃ + (1− α)ν � αỸ + (1− α)ν, then

αX̃ + (1− α)µ � αỸ + (1− α)µ for all µ ∈ Mb(S).

Axiom 4.2 (Archimedean axiom). If X̃, Ỹ, Z̃ ∈ X̃ are such that Z̃ � Ỹ � X̃, then
there are α, β ∈ (0, 1) with

αZ̃ + (1− α)X̃ � Ỹ � βZ̃ + (1− β)X̃.

42
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Axiom 4.3 (Uncertainty aversion). If X̃, Ỹ ∈ X̃ are such that X̃ ∼ Ỹ, then

αX̃ + (1− α)Ỹ � X̃ for all α ∈ [0, 1]

It is necessary to formulate the axiom of uncertainty aversion, but even with-
out its axiomatic foundation, the representation of preferences in the face of model
uncertainty by a subjective utility assessment is highly plausible as it stands. The
agent penalises every possible probabilistic view Q ∈ Q in terms of the penalty
γ(Q) and takes the worst case approach in evaluating the pay-off of a given finan-
cial position. Removing this penalisation reduces the complexity of the mathemat-
ics required, and it is often referred to as the coherent case. Now, this representation
of preferences, characterised in terms of a robust extension of the vNM axioms,
can be reduced to the robust representation of convex risk measures.

Definition 4.1. A financial position is a function X : Ω → R. X(ω) is interpreted
as the discounted net worth of the position scenario ω at the end of the period under
consideration.

Definition 4.2. A risk measure is a mapping ρ : X → R.

Definition 4.3. Given a subset A ⊂ X , we define the risk of a position X ∈ A by

ρA(X) = inf{m ∈ R : X + m ∈ A}

With the convention of inf ∅ = ∞.

Definition 4.4. Given a risk measure ρ : X → R, we define the acceptance set of ρ by

Aρ = {X ∈ X : ρ(X) ≤ 0}

Proposition 4.1. Let A ⊂ X be an acceptance set and ρA a risk measure, then the
following properties are satisfied

1. ρA > −∞ .

2. For each m ∈ R, ρA(m) is finite.

3. ρA is monotone: Y ≥ X=⇒ρA(Y) ≤ ρA(X).

4. ρA is cash-invariant, i.e., for all positions X and constants m, we have

ρA(X + m) = ρA −m

5. A is normalised if, and only if, ρA(0) = 0.
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In terms of monetary risk, what really matters is the downside risk, which is an
estimation of a security’s potential to suffer a devaluation if the market conditions
change, or the amount of loss that could be sustained as a result of the decline.
Downside risk explains a worst case scenario for an investment or indicates how
much the investor stands to lose. In that sense, the monotonicity is clear, the
downside risk of a position is reduced if the pay-off profile is increased. Cash
invariance is motivated by the interpretation of ρA as a capital requirement. Thus,
if the amount m is added to the position and invested in a risk-free manner, the
capital requirement is reduced by the same amount. In particular, cash invariance
implies ρA(X + ρA(X)) = 0, i.e., the accumulate position consisting of X and the
risk-free investment ρA is acceptable.

Example 4.1. (Worst case risk measure) Extremely pessimistic people would choose the
worst case risk measure, defined by

ρmax(X) := − inf
ω∈Ω

X(ω)

which induces the acceptance set Aρ = {X ∈ X | X(ω) ≥ 0 for all ω ∈ Ω}. This risk
measure is the least upper bound for the potential loss which can occur in any scenario.
Thus, it is the most conservative (normalised) risk measure, in the sense that for any risk
measure ρ̃, ρ̃ ≤ ρmax.

Example 4.2. (Value at Risk) Value at Risk estimates how much a set of investments
might lose given normal market conditions (Chun, Shapiro and Uryasev [6]). The idea
behind the measure is that very unlikely events should be neglected. Given a number
α ∈ [0, 1), we regard a financial position as acceptable if the probability to obtain a negative
value is less or equal to α. We assume that Ω is equipped with a σ -field F and a probability
measure P, and all elements in X are measurable with respect to F . We chooseA := {X ∈
X | P[X < 0] ≤ α}. The corresponding monetary risk measure is called value at risk at
level α, and denoted VaRα:

