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1.1 The Road to a Drug

Now it should be more clear than ever that the world needs safe and effective drugs. Drugs
that could cure or prevent disease, or alleviate symptoms can be delivered world-wide through
established protocols that ensure the safety and efficacy of their use. However, the road to
a drug is not straightforward. The start a drug discovery project reflects an unmet medical
need for a particular disease, whether it be a neglected disease, a rare disease or one that is
extremely prevalent with mild or deadly outcomes. The decision to commence on this path
also greatly depends on a sound scientific basis that indicates that such a high risk pursuit will
be worth it. This research is the foundation of a drug discovery project that may take years,
or even decades in special cases where the mechanism of action is entirely novel. Once the
foundation is laid, the drug discovery pipeline involving rigorous validation ensues, which if
successful can take 12-15 years, and cost over 1 billion dollars.[1]

Founding Research

2-5 years

6-7 years

1-2 years

Lead Candidate

Figure 1.1: Lead Candidate Discovery in the Road to a Drug.

The founding research (Figure 1.1) usually involves the identification of small molecule
probes to bind to a target. Like a key that is made for a lock, this binding may elicit a desired
effect, namely, a therapeutic response that is linked to a disease state. If this response is
effective in cells (in vitro) and in animal models (in vivo), the target has been essentially
validated to be druggable. But before the search for the key or probe can take place, a target
must be selected. This selection is based on proof that it is linked to a disease state by
e.g. knockout models i.e. removing the protein out of the equation in vitro or in vivo, and
checking whether the disease state changes. At the same time, significant efforts are being
made to explore the druggability of all targets known in the human body.[2] In Figure 1.1, a
clear distinction is made between the founding research, and the rest of the pipeline, because



4 Introduction

this thesis is focused on strategies leading up to the identification of lead candidates. After
lead optimization the clinical candidate can proceed to clinical trials. The likelihood of a
clinical candidate from Phase I being approved as a drug is estimated to be a fair 10%[3][3],
however, the basic research the precedes this must be substantial.

1.2 Lead Candidate Discovery From Fragments

Finding a lead candidate is like finding a needle in a haystack. The potential size of this
“haystack” consisting of realistic and drug-like molecules, often referred to as chemical
space has been estimated to be 1033 based on an extrapolation[4] of the size of GDB-17[5]
(enumeration of stable molecules up to 17 heavy atoms containing C, N, O, S and halogen
atoms). Not more than a decade ago, the dominant strategy for lead candidate discovery
(“exposing the needles”) was High-Throughput Screening (HTS) i.e. to individually screen
every single molecule in the massive chemical collections that were available. The main goal
of HTS was to identify hits as close in potency as possible to the sought drug. Conceptually,
the fragment-based approach represented a Copernican turn, as it promoted the idea that
starting from a small compound (a fragment) might ultimately be a more efficient strategy to
obtain lead-like compounds (Figure 1.2).[6]

Figure 1.2: HTS vs. FBDD. Adapted from [6].

The first reason for this being that diverse fragment screening collections can represent a
much larger chemical space than an equally sized library of lead-like compounds (the size
of the “haystack” is reduced). Secondly, because fragments are small, they tend to have
high intrinsic hit rates, which sometimes also results in hits for targets that were previously
deemed as challenging by HTS (more “needles” are present).[7] However, fragments bind
with low affinity, and must be optimized to lead-like compounds[8]. With this, comes the
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advantage that a fragment hit can be optimized to optimally fit the binding pocket, while still
having control over the pharmacokinetic and pharmacodynamic properties.

1.3 In Silico Fragment-to-Lead Optimization

In Fragment-Based Drug Design (FBDD) Ligand Efficiency (LE)[8][9] becomes the main
decision criteria in lead optimization (as opposed to potency with HTS hit optimization),
where the aim is to achieve large potency jumps with the smallest changes in molecular weight
(Figure 1.3). The process involves multiple iterations of design-synthesis-testing cycles that
are both time-consuming and resource-intensive, which often constituting the bottleneck
in . Computational methods can significantly impact this process, because a) automatic
approaches can efficiently exploit the abundance of initial fragment hits; b) computation
is essential to explore the - what seem like - endless opportunities offered by chemical
space; and c) design precision is less emphasized, as Fragment-to-Lead (F2L) optimization
aims to improve binding constants by orders of magnitude, which should give preference to
exploratory (non-obvious chemical modifications) rather than conservative (trivial chemical
modifications) optimization strategies. Thus, computational methods can speed up the
process, but also aid in generating ideas that would otherwise not be considered.

Figure 1.3: HTS hit-to-lead optimization vs. fragment-to-lead optimization. Adapted from
[6].
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1.3.1 Chemical Space Navigation

As noted above, computational methods can aid in exposing the “needles” (i.e. drug candi-
dates) that are less obvious. Over thirty years ago, the idea was to navigate through chemical
space by automatically assembling atoms or fragments in the binding site through De Novo
Design (DND). Over the years DND methods have aided in the design of diverse and potent
leads for various targets[10][11]. When FBDD was conceived about 10 years later, many of
these methods were adopted to accommodate FBDD, laying the foundation for many in silico
F2L optimization methods. In Section 1.3.1.1 it’s described how DND has been applied to
FBDD and discuss how Synthetic Accessibility (SA) has been addressed Section 1.3.1.2.

Another approach involves navigating through portions of chemical space that can be
acquired quickly and at low cost. Commercial chemical space has experienced continuous
growth over the last decades. For instance, the ZINC database (an aggregator of chemical
catalogues) started with less than 1 million molecules in 2005,[12] reaching 120 million
in 2015.[13] More recently, the emergence of carefully designed virtual chemical libraries
representing compounds that can be synthesized rapidly and at low cost has expanded the
purchasable chemical space into the tens of billions, which creates opportunities[14][15], as
well as some challenges.[16][17] Virtual screening methods applied to F2L are set to benefit
the most from this trend, which is described in Section 1.3.1.3 and Section 1.3.2.

1.3.1.1 De Novo Design

There are two primary strategies in computational drug design. The first – structure-based
– is to assess the fit of a molecule to the binding site through receptor-based scoring func-
tions. The second – ligand-based – is to determine how well a ligand can recapitulate
features of known active binders, evaluated by ligand-based scoring functions. Structure-
based methods can maximize the possibility of finding binders by exploiting experimentally
obtained or modelled structural information. However, when a structure is not available,
ligand-based methods have also shown to be successful. Secondary objectives such as
Absorption Distribution Metabolism Excretion Toxicity (ADMET), selectivity, synthetic
accessibility and patentability/novelty can be considered as explained in Section 1.3.1.4 and
Section 1.3.1.5.

DND methods can be both structure- or ligand-based. Other notable differences are 1)
the Building Block (BB)s that are used for construction, 2) how the BBs are assembled
and 3) the optimization algorithm.[18] Although using individual atoms as BBs has the
advantage of exploring all theoretically possible molecules, the use of fragments as BBs
meaningfully reduces the search space. BB fragments are generated by decomposing known
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ligands into ring and linker moieties. The cleavage of the molecules can be done at every
single bond[19] or with retrosynthetic rules.[20] For receptor-based approaches, BB assembly
strategies include linking (more than one BB placed in the binding site)[21][22][23] and
growing (one BB placed in the binding site).[20,21][24] The most straightforward way to
join the BBs is through a single bond. However, additional rules to guide the assembly can
be applied, for example creating links based on the frequency of connections between BBs
extracted from a database of known drugs.[25] On the other hand, ligand-based approaches
do not typically employ growing or linking. In the context of FBDD they are better suited
for merging and “scaffold-replacement” strategies, often using a lead or a potent ligand
as a template to guide the optimization. The optimization algorithm can be described as
iterative BB assembly and scoring. The most exhaustive example is the breadth-first search
strategy, which systematically explores all possible solutions. Although this can be applied
to small BB libraries, heuristic algorithms offer a faster alternative with a good compromise
between exhaustive exploration and efficiency.[6] For example, evolutionary algorithms can
apply (crossover)[26] mutations, deletions and additions of BBs to the original molecule.
[17,22] The resulting molecule with the best fit to the function describing known ligands (the
initial pool) are selected for further optimization. Many ligand- and receptor- based DND
methods that apply an evolutionary algorithm can be used for “scaffold hopping” purposes
from starting fragments. An exception of a program that performs scaffold hopping but
does not utilize an evolutionary algorithm is SPROUT,[21] which uses a template-based
strategy where all-carbon chemical graphs are substituted by heteroatoms in a stepwise
manner. Other algorithms include random sampling with Monte Carlo search[23], where
the Metropolis criterion[27] determines the probability of rejection of a newly assembled
molecule based on its score. Popular examples of DND programs used for F2L optimization
include: LUDI[20] that links pre-docked fragments and has led to inhibitors of Demethylase
of Fungi,[28] Aurora Kinase,[29][30] thrombin,[31] DNA Gyrase12[32] and CDK4,[33]
as well as LigBuilder[22] that adds fragments based on seed structures, aiding campaigns
against HCV[34] and Cyclophilin A.[35]

1.3.1.2 Assessing Synthetic Accessibility

DND is a way to generate plausible and novel ideas. Unfortunately, they will not be realized
if the designed molecules are considered difficult to synthetize. Furthermore, it is generally
accepted that in silico designed molecules will require further optimization before it can be
considered a bona fide lead. The importance of SA of in silico designs is projected by the
numerous strategies that have been developed. The first group of DND methods implicitly
considers SA by evaluating the difficulty of synthesis based on chemical complexity.[36]
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Alternative approaches identify derivatives containing key features of the de novo designs
among commercially available or synthetically accessible compounds. The program SEEDS
was developed to perform this task and when combined with LEGEND[23] (one of the first
DND programs that performs atom-by-atom growing based on intra- and inter- molecular
stability), it led to novel potent CDK4 inhibitors.[37] The second group of DND methods
implement synthetic rules to either I) perform retrosynthetic analysis to derive building blocks
for possible synthesis routes or II) perform virtual synthesis where molecules are built up
from commercially available building blocks. An example of a program that uses the former
approach is SQUIRREL,[38] which selects BB fragments from a library of decomposed
drug-like molecules using RECAP[19] rules (11 bond cleavage reaction types). The virtual
synthesis approach is the most recent and seems to be most accepted as it explicitly accounts
for SA. An example of such a chemistry-driven DND approach is DOGS.[39] It uses a set
of 58 unique reactions[40] to link building blocks derived from a commercial library. Both
SQUIRREL and DOGS were successfully applied for bioisosteric substitution of known
ligands to generate novel and potent binders of PPAR and GPCR, respectively, using the
synthetic routes proposed. On the other hand, the fragment-based counterpart of this design
approach is the use of chemically “poised” fragment libraries[41] which are amenable to
retrosynthesis by robust reactions.[42] A crystallographic screen of a poised fragment library
allows rapid follow-up synthesis of analogues based on the reaction used for decomposition.

1.3.1.3 Structure-based Virtual Screening

An alternative approach to generating ligands “from scratch” is Virtual Screening (VS) of
libraries of computationally enumerated or available compounds. For F2L purposes VS
libraries can be biased towards the starting fragment either through similarity or substructure
searches in available libraries, or enumeration using synthetic rules. This can be termed as
Fragment-Assisted Drug Design (FADD).[43] The most high-throughput structure-based VS
strategy is flexible ligand docking or docking of pre-generated conformers to a rigid receptor.
Alternatively, docking can be performed against multiple conformations of the protein or a
protein where the residues of the binding site are flexible. Despite its many advantages (e.g.
low cost and high speed), docking is known to suffer from overly simplistic and inaccurate
scoring functions.[44] Therefore, VS is often only the first step of computational workflows
and can be complemented by more expensive methods that consider protein flexibility and
solvation effects. Examples of such methods are different variations of Molecular Dynamics
(MD) simulations that can serve as a more accurate predictor of binding affinity.[45] In
addition to FADD, structure-based approaches are often used to prioritize fragment hits
before or in parallel to experimental screening.[46][47][48][49] Furthermore, if a fragment
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is found to be a hit, but crystallography fails to obtain its structure, docking[50][51][52]
or MD based applications[53] can be used to derive the binding mode. In either case,
pharmacophore restraints (known or predicted by hotspot detection methods[54] can be
applied to bias the ligands towards more likely poses.[55][56] This is especially useful for
fragments, as there are many more binding opportunities in a protein for smaller molecules
than lead-like molecules.

1.3.1.4 Ligand-based Design

In the absence of information about the receptor, ligand-based approaches have proven
successful. They rely on the assumption that active molecules encode the properties of the
binding site. The most popular and well-established methods in ligand-based drug design
are Quantitative Structure-Activity Relationship (QSAR) and pharmacophore modeling. In
recent years, however, the attention has been shifted to more advanced Machine Learning
(ML) approaches that take advantage of “big data” and advancements in computer hardware
such as Graphical Processing Units (GPU)s.[57] QSAR searches for quantitative correlations
between structural molecular descriptors and properties (e.g. biological activities and toxicity)
for a series of compounds.[58] It assumes that the structure of a molecule must contain the
features responsible for its chemical and biological activities. Pharmacophore modeling
extracts a set of structural features (e.g. aromatic rings, hydrogen bond donors and acceptors)
of a molecule that are recognized by receptors and are responsible for its biological activity.
Its speed allows fast screening of large datasets, which makes it particularly useful in the
early stages of drug design.[59] ML methods, especially deep learning are able to predict
properties of unknown molecules, as well as generate novel molecules of properties similar to
input molecules.[60][61] Deep generative models are based on recurrent neural networks and
trained on either string-based[62] or graph-based representations[63] of molecules to learn
the relation between ligand representation and structure. Then models can be used to generate
novel and chemically valid ligands of desired properties.[64] However, the majority of these
methods do not account for synthetic feasibility. To address this problem some efforts have
been made in the field of computer-aided synthesis planning[65][66][67][68] most recently
by directly embedding synthetic knowledge into de novo drug design with forward synthesis
model powered by reinforcement learning.[69] Additionally artificial intelligence systems for
retrosynthesis planning can suggest possible synthetic pathways for the new chemical entities.
Implicit SA can be considered through rule-based filtering[70] as done in an example for 3D
linker design in FBDD.[71] It can also be argued that models trained on real examples will
more likely supply realistic synthetic examples.
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1.3.1.5 Secondary Objectives

The vast majority of drug designs will fail due to ADMET issues. General filters as described
by Lipinski[72] can be applied on the generated designs to remove problematic structures
(for example done in a study on Aurora Kinase A[44]). There are plenty of in silico programs
that can be used for filtering out ligands with undesirable ADMET properties.[73] Another
approach is Multi-Objective Optimization (MOO) that may address ADMET, selectivity or
multi-target design on top of potency. This can be performed manually, for example in a
study where an FBDD strategy was employed to design ligands that selectively modulate
all PPARs, which led to designs that proceeded to clinical trials.[74] De novo methods
that leverage off of ML could be of particular interest with respect to MOO as it may
also consider scaffold hopping.[75] A nice example of de novo MOO design using ML is
presented by Besnard et al,[76] where secondary objectives included blood-brain barrier
penetration, polypharmacology and designs against unwanted targets for GPCR’s. De novo
methods that utilize deep learning can be aimed at F2L purposes.[61][77] When handling
deep learning methods in a multidimensional way, MOO in automated F2L optimization can
be achieved.[63]

1.3.2 Fragment-to-lead In Silico Design Strategies

Regardless of the hypothesis or theory behind a computational methods, their validation only
comes from successful prospective applications. Table 1.1 presents an overview of some F2L
tailored in silico programs that have been prospectively used (not necessarily developed) after
2005 in the context of FBDD. Selected examples are highlighted below and in Figure 1.4.

Table 1.1: Examples of in silico programs for which prospective examples are available in
the context of FBDD after the year 2005.

Program Year Primary Ob-
jective

Method Description

CHEMISTRY-DRIVEN
AutoCouple[78] 2018 Receptor-

based
Virtual synthesis from 1 fragment with
available building blocks
Tethered docking with rDock
Minimization with CHARMM implicit sol-
vent model

PINGUI[79] 2018 Receptor-
based

Virtual synthesis from 1 fragment with
available building blocks that can fit pocket
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Continuation of Table1.1

Docked separately
Docking coupled ligand
For growing, linking & merging

DOTS[80] 2018 Receptor-
based

Fragment hit optimized based on possible
one-step reactions that can be performed by
robots
Constrained docking with S4MPLE

FRAGMENT REPLACEMENT
BREED[25] 2004 Ligand-based Alignment ligand-bound structures

Matching bonds used to split ligands
Re-links all that match

DE NOVO FRAGMENT OPTIMIZATION
Auto T&T2[81] 2019 Receptor-

based
Fragments from decomposed ligands

Derivation interaction sites
Docking of fragments to interaction sites
Linking of docked fragments
Similarity search performed in commercial
libraries

LigBuilder[22] 2000 Receptor-
based

Fragment database of linkers and rings

Link or grow based on receptor complemen-
tarity
User must consider synthetic accessibility

LUDI[20] 1992 Receptor-
based

Fragment database of linkers and rings

Interaction sites are identified
Fragments docked according to sites
Linking of docked fragments
User must consider synthetic accessibility

SCAFFOLD HOPPING
TOPAS[17] 2000 Ligand-based Building blocks from fragmentation based

on cleavage reactions
Template derived pharmacophores
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Continuation of Table1.1

Random addition of synthetically compati-
ble building blocks
Selection based on pharmacophore similar-
ity

SPROUT[21] 1994 Receptor-
based

Database of fragment skeletons (no atom
types)
Interaction sites are identified
Addition of fragment skeletons to template
skeleton
Mutation of skeletons to atoms types com-
plementary to the binding site

FRAGMENT ASSISTED DRUG DESIGN
ALTA[82] 2008 Receptor-

based
Decomposed ligands to fragments

Docking of decomposed fragments
Substructure search best scoring fragments
Docking of substructure hits
Molecular dynamics of best scoring ligands

Despite the development of plenty of automatic F2L tailored programs, in silico methods
in FBDD are most often manually implemented. In the most traditional approach to F2L,
medicinal chemists make modifications to a fragment by eye. In this way, synthetic feasi-
bility is explicitly considered, but relatively few chemical transformations are used, due to
subjective training and experience of the chemists. These strategies benefit from in silico
scoring of the modified fragments based on their likelihood of improved binding affinity.
Docking-guided F2L optimization, sometimes combined with more expensive methods like
MD, seems to be the most common computational strategy. Table 1.2 gives an overview of
examples using traditional “medchem” design with in silico methods after 2015.

