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Layout of the thesis 

The main topic of this thesis is to investigate the contribution of polyamines to defense in 

Arabidopsis thaliana and the requirement of callose deposition for full expression of effector-

triggered immunity in autoimmune hybrids. Due to its accumulation during pathogen infection, 

I mainly focused on the polyamine putrescine. The interaction between polyamines, reactive 

oxygen species (ROS) production and salicylic acid pathway activation is also studied in the 

context of PAMP-triggered immunity (PTI) (Chapter 1) and systemic acquired resistance 

(SAR) (Chapter 2). The data support a role for putrescine as a priming agent contributing to 

resistance against pathogens, which can lead to practical applications in the development of 

PPP (plant protection products). In the last chapter, I report the involvement of GLUCAN 

SYNTHASE-LIKE 2 and 10 (GSL2 and GSL10), two of the twelve callose biosynthesis genes, 

in the temperature-dependent immune hybrid incompatibility between natural accessions of 

Arabidopsis thaliana from North Europe (Ler) and Central Asia (Kas-2), which constitutes a 

model for the study of effector-triggered immunity (ETI). This work supports that PTI and ETI 

are not two separate branches of defense, but support each other through mutual potentiation. 

 

In the Introduction, I summarize key aspects about the model plant Arabidopsis 

thaliana, and introduce reader to general concepts of plant immunity, including the different 

modes of pathogen recognition, initiation of PTI and ETI , as well as the establishment of SAR, 

the participation of ROS and current knowledge about the implication of polyamines in 

defense, which are furtherly discussed in Chapters 1 and 2. Afterwards, I introduce immune - 

related hybrid incompatibilities as a model for ETI studies, and what is known about glucan 

synthases involved in callose deposition in response to environmental inputs, which is further 

discussed in Chapter 3. 

 

In Chapter 1, I show the contribution of the polyamine putrescine to a positive feedback 

loop which boosts PTI in a hydrogen peroxide, NADPH oxidase, RBOHD and RBOHF - 

dependent manner. I report the quantitation polyamine levels in response to a well-known 

PAMP (flagellin 22), non-virulent bacteria Pseudomonas syringae pv. tomato DC3000 hrcC 

(HrcC), which lacks the TTSS (type three secretion system) and its wild-type strain 

Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Loss-of-function mutants in two 

isoforms of arginine decarboxylase gene (ADC1 and ADC2) were used to reveal that the ADC2 



 

x 

isoform is the major contributor to basal defenses. I detected the typical PTI response in plants 

after treatment with exogenous putrescine, such as higher expression of PTI marker genes, 

callose deposition in leaves and enhanced disease resistance against bacterial pathogens. 

Moreover, RBOHD and RBOHF loss-of-function mutants were used to confirm that apoplastic 

ROS burst contributes to Put-induced signaling. Overall, the data are consistent with Put 

reinforcing PTI signaling during defense. 

 

In Chapter 2, We used a comprehensive RNA-sequencing analysis to investigate early 

transcriptional responses triggered by each of the most abundant polyamines (putrescine, 

spermidine, spermine, thermospermine and cadaverine) in Arabidopsis thaliana. The data 

indicate that polyamines, rather than being mere metabolic markers of stress, elicit stress 

signaling involving defense sectors. Similar to Pseudomonas syringae pv. tomato DC3000 

AvrRpm1 (Pst AvrRpm1), Put induced SAR was largely dependent on the production of 

hydrogen peroxide and salicylic acid (SA), as well as the expression of EDS1 (enhanced disease 

susceptibility) and NPR1 (non-expressor of pathogenesis related genes 1). Copper amine 

oxidase (CuAO) mutants involved in putrescine oxidation were compromised in basal defenses 

and/or putrescine and pathogen – triggered systemic resistance. These results reveal the 

contribution of Put oxidation to SA-dependent systemic defenses in Arabidopsis thaliana. 

 

In Chapter 3, I describe the contribution of GLUCAN SYNTHASE-LIKE, GSL2/10 to the 

temperature conditioned immune-related hybrid incompatibility (HI) between Arabidopsis 

thaliana accession Ler and Kas-2. Or in other words, the contribution of callose to the 

establishment of ETI. We performed a suppressor screen of Ler/Kas-2 HI by EMS (ethyl 

methanesulfonate) mutagenesis and mapped causal genes by genome sequencing. Candidate 

genes were tested by the generation of artificial microRNA targeting GSL2 or GSL10 in the 

Ler/Kas-2 HI (NIL) autoimmune background. Through measurement of SA level and 

expression of SA pathway reported genes, I concluded that ETI is suppressed by GSL2 or 

GSL10 mutation. Callose detection in response to mechanical wounding, flagellin 22 (flg22) 

and bacteria inoculation revealed that ETI but not callose deposition is impaired in these 

mutants.  



 

xi 

In the Discussion, I summarize key findings from the three chapters and discuss about 

the outcomes of my research. I finalize with main conclusions derived from the different 

chapters.  
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1.1. The model plant Arabidopsis thaliana   

Plants play a critical role in the world, not only providing food and sustainable 

agricultural resources but also mediating in the quality of the environment (Shameer et 

al., 2019). Land plants originated from streptophyte algae 870–962 million years ago 

(Mya) and diversified into living lineages during the mid-Palaeozoic era (471–480 Mya) 

(Kenrick and Crane, 1997; Wellman et al., 2003). The first seed-producing plant evolved 

between 310 to 350 Mya (Doyle, 2012; Magallón et al., 2013). The most recent common 

ancestor of angiosperms likely arose between 140 to 250 Mya (Sauquet et al., 2017; 

Foster et al., 2017). Plant species are various in size, configuration, structure and 

physiological behavior. They inhabit in most parts of lands, oceans, lakes and rivers 

(Willis and McElwain, 2014). Currently, the known number of plant species is ca 

374,000, of which approximately 295,383 are flowering plants (Christenhusz and Byng, 

2016).  

The Brassicales, which originated around 70 Mya, is an important family in the plant 

kingdom. It contains five family groups: Brassicaceae (Cruciferae), Capparidaceae, and 

Cleomaceae; Akaniaceae and Tropaeolaceae (Edger et al., 2018). The Brassicaceae 

family contains ~3,628 species that mainly live in North temperate zones (Christenhusz 

and Byng, 2016). It contains approximately 328 genera within the Dicotyledons class, 

Dilleniidae subclass, Cleome gynandra order and Brassicales family. Many crops are 

included in this family, such as cabbage and mustard (Brassica), radish (Raphanus) and 

woad (Isatis tinctorial, Isatis), which is widely used as dye and it has some medicinal 

properties (Hamburger, 2002). Notably, the most used model organism in plant sciences 

is the genus Arabidopsis, which also belongs to the Brassicaceae family (Warwick et al., 

2006).   

Arabidopsis evolved about 20 - 40 Mya when the Camelinae tribe diverged from the 

Brassicaceae family (Franzke et al., 2011). (Figure 1). Arabidopsis was first discovered 

by Johannes Thal in the Harz Mountains (Germany) in 1577 (Krämer, 2015). The present 

name Arabidopsis thaliana (L.) Heynh was first published in 1753 by Linnaeus. 

Currently, the number of Arabidopsis species is ten and contains more than 20 subspecies, 

such as Arabidopsis thaliana, Arabidopsis lyrata, Arabidopsis arenosa and Arabidopsis 

croatica (Koch et al., 2006; Hohmann et al., 2015). Arabidopsis thaliana was first used 

in the research studies by Friedrich Laibach in the 1940s (Koornneef and Meinke, 2010), 

and systematically collected from the wild since then. Arabidopsis thaliana inhabits 
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mutagenesis method for gene‐tagging (Lloyd et al., 1986; Clough and Bent, 1998; Zhang 

et al., 2006). The capacity of self-fertilization maintains homozygosity of the different 

transgenic lines and wild accessions over generations, while it is also possible to perform 

crosses when necessary (Wright et al., 2003; Guo et al., 2009). On the other hand, 

compared with other model species such as maize or pea, the commonly used Arabidopsis 

accessions, such as Columbia (Col-0) and Landsberg erecta (Ler), have a shorter life 

history, six to eight weeks, under optimal conditions, thus enabling rapid genetic analysis.  

All of the features described above make Arabidopsis a remarkable model system to 

investigate  the development, physiology, biochemistry and genotype-by-environment (G 

x E) interactions studies over forty years (Meinke et al., 1998; Alcázar et al., 2014; 

Dittrich et al., 2019).  

 

1.2. The Plant immune system   

Plants regularly confront various adverse stresses, generally categorized as biotic and 

abiotic. It is reported that 28 – 42% of annual worldwide crops losses (corn, wheat, soy, 

oats and barley) are due to disease caused by diverse pathogens (viruses, fungi, bacteria, 

oomycetes and nematodes) and herbivores. Another 6 – 20% loss is caused by abiotic 

stresses such as drought, flood, salinity, nutrient deficiencies, extremes in temperature 

and heavy metals (Mahajan and Tuteja 2005; Asensi-Fabado, Amtmann, and Perrella 

2017; Shameer et al., 2019). Unlike animals, plants lack mobility or an adaptive immune 

system (Jones and Dangl, 2006). To make this through, plants acquired complex and 

effective defense systems during evolution. 

Plants rarely grow without the threat of pathogen colonization in natural environments, 

and their confrontation relies on a multi-layered system of innate immunity (Wiermer et 

al., 2005). The multi-layered plant immune system is described as the “zig-zag” model 

(Jones and Dangl, 2006; Glazebrook and Roby, 2018).  

Pathogens have adopted different strategies for plant colonization. For instance, 

pathogenic bacteria proliferate in the apoplast after entering through the stomata, 

hydathodes, or via wounding. Germinating spores from fungi can penetrate the epidermal 

cells directly (Jones and Dangl, 2006). After pathogen’s break of the physical barriers, 

plant defense relies on two layers of pathogen recognition (Chisholm et al., 2006; Jones 

and Dangl, 2006; Yeats and Rose, 2013). Pathogen associated molecular patterns 
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(PAMPs) and microbial associated molecular patterns (MAMPs) are conserved microbial 

elicitors which are directly recognized by cell-surface-localized pattern recognition 

receptors (PRRs). These receptors are comprised of receptor kinases (RKs) and receptor-

like proteins (RLP), which initiate PAMP-triggered immunity (PTI) (Boller and Felix, 

2009; Macho and Zipfel, 2014). Similarly, the signals may be derived from the plant itself 

because of the damage caused by microbes, which involve damage-associated molecular 

patterns (DAMPs) released by damaged cells to warn their healthy neighbors (Lotze et 

al., 2007; Morimoto and van der Hoorn, 2019). 

In the next stage, to enhance microbial fitness, pathogens deliver effectors or virulence 

proteins into the host cell through blocking or delaying PTI signaling and/or defense 

output. This effector-triggered susceptibility (ETS) makes the host susceptible to 

pathogens (the ‘zag’). However, the effectors are also directly or indirectly recognized by 

intracellular receptors proteins containing nucleotide-binding leucine-rich repeat (NB-

LRR or NLR) domains, which are encoded by resistance (R) genes, and activate effector-

triggered immunity (ETI) (Jones and Dangl, 2006). Most R genes code for NLR proteins 

that recognize the ‘modified-self’ by-products of ETS (another ‘zig’). The outcome from 

the interaction then depends on the total sum of [(PTI - ETS) + ETI] (Nishimura and 

Dangl, 2010) (Figure 2). This attack-and-response can occur in multiple rounds of ETS, 

accompanied by a series of defense events. For instance, global defense gene up-

regulation, programmed cell death (hypersensitive response, HR), accumulation of 

reactive oxygen species (ROS) and phytohormones such as jasmonic acid (JA), ethylene 

(ET) and salicylic acid (SA) (Jones and Dangl, 2006; Hein et al., 2009).  

 

1.2.1. PAMP and DAMP - triggered immunity 

PAMP or MAMP - triggered immunity (PTI) is a complex set of responses intended 

to resist against pathogen attack through a series physiological and biochemical reactions 

happening in due succession (Ausubel, 2005). A given PAMP/MAMP is recognized by a 

specific PRR to initiate PTI. For instance, elongation factor Tu (EF-Tu), an 18 amino acid 

long eliciting epitope (elf18) from Escherichia coli, and chitin (a component of fungal 

cell walls) are perceived by the EF-Tu receptor (EFR) (Zipfel et al., 2006; Katagiri and 

Tsuda, 2010). Flg22 is a conserved 22 - amino acid epitope from bacterial flagellin of 

Pseudomonas aeruginosa and it is recognized by the LRR receptor Flagellin sensing 2 
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MAPK3, MAPK4, and MAPK6 activation is dependent on BIK1 and its homolog PBL1 

(avrPphB suseptible 1-like 1) but not CDPKs (calcium-dependent protein kinases) 

(Boudsocq et al., 2010; Feng and Zhou, 2012). Several transcription factors are essential 

for the following signaling, like WRKY33 which interacts with MAPK3/MAPK6 leading 

to camalexin (phytoalexins ) biosynthesis (Qiu et al., 2008; Mao et al., 2011). 

The early responses to PAMP/DAMP, including ion influx (Ca2+ burst), generation of 

reactive oxygen species (ROS burst), and other small signaling molecules such as reactive 

nitrogen species (RNS), nitric oxide (NO) and lipids, like phosphatidic acid and 

ceramides (Di Meo et al., 2016). Ca2+ burst can depolarize the plasma membrane, and 

furtherly trigger the influx of H+, efflux of K+, Cl– and NO3–, and activation of CDPKs 

(Okazaki and Saito, 2014; Bigeard et al., 2015). 

ROS burst is one of the early hallmark events in the PTI response. In Arabidopsis, the 

plasma membrane-localized NADPH (nicotinamide adenine dinucleotide phosphate) 

oxidases RBOHD/F (Respiratory burst oxidase homolog D and F) are responsible for 

ROS production (Nühse et al., 2007; Ranf et al., 2011; Liu et al., 2019). To enter the 

cytosol, apoplastic superoxide (O2.– ) is catalyzed to hydrogen peroxide (H2O2) by 

apoplastic superoxide dismutase (SOD) (Nühse et al., 2007). ROS can act as 

antimicrobial agents directly or may indirectly contribute to defense causing cell wall 

cross-linking. In addition, ROS may serve on secondary stress signals to induce various 

defense responses (Apel and Hirt, 2004). MAMP/DAMP-induced ROS burst has a 

positive feedback effect on cytosolic Ca2+ levels via inducing an additive cytosolic Ca2+ 

elevation (Ranf et al., 2011). The following events of PTI are the production of 

antimicrobial compounds including camalexin, defense-related proteins/peptides (PR1, 

pathogen related gene 1) (Cowan, 1999; Bednarek, 2012; Ahuja et al., 2012; Bigeard et 

al., 2015), activation of MAPKs (O’Brien et al., 2012), and a programmed cell death 

(PCD) to limit pathogen progression (Mur et al., 2008).  

SA, JA and ET are the major phytohormones implicated in plant innate immunity. SA 

signaling is usually involved in the defense against biotrophic or hemibiotrophic 

pathogens, while JA and ET signaling are essential against necrotrophic pathogens 

(Glazebrook, 2005). The SA and JA/ET sectors are mutually inhibitory in many cases 

(Tsuda et al., 2009). These hormones make a positive contribution individually upon 

PAMP/DAMP perception, since production of SA, JA and ET are activated (Tsuda et al., 

2009). In Arabidopsis, several thousand genes, including genes involved in SA, JA and 
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ET, are deregulated by flg22 treatment. ETI and PTI share SA signaling in Arabidopsis, 

as SA is required for the regulation of SA-responsive genes during PTI, while during ETI, 

most responsive genes (including PR1) are regulated by SA-independent mechanisms 

(Nomura et al., 2011; Tsuda et al., 2009; 2013). 

Callose deposition is one of the later events in the PTI response. Callose and other 

secondary metabolites reinforce the cell wall at the infection sites. Polyamines also 

display strong accumulation in response to PAMP/DAMP, and this response requires 

H2O2 production (Brown et al. 1998; Iriti and Faoro 2009; Liu et al., 2019). Seedling 

growth is inhibited by PAMPs such as flg22 and elf26. This response may reflect a 

tradeoff between fitness growth and immune resistance of plants. This effect explains the 

inducible nature of defense responses in plants, and the stunted phenotype of autoimmune 

hybrids (Alcázar et al., 2009). 

 

1.2.2. Effector-triggered immunity  

To combat virulent pathogens, plants utilize a second layer of the innate immune 

system, known as effector-triggered immunity (ETI) (also known as R gene–mediated 

resistance). Effectors are molecules produced by pathogens, which can be proteins, 

nucleic acids, carbohydrates or metabolites that suppress the PTI response. These 

effectors are usually injected into the plant cell by the type three secretion system (TTSS), 

and can be detected by plasma membrane localized NLR receptor proteins (Bos et al., 

2010; Prince et al., 2014; Li et al., 2016). Arabidopsis contains approximately 150 NLR 

proteins (Meyers et al., 2003), which are classified into two groups based on the structure 

of their N-terminus. The CNL (CC-NB-LRR) group, contains an N-terminal coiled-coil 

domain, whereas the TNL (TIR-NB-LRR) group contains an N-terminal Toll/interleukin-

1 receptor (TIR) motif (van Wersch et al., 2020). Peng et al. (2018) also classified all 

known PRRs into receptor-like kinase (RLK) or receptor-like protein (RLP) families. On 

the other hand, plant pathogens have been shown to possess a considerable number of 

effectors. For example, there are between 30 to 50 effector proteins in the bacterial 

pathogen Pseudomonas syringae (Pst) (Buell et al., 2003). Recognition of effectors by 

NLR receptors are through three possible ways, i) receptor-mediated direct interaction 

(Dodds and Rathjen, 2010), ii) accessory non-canonical protein (or guardee/decoy) 

mediated indirect interaction (Dangl and Jones, 2001; Hogenhout et al., 2009), iii) via the 
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“integrated decoy” model in which the decoy is integrated in the NLR protein structure 

(Cesari et al., 2014).  

 

Participation of RIN4 in ETI 

One of the most well studied proteins mediating ETI is RIN4 (RPM1 interacting protein 

4). Here, I summarize the main molecular characteristics of RIN4 and associated 

receptors as an example of the guard-guardee model. The host protein RIN4 (guardee), is 

targeted by multiple effectors from Pseudomonas syringae (Pst) including TTSS effectors 

AvrRpm1, AvrRpt2 and AvrB in Arabidopsis. AvrRpt2, a cysteine protease, cleaves and 

degrades RIN4, while AvrRpm1 and AvrB induce the phosphorylation and inactivation 

of RIN4 (Hou et al., 2011). Two plasma membrane-located NLR, RPM1 (resistance to 

Pseudomonas syringae maculicola protein 1) and RPS2 (resistance to Pseudomonas 

syringae 2) are associated with RIN4 and sense these changes in RIN4, thus triggering 

ETI (Mackey et al., 2002; Belkhadir et al., 2004; Jones et al., 2016). Therefore, RPM1 

and RPS2 respond to perturbations of RIN4 ‘guarding’ the plant against these bacteria 

effectors (Kim et al.,2009). RPS2- and RPM1- mediated disease resistance leads to 

phosphatidic acid production and influx of extracellular Ca2+ followed by ROS and NO 

signaling (Nomura et al., 2012). Moreover, a single NLR may activate distinct signaling 

pathways in the cytoplasm and nucleus (Heidrich et al., 2013). 

Recognition and mode of action of other pathogen effectors 

The molecular mechanisms by which pathogen effectors are recognized are very variable. 

For instance, the Pst effector AvrRps4 is recognized by the TNL receptor RPS4, which 

is localized at endomembrane and inside nucleus. The plant defense regulator EDS1 

(enhanced disease susceptibility 1), a lipase-like protein, is an essential component of 

RPS4 (resistance to Pseudomonas syringae 4) - triggered ETI (Gassmann et al., 1999; 

Wirthmueller et al., 2007), forming the EDS1-RPS4 complex in the nuclei and cytoplasm 

with defense co-regulators PAD4 (phytoalexin deficient 4) and SAG101 (senescence 

associated gene 101) (Feys et al., 2001; 2005; Bhattacharjee et al., 2011; 2013; Heidrich 

et al., 2013).  

The Pst effector HopAO1 is a protein effector with tyrosine phosphatase activity 

(Underwood et al., 2007), that targets a specific Tyr residue of the PRR EFR (also 
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probably FLS2) by phosphorylation, to inhibit ligand-induced activation of the PRR, and 

suppresses the subsequent immune response (Espinosa et al., 2003; Macho et al., 2014). 

Instead of targeting NLR receptors, the HopAI1 can directly target the PRR downstream 

signaling cascades and inactivate MAPK3, MAPK4 and MAPK6 by dephosphorylating 

these kinases (Zhang et al., 2007). The HopF2 effector inactivates MKK5 (and probably 

other MKKs) to suppress downstream defense responses by inhibiting MAPK signaling 

(Wang et al., 2010; Mukhtar et al., 2011; Feng and Zhou, 2012). The effector AvrB was 

also reported to regulate hormone signaling by inducing MAPK4 phosphorylation, thus 

enhancing plant susceptibility (Cui et al., 2010). 

An alternative way to suppress immunity is by targeting components upstream of MAPKs 

through pathogen effectors. For instance, Pst AvrPto and AvrPtoB could directly target 

the PAMP receptors FLS2, EFR and CERK1 (chitin elicitor receptor kinase 1) to block 

PTI. BAK1 kinase activity is inhibited by AvrPtoB, and likewise, BIK1 is cleaved and 

uridylylated by AvrPphB and AvrAC to inhibit PTI signaling (Meng and Zhang, 2013). 

Plant pathogens produce not only protein effectors, but also small molecules such as the 

phytotoxin Phevamine A from Pst, which suppresses the polyamine biosynthesis pathway 

and plant immune response, therefore promoting bacteria colonization (O’Neill et al., 

2018). In addition, coronatine, which is present in most bacteria, disrupts plant immune 

signaling through structurally mimicking the plant hormone JA-isoleucine (JA-Ile) 

(Petersen et al., 2000; Geng et al., 2014). NLR-mediated immune responses can induce 

overlapping of SA, JA and ET signaling pathways (Miché et al., 2018). In contrast to PTI, 

ETI induces more durable and long-lasting responses, thereby causing programmed cell 

death, leading to pathogen resistance (Zhang and Zhou, 2010; Peng et al., 2018; Ramirez-

Prado et al., 2018).  

 

1.2.3. Systemic acquired resistance (SAR)  

Besides local defense mechanisms, immune responses can be induced at whole plant 

level against a broad-spectrum of pathogens. One of these systemic defense signaling 

responses is induced systemic resistance (ISR), which is triggered by beneficial 

rhizobacteria in roots (Van Wees et al., 2008). The other mechanism is systemic acquired 

resistance (SAR), which is induced by pathogen infection or certain chemicals applied to 

local tissues. SAR is a mechanism of long-lasting global resistance against a broad range 
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of pathogens and insect herbivores followed by primary treatment with chemicals, 

bacterial or fungal pathogens (Kohler et al., 2002; Fu and Dong, 2013; Conrath et al., 

2015). SAR was first described by Frank Ross in 1961. Since then, SAR has been 

observed in a wide variety of plant species (Chester, 1933; Ross, 1961; Spoel et al., 2003; 

Pieterse et al., 2009; Fu and Dong, 2013). SAR is also induced by PTI and ETI, and 

involves the biosynthesis of SA, systemic expression of PR genes, ROS production and 

and/or cell death (Pieterse et al., 2014). SAR also downregulates photosynthesis and 

growth-related processes, and counteracts the fitness disadvantage resulted from disease 

invasion (Ryals et al., 1996; Fu and Dong, 2013). 

Tobacco plants challenged with tobacco mosaic virus (TMV) induce SAR as early as 4 

to 6 h after primary infection. Enhanced disease resistance in distant leaves (uninfected 

leaves) is detected about 48 h post primary inoculation, reaching a maximum of resistance 

at 7 to 10 days post-inoculation (dpi), which persists up to 20 dpi (Ross, 1961; Klessig et 

al., 2018). Moreover, epigenetic alterations by modulation of DNA methylation at the 

promoters of defense-related genes enable SAR transfer to the next generation (Luna et 

al., 2012; Slaughter et al., 2012).  