VaRα(X) = inf{m ∈ R : X + m ∈ A}
= inf{m ∈ R : P[X < −m] ≤ α}

Value at Risk has been the standard risk measure because it is easy to under-
stand and easy to calculate, as soon as P is specified. However, it can penalise
diversification, which means taking a convex combination of different risky fi-
nancial positions, i.e., if X1, X2 ∈ X are two different financial positions, then
X = λX1 + (1− λ)X2 for some λ ∈ [0, 1] is a diversification. The risk of X should
be at most as high as the maximum risk of X1 and X2, it should not increase the
risk. If two positions are acceptable, then each convex combination of them should
be acceptable as well, that is the acceptance set should be convex.
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Example 4.3. Let α = 0.01, and let X1,X2 be two independent random variables with
P[Xi = 1000] = 0.992 and P[Xi = −10000] = 0.008. We have E(Xi) = 992− 80 =

912, so that the expected return of each position equals 9.12%. The probability of a loss is
less than α for each position, so that both of them are "acceptable". σ2

0.01(Xi) = −1000
for both positions. It should be less risky to diversify. However the probability that at least
one of the two variables is negative equals 2 · 0.008− 0.0082 ≈ 0.016 > α. Hence X is
not "acceptable". Therefore, Value at Risk penalises diversification.

To prevent this from happening, we can set some more axioms to guarantee
that any risk measure will work properly in every situation.

4.1 Convex and coherent risk measures

Axiom 4.4 (Convexity). A monetary risk measure ρ is called convex risk measure if it
satisfies

ρ(λX + (1− λ)Y) ≤ λρ(X) + (1− λ)ρ(Y) for all λ ∈ [0, 1]

A convex risk measure is called a coherent risk measure if it satisfies the
following two axioms (Artzner [4]).

Axiom 4.5 (Positive homogeneity). For all λ ≥ 0, and all X ∈ X ,

ρ(λX) = λρ(x)

Under the assumption of positive homogeneity, the convexity of a monetary
risk measure is equivalent to sub-additivity.

Axiom 4.6 (Sub-additivity). For all X, Y ∈ X ,

ρ(X + Y) ≤ ρ(x) + ρ(Y)

The convexity axiom gives a precise meaning to the idea that diversification
should not increase the risk. But this idea becomes even clearer when we note that,
for a monetary risk measure, convexity is in fact equivalent to the weaker require-
ment of Quasi convexity: ρ(λX + (1− λ)Y) ≤ max(ρ(X), ρ(Y)), for λ ∈ [0, 1].
If position size directly influences risk, e.g, if positions are large enough that the
time required to liquidate them depends on their sizes, then we should consider
the consequences of lack of liquidity when computing the future net worth of
a position. With this in mind, positive homogeneity and sub-additivity remain
reasonable. Positive homogeneity is imposed to model what a government or an
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exchange might impose in a situation where no netting1 or diversification occurs,
in particular because the government does not prevent many firms from all taking
the same position.
If we get back to the Value at Risk measure, we can see that it is a positively ho-
mogeneous monetary risk measure, but it is not coherent since the sub-additivity
axiom is not satisfied. Instead, we can define the following risk measure.

Example 4.4. (Average Value at Risk) Average Value at Risk at a level λ ∈ (0, 1] is
defined as

AVaRλ = − 1
λ

∫ λ

0
VaRα(X)dα

It is also called Conditional Value at Risk or Expected Shortfall.

This measure estimates the risk of an investment in a conservative way, fo-
cusing on the less possible outcomes. For high values of λ it ignores the most
profitable but unlikely possibilities, while for small values of λ it focuses on the
worst losses.

Proposition 4.2. If Aρ is convex, then ρA is convex. If Aρ is a cone (i.e., if for all X ∈ A
and all λ ≥ 0 we have λX ∈ A), then ρA is positively homogeneous and, in particular, if
Aρ is a convex cone, ρA is a coherent measure of risk.

Proof. Suppose that X1, X2 ∈ X and that m1, m2 ∈ R are such that mi + Xi ∈ Aρ. If
λ ∈ [0, 1], then the convexity of A implies that λ(m1 + X1) + (1− λ)(m2 + X2) ∈
Aρ. Thus, by the cash invariance of ρA,

0 ≥ ρA
(
λ(m1 + X1) + (1− λ)(m2 + X2)

)
= ρA

(
λX1 + (1− λ)X2

)
−
(
λm1 + (1− λ)m2

)
,

and the convexity of ρA follows. For the second part of the proposition, as in the
proof of convexity, we obtain that ρA(λX) ≤ λρA(X) for λ ≥ 0 if Aρ is a cone.
To prove the converse inequality, let m < ρA(X). Then m + X /∈ Aρ and hence
λm + λX /∈ Aρ for λ ≥ 0. Thus, λm < ρA(λX).