Table 1.2: MedChem Design Examples

Entry Year Target In silico Strategy
1[83] 2020 InhA Docking guided optimization towards site specific

regions
2[84] 2018 PKC-iota Docking optimized fragment hit
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Continuation of Table1.2

H-bond interaction energies on the scaffold were
calculated with DFT to suggest modifications

3[85] 2018 ERK1/2 Docking guided optimization towards site specific
regions

4[86] 2018 WDR5-WIN-
Site

Docking guided optimization towards site specific
regions

5[87] 2018 AMPA Docking of linked analogues
6[88] 2017 NAMPT Docked fragment overlaid with other x-rays and

merged
7[89] 2017 PDK1 Docking & MD guided optimization towards site

specific regions
8[90] 2017 MTase Docking of linked analogues
9[91] 2016 GyrB Docking guided optimization towards site specific

regions
10[92] 2016 beta-Secretase Docking of linked analogues
11[93] 2016 CYP Docking guided optimization towards site specific

regions
Docking of linked analogues

12[94] 2016 KEAP-1 Docking guided optimization towards site specific
regions

13[95] 2015 PDE10 Docking guided optimization towards selectivity
handles

14[96] 2015 JAK Docking guided optimization towards known in-
hibitors

15[97] 2015 Plasmepsins Homology modeling
Multiple conformation docking
Docking guided optimization towards site specific
regions
Docking guided optimization towards selectivity
handles

16[98] 2015 ErK1/2 Docking guided optimization towards site specific
regions

17[99] 2015 PKC-iota Docking guided optimization towards site specific
regions

18[100] 2015 Factor XI Docking of linked analogues
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Continuation of Table1.2

19[101] 2015 BCATm Docking guided optimization towards in silico de-
rived hotspots

20[102] 2015 Mcl-1 NMR guided docking of merged analogues into
sub-pocket

21[103] 2015 mGlu5 Homology modeling
Docking guided optimization towards known in-
hibitors

22[104] 2015 BRD9 Induced fit docking guided optimization from dual
binding modes

23[105] 2015 Factor VIIa VS fragment library in multiple conformations
Hits merged with existing ligand

Sometimes, computational methods take a more prominent role, directing the whole fragment
evolution exercise. In the simplest case, hotspot detection methods can suggest the most
promising modifications and vectors for growth. In one example, SiteMap[106] was used to
probe the binding site and 3D-RISM[107] was used to probe possible water sites to guide
optimization of ligands for RORγ .[108] While 3D-RISM was also used for studying water
displacement in Gyrase B inhibitors,[109] others used WaterMap[110] to guide optimization
for pyruvate kinase M2.[111] Information from crystallized fragments can also be used for
ligand design for example with the FADD approach. Table 1.3 gives an overview of studies
using this approach after 2015.

Table 1.3: Fragment-Assisted Drug Design Examples

Entry Year Target Strategy
1[112] 2019 NSD3 Ligand-based VS of fragment hit

Docking guided optimization towards site specific
regions

2[113] 2018 DRYK1A Fragment hit deconstructed with the aim to improve
LE
Docking guided optimization of new (docked) frag-
ment

3[114] 2018 3C Protease Scaffold hopping on validated fragment hit
Pharmacophores translated to SMARTS pattern
Substructure search commercial vendors for new
scaffold
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Continuation of Table1.3

Virtual synthesis of experimentally validated hit
and VS

4[115] 2017 PEX14 NMR screen fragment library
VS drug-like compounds
VS hits merged with NMR fragment hits

5[116] 2017 BCL6 VS fragments different sub-pockets
Virtual fragment hits were merged
Merged ligand used as a template for ligand-based
screening

6[117] 2017 USP7 Fragment hit used as a template for similarity
search
VS of similarity hits

7[118] 2017 Lp-PLA2 Fragment hit used as a template for similarity
search
VS of similarity hits

8[119] 2017 MTH1 VS commercial analogues of fragment hit
9[120] 2016 MKK3/6 SAR-by-catalogue followed by docking.

Docking guided optimization for novelty
10[121] 2016 FabH Experimental fragment screening

Common chemotype docked for optimization
11[122] 2016 Lp-PLA2 X-ray fragment hits used to guide VS

Substructure search analogues around fragment hit
Pharmacophore based VS

12[123] 2016 Lp-PLA2 VS of substructure search hits around fragment hit
13[124] 2015 MMP-13 Docking guided optimization of extracted motif in

known binders
14[120] 2015 cIAP1 & XIAP Docking of virtual library around fragment target-

ing sub-pocket
15[125] 2015 CK Docking of virtual library around fragment hits for

SAR

Although such bespoke strategies work well and are fairly common, they lack the systematics,
reproducibility, broad applicability, automatization and validation of some of the tools listed
in Table 1.1. As an example, ALTA is an automated tool for FADD, and was successfully
used for the design of BRD4,[126] EphB4,[127] and most recently, CREBBP[128][129]
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inhibitors. The 38 examples listed in Table 1.2 and Table 1.3 also make apparent that in
silico methods are most often used to manually rank modified fragments. In silico methods
have the potential to both guide the design strategy and score the candidate molecules in an
automated way. The most recent prospective examples of automated F2L tailored in silico
methods are shown in Table 1.4.

Table 1.4: Automated Tailored F2l In Silico Design Examples

Entry Year Target Program Strategy
1[76] 2019 GPCRs Auto T&T2 De Novo Growing
2[73] 2018 CBP AutoCouple Chemistry-driven
3[74] 2018 2AR PINGUI Chemistry-driven
4[126] 2018 2AR PINGUI Chemistry-driven
5[40] 2018 AKA LigBuilder VS building block libraries identified core

LigBuilder (De Novo Optimization)
Fragment library made to include AKA
moieties
Definition of core attachment point
FEP on de novo designs

6[75] 2018 BRD4 DOTS Chemistry-driven
7[127] 2016 GSK3 LigBuilder Site-directed VS fragment library

LigBuilder (De Novo Optimization)
Link virtual fragment hits in distinct sites
Known binder as a template for linker place-
ment
VS of de novo designs

8[24] 2016 AKA LUDI Substructure search common scaffold
Inhibition assay revealed hit with common
scaffold
Binding mode prediction with docking
LUDI (De Novo Optimization)

9[128] 2015 DDR1/2 BREED (ver-
sion by Astex)

X-ray fragment hit merged with known in-
hibitor (Fragment Replacement)

10[124] 2015 CREBBP ALTA Fragment-Assisted Drug Design
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1.3.2.1 Scaffold Hopping

Only in five out of the 49 examples listed in Table 1.2, Table 1.3 and Table 1.4 the initial frag-
ment was not maintained, as scaffold hopping strategies were employed.[111,113,115–117]
Scaffold hopping can be imperative in cases when a chosen series is potent but selectivity or
ADMET issues arise.[130] Furthermore, scaffold hopping methods can generate novel ideas
that are far from obvious, and could likely not be predicted by eye. Some examples not listed
above utilized SPROUT to generate novel scaffolds for Plasmodium falciparum dihydrooro-
tate dehydrogenase,[131][132] as well as for BACE-1,[133] where SPROUT-HitOpt and
SPROUT-LeadOpt were used to generate synthetically accessible derivatives of the scaffolds.
Another study used TOPAS for the Identification of novel CB-1 ligands by scaffold hopping
based on a known template, followed by retrosynthetic analysis and subsequent design of
focused libraries for testing.[134]

1.3.2.2 Highlighted Examples

Despite the limited use of automated F2L tailored in silico methods, their value has clearly
been demonstrated. Here three examples are highlighted, all of which used a significant
amount of in silico guidance for the design. Although in the first example the methods were
not entirely streamlined, it also displays that the methods can be tailored to a specific aim in
a project.

In the first study,[113] the researchers identified inhibitors for enteroviral 3C protease
through a fragment-based approach (Figure 1.4A). Inhibitors that could potentially covalently
bind a reactive cysteine in the pocket were sought. Based on known ligands, pharmacophores
were derived with LigandScout.[135] The pharmacophore model included a covalent at-
tachment point (Michael acceptor warhead). Pharmacophore-guided ligand-based VS of a
library containing 3000 fragments led to 47 virtual hits, of which one showed concentration-
and time-dependent activity. The time dependency indicated covalent binding. Next, a
substructure search using the pharmacophore model (translated into a SMARTS pattern)
identified five additional structures with scaffold hops in commercial fragment libraries,
with one classified as covalent binder. The next step was virtual synthesis which encoded a
nucleophilic substitution reaction at the pyrrole nitrogen with alkyl halide building blocks.
This resulted in 2000 N-alkylated analogues. Subsequent ligand- and structure-based VS led
to an improved, albeit not by much, optimized fragment. Nonetheless, this strategy identified
novel scaffolds that could covalently bind the 3C protease.

In a related example, an automated chemistry-driven approach was taken to identify CBP
bromodomain inhibitors[77] (Figure 1.4B). First, a known CBP inhibitor was deconstructed
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to a scaffold that is an acetyl-lysine mimetic. Three separate coupling reactions were
encoded for virtual synthesis, namely, amide, Buchwald-Hartwig and Suzuki cross-coupling.
After the successful synthesis of 53 compounds by the proposed reactions, six compounds
showed nanomolar affinity. The most potent binder was derived from an amide coupling,
which presented optimal growth vectors. The two compounds showing more selectivity for
CBP with respect to another bromodomain, BRD4 were then selected for merging. This
example highlights the use of different reaction types for site-directed optimization. The last
highlighted example in Figure 1.4C describes a fragment linking approach with

LigBuilder, a DND program developed 20 years ago that is still used (not limited to
FBDD) and updated regularly.[136] In this example[45], the researchers performed site-
directed VS of a fragment library to identify substructures for the targeted sub-pockets.
The BB library in LigBuilder was adapted to contain the substructures that were identified
to be likely binders for each sub-pocket during the first virtual screening. It generated
285,000 designs using a template of a known binder, which were subsequently docked using
a modified scoring function that accounted for hydration effects. Synthesis of the best scoring
ligands led to picomolar inhibitors for GSK3β .

1.3.3 Towards an integrated framework for F2L

Ultimately, automatic F2L methods could have a major impact on FBDD. The trend for
automatization and open platforms for drug discovery, exemplified by X-Chem[137] and
other streamlined drug discovery platforms,[138][139] introduces fast, low-cost and re-
producible computational pipelines to evolve the fragments into suitable chemical tools,
performing a systematic exploration of chemical space that does not neglect the scaffold
hopping opportunities. However, as it has been noted several times, SA of the molecules
must be appropriately considered. In fragment-based DND, similarity searches in libraries of
commercially available compounds, virtual (retro)synthesis, or chemical complexity filters
can address SA. In regards to scaffold hopping strategies, it is less straightforward to ensure
SA. Indeed, some efforts have been made in the field of computer-aided (retro)synthesis
planning.[64–67] If properly validated, this can also contribute to the continuously growing
chemical libraries available through on-demand synthesis. Therefore, we propose an auto-
mated framework utilizing the ever-growing commercial on-demand libraries (Figure 1.5).
It performs structure-based scaffold hopping, to exploit structural information necessary
in fragment evolution, and systematically explore as much of the available chemical space
as possible. The steps include identifying analogues of the fragment in the search space,
identifying common features and performing tethered docking that samples different binding
modes of the analogues while maintaining key features. The analogues that remain are
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Figure 1.5: Proposed pipeline for integrated F2L optimization.

predicted to be the most likely to bind. These can be validated experimentally, after which a
next round of optimization ensues. The devised protocol is iterative in line with the criteria
of LE maintenance in F2L evolution.

1.4 Summary

It is clear that in silico methods are prominent in FBDD. There are an abundant number of
programs that have been useful in FBDD. However, in silico methods are most often used to
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rank optimized fragments, whereas the design strategy is guided by expertise and intuition
that ensure the synthesizability of the designs. This common practice may unknowingly
lead to biased and scaffold centric designs, thereby limiting the chemical search space. In
silico strategies for chemical space exploration involve de novo drug design and virtual
screening methods that address SA implicitly or explicitly. Scaffold hopping is one key
strategy to explore as much chemical space as possible, however, ensuring SA has no
easy solution. To circumvent this, my thesis develops a framework of iterative VS for F2L
evolution utilizing the continuously growing commercial libraries (as of now in the billions of
molecules) that does not neglect scaffold hopping opportunities. Some limitations that remain
are inherent to high-throughput computational methods which include receptor flexibility,
although addressed by several fragment optimization programs,[140][141]. Nevertheless,
integrated in silico methods have the potential of systematically and automatically exploring
all areas of chemical space, which can be applied at every stage in FBDD. Along with
development, a lot of emphasis has been placed on prospective validation of the platform,
in order to demonstrate that they can be fully integrated into streamlined drug discovery
platforms, accelerating the release of fragment originated drugs.
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General objective

The main objective of my work comprised the development and validation of an automated
and iterative fragment-to-lead optimization pipeline as described in Section 1.3.3, including
its application to diverse scenarios. The pipeline can be fully integrated into a streamlined
drug-discovery platforms to accelerate the release of fragment derived drugs.

Specific objectives

The specific objectives were as follows:

1. Development:

• The developed pipeline must be sufficiently fast and scalable to screen increas-
ingly large databases.

• The developed pipeline must be automated and robust so that it can be used by
external parties.

• The developed pipeline must provide non-obvious analogues with a good chance
of having superior binding affinity.

2. Validation and application to diverse scenarios:

• The developed pipeline must be proven to be at least equally successful as other
virtual screening strategies.

• The developed pipeline must provide equally good results even when the binding
mode of a fragment has not been experimentally determined.

• The platform must be fast and adaptable to various discovery settings.





Chapter 3

Methods





3.1 Overview 29

3.1 Overview

As proposed in Figure 1.5, the developed pipeline performs iterative structure-based scaffold
hopping, to exploit structural information and systematically explore as much of the available
chemical space as possible. This is done by imposing two main requirements, namely, the
hits must be similar to the initial fragment, and the hits must contain the key features for
binding.

A general summary of steps in the pipeline (depicted in Section 4.1):

(i) A similarity search between the starting fragment and the search library is performed.

(ii) The maximum common substructure (MCS) is derived.

(iii) The MCS between fragment and analogues is superposed.

(iv) Tethered docking is performed so that the MCS cannot deviate, while the remaining
parts of the molecule can adjust to the binding pocket.

(v) Molecular Mechanics using the Generalized Born model and Solvent Accessibility
(MMGBSA) is performed to account for solvation effects.

(vi) Dynamic Undocking (DUck) is performed to assess the structural robustness.

(vii) The best scoring analogues become the new parents for a next iteration, starting from
step one.

A summary of filters used to guide the platform to give results that are expected:

• The MCS must be at least a percentage of the number of atoms in the analogues or the
cores of the analogues as defined by the user.

• The MCS must be contained in the area that has been defined as key for binding.

• After tethered docking, the MCS is restricted by a Root Mean Square Deviation
(RMSD) cutoff defined by the user.

• After minimization using the MMGBSA formalism, the pose obtained must be similar
to that of tethered docking evaluated by an RMSD value defined by the user.

• During tethered docking, MMGBSA and DUck, the analogues must score better than
a user defined cutoff in iteration 1, or must score better than the parents in iterations
over 1.
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A summary of further restrictions to ensure scalability:

• Ater tethered docking, MMGBSA and DUck a diverse set of compounds is selected, if
the number of compounds to proceeding to the next step is too large.

• For iterations over 1, only the top similarity hits, ranked by the number of parents and
their scores are selected.

• Ligands are prepared on-the-fly, so that preparation of ultra-large libraries is not a
bottleneck, and so that the libraries can be updated when regularly.

Because the platform is iterative, the most promising hits must be obtained to become
the new parents for the subsequent iterations. For this reason, three orthogonal structure-
based approaches were implemented. The first approach is docking, which is sufficiently
fast but suffers from overly simplistic and inaccurate scoring functions due to insufficient
consideration of desolvation penalties and entropic effects. Therefore, in the virtual screening
(VS) strategy used here, docking is complemented by more expensive methods. The first
being MMGBSA to explicitly consider solvation effects. Then, DUck is performed as it is
complementary to both docking and MMGBSA, as it considers structural stability through
H-bonds rather than thermodynamic stability.

3.2 Background rDock

Docking is the most high-throughput way to assess if a molecule might bind to a target, and
therefore likely the most widely recognized. It involves a two-step process, where in the
first, it attempts to predict the conformation and orientation of the molecule in the binding
pocket (the binding mode or “pose”), and in the second, it attempts to predict the binding
affinity by assessing the molecule’s fit through the evaluation of molecular interactions.
There are different ways of sampling the binding modes that a molecule may adopt, which
can be categorized as systematic or stochastic approaches. Systematic approaches aim
to sample all degrees of freedom in a molecule, which can become infeasible for larger
molecules. Stochastic approaches make random changes to the binding mode that are later
evaluated by a predefined probability function. The developed pipeline uses the docking
program rDock[142], which implements a combined approach with different stages of a
genetic algorithm to aid sampling efficiency by not over penalizing bad contacts in the
initial, randomized population, and by encouraging the formation of intermolecular hydrogen
bonds (H-bonds). For example, the algorithm makes random mutations in a first stage where
less pronounced intermolecular H-bonds are still accounted for, while in later stages, the
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definition of H-bonds becomes more strict. The algorithm will make mutations until there is
a convergence in the score, which promotes early termination of the run for bad poses. This
is done for the generation of a single pose, for which multiple “runs” can be performed to
obtain multiple poses.

Besides specifying the number of runs, the cavity has to be defined. This can be done with
the “two sphere” method (cavity accessible by small spheres, but not by large spheres), and
the reference ligand method (with a defined volume of a given size). If a docked molecule
lies more than 0.1 Å outside of this cavity, the scoring function imposes a linear penalty
based on the distance from the cavity. Furthermore, the scoring function penalizes binding
modes that do not contain features where pharmacophores are defined. Pharmacophores are
defined as radii around coordinates, and if the pose does not contain the specified feature
within the radius, a quadratic penalty is applied based on the distance from the radius. Lastly,
defined atoms can be tethered so that rDock applies mutations where defined atoms can only
deviate to a degree defined for dihedral angles and rotatable bonds or according to a distance
defined for translational deviations.

In general, three types of scoring functions exist, all of which attempt to approximate
the binding free energy, namely force field (quantify inter- and intra- interactions e.g.
AutoDock[143]), empirical (sum of parametrized functions that reproduce experimental
data e.g. rDock), and knowledge-based (sum of parametrized functions that reproduce ob-
served atomic distributions; i.e. potentials of mean force[146]) scoring functions. The scoring
function of rDock is given in Equations 3.1, which is a weighted sum of intermolecular
(Sinter, Equation 3.2), ligand intramolecular (Sintra, Equation 3.3), site intramolecular (Ssite,
Equation 3.4), and external restraint terms if provided (Srestraint , Equation 3.5). The weights
have been extrapolated from known experimental data of 102 protein-ligand and RNA-ligand
complexes. When comparing different ligands, typically Sinter is used for ranking, because
the intramolecular scores are not sufficiently accurate and they lack an absolute scale (they
have not been referenced to the lowest-energy conformation of each ligand). Furthermore,
the best fit of Sintra to the data did not include a desolvation potential, therefore it was decided
to account for solvation effects through a complementary approach that is computationally
more expensive but still sufficiently high-throughput, namely, Schrödinger’s MMGBSA as
described in Section 3.3 and Section 3.5.10. Despite its limitations, rDock was used due to
its useful implementations of constrained docking (tethered and pharmacophoric) and due to
its high-throughput VS capabilities.