To date, a number of SAR inducers have been reported. These include, SA and its 

derivative MeSA (Durrant and Dong, 2004; Park et al., 2007), the plastid lipid-derived 

oxylipin acid azelaic acid (AzA) (Jung et al., 2009; Cecchini et al., 2019), glycerol-3-

phosphate (G3P) (Chanda et al., 2011), the abietane diterpenoid dehydroabietinal (DA) 

(Chaturvedi et al., 2012), the lysine (Lys) derivative N-hydroxypipecolic acid (NHP) 

(Návarová et al., 2013), free radicals, nitric oxide (NO) (Wendehenne et al., 2014) and 

reactive oxygen species (ROS) (Wang et al., 2014). Moreover, both AzA and G3P 

function downstream of NO and ROS (Lim et al., 2016a). Among these inducers, SA 

regulates one branch, whereas AzA, G3P, NO and ROS participation on SAR seem to be 

on another separated branch (Shine et al., 2019). 

The lipid transfer protein (LTP) family homolog, DIR1 (defective in induced resistance 

1), the LTP-like protein AZI1 (azelaic acid induced 1) and its closest paralog EARLI1 

(early Arabidopsis aluminium induced 1) are required for the SAR signaling transport 

(Jung et al., 2009; Klessig et al., 2018). DIR1, AZI1 and EARLI1 are SAR-specific 

components proposed to form SAR complexes as part of a functional unit. Mutants of 

AZI1 and DIR1 not only lack SAR but are also not responsive to AzA. 
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unable to perceive though can generate the SAR signal (Singh et al., 2017; Shine et al., 

2019). 

 

1.2.4. Salicylic acid and SAR 

SAR response is associated with the accumulation of SA. Both ICS1 (isochorismate 

synthase 1, also known as SA induction deficient 2, SID2) and PAL5 (phenylalanine 

ammonia-lyase 5) biosynthesis pathways contribute to SAR, while the former contributes 

the most to SA biosynthesis. Arabidopsis possesses two ICS genes, ICS1 and ICS2, 

however, only ICS1 is upregulated during pathogen-inoculation and in systemic leaves in 

the course of SAR (Hartmann and Zeier, 2019). Levels of SA and its derivative methyl 

SA (MeSA) increase in local and systemic tissues during SAR. However, SA levels in 

distal tissues are significantly lower than in infected ones (Gao et al., 2015). SA is not the 

mobile signal during SAR, since grafting experiments using transgenic tobacco plants 

expressing the NahG gene (salicylic hydroxylase) exhibit normal SAR (Yamamotoj et al., 

1965; Vernooij et al., 1994; Kiefer and Slusarenko, 2003). However, SA accumulation is 

necessary for the induction of local resistance expression (Malamy et al., 1996). It is 

speculated that MeSA may function in delivering SA to distal tissues (Meuwly et al., 

1995; Gao et al., 2015). MeSA synthesized from SA by benzoic acid/SA 

methyltransferases (SAMT/BSMT), is transported through the phloem, and then 

converted back to SA by the MeSA esterase SA binding protein (SABP) (Chen et al., 

2003; Kumar and Klessig, 2003; Koo et al., 2007). SA signaling functions in parallel with 

the AzA/G3P-derived branch to regulate SAR (Hunt et al., 1996; Durrant and Dong, 2004; 

Conrath et al., 2006; Fu and Dong, 2013; Ding and Ding, 2020). Lim et al. (2016a) 

showed that the intracellular movement of SA occurs via the apoplastic compartment 

(Figure 3). On the other hand, pathogen induced SA accumulation in infected cells can 

hinder the intercellular movement of SAR signals solutes, such as AzA, G3P via the PD 

to the neighbor cells, since SA application reduces PD permeability (Lim et al., 2016a; 

Wang et al., 2013) by action of  the PD-localizing protein 5 (PDLP5) (Lee et al., 2011) 

(Figure 3). SA-accumulation and immunity during SAR are positively regulated by 

lipase-like proteins EDS1, PAD4, the integrin-like protein NDR1 (non-race-specific 

disease resistance 1) and SID2 in distant leaves (Fu and Dong, 2013; Shah et al., 2014). 

In addition, SA signaling is positively regulated by MAPK3 and MAPK6 activity 

(Beckers et al., 2009), while MAPK4 cascade negatively regulates SA signaling (Petersen 
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et al., 2000). On the other hand, SA accumulation can drive NPR1 (non-expressor of 

pathogenesis-related 1), a SAR regulator, interact with TGA transcription factors, thus 

activate defense related transcription and redox changes, which in turn induce systemic 

PR protein expression (Després et al., 2003; Mou et al., 2003; Wang et al., 2005). 

Recently, Wang et al. (2020) reported that SA binds the core domain of NPR4 (non 

expressor of pathogenesis-related 4), whereas NPR1 displays minimal SA-binding 

activity compared to NPR4. Pathogen associated cell death is not required for SAR 

response, as the application of SA stimulated SAR downstream from cell death 

(Hartmann et al., 2018; Shine et al., 2019). On the other hand, during SAR, activation of 

SA suppresses pathogen-inducible JA responses in systemic tissues, while JA promotes 

SAR signaling by upregulating MeSA production in the inoculated leaves (Dempsey and 

Klessig, 2012; Bernsdorff et al., 2016). 

 

1.2.5. ROS and SAR 

Pathogen infection leads to the accumulation of SA and nitric oxide (NO), which 

trigger the accumulation of ROS via an amplification loop. ROS, in turn, generate AzA 

from unsaturated fatty acids (FAs). AzA then induces the synthesis and accumulation of 

G3P, which travels symplastically to the phloem and, together with SA, induces SAR (Yu 

et al., 2013; Lim et al., 2016c; Klessig et al., 2018). 

Elevated levels of H2O2 function as a second messenger for SA during SAR signal 

transduction (Chen and Klessig, 1991; Ryan et al., 1995). However, it has been reported 

that the establishment of SAR does not necessarily correlate with increased H2O2 levels 

in tobacco leaves (Hunt et al., 1997). Nevertheless, very high phytotoxic levels of H2O2 

(1 M) can induce PR1 gene expression and this induction is dependent on the ability of 

the plant to accumulate SA, while potentiating the free radical burst associated with local 

defense responses (Marrè et al., 1998). RBOH generate ROS, and RBOHD/F are 

functionally non-redundant in SAR-related ROS generation. Additionally, NO also serves 

as a mobile reservoir for NO (Wang et al., 2013). Like ROS, NO is also highly 

concentration dependent. Too low or too high levels of NO can inhibit SAR (Wang et al., 

2014). In plants, NO can be directly synthesized from nitrate by the nitrate reductases 

NIA1 and NIA2, which are functionally non-redundant in SAR. In addition, the GTPase 

AtNOA1 (NO associated protein 1) also contributes to NO levels via an unknown 
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mechanism (Shine et al., 2019). Pathogen-induced NO accumulation also depends on 

RBOHD and RBOHF (Wang et al., 2014) . 

1.2.6. N-hydroxypipecolic acid and SAR 

Pipecolic acid (Pip), is a non-peptide amino acid, which is the precursor of N-hydroxy-

pipecolic acid (NHP), and plays an important role in inducing SAR signal transduction, 

since it accumulates in local and distal tissues upon pathogen inoculation in Arabidopsis 

(Návarová et al., 2013; Chen et al., 2018). Pip might be a mobile metabolite and it is 

indispensable for SAR since it is enriched in the petiole exudates of inoculated leaves 

(Návarová et al., 2013; Bernsdorff et al., 2016). The aminotransferase ALD1 (AGD2-like 

defense response protein 1) and SARD4 (SAR-deficient 4) are involved L-Pip 

biosynthesis from lysine in plastids (Song et al., 2004; Ding et al., 2016). Both ALD1 and 

FMO1 are induced in inoculated and systemic tissues during pathogen infection, and their 

induction is independent of SA accumulation (Mishina and Zeier, 2006). Notably, ALD1 

is an essential SAR component which is upregulated in both local infected and systemic 

tissues (Song et al., 2004). It has been reported that one or more ALD1-generated, non-

Pip metabolites or Pip precursor may regulate basal resistance (Cecchini et al., 2015a; 

Hartmann et al., 2017). FMO1 (flavin-dependent-monooxygenase 1) is also required for 

Pip accumulation in distal leaves, as Pip cannot trigger SAR in fmo1 mutants (Návarová 

et al., 2013).  

During SAR, SA synthesis appears to be regulated by a positive feedback loop involving 

Pip, ALD1, SARD4, FMO1 and PAD4 (Návarová et al., 2013; Ding et al., 2016; 

Hartmann et al., 2017). SA and Pip pathways contribute to basal resistance independently 

from each other and synergistically upon pathogen infection. On the other hand, petiole 

exudates from ALD1 overexpressing Arabidopsis plants can enhance basal resistance 

though not elevating the levels of Pip or SA. 

1.3. ROS generation in the apoplast 

In plants, ROS include hydrogen peroxide (H2O2), superoxide (O.-), singlet oxygen 

(1O2), and hydroxyl radicals (•OH). ROS is produced in various subcellular compartments,

such as plasma membrane, cell wall, mitochondria, chloroplasts and peroxisomes / 
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glyoxysomes (Singh et al., 2016). ROS is produced in response to biotic and abiotic 

stresses to support cell wall remodeling, to act as signal molecules regulating plant growth, 

development, and to provide a toxic effect (Suzuki et al., 2011; Marino et al., 2012; Qi et 

al., 2017). There are three main sources of apoplastic ROS upon pathogen inoculation: 

plasma membrane-localized NADPH/NADH oxidases RBOHs (Kadota et al., 2015), cell 

wall peroxidases (PRX) and amine oxidases (AO) (Daudi et al., 2012; Qi et al., 2017). 

The function of RBOH-dependent apoplastic ROS production has been studied in various 

plant species (Zhang and Zhou, 2010; Marino et al., 2012; Le Roux et al., 2015). 

Arabidopsis contains ten RBOH members encoded by RBOHA to J genes (Torres et al., 

2005), among them, RBOHD and RBOHF play vital roles in the production of apoplastic 

ROS, regulating stomata closure and triggering hypersensitive response (HR) during 

plant-pathogen infections (Torres et al., 2002; Suzuki et al., 2011; Morales et al., 2016; 

Liu et al., 2019). RBOHs transfer electrons from cytosolic NADPH or NADH to 

apoplastic oxygen, leading to the production of superoxide (O.-), which can be converted 

into H2O2 by superoxide dismutase (SOD) (Suzuki et al., 2011; Marino et al., 2012; 

Kadota et al., 2015). H2O2 often functions as an intercellular signal, and triggers long-

distance signaling by entering neighboring cells (Miller et al., 2009; Suzuki et al., 2013; 

Mittler and Blumwald, 2015). 

RBOHD-dependent ROS production in response to MAMPs/DAMPs regulates lignin 

biosynthesis, callose deposition (Luna et al., 2011; Poovaiah et al. 2014), proline 

accumulation and antioxidant defenses (Ben Rejeb et al., 2015). Moreover, 

phytohormones, such as ET and SA regulate ROS production through RBOHD activity 

(Boutrot et al., 2010; Yi et al., 2014). In addition to RBOHD, class III peroxidases (PRXs) 

are also widely responsible for apoplastic H2O2 accumulation during PTI. RBOHD-

mediated rapid ROS production triggers a secondary PRX33/34-dependent ROS 

production (Nühse et al., 2007; Zhang et al., 2007). Both ROS and callose deposition are 

compromised in PRX34 defective lines upon flg22 treatment, thus leading to enhanced 

susceptibility to pathogens (Zhao et al., 2019).  

Amine oxidases catalyze the oxidative de-amination of polyamines, ubiquitous 

polycationic compounds involved in crucial events in the life of cells (Seiler, 2004; 

Tiburcio et al., 2014). Amine oxidases include the copper-containing amine oxidases 

(CuAO) and the flavin-containing polyamine oxidases (PAO). In plants, apoplastic CuAO 
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and PAO directly produce H2O2 (Cona et al., 2006; Guo et al., 2014). (See “biosynthesis 

of polyamines” section) 

 

Collectively, SAR is a critical event of the plant’s overall immune response and it is 

involved in complex signaling networks and physiological processes. The parallel 

operation and transport of different chemical signals (NO-ROS-AZA-G3P and SA) 

during SAR is likely advantageous, as it enables plants to simultaneously engage multiple 

physiological processes in response to stress. The availability of multiple points at which 

the NO- and SA-derived pathways can be co-regulated facilitates a tighter control of SAR 

(Shine et al., 2019). The different transport routes of SA compared to AzA or G3P likely 

provide multiple avenues for controlling the transport of these defense chemicals and 

thereby minimizes the chances of non-specific activation of defense processes in systemic 

tissues. 

 

1.4 Introduction to polyamines in plants 

Polyamines (PAs) are water-soluble aliphatic polycationic amino groups, widely 

present in almost all eukaryotic organisms (Pegg and McCann, 1982; Wallace et al., 

2003). PAs were first discovered by van Leeuwenhoek in 1678 from human semen (van 

Leeuwenhoek, 1678). The most common polyamines are the diamines Cadaverine (Cad) 

and putrescine (Put), triamine spermidine (Spd), and tetramine spermine (Spm) as well 

as its structural isomer thermospermine (tSpm). Notably, Arabidopsis does not contain 

Cad (Figure 4A). In plants, PAs generally occur as free or hydroxycinnamic acid 

conjugated forms. PAs play crucial roles in, i) cellular processes such as cell growth, 

differentiation, gene expression, DNA and protein synthesis; ii) physiological processes 

like organogenesis, embryogenesis, floral initiation and development, leaf senescence, 

pollen tube growth, fruit development and ripening; iii) in various stresses responses, as 

PAs can induce NO and ROS accumulation (Evans and Malmberg, 1989; Seiler, 2004; 

Alcázar et al., 2006a; 2010a; Kusano et al., 2007; Tiburcio et al., 2014; Agurla et al., 

2018; Recalde et al., 2018; Takahashi, 2020).  
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transfers aminopropyl residues to amine acceptors forming Spd, and then generates Spm 

by Spm synthase (SPMS, EC 2.1.22). The donor of the aminopropyl groups is 

decarboxylated S-adenosylmethionine (dcSAM), which is formed through the 

decarboxylation of S-adenosylmethionine (SAM) by SAM decarboxylase (SAMDC; EC 

4.1.1.50) (Slocum et al., 1984). In Arabidopsis, the key PAs biosynthesis genes are 

duplicated, for instance, two genes encoding ADC (ADC1 and ADC2), SPDS (SPDS1 and 

SPDS2), SPMS [SPMS and acaulis 5 (ACL5)] and SAMDC (SAMDC1 to SAMDC4) 

(Figure 4B) (Takahashi and Kakehi, 2010).  

 

Polyamine degradation involves one or more diamine oxidases (DAO, EC 1.4.3.6) and 

FAD-containing polyamine oxidases (PAO; EC 1.5.3.11), which oxidize the carbon 

adjacent to the secondary or the primary amino groups (Moschou et al., 2012; 

Tavladoraki et al., 2012; 2016). Arabidopsis contains five PAO genes, termed AtPAO1 

to AtPAO5, which proteins are located in the cytoplasm or peroxisomes  (Tavladoraki et 

al., 2006; Kamada-Nobusada et al., 2008; Takahashi and Kakehi, 2010; D. W. Kim et 

al., 2014). In some species including Arabidopsis, PAOs oxidize Spm to Spd and 

subsequently Spd to Put, producing H2O2 and 3-aminopropanal (Cona et al., 2006). PA 

catabolism by terminal oxidation or back-conversion are common pathway in plants 

(Figure 4B) (Moschou et al., 2008). 

DAOs are copper-containing amine oxidases (CuAOs) localized in the apoplast or 

peroxisomes that typically catalyze the oxidation of diamines Put or Cad at the primary 

amino groups, yielding Δ1-pyrroline, H2O2 and ammonia (NH4+) (Figure 4B) (Cohen, 

1998; Alcázar et al., 2010a). Arabidopsis possesses ten genes encoding CuAOs 

[AtCuAOα1, AtCuAOα2, AtCuAOα3 (AtCuAO2), AtCuAOβ (ATAO1 or AtAO1), 

AtCuAOγ1 (AtCuAO1), AtCuAOγ2, AtCuAOδ (AtCuAOδ2), AtCuAOζ (AtCuAO3), 

AtCuAOε1 (AtCuAOε) and AtCuAOε2 (AtCuAOδ1)], which are located in extracellular or 

peroxisomal compartments (Planas-Portell et al., 2013; Ghuge et al., 2015; Tavladoraki 

et al., 2016).    

1.4.2 Polyamines in response to stresses 

PAs play many roles during the stress response, like modulation of the ion channels, 

active oxygen scavenging, elicitation of resistance gene expression, cell membrane 

stabilization and maintenance of cellular pH (Alcázar et al., 2010a; Liu et al., 2018; Chen 
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et al., 2019 and reference therein). The charges of polyamines are positive (Spm > Spd > 

Put), thus can bind to negatively charged nucleic acids, proteins, cell wall (Walden et al., 

1997; Roussos and Pontikis, 2007), and modulate ion channels (Yamaguchi et al., 2006). 

PAs can regulate the size of ion channels, like K+ and Ca2+, thus strongly regulating pore 

opening and closure, which further controls water loss (Liu et al., 2000). Stress-induced 

PAs, especially Spm accumulation, are thought to be stabilizers rather than protecting the 

membrane system from denaturing (Hussain et al., 2011 and references therein; Romero 

et al., 2018). However, it has been reported that high level of Spd, and lower Put and Spm 

help to heat tolerance in alfalfa (Medicago sativa L.) (Zhuo et al., 2018). This suggests 

that the protective functions of PAs might be more evident in some species than others 

(Chen et al., 2019). In barley, the resistant cultivar accumulates higher Put and Spd levels 

than the susceptible one after infection of Blumeria graminis f. sp. hordei (Cowley and 

Walters, 2002).  

Considering the advantages of polyamines in response to external stimuli, some works 

focused on the exogenous application of polyamines to enhance resistance. Spm protects 

against high salt stress, and double Arabidopsis knockout-mutant acl5spms exhibits 

higher sensitivity to high salt compared to wild type, whereas this deficiency is restored 

by exogenous Spm but not Put or Spd (Yamaguchi et al., 2006). In Allium fistulosum, 

exogenous application of Put reduces oxidative damage through enhancing the 

antioxidant capacity, thereby stabilizing cell membranes under flooding stress (Yiu et al., 

2009). Moreover, it is also demonstrated that PAs regulate H2O2 and NO involved signal 

transduction during abiotic stress (Pál et al., 2015).  

The rate-limiting enzyme at the beginning of the polyamine biosynthesis pathway is 

ADC2, which expression is strongly induced by several abiotic stresses like drought, high 

salinity, mechanical wounding and osmotic stress (Perez-Amador, 2002; Urano et al., 

2005; Pál et al., 2018; Chen et al., 2019). On the other hand, during the response to 

pathogen infection, the expression and activity of both ADC1 and ADC2 are strongly 

upregulated (Fuell et al., 2010; Romero et al., 2018; Amrani et al., 2019). However, 

ADC2 makes more contribution to Put accumulation than ADC1 in the Arabidopsis 

response to certain bacterial pathogens (Rossi et al., 2015; Liu et al., 2019). Over-

expression of ADC2 leads to the accumulation of Put and higher tolerance to drought and 

cold stresses (Alcázar et al., 2006; 2010c). In contrast, Arabidopsis adc2 knockout mutant 

shows enhanced susceptibility to Pst DC3000 (Kim et al., 2013). Similar to ADC2, the 
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expression of SPDS1 and SPMS increases markedly under dehydration and high salinity. 

However, no changes in ACL5 and SPDS2 expression have been reported in response to 

any assayed stress (Urano et al., 2003; Alcázar et al., 2006a; 2006b). Expression of 

SAMDC2 is induced mainly by cold and low salinity, whereas SAMDC1 expression 

upregulation is caused by cold treatment in Arabidopsis cell suspensions (Vergnolle et 

al., 2005). 

Under stress conditions, PA levels in plants are also regulated by catabolic pathways 

which produce ROS (H2O2) (Bagni and Tassoni, 2001; Cona et al., 2006). PAs like Spm 

and Spd are regarded as potent inducers of NO in plants (Tun et al., 2006). Accumulation 

of H2O2 and NO triggered by Spd or Spm plays a critical signaling role in plant-pathogen 

interactions (Walters, 2003; Romero-Puertas et al., 2004; Yamasaki and Cohen, 2006; 

Hussain et al., 2011). PAs synergistic interplay with ABA, H2O2 and NO, thus regulating 

stomatal aperture during abiotic stress (Alcázar et al., 2010a; 2010b). In Arabidopsis, 

silencing of cytoplasmic PAOs enhances salinity tolerance through dampening ROS 

production (Sagor et al., 2016). Likewise, loss-of-function of PAO5 (atpao5-2 and 

atpao5-3) leads to constitutively higher tSpm levels which associated with increased salt 

tolerance (Zarza et al., 2017). Compared to untreated Arabidopsis plants, activities of 

CuAOs are higher in incompatible interactions between various plants and pathogens 

(Walters, 2003). AtCuAOα2, AtCuAOα3, AtCuAOγ1 and AtCuAOγ2 are also induced 

during dehydration recovery, wounding and Put treatment (Fraudentali et al., 2020), 

furtherly, AtCuAOα2 regulates arginine-dependent nitric oxide production (Groß et al., 

2017).  

On the other hand, exogenous application of PAs increases the activity of peroxidase 

(POD) and catalase (Cat), thereby reducing H2O2 levels. For instance, exogenous Spd 

application elevates the accumulation of endogenous PAs (Put, Spd and Spm), and 

improves drought tolerance associated with antioxidant defense in creeping bentgrass (Li 

et al., 2015). Conjugated PAs are more efficient as antioxidants than free forms as 

scavengers of free radicals (Edreva et al., 2007). Collectively, homeostasis of PAs is 

maintained by biosynthesis and oxidation processes, thereby modulating plant resistance 

in response to stresses (Mayer and Michael, 2003). 

Polyamines elicit defense signaling   

Spm accumulation after lesion formation during TMV (tobacco mosaic virus) - tobacco 

infection, is reported as an endogenous inducer of defense related to transcriptional 
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expression and resistance, which is SA–independent (Yamakawa et al., 1998). 

Additionally, in Arabidopsis, Spm was found to function as a signaling molecule that 

induces defense reactions (cell death) during the cucumber mosaic virus (CMV) infection 

(Mitsuya et al., 2009). Two MAPKs are involved in Spm stimulation activity, WIPK 

(wound-induced protein kinase) (Seo et al., 1995) and SIPK (salicylic acid-induced 

protein kinase) (Zhang and Klessig, 1997), which trigger the expression of downstream 

defense genes (Takahashi and Kakehi, 2010).  

1.4.3 The polyamine putrescine in response to stresses 

In Arabidopsis, Put accumulation due to high ADC activity enhances tolerance to salt 

(Kasinathan and Wingler, 2004), mechanical wounding (Perez-Amador et al., 2002), 

dehydration and freezing stress (Alet et al., 2011). Similarly, in barley, the levels of Put 

and Spm are increased after infection with the powdery mildew fungus 

Blumeria.graminis f.sp. hordei, which is accompanied by increased ADC activity 

(Cowley and Walters, 2002). Rossi et al. (2015) reported that isoforms of ADC might 

play partially redundant functions after infection with P. viridiflava. In addition, Put 

synthesis is highly induced by Pst DC3000 inoculation, while ADC1 transcript levels are 

only slightly upregulated (Kim et al., 2013). The ADC2 knockout mutant (adc2-1) shows 

more sensitive to salt stress, which can be partially reversed by exogenous application of 

Put (Urano et al., 2004). Compared to the wild type, Put biosynthesis defective mutants 

(adc1 and adc2) are more susceptible and exhibit reduced expression of PR 1 after 

infection with Pst DC3000 (Kim et al., 2013). Moreover, overexpression of the 

homologous ADC2 gene leads to the accumulation of Put but not Spd or Spm, and confers 

drought tolerance in Arabidopsis (Alcázar et al., 2010c). On the other hand, ADC1 also 

enhances Put accumulation during cold acclimation, leading to freezing tolerance in 

potato (Kou et al., 2018). The competitive inhibitor DL-α-difluoromethylarginine 

(DFMA) of ADC was used in rice seedling showed that inhibition of Put biosynthesis can 

enhance salt stress sensitivity and decrease Spd content (Yamamoto et al., 2017). 