Definition 4.5. If ρ is a convex risk measure, then φ(X) := −ρ(X) is called a con-
cave monetary utility functional. If ρ is coherent, φ is called coherent monetary utility
functional.

1Netting entails offsetting the value of multiple positions or payments due to be exchanged
between two or more parties. It can be used to determine which party is owed remuneration in a
multiparty agreement.
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By reversing the sign of the risk measure, we put emphasis on the utility of a
position rather than on its risk.

Example 4.5. (Acceptance in terms of expected utility) Let Ω be equipped with a σ-
field F and a probability measure P. Assume that all elements of X are measurable with
respect to F and bounded. Let u : R → R be a strictly increasing and concave utility
functions. Fix x0 ∈ R, and let

A := {X ∈ X | E[u(X)] ≥ u(x0)}.

That is, X is accepted if, and only if, the certainty equivalent of X, i.e., u−1(E[u(X)]),
is greater than or equal to x0. Moreover, concavity of u implies that for X, Y ∈ A and
λ ∈ [0, 1],

E[u(λX + (1− λ)Y)] ≥ E[λu(X) + (1− λ)u(Y)]

= λE[u(X)] + (1− λ)E[u(Y)]

≥ u(x0)

so that A is convex. The corresponding convex risk measure is given by

ρA(X) = inf{m ∈ R | E[u(X + m) ≥ u(x0)]}.

Let us consider now the special case of the exponential utility function u(x) =
1− e−βx with β > 0, a type of CARA utility function, and x0 = 0. We have

u′(x) = βe−βx > 0

u′′(x) = −β2e−βx < 0

u is strictly increasing and concave. The condition E[u(X +m)] ≥ u(x0) now reads
as 1− e−βmE[e−βX] ≥ 0 or, equivalently, m ≥ 1

β log E[e−βX]. Hence

ρA(X) =
1
β

log E[e−βX],

which is called the entropic risk measure. This measure is a possible alternative to
the Value at Risk and Average Value at Risk measures, and it is the typical example
of a convex risk measure which is not coherent. The entropic risk measure can also
be represented as

1
β

log E[e−βX] = sup
Q∈M1(Ω,F )

(
EQ[−X]− 1

β
H(Q|P)

)
where H(Q|P) = E

[ dQ
dP

log dQ
dP

]
is the relative entropy of Q � P (Q is absolutely

continuous with respect to P).
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4.2 Dual representation

Suppose that X consists of measurable functions on (Ω,F ). Following Föllmer
and Schied [13], a dual representation of a convex risk measure ρ has the form

ρ(X) = sup
Q∈M

(
EQ[−X]− γ(Q)

)
.

Where γ : M → R ∪ {+∞} is the penalty function that we introduced at the
beginning of the chapter. The elements ofM can be interpreted as possible prob-
abilistic models, which are taken more or less seriously according to the size of the
penalty function. The value ρ(X) is computed as the worst case expectation over
all models Q ∈ M and penalised by γ(Q). For these reasons, a representation of
that form is also called a robust representation.

Definition 4.6. For every Q ∈ M, we define the minimal penalty function of ρ by

γρ(Q) := sup
X∈X

(
EQ[−X]− ρ(X)

)
= sup

X∈Aρ

EQ[−X]

Proposition 4.3. For a convex risk measure ρ admitting a robust representation, the
following statements are equivalent

i) ρ is coherent.

ii) There exists a robust representation whose penalty function γ only takes the values 0
and ∞.

iii) γρ only takes the values 0 and ∞.

Proof. The fact that the third statement implies the second one is straightforward.
If γ only takes the values 0 and ∞, then ρ is positively homogeneous and, hence,
coherent. Finally, to see that the first statement implies the third one, let Q ∈ M
and λ > 0, and recall that the acceptance set of a coherent risk measure is a cone.
Consequently,

γρ(Q) = sup
X∈Aρ

EQ[−X] = sup
X∈Aρ

EQ[−λX] = λγρ(Q).