Stotal = Sinter +Sintra +Ssite +Srestraint (3.1)
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3.3 Background Schrödinger’s MMGBSA

Unlike empirical scoring functions that are parameterized to correlate with binding free
energies, MMGBSA uses force fields to study the movement of atoms relative to each
other based on the laws of physics, after which the binding free energy can be derived
through statistical thermodynamics. On the other hand, MMGBSA is an end-state method,
which is a crude approximation of the binding free energy compared to more rigorous
methods such as thermodynamic integration (TI) or free energy perturbation (FEP), where
multiple trajectories of the complex, receptor and ligand are simulated. Nonetheless, for
VS applications such as the one described in this thesis, computationally efficiency is
favored. The MM energy function describes bonded (stretching of bonds, bending of angles
and torsions) and non-bonded (van der Waals and electrostatic) interactions. In principle
these energy calculations should be performed separately for the complex, the apo form
of the receptor and dissociated ligand in order to obtain the relative free binding energy
(Equation 3.6). However, with Schrödinger’s MMGBSA, only geometry of the complex
is used after which the corresponding groups are separated, as it’s known to produce less
noise due to insufficient cancellation of intramolecular interactions when using independent
geometries.[144] Furthermore, the calculations are performed in an implicit solvent model
that represents solvent as a continuous medium.

∆G = Gcomplex − (Greceptor +Gligand) (3.6)

Schrödinger’s MMGBSA uses the OPLS force field[145], along with the VSGB 2.0[146]
solvent model to estimate the binding free energy according to Equation 3.7. The force field
accounts for the enthalpic contribution (∆H) to ∆Gbind and is meant to describe the energetic
gain or loss when the protein and the ligand interact. The solvent model is composed of
a GB (electrostatic) and an SA (nonpolar) part (Equation 3.8). The GB model calculates
the electrostatic terms using a lowered dielectric constants of the solvent molecules, while
the accessible surface area (ASA) accounts for non-electrostatic solvation terms. As the
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ASA term is empirically adjusted to fit the experimental free energy data, the GBSA term
implicitly accounts for entropic solvation effects. The entropic term (S) can be calculated
through the calculation of vibrational frequencies, but is often neglected as it typically gives
the largest statistical errors.[147]. Together, these terms are meant to describe the gain or
loss of gree energy when solvent interacting with the protein is replaced by interactions with
the ligand.

∆G = ∆H −T ∆S ≈ ∆EMM +∆Gsol −T ∆S (3.7)

∆Gsol = ∆GGB +∆GSA (3.8)

Though the method has important limitations, it has been widely used in structure-based
drug discovery, with mixed results.[147] Nonetheless, in regards to the development of the
pipeline, MMGBSA is used as a crude filter that accounts solvation effects and only account
for the solvation term, not accounted for by rDock.

3.4 Background Dynamic Undocking

As stated in Section 3.1, structural stability is equally important to consider, as known ligands
are not only known to bind with high selectivity and affinity, but are also known to form
structurally stable complexes.[147][148] Figure 3.1 is meant to illustrate this, namely that
two high affinity ligands will both have low ∆Gbinds, however, the more robust complex will
be that with a steeper energy minimum. This can be quantified by displacing the ligand from
equilibrium in the energy minimum to the exact state in which measured key interactions
have been broken, namely, the quasi-bound (QB) state. This quantification of structural
robustness by DUck has been shown to work extremely well in VS, and is meant to be used
as an orthogonal approach to thermodynamic-based methods. For the method, H-bonds are
used to assess structural robustness as they provide strict distance and angular dependencies,
and are abundant in protein-ligand complexes. Steered Molecular Dynamics (SMD) is used
to displace the ligand from its optimal position. SMD uses the distance from bound to the
QB state between the H-bond interacting atoms as the collective variable, during which the
force is recorded and is used to calculate the work (WQB). The reported WQB values are thus
a measure of the structural robustness of the measured H-bonds in the complex, which can
be related to structural stability.

The DUck protocol starts with an equilibration to ensure a stable simulation. The protocol
performs minimization for 1000 cycles, gradual warming of the system (100 K to 300 K for
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Figure 3.1: Structurally robust complex have a steep energy minimum, which can be
quantified by DUck. Adapted from[149]

0.4 ns) at NVT and equilibration for 1 ns at NPT. Then the first steered molecular dynamics
(SMD) simulation starts, during which the distance is increased by means of a harmonic
potential (constant velocity and spring constant) from 2.5 Å to 5.0 Å during 0.5 ns. For
computational efficiency, at this point, the protocol already measures the WQB, so stops the
process if the value is below a given threshold. Then the protocol performs non-steered
MD also starting from the equilibrated trajectory, during which spontaneous rupture of the
H-bond is prevented by applying gradual restraints for distances beyond 3 Å, after which
WQB is measured again. Finally, the protocol performs SMD at two temperatures (300K
and 325K), and non-steered MD starting from the previous non-steered MD trajectory for as
many replicas as specified. The WQB is measured after both SMD runs, as well as after non-
steered MD. During every simulation, the protocol applies harmonic restraints to all heavy
atoms of the receptor to prevent structural changes. The DUck protocol uses MOE[150] to
automatically prepare the scripts for the simulation, and to prepare the structure (AMBER
force field 99SB[151]) and ligand (Parm@Frosst[152]) parameters.

The protocol described above uses relatively short simulation times, suitable for the
time required to break an H-bond. Furthermore, the protocol only uses part of the protein,
referred to as the chunk, which significantly reduces simulation times. The chunk is meant
to preserve the local environment such that a WQB value would be obtained, as if the full
protein was used. When selecting residues for the chunk, the following should be considered:
I) simulating as little residues as possible to reduce computational time, II) not selecting
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residues that would block the ligand from exiting the pocket, III) not removing residues that
may cause solvent entering the pocket from areas other than where the ligand is exiting.

3.5 Automated Pipeline Protocol

3.5.1 Structure Preparation

The structure must be prepared with or without conserved waters or cofactors. In every case
here, MOE V.2016[152] was used to prepare the structures. The default settings were used in
the “Structure Preparation” module, which caps (acetylates/methylates) C- and N- termini
residues to avoid artificial charges, adds missing residues through homology modeling, and
protonates the atoms at pH 7.

3.5.2 Interaction Analysis with MDMix

If the target is not well-known, an analysis of the complex to identify key H-bond features is
required, as these will be used to evaluate structural robustness. In this thesis MDMix[153]
aided in the identification of possible interaction sites. The MDMix protocol involved
solvation of prepared structures in water, a mixture of 20% ethanol in water and a mixture
of 20% acetamide in water in a truncated octahedral box constructed from replicas of a
pre-equilibrated box of the same solvent mixture. These solvents were selected based on their
ability to recapitulate features (polar and apolar) of drug-like compounds. Then, the MDMix
protocol performs equilibration of the solvated system (temperature increase every 800ps to
reach 300K NPT and 1ns NVT at the final temperature). Next, three simulations of 20ns NPT
are carried out for each solvent combination (water, ethanol-water, acetamide-water), storing
atomic coordinates every picosecond. During the simulation heavy atoms of the protein are
restrained with soft harmonic potentials. Analysis of the trajectories consists of comparing
the observed density with the expected density of polar and apolar probe atoms in small grids.
The inverse Boltzmann relationship then converts the differences to binding free energies of
the probed atoms. The final output is a collection of possible polar and apolar hotspots at
varying energetic values.

3.5.3 Pose Clustering

If no crystal structure of the fragment hit was available, all plausible binding modes were
derived. The fragment hits were docked for 100 runs using key H-bonds as pharmacophoric
restraints, with a radius of 1, and a tolerance of 0.5 Å. Hereafter, the generated poses were
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clustered using the sdrmsd function of rDock, where the best scoring pose is used as the first
pose to measure the RMSD. If the next best scoring pose had an RMSD above 2 Å, the pose
would be added to the second cluster, and become the ligand for comparison for the next
cluster. DUck was performed on the defined pharmacophore H-bonds on fragment poses
with the best rDock Stotal scores.

3.5.4 Library Preparation

For the projects described here, two libraries were used as the search space, an “In-Stock”
and “Clean” subset of ZINC15[13], comprising 10,775,814 ligands, as well as an “On-
Demand” and “Clean” subset of ZINC15, comprising 389,472,892 ligands, both of which
were downloaded on October 9, 2017. The downloaded smiles were then split according
to the number of heavy atoms, and subsequently converted to the fingerprints described in
Section 3.5.5.

3.5.5 Similarity Searching

Similarity searching provides an efficient strategy for searching large libraries, however, the
definition of similarity between two molecules depends on how the molecules are described.
Molecular descriptors can be 1D (whole molecule descriptors), or representations based on
the 2D or 3D description of molecules. A single 1D descriptor is usually not sufficiently
discriminating to allow meaningful comparisons of molecules, while 3D descriptors are more
complex since they must take into account that molecules are conformationally flexible.[154]
At the same time, 3D fingerprints do not always outperform simple fingerprint similarity
search. Substructure-based descriptors characterize a molecule, either by its 2D chemical
graph or by its fingerprint. Encoding chemical graphs significantly reduces search effi-
ciency, thus we’ve opted for fingerprint searching. There are two main ways of encoding
substructures in a fingerprint, namely, dictionary-based (i.e. substructure keys-based e.g.
MACCS) and topological-based (path-based e.g. Daylight or circular e.g. MORGAN).[155]
In dictionary-based fingerprints, each bit position is associated with a fragment and accounts
for its presence or absence. This makes these fingerprints chemically intuitive. In contrast,
hashed fingerprints work by analyzing all the fragments of the molecule following a path
up to a certain number of bonds, and then hashing every one of these paths to create the
fingerprint.[156]

There are several studies comparing fingerprints in their ability to discriminate between
actives and inactives. The developed protocol uses permissive similarity searches to retrieve
near and far neighbors in a reduced search space, where after structure-based methods are
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used for discriminating actives from inactives. As such, any fingerprint with a low similarity
measure would suffice. We’ve opted for MACCS fingerprints with 0.5 Tanimoto similarity,
since it’s chemically intuitive and widely used. Furthermore, we’ve implemented the MACCS
FastSearch method of Openbabel[157] (an indexed file where the fingerprints are stored
in binary format) for optimal computational efficiency. On the other hand, even if a low
similarity measure is used, another fingerprint can lead to a slightly different search space.
For this reason, MORGAN fingerprints (radii 1 and 2) were also implemented using RDKit,
although a lower threshold than 0.5 should be used in order to be as permissive.[158] For
the protocol, the parent compounds are automatically converted to the same fingerprint and
format. The platform then performs the similarity search on the split library for ligands that
have only 2 heavy atoms more (user defined) or less compared to the parent compounds.

3.5.6 Ligand Preparation

Proper treatment of ligands for docking is imperative to success.[159] In summary, our current
ligand preparation steps include pretreatment (removal of salts, neutralization), ionization,
tautomer and stereoisomer generation, ring conformer generation, and minimization. Of these,
ring conformer generation and minimization are the least straightforward.[160][161][162][163]
Minimization whilst maintaining stereochemistry is usually not included in open source soft-
ware. Furthermore, open source software often use templates for ring conformer generation,
therefore do not accurately generate conformers for which no similar templates are avail-
able. Lastly, only few programs unify all these ligand preparation steps. As Schrödinger’s
LigPrep[164] does all of the above, it is used to prepare the smiles selected after the similarity
search. The parameters were so that ligands above 300 atoms would be ignored, at most
eight stereoisomers would be generated, at most six tautomers would be generated, at most
eight ring conformers would be generated and lastly probable ionization states within the pH
range of six to eight would be generated. The platform performs LigPrep on-the-fly only for
ligands that are retrieved after MCS extraction (Section 3.5.7).

3.5.7 MCS Extraction and Superposition

After ligand preparation, the automated protocol extracts the Maximum Common Substruc-
ture (MCS) between the fragment and the similarity hits with RDKit. It uses the settings
for maximizing bond overlap and ensures that for matching bonds, the bond order should
also be exactly equal. Several options can be defined by the user, namely, if ring atoms
should match ring atoms and if only complete rings should be matched. Furthermore, the
user can specify the minimum percentage of atoms that the analogues must have in common
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with the parent, or with a previously defined core (“MCS cutoff”). The automated protocol
then performs flexible or rigid superposition of the automatically derived MCS. Flexible
superposition uses RDKit’s constrained embedding and rigid superpostion uses OpenBabel’s
SMARTS matching.

3.5.8 Tethered Docking

As the first step, the initial fragment uses the reference ligand method to determine the cavity.
Then, after flexible or rigid MCS superposition, the protocol performs high throughput VS
(HTVS) for optimal efficiency. The HTVS protocol consists of three stages, in which the
number of docking cycles for each ligand increases, and the cutoff for the score becomes
more strict, at every stage, in order to early on remove bad scoring ligands. Three HTVS
protocol templates are available for use, shown in Figure 3.2. The HTVS protocol in the first
iteration is user defined and may depend on the rDock score of the starting fragment. During
tethered HTVS, the program samples the molecule’s poses whilst the maximum translational
deviation of the MCS is set to 0.001 Å and the maximum rotational degrees of freedom of
the MCS is set to 0.001 degree per cycle of the genetic algorithm in rDock.

The final deviation will typically be very small, however, the user can specify a cutoff
for the RMSD of the superposed MCS. The default for this cutoff is < 0.2Å, so the user
may desire a more permissive tethering. Furthermore, the MCS is ensured not to be more
than 3 Å away from the defined pharmacophore used for docking. This is to prevent cases
where the MCS is not involved in the main interaction, but a feature in another part of the
molecule can still interact. So, rDock penalizes the molecules if the extracted superposed
MCS does not adhere to this restraint, for which the penalty cutoff is defined by the user,
while the pharmacophore radius is set to 1Å with a tolerance of 0.5 Å. At least one mandatory
pharmacophore restraint always corresponded to a restraint for the H-bond interaction used to
assess structural robustness by DUck. Lastly, compounds are filtered if the RMSD between
the MCS in the final docked pose and the superposition is larger than a user specified value,
using fconv[167]. The protocol does tethered docking for every protomer and stereoisomer
generated by LigPrep which pass the MCS cutoff (described in Section 3.5.7). Ultimately,
only the best scoring isomer is selected for the next step.

3.5.9 Diversity Selection

As stated in Section 3.1, the platform makes a diverse selection after tethered docking,
MMGBSA and DUck. The diversity selection is done using RDKit’s MaxMin algorithm[165],
which generate descriptors (in this case MORGAN, radius 3) for all the molecules, and then
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Figure 3.2: HTVS Protocols. Filter 1: S1 = -5, S2 = -8, S3 = -8. Filter 2: S1 = -8, S2 = -13,
S3 = -15. Filter 3: S1 = -13, S2 = -15, S3 = -20

from a list of molecules finds the one that has the maximum value for its minimum distance
to the picked set. The selected molecule is the most distant one to those already picked so is
transferred to the picked set. The last step is iterated until the required number of molecules
have been picked. This approach was taken because it is faster than Butina clustering, as only
a subset of the matrix is generated. Additionally, in the first iteration, the picked molecule
was defined as the molecule with the best Sinter.

3.5.10 MMGBSA

For ligands that pass the docking step, the protocol makes a diverse selection of 1000
molecules for the MMGBSA calculations. Schrödinger’s Prime MMGBSA[166] with
minimization is used, and only the ∆Gsol term in Equation 3.8 is used for filtering. If
the score of the child is equal or lower than the score+10 of the initial fragment, for example,
if the initial score was -39 kcal/mol, and that of the child, -29 kcal/mol , then the child can
still pass to the next step. This is to encourage the scores to become better in each cycle,
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while not excluding candidates that score slightly worse. Lastly, the RMSD between the
cores of the docked pose and the minimized pose is calculated with fconv[166] for which the
cutoff is user defined.

3.5.11 DUck

For DUck, a diversity selection of 500 compounds that pass the MMGBSA step is made. The
platform performs 5 SMD and 5 MD replicas of DUck on the defined H-bond. The chunk
residues were selected from the prepared structures. After selection of the residues for the
chunk (described in Section 3.4) on the prepared structures, each section of residues was
split into separate chains, where after each chain was acetylated and methylated, and lastly,
checked for clashes possibly created during capping of the chains. The protocol performs
DUck with a user defined threshold, which may depend on the WQB value of the starting
fragment. If more than 50 compounds pass the threshold, a final diversity selection of 50
compounds is made, which become the new parent molecules.

3.5.12 Subsequent Iterations

In subsequent iterations, the protocol performs the similarity search for each new parent
molecule, however, the similarity hits are limited to the most representative set of the best
scoring parents. Each parent is assigned a “parent score”, which consists of the ranking
according to rDock, MMGBSA and DUck. The average of the ranking in the three methods
is then summed for each parent that produced the child during the similarity search. The
list of children is then sorted by the sum of the average rank of the parents and the top-
ranked children scores and the top (100,000 for ZINC “In Stock” or 500,000 for ZINC
“On-Demand”) are selected for MCS derivation. The parent that is used for superposition
corresponds to the parent that has the largest MCS. After iteration one, the HTVS docking
protocol depends on the rDock score of the parent, such that the docking score cutoffs in the
HTVS protocol changes to a parent score + 10 in stage 1, a parent score + 5 in stage 2, and a
parent score in stage 3. For MMGBSA, the filters are applied in the same way as for iteration
one and for DUck, the threshold for iterations over one, is set to the truncated parent WQB

values.
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Results
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Section 4.1 gives a summary of the methods described in Chapter 3, while Section 4.2,
Section 4.3 and Section 4.4 describe its validation, including its application to various
targets in different scenarios. It should be noted that the platform has also been applied to
several other projects that were not be described in this thesis. Additional work on side
projects (submitted and published) are also not be described here, but have been added to the
Appendix.

4.1 The Automated Pipeline

The platform can be viewed as a focused virtual screening (VS) of the chemical space
surrounding a given fragment, conceptually depicted in Figure 4.1. A permissive similarity
search performs the first stage of narrowing down the chemical space. Then, the platform
performs the VS iteratively, where in every iteration analogues of increasing size are virtually
screened.

Optimized Fragment

Large 
Analogues

Medium 
Analogues

Small 
Analogues

Fragment

Figure 4.1: Conceptual depiction of fragment focused chemical space virtual screening.
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The best scoring analogues are retrieved, which determine the chemical space for the
next round. In this way, the information (features, chemotypes) of the best scoring analogues
are harnessed, thereby guiding the optimization towards promising areas of chemical space
that are also related to the starting fragment. Furthermore, this iterative procedure is in line
with the criteria of ligand efficiency (LE) maintenance in FBDD. LE-guided optimization
aims to emphasize the most important features for molecular recognition, avoiding increases
in potency that are a mere result of an increase in size.[8,9] Thus, by limiting the platform
to screen only sets of analogues categorized by size, we can effectively control LE. The
platform does this through encouraging the analogues to score better in every iteration, while
screening analogues in small size increments.