Exogenous Put application increases not only the levels of endogenous PAs, but also the 

antioxidant enzyme activities, as well as proline content in Anthurium andraeanum (Chen 

et al., 2019).  

Moreover, Put reduces H2O2 and lipid peroxidation under NaCl stress in Brassica 

seedlings, since Put increased the activity of antioxidant enzymes and carotenoids (Verma 

and Mishra, 2005). In wheat, Put is found to act as an inducer of trichothecene mycotoxin 
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production during the infection of fungal pathogen Fusarium graminearum (Gardiner et 

al., 2010). Interestingly, Walters et al. (2002) reported that the infection of the first leaves 

with methyl jasmonate in barley seedlings, leading to increased levels of Put and Spd 

conjugates, and increased activity of biosynthetic enzymes and DAO, further enhancing 

resistance in uninfected distal leaves. In addition, mechanical wounding of the first leaves 

in oilseed rape (Brassica napus ssp. oleifera), leads to significant, but transient, increases 

of ADC activity and free Put in both wounded first leaf and in unwounded secondary 

leaves. The activity of CuAOs is significantly reduced in both local and systemic leaves, 

thereby Put catabolism is reduced (Cowley and Walters, 2005). These data suggested that 

PAs (Put) might trigger systemic resistance. Collectively, Put accumulation associates 

with high ADC activity and enhanced resistance or tolerance against various stresses. 

Despite the tremendous pioneering studies about polyamines during the plant stress 

response, the signaling pathways underlying polyamine functions have remained elusive. 

Here, we find that exogenous Put contributes to H2O2 and RBOHD/F dependent PTI 

response through a positive feedback loop. Furthermore, polyamines, and Put in particular 

trigger ROS-dependent salicylic acid pathway activation leading to systemic acquired 

resistance in Arabidopsis (See Chapters 1 and 2) 

 

1.5. Callose biosynthesis during defense  

The β-1,3 -D-glucan polysaccharide callose is synthesized by glucan synthase-like 

(GSL) enzymes, also known as callose synthases (CalS) (ANNEX I; Table S1) (Stone 

and Clarke, 1992). Callose deposits can be visualized by aniline blue staining under an 

epifluorescence microscope (Currier and Strugger, 1956). There are two types of callose: 

peripheral and interstitial callose (Nishikawa et al., 2005; Dong et al., 2005). Callose is 

an essential component during growth, development and defense response to stresses, 

which is synthesized by GSL proteins with UDP-glucose as substrate in plants (Xie and 

Hong, 2011). Callose accumulation is transient, with the polymer being removed once 

other polysaccharides such as hemicelluloses, pectins, and cellulose are deposited at the 

cell plate during cytokinesis (Samuels et al., 1995; Nishihama et al., 2002; Albersheim et 

al., 2010). 
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Arabidopsis has twelve glucan synthase family members (Hong et al., 2001), which are 

divided into two groups based on their biological functions. GSL1, GSL2, GSL6, GSL8 

and GSL10 constitute the largest group, which is mainly responsible for callose 

biosynthesis during pollen development and cell division (Drábková and Honys, 2017). 

GSL4, GSL5, GSL7 and GSL12 are involved in callose deposition during plugging, 

barrier formation, and other types of structural reinforcements (Hong et al., 2001; Ellinger 

and Voigt, 2014). For the rest GSL members, GSL3, GSL9 and GSL11 functions are as 

yet unclear (Drábková and Honys, 2017). Also, the GSL family can be classified into four 

main subfamilies based on phylogenetic analyses (Drábková and Honys, 2017).  

Callose contributes to the formation of sieve and cell plates, and it is involved in multiple 

developmental stages of male gametophytes (Chen and Kim, 2009). In addition, callose 

deposites at the plasma membrane and the cell wall as one of the many responses to 

wounding and pathogens, like fungi and oomycetes (Jacobs et al., 2003; Dong et al., 2005; 

Huang et al., 2009; Luna et al., 2011; Ellinger et al., 2013;  Drábková and Honys, 2017). 

Moreover, callose formation in papilla of higher plants contributes to innate immunity 

and associates with global transcriptional changes (Jones and Dangl, 2006; Ellinger et al., 

2013). Callose deposits are evidenced during DPI and PTI responses, and are considered 

as a marker of PTI activation (Clay et al., 2009; Luna et al., 2011). Callose is regarded as 

a potential target to achieve plant immunity in addition to its contribution to cell wall 

reinforcement, thus prevent further pathogen penetration (Chowdhury et al., 2016; 

Keppler et al., 2018). Indeed, callose inhibition studies in several Gramineae species 

including barley (Hordeum vulgare), wheat (Triticum aestivum), and oat (Avena sativa), 

reveal that penetration resistance to powdery mildew is especially suppressed in 

incompatible plant-fungus interactions (Zeyen et al., 2002). In addition, the effector 

Xanthan from Xanthomonas campestris pv. campestris induces plant susceptibility 

through suppressing callose deposition (Yun et al., 2006).  

Nowadays, more attention is addressed to the role of callose in the modulation of 

plasmodesmal permeability during stress responses and the regulation of cell-to-cell 

communication. Plasmodesmata (PD) are the indispensable pathway for virus spread in 

plants (Benitez-Alfonso et al., 2010). Thereby, callose deposition in PD channels could 

slow down virus infection (Demchenko et al., 2014). Callose deposits in PD can also 

mediate cell trafficking in response to biotic and abiotic stresses regulated by ROS and 

SA (Cui and Lee, 2016). 
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Callose and phytohormones 

Application of SA or BTH (2,1,3-benzothiadiazole) increases the production of callose 

deposits in response to wounding or microbes and significantly reduces virus movement 

(Kohler et al., 2002; Fernández-Crespo et al., 2017). Recently, Oblessuc et al. (2020) 

reported that callose deposition shares defense mechanisms with ICS1 and NPR1-

dependent SA biosynthesis upon Pst DC3118 inoculation. Also, SA-dependent priming 

enhances flg22-triggered oxidative burst and callose deposition, while coronatine 

activation of JA signaling suppresses the flg22-induced callose deposition regulated by 

ROS. On the contrary, PAMP flg22-induced oxidative burst and callose response do not 

depend on SA signaling, but are suppressed by coronatine (Millet et al., 2010; Yi et al., 

2014). On the other hand, under low Ca2+ conditions, callose accumulation alleviates cell 

wall damage, leading to SA/JA pathway suppression and cell death prevention (Shikanai 

et al., 2020).  

 

1.5.1. GSL5 and plant defense 

The plasma membrane located GSL5, also known as powdery mildew resistant (PMR) 

4, is critical for callose synthesis in response to many external stimuli (Jacobs et al., 2003; 

Drábková and Honys, 2017). GSL5 has been shown to account for the nearly entire 

callose synthesis in response to wounding, pathogenic oomycetes and flg22 treatment 

(Jacobs et al., 2003; Nishimura et al., 2003; Clay et al., 2009; Luna et al., 2011). 

Overexpression of GSL5 enhances the resistance against powdery mildew by elevating 

callose biosynthesis at the attempting penetration sites in Arabidopsis (Ellinger et al., 

2013) and barley (Blümke et al., 2013). On the other hand, in Arabidopsis, no obvious 

callose deposition is observed in gsl5 mutants, whereas SA and JA pathways are 

enhanced, which results in higher resistance to pathogens, thus suggesting that removal 

of callose can activate defense systems (Jacobs et al., 2003; Nishimura et al., 2003; 

Shikanai et al., 2020). 

 

1.5.2. Co-working of GSLs 

Among the twelve callose synthases members in Arabidopsis, GSL5 and GSL6 have 

been shown to be related to SA and/or biotic stresses (Dong et al., 2008). Apart from 
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GSL5, which plays major roles in callose formation in plants, other GSL family members 

make some extent of contribution. For instance, GSL2 is responsible for the establishment 

of the callose wall enclosing pollen mother cells and pollen tubes in Arabidopsis (Dong 

et al., 2005; Nishikawa et al., 2005), and the callose deposition in the wall and plugs of 

pollen tubes (Nishikawa et al., 2005). GSL8 mediates the deposition of callose at 

developing cell plates, root hairs, and plasmodesmata (De Storme et al., 2013). GSL7 and 

GSL8 are necessary for callose deposition in sieve plates, phloem transport and 

inflorescence growth (Paul Barratt et al., 2011; Xie and Hong, 2011; Shoala et al., 2018). 

GSL10 mostly localizes to the plasma membrane and is essential for microspore growth, 

alleviation of cell wall damage and defense responses in Arabidopsis (Töller et al., 2008; 

Huang et al., 2009; Chen and Kim, 2009; Shikanai et al., 2020). Increased callose 

deposition and reduced PD connectivity were found in gain-of-function mutants of 

GSL12 (Vatén et al., 2011). In general, GSLs make contribution corporately in different 

cells. For instance, GSL1 works together with GSL5 in the synthesis of the callose wall 

that separates the microspores of the tetrad, and both are required for fertilization (Enns 

et al., 2005). GSL4 and GSL6 regulate callose accumulation at PD channels, thereby 

altering PD permeability under both pathogen infection and mechanical wounding (Cui 

and Lee, 2016). GSL8 and GSL10 play a role in the entry of microspores into mitosis 

(Huang et al., 2009), and silencing of GSL8 or GSL10 results in dwarfism (Töller et al., 

2008). GSL4, GSL6, GSL8, and GSL12 are reported to contribute to callose formation at 

PD, but are not involved in SA- or ROS- dependent plasmodesmal regulation (Cui and 

Lee, 2016; Drábková and Honys, 2017). In addition, gsl8 and gsl10 mutants show a dwarf 

phenotype and abnormally shaped cotyledons under low calcium conditions, suggesting 

that GSL8 and GSL10 are required for the defense induction (Chen and Kim, 2009; 

Shikanai et al., 2020). 

Overall, callose deposition, apart from supporting pollen formation and sieve 

development, also acts as one of the early responses during stimuli responses. Callose is 

deposited around parasite haustoria, reinforcing the cell wall as a physical barrier to slow 

the penetration of spores. On the other hand, it can modulate the cell transport of 

plasmodesmata, interacts with phytohormones and activates immunity. However, the 

contribution of GSL to hybrid incompatibilities and ETI have not been reported, which is 

the main of focus of Chapter 3. 
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some of the known HI genes are likely under evolutionary selective pressure (Alcázar et 

al., 2010b). 

 

Interaction Alleles  Interaction Accessions References 

DM2(RPP1) / DM1(SSI4) UK-1 / UK-3 Bomblies et al., 2007 

DM2 (RPP1) / DM9(ACD6) 

DM3 (At3g61540) / DM9(ACD6) 
Bla-1 / Hh-0 de Felippes et al., 2012 

DM2 (RPP1) / DM5 Dog-4 / ICE163 Chae et al., 2014 

DM2 (RPP1) / DM4 (RPP8) ICE163 / TueWa1-2 Chae et al., 2014 

DM2 (RPP1-like) / SRF3  Ler / Kas-2 Alcázar et al., 2009 

DM6 (RPP7) / DM7 (RPW8) KZ10 / Mrk-0 Chae et al., 2014 

DM6 (RPP7) / DM7 (RPW8)  Lerik1-3 / Fei-0 Chae et al., 2014 

DM8 (RPP4/5) / DM8 (RPP4/5) Ey1.5-2 / ICE228 Chae et al., 2014 

TAD3 / TAD3 Col-0 / Nok-1   Agorio et al., 2017  

HISN6 / HISN6 Cvi-0 / Col-0 
Bikard et al., 2009; 

Blevins et al., 2017 

Table 1. Epistatic interactions leading to hybrid incompatibilities in Arabidopsis. (Adopted from 

Vaid and Laitinen, 2019). DM: Dangeous Mix; SSI4: Suppressor of salicylic acid insensitivity of 

npr1 4; RPP: Recognition of Peronospora parasitica; ACD6: Accelerated cell death 6; SRF3: 

Strubbelig receptor family 3; RPW8: Resistance to powdery mildew 8; TAD3: Trna adenosine 

deaminase 3 

 

After the first causal gene pair underlying HI was reported in Arabidopsis by Bomblies 

et al. (2007), several additional genes underlying HI were mapped in various species. It 

has been revealed that almost all the HI-causing genes identified are likely to be 

associated with immune responses, since the pathogenesis-related (PR) genes are always 

activated in addition to the necrotic phenotype (Bomblies et al., 2007; Alcázar et al., 2009; 
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2010b; 2014; Chen et al., 2016; Atanasov et al., 2018). Many identified HI-related genes 

belong to NLR loci that, in interaction with other disease resistance genes (R), or genes 

with diverse functions, trigger the occurrence of immune-related HI (Bomblies and 

Weigel, 2007; Alcázar et al., 2009; 2010b; Yamamoto et al., 2010; Chae et al., 2014; 

Barragan et al., 2019). During the past decades, several BDM-type interaction gene pairs 

have been found causal for immune-related HI in Arabidopsis (Table 1).  

Why is the immune system recruited for HI in various plant species? Microbe-driven 

selection accelerates the diversification of resistance genes (Jones and Dangl, 2006). The 

diversity of defense-related genes substantially increases the risk of a defense regulation 

mismatch between different populations, which may activate defense responses in the 

absence of infection and cause growth obstacle as a fitness cost (Chen et al., 2016).   

Most of the immune-related HI cases that have been studied so far are temperature 

sensitive (Bomblies et al., 2007; Alcázar et al., 2009; Fu et al., 2013; Chen et al., 2014; 

2016). Generally, low temperature promotes the expression of autoimmune symptoms, as 

high temperature can inhibit plant immunity (Traw et al., 2007; Alcázar and Parker, 2011; 

Hua, 2013). An exceptional contrasting case is found in rice, in which Hwi1/Hwi2-

induced hybrid weakness is suppressed by low temperature (Chen et al., 2014). This two-

locus/three-gene system was assumed to over-activate defense responses through PTI.  

DM2 involved immune-related HIs is not only a hotspot in Arabidopsis, have also been 

reported in rice (Oryza sativa), lettuce (Lactuca sativa), tomato (Solanum lycopersicum), 

wheat (Triticum aestivum), the genus Capsella, and other species. In addition to 

Hwi1/Hwi2, Yamamoto et al. (2010) also reported that casein kinase I gene and an NLR 

cluster contribute to a two-way recessive interaction causing hybrid breakdown in rice. 

In lettuce interspecies (Lactuca sativa and Lactuca saligna), a specific combination of 

allelic RIN4 and a heterologous gene induces temperature-dependent hybrid necrosis 

(Jeuken et al., 2009). Cf-2 and Rcr3 interaction was observed in tomato interspecies, Rcr3 

encodes a secreted papain-like cysteine endoprotease, which provides resistance to 

Cladosporium fulvum (Krüger et al., 2002). Closer to the Arabidopsis genus, the NPR1 

allele shared by Capsella grandiflora and Capsella orientalis is incompatible with RPP5 

gene from Capsella rubella, leading to hybrid necrosis (Sicard et al., 2016). 
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1.6.1 Ler/Kas2 hybrid incompatibility, near isogenic line (NIL)  

Growth of plants is influenced by genotype-by-environment interactions (G X E). 

Alcázar et al. (2009; 2010b) identified a temperature-dependent autoimmune related 

hybrid incompatible interaction between RPP1 (recognition of Peronospora parasitica 

1) -like (RPP1-like) genes from Landsberg erecta (Ler) accession and Kashmir-2 (Kas-

2) or Kondara (Kond) alleles of Strubbelig receptor kinase family 3 (SRF3). The Ler/Kas-

2 near-isogenic line (NIL) carrying a single Ler RPP1 locus introgression on QTL 3 in a 

homogeneous Kas-2 background reconstituted dwarfism, cell death and constitutive 

activation of SA pathway at 14-16 ºC, which are all hallmarks of HI. However, the growth 

and reproductive loss of NIL could be suppressed at 20-22 ºC (Alcázar et al., 2009; 

2010b). The RPP1-like locus contains eight TNL genes (RPP1-like, R1-R8). At least two 

RPP1 genes (R3 and R8) within the RPP1-like Ler locus are responsible for 

incompatibility with SRF3 Kas-2 (Alcázar et al., 2010b). Interestingly, R3 overexpression 

in a neutral background (Col-0) triggers HI phenotypes of dwarfism and sterility, whereas 

expression of the rest RPP1-like genes Ler has no effect on growth or pathogen resistance 

(Alcázar et al., 2014). These results indicate that some RPP1-like genes are more prone 

to induce HI than others by means of expression variation. 

A previous screen for suppression of NIL phenotypes found that suppressing immune-

related Ler/Kas2 HI does not compromise basal resistance to local Hyaloperonospora 

arabidopsidis isolate (Hpa Gw), which depends on another locus (RPP7) not related to 

the incompatible ones. Furthermore, global metabolite profiling revealed that the growth 

inhibition of the incompatible hybrids is not due to limited C (carbon), N (nitrogen), or P 

(phosphate,) resources (Atanasov et al., 2018). To further study the genetic requirements 

of Ler/Kas-2 HI, we mapped extragenic suppressors of Ler/Kas2 incompatibility (sulki) 

mutants to GSL2 and GSL10 causal genes. (see Chapter 3) 
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Plants recognize conserved microbial molecules (pathogen-associated molecular 

patterns, PAMPs) via plasma membrane associated pattern recognition receptors leading 

to PAMP-triggered immunity (PTI), which initiates resistance to non–adapted microbes. 

PTI can be suppressed by effectors, pathogenic virulence factors deployed into the cell 

that promote susceptibility. Certain pathogen effectors are recognized by intracellular 

nucleotide-binding leucine‐rich‐repeat (NLR) receptors, initiating effector‐triggered 

immunity (ETI). ETI boosts PTI, and shares salicylic acid (SA) pathway and reactive 

oxygen species (ROS) production with PTI, ultimately leading to transcriptional 

reprogramming. Local pathogen recognition also triggers systemic responses that provide 

broad-spectrum disease resistance against secondary infection in distal (systemic) tissues, 

known as systemic acquired resistance (SAR). SAR associates with local and systemic 

biosynthesis of SA, and extensive transcriptional reprogramming.  

 

Polyamines are known to accumulate during different abiotic and biotic stresses, and 

contribute to disease resistance through as yet unknown signaling pathways. Polyamines 

are oxidatively deaminated by copper amino oxidases (CuAO) which produce H2O2. 

Some CuAOs are located to the apoplast and may function as a source for apoplastic ROS 

generation during the elicitation of plant defense. Previous studies revealed that Spm 

seems important for the establishment of HR and basal defenses to pathogens, but less 

information is reported about role of Put during plant – pathogens infections. 

 

Immune related hybrid incompatibilities (HI) in plants are one of the main problems that 

plant breeders face when they attempt to obtain a new variety with improved traits. In 

basic research, such incompatibilities involving NLR genes, which can be used for the 

study of ETI in the absence of pathogen challenge. Constitutive activation of defense has 

a direct negative impact on plant growth and fitness, and in most cases is temperature 

dependent. Genetic screens in the identification of suppressors of HI might help at the 

discovery of novel components required for the establishment of ETI.  

 

Based on the above considerations, the specific objectives followed for each chapter are 

described below:  
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1- Chapter1

The main objective of this chapter is to investigate the contribution of polyamines to PTI 

by using purified PAMPs and PTI-inducing bacteria. 

1. Determine the potential involvement of polyamines in the PTI metabolic

response. Determination of polyamines (putrescine, spermidine and spermine)

levels in response to PTI-inducing pathogens and the PAMP flg22. Analysis of

the contribution of ADC1 and ADC2 isoforms in such responses by using arginine

decarboxylase mutants (adc1-2, adc1-3, adc2-3 and adc2-4).

2. Determine the transcriptional responses triggered by Put inoculation. To this aim,

I performed gene expression analyses of PTI marker genes and callose deposition

in response to Put and flg22. I also analyzed the involvement of GSL5 in such

responses.

3. Determine the contribution of RBOHD and RBOHF in the PTI response triggered

by PAs. For this, I performed gene expression analyses of PTI marker genes in

NADH oxidase loss-of-function mutants (rbohd, rbohf and rbohd/f) in response

to Put.

4. Determine the potential use of Put as priming agent inducing local defenses.

2- Chapter2

The main objective of this chapter is to identify polyamine signaling pathways 

contributing to defense, with a focus on effector triggered immunity (ETI) and systemic 

acquired resistance. 

1. Identify genes which are differentially expressed by each of the most abundant

polyamines at an early time point of analysis (1 h) by RNA-seq. Gene Ontology

and Pathway analyses of polyamine responsive genes.

2. Focusing on Put, determine the requirement of ROS production to Put

transcriptional responses through the use of a hydrogen peroxide inhibitor.

3. Focusing on defense, determine the requirement of EDS1, SA and NPR1 pathway

for the transcriptional responses to exogenously supplied Put.

4. Investigate the potential cross-modulation between Put and SA through PA and

SA levels determination.
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5. Focusing on ETI, determine the metabolic responses of polyamines to ETI-

inducing bacteria.

6. Determine the systemic transcriptional responses triggered by locally applied Put

in leaves. Comparison of transcriptional responses with SAR.

7. Investigate the involvement of ADC isoforms and CuAO to Put-triggered

systemic resistance.

3- Chapter3

The main objective of this chapter is to identify new genetic components required for the 

establishment of immune-related HI (ETI), using the Ler/Kas-2 HI model, and the impact 

of their loss-of function in defense and SA-dependent immune activation. 

1. Mapping of causal genes underlying the suppression of Ler/Kas-2 HI in two

extragenic mutants isolated from an EMS-mutagenesis screen (sulki3-1 and

sulki4-1).

2. Confirm the causality of genes mapped to GSL2 and GSL10 through artificial

microRNA (amiRNA) silencing in transgenic Ler/Kas-2 HI (NIL) plants.

3. Determination of the immune status in sulki3-1 and sulki4-1 suppressed mutants

and amiRNA lines by means of SA quantitation, expression of SA pathway

marker genes and disease resistance against hemibiotrophic bacteria.

4. Determine callose deposition capacity in sulki3-1, sulki4-1 and artificial

microRNA (amiRNA) lines treated with PAMPs, wounding and bacteria

inoculation.
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The Polyamine Putrescine
Contributes to H2O2 and
RbohD/F-Dependent Positive
Feedback Loop in Arabidopsis
PAMP-Triggered Immunity
Changxin Liu, Kostadin E. Atanasov, Antonio F. Tiburcio and Rubén Alcázar*

Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy, University
of Barcelona, Barcelona, Spain

Polyamines are involved in defense against pathogenic microorganisms in plants.
However, the role of the polyamine putrescine (Put) during plant defense has remained
elusive. In this work, we studied the implication of polyamines during pathogen-
associated molecular pattern (PAMP)-triggered immunity (PTI) in the model species
Arabidopsis thaliana. Our data indicate that polyamines, particularly Put, accumulate
in response to non-pathogenic Pseudomonas syringae pv. tomato DC3000 hrcC and
in response to the purified PAMP flagellin22. Exogenously supplied Put to Arabidopsis
seedlings induces defense responses compatible with PTI activation, such as callose
deposition and transcriptional up-regulation of several PTI marker genes. Consistent
with this, we show that Put primes for resistance against pathogenic bacteria. Through
chemical and genetic approaches, we find that PTI-related transcriptional responses
induced by Put are hydrogen peroxide and NADPH oxidase (RBOHD and RBOHF )
dependent, thus suggesting that apoplastic ROS mediates Put signaling. Overall, our
data indicate that Put amplifies PTI responses through ROS production, leading to
enhanced disease resistance against bacterial pathogens.