Hence, γρ can only take the values 0 and ∞.

A dual representation in terms of probability measures is closely related to
certain continuity properties of ρ. A convex risk measure ρ which admits a robust
representation onM1 is continuous from above in the sense that

Xn ↘ X =⇒ ρ(Xn)↗ ρ(X)
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Lemma 4.1 (Fatou property). Continuity from above is equivalent to the so-called Fatou
property: for any bounded sequence (Xn) converging pointwise to X

lim inf
n→∞

ρ(Xn) ≥ ρ(X)

Proof. We first show that Fatou property holds. Dominated convergence implies
that EQ[Xn]→ EQ[X] for each Q ∈ M1. Hence,

ρ(X) = sup
Q∈M1

(
lim
n→∞

EQ[−Xn]− γ(Q)
)

≤ lim inf
n→∞

sup
Q∈M1

(
EQ[−Xn]− γ(Q)

)
= lim inf

n→∞
ρ(Xn)

In order to show the equivalence between continuity from above and the Fatou
property we will first assume the latter. By monotonicity, ρ(Xn) ≤ ρ(X) for each
n if Xn ↗ X, and so ρ(Xn) ↘ ρ(X) follows. Now, assuming continuity from
above. Let (Xn) be a bounded sequence in X which converges pointwise to X.
Define Ym := supn≥m Xn ∈ X . Then Ym decreases P-almost surely to X. Since
ρ(Xn) ≥ ρ(Yn) by monotonicity, continuity from above yields that

lim inf
n→∞

ρ(Xn) ≥ lim
n→∞

ρ(Yn) = ρ(X)

4.3 Law-invariant risk measures

Here we discuss those convex risk measures ρ on X = L∞(Ω,F , P)2. Assum-
ing that Ω is equipped with a σ-field F and a probability measure P and that
all elements of X are measurable with respect to F . If we regard P as the "true
probability measure", it is natural to concentrate on law-invariant risk measures.
Following Kusuoka [20], we will end this section with the Kusuoka’s representa-
tion theorem.

Definition 4.7. A monetary risk measure ρ is called law-invariant if ρ(X) = ρ(Y)
whenever X and Y have the same distribution under P.

If ρ is law-invariant, it will turn out that the only relevant aspect of the prob-
ability measures Q is the distribution of the density dQ/dP under P. The idea
of the Kusuoka’s representation theorem is to write ρ(X) as a supremum over
distributions of probability densities with respect to P.

2L∞ is the vector space of bounded F -measurable functions on Ω with the supremum norm
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Proposition 4.4. Let ρ be a law-invariant convex risk measure on L∞(Ω,F , P) that is
continuous from above. Then its minimal penalty function is given by

γρ(Q) = sup
X∈Aρ

∫ 1

0
VaRλ(X)qdQ/dP(1− λ)dλ

where qdQ/dP is any quantile function of the distribution of dQ/dP.

Proof. Using the law-invariance of ρ and the fact that it is equivalent that if (Ω,F , P)

is atomless, i.e., for every A ∈ F with P(A) > 0, there exists A′ ∈ F with A′ ⊂ A
and 0 < P(A′) < P(A), there exists a standard uniform random variable U on
the probability space, and for every real-valued random variable X there exists a
standard uniform random variable U such that X = qX(U).3

γρ(Q) = sup
X∈Aρ

EQ[−X]

= sup
X∈Aρ

sup
X̃∼X

EQ[−X̃]

= sup
X∈Aρ

sup
X̃∼X

EQ[−X̃
dQ
dP

]

= sup
X∈Aρ

∫ 1

0
q−X(λ)qdQ/dP(λ)dλ.

Moreover, q−X(λ) = −qX(1− λ) = VaR1−λ(X).

Corollary 4.1. γρ(Q) depends only on the distribution of dQ/dP under P.

Theorem 4.1 (Kusuoka’s representation theorem). Let ρ be a law-invariant convex
risk measure on L∞(Ω,F , P) that is continuous from above. Then

ρ(X) = sup
µ∈M1((0,1])

( ∫
(0,1]

AVaRλ(X)µ(dλ)− γρ(µ)

)

where γρ(µ) = supX∈Aρ

∫
(0,1] AVaRλ(Xµ(dλ)).