Since the platform is iterative, it is essential to maintain the most likely binders, and to
ensure the removal of highly unlikely binders. Otherwise, there is a risk of error propagation.
Ideally, the virtual hits should be experimentally validated after every iteration, in order
to guide the optimization towards the right chemical space. But this would make the
exercise slow and unpractical. Instead, in this thesis we challenged the computational
methods to distinguish binders from non-binders. As such, the platform uses three orthogonal
structure-based approaches as depicted in Figure 4.2, namely, docking with rDock[144],
where pharmacophoric restraints (known or predicted) are applied and only slight deviations
of the maximum common substructure (MCS) between the fragment and analogues are
permitted, II) Schrödinger’s MMGBSA[166] (Molecular Mechanics energies combined with
Generalized Born and Surface Area continuum solvation free energy) to account for solvation
effects and III) Dynamic Undocking (DUck)[150], to assess structural robustness through
the defined key hydrogen bonds (H-bonds).

A combined rDock and DUck approach has been shown previously to reduce false posi-
tives and retrieve higher experimental hit rates[150]. And, although MMGBSA uses some
crude approximations, it has been shown to improve docking results.[147] Moreover, here it
is used to explicitly take into account the change in solvation free energy between the bound
and unbound states, which can be an important source of error in docking (unadequately ac-
counted for by the scoring function) and DUck (the unbound state is not sampled). Figure 4.3
describes the platform in full. Starting from permissive similarity searching for analogues
two heavy atoms more or less compared to the fragment, the maximum common substructure
(MCS) is automatically derived, the 3D geometries of the analogues are prepared on-the-fly,
and are subsequently subjected to the VS protocol, which is meant to retrieve the most likely
binders. Then the platform performs the similarity search anew on the new parents. To ensure
scalability, the analogues that are most representative of the best scoring parents continue to
the subsequent steps. The platform does this by selecting analogues with the most parents,
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1. Docking 2. MMGBSA 3. Dynamic
Undocking

Figure 4.2: VS filtering with orthogonal approach. 1) Docking maintains the core or
maximum common substructure, and key H-bonds. 2) MMGBSA accounts for solvation
effects, and 3) DUck ensures structural robustness through the evaluation of the stability of
key H-bonds.

taking into consideration their ranking during docking, MMGBSA, and DUck (Figure 4.3
most left box).
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Figure 4.3: The developed pipeline. An example when selecting the most representative set
of the best scoring parents: the top 3 analogues would be: child A, B and C if parent 1 scores
better than parent 2, or child B, C and D if parent 2 scores better than parent 1.

Further limitations include diversity selections after docking, MMGBSA, and DUck, if
necessary. Lastly, each step is performed in parallel to ensure scalability. Each iteration takes
approximately 24 hours using the Barcelona Supercomputing Center based on a search space
of 107, but performance may vary depending on the neighbor density of the starting fragment.
Nonetheless, multiple fragment optimization projects can be run simultaneously.
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4.2 The Platform Applied to NUDT21

In this study, an X-ray fragment screening campaign at XChem led to fragment hits for the
NUDT21 protein, which has been found to be associated with both oncogenic and tumor
supressing roles.[167] CFIm25 (Cleavage Factor 25kDa ) encoded by NUDT21 contains
a Nudix domain, typically found to hydrolyze ATP and Ap4A.[168] Instead, CFIm25 has
been found to bind exclusively to larger CFIm homodimers (CFIm68 and CFIm59), and
RNA (sequence specific recognition of the UGUA motif by the Nudix domain).[169] The
tetrameric complex CFIm is known to be essential for pre-mRNA processing.[171] We aimed
to optimize the fragment hits (with almost unmeasurable potency) in collaboration with
XChem in order to confirm the protein’s ligandability.[14][170] We’ve done this using two
distinct strategies, namely using the poised library concept (described in Section 1.3.1.2)[41]
, as well as, using the developed pipeline. The results, as well as the implications and benefits
of using one approach over the other will be discussed.

4.2.1 The Putative Binding Site

The X-ray fragment hits were used to evaluate interaction sites, which can be seen in
Figure 4.4. As stated in Section 3.4 the platform uses H-bonds to assess the structural stability
of the possible binders, therefore a thorough interaction analysis is required especially if the
target is unknown. In the structure, only one common interaction point was observed, namely,
between fragment hit X-0401 and X-0404 which both make a water-mediated interaction
with Tyr191.

Other interaction points with X-0404 involve Lys105 and the backbone oxygen of Gly108,
while fragment hit X-0401, is seen to interact with Lys56 and Glu110. Fragment hit X-0581
is only seen to interact with the backbone of Leu106 via a dual H-bond, however, when the
structure is minimized, an additional interaction with Lys105 is possible. Furthermore, a
network of interactions comprising two waters and the four residues, Arg77, Thr79, Gln157,
Glu170 and Lys172 is observed. These two waters, one of which is able to interact with
fragment X-0581, were conserved during the VS protocols.

Mixed solvent MD (MDmix) also aided in the identification of interactions hotspots. The
results of the simulation with structure X-0581 (ligand excluded from the simulation) is
shown in Figure 4.5.

MDmix identified an acceptor hotspot near interacting residue Gly108 and a donor
hotspot and water site near interacting residue Leu106. Waters are present in the structures
of fragment hits X-0401 and X-0404 in the position of the identified water site. This water is
displaced in the structure of fragment hit X-0581.
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Figure 4.4: NUDT21 Fragment Hits: X-0401 (Chain A), B) X-0404 (Chain B), C) X-0581
(Chain A). The minimized protein structure of X-0581 is shown to interact with the ligand
through Lys105.
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Gly108

A

Leu106

B

Figure 4.5: Consensus interaction hotspots derived from MDmix. Red=acceptor probe from
acetamide, Blue=donor probe from acetamide, Orange=donor/acceptor (hydroxyl) probe
from ethanol, White=water probe. It should be noted that, during MDmix simulations,
residues were treated as flexible, therefore hotspots may appear shifted.

DUck on the interaction with Gly108 resulted in a WQB value of 0.28 kcal/mol, and for
Leu106, a WQB value of 2.44 kcal/mol. These results indicate low structural robustness, how-
ever, the observation of these interactions in the experimental structures, and the consensus
with the MDmix results gave confidence to use them as the key interactions for optimization,
while the WQB threshold was set to 2 kcal/mol for the first iteration. At the same time, as no
consensus hotspots were identified for fragment hit X-0401, it was not further considered.

Besides the difference in interactions between the fragments, the structures also differed
in conformation of the putative binding site. For a fragment-based approach, exploiting
structural information is highly beneficial, however, structure-based design that does not
account for flexibility will be biased towards selection of the structure. In Figure 4.6, a
previously published x-ray structure (3Q2T)[173] containing the tetrameric complex of
CFIm68 and CFIm25 bound to RNA is superposed with the structures retrieved in this
study, along with a previously published structure (3BHO), containing CFIm25 bound to
bis-adenosine-5’-tetraphosphate (Ap4A). A low RMSD of 0.69 Å was found for the CFIm25
domains. The fragment hits are found deep within the same pocket RNA and Ap4A are
found to bind superficially (only fragment hit X-0404 is shown in Figure 4.6), however, no
common interaction points are observed.

Interestingly, the fragment co-crystal structures display distinct conformations of the
pocket, compared to conformations observed in previously published structures. The most
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Figure 4.6: A) The tetrameric complex (3Q2T) of one homodimer of CFIm68 and one
homodimer of CFIm25 bound to RNA aligned to a monomer of CFIm25 bound to Ap4A
and the co-crystal structure of fragment hit X-0404. Zoomed in, fragment hit X-0404
is seen to bind deep in the pocket RNA and Ap4A superficially bind (ligands shown in
spheres). B) From left to right, RNA in 3Q2T (closed conformation), X-0401/X-0581 (semi-
open conformation) and, the surface of the structure bound to fragment hits X-0404 (open
conformation), with residues Lys105 and Glu55 shown in spheres.

divergent structure corresponds to the co-crystal of fragment X-0404, where the pocket
displays the most open conformation (“open”). The co-crystal structures of fragment X-0401
and fragment X-0581 share near identical conformations and have a slightly less open pocket
(“semi-open”), whereas the pocket in previously described structures bound to RNA and
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Ap4A have a closed conformation (“closed”). Specifically, residues Lys105 and Glu55 largely
contribute to the pocket having a closed or open conformation (highlighted in Figure 4.6B
as spheres). Although MDMix indicated no hotspots to interact with Lys105, it is the only
interaction fragments X-0581 and X-0404 could have in common. Furthermore, DUck
indicated the interaction to contribute just as much to structural robustness (WQB of 2.1
kcal/mol for X-0581 in its minimized structure and 1.75 kcal/mol for X-0404) as Leu106 and
Gly108. Its role in the conformation of the protein and the reasons mentioned above gave
incentive to incorporate an interaction with Lys105 as a secondary pharmacophoric restraint.

4.2.2 Comparing VS Strategies

Not uncommon for crystallography-based fragment screening, fragments X-0581 and X-
0404 had almost unmeasurable potency for NUDT21 from biophysical assays (SPR). They
were optimized with two distinct design strategies: the iterative workflow (as described in
Section 4.2), and the poised synthesis approach (Figure 4.7) combined with one iteration of
the VS protocol described in Figure 4.2. The comparison between protocols is particularly
interesting, because both strategies can be fully integrated into streamlined fragment opti-
mization workflows. At the same time, while both strategies exploit structural information
through structure-based VS, they differ significantly in the design strategy and in their in-
trinsic capabilities of chemical space exploration. With the second approach, the size of the
library will scale linearly with the time it takes to run the protocol and will always retain the
central chemical moiety defining the ‘poised’ library. On the other hand, one of the main
benefits of the developed iterative platform is its ability to search very large chemical spaces
and to perform scaffold hops.

The poised synthesis approach is depicted in Figure 4.7 and led to 1100 compounds for X-
0581 and 351 compounds for X-0404, which were prepared with Schrödinger’s LigPrep[172]
as described in Section 3.5.4. The VS protocol described in Figure 4.2 led to 283 compounds
for X-0581 and 38 compounds for X-0404. The protocol involved the same parameters as
described for the automated platform. It also applied the same pharmacophoric features
(for docking and DUck), and used the same chunk (residues 52-54, 77-82, 96-99, 130-111,
124-125, 127-129, 172-174 and 187-188). After visual inspection based on diversity (meta
vs. para position and the possibility of additional interactions), 19 compounds were selected
for X-0581, and 4 compounds were selected for X-0401. Out of these compounds, only 7
could be synthesized (shown in the Supplementary Information), stemming from the X-0581
series.

The iterative approach used the ZINC “In-Stock” collection comprising roughly 11M
compounds as the search space. Three rounds of iterative screening led to the selection
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of 41 compounds of which 37 were directly available for X-0581, and 8 compounds of
which 8 were directly available for X-0404. Based on these results, the advantage of using
commercially available chemical spaces is emphasized, even when comparing it to the use of
explicit synthetic feasibility for library generation. Furthermore, no human intervention was
necessary using the automated approach, therefore preventing any bias from influencing the
results.

To help explain the difference in virtual hits found between X-0581 and X-0404, an
overview of the attrition after each step of the automated protocol is shown in Table 4.1.
It can be observed that the superpose step generally gives a larger attrition for X-0404
when compared to that of X-0581. This is mainly due to the fact that the platform removed
compounds that had an RMSD larger than 0.2 Å between the MCS atoms. As many of
the analogues actually contained a planar urea moiety, and the initial fragment contained a
flexible ring scaffold (an extreme scaffold hop), the large attrition due to RMSD is expected.
A significantly larger proportion is removed at the docking stage. This was then mainly due
to the fact that the analogues did not score better than their parents.

Table 4.1: Attrition Rates VS Comparison

Iteration 1 2 3
X-0581

1. Similarity 5,962 253,546 865,180
2. Superposed 3,257 34,050 32,368
3. Docked 2,315 12,536 12,550
4. MMGBSA 559 411 509
5. DUck 346 81 41

X-0404
1. Similarity 112,126 905,843 1,880,142
2. Superposed 4,963 9,502 14,458
3. Docked 63 459 713
4. MMGBSA 11 87 39
5. DUck 10 47 8

In Figure 4.8a and Figure 4.8b, a comparison of rDock Sinter score distributions is shown.
A tendency of the selected analogues to improve in every round of optimization can be
observed for both fragments. However, starting fragment X-0581 had an rDock Sinter score
of -11 kJ/mol, while X-0404 had an rDock Sinter score of -8 kJ/mol. The rDock HTVS
protocols both applied “Filter 1” (depicted in Figure 3.2). Thus, the analogues of X-0404 had
to score relatively higher than their parents, than the analogues of X-0581. For comparison
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(a) X-0581 (b) X-0404

Figure 4.8: rDock Score Distributions of the Iterative Virtual Screening Approach.

to the poised approach, the structures of the 7 synthesized compounds are shown in the
Supplementary Information along with rDock Sinter scores.

4.2.3 Experimental Results

A total of 52 compounds (37 from the iterative approach for X-0581, 8 from the iterative
approach for X-0404, and 7 from the poised library approach) were selected for experimental
testing by Surface Plasmon Resonance (SPR). Since these experiments were mainly carried
out by another person, the methods will not be thoroughly described here, but SPR, in general
terms is a biophysical technique that detects changes to the composition of a surface on
which the protein is immobilized. Ligand binding effects are measured through differences in
light refraction.[173] Each experiment was performed in duplicate in three separate channels,
two with varying levels of protein, and one empty channel to control that ligands were not
binding to the surface.

An efficient screening cascade was used by first screening the compounds at a relatively
high concentration of 500 µM, where after compounds showing a positive response were sub-
jected to dose-response experiments at 31.25 µM, 62.5 µM, 125 µM and 500 µM. Out of the
52 compounds that went through the cascade, 20 gave a positive response at 500 µM, of which
15 showed dose dependency. The dose response curves of the 15 compounds and the refer-
ence fragments (X-0581, X-0404 and X-0401) are shown in the Supplementary Information
(empty channels not shown), Table 4.2 gives a summary of the results, and Figure 4.9 and Fig-
ure 4.10 give an overview of the compound structures and binding modes. It should be noted
that many compounds suffered from aggregation at higher concentrations, thus saturation of
the signal could not be met. So, kD values could only be estimated, based on the theoretical



54 Results

Table 4.2: NUDT21 SPR Result Summary VS Comparison

Binder <500µ M 500µ M - 1mM >1mM
Initial X-ray Binders

X-0401
X-0581
X-0404

Automated X0581 evolution
B9
C7
C8
D2
D8
A5
B11
B12
C11
C12

Automated X0404 evolution
B1
B2
C10
A2
A8

maximum response (calculated from protein and ligand molecular weight). Furthermore, one-
to-one binding was assumed i.e. that the ligands should not show unspecific binding to other
putative binding sites.[http://www.bio-rad.com/webroot/web/pdf/lsr/literature/6476.pdf]

Surprisingly, all 15 compounds that passed the screening stem from the automated
iterative VS approach, which comprises a hit rate of 27% for fragment X-0581, 63% for
fragment X-0404, or a combined hit rate of 29%. Considering the much lower diversity
of the compounds retrieved by the poised approach, which only introduced aromatic ring
substitutions, it was reasonable to expect that some would bind. Nevertheless, this strategy
may not be well-suited to evolve fragments that have almost unmeasurable potency. By
contrast, the developed iterative VS approach successfully evolved the intial binders into hits
that are still not very potent, but decent ligand efficient owing to their relatively small size.
Moreover, the hits are quite diverse and provide a better starting point for further optimization.
Interestingly, the hits evolved from fragment X-0404 resemble those from X-0581, although
generally slightly larger, which would likely cause clashes with the used protein conformation.
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fragment X-0404.

In Section 4.3, however, we will discuss the adaptability of the platform to perform less
extreme scaffold hopping. Besides the successful validation of the virtual screening platform,
these results provide the most potent NUDT21 ligand described to date (D8; KD=200µM;
HAC=19; LE=0.26), are important to confirm the ligandability of this protein and for the
future development of more potent chemical probes.
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4.2.4 Future Perspectives

The next steps include crystallography of the compounds to detect binding with an orthogonal
method and to confirm the predicted binding mode. While multiple crystallography attempts
will be made for the compounds that were found to be active by SPR, it is not expected that
there will be significant overlap between the SPR and x-ray hits. Rather, the combination of
both screening methods will likely provide orthogonal hits[174]. However, we also aim to
shed light on the biological effects these compounds could have. The first step includes RNA
displacement assays. Since the fragment hits bind to the pocket that RNA is found to bind,
there is reason to expect that they will affect RNA binding. Further design of compounds
will be focused on RNA displacement through two strategies.

RNA Bound X-0404 Structure

X-0581 Structure

Leu108

D8 bound subpocket

Figure 4.11: Conformational trapping strategy. Structure bound to X-0581 with a confor-
mation that clashes with RNA site. Substituted aromatic rings in compounds derived from
X-0581 hypothesized to induce conformational change.

The first study involves trapping the conformation in a state where RNA is unable to bind.
As stated in Section 4.2, the structure of X-0404 has an open conformation and the structure
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of X-0581 has a semi-open conformation. The latter would cause clashes with RNA binding
(Figure 4.11). We hypothesize that the aromatic ring of X-0581 induces this conformational
change. Thus, further design will focus on exploring the subpocket further.

The second strategy includes the design of ligands that would directly complete with
RNA binding. As stated in Section 4.2.1, the fragment hits are found to bind deep within
the pocket, and do not have overlapping interactions with RNA. However, there are other
fragment hits, not described here, that do. The aim is to optimize the fragment that would
directly compete.

4.3 Exploratory Strategies

In this section we describe the developed platform’s adaptability to the user’s desired design
strategy. In Chapter 3 the methods were thoroughly described. Table 4.3 gives an overview of
user defined parameters that can influence the design strategy. These settings can determine
the degree of diversity or novelty that can be expected. At the same time, these settings can
be tuned to be less stringent thereby allowing more compounds to be processed. The next
section will give some examples of how settings can be changed for specific requirements.

4.3.1 Scaffold Hopping Strategies

Section 4.2.2 described the optimization of two NUDT21 X-ray fragments hits, X-0581
and X-0404. Optimization with the developed platform led to experimental hits for both
fragments, however, for fragment X-0404 an extreme scaffold hop was observed (from a
tetrahydro diazepinone scaffold to a urea scaffold). Figure 4.12 explains how this scaffold
hop occurred. Figure 4.12A displays the child parent connections throughout three iterations
of X-0404 optimization, and Figure 4.12B those of X-0581. The networks show that in
the X-0581 optimization more diverse parents have led to the final selection, while the
final selection from the X-0404 optimization stems from just two parents. Figure 4.12C
shows the parent that has led to the most hits, containing a urea moiety, leading to the final
selection of primarily urea scaffolds. The compound containing the terahydro diazepinone
scaffold was not selected because the children with the most parents are prioritized. If the
aim is to maintain the terahydro diazepinone scaffold, then the optimization can be biased
by specifying that MCS extraction should consider that ring atoms must match other ring
atoms, and that only complete rings must be maintained (“MCS ring match ring” and “MCS
complete rings” in Table 4.3), which would translate to iterative substructure searching. This,
however, led to most of the analogues being removed in the second iteration. Therefore,
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Figure 4.12: A) Parent child relationships for X-0404 evolution. B) Parent child relationships
for X-0581 evolution. C) Scaffold hop to selected parent.
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Table 4.3: The platform’s user defined parameters.