Keywords: polyamines, putrescine, defense, pathogen-associated molecular pattern, reactive oxygen species,
PAMP-triggered immunity

INTRODUCTION

To face against biotic stress, plants have evolved complex and effective defense systems (Dodds
and Rathjen, 2010). A first barrier of plant defense is the presence of the cuticle and the cell
wall, which act as physical barriers (Yeats and Rose, 2013). However, when pathogens break these
preformed barriers, sophisticated mechanisms of pathogen recognition are involved (Bigeard et al.,
2015). Plasma membrane pathogen or pattern recognition receptors (PRRs) recognize pathogen-
associated molecular patterns (PAMPs) that lead to PAMP-triggered immunity (PTI) (Zipfel and
Felix, 2005; Iakovidis et al., 2016). One of the most well-characterized PAMPs is flagellin, a
structural component of the flagellum in Gram-negative bacteria. The peptide flagellin22 (flg22)
is recognized by the leucine-rich repeat receptor kinase FLS2 (FLAGELLIN SENSING 2) (Felix
et al., 1999; Gómez-Gómez and Boller, 2002). Known responses to PTI are the generation of
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reactive oxygen species (ROS), cell wall reinforcement by callose
deposition, and changes in the expression of defense-related
genes (Boller and Felix, 2009; Nicaise et al., 2009; Ahuja et al.,
2012). ROS production inhibits pathogen growth, stimulates
cell wall cross-linking, and mediates the signal transduction
for transcriptional changes (Apel and Hirt, 2004). NADPH
oxidases are membrane-bound enzymes important for the
generation of ROS during biotic and abiotic stresses, growth,
and development. They transfer electrons from cytosolic NADPH
or NADH to apoplastic oxygen, producing anion superoxide
O2
− in the apoplast, which can be converted to hydrogen

peroxide (H2O2) by superoxide dismutase (Kadota et al., 2015).
Arabidopsis thaliana (Arabidopsis) carries 10 genes encoding
NADPH oxidases, which belong to the RBOH (RESPIRATORY
BURST OXIDASE HOMOLOG) family. Among them, RBOHD
and, to a lesser extent, RBOHF are required for the generation of
apoplastic ROS during incompatible plant–pathogen interactions
(Torres et al., 2002). RBOHD is required for cell death control,
cell wall damage-induced lignification, and systemic signaling in
response to biotic and abiotic stresses (Torres et al., 2005; Miller
et al., 2009; Denness et al., 2011). RBOHD and RBOHF fine-
tune the spatial control of ROS production and hypersensitive
response (HR) in and around infection sites (Torres et al.,
2002, 2005, 2006; Chaouch et al., 2012). In addition to NADPH
oxidases, apoplastic ROS can also be originated from polyamine
oxidation. Polyamines are small polycationic molecules bearing
amino groups. Most abundant plant polyamines are putrescine
(Put), spermidine (Spd), and spermine (Spm), and they can
be found in free forms or conjugated to hydroxycinnamic
acids. Polyamines accumulate in response to different abiotic
and biotic stresses and can be oxidatively deaminated by
amine oxidases generating H2O2 (Tiburcio et al., 2014). Based
on the cofactor involved, amine oxidases are classified in
copper-containing amine oxidases (CuAOs) and FAD-dependent
polyamine oxidases (PAOs). CuAOs catalyze the oxidation of Put
at its primary amino group, producing 4-aminobutanal along
with H2O2 and NH4

+ (Cona et al., 2006; Angelini et al., 2010).
In Arabidopsis, PAOs are involved in back-conversion reactions
that convert Spm, thermospermine (tSpm), and Spd in their
immediate precursors, producing 3-aminopropanal and H2O2
(Moschou et al., 2012; Ono et al., 2012; Ahou et al., 2014;
Kim D.W et al., 2014). Some amine oxidases are located in
the apoplast and may function as a source for apoplastic H2O2
during the elicitation of plant defense. For instance, inoculation
of tobacco plants carrying the N resistance gene with tobacco
mosaic virus (TMV) triggers HR and the accumulation of Spm
in the apoplast (Yamakawa et al., 1998). In this species, Spm
activates mitogen-activated protein kinases (MAPKs) SIPK (SA-
induced protein kinase) and WIPK (wound-induced protein
kinase) (Zhang and Klessig, 1997; Seo et al., 2007) and induces
changes in the expression of Spm-responsive genes, some
coding for acidic pathogenesis-related proteins (Yamakawa et al.,
1998). Also in tobacco, inoculation with the hemibiotrophic
bacteria Pseudomonas viridiflava and Pseudomonas syringae pv.
tabaci leads to increases in Spm levels in the apoplast, which
associate with disease resistance compromised by PAO inhibitors
(Marina et al., 2008; Moschou et al., 2009). In Arabidopsis, Spm

and its isomer tSpm trigger transcriptional changes that restrict
the multiplication of cucumber mosaic virus (CMV) (Mitsuya
et al., 2009; Sagor et al., 2012). Also in this species, transgenic
plants that accumulate Spm by overexpression of SAMDC1
(S-ADENOSYLMETHIONINE DECARBOXYLASE 1) or SPMS
(SPERMINE SYNTHASE) exhibit enhanced disease resistance
against P. syringae pv. maculicola ES4326, P. syringae pv.
tomato DC3000 (Pst DC3000), and P. viridiflava (Gonzalez
et al., 2011; Marco et al., 2014). Overall, the polyamine
Spm seems important for the establishment of HR and basal
defense responses to hemibiotrophic pathogens in tobacco
and Arabidopsis. Conversely, Put has not been observed to
have such defense-promoting activities, although its content is
remarkably increased in response to pathogens (Yoda et al.,
2003; Mitsuya et al., 2009; Sagor et al., 2012; Vilas et al., 2018;
Seifi and Shelp, 2019).

In this work, we studied the involvement of polyamines during
PTI in Arabidopsis. We report that Put accumulates in response to
inoculation with the type three secretor system (TTSS) defective
P. syringae DC3000 hrcC mutant strain (hrcC), which induces
a strong PTI response (Yuan and He, 1996; Tsuda et al., 2008),
and this accumulation is not suppressed by Pst DC3000 type III
effectors (Cunnac et al., 2009). Consistent with a potential role for
Put during PTI, we show that this polyamine also accumulates
in response to flg22, one of the most well-characterized
PAMPs. Through the analysis of arginine decarboxylase 1 (adc1)
and arginine decarboxylase 2 (adc2) loss-of-function mutants,
deficient in Put biosynthesis, we find that the ADC2 isoform
is the major contributor to Put biosynthesis triggered by flg22.
We show that Put induces the formation of callose deposits, a
typical response of PTI, when applied to Arabidopsis seedlings. In
addition, we demonstrate that Put quickly induces the expression
of several PTI marker genes (Huffaker and Ryan, 2007; Xiao
et al., 2007; Denoux et al., 2008; Wang et al., 2009; Boudsocq
et al., 2010; Cheng et al., 2013; Po-Wen et al., 2013; Shi et al.,
2015), and these transcriptional changes are compromised in the
presence of the H2O2 scavenger dimethylthiourea (DMTU), and
in atrbohD, atrbohF, and double atrbohD/F NADPH oxidase loss-
of-function mutants. We finally report that Put can be regarded
as a priming agent that contributes to basal disease resistance
against bacterial pathogens. Overall, we provide evidence that Put
contributes to H2O2 and RBOHD/F-dependent positive feedback
loop amplification of PTI.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
Plants were grown on soil (peat moss:vermiculite:perlite,
40:50:10) at 20–22◦C under 12-h dark/12-h light cycles at 100–
125 µmol photons m−1 s−2 of light intensity and 70% relative
humidity. For in vitro culture, seeds were sterilized with a
solution containing 30% sodium hypochlorite supplemented
with 0.5% Triton X-100 for 10 min, followed by three washes

1www.arabidopsis.info
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with sterile distilled H2O. Sterilized seeds were sown on growth
media [GM, 1/2 Murashige and Skoog supplemented with
vitamins, 1% sucrose, 0.6% plant agar (Duchefa Biochemie),
and pH 5.7 adjusted with 1 M KOH]. Plates were kept in
the dark at 4◦C for stratification for 2–3 days. Seedlings
were grown under 12-h dark/12-h light cycles at 20–22◦C,
100–125 µmol photons m−2 s−1 of light intensity. flg22
peptide was purchased from Anaspec1. The fls2 mutant
was kindly provided by Jane Parker (Zipfel et al., 2004).
The adc1-2 (SALK_085350), adc2-4 (SALK_147171), atrbohD
(SALK_109396 and SALK_005253), atrbohF (SALK_044584 and
SALK_077748), and double atrbohD/F (N9558) (Torres et al.,
2002) mutants were obtained from the Nottingham Arabidopsis
Stock Center2. The adc1-3 and adc2-3 mutants were previously
reported (Cuevas et al., 2008). The gsl5 mutant was kindly
provided by Christian Voigt.

Polyamine Levels Determination
Polyamines were derivatized with dansyl chloride and analyzed
by high-performance liquid chromatography (HPLC) as
previously described (Marcé et al., 1995; Zarza et al., 2017).
All harvested tissues were washed three times with sterile
distilled H2O before processing or freezing in liquid nitrogen.
Apoplastic polyamines were determined according to Yoda et al.
(2009). All polyamine analyses were performed in at least three
biological replicates.

Histochemical Analyses
For aniline blue staining, seedlings were fixed and cleared in a
solution of acetic acid/ethanol (1:3) overnight, followed by two
washes of 30 min in 150 mM K2HPO4 and staining with 0.01%
aniline blue (Sigma) for 2 h in the same buffer. Observations
were performed under an epifluorescence microscope and images
were captured with a NIKON microscopy camera coupled to
the NIS software 4.45 (NIKON). Callose intensity quantification
was performed according to Daudi et al. (2012). Callose intensity
was calculated with ImageJ by counting the number of callose
spots and assigning a value from 1 to 10 (10, saturated signal;
9, over 250 spots; 8, between 200 and 249 spots; 7, between 150
and 199 spots; 5, between 100 and 149 spots; 3, between 50 and
99 spots; 2, between 5 and 49 spots; 1, between 0 and 5 spots).
Average callose measurements were based on at least 20 leaf
pictures taken from 12 different seedlings. Trypan blue staining
for cell death visualization was performed as previously described
(Alcázar et al., 2009).

Real-Time qPCR Expression Analyses
Total RNA isolated from 10-day-old seedlings was extracted
using TRIzol reagent (Thermo Fisher). Two micrograms of RNA
was treated with DNAse I (Invitrogen) and first-strand cDNA
was synthesized using Superscript IV (Invitrogen) and oligo dT.
Quantitative real-time PCR using SYBR Green I dye method was
performed on Roche LightCycler 480 II detector system following
the PCR conditions: 95◦C for 2 min, 40 cycles (95◦C for 15 s;
60◦C for 30 s). qRT-PCR analyses were always performed on
at least three biological replicates with three technical replicates
each using ACTIN2 (At3g18780) as the internal control gene.

FIGURE 1 | Polyamine levels in response to Pst DC3000 and hrcC
inoculation. Levels of free putrescine (Put), spermidine (Spd), and spermine
(Spm) in 3-week old Arabidopsis wild-type (Col-0) plants after 0 h to 3 days of
spray inoculation with Pseudomonas syringae pv. tomato DC3000 (Pst
DC3000), Pst DC3000 hrcC mutant (hrcC), or mock. Values are the mean of
three biological replicates ± SD (standard deviation). Letters indicate values
that are significantly different according to Student–Newman–Keuls test at P
value <0.05.

Relative expression was calculated by 2−11Ct method (Livak and
Schmittgen, 2001). Primer sequences used for expression analyses
are shown in Supplementary Table 1.

Pseudomonas syringae pv. tomato
DC3000 and hrcC Inoculation Assays
Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) and
P. syringae pv. tomato DC3000 hrcC (hrcC) bacteria were streaked

Frontiers in Plant Science | www.frontiersin.org 3 July 2019 | Volume 10 | Article 894

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00894 July 13, 2019 Time: 15:28 # 4

Liu et al. Involvement of Polyamines During PAMP-Triggered Immunity in Arabidopsis

FIGURE 2 | Polyamine levels in response to flg22 treatment. Levels of free putrescine (Put), spermidine (Spd), and spermine (Spm) in 10-day-old wild-type, adc1-2,
adc1-3, adc2-3, adc2-4 (Cuevas et al., 2008), and fls2 (Zipfel et al., 2004) seedlings treated with 1 µM flg22. Seedlings were grown in vitro on a nylon mesh in 1/2

Murashige and Skoog media and transferred to the same media supplemented with 1 µM flg22 or mock for 24 h. Samples were harvested after 0, 3, and 24 h of
treatment for polyamine analyses. Results are mean of three biological replicates ± SD (standard deviation). Letters indicate values that are significantly different
according to Student–Newman–Keuls test at P value <0.05.

on solid NYGA medium (5 g/L bacto peptone, 3 g/L yeast
extract, and 20 mL/L glycerol, with 15 g/L agar for solid medium)
containing 25 µg/ml rifampicin. Single colonies were transferred
to liquid NYGA supplemented with 25 µg/ml rifampicin and

grown overnight at 28◦C. Bacterial suspensions were washed two
times with water and suspended on 10 mM MgCl2 to OD600 = 0.2.
Silwet L-77 was added to a final concentration of 0.04% (v/v)
before spray inoculation of 3-week-old Arabidopsis plants. Leaves
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FIGURE 3 | Callose deposition in response to Put treatment. Aniline blue staining of 10-day-old wild-type and gsl5 loss-of-function mutants treated with Put or flg22
for 24 h. Leaves were drop inoculated with 5 µl of 100 µM Put or 1 µM flg22. Callose deposition was quantified based on image captions from at least 20 leaf
pictures from 12 different seedlings per genotype and treatment. Letters indicate values that are significantly different according to Student–Newman–Keuls test at P
value <0.05.

were harvested after 3 h and 72 h of pathogen inoculation for the
determination of bacterial growth as described in Alcázar et al.
(2010). At least three biological replicates were determined for
each time point of analysis.

RESULTS

Polyamine Levels in Response to Pst
DC3000 and Pst DC3000 hrcC Bacteria
The P. syringae pv. tomato DC3000 hrcC mutant (hrcC) is
defective in the TTSS and mainly induces a PAMP-triggered
response by failing to secrete defense-suppressing type III
effectors into the plant cell (Yuan and He, 1996). In order to
analyze the involvement of polyamines during PTI, we inoculated
Arabidopsis wild type (Col-0) with hrcC and monitored the
levels of free Put, Spd, and Spm for 3 days (Figure 1). One-
day post-inoculation, the levels of Put, Spd, and Spm were 2.1-,
1.4-, and 1.7-fold higher in plants inoculated with hrcC than
in mock inoculated plants (Figure 1). These results indicated
that polyamines, and particularly Put, accumulated transiently
in response to non-pathogenic hrcC bacteria, thus suggesting
the participation of polyamines in the metabolic reprogramming
induced during PTI.

In order to determine whether type III effector proteins
suppress the changes in polyamine levels observed after hrcC
inoculation, we determined Put, Spd, and Spm contents in plants
inoculated with P. syringae pv. tomato DC3000 (Pst DC3000),
which carries a functional TTSS (Figure 1). Compared to mocks,
the Put levels increased up to 1.6- and 2.7-fold 1 and 2 days after

inoculation with Pst DC3000, respectively. Spd and Spm levels
also increased up to 1.4- and 1.6-fold 1 day post-inoculation.
These results indicated that type III effectors delivered by Pst
DC3000 do not suppress increases in polyamine levels triggered
by hrcC. Rather, Put accumulation was higher in the strain
provided with a functional TTSS.

Determination of Apoplastic Polyamines
Some polyamines have been reported to accumulate in the
apoplast of Arabidopsis, tobacco, tomato, and rice during defense
(Yoda et al., 2009; Vilas et al., 2018). Under basal conditions
(0 h), the levels of free polyamines in the apoplastic enriched
fractions were undetectable. However, apoplastic Put and Spd
contents remarkably increased after 24 h of Pst DC3000 and hrcC
inoculation. The levels of Put remained high in Pst DC3000 but
not in hrcC inoculated plants. Apoplastic Spm was not detectable
in any treatment (Supplementary Figure S1). We concluded
that Put and Spd accumulate in the apoplast in response to
Pst DC3000 and hrcC inoculation. These data suggested that
polyamines could trigger some defense response from the cell
surface against bacterial infection.

Polyamine Levels in Response to flg22
To further investigate the involvement of polyamines during PTI,
we analyzed polyamine levels in response to the PAMP flg22. Free
Put, Spd, and Spm levels were determined in wild type and fls2
seedlings treated with 1 µM flg22 or mock (Figure 2). In the
wild type, Put accumulated up to twofold in response to 1 µM
flg22 treatment after 24 h. This increase was not evidenced in the
fls2 mutant (Figure 2), which indicated that Put accumulation
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FIGURE 4 | Expression analyses of PTI marker genes in response to 100 µM Put. Ten-day-old wild-type seedlings were treated with 100 µM Put or mock, and
samples collected at 0 h, 10 min, 30 min, 1 h, 3 h, 8 h, 24 h, and 72 h post-treatment to analyze the expression of PROPEP2, PROPEP3, CBP60g, WRKY22,
WRKY29, NHL10, CYP81F2, FRK1, and WRKY53 as PTI marker genes by qRT-PCR. Seedlings were grown in vitro on a nylon mesh in 1/2 Murashige and Skoog
media and transferred to the same media supplemented with the polyamine or mock up to 72 h. Expression values are relative to 0 h. Results are means of three
biological replicates ± SD (standard deviation). Letters indicate values that are significantly different according to Student–Newman–Keuls test at P value <0.05.

triggered by flg22 was due to FLS2-dependent activation of PTI.
The levels of Spd and Spm in seedlings treated with 1 µM flg22
did not exhibit significant changes compared with the mock
control (Figure 2). Therefore, flg22 did not favor the synthesis
or accumulation of Spd and Spm. However, increases in these
polyamines were detected after 24 h of inoculation with Pst
DC3000 and hrcC bacteria (Figure 1). We suggest that other
molecules produced by P. syringae (Xin and He, 2013) and
perceived by the plant might trigger the synthesis of Spd and Spm
in Arabidopsis.

Involvement of ADC Isoforms in Put
Biosynthesis Triggered by flg22
Arginine decarboxylase (ADC) catalyzes the conversion of
arginine into agmatine, which is a limiting step in the biosynthesis
of Put. In Arabidopsis, two ADC isoforms are found (ADC1
and ADC2) that catalyze the same enzymatic reaction (Alcázar
et al., 2006). To analyze the contribution of each isoform to Put

synthesis in response to flg22, we treated arginine decarboxylase
1 (adc1-2, adc1-3) and arginine decarboxylase 2 (adc2-3, adc2-
4) loss-of-function mutants (Cuevas et al., 2008) with 1 µM
flg22 and quantified the polyamine levels between 0 and 24 h
(Figure 2). In adc2-3 and adc2-4, the basal level of Put was much
lower than in the wild type (Cuevas et al., 2008) and Put content
did not increase in response to 1 µM flg22. Conversely, in adc1-2
and adc1-3, Put content increased to a similar extent as the wild
type in response to 1 µM flg22 (Figure 2). These results indicated
that Put accumulation in response to flg22 is mainly contributed
by ADC2 activity. Therefore, ADC1 and ADC2 forms do not act
redundantly during PTI.

Callose Deposition but Not Cell Death Is
Induced by Put
The increases in Put triggered by flg22 perception prompted
us to investigate its potential role during PTI. Deposition of
the (1,3)-β-glucan callose is induced in response to flg22, and
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FIGURE 5 | Expression analyses of PTI marker genes in response to 100 µM
Put in the presence of 10 mM DMTU. Ten-day-old wild-type seedlings grown
in vitro on a nylon mesh in 1/2 Murashige and Skoog media were transferred to
the same media containing 10 mM DMTU for 3 h before treatment with
100 µM Put + 10 mM DMTU or 10 mM DMTU. Samples were collected after
0 h, 10 min, and 0.5 h of Put treatment for expression analyses of WRKY29,
PROPEP2, PROPEP3, and CYP81F2 by qRT-PCR. Expression values are
relative to DMTU treatment at each time point of analysis. Results are the
mean of three biological replicates ± SD (standard deviation). Letters indicate
values that are significantly different according to Student–Newman–Keuls
test at P value <0.05.

it can be visualized by histochemical analysis based on aniline
blue staining. We observed higher callose deposition in wild-
type seedlings treated for 24 h with 100 µM Put or 1 µM
flg22 than in seedlings treated with mock (Figure 3). Callose
deposition induced by Put was compromised in the glucan
synthase like 5 (gsl5) mutant, which is defective in inducible
callose accumulation upon wounding and biotic stress (Jacobs
et al., 2003) (Figure 3). Conversely, callose deposition in response
to flg22 was not obviously compromised in adc1 or adc2 mutants
(Supplementary Figure S2). This indicated that flg22 responses
are not impaired in adc mutants. To determine whether callose
deposition triggered by Put was accompanied with cell death, we
performed trypan blue staining in wild-type seedlings after 24 h
of infiltration with 100 µM Put or mock (Supplementary Figure
S3). Trypan blue staining did not reveal evident symptoms of cell
death related with ETI in Arabidopsis leaves treated with 100 µM
Put. These data indicated that Put infiltration does not induce HR
in Arabidopsis.

Expression of PTI Marker Genes in
Response to Put
Accumulation of callose by Put suggested that PTI responses
were activated by this polyamine. To further investigate this
hypothesis, we analyzed the expression of several PTI marker
genes (PROPEP2, PROPEP3, CBP60g, WRKY22, WRKY29,
WRKY53, CYP81F2, FRK1, and NHL10) (Huffaker and Ryan,
2007; Xiao et al., 2007; Denoux et al., 2008; Wang et al., 2009;
Boudsocq et al., 2010; Cheng et al., 2013; Po-Wen et al., 2013;
Shi et al., 2015) in wild-type seedlings treated with 100 µM
Put or mock between 0 and 72 h (Figure 4). For most of the
genes analyzed, their transcripts increased rapidly in response to
100 µM Put, with the highest expression peaks observed upon

10 min to 1 h of treatment (Figure 4). These results indicated that
Put induces transcriptional changes consistent with activation of
PTI. Because Put can be oxidized by amine oxidases, we then
studied whether transcriptional responses were compromised in
the presence of the H2O2 scavenger dimethylthiourea (DMTU).
For this, we determined the expression of WRKY29, PROPEP2,
PROPEP3, and CYP81F2 (Huffaker and Ryan, 2007; Denoux
et al., 2008; Cheng et al., 2013) in wild-type seedlings treated
or not with 100 µM Put in the presence of 10 mM DMTU
(Figure 5). The increase in the transcript levels of these genes
triggered by Put was compromised in the presence of DMTU
(Figure 5). We concluded that H2O2 production is required for
Put-triggered transcriptional up-regulation of PTI marker genes.

Expression of PTI Marker Genes in
Response to Put in atrboh D, atrboh F,
and atrboh D/F Mutants
Plasma membrane RBOHD and RBOHF are important sources
of ROS during plant–pathogen interactions (Kadota et al., 2015).
To determine the contribution of these NADPH oxidases to
changes in the expression of PTI marker genes induced by Put,
we analyzed the expression of WRKY22 and CYP81F2 in atrbohD
(SALK_109396C and SALK_005253C), atrbohF (SALK_034674
and SALK_077748), and double atrbohD/F loss-of-function
mutants (Torres et al., 2002) treated with 100 µM Put or mock
(Figure 6). In contrast with the wild type, up-regulation of
WRKY22 and CYP81F2 expression by Put treatment was strongly
compromised in atrbohD, atrbohF, and double atrbohD/F
mutants (Figure 6). These results indicated that Put requires
functional RBOHD and RBOHF NADPH oxidases for signaling.

Disease Resistance to P. syringae pv.
tomato DC3000 and hrcC in Put Treated
Plants
So far, our data pointed to a role for Put contributing to amplify
PTI responses. To analyze how this was translated into disease
resistance, we performed pathoassays using Pst DC3000 and hrcC
bacteria in wild-type plants treated with 500 µM Put, 1 µM flg22
or mock. As shown in Figure 7, Put treatment limited the growth
of Pst DC3000 to a similar extent as 1 µM flg22, whereas no
differences were detected by inoculation with the non-pathogenic
hrcC strain. We concluded that Put could be regarded as a
priming agent contributing to basal defense responses against
some pathogenic bacteria.