3If X and Y are two random variables on an atomless probability space, and assume that one
of them is integrable and the other is bounded. Let U be a standard uniform random variable on
(Ω,F , P) s.t. X = qX(U) P-a.s. Then the maximum is attained by Ỹ = qY(U), and consequently

sup
Ỹ∼Y

E[XỸ] = E[qX(U)qY(U)] =
∫ 1

0
qX(t)qY(t)dt.
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Proof. The right-hand side of the equation defines a law-invariant convex risk mea-
sure that is continuous from above. Conversely, let ρ be a law-invariant and con-
tinuous from above. We will show that for Q ∈ M1(P) there exists a measure
µ ∈ M1((0, 1]) s.t.∫ 1

0
q−X(t)qdQ/dP(t)dt =

∫
(0,1]

AVaRs(X)µ(ds).

Then, since q−X(t) = VaR1−t(X) and qdQ/dP(t) = q+dQ/dP
(t) for t ∈ (0, 1),

∫ 1

0
q−X(t)qdQ/dP(t)dt =

∫ 1

0
VaRt(X)q+dQ/dP

(1− t)dt.

Since q+dQ/dP
is increasing and right-continuous, we can write q+dQ/dP

(t) = ν
(
(1−

t, 1]
)

for some positive locally finite measure ν on (0, 1]. Moreover, the measure µ

given by µ(dt) = tν(dt) is a probability measure on (0, 1]:∫
(0,1]

tν(dt) =
∫ 1

0
ν((s, 1]))ds =

∫ 1

0
q+dQ/dP

(s)ds = E[dQ/dP] = 1

Thus, ∫ 1

0
q−X(t)qdQ/dP(t)dt =

∫ 1

0
VaRt(X)

( ∫
(t,1]

1
s

µ(ds)
)
dt

=
∫
(0,1]

1
s

∫ s

0
VaRt(X)dtµ(ds)

=
∫
(0,1]

AVaRs(X)µ(ds).

Conversely, for any probability measure µ on (0, 1], the function q defined by
q(t) :=

∫
(1−t,1] s−1µ(ds) can be viewed as the quantile function of the density

dQ/dP = q(U) of a measure Q ∈ M1(P), where U has a uniform distribution
on (0, 1). Altogether, we obtain a one-to-one correspondence between laws of
densities dQ/dP and probability measures µ on (0, 1].

4.4 Conic Finance

In this last section, we will introduce the theory of Conic Finance. The markets
for the relatively liquid assets of an economy are modelled in classical finance as a
counterparty for market participants, and they are seen as accepting any amount
and direction of financially traded asset at the going market price. Particular forms
of liquid assets describe the cash flow to be accessed for which there is just one
price. However, when modelling markets more broadly, we allow prices to vary
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with the trade direction. Hence, there are two prices, one for buying from the
market (ask price), and another one for selling to the market (bid price) (Madan
and Cherny [22]). In a modern financial economy, all risks cannot be eliminated.
Perfect hedging is not possible and some risk exposures must be tolerated. Hence
the set of acceptable risks must be defined as a financial primitive of the financial
economy. The theory is founded on the basis of the concepts of acceptability of
stochastic cash-flows and distorted expectations.
Following Madan and Schoutens [21], suppose that a non-negative random vari-
able X, a zero cost stochastic cash-flow at some particular time (T), is identified on
a probability space (Ω,F , P). Even though the assumption of a zero cost invest-
ment is not entirely realistic, it does not affect the generality of the theory, as the
premium can be borrowed at a risk-free rate and paid back at the final pay-off date
of the cash-flow. The basic examples we will work with are Y = X − exp(rT)b or
Z = exp(rT)a− X, where r is the interest rate at date T. Finding X − exp(rT)b
acceptable is then seen as the market being willing to buy the risk X for the initial
price b (the other case refers to selling at the initial price a). Consider now the
value of a financial derivative in the traditional one-price setting, which is equal
to the discounted risk-neutral expectation of the pay-off X:

V(X) = exp(−rT)EQ[X]

Where Q is the risk-neutral measure 4. Now, the value of the accepted price Y is

V(Y) = exp(−rT)EQ[X− exp(rT)b] = V(X)− b ≥ 0, for b ≤ V(X)

We can say that we are now actually selling X to the market for a price b, below
the risk-neutral market price V(X). We can build an analogous reasoning for the
price Z, for which we would be buying X for a price above the risk-neutral value.
First we can consider the set of zero-cost cash-flows, defined as