Settings Default Description
Library In-Stock Pre-prepared libraries (In-Stock or On-Demand).
Fingerprint MACCS Pre-prepared fingerprints (MACCS or MORGAN).
Similarity 0.5 Similarity search (smaller cutoff recommended for

MORGAN).
Superposition FLEX RIGID recommended if the fragment is planar and

FLEX recommended if the fragment is non-planar.
HA growth 2 The number of heavy atoms that the fragment size

may increase per iteration. The maximum decrease
is 2 HA.

MCS cutoff 0.5 The cutoff for the size of the MCS (percentage)
compared to the children molecules.

MCS core True MCS extraction from previous MCS core or from
parent.

Tethered
RMSD
cutoff

0.2 The RMSD cutoff for MCS superposition.

MCS ph4 0.5 The cutoff for which the MCS may deviate from
the area defined as necessary.

Docked
RMSD

1.5 The RMSD between the superposed MCS and
docked MCS.

Complete
rings

False That the MCS must include complete rings.

Match rings True That for the MCS ring atoms must match ring
atoms.

HTVS proto-
col

1 HTVS protocol for the first generation (see Fig-
ure 3.2).

DUck score 2 DUck score (WQB) filter for the first iteration.

another strategy was tried, namely “MCS complete rings” was turned off, to allow for
more permissive scaffold hopping, with the hopes to retrieve more hits that could pass all
filters. And indeed, these settings retrieved virtual hits containing less extreme scaffold
hops, however, still not as many virtual hits as X-0581. We hypothesized that the reason
for this was that the screening library was not large or diverse enough to provide analogues
of X-0404 that could pass all the filters incorporated into the protocol. As such, we tried a
larger chemical space.
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4.3.2 Chemical Space Exploration

The choice to use commercial chemical space for our iterative VS was also based on the
fact that these libraries are continuously increasing in size. Commercial chemical space has
experienced continuous growth over the last decades. The emergence of carefully designed
virtual chemical libraries representing compounds that can be synthesized rapidly and at low
cost has expanded the purchasable chemical space into the tens of billions. These number can
increase by going beyond the commercial chemical space, but may involve synthetic routes
that afford lower synthetic success rates. Besides that, larger numbers do not necessarily
translates into better virtual screening outcomes, as they may create challenges in regards
to soft and hard memory constraints.[175] Nonetheless, when using the On-Demand space
consisting of 40 times more chemical matter than the In-Stock space, we already find many
more virtual hits (depicted in Table 4.4).

Table 4.4: Attrition Rates In-Stock and On-Demand Space.

Iteration 1 2 3 4
In-Stock

1. Similarity 112,192 1,216,791 2,326,173 3,018,340
2. Superposed 2,263 21,852 42,826 3,308
3.Docked 149 2,476 4,956 295
4. MMGBSA 35 169 193 113
5. DUck 25 69 66 24

On-Demand
1. Similarity 550,528 6,599,934 29,099,709 100,181,069
2. Superposed 12,450 181,889 306,759 236,747
3. Docked 971 10,602 12,428 4,403
4. MMGBSA 139 1,349 1,396 586
5. DUck 114 125 143 236

Important questions that we aim to answer are whether we find novel chemical matter, if
the use of larger collections increases the chance of becoming trapped in false positive space,
as suggested[16] and understand the scalability of the process (i.e. what is the increase in
computational cost and what library sizes could we potentially screen). From this exercise,
screening the On-Demand set took twice as long, while the library is 40 fold larger. On a
more practical aspect, we also want to compare costs and procurement rates.

From the In-Stock selection, 13 compounds were purchased based on visual inspection,
diversity and availability, and from the On-Demand selection, 12 compounds were purchased.
In principle, the In-Stock set should contain ligands that are directly purchasable, where as the
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On-Demand set contains ligands that can be synthesized within 2 weeks, with 80% certainty.
From this experience, the In-Stock collection indeed benefits from a better procurement rate
(In-Stock: 26 out of 43 selected after visual inspection, On-Demand: 21 out of 63 selected
after visual inspection). However, it did not cost that much more to purchase compounds
from the On-Demand space (In-Stock: EUR 2,145, On-Demand: EUR 2,250), although
delivery took approximately twice as long.

Figure 4.13a and Figure 4.13 show the rDock score distribution between the selected
compounds from the In-Stock (Figure 4.13a) and from the On-Demand (Figure 4.13) space.
These results show the compounds from the OnDemand space to score slightly better.

(a) InStock (b) OnDemand

Figure 4.13: rDock Score Distribution Exploratory Strategies

4.3.2.1 Experimental Results

Table 4.5 shows the experimental results when less extreme scaffold hopping settings was
applied (compared to Section 4.2.2) using the In-Stock space and the On-Demand space.

The same screening cascade as described in Section 4.2.3 resulted in a 54% hit rate using
the In-Stock space, and a 33% hit rate using the On-Demand space. Both hit rates are lower
than previously found for this fragment (63%), however, when considering the potency of
the hits, the comparison changes. With extreme scaffold hopping for X-0404 optimization, 3
out of the 5 hits (60%) were less than 1 mM in potency and provided a clear signar by SPR.
Here, with less extreme scaffold hopping the rates are 71% (5 out of 7) and 75% (3 out of 4)
for In-Stockand On-Demand, respectively. Importantly, the last case afforded the most potent
hit to date (MR12; KD=10µM; HAC=25; LE=0.27), a 20-fold potency improvement over
the best hit obtained previously (D8; KD=200µM; HAC=19; LE=0.26). The raw SPR data is
given in the Supplementary Information. Figure 4.14 and Figure 4.15 show the structures
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Table 4.5: SPR Results Summary In-Stock and On-Demand Space

Binder <500µM 500µM - 1mM >1mM
X-0404 evolution In-Stock

MR2
MR7
MR14
MR1
MR10
MR11
MR8

X0404 evolution On-Demand
MRE3
MR12
MRE6
MRE4

and binding modes of the experimentally validated hits. It should be noted that at the point
the experiments had been done, the protein seemed to have lowered response levels, thus, the
theoretical maximum response has also been reduced according to the baseline for affinity
estimations.

4.3.2.2 Scaffold Analysis

Here we discuss how using a larger chemical space could be more advantageous, since using
the On-Demand space led to slightly better scoring compounds, and our most potent hit so
far for NUDT21. For this, an analysis of the scaffolds of all selected compounds was done.
Figure 4.16A shows the clustering of manually defined scaffolds.

Scaffolds were defined as ring systems including attachment points with maximum one
heavy atom dispersed. K-means clustering using RDK fingerprints (inspired by Daylight
fingerprints) resulted in 15 clusters at the level of branching shown. It found three clusters
with scaffolds only found in On-Demand hits, four clusters with scaffolds only found in
In-Stock hits, and eight clusters with scaffolds that compounds from both spaces had in
common were found.

Inspection of the interactions of the scaffolds unique to both search spaces (Figure 4.16B)
found that some of the In-Stock scaffolds made less ideal interaction (clusters 14 and 6 in
Figure 4.16C). Then, the observation that the On-Demand scaffolds were less diverse, and
the fact that In-Stock cluster 9 contained the tri-one pyrimidine moiety also contained in our
best hit (MR12 retrieved from the On-Demand space) led us to believe that the compounds in
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the On-Demand space are not necessarily more diverse, but that in our case, the compounds
making the best interactions are more elaborated in the On-Demand space, making them
more probable to be selected by the platform. Indeed, the tri-one pyrimidine scaffold is found
10 times more often in the On-Demand space, than the In-Stock space.

4.4 Blinded Fragment Optimization

Fragment optimization without the availability of an X-ray is a very realistic scenario, but
it can be quite challenging. Since we have developed a platform that is automated, and
has been shown to lead to binders (described in Section 4.2 and Section 4.3), we decided
to challenge to platform to blinded fragment optimization starting from all viable binding
modes of fragment hits for which the binding mode have not been confirmed.
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Figure 4.16: A) Clustering of manually defined scaffolds of all selected molecules. B)
Scaffolds for clusters unique to molecules retrieved from On-Demand and In-Stock spaces.
C) Binding modes of example scaffolds from unique clusters.
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4.4.1 Target Selection

This study was divided into four case studies on three systems, namely, for HSP90, BRD4 and
DYRK1A. The choice for these systems was based on fragments derived from literature, and
received from our collaborators (Vernalis), which were found to be hits according to various
screening assays, but could not be crystallization after at least one attempt. At the same time,
these systems form robust test systems with an abundance of known ligands. Furthermore,
their therapeutic relevance cannot be neglected. HSP90 (heat shock protein) is molecular
chaperone for hundreds of protein substrates or clients and not only plays a key role in
protein folding under physiological and stress conditions, but is also involved in many cellular
processes such as DNA repair, development, the immune response and neurodegenerative
disease. This makes HSP90 an attractive drug target for which a number of HSP90 inhibitors
are being evaluated in clinical trials.[176] BRD4 is an epigenetic regulator that has been
reported as a potential therapeutic target for cancers.[177][178] The first BRD4 inhibitor JQ1
was developed in 2010[179], and since then, several BRD4 inhibitors have entered clinical
trials. Additionally, a number of BRD4 degraders have been reported, which show more
efficient anticancer activities, through protein specific degradation by small bifunctional
molecules (PROTACs).[180] DYRK1A (dual-specificity tyrosine phosphorylation-regulated
kinase 1A) that belongs to the group of CMGC kinases has attracted attention, as DYRK1A
inhibition has been shown to weaken cognitive dysfunction in animal models for Down
Syndrome and Alzheimer’s disease. In addition, DYRK1A has been studied as a potential
cancer therapeutic target. The current status is that inhibitors are being developed to determine
the roles of this target.[181]

4.4.2 Pose Selection

Figure 4.17 shows an overview of the fragments and the selected binding modes. The BRD4
fragment was extracted from the literature[182], for which two viable poses were derived.
For HSP90 two fragments were received from Vernalis, and for each, two viable poses were
derived. For DYRK1A, two fragments were received from Vernalis, both of which contain
the same core, however, bind in two slightly different binding modes. For pose selection and
optimization, a structure from the PDB containing a similar ligand to the initial fragments was
used (structures shown in the Supplementary Information). Similar ligands were retrieved
with MACCS fingerprints, based on all downloaded PDB ligands for each target. For the
structures, all waters were removed, except for those that are known to be conserved, namely
for BRD4, four conserved water molecules[183], and for HSP90, three conserved water
molecules[184]. The protocol used the H-bond pharmacophoric points shown in Table 4.6
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for docking and DUck. For the DYRK1A fragments, a pharmacophoric feature that interacts
with LEU241, N was implemented in addition to LEU241, O, since dual interactions with
the hinge region in kinases are pronounced.[185] Clustering was performed as described in
Section 3.5.3, after which the best scoring pose in each cluster was selected if the rDock
score Stotal was lower than -5 kJ/mol. Finally DUck[150] was performed on the selected
fragment poses. A pose was considered, if the WQB values was higher than 1.5 kcal/mol.
The chunk residues for each PDB structure are given in the Supplementary Information.

The aim of these case studies is to answer two questions. Will the platform be able to
distinguish if one starting pose is preferred? And will the platform evolve active ligands for
which both binding modes are possible?

Table 4.6: Attrition Rates VS Comparison.
*Additional for docking: LEU241, N

Pose
ID

rDock
Stotal

HTVS
Protocol

WQB WQB
Cutoff

Constraint

BRD4 – Case Study 1
B1 -20 2 2.4 2 ASN140,N
B2 -16 1.2

HSP90 – Case Study 2
H1-1 -17 1 6.4 4 ASP93,O
H1-2 -10 5.0

HSP90 – Case Study 3
H2-1 -20 2 7.4 4 ASP93,O
H2-2 -19 6.6

DYRK1A– Case Study 4
D1 -10 1 2.1 2 LEU241,O*
D2 -8 2.8

4.4.3 Case Study 1 – BRD4

Before analysis of the results for this case study, it’s important to mention that pose B2 is
assumedly more probable than pose B1. According to several studies, the conserved water
network contained in the binding pocket, is seen to accommodate hydrophobic groups, for
example in 5M39[186] . Although, a flipped binding mode, in which the hydrophobic group
is solvent exposed is also possible, for example in 5M3A (with a resolution of 1.65Å).
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For this fragment, four iterations were performed starting from both binding modes. The
initial fragment contained 15 heavy atoms, thus ligands up to 23 heavy atoms were explored
by the fourth iteration. For B1, compounds for experimental validation were selected from the
fourth iteration based on diversity, and availability. The nine compounds that were selected
can be seen in Figure 4.18A. The compounds selected for testing, evolved from B2, stem
from the third iteration, as those from the fourth iteration did not contain hydrophobic groups
facing the conserved water network. The three selected compounds selected are shown in
Figure 4.18B. The ligands evolved from both poses, maintain the same binding mode as the
initial pose, but the scaffold is not preserved in all cases.

The first experiment for binding assessment was DSF (differential scanning fluorimetry),
a thermal shift assay that measures changes in protein stability, which is changed upon
binding.[187] The compounds were measured at 10 µM, for which the results are shown
in Figure 4.18. Based on these results, all compounds seem to bind. Binding assessment
with an orthogonal biophysical assay based on time-resolved fluorescence resonance energy
transfer (TR-FRET) is currently being executed. All 11 compounds were also subjected to
co-crystallization experiments. Two structures could be obtained with proper fitting, one
for compound 4, and another for compound 11. Compound 11 had a shifted binding mode
compared with that observed in the crystal structure, while compound 4 had a flipped binding
mode. Figure 4.19A shows the overlaid binding modes. Additionally, ligands crystallized in
5M39 and 5M3A, are also shown overlaid with the predicted binding modes (Figure 4.19B).
Here it can be seen that the confirmed pose of compound 11 has shifted likely due to the
change from methyl to ethyl. Our predicted binding mode for compound 4 on the other
hand, does not resemble the binding mode observed in 5M3A, but has flipped, and resembles
the confirmed binding mode of compound 11, to accommodate the hydrophobic hotspot,
observed in many other BRD4 ligands.

Tethered docking of compound 4 and 11 with the core constrained according to that
observed, led to significantly worse rDock scores (compound 4: -20 kJ/mol predicted vs.
-12 kJ/mol observed, compound 11: -21 kJ/mol predicted vs. -13 kJ/mol observed). This
indicates that the protocol with the same settings would not identify these compounds even if
we had started with the confirmed binding mode. Tethered docking with the initial fragment
constrained according to the observed binding mode gives a score of -12 kJ/mol, and a WQB

of 0.9 kcal/mol. As such, this binding mode was not selected.

4.4.4 Case Study 2 – HSP90 – Fragment 1

For H2-1, four iterations were done, starting from 13 heavy atoms, thereby exploring ligands
up to 21 heavy atoms. Three compounds for pose H1-1 and four compounds for H1-2 were
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A

B

Figure 4.19: BRD4 X-ray (brown) vs. Predicted (green) binding modes. A) Overlay of
obtained X-ray structures with Compounds 4 (right) and 11 (left). B) Overlay of 5M39 with
compound 11 (left) and 5M3A with compound 4 (right).

selected for testing based on diversity and availability. Experimental validation was done
in collaboration with Vernalis. The first step was quality control (LC-MS and NMR) and
checking solubility. Two out of the seven compounds were insoluble, so no further data
could be obtained. The next step was NMR (STD, LOGSY and CPMG). Table 4.7 shows the
results. For the STD and LOGSY experiments, the initial signal should be positive and the
delta should be negative if the compound is displaced by the competitor (VER-00082160).
For the CPMG, the initial signal should be low, and the delta should be positive if displaced.
Based only on CPMG results, all the compounds tested compounds seem to be binding.
However, an empirical guide maintained by Vernalis to estimate the confidence level of
true binding is that if a compound binds according to just one of these NMR techniques
it’s considered class 3, if it binds according to two of the techniques, it’s considered class
2, and if it binds according to three of the techniques, it’s considered class 1. With easily
crystallisable systems class 1 gives ca. 80% success in crystallography, class 2 ca. 60% and
class 3 ca. 40%.[188]
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Table 4.7: NMR and SPR Results HSP90 Fragment 1.

Cpd. STD
dSTD

LOGSY
dLOGSY

CPMG dCPMG Class KD
(µM)

H1-1
12 0 0 0 0 2 2 3 183.0
13 0 0 0 0 1 2 3 399.0

H1-2
14 0 0 0 0 2 1 3 3840
15 0 0 -1 0 3 2 3 378.0
16 0 0 0 -1 0 3 2 841.0
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Figure 4.20: HSP90 Fragment 1 Hits. A) Starting from pose H1-1. B) Starting from pose
H1-2.
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The experiments gave no class 1 compounds, and after soaking experiments, no crystal
structures could be obtained. Nonetheless, SPR experiments for binding affinity could be
obtained, for which the obtained KD values are also shown in Table 4.7 (raw SPR data is
shown in the Supplementary Information). In Figure 4.20A, the experimentally validated
compounds evolved from H1-1 are shown, and those of H1-2 are shown in Figure 4.20B.
The IC50 value (fluorescent polarization/FP assay) for the initial fragment was 1.9mM. Even
though we cannot directly compare the values because they were obtained with different
biophysical techniques, it appears that at least compounds 12, 13, 15 and 16 bind with a better
affinity, with compound 12 displaying significant potency and excellent ligand efficiency
(KD=183 µM; HAC=17; LE=0.30).

Notably, all the compounds from H1-1 have evolved in such a way that the amide is
flipped according to how it’s oriented in H1-2. How the binding mode of H1-1 flipped to that
observed H1-2 is shown in the Supplementary Information.

4.4.5 Case Study 2 – HSP90 – Fragment 2

For H2-2, three iterations were performed, leading to the exploration of ligands up to 21
heavy atoms, starting from the 15 heavy atom fragment. Three compounds were selected
for each binding mode evolution from iteration 3 based on diversity and availability. NMR
and SPR results are shown in Table 4.8 and raw SPR data is shown in the Supplementary
Information. Two out of the six compounds were insoluble so no further data is shown.
The structures of the experimentally validated compounds evolved from H2-1 are shown in
Figure 4.21A, and those evolved from H2-2 are shown in Figure 4.21B.

Table 4.8: NMR and SPR Results HSP90 Fragment 2. NB = not binding.