DISCUSSION

Plants are provided with an innate immune system that
recognizes pathogens and activates defense responses. A first
layer of the innate immunity involves the recognition of
PAMPs, which are conserved signatures within a taxonomic
group of pathogens. PAMPs include the flagellin peptide
flg22, the elongation factor Tu (EF-Tu) peptides elf18 and
elf26, lipopolysaccharides, fungal chitin, and peptidoglycan,
among others (Boller and Felix, 2009). PAMPs induce the
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FIGURE 6 | Expression analyses of PTI marker genes in response to 100 µM Put in rbohD, rbohF, and double rbohD/F loss-of-function mutants. Ten-day-old
wild-type, atrbohD (SALK_109396 and SALK_005253), atrbohF (SALK_044584 and SALK_077748), and double atrbohD/F seedlings were treated with 100 µM Put
or mock as described in Figure 4 and samples were collected at 0 and 1 h post-treatment to analyze the expression of WRKY22 and CYP81F2 by qRT-PCR.
Expression values are relative to the wild type at 0 h. Results are means of three biological replicates ± SD (standard deviation). Letters indicate values that are
significantly different according to Student–Newman–Keuls test at P value <0.05.

production of ROS, which participate in defense signaling and
transcriptional reprogramming (Bigeard et al., 2015). During
defense, ROS are predominantly generated by NADPH oxidases
RBOHD and RBOHF (Torres et al., 2002; Kadota et al.,
2015). However, other sources of apoplastic ROS include the
activity of apoplastic peroxidases (Daudi et al., 2012) and
amine oxidases (Cona et al., 2006). The different sources
of ROS might be related to the necessity of specific ROS
synthesis at different stages of the defense response (Cona et al.,
2006). In Arabidopsis, the copper-containing amine oxidases
(CuAO) ATAO1/AtCuAOβ (At4g14940) and CuAO1/AtCuAOγ1
(At1g62810) have been localized in the apoplast (Moller and
McPherson, 1998; Planas-Portell et al., 2013), whereas PAO
enzymes have been found in the cytosol and peroxisomes
(Tavladoraki et al., 2006; Kamada-Nobusada et al., 2008;

Moschou et al., 2008; Takahashi et al., 2010; Ahou et al., 2014;
Tiburcio et al., 2014). The apoplastic CuAOs preferentially
catalyze the oxidation of Put (ATAO1) or Put and Spd
(CuAO1) (Moller and McPherson, 1998; Planas-Portell et al.,
2013), consistent with the occurrence of these polyamines in
extracellular fluids (Yoda et al., 2009). Interestingly, CuAO1
expression is induced by flg22 treatment (Planas-Portell et al.,
2013), which suggests its participation in PAMP-triggered
ROS signaling. The involvement of CuAO activities in the
defense response of incompatible plant–pathogen interactions
has previously been documented. In the incompatible interaction
between barley and the powdery mildew fungus B. graminis
f. sp. hordei, the levels of Put, Spd, as well as diamine
oxidase and PAO activities were shown to increase and to
contribute to defense through H2O2 production, leading to
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FIGURE 7 | Growth of Pseudomonas syringae pv. tomato DC3000 and hrcC
in wild-type pre-treated with Put or flg22. Three-week-old Arabidopsis plants
were spray inoculated with 500 µM putrescine, 1 µM flg22, or mock 24 h
before spray inoculation with Pseudomonas syringae pv. tomato DC3000 or
hrcC. Bacterial counting was performed at 3 h and 3 days post-inoculation.
Results are the mean of four replicates ± SD (standard deviation). Letters
indicate values that are significantly different according to
Student–Newman–Keuls test at P value <0.05.

cell wall cross-linking of polysaccharides and proteins (Cowley
and Walters, 2002). In chickpea, inhibition of CuAO activity
was associated with decreased defense capacity against the
necrotrophic fungus Ascochyta rabiei (Rea et al., 2002). The
amount of free polyamines in the apoplast seems to be a
limiting factor for CuAO activity (Rea, 2004). Indeed, it has
been proposed that under stress conditions, polyamine excretion
is activated in plant cells (Yoda et al., 2003). Consistent with
this, the levels of apoplastic Put and Spd increase in response
to avirulent Pst DC3000 AvrRPM1 inoculation in Arabidopsis
(Yoda et al., 2009).

Despite the growing body of evidence that shows the
involvement of polyamines in defense, few studies have focused
on the involvement of polyamines during PTI. In this work,
we show that Put synthesis is stimulated by Pst DC3000 hrcC
inoculation (Figure 1), a TTSS defective bacteria strain that

mainly triggers a PTI response by failing to secrete effectors
(Yuan and He, 1996). Consistent with this, Put level also
increased by treatment with the purified PAMP flg22 (Figure 2).
These data suggested that polyamines are part of the metabolic
reprogramming response during PTI. Interestingly, inoculation
with Pst DC3000, which carries a functional TTSS and can
deploy effectors into the plant cell (Xin and He, 2013), did
not suppress the increase in polyamine levels observed with
hrcC. Rather, polyamine levels became higher (Figure 1). These
results indicate that Pst DC3000 effectors are unlikely to
suppress polyamine pathway activation. Rather, effectors might
be promoting agents in polyamine biosynthesis. For example,
the ADC1 isoform from Capsicum annuum is targeted by the
AvrBsT effector from Xanthomonas campestris pv. vesicatoria.
Their co-expression in Nicotiana benthamiana leaves promotes
polyamine biosynthesis, thus leading to enhanced cell death and
H2O2 production (Kim N.H. et al., 2013). However, it is not
known whether Arabidopsis ADC isoforms might be targets of
bacterial effectors. In Arabidopsis, the ADC2 isoform is the major
contributor to Put synthesis in response to flg22 (Figure 2).
Consistent with this, Kim S.H. et al. (2013) showed that
the adc2 mutant (SALK_073977) in Arabidopsis compromises
resistance to Pst DC3000, which can be rescued by infiltration
with 2 µM Put.

The Put accumulation triggered by flg22 and hrcC prompted
us to investigate the role of this polyamine during PTI.
Interestingly, we found that exogenously supplied Put induces
callose deposition in Arabidopsis seedlings (Figure 3). The
formation of callose deposits is a typical physiological response
of PTI. Callose is synthesized at the cell wall by callose
synthases. The Arabidopsis genome contains 12 callose synthase
(CalS) genes, also referred to as Glucan synthase-like (GSL)
(Ellinger and Voigt, 2014). Among them, GSL5 (PATHOGEN
MILDEW RESISTANCE 4, PMR4) is required for wound and
papillary callose deposition (Jacobs et al., 2003). We found that
callose deposition induced by Put supply was compromised
in the gsl5 (pmr4) loss-of-function mutant (Jacobs et al.,
2003) (Figure 3). To further investigate the involvement
of Put during PTI, we selected a number of PTI marker
genes based on previous reports (Huffaker and Ryan, 2007;
Xiao et al., 2007; Wang et al., 2009; Boudsocq et al., 2010;
Cheng et al., 2013; Po-Wen et al., 2013; Shi et al., 2015).
Exogenously supplied Put rapidly led to the up-regulation
of PTI marker genes tested (Figure 4). Interestingly, such
responses were suppressed in the presence of the H2O2
scavenger, DMTU (Tate et al., 1982) (Figure 5). Hydrogen
peroxide is likely derived from amine oxidase activity, thus
pointing to an important role for polyamine oxidation during
the transcriptional response triggered by Put. Interestingly,
up-regulation of PTI marker genes was also compromised
in atrbohD, atrbohF, and double atrbohD/F loss-of-function
mutants (Figure 6). These data indicate that plasma membrane
NADPH oxidases are required for at least some transcriptional
responses induced by Put. In tobacco, the NADPH oxidases
RBOHD/F have been suggested to act upstream of apoplastic
PAO during salt stress, contributing to cell death (Gémes
et al., 2016). Our data indicate that Arabidopsis RBOHD/F are
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downstream of Put or act in a concerted manner with
apoplastic CuAOs during PTI. Collectively, we observed
that PAMPs (flg22) induce Put biosynthesis and that Put
triggers responses compatible with PTI activation, which
are ROS and RBOHD/F dependent. Hence, a positive
feedback loop is proposed in which Put amplifies PAMP-
triggered signaling through ROS production, leading to
enhanced basal disease resistance against bacterial pathogens
(Figure 7). In this regard, apoplastic Put could act similarly
to damage-associated molecular patterns (DAMPs) triggering
a ROS-dependent defense response (Choi and Klessig, 2016;
Versluys et al., 2017).

Collectively, our results gain insight into mechanistic
processes by which polyamines contribute to disease resistance
in plants. Such type of analyses should contribute to pave
the road for the uses of polyamines as potential priming
agents in agriculture.
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Abstract

Polyamines are small amines that accumulate during stress and contribute to disease

resistance through as yet unknown signaling pathways. Using a comprehensive RNA-

sequencing analysis, we show that early transcriptional responses triggered by each

of the most abundant polyamines (putrescine, spermidine, spermine, thermospermine

and cadaverine) exhibit specific quantitative differences, suggesting that polyamines

(rather than downstream metabolites) elicit defense responses. Signaling by putres-

cine, which accumulates in response to bacteria that trigger effector triggered immu-

nity (ETI) and systemic acquired resistance (SAR), is largely dependent on the

accumulation of hydrogen peroxide, and is partly dependent on salicylic acid (SA), the

expression of ENHANCED DISEASE SUSCEPTIBILITY (EDS1) and NONEXPRESSOR of

PR GENES1 (NPR1). Putrescine elicits local SA accumulation as well as local and sys-

temic transcriptional reprogramming that overlaps with SAR. Loss-of-function muta-

tions in arginine decarboxylase 2 (ADC2tions in arginine decarboxylase 2 (ADC2tions in arginine decarboxylase 2 ( ), which is required for putrescine synthesis

and copper amine oxidase (CuAO), which is involved in putrescine oxidation, compro-

mise basal defenses, as well as putrescine and pathogen-triggered systemic resis-

tance. These findings confirm that putrescine elicits ROS-dependent SA pathways in

the activation of plant defenses.

K E YWORD S

defense, polyamines, systemic acquired resistance

1 | INTRODUCTION

Plant pathogens are recognized by innate immune receptors resident

at the cell surface or in the cytoplasm. Binding of conserved microbial

molecules (pathogen-associated molecular patterns, PAMPs) to

plasma membrane associated pattern recognition receptors leads to

PAMP-triggered immunity (PTI), which provides resistance to non-

adapted microbes (Dodds & Rathjen, 2010). PTI can be suppressed by

effectors, pathogenic virulence factors deployed into the cell that

promote susceptibility (Macho & Zipfel, 2014). Certain pathogen

effectors are recognized by intracellular nucleotide-binding/leucine-

rich-repeat (NLR) receptors, leading to effector triggered immunity

(ETI). ETI boosts PTI, salicylic acid (SA) biosynthesis and reactive oxy-

gen species (ROS) production, which ultimately leads to transcriptional

reprogramming (Cui, Tsuda, & Parker, 2015; Dodds & Rathjen, 2010).

Local pathogen recognition also triggers systemic responses that pro-

vide broad-spectrum disease resistance against secondary infection in

distal (systemic) tissues. This phenomenon, known as systemic

acquired resistance (SAR), is associated with local and systemic SA

biosynthesis, as well as extensive transcriptional reprogramming (Fu &

Dong, 2013). Even though PTI and ETI are activated upon recognition

of different pathogen molecules, both share common signals including
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ROS and SA production (Herrera-Vásquez, Salinas, & Holuigue, 2015).

Impaired SA biosynthesis strongly compromises SAR (Wildermuth,

Dewdney, Wu, & Ausubel, 2001), although SA itself is not the mobile

signal responsible for SAR (Vlot, Dempsey, & Klessig, 2009). Other

plant metabolites have been reported to orchestrate the establish-

ment of SAR through SA-dependent and independent pathways

(Shine, Xiao, Kachroo, & Kachroo, 2019). These metabolites include

N-hydroxypipecolic acid (NHP) (Hartmann et al., 2018; Návarová,

Bernsdorff, Döring, & Zeier, 2012), azelaic acid (AzA) (Jung,

Tschaplinski, Wang, Glazebrook, & Greenberg, 2009), glycerol-

3-phosphate (Chanda et al., 2011), dehydroabietinal (Chaturvedi et al.,

2012), free radicals, nitric oxide (NO) and reactive oxygen species

(ROS) (Wang et al., 2014).

EDS1 is a non-catalytic lipase-like protein required for basal resis-

tance, ETI and SAR. EDS1 contributes to SA accumulation as part of a

feedback loop that reinforces SA signaling (Falk et al., 1999; Feys

et al., 2005). ETI triggered by recognition of the Pseudomonas syringae

effector protein AvrRpm1 is mediated by the coiled-coil (CC)-NLR

RESISTANCE TO PSEUDOMONAS SYRINGAE pathovar

MACULICOLA1 (RPM1) receptor. Although local resistance mediated

by RPM1 is independent of EDS1 (Aarts et al., 1998), systemic immu-

nity and local SAR signal generation are compromised in the eds1

mutant (Breitenbach et al., 2014; Truman, Bennet, Kubigsteltig,

Turnbull, & Grant, 2007). NPR1 acts downstream of SA as transcrip-

tion co-factor that triggers defense-related transcriptional repro-

gramming. Upon SA accumulation, NPR1 oligomers resident in the

cytosol dissociate and NPR1 monomers are translocated to the

nucleus, where they interact with TGA transcription factors leading to

transcriptional reprogramming. As such, npr1 mutations severely com-

promise SA responses (Després, DeLong, Glaze, Liu, & Fobert, 2000;

Fan & Dong, 2002; Fu & Dong, 2013; Mou, Fan, & Dong, 2003; Tada

et al., 2008; Zhang, Fan, Kinkema, Li, & Dong, 1999).

In addition to SA, polyamines also accumulate during defense

responses (Jiménez-Bremont et al., 2014; Seifi & Shelp, 2019). Poly-

amines are low molecular weight polycationic molecules bearing

amino groups. Most abundant polyamines are the diamine putrescine

(Put), triamine spermidine (Spd) and tetraamine spermine (Spm). The

diamine cadaverine (Cad) and tetraamine thermospermine (tSpm), a

Spm isomer, are also present in higher plants. These compounds can

be found in free or conjugated forms to hydroxycinnamic acids

(Tiburcio & Alcázar, 2018; Tiburcio, Altabella, Bitrián, & Alcázar,

2014; Walters, 2003). Polyamine concentration is regulated by tight

control of its biosynthesis, conjugation, transport and oxidation.

Polyamines can be oxidatively deaminated by amine oxidases that

produce H2O2 (Cona, Rea, Angelini, Federico, & Tavladoraki, 2006),

which might lead to ROS-dependent stress signaling (Mittler et al.,

2011; Wang, Paschalidis, Feng, Song, & Liu, 2019). Amine oxidases

are classified in copper-containing amine oxidases (CuAO, EC

1.4.3.6) or FAD-dependent polyamine oxidases (PAO, EC 1.5.3.11).

In Arabidopsis thaliana (Arabidopsis), CuAO exhibit strong preference

for Put and Spd as substrates, and catalyze the oxidation of primary

amino groups producing the corresponding aldehydes along with

H2O2 and NH4
+ (Angelini et al., 2010; Cona et al., 2006; Planas-

Portell, Gallart, Tiburcio, & Altabella, 2013). Plant PAO are involved

in terminal catabolism or back-conversion reactions, depending on

the species (Angelini et al., 2010; Cona et al., 2006; Moschou et al.,

2012). In Arabidopsis, PAO mediate back-conversion reactions that

reverse the biosynthesis pathway by oxidation of the carbon at the

exo-side of the N4-nitrogen, producing 3-aminopropanal and H2O2

(Ahou et al., 2014; Moschou et al., 2012; Ono et al., 2012). Spm oxi-

dation through PAO activity triggers the activation of mitogen-

activated protein kinases (Seo, Katou, Seto, Gomi, & Ohashi, 2007;

Zhang & Klessig, 1997) and contributes to disease resistance against

cucumber mosaic virus (CMV) (Mitsuya et al., 2009; Sagor et al.,

2012), Pseudomonas (González et al., 2011; Lou, Bor, Yan, Preuss, &

Jander, 2016; Marco, Busó, & Carrasco, 2014; Marina et al., 2008;

Moschou et al., 2009), Botrytis cinerea (Seifi, Zarei, Hsiang, & Shelp,

2019) and other microbial pathogens. Overall, most defense traits

related to polyamines have been attributed to Spm oxidation. Even

though Put accumulation is a conserved metabolic hallmark of plant

stress, the contribution of Put to defense has remained elusive

(Mitsuya et al., 2009; Sagor et al., 2012; Seifi & Shelp, 2019; Vilas

et al., 2018; Yoda, Yamaguchi, & Sano, 2003). We recently reported

that Put accumulates during PTI and amplifies PTI responses in a

ROS and RESPIRATORY BURST OXIDASE HOMOLOG (RBOH) D

and RBOHF-dependent manner (Liu, Atanasov, Tiburcio, & Alcázar,

2019). Consistent with the contribution of Put to basal defenses,

adc2 mutants deficient in pathogen-triggered Put accumulation are

more susceptible to P. syringae pv. tomato DC3000 (Pst DC3000)

infection (Kim et al., 2013). Furthermore, accumulation of free Put in

the N-acetyltransferase activity1 (nata1) mutant, which is deficient in

Put N-acetylation, correlated with enhanced disease resistance to

this Pseudomonas strain (Lou et al., 2016). Despite the growing body

of evidence demonstrating the participation of polyamines in stress

protection, polyamine signaling pathways underlying such effects

are largely unknown. In an attempt to get an insight into polyamine

signaling and its contribution to defense in plants, we performed a

comprehensive RNA-sequencing (RNA-seq) analysis to determine

transcriptional changes elicited by each of the most abundant poly-

amines in Arabidopsis, in addition to cadaverine (Cad). Even though

Cad is not present in Arabidopsis, this polyamine is found in many

Leguminosae and microorganisms in the phyllosphere and rhizo-

sphere (Jancewicz, Gibbs, & Masson, 2016). RNA-seq analyses indi-

cated that the different polyamines elicit stress signaling in

Arabidopsis. By focusing on Put, which accumulates in response to

AvrRpm1-triggered ETI in a SA-independent manner, we find that

transcriptional responses to this polyamine are H2O2, SA, EDS1 and

NPR1-dependent, thus highlighting the importance of ROS and SA

pathways for Put signaling. Consistent with a role for Put in defense,

we find that Put treatment leads to local SA biosynthesis, as well as

local and systemic transcriptional reprogramming that overlaps with

SAR. The contribution of Put oxidation to defense is confirmed in

adc2 and cuao mutants, which are compromised in basal defenses as

well as Put and pathogen-triggered systemic resistance. Overall, we

provide new insights into polyamine signaling and the involvement

of Put oxidation in defense.
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2 | MATERIALS AND METHODS

2.1 | Plant materials and growth conditions

For plants grown on soil, seeds from the different genotypes were

stratified for 3 days on a wet filter paper and directly sown on a mix-

ture containing peat moss (40%), vermiculite (50%) and perlite (10%).

Plants were grown at 20–22�C under 8 hr light (8:00 a.m. to 4:00

p.m.)/16 hr dark cycles at 100–125 μmol photons m−2 s−1 of light

intensity and 60–70% relative humidity. For in vitro culture, seeds

were sterilized in 30% sodium hypochlorite supplemented with 0.5%

Triton X-100 (Sigma-Aldrich) for 10 min, followed by three washes

with sterile distilled H2O. Seeds were sown on growth media [1/2

Murashige and Skoog salts (MS) supplemented with vitamins

(Duchefa Biochemie), 1% sucrose, 0.6% plant agar (Duchefa Bio-

chemie) and 0.05% MES adjusted to pH 5.7 with 1 M KOH]. To syn-

chronize germination, seeds were stratified in the dark at 4�C for

2–3 days. Plates were incubated under 8 hr light/16 hr dark cycles at

20–22�C at 100–125 μmol photons m−2 s−1 of light intensity. The

npr1-1 (Cao, Glazebrook, Clarke, Volko, & Dong, 1997) mutant was

kindly provided by Prof. Xinnian Dong (Duke University, USA). The

adc1-2 (SALK_085350), adc2-4 (SALK_147171), atao1-3 (SALK_

082394C), cuao1-3 (SALK_019030C), cuao2-1 (SALK_012167C) and

cuao3-1 (SALK_095214C) mutants were obtained from the Notting-

ham Arabidopsis Stock Center (NASC, UK). The adc1-3 and adc2-3

mutants were previously reported (Cuevas et al., 2008).

2.2 | Polyamine chemicals and stock solutions

Putrescine, spermidine, spermine and cadaverine pure chemicals were

purchased from Sigma-Aldrich. Thermospermine was kindly provided

by Prof. Masaru Niitsu (Josai University, Japan). Fresh polyamine

stock solutions were prepared at 100 mM concentration in 5 mM

MES pH 5.7 and sterilized by filtration.

2.3 | RNA-seq analyses

All polyamine treatments were performed at the same time of the

day (12:00 p.m.) and samples collected at different time points post-

treatment, as described below. Early gene expression changes trig-

gered by the different polyamines were determined in 12-day-old

Col-0 wild-type, Col-0 eds1-2 (Bartsch et al., 2006), Col-0 sid2-1

(Wildermuth et al., 2001) and Col-0 npr1-1 (Cao et al., 1997) seed-

lings. The different genotypes were grown in vitro on a sterile nylon

mesh placed on top of the growth media. For polyamine treatments,

seedlings were transferred to growth media supplemented with or

without the different polyamines at 100 μM. Samples were col-

lected at 1 hr post-treatment. Analyses were performed in three

biological replicates, each containing three individual seedlings from

three independent plates. Local and systemic transcriptional

responses to Put were performed in 5-week-old Arabidopsis

wild-type (Col-0) plants infiltrated with 500 μM Put or mock (5 mM

MES pH 5.7). Leaves were collected at 24 hr post-inoculation.

Treatments were performed in three biological replicates, each con-

taining three leaves from three independent plants. Total RNA was

extracted using TriZol (ThermoFischer) and further purified using

RNeasy kit (Qiagen) according to manufacturer's instructions. Total

RNA was quantified in Qubit fluorometer (ThermoFisher) and

checked for purity and integrity in a Bioanalyzer-2100 device

(Agilent Technologies). RNA samples were further processed by the

Centro Nacional de Análisis Genómico CNAG (www.cnag.crg.eu,

Spain) for library preparation and RNA sequencing. Libraries were

prepared using the Illumina TruSeq Sample Preparation Kit according

to manufacturer's instructions. Each library was paired-end

sequenced (2 × 75 bp) on HiSeq2000 Illumina sequencers. Read

mapping and expression analyses were performed using the CLC

Genomics Workbench 12 version 12.0.3 (Qiagen). Only significant

expression differences (fold-change ≥2; p value and FDR ≤.05) were

considered. Gene ontology analyses were performed using CLC

Genomics Workbench 12 version 12.0.3 (Qiagen) and Gene Ontology

resource (GO; http://geneontology.org) using annotations from Ara-

port11 (Carbon et al., 2019; Cheng et al., 2017). Array similarity

searches were performed using the Genevestigator Signature tool

(www.genevestigator.com) in 2,799 perturbation arrays performed

in Arabidopsis (Col-0) wild-type genotype and containing a minimum

of three biological replicates (Hruz et al., 2008).

2.4 | Real-Time quantitative reverse transcription
PCR (qRT-PCR)

Total RNA was extracted using TRIzol reagent (ThermoFisher). Two

micrograms of RNA were treated with DNAse I (ThermoFisher) and

first-strand cDNA synthesized using Superscript IV reverse tran-

scriptase (ThermoFisher) and oligo(dT) according to manufacturer's

instructions. Quantitative real-time PCR using SYBR Green I dye

method was performed on Roche LightCycler 480 II detector sys-

tem following the PCR conditions: 95�C 2 min, 40 cycles (95�C,

15 s; 60�C, 30 s; 68�C, 20 s). Standard curves were performed for

quantification. Primer sequences used for gene expression analyses

are listed in Table S1. qRT-PCR analyses were always performed on

at least three biological replicates, each with three technical

replicates.

2.5 | 2,70-Dichlorofluorescein staining

Twelve-day-old wild-type (Col-0) seedlings grown in vitro were trans-

ferred to liquid growth media and incubated 24 hr before treatment

with the different polyamines at 100 μM, 100 μM Put + 5 mM DMTU

or mock (5 mM MES pH 5.7) for 1 hr. Seedlings were then stained

with 50 μM 2,70-dichlorofluorescein diacetate (Sigma Aldrich) dis-

solved in 20 mM phosphate buffer pH 6.1 for 30 min, and then

washed three times with distilled water. Leaves from 5-week-old
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plants were used for infiltration with the different polyamines

(500 μM), 500 μM Put + 5 mM DMTU or mock (5 mM MES pH 5.7)

using a 1-ml needless syringe. Leaf staining was performed at 24 hr

post-infiltration. ROS fluorescence was observed under a Leica Fluo-

rescent microscope (DMi8) (leaves) or confocal microscope (Olympus

FV1000) (roots) using 488 nm excitation and 510 nm emission wave-

lengths. A minimum of 10 independent plants were visualized for

every treatment. Figure captions represent a representative sample

from each treatment.