A∗ = {W | V(W) ≥ 0},

as a potential set of admissible risks. It is the largest possible convex cone con-
taining the non-negative random variables: these are always acceptable as they
are arbitrage. However, the set of acceptable zero-cost cash-flows, A⊂A∗, of a
two-price economy will more precisely be a proper convex set containing the non-
negative random variables. It is defined as

W ∈ A⇐⇒exp(−rT)EQ[W] ≥ 0 for all Q ∈ M
4A risk-neutral measure is a probability measure such that each share price is exactly equal to

the discounted expectation of the share price under this measure.
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Both Y = X− exp(rT)b and Z = exp(rT)a− X are in A. That is to say,

exp(−rT)EQ[X− exp(rT)b] = exp(−rT)EQ[X]− b ≥ 0

exp(−rT)EQ[exp(rT)a− X] = a− exp(−rT)EQ[X] ≥ 0

Then, the best bid and ask prices for X provided by the market are given by

bid(X) = exp(−rT) inf
Q∈M

EQ[X]

ask(X) = exp(−rT) sup
Q∈M

EQ[X]

Every market is defined by a convex cone of zero cost cash-flows acceptable to the
market, and this cone has associated with it a convex set of probability measures
Q ∈ M with acceptability equivalently defined as positive expectation under each
Q. Therefore, the financial markets for the law of two prices are referred to as
conic.

Definition 4.8. A concave distortion function is a concave function ψ(x) from the unit
interval to itself

ψ : [0, 1]→ [0, 1]

x 7→ ψ(x)

If we restrict acceptability to be defined completely by the probability distribu-
tions of the associated risk, then the calculation of bid and ask prices can be made
quite tractable using such concave distortion functions. We will assume that these
risks satisfy the comonotonicity5 and additivity6 properties. Following the results
in Kusuoka [20], under these hypotheses, bid and ask prices must be expectations
under a concave distortion. That is, the bid price is given by

bid(X) = exp(−rT)
∫ +∞

−∞
xdψ(FX(x))

and the ask price is

ask(X) = − exp(−rT)
∫ +∞

−∞
xdψ(F−X(x))

5Two risks X and Y, are said to be comonotone if they are actually completely driven by one single
risk factor. That is, there exists a random variable, Z, on the unit interval s.t. X = F−1

X (Z) and Y =

F−1
Y (Z), where F−1

X and F−1
Y denote the inverse of the distribution of X and Y, respectively.

6We assumed coherent risk measures to be sub-additive (see axiom 4.6). For two random vari-
ables X and Y, bid(X + Y) ≥ bid(X) + bid(Y) and ask(X + Y)) ≤ ask(X) + ask(Y). These relations
can be seen as the effect of diversification, but when these variables are comonotone, we could say
there is no scope for diversification. Hence, for such pair of random variables, we require in fact
that bid(X + Y) = bid(X) + bid(Y) (resp. ask).
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A random cash-flow will have a high acceptability level if its distribution function
withstands high levels of stress. That is, if its expectation is still positive after
distorting its distribution function. The level of acceptability is then proportional
to the level of stress.

Definition 4.9. An index of acceptability is a map α defined as follows

α : X → [0,+∞]

X 7→ α(X)

The number α(X) is the level of acceptability of X.

The map α is an acceptability index if, and only if, there exists an increasing
one-parameter family of coherent risk measures {ρλ, λ ≥ 0} (see 4.1) , with the
property that α(Y) is the largest level λ such that the cash-flow Y is acceptable to
the level λ:

α(Y) = sup{λ ≥ 0 | Y ∈ Aλ}

where
Y ∈ Aλ⇐⇒exp(−rT)EQ[Y] ≥ 0, for all Q ∈ Mλ

with Mλ is the convex set of probability measures associated with the coherent
risk measure ρλ. If we have a given bid or ask price, and the distribution function
of the related cash flow, we could calculate the particular λ that one needs to use
in the given distortion to obtain the given price.
To end with this section, we will give some examples of distortion functions used
as an operational tool to calculate bid and ask prices.