Cpd. STD dSTD LOGSY dLOGSY CPMG dCPMG Class KD
(µM)

H2-1
17 0 0 0 0 3 0 NB 1080
18 0 0 0 0 0 3 3 3350

H2-2
19 0 0 0 0 0 3 3 59.70
20 1 0 0 0 0 3 3 162.0

The starting fragment H2 had no measurable activity in FP. Compounds 17 and 18 show
a moderate improvement (KD in the milimolar range), while compounds 19 and 20 show
significant improvement and very good ligand efficiencies (0.29 and 0.26, respectively).
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Interestingly, compound 19 is the most potent, and was selected based on the fact that a C-H
bond with Asp93 has never been reported for HSP90. Both compounds 17 and 18 stem from
the second binding mode, indicating this pose to be the preferred starting point. However,
compound 19, contains a very similar scaffold as the co-crystallized ligand in 4FCQ[196],
while none of the compounds evolved from H2-2, evolved to this scaffold. The overlay of
the ligand in 4FCQ with compound 19 is shown in Figure 4.21C, for which a shift of the
pyrimidine ring is observed. The evolution of this ring shift is shown in the Supplementary
Information. Compound 19 could not be produced by H1-2, simply due to the fact that the
flipped orientation, causes the MCS to be too small.

4.4.6 Case Study 4 – DYRK1A

For D1 (12 heavy atoms) five iterations were performed, while for D2 (14 heavy atoms), four
iterations were performed, thereby sampling compounds up to 22 heavy atoms by the end
of the evolution of both fragments. Four compounds were selected from pose D1 and five
compounds were selected from pose D2, based on diversity and availability. One out of the 9
compounds was insoluble. NMR and SPR data (raw data in Supplementary Information) are
shown in Table 4.9.

Table 4.9: NMR and SPR Results DYRK1A. NB = not binding. ND = No Data.

Cpd. STD dSTD LOGSY dLOGSY CPMG dCPMG Class KD
(µM)

D1
21 1 -1 0 0 1 2 2 163.00
22 1 -1 0 0 0 2 2 329.00
23 3 -3 1 -1 1 3 1 73.50

D2
24 0 0 0 0 1 3 3 ND
25 1 0 1 0 2 0 NB 444.00
26 0 0 0 0 0 1 3 31.60
27 2 -2 1 -1 1 3 1 436.00
28 1 -1 0 0 1 2 2 518.00

Although some class 1 and 2 compounds were retrieved, unfortunately, no crystal of the
protein could be obtained from soaking experiments. Figure 4.22A shows the compounds
evolved from D1, and Figure 4.22B shows the compounds evolved from D2 that were
experimentally validated. The initial fragment D1 had an IC50 of 115µM (inhibition of
peptide phosphorylation), while D2 showed no measurable affinity. Only one compound
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evolved from D1 had a better affinity (23; KD=73µM; HAC=19; LE=0.30) on which the
platform performed a scaffold hop, while compound 26 had a significantly improved affinity
over D2 (KD=32µM; HAC=20; LE=0.31), and maintained the same binding mode.

4.4.7 Summary

So, coming back to our two questions: will the platform be able to distinguish if one
starting pose is preferred and will the platform evolve active ligands for which both binding
modes are possible? We conclude that the platform is capable of deriving active compounds
from fragments with an unknown binding mode, with success rates and jumps in potency
similar to those obtained in other systems when the binding mode is known (Section 4.2
and Section 4.3). However, the platform is not suitable to identify the correct binding mode
because it can find active molecules either by changing the scaffold or by changing the
binding mode. Finally, we cannot rule out that in some cases active compounds derive from
incorrect binding mode predictions.
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Fragment-based drug discovery (FBDD) emerged as a disruptive technology and became
established during the last two decades. Its rationality and low entry costs make it appealing,
and the numerous examples of approved drugs discovered through FBDD validate the
approach. However, FBDD still faces numerous challenges. Perhaps the most important one
is the transformation of the initial fragment hits into viable leads. Fragment-to-lead (F2L)
optimization is resource-intensive and is therefore limited in the possibilities that can be
actively pursued. In silico strategies play an important role in F2L, as they can perform a
deeper exploration of chemical space, prioritize molecules with high probabilities of being
active and generate non-obvious ideas. This thesis describes the development of an automated
pipeline for fragment-to-lead optimization. It’s iterative nature allows seamless integration
into fragment-based drug discovery pipelines (as shown in Figure 1.5) and its scalable feature
can exploit continuously growing commercially available libraries.

Section 4.1 gave an overview of the developed platform. It uses three complementary
structure-based methods that retrieve the most likely to bind analogues. Subsequent iterations
harness information on chemotypes and features to determine the chemical space on which
the next round of structure-based virtual screening takes place. Furthermore, it is scalable
to screen ultra-large virtual libraries, which may lead to better or more hits. It searches
through these very large chemical spaces, enabling diversity (e.g. scaffold hopping) but
focusing on the most productive areas of chemical space by means of knowledge based
(similarity, pharmacophores) and structure-based (protein-ligand interactions) constraints.
All combined results indicate the platform’s capabilities for being applied to future projects.
Future prospects include making the platform available.

The ambitious aim to find a probe for every protein has been recently proposed through
the “Target 2035” initiative.[2] Although daunting, any improvement over the mere 4% of
the human proteome that has roughly been estimated to have been paired with a chemical
probe, would be considered as progress. To this end, fragment-based approaches have been
suggested as a promising strategy in the expansion of the number of proteins that can be
deemed as druggable. Fragment screening campaigns very often will lead to higher hit rates,
even for challenging targets, as fragment-sized molecules have a much better chance of
binding than drug-sized molecules, albeit with lower affinity.[8]

Crystallographic fragment screening is sensitive enough to detect such weak binders,
while also providing a clear mode of binding, so that fragment optimization, which is essential
to increase potency, becomes less challenging. The automated crystal density analysis called
PanDDA created by SGC-Diamond and XChem has proven extremely effective, where
significant increase in fragment screening hit rates could be obtained when compared to
manual inspection of the density.[138] An automated set-up that includes fragment X-ray
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screening and iterative optimization could comprise an effective platform for expanding the
druggable proteome through accelerating fragment-derived drugs.[189] A prime example
introduced by the SGC-Diamond XChem partnership allows rapid follow-up synthesis using
the concept of poised libraries (described in Section 1.3.1.2).[41] The resulting compound
hits could then be synthesized via parallel, solution-phase synthesis. This in combination
with crystallographic fragment screening, allowed Cox et al. to identify the first reported
inhibitors of the atypical bromodomain, PHIP(2).[40]

Section 4.2 described the optimization of fragments that were found to bind by x-ray
with almost unmeasurable potency to NUDT21. The lack of understanding of the mechanism
and regulation of NUDT21 emphasizes the need for a chemical probe. We used two distinct
approaches, compared the use of the poised approach and the iterative approach. Due to the
employment of the “poised synthesis” strategy, scaffold hopping or scaffold optimization
was not made possible. On the other hand, the iterative VS approach imposes just two main
requirements (besides a guided improvement of scores) namely, that I) similar analogues
contain known or predicted ligand binding features and II) that these features belong to
a common core with the initial fragment. In this way, scaffold hopping is incorporated.
The scaffold hopping approach led to improved versions of the starting fragments. This is
particularly useful as fragment progression requires a verified high quality starting point with
measurable potency, which may require tweaking of (the core in) the fragment. The poised
approach did not lead to any hits. The search space of both strategies differed significantly
due to the efficiency of both methods, ultimately, resulting in one giving results, and the
other not. The hits retrieved from the automated and iterative protocol were very diverse, and
if they can be crystallized, would make for better starting points for further optimization to
probe NUDT21’s function.

Section 4.3 described the adaptability of the platform to perform no scaffold hopping to
extreme scaffold hopping. Its scalability was also demonstrated. The platform can switch in
between extreme, less extreme, an no scaffold hopping modes. Both the platforms ability
to exploit large chemical spaces, and its ability to switch in between these different modes,
allow for the opportunity to identify chemical entities related to an initial fragment with
different levels of novelty and diversity.

Experimental results showed that less extreme scaffold hopping in the On-Demand set,
led to better quality hits. The statistics would be different if more compounds would be
tested, but at least we can say that even when adapting the settings to retrieve results that
are more or less diverse or novel, we can still obtain binders. Analysis of the scaffolds did
show that the On-Demand space led to better interacting scaffolds, due to their prevalence
in the library. Furthermore, studies have shown that screening larger libraries can lead to
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better hits.[14] In any case, the financial and computational investment was almost equal
when using the On-Demand versus the In-Stock space. What we gained was ultimately more
hits, one of which is the most potent reported to date for NUDT21 and is approaching the
potency needed for a good chemical probe.

Practitioners agree that structural information on fragment-target complexes is essential
for the success of FBLD.[190][191][192] More often than not, fragments that have not
been crystallized will be disregarded[193][194][195], even though they may very well be
good starting points for an FBDD campaign.[196] Ideally fragment hits can be visualized
by X-ray, however, there are enough examples of fragment optimization without an X-
ray.[90,108][197] In fact, the initial fragment of one of the first fragment derived drugs on
the market was not crystallized.[186] Instead, the evolution of the fragment was guided
by NMR. Furthermore, with well-known proteins, a confirmed binding mode might not
even be a pre-requisite, as important interactions are known, which can be used to guide
the optimization. Various other factors may influence the decision to optimize a fragment
hit without the availability of the crystallized fragment, including binding affinity, ligand
efficiency, and physical parameters such as solubility. Lastly, X-ray crystallography is used
less often as the primary screening tool, mainly because its throughput is thought to be low,
even though it has been shown that using X-ray as a secondary or tertiary screen will lead to
less expected hits by X-ray[178]. These reasons make fragment optimization without the
availability of an X-ray a very realistic scenario, so we decided to challenge to platform to
blinded fragment optimization as described in Section 4.4 .

Four case studies were derived for fragment hits without a binding mode to address if the
platform can distinguish if one starting pose is preferred of the system and if the platform
will evolve active ligands for which both binding modes are possible. The initial fragment
of BRD4 had a clear preference for one binding mode. Nonetheless, the pose selection
protocol described above selected virtual hits from both the preferred and the less ideal
binding mode. Moreover, both binding modes have been previously crystallized, confirming
their plausibility. Extraordinarily, all the virtual screening hits actually tested were confirmed
as active by DSF (TR-FRET experiments on-going), but for the only two compounds that
produced crystals, their binding mode turned out to be different from the predicted ones.
Not only that, but the crystallographic structures score poorly in our scoring methods and
would not have been selected by our protocol. Unless the compounds actually bind in more
than one way (which cannot be completely ruled out based on the binding mode of similar
compounds in the PDB; Figure 4.19B), it would appear that the right compounds have been
selected, but for the wrong reason. As we are starting from active compounds, the virtual
screening protocol explores a privileged area of chemical space and it may be possible to find
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hits even when the structure-based predictions fail. Indeed, the protocols are far from perfect,
and inadequate accounting of solvation effects may be behind the results obtained in Case
Study 1. But it is highly improbable that all hits stem from incorrect binding modes. For
Case Study 2 the second pose is preferred due to an internal strain in pose 1. The platform
actually corrected this by evolving the compounds to the flipped orientation seen in pose 2.
For Case Study 3, there was no clear reason why one would be preferred over the next. The
hypothesis was that the platform would lead to binders in both cases, and so it did. For Case
Study 4 both fragments contain the same core, however, due to its substituents, Fragment
D2 has less ideal interactions. Nonetheless, the pose selection protocol selected both the
preferred and the less ideal binding mode. The hypothesis was that the platform will lead to
actives for the preferred pose, and inactives for the less ideal pose. However, the compounds
evolved from both poses showed good binding, indicating that the deviation in pose D2 is
tolerable. The results revealed two different scenarios, namely, I) an unchanged binding
mode and/or scaffold, and, II) if the scaffold cannot be evolved, a scaffold hop takes place, or
a change in binding mode occurs.

The platform is capable of deriving active compounds from fragments with an unknown
binding mode, with success rates and jumps in potency similar to those obtained in other
systems when the binding mode is known (Section 4.2 and Section 4.3). However, the
platform is not suitable to identify the correct binding mode. The reason being that it can
detect if an alteration in the binding mode is necessary, by either changing the binding mode,
or performing scaffold hopping. This addresses another challenge with fragment optimization
in that it assumes that the binding mode is preserved.[198] Malhotra and colleagues showed
that 14% of bound fragments alter their binding mode. In some cases, the added substituent
may have resulted in a clash with the protein, while in other cases an alternate binding mode
was the result of stronger interactions, only possibly in a different pose.[199] Lastly, we
cannot rule out that in some cases active compounds derive from incorrect binding mode
predictions due to the intrinsic limitations of the methods used. However, we also cannot
completely rule out that the compounds may bind in more than one way.
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Global Conclusions

This thesis described the development and validation of an automated and iterative fragment-
to-lead optimization, including its application to diverse scenarios.

Specific conclusions

1. Development

• The developed pipeline has been shown to be extremely efficient by evolving
fragments to likely to bind compounds in under 24 hours.

• All the steps have been automated, and are run in parallel. Furthermore, carefully
thought-out filters reduce the search space to promising areas. For these reasons,
it is scalable.

• Because it is scalable, multiple automated evolutions can be run simultaneously.

• Because it is scalable, very large screening libraries can be used.

2. Validation: application to diverse scenarios.

• The developed pipeline has been shown to be superior to VS strategies that are
not iterative and do not consider scaffold hopping.

• The platform has been shown to be adaptable to various discovery settings, from
extreme to no scaffold hopping.

• The developed pipeline evolved active binders even when the starting fragment
hit did not have a confirmed binding mode.

• The developed pipeline has been applied by external parties although future plans
include making it available to all.
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Selected compounds from poised strategy.

rDock Sinter Score: -25.016 rDock Sinter Score: -22.014 rDock Sinter Score: -24.135

rDock Sinter Score: -22.776 rDock Sinter Score: -21.654 rDock Sinter Score: -25.373

rDock Sinter Score: -28.498
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MR2

KD (M) Rmax (RU) offset (RU) Chi² (RU²)
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KD (M) Rmax (RU) offset (RU) Chi² (RU²)
0.001059 120.0 -0.2921 7.98
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MR10

KD (M) Rmax (RU) Chi² 
2.24E-4 15 1.89
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KD (M) Rmax (RU) offset (RU) Chi² (RU²)
0.003687 120.0 -0.9521 0.337
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MR8

KD (M) Rmax (RU) offset (RU) Chi² 
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Structures and chunk residues.

Target Case PDB Resolution Chunk Residues
BRD4 1 3M49 2.00Å 81-89, 91-94, 97, 101, 104-105,

131, 135-137, 139-140, 144-146,
149, and the four conserved wa-
ters

HSP90 2 3HHU 1.56Å 47-58, 78, 91-98, 137-138, 150-
152, 183-186, and the three con-
served waters

HSP90 3 4FCQ 15Å 47-58, 78, 91-98, 137-138, 150-
152, 183-186 and the three con-
served waters

DYRK1A 4 (D1) 5A4T 2.15Å 165, 173-175, 184-187, 219-225,
237-247, 290-308

DYRK1A 4 (D2) 2WO6 2.5Å 166, 173-175, 184-188, 219-225,
237-247, 290-308

Binding mode flip Case Study 2

N

H2N

MCS

H1-1/great grandparent (magenta) superposed with grandparent (light pink) on the left.
Grandparent (light pink) superposed with parent that has a flipped amide on the right. The
corresponding MCS is shown, for which the RMSD was 0.025. The tethered RMSD cutoff
was increased otherwise no hits were found.
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Binding Mode Shift Case Study 3 – HSP90 – Fragment 2

Iteration 2

A B C D

A) H2-1/great-grandparent (orange), with the grandparent ZINC0002452 (blue). B) The
parent after docking (grey) and before docking (olive-green). C) The grandparent (blue) with
the parent (grey) in which a slight shift is observed. D) The parent (grey) with compound 21
(green).
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Predicting how drug molecules bind to their protein
targets
Moira M Rachman1, Xavier Barril1,2 and Roderick E Hubbard3,4

There have been substantial advances in the application of

molecular modelling and simulation to drug discovery in recent

years, as massive increases in computer power are coupled

with continued development in the underlying methods and

understanding of how to apply them. Here, we survey recent

advances in one particular area — predicting how a known

ligand binds to a particular protein. We focus on the four

contributing classes of calculation: predicting where a binding

site is on a protein; characterizing where chemical functional

groups will bind to that site; molecular docking to generate a

binding mode for a ligand and dynamics simulations to refine

that pose and allow for protein conformation change. Examples

of successful application are provided for each class.
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Introduction
The majority of drug discovery projects begin with iden-

tification of a small molecule compound which binds to a

defined site on a specific biological molecule (usually a

protein), affecting the function of that target protein. This

initial hit is then optimized to incorporate adequate drug-

like properties (affinity, selectivity, efficacy, ADME, etc.)

into a candidate compound that generates the desired

therapeutic effect and is suitable for clinical trials.

Over the past thirty years, there has been a steady

increase in the use of structure-based methods in this

drug discovery process where models of how compounds

bind to the target can allow rational design of the required

improvements in the compounds. For some targets,

experimental methods can provide structural information

with sufficient throughput and speed to interactively

guide the structure-based design. For example, X-ray

crystallography provides an atomic level picture of how

compounds bind and NMR spectroscopy can provide

varying levels of information on interactions between

the compound and the protein, such as whether a com-

pound binds, where it is binding to and (in some limited

cases) a structure of the compound binding to the target.

However, it is often not possible to generate such struc-

tures with sufficient speed to inform decisions about

compound optimization.

In this review, we survey recent developments in the

computational methods that predict how compounds bind

to their protein target using either an experimentally deter-

mined structure of the target or a model based on sequence

homology. Some of the methods can be used to screen

compound libraries (real or virtual) for initial hits; in addi-

tion, the methods can help to guide optimization of com-

pounds in structure-based design. These applications are

not discussed in detail here. What we focus on are the

methods that, once a compound is demonstrated to bind,

can be used to predict the position and orientation or ‘pose’

of the compound binding. As summarized in Figure 1, we

have loosely divided these methods into four categories: (1)

identifying binding sites; (2) characterizing the potential of

a binding site to bind chemical matter; (3) predicting the

position and orientation (or pose) of compound binding and

(4) dynamic docking to explore both the energetics of

binding and conformational change to refine the pose.

Before summarizing these in turn, we first survey some

history and the issue that underpins all molecular model-

ling — the ability to estimate energy of interaction.

Origins of the methods
A more detailed description of the origins of structure-based

design methods is provided elsewhere [1] but there are three

influential developments that should be highlighted —

CHARMM [2], GRID [3] and DOCK [4]. The Karplus

group developed molecular dynamics (MD) simulations of a

protein in 1977 [2], which led to the development of the

CHARMM [5] (Chemistry at Harvard Molecular Mechan-

ics) program which became a central platform for many

molecular simulation methods over the following decades.

One of the most influential developments for structure-

based drug discovery in the 1980s was the program GRID

from Goodford [3]. This introduced the idea of

Available online at www.sciencedirect.com
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characterizing what types of chemical functionality would

bind to a binding site by calculating the energy of interaction

betweenthe protein and a functional group at each point on a

grid. Finally, there is the DOCK program from the Kuntz

group [4] which was the first widely used program for

computationally docking compounds into the structure of

a protein. Although some of the ideas within these programs

were built on the work of others, the programs (and their

authors) became major promoters of the ideas of using

computational methods to characterize and predict how

compounds can bind to proteins and formed the foundation

of the current generation of methods.