2.6 | DAB and NBT staining

Seedlings and leaves from the different treatments were immersed

and vacuum infiltrated with 1 mg ml−1 DAB staining solution

(pH 3.8). Samples were then bleached by boiling in acetic acid-glyc-

erol-ethanol (1/1/3) (v/v/v) solution for 5 min, and then immersed

in glycerol-ethanol (1/4) (v/v) solution for microscope visualization.

For NBT staining, samples were immersed and infiltrated under

vacuum with 3.5 mg ml−1 NBT staining solution in 10 mM

potassium phosphate buffer (pH 7.5) containing 10 mM NaN3.

Bleaching and microscope visualization was performed as described

above.

2.7 | Pipecolic acid and salicylic acid quantitation

Leaves from 5-week-old Arabidopsis plants were inoculated with

500 μM Put or mock (5 mM MES pH 5.7). Local inoculated (1�) and

distal non-inoculated (2�) leaves were collected at 24 and 48 hr

post-inoculation in three to four biological replicates, each con-

taining three leaves from three independent plants. The leaf con-

tents of SA, Pip and NHP were analyzed by gas chromatography/

mass spectrometry (GC–MS) as described by Hartmann et al. (2018).

Briefly, 50 mg of frozen, pulverized leaf tissue were extracted twice

with 1 ml of MeOH/H2O (80:20, v/v). 1 μg of D4-SA, D9-Pip, and

D9-NHP were added as internal standards. 600 μl of the extract was

evaporated to dryness and the residue was supplemented with 20 μl

of pyridine, 20 μl of N-methyl-N-trimethylsilyltrifluoroacetamide

containing 1% trimethylchlorosilane (v/v) and 60 μl of hexane. After

heating the mixture to 70�C for 30 min, samples were cooled and

diluted with 300 μl of hexane. 2 μl of the solution was separated on

a Phenomenex ZB-35 (30 m × 0.25 mm × 0.25 μm) capillary column

using a GC 7890A gas chromatograph (Agilent Technologies) and

the following temperature program: 70�C for 2 min, with 10�C/min

to 320�C, 320�C for 5 min. A 5975C Agilent mass spectrometer in

the electron ionization (EI) mode was used for compound detection.

Metabolite analysis and quantification was performed with the

Agilent MSD ChemStation software. Analyte peaks of selected ion

chromatograms were integrated, and peak areas were related to

those of internal standards: SA (m/z 267) relative to D4-SA (m/z

271), Pip (m/z 156) relative to D9-Pip (m/z 165), and NHP (m/z 172)

relative to D9-NHP (m/z 181).

2.8 | Determination of polyamine levels

The levels of free Put, Spd and Spm were determined by high-

performance liquid chromatography (HPLC) separation of dansyl

chloride-derived polyamines as described (Alcázar, García-Martínez,

Cuevas, Tiburcio, & Altabella, 2005; Marcé, Brown, Capell, Figueras, &

Tiburcio, 1995). Analyses were performed in three to four biological

replicates per treatment, each including three technical replicates.

2.9 | Polyamine levels in β-estradiol inducible
AvrRpm1 lines

The β-estradiol inducible AvrRpm1 line (a11) and AvrRpm1 rpm1-1

(a11r) were obtained from NASC (CS68776 and CS68777) (Tornero,

Chao, Luthin, Goff, & Dangl, 2002). Five-week-old a11, a11r and wild-

type plants were infiltrated with 10 μM β-estradiol or water (mock)

using a 1-ml needless syringe. Local inoculated (1�) and distal non-

inoculated (2�) leaves were harvested at 24 hr post-infiltration for

polyamine quantitation. Analyses were performed in three to four bio-

logical replicates per treatment, each including three technical

replicates.

2.10 | Pathogen inoculation assays

Three local leaves from at least eight independent Arabidopsis plants

per genotype were inoculated with 100 μl of a P. syringae pv tomato

DC3000 AvrRpm1 (Pst AvrRpm1) suspension at OD600 = 0.001 in

10 mM MgCl2, 500 μM Put or mock (10 mM MgCl2) using a 1-ml

needless syringe. Two days post-inoculation, systemic non-inoculated

leaves (2�) were infiltrated with P. syringae pv tomato DC3000 (Pst

DC3000) at OD600nm = 0.0005 in 10 mM MgCl2. Pst DC3000 colony

forming units (cfu) per cm2 were determined at 72 hr post-inoculation

as described (Alcázar et al., 2010) using eight biological replicates per

treatment and genotype.

2.11 | Accession numbers

RNA-seq data have been deposited in ArrayExpress (https://www.ebi.

ac.uk/arrayexpress/) under accession number E-MTAB-9267.

3 | RESULTS

3.1 | Transcriptional responses to different
polyamines

In order to gain an insight into polyamine signaling, we determined

early gene expression changes triggered by different polyamines in

12-day-old Arabidopsis wild-type seedlings treated with 100 μM

putrescine (Put), 100 μM cadaverine (Cad), 100 μM spermidine (Spd),
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100 μM spermine (Spm), 100 μM thermospermine (tSpm) or mock

(5 mM MES pH 5.7) for 1 hr. RNA-seq analyses identified 382 genes

that exhibited significant expression differences in response to one or

more polyamines (expression fold change ≥2, Bonferroni-corrected

p value <.05) (Figures 1 and S1; Tables S2.1–S2.7). Put treatment led

to the largest number of differentially expressed genes (227 genes;

Table S2.1), followed by Spd (209 genes, Table S2.2), Cad (179 genes,

Table S2.5), tSpm (156 genes, Table S2.4) and Spm (87 genes,

Table S2.3) treatments. Many genes were responsive to various poly-

amines, although specific quantitative differences were evident

(Table S2.6). Gene ontology (GO) analyses of polyamine responsive

genes evidenced the enrichment in biological processes related with

the stress response, defense, elicitation and hypoxia (Figure S2 and

Table S3). A survey for similar gene expression patterns in 2,799 pub-

licly available arrays identified perturbations related to basal defenses,

flg22 treatment, hypoxia and iron deficiency (Figure S3). Closer

inspection of molecular functions and pathway analyses identified

86 genes coding for proteins with different catalytic activities, includ-

ing an overrepresentation of pectin modifying and flavonoid biosyn-

thesis enzymes, peroxidases and glutathione S-transferases

(Table S2.6). Other 30 genes encoded transcription factors, 11 of

which belonged to the WRKY family. This was followed by 20 protein

kinases, 16 defense-related genes, 16 transporters of different nature,

16 Cysteine/Histidine-rich C1 domain family proteins, and several

genes related to ABA, auxin and ethylene signaling or metabolism,

among other categories (Table S2.6). Overall, these analyses indicated

that polyamines elicit stress signaling, including biotic responses. The

principal component analysis (PCA) (Figure 2a) and hierarchical clus-

tering analysis (HCA) (Figure 2b) of RNA-seq data evidenced the

absence of correlation between transcriptional responses and poly-

amine charge. Indeed, the two HCA sample clades grouped poly-

amines with different number of amino groups. Clade I included the

diamine Put and tetraamine Spm, whereas clade II contained the

diamine Cad, triamine Spd and tetraamine tSpm (Figure 2b). We con-

cluded that the different polyamines elicit stress signaling and exhibit

quantitative rather than qualitative differences, which are not corre-

lated with charge.

3.2 | Put signaling is ROS dependent

The overlapping transcriptional responses triggered by the different

polyamines (Figures 1 and 2b; Table S2.6) suggested their conver-

gence into a common signal. Hydrogen peroxide is a common by-

product of polyamine oxidation (Angelini et al., 2010; Cona et al.,

2006; Wang et al., 2019). Staining with the 20 ,70-dichlorofluorescein

diacetate (DCFDA) dye identified sites of ROS production in leaves

and roots treated with the different polyamines (Figure S4A). Staining

with 3-30-diaminobenzidine (DAB) also exhibited dark brown precipi-

tates in polyamine-treated roots and leaves, consistent with the pro-

duction of H2O2 (Figure S4B). Conversely, no evident differences

were observed between mock and polyamine treatments in roots or

F IGURE 1 Venn diagram of
polyamine responsive genes. Venn
diagram of unique and shared genes
responsive to 100 μM putrescine (Put),
100 μM cadaverine (Cad), 100 μM
spermidine (Spd), 100 μM spermine (Spm)
and 100 μM thermospermine (tSpm) after
1 hr of treatment (see Tables S2.1–S2.6).
RNA-seq analyses were performed in
12-day-old Arabidopsis wild-type (Col-0)
seedlings [Colour figure can be viewed at
wileyonlinelibrary.com]
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leaves stained with nitroblue tetrazolium (NBT) (Figure S4C). These

histochemical analyses suggested that polyamines trigger the produc-

tion of H2O2. To further investigate the importance of H2O2 in the

transcriptional response elicited by polyamines, we focused on Put,

which accumulation is a metabolic hallmark of stress (Alcázar et al.,

2010). We interrogated the dependence of transcriptional changes

triggered by Put on H2O2 production, by using the H2O2 scavenger

dimethylthiourea (DMTU). Importantly, DMTU treatment inhibited

(b)

(a)

F IGURE 2 (a) Principal component analysis (PCA) and (b) hierarchical clustering analysis (HCA) of transcriptional responses to different
polyamines. PCA and HCA of RNA-seq data from the treatments with 100 μM putrescine (Put), 100 μM cadaverine (Cad), 100 μM spermidine
(Spd), 100 μM spermine (Spm) and 100 μM thermospermine (tSpm). Ellipses in the PCA indicate the 95% confidence interval. The chemical
structure of the different polyamines is shown at the bottom of the HCA clade [Colour figure can be viewed at wileyonlinelibrary.com]
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Put-triggered ROS staining in roots and leaves (Figure S4A and S4B).

Gene expression analyses indicated that, out of the 227 genes

responsive to Put (Table S2.1), the deregulation of 205 genes (90.3%)

was significantly inhibited (≥2-fold) in the presence of 5 mM DMTU

(Table S4). We concluded that most transcriptional responses to Put

are H2O2 dependent, thus pointing to an important contribution of

ROS to Put signaling.

3.3 | Involvement of SA pathway in putrescine
signaling

GO and array similarity analyses of polyamine responsive genes

highlighted many categories related to defense (Figures S2 and S3,

Table S3). EDS1, SA and NPR1 are important regulators of defense

also required to mount systemic responses to protect against second-

ary infection (Fu & Dong, 2013). In order to study their contribution

to Put signaling, we determined the expression changes induced by

100 μM Put in eds1-2, sid2-1 and npr1-1 mutants. Out of the 227 Put

responsive genes (Table S2.1), the Put-triggered deregulation of

114 (50%), 87 (38.3%) and 59 (26%) genes was compromised (≥2-fold)

in npr1-1, sid2-1 and eds1-2 mutants, respectively. Only 37.8% of Put

responsive genes were independent of NPR1, SID2 or EDS1. The

majority of EDS1 (66%) and SA (87%) gene expression sectors were

also NPR1 dependent (Figure 3 and Table S5). Overall, we concluded

that most transcriptional responses to Put require a functional EDS1/

SA/NPR1 pathway.

3.4 | Putrescine elicits local SA accumulation

The dependence of Put responsiveness on SA pathway led us to

investigate a potential cross-modulation between these metabolites.

For this, we infiltrated wild-type leaves with 500 μM Put or mock and

determined free SA levels in local inoculated (1�) and systemic non-

inoculated (2�) leaves at 24 and 48 hr post-treatment. Free SA levels

were five-fold higher in 1� leaves infiltrated with Put than mock. Con-

versely, no differences in SA were detected between Put and mock

treatments in 2� leaves (Figure 4). The levels of N-hydroxipipecolic

acid (NHP), another important SAR regulator, as well as its biosyn-

thetic precursor pipecolic acid (Pip), were not affected by Put treat-

ment in either tissue (Figure 4). We concluded that Put elicits local SA

F IGURE 3 Dependence of Put-triggered transcriptional
responses on EDS1, SA and NPR1. Distribution of Put responsive
genes in EDS1, SA and NPR1-dependent gene expression sectors.
The data was obtained from RNA-seq analyses in eds1-2, sid2-1 and
npr1-1 mutants treated with 100 μM Put or mock for 1 hr. Expression
differences are relative to mock in each genotype (see Table S5)
[Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 4 Quantitation of SAR-related metabolites salicylic acid
(SA) and Pipecolic acid (Pip) in Put-inoculated leaves. Free SA and Pip
levels in primary inoculated (1�) and systemic non-inoculated (2�)
leaves of 5-week-old Arabidopsis wild-type plants at 24 and 48 hr
post-treatment with 500 μM Put or mock (5 mM MES pH 5.7). Values
are the mean of at least three biological replicates ± standard
deviation (SD). Letters indicate values that are significantly different
according to Tukey's HSD test at p < .05. The levels of the SAR-active
Pip derivative N-hydroxypipecolic acid (NHP) were below the limit of
detection for all the samples under investigation
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accumulation, which supports the dependence of transcriptional

responses to Put on SA-dependent pathways (Figure 3). The recipro-

cal modulation of polyamine metabolism by SA was also studied

by inoculating wild-type leaves with 500 μM SA, 500 μM

benzothiadiazole S-methyl ester (BTH) or mock (water), followed by

the determination of polyamine levels. SA or BTH did not induce sig-

nificant changes in polyamine content compared to mock (Figure S5).

We concluded that Put elicits SA accumulation, but SA has no obvious

influence on polyamine levels.

3.5 | Polyamine levels in response to Pst AvrRpm1

To study whether ETI also associated with changes in polyamine

levels, we inoculated wild-type leaves with the P. syringae pathovar

tomato (Pst) DC3000 carrying AvrRpm1 (Pst AvrRpm1) or mock

(MgCl2) and determined Put, Spd and Spm concentration at 24 hr

post-inoculation (Figure 5). Because Pst AvrRpm1 is a potent inducer

of SAR, these analyses were performed in both local (1�) and sys-

temic (2�) leaves. Primary leaves inoculated with Pst AvrRpm1 accu-

mulated three-fold more Put than leaves treated with mock,

whereas Spd and Spm contents were unaffected. Local Put accumu-

lation was also evident in eds1-2, sid2-1 and npr1-1 mutants inocu-

lated with Pst AvrRpm1. Although AvrRpm1 recognition operates

independently of EDS1, Put accumulation in sid2-1 and npr1-1

pointed to a SA and NPR1 independent response (Figure 5a). In con-

trast to 1� leaves, polyamine levels in 2� leaves were not influenced

by Pst AvrRpm1 inoculation (Figure 5b), indicating that Put accumu-

lates in local but not systemic tissues. Local Put increases were also

evident in 1� leaves of β-estradiol infiltrated a11 transgenic plants

expressing β-estradiol-inducible AvrRpm1, but not in 2� leaves from

the same plants. Conversely, Put accumulation was attenuated in

(b)

(a)

F IGURE 5 Polyamine levels in
response to Pst AvrRpm1. Levels of
putrescine (Put), spermidine (Spd) and
spermine (Spm) in local and systemic
leaves of five-week-old Arabidopsis wild-
type, npr1-1, sid2-1 and eds1-2 plants at
24 hr post-inoculation with ETI and SAR-
inducing Pst AvrRpm1 bacteria (AvrRpm1)
at OD600 nm = 0.001 or mock (10 mM
MgCl2). Values are the mean from at least
four biological replicates ± SD. Letters
indicate values that are significantly
different according to Tukey's HSD test at
p < .05 [Colour figure can be viewed at
wileyonlinelibrary.com]
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a11 rpm1-1 (a11r) (Figure S6) (Tornero et al., 2002). These results

indicated that AvrRpm1 recognition is sufficient to induce Put accu-

mulation. These pathogen-free assays also support a major contri-

bution of plant polyamine metabolism to local changes in Put levels

during ETI.

3.6 | Systemic transcriptional responses triggered
by Put

Having found that Put accumulates in local leaves during ETI

(Figures 5 and S6) and triggers local SA accumulation (Figure 4), we

investigated whether Put responses were transmitted to systemic

tissues. For this, we determined transcriptional changes triggered

by 500 μM Put or mock in local (1�) and systemic (2�) wild-type

leaves at 24 hr post-treatment. A total of 185 and 216 genes were

deregulated by Put in 1� and 2� leaves, respectively (Figure 6;

Tables S6.1–S6.3). GO analyses of these genes identified a strong

overrepresentation of terms related with biotic stimulus, defense,

SAR, response to SA and hypoxia in local and systemic tissues

(Tables S6.4 and S6.5). Interestingly, 54.8% of the 115 genes up-

regulated by Put in 1� leaves and 72.3% of the 177 genes up-

regulated by Put in 2� leaves overlapped with SAR-responsive

genes (Figure 6) (Hartmann et al., 2018). However, these only rep-

resented a small fraction (4.5%) of the full SAR transcriptional

response (Hartmann et al., 2018). Quantitative RT-PCR analyses

confirmed the transcriptional up-regulation of the SA marker gene

PATHOGENESIS RELATED1 (PR1) but also the SA biosynthesis gene

ISOCHORISMATE SYNTHASE 1 (ICS1) in 1� but not 2� leaves, as well

as the up-regulation of SAR-related genes FLAVIN-DEPENDENT MONO-

OXYGENASE 1 (FMO1) and L-LYSINE ALPHA-AMINOTRANSFERASE

ALD1 (AGD2-LIKE DEFENSE RESPONSE PROTEIN 1) in both local and

systemic tissues (Figure S7). The data are consistent with a systemic

response elicited by Put infiltration, which partly overlaps with SAR.

However, transcriptional changes induced by Put in the absence of

pathogen attack seem insufficient to trigger SA accumulation in 2�

leaves (Figure 4), or the full establishment of SAR responses

(Figure 6). This might prevent the cost of establishing systemic

defenses due to transient fluctuations in Put levels not related to

biotic stress.

3.7 | Contribution of Put to the establishment of
SAR in SA-pathway and Put biosynthesis mutants

To investigate the contribution of Put to the establishment of SAR,

1� leaves of the wild-type were pre-inoculated with 500 μM Put,

Pst AvrRpm1 or mock. After 48 hr, 2� leaves were inoculated with

Pst DC3000 and bacterial titers determined at 72 hr post-

inoculation (Figure 7a). Pre-treatment with Put led to lower Pst

DC3000 growth in 2� leaves, similarly to Pst AvrRpm1 pre-

inoculation (Figure 7a). Put-elicited resistance was not evidenced in

eds1-2, sid2-1 or npr1-1 mutants, which is consistent with the

requirement of functional SA-dependent pathways for Put

responses (Figure 7a). Furthermore, SAR elicited by Pst AvrRpm1

was compromised in adc2-3 and adc2-4 mutants, but not in adc1-2

or adc1-3 (Figure 7b). The data suggested that Put contributes to

the establishment of SAR.

F IGURE 6 Local and systemic transcriptional responses to Put. Five-week-old Arabidopsis wild-type (Col-0) plants were infiltrated with
500 μM Put or mock (5 mM MES pH 5.7). Local inoculated and systemic non-inoculated leaves were harvested at 24 hr post-treatment for global
gene expression analyses by RNA-seq. Venn diagram represents the distribution of up- and down-regulated genes in local (Table S6.1) and
systemic (Table S6.2) leaves that exhibit significant expression differences in response to Put inoculation compared to mock, and its comparison
with previously annotated SAR genes [Colour figure can be viewed at wileyonlinelibrary.com]
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3.8 | Analysis of the SAR response in copper amine
oxidase (cuao) mutants

Put can be converted into 4-aminobutanal, H2O2 and ammonia

through an enzymatic reaction catalyzed by copper-containing amine

oxidases (CuAOs). Among the characterized CuAO enzymes in Ara-

bidopsis, A. thaliana AMINE OXIDASE1 (ATAO1), CuAO1, CuAO2 and

CuAO3 exhibit high affinity for Put and Spd, and localize to the

apoplast (Moller & McPherson, 1998; Planas-Portell et al., 2013). By

using atao1-3, cuao1-3, cuao2-1 and cuao3-1 loss-of-function

mutants, we tested the contribution of CuAO to Put and Pst

AvrRpm1-elicited systemic resistance. The results indicated that basal

defenses and SAR were strongly compromised in cuao1-3. In addition,

no significant differences in bacteria growth were detected between

mock and Put or Pst AvrRpm1-elicited in cuao2-1 and cuao3-1 mutants

(Figure 8). The data suggested that different CuAO family members

contribute additively to the establishment of SAR, which highlights

the importance of ROS generation for polyamine-triggered defense

responses.

4 | DISCUSSION

In order to investigate polyamine signaling, here we determined early

transcriptional responses to most abundant polyamines (Put, Spd,

Spm, tSpm and Cad) in Arabidopsis. Our data indicate that polyamines

are active participants in stress signaling. The different polyamines

elicited similar transcriptional responses but exhibited specific quanti-

tative differences which were not correlated with charge (Figure 2b

and Table S2.6). Remarkably, Cad also triggered a transcriptional

response in Arabidopsis, although this polyamine is absent in this spe-

cies (Table S1.5). This might be relevant in the context of plant-

microbe interactions, as plants could take up Cad released from micro-

organisms in the rhizosphere or phyllosphere (Jancewicz et al., 2016).

However, this possibility needs further investigation. By focusing on

Put, which accumulates in response to a large variety of stresses

(Alcázar, Altabella, et al., 2010), we find that ROS production is neces-

sary for Put-triggered transcriptional reprogramming (Table S4). ROS

play important signaling roles in plant growth, development and stress

responses. Important sources of ROS are enzymatic activities from

peroxisomal glycolate involved in photorespiration, acyl-CoA oxidases

required for fatty acid β-oxidation, cell wall peroxidases, plasma mem-

brane NADPH oxidases, copper-containing amine oxidases and FAD-

dependent polyamine oxidases which produce H2O2 in the apoplast

and peroxisomes (Cona et al., 2006; Del Río, 2015). ROS generated

(b)

(a)

F IGURE 7 Analysis of Put and Pst AvrRpm1-triggered systemic
resistance in SA pathway and Put deficient mutants. (a) Five-week-old
Arabidopsis wild-type, eds1-2, sid2-1, npr1-1 and (b) adc1-2, adc1-3,
adc2-3 and adc2-4 plants were pre-treated with 500 μM Put (Put), Pst
AvrRpm1 (OD600 nm = 0.001) or mock (10 mM MgCl2). Two days later,
systemic leaves were inoculated with Pst DC3000 (OD600nm =
0.0005). Bacterial numbers were assessed at 72 hr post-inoculation
and expressed as colony forming units (cfu) per cm2 leaf area. Values
are the mean from at least eight biological replicates ± SD. Letters
indicate values that are significantly different according to Tukey's
HSD test at p < .05

F IGURE 8 Analysis of Put and Pst AvrRpm1-triggered systemic

resistance in copper amine oxidase mutants. Five-week-old Arabidopsis
wild-type, atao1-3, cuao1-3, cuao2-1 and cuao3-1 mutants were pre-
treated with 500 μM Put (Put), Pst AvrRpm1 (OD600 nm = 0.001) or
mock (10 mM MgCl2). Two days later, systemic leaves were
inoculated with Pst DC3000 (OD600nm = 0.0005). Bacterial numbers
were assessed at 72 hr post-inoculation and expressed as colony
forming units (cfu) per cm2 leaf area. Values are the mean from at
least eight biological replicates ± SD. Letters indicate values that are
significantly different according to Tukey's HSD test at p < .05
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through these and other enzymatic reactions in chloroplasts, mito-

chondria, peroxisomes and the apoplast are important chemical signals

that contribute to PTI, ETI and SAR (Bindschedler et al., 2006;

Daudi et al., 2012; Macho, Boutrot, Rathjen, & Zipfel, 2012;

Mammarella et al., 2015; Rojas et al., 2012; Torres, Dangl, & Jones,

2002; Wang et al., 2014).