Example 4.6 (Examples of distortion functions). The following functions are some of
the most common distortion functions used in finance:

i) MINVAR: ψMINVAR
λ (x) = 1− (1− x)1+λ.

ii) MAXVAR: ψMAXVAR
λ (x) = x

1
1+λ .

iii) MAXMINVAR: ψMAXMINVAR
λ (x) = (1− (1− x)1+λ)

1
1+λ

iv) MINMAXVAR: ψMINMAXVAR
λ (x) = 1− (1− x

1
1+λ )1+λ

v) Wang Transform: ψWANG
λ (x) = N(N−1(x) + λ), which is defined using the cu-

mulative distribution function of the standard normal N(x) and its inverse function.



Conclusions

Throughout this work, we have established how preferences and its quantifi-
cation through utility functions allow us to set up a decision-making model that
axiomatises rational choice and risk bearing. Together with logical analysis and
empirical research on behaviour and risk attitudes, we have been able to build
some mathematical structures that are remarkably useful in finance, as they lead
to an increased efficiency in investments and markets. I would like to highlight
the third chapter. In that chapter, we have presented many drawbacks of the EUT,
but we have been able to adapt and extend the model to fit subjective distortions,
which in the end has led us to numerical representations for robust preferences.
And by working with the latter, we have given a proper approach to monetary
risk measures and Conic Finance, which gives us the possibility to understand
how prices are formed in financial markets.

Before studying Mathematics, I studied Economics at the UB. There, what cap-
tivated me the most were Microeconomics and Game Theory. I was very interested
in the behaviour of individuals in making decisions that involve risk, and how
these individuals interacted with each other. This work has given me the oppor-
tunity to get a deeper understanding in this field, and has also been very useful
to retake many subjects that I presumed forgotten. Overall, I have genuinely en-
joyed the research, as I find fascinating the fact that we are able to model human
behaviour towards choice with maths.

55



Bibliography

[1] Maurice Allais. Allais paradox. In Utility and probability, pages 3–9. Springer,
1990.

[2] Maurice Allais and GM Hagen. Expected utility hypotheses and the Allais para-
dox: Contemporary discussions of the decisions under uncertainty with Allais’ re-
joinder, volume 21. Springer Science & Business Media, 2013.

[3] Kenneth J Arrow. Social choice and individual values, volume 12. Yale university
press, 2012.

[4] Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coher-
ent measures of risk. Mathematical finance, 9(3):203–228, 1999.

[5] Daniel Bernoulli. Exposition of a new theory on the measurement of risk. In
The Kelly capital growth investment criterion: Theory and practice, pages 11–24.
World Scientific, 2011.

[6] So Yeon Chun, Alexander Shapiro, and Stan Uryasev. Conditional value-
at-risk and average value-at-risk: Estimation and asymptotics. Operations
Research, 60(4):739–756, 2012.

[7] Gerard Debreu. Continuity properties of paretian utility. International Eco-
nomic Review, 5(3):285–293, 1964.

[8] John Eatwell, Murray Milgate, and Peter Newman. Utility and probability.
Springer, 1990.

[9] Louis Eeckhoudt, Christian Gollier, and Harris Schlesinger. Economic and
financial decisions under risk. Princeton University Press, 2011.

[10] Allan M Feldman and Roberto Serrano. Welfare economics and social choice
theory. Springer Science & Business Media, 2006.

[11] Peter C Fishburn. The irrationality of transitivity in social choice. Behavioral
Science, 15(2):119–123, 1970.

56



57 Bibliography

[12] Peter C Fishburn. Nontransitive preferences in decision theory. Journal of risk
and uncertainty, 4(2):113–134, 1991.

[13] Hans Follmer and M Scheizer. Encyclopedia of quantitative finance, 2010.

[14] Hans Föllmer and Alexander Schied. Stochastic finance: an introduction in
discrete time. Walter de Gruyter, 2011.

[15] Andreas H Hamel et al. Monetary measures of risk. Technical report, 2018.

[16] John R Hauser and Glen L Urban. Assessment of attribute importances
and consumer utility functions: Von neumann-morgenstern theory applied
to consumer behavior. Journal of Consumer Research, 5(4):251–262, 1979.

[17] Israel N Herstein and John Milnor. An axiomatic approach to measurable
utility. Econometrica, Journal of the Econometric Society, pages 291–297, 1953.

[18] Daniel Kahneman, Jack L Knetsch, and Richard H Thaler. Experimental tests
of the endowment effect and the coase theorem. Journal of political Economy,
98(6):1325–1348, 1990.
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