Predicting the energy of interaction between
protein and ligand — scoring functions
All structure-based design methods critically rely on an

estimate of the energy of interaction between a ligand (or

probe) and the protein. Most approaches still rely on the

rather simplistic treatment established in the early meth-

ods [2–4] where the non-covalent interactions are treated

with simple Coulombic (for electrostatics) or Lennard-

Jones (for van der Waals) interaction potentials but there

is increasing use of more sophisticated treatments. The

theoretical bases for these more advanced calculations

were established a long time ago. What has changed in

recent years is the relentless increase in computer power

allowing these methods to be applied within a realistic

timeframe. There are three main areas to highlight.

The first are the perturbation methods [6] which calculate

changes in free energy by performing extensive MD

while transforming (in this case the compound) from

one chemical structure to another. The second is a

number of approaches for more extensive treatment of

Predicting ligand binding Rachman, Barril and Hubbard 35
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LEU78

Current Opinion in Pharmacology

Methods for predicting ligand binding modes illustrated through an example of calculations for the kinase, CDK2 (protein structure taken from the

PDB code: 1CKP). (a) Binding site prediction by fpocket [15] (default settings) by clustering solvent inaccessible spheres and disregarding solvent

exposed spheres. A ‘druggability’ score is assigned to each predicted pocket. In this example, Site I, obtained the highest score (0.8), while the

remaining eight pockets score very low (<0.1). (b) Polar hot spots identified through mixed solvent MD simulations using MDMix [20]. Ethanol and

water were used to probe the binding pocket, from which high and low energy areas are identified. The low energy areas probed by ethanol (deep

purple), help to identify donor or acceptor features that could be exploited by ligand binding. Water (cyan) and hydrophobic (yellow) sites are also

probed. (c) These hot spots were then used to guide docking of the ligand from PDB structure 1PXM. Docking was performed with rDock [31],

using a donor as a pharmacophoric restraint (sphere) to interact with the backbone of LEU78 (yellow dashed line) in the CDK2 structure. (d) This

was followed by pose refinement using MD [54] to explore the flexibility of the pocket; for example, the yellow surface indicates possibility for a

clash between ligand and protein.
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electrostatics: for example with Poisson-Boltzman or

Generalised Born models within a molecular mechanics

calculation (called MM-PBSA and MM-GBSA) — this

can account for bulk solvent effects [7]; or using explicit

quantum mechanics for part of the model within a molec-

ular mechanics model to account more fully for both

electrostatics [8] and metal ion charges [9]. Finally, there

has been a growing realization that water molecules, both

their stability and their interaction networks, can make

important contributions to the thermodynamics of ligand

binding [10,11�]. However, even with these advances, our

ability to predict the thermodynamics from a static model

of a protein–ligand structure is still far from predictive.

Nonetheless, the methods have been central to recent

successes in structure-based design, such as potent non-

nucleoside reverse transcriptase inhibitors [12] and other

examples described below.

Pocket detection
The first challenge of SBDD is identifying where the

ligand binds, for which geometry-based and energy-based

programs have been successfully developed [13]. Geom-

etry-based programs such as CAVITY [14] or fpocket [15]

identify the largest and deepest cavities within a static

structure; examples of successful use are identification of

two new allosteric sites in the crystal structure of

PHGDH in which virtual screening (VS) identified com-

pounds with anti-tumor activity [16��] and cavity detec-

tion in models of the intrinsically disordered protein Myc

for which VS identified cell active compounds [17].

Another method uses hidden Markov models to identify

cryptic pockets which can then be exploited as allosteric

sites [18�]. The more difficult to identify pockets are

where a flexible model of the protein is needed to identify

previously unidentified cavities. In these cases, energy-

based methods similar to those used to identify protein–

ligand hot-spots [19,20] can be used to map the protein

surface repeatedly while exploring low energy conformers

of side chains. Such calculations complement some of the

experimental methods which explore transient sites and

can be incorporated into strategies for ligand design

[21,22]. Finally, a comprehensive review [23�] sum-

marises the large number of methods developed to com-

pare binding sites on the basis of protein structural

information, with many examples of how this has been

used in ligand design.

Solvent mapping/probe mapping
Many approaches have evolved to characterize what will

bind to a site since the original GRID (which uses a point

probe [3]) and MCSS (which was the first example of

using functional groups [24]). A number of groups [19,20]

have developed variations on mixed solvent dynamics

(reviewed in [25��]), where simulations use as many as

16 different chemical probes to explore what could bind

to (a usually flexible) binding site. In one ambitious study

[26], the methods identified key interaction hot spots on

an ensemble of structures derived from MD simulations

of X-ray structures and homology models from which VS

identified an FGF-23 antagonist. The optimized com-

pound was subsequently demonstrated to have activity in

mouse models.

A more specific example is the characterization of water

molecules in protein structures. Programs like WaterMap

[11�] and MDMix [20] can identify which water mole-

cules are energetically favorable to displace in compound

optimization. One striking example is the identification of

two high energy waters in the binding site of the FGFR

kinase in the presence of a lead compound, which could

be displaced by modification of the scaffold leading to

Rogaratinib (BAY 1163877), a pan FGFR inhibitor [27�];
another example is identification of Acetyl-CoA carbox-

ylase inhibitors which are active in animal models of

obesity and diabetes [28].

A variant on solvent mapping is hybrid structure-based

and ligand-based methods. One example is the ALTA-VS

strategy [29], where pharmacophoric features are derived

from the ligands. A virtual library of rigid fragments is

constructed cutting all the rotatable bonds of the com-

pounds in an available library and then computationally

docking each fragment into the binding site, then evalu-

ating energy of interaction (in this case using an MM-

GBSA force field). The best scoring fragments can then

be used as pharmacophoric points to direct VS. A more

extreme example of this type of approach is where

compounds validated as binding after VS against a homol-

ogy model is used to refine the homology model for more

comprehensive modelling [30].

Pose prediction and refinement
Once a binding pocket has been identified and charac-

terized, the next step is to predict the binding pose of a

ligand in that site — molecular docking. Assessing how

well different programs can make this prediction has

been a continuous industry for the molecular modelling

community (see our own work with the program, rDock

[31]). A recent paper [32] provides one of the more

comprehensive studies of the past 5 years, assessing

how well the experimentally observed pose can be

predicted by ten different programs for a test set of

2002 protein–ligand crystal structures. There are two

main criteria on which programs can be assessed: can

the program generate the correct binding pose?, and

does the scoring function successfully identify this pose

as the most favored? In general, where receptor flexi-

bility is not important, the correct pose can be gener-

ated and although for some protein families, there was

reasonable correlation between docking scores and

experimental binding affinities, the ranking of the

binding affinity was not well predicted across the whole

dataset.

36 New technologies
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Success can be improved by combining docking with

alternate scoring schemes. MM-GBSA can be used

to rank order docking hits with some exciting examples

[33–35]. A more recent development is dynamic

approaches such as Duck [36��] (Figure 1). DUck uses

steered MD where a virtual ‘force’ is applied to pull the

ligand out of the binding site, while performing MD

simulations to calculate the energetic cost of breaking

a key hydrogen bond between a ligand and the protein.

The theoretical relationship is tenuous, but this could be

taken as related to the activation energy for the interac-

tion, which will affect the binding energy. Another

approach is free energy perturbation (introduced in

[[36��]]) with a number of examples [37–39].

Dynamic docking
The evaluation of docking programs [32] usually tests for

re-docking a ligand into the protein conformation

obtained in the protein ligand crystal structure. What is

more challenging (but the more realistic application sce-

nario) is to predict the binding pose where there is some

adjustment in the detailed conformation of the protein

binding site. There are a number of approaches to address

this problem. The first is to use different conformations of

the protein as the target for docking. Ensembles of

conformations for the protein can be generated by MD

[40,41] or different experimental crystal structures can be

used [42] as a project proceeds and more crystal structures

obtained. One recent method development is a fast

algorithm for sampling flexible protein–ligand conforma-

tions (known as PELE [43]) that was able to reproduce

ligand induced side chain rearrangements and small main

chain protein movement in a set of protein–ligand com-

plexes, and performed better than MD simulations and

induced fit docking.

A second approach is to account for receptor flexibility

while docking and there have been a number of recent

reviews [44–46] which survey progress. The methods rely

on substantial computer power, so at present can only be

applied to a few compounds and are more applicable for

hit to lead optimization rather than hit identification. The

methods fall into two main categories — those requiring

an a priori definition of the pathway for conformational

change and those that do not. In a recent publication [47]

an induced fit docking protocol is used to generate

possible conformational changes that enable ligand bind-

ing. These possible conformations are then assessed using

metadynamics, a computational device to encourage a

molecular simulation to explore across the possible con-

formations available, by introducing energy terms which

discourage the simulation returning to conformations that

have already been visited. Significant improvement in the

quality of docking is reported across 42 test systems.

There are a number of recent publications where the

simulation is unsteered and explores conformational

change unsupervised. In one case [48], a technique called

potential scaled MD was used to predict the binding pose

in two test cases with conformational change. The

method works by lowering the barrier between confor-

mational states, in some ways emulating use of a high

temperature. An alternate unsupervised method is adap-

tive electrostatic bias [49] where the electrostatic inter-

actions are modulated depending on proximity of the

ligand to the binding site — this also reduces the barrier

to conformational change. These new dynamics methods

complement more conventional MD, as in the FGF

example discussed above [26].

This is a promising new concept for which several retro-

spective examples have emerged — for example adaptive

sampling allowed high throughput MD of a small frag-

ment library for CXCL2 [50], while there are even

examples of long MD simulation used for in silico frag-

ment screening [51], which also emphasizes the power of

GPU-accelerated computational power in structure-

based drug design.

Concluding remarks
The October 1st, 1981 edition of Fortune magazine

heralded a ‘New Industrial Revolution’ in which drugs

can be designed by computer. The pharmaceutical indus-

try has encountered waves of new technology (e.g. com-

binatorial chemistry, genomics). In most cases, it takes

many years (decades) for the methods but also the exper-

tise to develop so that the methods can make effective

contributions to the drug discovery process. Structure-

based, computational methods have suffered more than

most new technologies in achieving this routine, produc-

tive phase. However, the techniques have now made

recognizable contributions to the design of more than

50 compounds in clinical trials [52] and to several drugs on

the market [53].

In this mini-review, we have focused on new develop-

ments in methods for just one aspect of SBDD —

predicting how compounds bind to their target. What

we have not discussed in detail is how these methods

(combined with advances in predicting strength of

protein–ligand binding) are now contributing to an

increasing number of success stories where potent com-

pounds are being identified for a range of targets. Looking

back over the past forty years, perhaps it has not been an

‘industrial revolution’, but more a continuous scientific

evolution. Steady improvements in quality of the meth-

ods and understanding of how they can be used has led to

increased acceptance and confidence so that the medici-

nal chemistry community now can appreciate how SBDD

methods can contribute to the drug design process.
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Introduction

Despite the activity of a large number drugs approved by the
US Food and Drug Administration (FDA) that depend on a co-

valent mode of action,[1] classical drug discovery screening cas-
cades typically eliminate electrophilic compounds, mainly due

to the toxicity risks associated with their mechanism. Indeed, a

majority of these drugs was discovered by serendipity in bio-
logical assays, and their mechanism was elucidated later on,

typically after approval. The reluctance to use reactive ligands,
and more specifically promiscuous “suicide inhibitors”, is relat-

ed to increased risks of carcinogenicity, hepatotoxicity, and po-
tential idiosyncratic effects caused by protein haptenization.[2, 3]

More recently, the reputation of covalent binders has
changed thanks to the guidelines introduced for the rational

design of targeted covalent inhibitors (TCIs). According to
these guidelines, the ligand’s selectivity toward its protein

target is still to be achieved by optimizing the noncovalent in-

teractions (hydrogen bonding, van der Waals, electrostatic,
etc.) at the binding site, as in the case of traditional ap-

proaches. Furthermore, increased specificity can be obtained
by targeting a poorly conserved reactive residue within the

protein family.[3] To this effect, the development of methods to
identify poorly conserved reactive residues have aided the ac-
celeration of TCI design. For example, activity-based protein

profiling techniques (ABPP, isoTOP-ABPP[4, 5]) can be used to
both investigate the activity at the proteomic level and quanti-
fy the intrinsic reactivity of functional cysteines. Also, Liu and
colleagues have coined the term “kinase cysteinome” to refer

to the collection of targetable cysteine residues in the human
kinome[6] and published a computational methodology to

identify such cysteines.[7]

Ligands that bind through a covalent mechanism are not
subject to classical equilibrium kinetics, as their residence time

in the binding pocket can last up to days. As a consequence,
the potency of these drugs is capable of surpassing the theo-

retical limits of potency/ligand efficiency.[2] Another advantage
is the prolonged duration of action, which can persist even

when the ligand has already been cleared from the body. This

can be beneficial for alleviating the drug burden of a patient
due to less frequent drug dosing (depending on the turnover

rate of the protein) and therefore a possibly lower risk of idio-
syncratic toxicity, which has been linked to daily drug

dosage.[8]

Thanks to recent guidelines, the design of safe and effective
covalent drugs has gained significant interest. Other than tar-

geting non-conserved nucleophilic residues, optimizing the
noncovalent binding framework is important to improve po-
tency and selectivity of covalent binders toward the desired
target. Significant efforts have been made in extending the
computational toolkits to include a covalent mechanism of
protein targeting, like in the development of covalent docking

methods for binding mode prediction. To highlight the value
of the noncovalent complex in the covalent binding process,

here we describe a new protocol using tethered and constrain-

ed docking in combination with Dynamic Undocking (DUck) as

a tool to privilege strong protein binders for the identification
of novel covalent inhibitors. At the end of the protocol, dedi-
cated covalent docking methods were used to rank and select
the virtual hits based on the predicted binding mode. By vali-
dating the method on JAK3 and KRas, we demonstrate how
this fast iterative protocol can be applied to explore a wide

chemical space and identify potent targeted covalent inhibi-
tors.
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In addition, the TCI approach has proven to be a valuable
tool in targeting protein binding sites, which were previously

considered as undruggable, as well as to combat drug resist-
ance by targeting poorly conserved non-catalytic residues.

Overall, all of these aspects have contributed to a resurgence
of covalent drug discovery programs, which has already led to

an increase of clinical candidates acting via a covalent mecha-
nism.[9]

In general, a covalent binder first requires the formation of

an initial noncovalent complex with its target, followed by the
chemical reaction between the ligand’s electrophilic warhead
and the nucleophilic residue. As such, the most straightforward
covalent drug design approach is based on the modification of
a known noncovalent binder to introduce an electrophilic war-
head. This could indeed allow to reach and covalently modify

the targeted nucleophile on the protein by maintaining the

overall binding mode in the rest of the pocket. Additionally, an
important strategy is to fine-tune the warhead reactivity based

on the target nucleophilicity in order to limit possible side ef-
fects arising from off-target modifications.[9–11]

From a computational perspective, once an appropriate nu-
cleophile and warhead are identified, a structure-based ap-

proach can be used to screen or optimize ligands to fit the

binding site, while also being able to place the warhead in the
vicinity of the targeted residue to form the covalent bond. Sev-

eral covalent docking methods have recently been developed
to model the structural changes occurring when covalent li-

gands bind to their target. However, other than the inherent
limitations of traditional docking methods (i.e. , scoring, protein

flexibility, solvation, and nonclassical effects),[12] these tools also

have to address additional challenges in the simulation. Pre-
dicting the optimal geometry of the reacting groups upon co-

valent bond formation is of key importance for accurate simu-
lations. Furthermore, covalent docking programs face the in-

ability to evaluate the energy of bond formation, which would
require QM-based simulations of the reaction. Depending on

the method of choice, modeling all the different and key as-

pects characterizing the binding of covalent ligands is often re-
flected in higher computational costs than for traditional non-

covalent docking.
Among the first developed tools are GOLD[13] and Auto-

Dock:[14] the former enforces the covalent reaction through the
definition of a link atom in both the ligand and receptor

before initiating the genetic algorithm search, while the latter
offers the opportunity to choose between the two-point attrac-
tor approach and the better performing flexible side-chain
method, in which the ligand is sampled as part of the protein.
In addition to a lack of the energetic contribution of covalent

binding, the manual definition of the atoms involved in the re-
action hinders the applicability of covalent docking programs

to large libraries. A recent approach taken by CovalentDock[15]

automatically detects reactive atoms for linking and rewards
the energy contribution of the binding event as an additional

MM-based term. The authors retrospectively validated their
method on 76 covalently bound ligands in the Protein Data

Bank (PDB), for which CovalentDock showed better per-
formance than GOLD and AutoDock. However, CovalentDock is

limited in reaction types (only Michael addition and b-lactam
opening are supported) and does not account for the flexibility

of the reacted residue. Furthermore, the cloud web server de-
veloped for its usage appears to no longer be available (access

attempted on October 16, 2018). More recently, other web-
based servers such as DOCKovalent,[16] or proprietary software

such as ICM-Pro,[17] FITTED,[18] and DOCKTITE[19] (an SVL-based
workflow for the modeling software MOE[20]) enabled covalent
docking-based virtual screening applications by using prede-

fined and customizable reactions to identify reacting groups.
Schrçdinger’s CovDock[21] takes it one step further and

mimics the full binding process of covalent ligands (as op-
posed to only taking into account the covalently attached

ligand–protein complex). With this, CovDock highlights the im-
portance of the noncovalent interactions formed prior to cova-

lent binding. The multistep algorithm provides two alternative

solutions by means of a “pose prediction” module and a virtual
screening module (CovDock-VS). The former includes an exten-

sive protocol for the prediction of the covalently bound pose,
namely: I) ligand conformation generation; II) positioning the

pre-reaction form of the ligand warhead close to the receptor
reactive residue (mutated to Ala) using a constrained docking;

III) resetting the mutation to the original residue, sampling its

rotameric states, and generating the covalent attachment; IV)
clustering and minimization of the poses (including the react-

ed residue) ; and V) scoring by means of the Prime energy
model. An additional affinity score, which averages GlideScore

on both the pre- and post-reaction forms of the ligand, is pro-
vided to compare different compounds equipped with the

same or similar reactive warheads. While it shows good bind-

ing mode prediction accuracy, this protocol takes roughly 1–2
CPU hours per ligand, so it is not suited for high-throughput

screenings. Toledo Warshaviak and colleagues addressed this
issue by developing CovDock-VS,[22] which I) skips the ConfGen

step, II) limits the number of resulting pose clusters to three,
III) excludes minimization by Prime, and IV) scores and ranks
protein–ligand complexes based only on the initial GlideScore.