In Arabidopsis, the biosynthesis of Put is stimulated during PTI

(Liu et al., 2019) and ETI (Figures 5 and S6). Activation of PTI or ETI is

sufficient for the establishment of SAR, which involves extensive tran-

scriptional reprogramming (Liu et al., 2019; Mishina & Zeier, 2007;

Zhang & Li, 2019). The catalase2 (cat2) mutant, which is impaired in

peroxisomal H2O2 metabolism, exhibits high SA and Put contents in

addition to cell death and activation of defenses (Chaouch et al.,

2010). Put and SA have been suggested to operate in the same

defense/cell death metabolic response triggered by ROS (Chaouch

et al., 2010). Here we find that Put elicits EDS1/SA/NPR1 dependent

transcriptional reprogramming in Arabidopsis (Figure 3), which leads to

local SA increases (Figure 4) in the absence of programmed cell death

(Liu et al., 2019). The npr1-1 mutation suppressed the deregulation of

a greater number of Put responsive genes (114 out of 227) than

sid2-1 (87 genes) or eds1-2 (59 genes) mutations. Even though not all

transcriptional responses to Put are SA dependent, 62.2% of early

Put-responsive genes require a functional EDS1/SA/NPR1 pathway.

Interestingly, NPR1 localization is influenced by redox changes trig-

gered by pathogen infection and SA accumulation, as well as

S-nitrosylation (Tada et al., 2008). Remarkably, polyamines are sources

of both ROS and NO (Cona et al., 2006; Wimalasekera, Tebartz, &

Scherer, 2011). The involvement of EDS1 in Put signaling might be

due to its contribution to SA accumulation as part of a feedback loop

that boosts SA signaling (Falk et al., 1999; Feys et al., 2005). Consis-

tent with this, EDS1, SA and NPR1-dependent sectors exhibit high

overlap (Figure 3).

Stimulation of local SA biosynthesis (Figure 4) might underlie

the enhanced basal disease resistance of wild-type plants inocu-

lated with Put (Liu et al., 2019) and/or the enhanced disease sus-

ceptibility of adc2, which is compromised in Put accumulation in

response to Pst DC3000 bacteria (Kim et al., 2013). Even though

Put elicited local but not distal SA accumulation (Figure 4), local

Put treatment triggered systemic transcriptional reprogramming

that overlapped with SAR (Figure 6). Remarkably, local or sys-

temic NHP and Pip levels were unaffected by Put inoculation

(Figure 4), which indicates that Put potentiates the SA-branch of

SAR. In agreement with this, pre-treatment with Put increased

the resistance to Pst DC3000 in systemic tissues in an EDS1, SA

and NPR1 dependent manner (Figure 7a). In addition, SAR was

compromised in adc2 but not adc1 mutants, thus highlighting the

specific contribution of ADC2 to systemic resistance (Figure 7b).

ADC1 has been shown to be required for Put accumulation in

response to Pseudomonas viridiflava in Arabidopsis, although resis-

tance was not conditioned by ADC1 loss-of-function (Rossi,

Marina, & Pieckenstain, 2015). Therefore, ADC1 may contribute

to Put biosynthesis in response to certain pathogens in

Arabidopsis, thus highlighting its specificity. The involvement of

ADC1 in the synthesis of N-acetylputrescine (Lou et al., 2019)

may underlie such specificity.

The dependence of Put signaling on H2O2 production (Table S4)

prompted us to investigate the potential participation of CuAO in

Put-triggered defense responses. CuAO1 catalyzes the oxidative

deamination of Put and Spd in the apoplast and its expression is

strongly up-regulated in response to SA (Planas-Portell et al., 2013).

Interestingly, the cuao1-3 mutant was compromised in basal defenses

to Pst DC3000 and the establishment of SAR triggered by Put and Pst

AvrRpm1 (Figure 8). Other CuAO family members (CuAO2 and CuAO3)

contributed additively to Put-elicited systemic responses (Figure 8).

Based on these results, we argue that Put oxidation in the apoplast

might be an important trigger of defense signaling. Polyamines are

known to accumulate in the apoplast in response to pathogens (Liu

et al., 2019; Marina et al., 2008; Moschou et al., 2009; Yamakawa,

Kamada, Satoh, & Ohashi, 1998). However, it is still a matter of debate

the contribution of plant and pathogens to the total polyamine levels

found in plant tissues. Here we show that inducible AvrRpm1 expres-

sion in Arabidopsis is sufficient to induce Put accumulation, and this

response is significantly mitigated in rpm1-1 (Figure S6). We conclude

that local Put accumulation triggered by Pst AvrRpm1 inoculation is

mainly of plant origin.

Earlier works already reported that high H2O2 stimulates the bio-

synthesis of SA (Durner, Shah, & Klessig, 1997; León, Lawton, &

Raskin, 1995). Indeed, apoplastic ROS production is a hallmark of suc-

cessful pathogen recognition and activation of defense responses

(Torres, 2010). Perception of PAMPs triggers the activation of

NADPH oxidases and peroxidases leading to apoplastic H2O2 genera-

tion and defense signaling (Mammarella et al., 2015; Nühse, Bottrill,

Jones, & Peck, 2007; O'Brien et al., 2012; Zhang et al., 2007). In addi-

tion, apoplastic H2O2 bursts contribute to cell wall fortification and

callose deposition at infection sites (Ellinger & Voigt, 2014). SA also

influences ROS levels through inhibition of the catalase activity (Chen,

Silva, & Klessig, 1993) and the H2O2 scavenging activity of cytosolic

ascorbate peroxidase (APX) (Vlot et al., 2009). Conversely, high SA

stimulates reduced glutathione biosynthesis at long term, thus con-

tributing to an antioxidative effect. Therefore, H2O2 and SA exhibit an

intricate relationship reflected by a biphasic (first oxidative and sec-

ond reductive) redox dynamics (Herrera-Vásquez et al., 2015).

In the context of plant-pathogen co-evolution, the polyamine

pathway might be a good target for pathogen effectors or small mole-

cules which are delivered to manipulate host defenses. The observed

restriction in Pseudomonas growth triggered by Put is consistent with

the activity of the TALE-like Bgr11 effector from the plant pathogen

Ralstonia solanacearum that boost Put biosynthesis to inhibit the

growth of microbial niche competitors (Wu et al., 2019). In addition,

the P. syringae virulence factor phevamine A, which is derived from

Spd, suppresses the flg22-induced ROS potentiation of defense

responses triggered by Spd in Arabidopsis (O'Neill et al., 2018). Over-

all, we provide new insights into polyamine signaling and defense with

a focus on Put. Future research on this topic might help at the rational

establishment of plant breeding and/or engineering strategies for

plant protection against disease.
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Abstract 

Hybrid incompatibility (HI) is a common phenomenon in plants. The epistatic interaction 
between the NUCLEOTIDE BINDING LEUCINE RICH REPEAT (NB-LRR) RPP1-like 
(RECOGNITION OF PERONOSPORA PARASITICA 1) locus, from Landsberg erecta (Ler), 
and Kas-2 alleles of STRUBBELIG RECEPTOR KINASE FAMILY 3 (SRF3) leads to immune-
related HI, which is associated with fitness loss and constitutive activation of salicylic acid 
(SA) pathway at 14 -16 ºC. Through an EMS mutagenesis screen, here we report the 
identification of new suppressors of Ler/Kas-2 incompatibility (sulki3-1 and sulki4-1) mutants 
mapping to GLUCAN SYNTHASE-LIKE 2 (GSL2) and GLUCAN SYNTHASE-LIKE 10 
(GSL10) genes, respectively. Artificial microRNA (amiRNA) gene silencing of GSL2 and 
GSL10 family members also suppressed dwarfism, cell death, and constitutive SA pathway 
activation at 14-16 ℃. The sulki3-1, sulki4-1 and amiRNA GSL2/10 lines still exhibited callose 
deposition in response to the PAMP flg22, wounding and Pseudomonas syringae pv. tomato 
DC3000 (Pst DC3000) inoculation. Furthermore, disease resistance of the Ler/Kas-2 was 
restored to parental (Ler or Kas-2) levels by GSL2/10 mutations or gene silencing. We 
concluded that suppression of Ler/Kas-2 HI by GSL2 or GSL10 mutation suppressed HI, 
without a reduction in basal disease resistance. Our results point to an important role for GSL 
family and callose deposition in the occurrence of hybrid incompatibility in plants. 

 

 

INTRODUCTION 

 

Hybrid incompatibilities (HI), as 
opposed to hybrid vigor, represents a fitness 
loss generally occurring in F1 or later 
generations of different species or 
subspecies, which are separated by 
reproductive isolation barriers (Bomblies 

and Weigel, 2007; Rieseberg and Willis, 
2007). HI shows reduced viability and 
fertility, and often involves epistatic 
interactions which conform to the Bateson–
Dobzhansky–Muller (BDM) model (Coyne 
and Orr, 2004). In the recent decades, the 
identification of the genetic bases of HI 
revealed the frequent involvement of one 
NUCLEOTIDE BINDING LEUCINE-
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RICH REPEAT (NLR) locus that, in 
interaction with other disease resistance 
genes (R), or genes with diverse functions, 
triggers the occurrence of immune-related 
HI (Bomblies and Weigel, 2007; Alcázar et 
al., 2010; 2012; Chae et al., 2014). NLR 
proteins contain a central nucleotide-
binding site (NB) domain and a C-terminus 
leucine-rich repeat domain. They are 
divided into two subclasses, depending on 
whether they carry N-terminus 
Toll/interleukin-1 receptor (TIR) or coiled-
coil (CC) domains (Sinapidou et al., 2004). 
NLR proteins play important roles during 
the immune response of plants, through 
recognition of pathogen effectors and 
activation of defense responses called 
effector-triggered immunity (ETI). ETI is 
an accelerated and amplified version of 
pathogen-associated molecular patterns 
(PAMPs) - triggered immunity (PTI) (Jones 
and Dangl, 2006), and both PTI and ETI 
potentiate each other (Ngou et al., 2020). 
As such, the study of immune-related HI 
can be used as a model for the study of ETI 
in the absence of pathogen challenge. 

In Arabidopsis (Arabidopsis thaliana), the 
highly polymorphic TIR-NLR (TNL) RPP1 
(RECOGNITION OF PERONOSPORA 
PARASITICA 1) - like locus, also known as 
DANGEROUS MIX locus 2 (DM2), is a 
hotspot for immune-related HI studies 
(Bomblies et al., 2007; Chae et al., 2014; 
Stuttmann et al., 2016; Vaid and Laitinen, 
2019), Some RPP1-like genes are known to 
recognize effectors from pathogenic 
oomycete Hyaloperonospora Arabidopsis, 
thus contributing to resistance through 
activation of ETI. The DM2 locus was first 
reported in the accession Uk-1, which in 
interaction with the SSI4 (DM1) from Uk-3, 
caused immune-related HI (Bomblies and 
Weigel, 2007). Such NLR allelic 

interactions are expected to lead 
conformational changes in NLR proteins 
that lead to constitutive activation of 
defense. Alcázar et al. (2009; 2010) 
identified another temperature-dependent 
incompatible interaction between TNL 
RPP1-like genes (R1-R8) of Landsberg 
erecta (Ler) (overlapping with the DM2 
locus also known as QTL3) and Kashmir-2 
(Kas-2) alleles of STRUBBELIG 
RECEPTOR KINASE FAMILY 3 (SRF3). A 
Ler/Kas-2 near-isogenic line (NIL) 
carrying a single Ler RPP1 locus 
introgression on QTL 3 in a homogeneous 
Kas-2 background reconstituted dwarfism, 
cell death and sterility at 14-16℃ (hereafter 
referred to as low temperature). However, 
the growth and reproductive loss of the 
Ler/Kas-2 NIL could be suppressed at 20-
22℃ (Alcazar et al., 2009; 2010).  

We previously reported the isolation of 
suppressors of Ler/Kas-2 incompatibility 
(sulki) mutants from an EMS mutagenesis 
screen of the incompatible NIL (Atanasov 
et al., 2018). Although most sulki mutants 
mapped to the RPP1-like Ler cluster 
(RPP1-like Ler R8 in sulki1-1 to sulki1-10 
and RPP1-like Ler R3 in sulki2-1) 
(Atanasov et al., 2018), sulki3-1 and sulki4-
1, carried wild-type alleles at incompatible 
loci thus representing extragenic mutations. 
Here we report the mapping of sulki3-1 and 
sulki4-1 mutants to GSL (glucan synthase-
like) 2 and GSL10 genes, respectively.  

The β-1,3 -D-glucan callose is synthesized 
by GSL also known as callose synthase 
(CalS) proteins (Stone and Clarke, 1992; 
Xie and Hong, 2011). Callose is an essential 
component during growth, development, 
and accumulates during the defense 
response (Dong et al., 2005; Huang et al., 
2009; Ellinger et al., 2013; Shikanai et al., 
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2020). Papilla formation in higher plants 
contributes to innate immunity and 
associates with global transcriptional 
changes (Jones and Dangl, 2006; Ellinger et 
al., 2013). Arabidopsis has twelve glucan 
synthase family members (Hong et al., 
2001), which are divided into two groups 
based on their biological functions. GSL1, 
GSL2, GSL6, GSL8 and GSL10 constitute 
the largest group, which is mainly 
responsible for callose biosynthesis during 
pollen development and cell division 
(Drábková and Honys, 2017). GSL4, GSL5, 
GSL7 and GSL12 are involved in callose 
deposition during plugging, barrier 
formation, and other types of structural 
reinforcements (Hong et al., 2001; Ellinger 
and Voigt, 2014). For the rest GSL 
members, their function is yet unclear. 
GSL5 is crucial for callose synthesis in 
response to many external stimuli (Jacobs 
et al., 2003; Nishimura et al., 2003). GSL2 
is responsible for the establishment of the 
callose wall enclosing pollen mother cells 
and pollen tubes in Arabidopsis (Dong et al., 
2005; Nishikawa et al., 2005). GSL10 
mostly localizes to the plasma membrane 
and is essential for microspore growth, 
alleviation of cell wall damage and defense 
responses in Arabidopsis (Töller et al., 
2008; Huang et al., 2009; Chen and Kim, 
2009; Shikanai et al., 2020). However, the 
contribution of GSL to hybrid 
incompatibilities (ETI) or GSL2 and GSL10 
in defense, have not been reported. In this 
study, we investigated the involvement of 
GSL2 and GSL10 to Ler/Kas-2 immune-
related HI. Analysis of sulki3-1, sulki4-1 
and artificial microRNA (amiRNA) 
silencing of GSL2 and GSL10 in 
incompatible NIL background 
demonstrated that these two GSL contribute 
to Ler/Kas-2 HI at low temperature. We 
also analyzed the effect of Ler/Kas-2 HI 

suppressive mutations on defense against 
pathogenic bacteria. Our results support a 
role for callose biosynthesis in the 
occurrence of immune-related hybrid 
compatibilities (ETI) in plants. 

 

RESULTS  

 
Mapping extragenic suppressors of 
Ler/Kas-2 HI  

A screen for suppressors of Ler/Kas-2 HI at 
14-16ºC identified two extragenic mutants, 
sulki3-1 and sulki4-1, which carried 
dominant mutations that fully suppressed 
dwarfism and cell death at 14-16ºC, which 
are hallmarks of HI (Figure 1 and 
Supplemental Figure S1). Both mutants 
were backcrossed five times with the 
parental Ler/Kas-2 NIL and the genome 
sequences of BC5F1 plants were obtained 
by next generation sequencing. Mapping of 
sulki3-1 and sulki4-1 reads to the Ler/Kas-
2 NIL identified unique G/C to A/T 
transition mutations that segregated with 
the suppression of incompatibility. The 
sulki3-1 mutant carried a R758Q non-
synonymous substitution in exon 21 of the 
At2g13680 gene, coding for GLUCAN 
SYNTHASE-LIKE 2 (GSL2). This amino 
acid change is next to a transmembrane 
domain and mapped to a highly conserved 
amino acid in the glucan synthase-like 
(GSL) family (Figure S2). The sulki4-1 
mutant carried a R1130C non-synonymous 
substitution in exon 31 of At3g07160, 
coding for another member of the GSL 
family (GLUCAN SYNTHASE-LIKE 10, 
GSL10). This amino acid change mapped to 
a highly conserved residue in a conserved 
GSL domain (Figure S2). These results 
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GSL expression in sulki3-1, sulki4-1, and 
amiRNA lines (NIL) 

 

The relative expression of the twelve 
Arabidopsis GSL gene members was 
determined in sulki3-1, sulki4-1, and 
amiRNA GSL2/10 plants by real-time 
quantitative reverse transcriptase mediated 
PCR (qRT-PCR) (Figure 2). Compared 
with the NIL, the expression of GSL2 and 
GSL10 was suppressed in sulki3-1, sulki4-1 
and amiRNA GSL2/10 plants (three- to five-
times lower), which resembled the parental 
line Ler and complemented Ler/Kas-2 NIL 
(cNIL) (Figure 2B and 2F). Intriguingly, 
in comparison with the NIL, GSL5 
expression was reduced two- to three-time 
in sulki3-1, suilki4-1 and amiRNA GSL2/10 
lines (Figure 2E). In addition, expression 
of GSL8 and GSL9 were also significantly 
lower in suppressed Ler/Kas-2 HI plants. 
GSL9 expression was between 2.5 to 6-fold 
higher in NIL than in sulki3-1, suilki4-1 and 
amiRNA GSL2 and GSL10 (Figure 2J and 
2I). Collectively, these results indicate that 
expression of GSL2 and GSL10 but also of 
other GSL members is reduced in mutants 
and amiRNA lines suppressing Ler/Kas-2 
HI.   

 

Callose formation in response to flg22, 
wounding and Pst DC3000 inoculation 

 

Callose can be detected under an 
epifluorescence microscope using aniline 
blue staining (Stone et al., 1984; Ellinger et 
al., 2013). In control conditions, no evident 
callose deposits are observed in suppressed 
Ler/Kas-2 HI plants (sulki3-1, sulki4-1 and 
amiRNA GSL2/10), or Ler. Conversely, the 
NIL and Kas-2 accession exhibited callose 
deposition at low temperature (Figure 3, 

Mock). Relative callose intensity (RCI) 
was used to quantify the extent of callose 
formation (Miché et al., 2018). RCI of the 
NIL and Kas-2 were 55.1% and 29.4% 
higher than cNIL in the control condition 
(Mock) (Figure 4A). Indeed, Kas-2 is a 
naturally occurring spontaneous cell death 
mutant (Figure S1). These results are also 
consistent with higher expression of GSL5 
in NIL and Kas-2 (Figure 2E). Callose 
deposition was also studied in response to 
exogenous stimuli, such as the well-studied 
PAMP flg22 (a peptide from flagellin), 
Pseudomonas syringae pv. tomato DC3000 
(Pst DC3000) and wounding. Deposited 
callose could be observed in all 
genotypesupon these three external stimuli 
(Figure 3). Relative to the cNIL, RCI was 
significantly higher in all genotypes upon 
flg22 infiltration and wounding. The 
Ler/Kas-2 NIL exhibited higher callosic 
papillae in response to flg22 and wounding 
among all genotypes (TukeyHSD test, 
P<0.05, Figure 4B and 4C). Conversely, 
sulki3-1, sulki4-1 and amiRNA GSL2/10 
lines resembled the Ler parent in all 
treatments (TukeyHSD test, P<0.05, 
Figure 4B and 4C). No difference of 
callose deposits was observed in response 
to Pst DC3000 in either genotype (Figure 
4D). We concluded that GSL2 and GSL10 
contributed to the suppression of Ler/Kas-2 
HI but did not compromise callose 
deposition in response PAMP or wounding 
stimulation. 
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Analysis of SA pathway activation 

 

A previous study revealed that constitutive 
activation of the SA pathway underlies 
dwarfism, cell death and sterility of 
Ler/Kas incompatible hybrids at low 
temperature (Alcázar et al., 2009). Given 
that dwarfism and cell death were alleviated 
by GSL2 and GSL10 mutations or silencing, 
we performed gene expression analyses and 
quantified SA levels as a proxy for the 
determination of SA-pathway status in 
sulki3-1, sulki4-1 and amiRNA GSL2/10 
lines. The expression of SA pathway 
marker gene PR1 (Cao et al., 1997), as well 
as EDS1 were significantly lower in 
suppressed Ler/Kas-2 HI plants than in the 
incompatible NIL (Figure 5; TukeyHSD 
test, P<0.05). Similarly, free SA was 
strikingly higher in incompatible NIL than  

in sulki3-1, sulki4-1, amiRNA GSL2 or 
amiRNA GSL10 (Figure 5D). PR1 
expression in sulki3-1, sulki4-1, and 
amiRNA GSL2/10 lines was similar to eds1-
1 and Ler _NahG, which carries the 
bacterial salicylate hydroxylase gene 
(NahG), involved in the conversion of SA 
to catechol (Yamamoto et al., 1965). The 
expression of GST1 (a marker for oxidative 
stress) showed no significant differences 
between suppressed Ler/Kas-2 HI plants 
and the parental Ler (TukeyHSD P<0.05, 
Figure 5C), which suggested that oxidative 
stress is mitigated by GSL2 and GSL10 
mutation or silencing (Alcázar et al., 2009), 
except for amiRNA GSL10 which behaves 
differently (Figure S2). Collectively, these 
results indicated that sulki3-1, sulki4-1 and 
amiRNA GSL2/10 lines suppress the 
constitutive activation of SA pathway of the 
NIL. 

 

Effect of GSL2 and GSL10 mutations in 
Ler/Kas-2 NIL on Pseudomonas syringae 
DC3000 (Pst DC3000) disease resistance 

 

To determine whether the enhanced basal 
disease resistance of Ler/Kas-2 NIL 
(Alcázar et al., 2010) was also 
compromised, the different genotypes were 
inoculated with Pst DC3000 and bacteria 
titers determined at 0- and 3-days post- 
inoculation (dpi) (Figure 6). The results did 
not identify significant differences in the 
bacterial growth between sulki3-1, sulki4-1, 
Kas-2 or Ler. Conversely, amiRNA GSL2/10 
lines resulted to be more susceptible to Pst 
DC3000 than Kas-2 or Ler. We concluded 
that suppression of Ler/Kas-2 HI by GSL2 
or GSL10 mutation is not at expenses of a 
reduction in basal disease resistance, 
although amiRNA lines exhibited enhanced 
susceptibility.  
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DISCUSSION 

 

Hybrid incompatibilities are caused by 
genetic interactions between gene variants, 
leading to deleterious epistatic interactions, 
or parental conflict (Chae et al., 2014; Vaid 
and Laitinen, 2019). Immune-related HI 
conditioned by temperature generally 
involve at least one polymorphic NLR locus. 
In the case of the Ler/Kas-2 HI, one 
incompatible locus maps to a RPP1-like 
TNL cluster in Ler and the other locus to 
the receptor-like SRF3 in Kas-2 (Alcazar et 
al., 2009; 2010). In an attempt to identify 
suppressors of Ler/Kas-2 HI, an EMS 
mutagenesis screen was performed that 
identified several extragenic mutants not 
mapping to RPP1-like or SRF3. Through 
NGS sequencing, we mapped two  

 

 

 

 

 

 

extragenic mutants (sulki3-1 and sulki4-1) 
to glucan synthase like members, GSL2 and 
GSL10, carrying non-synonymous 
substitutions in conserved GSL domains. 
The causality of mutations was 
corroborated by GSL2 and GSL10 
silencing in amiRNA lines. Lower GSL2 
and GSL10 expression (Figure 2), 
suppressed autoimmune response and 
fitness loss of Ler/Kas-2 HI at low 
temperature (Figure 1A and Figure S1).  

Importantly, GSL2 or GSL10 expression 
was not suppressed to parental levels in 
amiRNA lines (Figure 2B and 2J). This 
might explain why GSL10 silencing did not 
reconstitute the dwarfism reported for 
GSL10 dsRNAi lines observed at 23℃ 
(Töller et al., 2008). Shikanai et al. (2020) 
also reported the occurrence of cell death in 
a GSL10 loss-of-function mutant (gsl10-5) 

Figure 6
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Figure 6. Analysis of resistance to Pst DC3000 in sulki3-1, sulki4-1, and amiRNA lines (NIL) at 14-
16 ℃. Leaves of 5-week-old Arabidopsis plants grown at 14-16 ℃, were inoculated with Pst DC3000 
(OD600nm = 0.2) by spraying. Bacterial growth was determined at 3 days post-inoculation (DPI). Values  

are the mean of at least nine biological replicates ± SD. Letters indicate values that are significantly 
different according to Tukey's HSD test at P < 0.05.  
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under low-calcium conditions, but not 
under optimal calcium levels. These results 
support the involvement of GSL10 in 
triggering cell death/defense under certain 
environmental conditions. In this study, 
both sulki3-1 and amiRNA GSL2 were able 
to produce fertile seeds, while gsl2 (cals5) 
mutant is sterile completely (Dong et al., 
2005b; Nishikawa et al., 2005). The data 
indicated that sulki3-1 could not mimic 
amiRNA GSL2 loss-of-function mutation, 
while which is sufficient to suppress 
Ler/Kas-2 HI at low temperature.  

Callose deposition upon flg22 and 
wounding, depends on GSL5 activity. 
Remarkably, callose deposition in response 
to these stimuli was not compromised in 
suppressed Ler/Kas-2 HI plants but 
exhibited a similar response to Ler (Figure 
4B and 4C) (Ellinger and Voigt, 2014). 
GSL5 and GSL6 expression are upregulated 
by inoculation with the H. arabidopsis 
isolate Emco5 (Dong et al., 2008). However, 
the bacterial type III effector AvrPto was 
found to restrict callose deposition (Hauck 
et al., 2003). Effector interference might be 
considered in the analysis of differences in 
callose deposition in response to Pst 
DC3000 between genotypes (Figure 4D). 
In addition, wounding is an inherent 
consequence of pathogen penetration or 
infiltration (Dong et al., 2008). Therefore, 
pathogen inoculation activates many 
different mechanisms leading to callose 
deposition, which might make 
physiological differences when stimuli are 
applied separately. Interestingly, callose 
was deposited in the vascular buddle cells 
of the NIL in response to flg22, but not in 
parental Ler, which only presented callose 
as in papilla (Figure S3). This might be due 
to the autoimmune response associated 
oxidative stress in NIL (Figure 5C) 

(Alcázar et al., 2009), as callose deposition 
and ROS occur together in vascular tissue 
(Kong et al., 2013).  

SA pathway was restricted in the GSL2 and 
GSL10 suppressed Ler/Kas-2 HI (Figure 
5A and D). Shikanai et al. (2020) reported 
that SA and JA were both synergistically 
induced in GSL10 loss-of-function plants 
(gsl10-5) compared with wildtype (Col0) at 
22℃. Correspondingly, exogenous SA (2 
μM) also induced weak GSL2 and GSL10 
expression in a NRP1 independent manner 
(Dong et al., 2008; Zavaliev et al., 2011). 
We speculate that the interaction between 
callose biosynthesis and SA pathway might 
depend on environmental conditions. 
Further studies should address this question. 
In addition, the EMS-generated mutations 
reported here behave dominant and are not 
allelic to GSL loss-of-function mutations 
reported elsewhere. 

Our study confirmed that the suppression of 
Ler/Kas-2 HI in sulki1 and sulki2-1 is not at 
expenses of a reduction in basal resistance, 
which is similar to parental lines Kas-2 or 
Ler (Atanasov et al., 2018). This might be 
due to the functionality of GSL5 in GSL2 
and GSL10 deficient mutants, which 
contributes to pathogen resistance (Figure 
6) (Ellinger et al., 2013). Whether callose 
contributes to disease resistance and ETI in 
particular is still under debate (Consonni et 
al., 2010; Ellinger et al., 2013). Here we 
provide genetic evidence that certain GSL 
members are required for the establishment 
of immune-related HI exhibiting 
constitutive ETI. We speculate that callose 
deposition is not a mere physiological 
response to environmental stimuli, but an 
integrated metabolic response contributing 
to immune signaling. Overall, our study 
paves a way to investigate the role of GSL 
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in contributing to temperature-dependent 
hybrid incompatibilities and ETI signaling 
in plants.  

 

MATERIAL AND METHODS 

 

Plant materials and growth conditions 

All plants were grown under 12 h dark/12 h 
light cycles at 14/16 ºC, 100-125 µmol 
photons m−2 s−1 of light intensity, and 70% 
relative humidity. The incompatible 
Ler/Kas-2 NIL and cNIL used in this work 
was described previously (Alcazar et al., 
2009; 2010). eds1-1 and NahG-Ler plants 
were kindly provided by Jane Parker. 

 

EMS Mutagenesis 

Seeds of Ler/Kas-2 NIL were soaked in 1 
mg/mL KCl at 4°C overnight. After seed 
imbibition, the solution was discarded and 
replaced with 0.2% EMS (v/v) and 
incubated for 16 h before washed 10 times 
with 50 mL of water, then suspended in 
0.1% agarose for sowing on soil. 
Approximately 25,000 M1 plants were 
allowed to self at 20-22°C. M2 seeds were 
collected in pools of 100 to 150 M1 plants. 
M2 plants were grown at 14-16°C to 
identify suppressors of Ler/Kas-2 
incompatibility (sulki) (Atanasov et al., 
2018). 

 

Real-Time qPCR expression analyses 

Total RNA isolated from 5-week-old 
Arabidopsis seedlings was extracted with 
TRIzol reagent (Thermo Fisher). Reverse 
transcription and quantitative real-time 
PCR was performed as described 

previously (Liu et al., 2019). Two 
micrograms of RNA were treated with 
DNAse I (Invitrogen), and reverse 
transcription performed with Superscript 
IV (Invitrogen) and oligo dT were adopted 
to synthesize first strand cDNA. 
Semiquantitative real-time PCR using 
SYBR Green I dye method was performed 
on Roche LightCycler 480 II detector 
system following the PCR program: 95 ºC 
2 min, 40 cycles (95 ºC, 15 s; 60 ºC, 30 s; 
68 ºC, 20 s). qPCR analyses were always 
performed on at least three biological 
replicates with three technical replicates 
each using Actin (At3g18780) as the 
internal control gene. Relative transcript 
expression was calculated by 2-ΔΔCt method 
(Livak and Schmittgen, 2001). Primers 
used for expression analyses are shown in 
Supplementary Table 1 (Table S1). 

 

Free SA levels measurement 

Determination of total salicylic acid was 
performed using Acinetobacter sp. 
ADPWH_lux (Defraia et al., 2008). An 
overnight culture of Acinetobacter sp. 
ADPWH_lux was diluted in 37°C LB 
(1:20) and grown for ~3 h at 220 rpm to an 
OD600 of 0.4. Twenty μl of extract was 
added to 60 μl room temperature LB in a 
96-well black cell culture plate. Using a 
multi pipet, 50 μl of biosensor culture (β-
glucosidase, SIGMA) was added to each 
well and mixed by pipetting. The plate was 
incubated at 37°C for 1 h before 
luminescence was read using a Victor3 
Perkin Ellmer Multi-Detection Microplate 
Reader (PerkinElmer, Waltham, 
Massachusetts). Each sample was measured 
in triplicates. Known amounts of SA were 
dissolved in either LB or acetate buffer, 
then diluted 10- fold in plant extract. SA 



Chapter 3 

 88 

standards were read in parallel with the 
experimental samples.  

Histochemical analyses 

For aniline blue staining, seedlings were 
fixed in a solution of acetic acid: ethanol 
(1:3) overnight, followed by washing in 150 
mM K2HPO4 during 30 min for two times, 
and incubated with 150 mM K2HPO4 

containing 0.01% aniline-blue (Sigma) for 
2 h with shaking. Observations were 
performed under an epifluorescence 
microscope and photographs captured with 
a NIKON microscopy camera coupled to 
the NIS software 4.45 (NIKON). Callose 
intensity quantification was performed 
according to Luna et al. (2011). Briefly, 
callose was quantified from digital 
photographs by counting the number of 
white pixels (callose intensity), using 
Photoshop 21.1 software. Callose was 
selected automatically, using the “Color 
Range” tool. In cases where the contrast 
settings resulted in significant loss of 
callose signal due to high autofluorescence 
from the vasculature, callose was selected 
manually, using the “Magic Wand” tool. 
The accuracy of the resulting callose 
selection was visually verified before 
proceeding. Callose-corresponding pixels 
were recorded as the area covered by the 
total number of measurements using the 
“Record Measurements” tool. Average 
callose relative intensity (RCI) 
measurements were relative to 
complemented Ler/Kas-2 HI (cNIL), based 
on at least 20 pictures from nine different 
seedlings. 

Trypan blue staining for cell death 
visualization was performed as previously 
described (Alcázar et al.,2010). Briefly, 5-
week-old Arabidopsis leaves were 
harvested, and stained with lactophenol 

trypan blue. Leaves were mounted in 60% 
glycerol before observation under a light 
microscope (Axioplan; Carl Zeiss), a 
minimum of nine leaves were visualized 
per genotype.  

 

Pseudomonas syringae pv. tomato 
DC3000 inoculation assays 

Pseudomonas syringae pv. tomato DC3000 
(Pst DC3000) bacteria was cultivated on 
solid NYGA medium (5 g/L bactopeptone, 
3 g/L yeast extract, and 20 mL/L glycerol, 
with 15 g/L agar for solid medium) 
containing 25 µg/mL rifampicin. Single 
colonies were amplified in solid NYGA 
plate (25µg/ml rifampicin) and incubated at 
28 ºC. Bacteria was suspended with 10 mM 
MgCl2 to OD600= 0.2. Silwet L-77 was 
added to a final concentration of 0.04% 
(v/v) before spray inoculation of 5-week-
old Arabidopsis plants. Leaves were 
harvested at 3h and 3 days post pathogen 
inoculation. Determination of bacterial 
growth was performed as described by 
(Alcázar et al., 2010). At least nine 
biological replicates were determined per 
genotype and point of analysis.  
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Plants have evolved complicated defense systems that enable them to survive in various 

habitats. In plants, polyamines make vital contributions to growth, development and the stress 

response, which involve complex genetic and physiological processes (Alcázar et al., 2010a).  

The core topic of this Thesis is to investigate the molecular functions of polyamines during 

defense in Arabidopsis. The polyamine putrescine (Put) is induced during stress. Here we 

provide evidence that Put induced signaling involves other defense associated pathways.  

Polyamines, especially Put, accumulate during PTI induced by Pst HrcC (Yuan and He, 

1996), the purified PAMP flg22 (see Chapter 1; Figure 1 and Figure 2), as well as in response 

to ETI initiated by Pst AvrRpm1 (see Chapter 2; Figure 5 and ANNEX III Figure S6) (Vilas 

et al., 2018). Our data support that effectors from Pst DC3000 promote polyamine biosynthesis 

rather than its suppression, as we observe higher Put levels using virulent than avirulent 

bacteria (see Chapter 1; Figure1) (Jiménez-Bremont et al., 2014; Vilas et al., 2018). However, 

it may also well be that the polyamine accumulation depends on bacteria titers. In this regard, 

avirulent bacteria growth is more restricted. In addition to this, it will be interesting to 

determine whether living bacteria or the presence of their PAMPs in heat-inactivated bacteria 

is sufficient to trigger Put biosynthesis. The identification of bacteria elicitors triggering 

polyamine biosynthesis is attractive to the development of plant protection products. 

We confirmed that the main source for polyamine accumulation during pathogen infection 

is from plants rather than pathogenic bacteria (see ANNEX III; Figure S6), although a small 

contribution of bacteria cannot be completely excluded. Using bacteria containing Cad might 

help at these investigations, since Arabidopsis lacks this polyamine. In addition, the ADC2 

isoform makes more contribution than ADC1 to Put synthesis in response to PAMP flg22, a 

result that has also been observed in response to ETI (see Chapter 1 and 2; Figure 2) (Rossi 

et al., 2018). This is in line with previous investigations in which the different isoforms 

exhibited a differential response depending on the stress (e.g. drought, wounding or salinity for 

ADC2, cold stress for ADC1) (Perez-Amador et al., 2002; Alcázar et al., 2006b). 

Exogenously supplied Put induced the up-regulation of PTI marker genes (see Chapter 1; 

Figure 4), and callose deposition, a typical physiological response of PTI (Bigeard et al., 2015) 

(see Chapter 1; Figure 3 and ANNEX II; Figure S2). The process is dependent of hydrogen 

peroxide, which is likely derived from amine oxidase activity, thus implying that polyamine 

oxidation plays an important role during Put elicited transcriptional responses (see Chapter 1; 

Figure 5). Moreover, plasma membrane NADPH oxidases are required for at least some 
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transcriptional responses induced by Put (see Chapter 1; Figure 6). We argue that RBOHD/F 

are downstream of Put or act in a concerted manner with apoplastic CuAOs during PTI. How 

polyamines and RBOH are connected is unknown. In contrast to tobacco, infiltration with Put 

does not induce cell death (hypersensitive response) in Arabidopsis, although it produced 

hydrogen peroxide (H2O2) (see ANNEX II; Figure S3). Actually, it has been reported that Put 

prevents cell death induced by polyamine oxidase-generated hydrogen peroxide (Papadakis 

and Roubelakis-Angelakis, 2005).  

 

Collectively, Put biosynthesis is stimulated in response to PTI, and in turn, apoplastic Put 

triggers responses compatible with PTI activation, based on ROS (H2O2) and RBOHD/F. 

Hence, a positive feedback loop is proposed that leads to enhanced basal disease resistance 

against bacterial pathogens (see Chapter 1; Figure 7).  

 

Considering that Put priming depends on H2O2, which is one of the Put  catalysis products, we 

wondered whether Put participated during defense as amine or ROS (H2O2) producer. The early 

transcriptional responses to most abundant polyamines (Put, Spd, Spm, tSpm and Cad) 

indicated that polyamines, rather than being end-road metabolites in the stress response, are 

activing participants of stress signaling that exhibit quantitative rather than qualitative 

differences not correlated with charge (see Chapter 2; Figure 2B and Table S2.6). This 

finding is important because, so far, differences in charge were thought to underlie polyamine 

specificities, which ensuring their molecular recognition and subsequently regulation of 

cellular regulation. However, and at least at signaling level, such differences are only 

quantitative (Tabor and Tabor, 1984; Wallace et al., 2003).  

Polyamine oxidation produces ROS (H2O2), which is not only necessary for Put -triggered PTI 

but also for the establishment of ETI and SAR (see Chapter 2; ANNEX III; Table S4) (Cona 

et al.2006; Del Río, 2015; Mammarella et al., 2015). Put leads to local increases of SA, and 

potentiates the SA-branch of SAR rather than NHP and Pip-dependent branches (see Chapter 

2; Figure 4). Put induced SAR response exhibits high overlap with EDS1, SA and NPR1-

dependent transcriptional reprogramming. The data indicate that, at least in defense signaling, 

polyamines make use of an already established SA-dependent defense pathway. Because 

polyamines are sources of both ROS and NO in Arabidopsis, we cannot exclude the potential 

participation of NO in polyamine signaling (see Chapter 2; Figure 3) (Wimalasekera et al., 
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2011; Zhang and Li, 2019). Our data supports that Put  oxidation in the apoplast is an important 

trigger of defense signaling (Marina et al., 2008). Besides NADPH oxidases RBOHD and 

RBOHF, other CuAO family members (ATAO1, CuAO2 and CuAO3) additively contributed 

to Put-elicited systemic responses (see Chapter 2; Figure 8) (Cona et al., 2006; Kadota et al., 

2015). The detailed analysis of transcriptional responses in cuao mutants might shed further 

light into ROS-dependent polyamine signaling. 

Consistent with a priming effect, here we report that pre-treatment with Put of wild-type leaves 

triggers transcriptional reprogramming of distal tissues overlapping with SAR (see Chapter 2; 

Figure 6), and enhanced disease resistance to Pst DC3000 in systemic tissues via an EDS1, 

SA and NPR1 dependent manner (see Chapter 2; Figure 7A). However, Put infiltration is not 

sufficient for full establishment of SAR transcriptional responses in distal leaves. This might 

prevent activation of defenses in response to local fluctuations of Put levels due to, for example, 

transient dehydration, low temperature, wounding or UV radiation.  

Based on our results, we hypothesize that apoplastic Put could act similarly to damage-

associated molecular patterns (DAMPs) triggering a ROS-dependent defense response (Choi 

and Klessig, 2016; Versluys et al., 2017). In this regard, it seems very intriguing the activation 

of Put export to the apoplast during response to pathogenic bacteria (Liu et al., 2019). 

 

Hybrid incompatibilities are models for the study of ETI in the absence of pathogen challenge 

(Alcazar et al., 2009; 2010b). Through an EMS mutagenesis screen of the Ler/Kas-2 NIL, we 

identified the requirement of callose deposition for the full establishment of ETI in Ler/Kas-2 

incompatible hybrids. Two extragenic suppressors of Ler/Kas-2 HI mapped to GSL2 and 

GSL10 genes, involved in callose biosynthesis. The GSL family is very variable in gene 

structure and function. So far, unlike GSL5 plays vital role in resistance, GSL2 and GSL10 

genes have not been associated with immune-related HI. Consistent with the involvement of 

GSL2 and GSL10 in Ler/Kas-2 HI, lower GSL2 and GSL10 expression (see Chapter 3; Figure 

2), suppressed autoimmune response and fitness loss of Ler/Kas-2 HI at low temperature (see 

Chapter 3; Figure 1A and Figure S1). Callose deposition was not compromised in suppressed 

Ler/Kas-2 HI plants upon flg22 and wounding (see Chapter 3; Figure 3A and 3B). In these 

mutants, GSL5 activity was functional and responded for callose deposition in response to 

pathogens or PAMPs (see Chapter 3; Figure 2E) (Ellinger and Voigt, 2014).  
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The interaction between GSL charged callose biosynthesis and SA pathway might depend on 

environmental conditions (Shikanai et al., 2020). SA pathway and JA were both restricted in 

the GSL2 and GSL10 suppressed Ler/Kas-2 HI (see Chapter 3; Figure 5, and ANNEX IV; 

Figure S3) (Dong et al., 2008; Zavaliev et al., 2011). This might benefit from the GSL5 

expression, which contributes to pathogen resistance (see Chapter 3; Figure 6) (Ellinger et 

al., 2013). Whether callose contributes to disease resistance is still debated, although our data 

suggests that it is required for the full establishment of ETI (Consonni et al., 2010; Ellinger et 

al., 2013). 
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The main objective of this Thesis work has been the investigation of the defense signaling 

mechanisms induced by polyamines, particularly Put in Arabidopsis thaliana (see Chapters 1 

and 2). Also, mapping of extragenic suppressors of immune-related HI which identified glucan 

synthase-like genes contributing to the establishment of ETI (see Chapters 3).  

Based on the results reported in the three Chapters the main conclusions are listed below:  

Chapter 1 

IV. Putrescine accumulates in response to PTI-inducing bacteria and the purified PAMP flg22. 

In this response, ADC2 isoform makes a higher contribution to Put biosynthesis than 

ADC1.  

V. Exogenous application of Put triggers GSL5-dependent callose deposition, H2O2 and 

RBOHD/F dependent expression up-regulation of PTI marker genes. We conclude that 

Put, which accumulates during PTI, also contributes to PTI activation. We suggest the 

occurrence of a positive feedforward loop contributed by ROS-derived Put, which 

amplifies defense responses. Importantly, such responses are not associated with the 

occurrence of cell death.  

VI. Pathogen inoculation assays demonstrate that Put acts as a priming agent that enhances 

basal resistance in local tissues, thus providing biological relevance for the accumulation 

of this polyamine during defense. 

Chapter 2 

VI. RNA-seq analyses indicate that transcriptional responses to different polyamines exhibit 

quantitative rather than qualitative differences, which are not correlated with charge. 

VII. Polyamines are triggers of stress signaling, including biotic responses which, at least in 

the case of Put, are dependent on H2O2, EDS1, SA and NPR1. 

VIII. Consistent with activation of SA-pathway, Put treatment leads to local but not systemic 

SA biosynthesis. However, local Put treatment triggers transcriptional reprogramming in 

systemic tissues overlapping with SAR, thus suggesting the occurrence of a systemic 

signal triggered by Put is transmitted throughout the plant. 

IX. Consistent with a role for Put and Put oxidation in the establishment of SAR, local Put 

treatment enhances systemic disease resistance to hemibiotrophic bacteria Pst DC3000. 
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This effect is suppressed in adc2 mutants, impaired in pathogen-induced Put biosynthesis, 

and cuao mutants impaired in Put oxidation. 

X. We propose that Put oxidation in the apoplast contributes to the establishment of systemic 

defenses. 

Chapter 3  

VI. Two extragenic suppressors of Ler/Kas-2 hybrid incompatibility (HI) have been mapped 

to GSL (glucan synthase-like) 2 and GSL10.  

VII. Artificial microRNA silencing of GSL2 and GSL10 genes also suppresses Ler/Kas-2 HI, 

thus confirming the genes are mapped.  

VIII. Suppression of Ler/Kas-2 HI by GSL2 and GSL10 mutation or silencing associates with 

suppression of salicylic acid pathway, but not enhanced susceptibility to pathogenic 

bacteria in sulki3-1 and sulki4-1. We conclude that suppression of Ler/Kas-2 HI is not at 

expenses of reduced disease resistance. 

IX. Callose deposition in response to environmental stimuli (wounding, flg22 and treatment 

of bacteria inoculation) is not compromised in sulki3-1 and sulki4-1 mutants but gsl5, thus 

highlighting that GSL2 and GSL10 members are not redundant to GSL5. 

X. Suppression of Ler/Kas-2 HI by GSL2 and GSL10 mutation suggests that callose synthesis 

is required for the full establishment of ETI independent of GSL5. 
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Table S1. GSL (Glucan synthase-like) genes, also known as CALS (callose synthase) in 

Arabidopsis thaliana. 

NO Glucan Synthase like Callose synthase Locus Tag 

1 GSL1 CALS 11 AT4G04970 

2 GSL2 CALS 5 AT2G13680 

3 GSL3 CALS 6 AT2G31960 

4 GSL4 CALS 8 AT2G36850 

5 GSL5 CALS 12 AT4G03550 

6 GSL6 CALS 1 AT1G05570 

7 GSL7 CALS 7 AT1G06490 

8 GSL8 CALS 10 AT2G36850 

9 GSL9 CALS 4 AT5G36870 

10 GSL10 CALS 9 AT3G07160 

11 GSL11 CALS 2 AT3G59100 

12 GSL12 CALS 3 AT5G13000 
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No. Gene  Name Forward (5’ to 3’) Reverse (5’ to 3’) 

1 AT3G18780 Actin2  GATTCAGATGCCCAGAAGTCTTGT  TGGATTCCAGCAGCTTCC  

2 AT4G04970 AtGSL1 ACCGTTTTGTGGCATTGCTC CAACTGGTGCAGTGTGAAGC 

3 AT2G13680  AtGSL2 GAAGCCAAGGTTGCTTGTGG CCTTTCGCTGCTGCAAACTT 

4 AT2G31960   AtGSL3 ATGCTCGCTTTCATGCCAAC GAACGCTACCGGAGTGAACA 

5 AT3G14570  AtGSL4 GCTTTCTTGCCCACTGGTTG GCAAACAGAACAACGCCCAT 

6 AT4G03550 AtGSL5 CCCTGATTCGAGACGAGAGC CCCCCACAGCGTAAAGGAAT 

7 AT1G05570 AtGSL6 GACCCAGCAGCTTCCAAAAAT GGAGAGAGAAAAGGCCGGAG 

8 AT1G06490 AtGSL7 AGGATTCTGGGACTCGGTGA GCGGTTTGAGCCTCACTACT 

9 AT2G36850    AtGSL8 GGGAGTGGCTTCGATCACAT AGCTTGGTTGAAGAGGAGCC 

10 AT5G36870   AtGSL9 TGACGTTGGCTTGGGTCTAC TGCCTGCAAATAGGGTTCTCA 

11 AT3G07160  AtGSL10 CCAGTCGATAGTCGTGGCTC CCTGCCGGTTTTGAGCTTTT 

12 AT3G59100 AtGSL11 GCACTTCTCTTCCTCGGCTT GCTCTTTCACCGAGTCCCAA 

13 AT5G13000 AtGSL12 GGTTGGAAGGCGGAGATTCA TTGCGCAATCTGCAAACACA 

 

Table S1. List of oligonucleotides and sequences used in this work. 
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