Ultimately, this led to significantly improved speeds (&15 mi-
nutes per structure on a single CPU according to the info on
CovDock’s latest release) over the pose prediction module, but
also yielded less accurate binding mode predictions, unless

known interaction patterns were incorporated.
In general, the performance gap in terms of binding mode

prediction among the different covalent docking programs

was shown to vary significantly depending on various factors
(i.e. , protein target, accessibility of the nucleophilic residue,

amount of noncovalent interactions occurring in the com-
plex).[23] On the other hand, the speed of the simulation re-

mains one of the main bottlenecks that can drastically affect
the size and diversity of the covalent libraries used for screen-

ing applications. To this end, herein we present DUckCov, a

time-efficient multistep VS protocol for the identification of
novel covalent binders. It was devised to emphasize the role of

the interactions mediating the initial noncovalent complex,
whose optimization can, therefore, result in both an increase

of the selectivity for the target and in an opportunity to de-
crease the reactivity of the electrophile. As depicted in
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Figure 1, rDock[24] is first used to constrain the reactive war-
head close to the targeted residue. During docking, pharmaco-

phoric restraints are applied to known H-bond interaction
points, if any. Dynamic Undocking (DUck)[25] is then used to

assess the strength of these H-bonds. DUck evaluates structur-

al stability, rather than thermodynamic stability, and has been
shown to be orthogonal to methods that attempt to estimate

the binding energy. H-bonds are suggested to be the main de-
terminants of structural stability based on their sharp distance

and angular dependencies, and their role in structure-kinetic
relationships.[25, 26] Finally, CovDock is used to evaluate the

binding mode of those ligands that optimally bind through

noncovalent interactions, and to check if the same interaction
pattern is maintained in the predicted covalent docking pose.

The protocol was prospectively validated in two case stud-
ies: a target with highly conserved noncovalent interactions

(JAK3) and another one where the noncovalent interactions
are not conserved across known inhibitors (KRasG12C).

Results and Discussion

Case study 1: JAK3

JAK3 is one of the four Janus kinases (a subfamily of tyrosine
kinases), the only of which is primarily restricted to leukocytes.

Its functional modulation has been associated with a pheno-
type of severe combined immunodeficiency.[27] Although signif-
icant effort has been put into the discovery of JAK inhibitors,

the search for JAK-specific ligands is still on-going. JAK3 specif-
icity over other family members can be achieved by targeting

C909 with ligands that are able to covalently bind this residue.
H-bond interactions are known to play a prominent role in

building up affinity toward kinase targets. Because the majority

of kinase inhibitors bind to the highly conserved hinge motif,
DUckCov application on JAK3 was focused on the identifica-

tion of covalent ligands displaying strong interactions at this
region.

The DUckCov workflow for JAK3 is described in Figure 2 B.
Based on the selected JAK3 structure, tethered and constrain-

ed docking filtered the acrylamide dataset from roughly 50 000
compounds to 249 compounds that satisfied the H-bond inter-

actions with E903 (backbone C=O) and L905 (backbone NH) at
the hinge region (depicted in cyan in Figure 2 A), while con-

serving the acrylamide group close to the reactive C909 as ob-

served in the prepared reference ligand (depicted in grey in
Figure 2 A). Next, DUck was performed, using the H-bond es-

tablished with E903-O as the simulation coordinate, leading to
92 remaining hits. From those, a second round of DUck on the

H-bond formed with L905-NH resulted in 66 compounds. In
both cases, a WQB (work necessary to pull the ligand from 2.5

to 5.0 a relative to the defined H-bond interaction) threshold

of 6 kcal mol@1 was maintained. The consensus of both interac-
tions was used to filter the rDock docking poses using DUck,

as both these interactions are made by the reference ligand
(with WQB = 13 kcal mol@1 and 11 kcal mol@1, respectively). Then,

in order to get both a quantitative ranking and more accurate
binding mode predictions, CovDock in the “Pose prediction”
module was used for the covalent docking simulations on the

66 DUck hits. Finally, we have selected the top 10 ligands ac-
cording to their CovDock affinity scores. Out of these, five
compounds (1, 3, 5, 8 and 9) were available for immediate pur-
chase (Figure 2 C–D): they were experimentally validated in an

enzyme-based activity assay (see Methods section). For the
rest of the top 10 ligands, see Supporting Information Fig-

ure S6.

Compound 1, the top-ranked ligand, has been originally re-
ported as a potent double mutant EGFRL858R/T790M inhibitor (PF-

06459988, IC50 = 7 nm),[28] and based on the DUckCov predic-
tion and subsequent in vitro testing, we found that the com-

pound inhibits JAK3 with similar potency (5 nm). Interestingly,
JAK3 activity of this compound was not reported previously;

however, profiling against 54 human kinases at 1 mm revealed

its moderate JAK1 and JAK2 inhibitory activity.[28] Compounds
5, 6, 8 and 9 are characterized by a higher rigidity of the linker

between the hinge binding region and the warhead. Com-
pound 5 displayed an IC50 value of 389 nm on JAK3, and 18 %

and 62 % inhibition on JAK1 and JAK2 at 10 mm, respectively,
suggesting a covalent bond driven improvement of the inhibi-

Figure 1. Starting from a library of covalent ligands, the general workflow is as follows: 1) docking with rDock with pharmacophoric constraints (orange
spheres) and positional restraints for the warhead (encircled by orange ellipse), 2) dynamic undocking to test the strength of the H-bond interaction that was
enforced during docking, and 3) covalent docking of ligands that display the best noncovalent interactions to account for warhead flexibility (red arrow).
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tion due to the presence of the JAK3 unique reactive cysteine.
Compound 9, a partially saturated analogue of 5, was found to

be less potent (1.27 mm IC50), in line with the observed vast
majority of aromatic hinge binding moieties known in the liter-

Figure 2. A) Pre-reaction reference ligand in the structure 5TOZ in grey, and covalent attachment in orange in the post-reaction form, with defined features as
cyan spheres, and interactions in cyan dashes. B) DUckCov protocol for JAK3. C) Top-ten compounds, ranked by CovDock affinity scores (green: rDock binding
modes, magenta: CovDock binding modes; interactions with the hinge residues E903 and L905 are displayed in cyan). D) Experimentally tested compounds
for JAK3; the three confirmed compounds correspond to a hit rate of 60 %.
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ature. In the same line, compound 8 showed no activity in the
biochemical assay, further highlighting the preference for

planar hinge-binding cores. Finally, compound 3 was also ex-
perimentally tested (as an analogue of 5 with a flexible linker),

but has shown no activity.
In Figure 2 C the poses generated by rDock and CovDock for

the top 10 ligands are shown in green and magenta, respec-
tively. In nine out of 10 cases the interactions used for pulling

with DUck were reproduced in the best scoring pose generat-

ed by CovDock. (RMSD values, CovDock affinity, rDock scores,
and DUck WQB values, along with the ZINC codes of the com-
pounds are given in Supporting Information Table S7). Com-
pounds 1, 4, 5, 7, 8, 9 and 10 retain the same orientation of

the hinge binding region, while compounds 2 and 3 contain
the hinge binding scaffold in a flipped orientation, due to the

flexibility of the linker. However, compound 3 maintained both

interactions at the hinge, while compound 2 showed a dual in-
teraction with L905. In addition to the higher deviations

(RMSD) between the binding modes predicted by rDock and
CovDock, the linker flexibility of compounds 1–4 results in

higher strain energies as well (relative to minimum energies of
the free ligands, see Supporting Information Table S8). Howev-

er, this does not necessarily prevent the compounds to be

potent inhibitors of JAK3 (as exemplified by compound 1), in
accordance with the general notion that the linker rarely has a

profound effect on activity. Compound 6 is the only case
where neither an interaction with E903, nor L905 is observed.

(The ten lowest ranked ligands are included as counter-exam-
ples in Supporting Information Figure S9, most of them lacking

any kind of interaction with the hinge).

The 60 % hit rate observed with DUckCov against JAK3 dem-
onstrates the importance of noncovalent interactions estab-

lished by covalent ligands. However, these findings also clearly
show the need for dedicated covalent docking programs sam-

pling multiple rotameric states of the reactive residue. This
would increase the chance to identify the most optimal geom-

etry of the covalent attachment, which could consequently re-

flect in a rearrangement of the overall binding mode that
would be generated by tethered docking.

It is also important to note that running the DUckCov work-
flow took a total 1200 CPU/GPU hours, while running CovDock

Virtual screening on the whole dataset would have taken
about 13 750 CPU hours (15 minutes per ligand according to

the software manual). The roughly 11-fold speedup can be
mostly attributed to the quick tethered docking step, leaving

only a fraction of the ligands to be evaluated by the more ex-
pensive Dynamic Undocking. If we account for parallelization

as well, running this specific workflow in parallel on 24 GPUs
of the Barcelona Supercomputing Center has required a total

50 hours of runtime, while our license token limit would have

allowed us to run CovDock Virtual screening on three parallel
threads (three ligands), resulting in about 4600 hours of total

runtime, translating to a roughly 92-fold decrease in speed
compared to the DUckCov workflow. The reported speedups

can be considered typical for academic groups (based on the
accessible resources), but in a more general sense, CPU/GPU
time is more accessible (cheaper) than state-of-the-art software

licenses (such as Schrçdinger) for industrial researchers as well.

Case study 2: KRasG12C

To challenge the method’s applicability domain, it was also ap-

plied to another oncological target, the catalytic domain of
KRasG12C. For KRasG12C, even the best irreversible binders show
low potency if their covalent warhead is removed.[29] KRas is a

small G protein, which is rendered constitutively active by the
G12C mutation, leading to abnormal cell growth. The mutation
has been shown to be implicated in 40 % of KRas-driven lung
cancers.[30] Known covalent ligands bind to a highly flexible al-

losteric pocket, which traps KRasG12C in the inactive GDP-bound
state (thereby confirming its druggability).[31] Additionally, cova-

lent ligands can specifically target the mutated KRasG12C, spar-

ing the wildtype protein and offering the opportunity for on-
cogene-specific inhibition.[30]

In Table 1, the various H-bond interactions are displayed for
10 KRasG12C structures containing a covalently bound acrylam-

ide ligand, as well as the WQB values obtained for each interac-
tion on the reference ligand. For the remaining two of the 12

selected structures (PDB IDs 4M21 and 6ARK), no H-bonds

could be reliably identified. An interaction was used in DUck-
Cov if the work required to break the H-bond was higher than

6 kcal mol@1. Thus, structures 5F2E (pulling from atoms R68-

Table 1. Interaction patterns for the selected KRasG12C structures.[a]

PDB ID LIG Chain R68 NH2
[Don]

K16 NZ
[Don]

E63 O
[Acc]

E63 OE2
[Acc]

D69 OD1
[Acc]

H95 NE2
[Don]

4M22 22C B 6.5
5F2E 5UT A 10 X 10 13
5V6S 8YD A X 9.2 X
5V71 8ZG A X X
5V9L 91D A X X
5V9O 91G A 10 12 21
5V9U 91S A X
5YXZ 94C A X X
5YY1 94F A X X
6B0V C8G A X X

[a] X indicates that the calculated DUck WQB value was <6 kcal mol@1, otherwise the value corresponds to the work necessary to break the H-bond during
the DUck simulation in kcal mol@1.
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NH2, E63-O and D69-OD1), 5V9O (pulling from atoms K16-NZ,
E63-OE2 and D69-OD1), and 5V6S (pulling from atom D69-

OD1) were used to validate the DUckCov protocol on KRasG12C.

In Figure 3 A, the workflow is summarized for the two struc-
tures and three interactions that led to virtual hits, namely

5V9O, E63-OE2 and D69-OD1, and 5V6S, D69-OD1. Finally, 63,
22 and 47 hits were generated by DUckCov from these interac-

tion points, respectively. Based on the results of JAK3, the com-
pounds that were selected for experimental testing were en-

sured to have maintained the inspected H-bond and/or dis-
played similar binding modes according to rDock and Cov-

Dock. The RMSD between rDock and CovDock poses and di-

versity of the hits were also used to support the final selection
(Figure 3 C).

In Figure 3 C, the compounds retrieved using the stepwise
workflow are shown. Compounds 11, 13, 15 and 16, maintain

the defined interaction with D69 of the KRas structure 5V6S, in
both rDock and CovDock poses. It should be noted that the

Figure 3. A) DUckCov workflow for KRasG12C for the structures and interactions that eventually led to virtual hits. B) Pre-reaction reference ligands in 5V6S and
5V9O in orange (warhead used for tethering), with covalent attachment in grey, and pharmacophoric features for docking/interaction for DUck in cyan.
C) Compounds resulting from DUckCov workflow against 5V6S (11–16) and 5V9O (17–20). In the latter case, compound 17 was retrieved considering the fea-
ture/interaction with E63, while compounds 18–20 were retrieved considering the feature/interaction with D69. rDock poses and CovDock poses are shown
in green and magenta, respectively.
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pharmacophoric restriction in rDock has a tolerance of 1 a rela-
tive to the reference coordinates. As a result, in some cases

the input geometry for DUck does not form a hydrogen bond.
Yet, the initial step in the DUck protocol involves a minimiza-

tion that can repair the H-bond. For this reason, as shown in
compounds 12 and 14, some interactions present high WQB

values even though they were not recapitulated by rDock.
These interactions are also present in the CovDock pose.

The overall conservation of the binding modes in all ten

compounds is reasonably good, in accordance with the RMSD
values between the rDock and CovDock poses. RMSD values,

CovDock affinity and rDock SCORE.INTER (interaction score
energy) scores, as well as WQB values, for the final ten com-

pounds are reported in Supporting Information Table S10,
along with their ZINC codes. These compounds were pur-

chased and tested in HSQC NMR measurements (except for

compound 14 that was not available for immediate purchase
at the time of this study). The 2D structures are included in

Figure 4 B for the confirmed hits, and Supporting Information
Figure S11 for the rest. Strain energies of the resulting binding

modes are reported in Supporting Information Table S12.
The site specific binding of compounds 11, 13, 17 and 19

was confirmed by 1H,15N-HSQC (2D NMR) measurements. After

the appropriate incubation time, changes in the HSQC spec-
trum were detected based on chemical shift perturbation con-

firming the binding of the mentioned small molecules (see Fig-
ure 4 A, and Supporting Information Figure S13 for the full

spectra). The perturbed chemical shifts are located mostly in
the well-known Ras functional regions: the P-loop (G10-S17),

Switch I (D30-D38), and Switch II (L56-G77). Overall, the find-

ings suggest that the compounds can bind to KRasG12C cova-
lently at the C12 residue, and are located in the allosteric bind-

ing pocket of KRas, similarly to known inhibitors such as ARS-
853[31] and ARS-1620.[32] It is worth to note that from the three

protein structure/H-bond combinations that were applied for
the DUckCov workflow (Figure 3 A), all of them have produced
at least one confirmed hit compound.

The 44 % hit rate retrieved for KRas using the DUckCov pro-
tocol is exceptional, considering the lower druggability of this
target. Moreover, the correlation between affinity and activity
remains elusive.[33] Considering this, the protocol was success-
ful in identifying four novel KRas covalent binders in an effi-
cient manner by first focusing on the noncovalent interactions,

even though these are known to be non-conserved. Further-
more, a dedicated covalent docking program is imperative for
the evaluation of possible rearrangements of the overall bind-
ing mode generated by rDock. By sampling multiple rotameric
states of the reactive residue, forming the covalent bond be-

tween the reactive atoms and performing structural optimiza-
tion of the covalently attached ligand, the binding mode pre-

diction module in CovDock could increase the chance to find
an optimal geometry for the ligands. Additionally, a compari-
son with Schrçdinger’s CovDock Virtual screening module

clearly highlights the advantage of the DUckCov workflow, as
three out of the four confirmed hits were not included in the

top ten virtual hits by CovDock (Supporting Information
Table S14).

Conclusions

DUckCov is presented here as a novel protocol for the identifi-
cation of covalent binders that models every stage of the mul-

tistep binding mechanism of covalent ligands in an efficient hi-
erarchical manner. In this protocol, only molecules that can

form a stable and productive pre-reactive state are evaluated
before assessing the post-reactive state, thereby allowing to

explore large chemical spaces. Dynamic Undocking (DUck) is

the main feature of the workflow, as it is used to analyze the
pre-reactive state of the ligands by evaluating the strength of

H-bond interactions driving the formation of the initial nonco-
valent protein–ligand complex. Furthermore, DUck calculations

are performed on focused protein chunks, thus enabling fast
simulations by decreasing the size of the system. Therefore,
DUckCov relies on DUck as a stringent and efficient filter for

the selection of molecules to be subjected to the following
steps. Next, the post-reactive state is analyzed by performing

covalent docking with CovDock in the most accurate pose pre-
diction module. This step is used to generate bound conforma-

tions, thus allowing to compare binding modes in the pre- and
post-reaction states, and to assess if the key H-bonds are main-

tained when the ligand is covalently bound to the targeted nu-

cleophilic residue.
Our protocol was successfully validated in two case studies.

For JAK3, we reported a hit rate of 60 % (three actives out of
five molecules tested), identifying two novel, low micromolar

and high nanomolar ligands, as well as a low nanomolar inhibi-
tor, originally developed for another kinase target (EGFR). For

the more challenging KRasG12C protein target, four novel cova-

lent ligands were experimentally confirmed out of nine tested.
Due to the highly flexible nature of the KRasG12C allosteric bind-

ing pocket, the resulting 44 % hit rate can be considered ex-
ceptionally good. The two case studies display the broad ap-

plicability of DUckCov, in identifying novel chemical matter for
structurally better characterized, as well as more challenging

targets. It is also important to highlight that, depending on

the available resources, the presented workflow can provide a
roughly ten- to hundred-fold speedup, as compared to a com-

mercially available virtual screening tool for covalent binders
(Schrçdinger CovDock).

Experimental Section

Target structure selection : For JAK3, the PDB structure 5TOZ
(chain A) was used as the template, using the co-crystallized inhibi-
tor PF-06651600 as the reference ligand. At the moment of selec-
tion, eight structures were available containing covalently bound li-
gands having a terminal acrylamide as warhead (4QPS, 4V0G, 4Z16,
5TOZ, 5TTS, 5TTU, and 5TTV). Alignment and superposition of
these structures in MOE[20] led to an average RMSD of 0.78 a. Given
the structural conservation of the JAK3 kinase, the choice for struc-
ture 5TOZ was based on its co-crystallized ligand having the best
inhibitory potency (0.4 nm).[34]

For the second case study, a structure ensemble approach was
used, due to the pronounced flexibility of the KRas allosteric bind-
ing site. At the end of May 2018, 23 KRas structures containing co-
valently bound ligands had been deposited in the PDB. The majori-
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Figure 4. A) 1H,15N-HSQC spectra of the tested nine molecules and KRasG12C, showing the spectral region of C12 and other binding site residues (blue), overlaid
on the reference spectrum of the free protein (red), after incubation. For compounds 11, 13, 17 and 19, most of the highlighted residues from the P-loop
(C12, S17, A18), Switch I (Y32, D38) and Switch II (L56, D57, Q61, E62, M67) regions are significantly perturbed, while almost no changes are detected for 12,
16 and 18. Small (inconclusive) changes are detected for compounds 15 and 20. B) 2D structures of the experimentally confirmed hit compounds against
KRasG12C.
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ty of unique ligands formed a covalent bond via Michael addition
(20/23). Of these, 12 were acrylamide-based covalent ligands, while
eight contained a vinylsulfonamide moiety as the electrophile. As
for the remaining three complexes, one was formed via a ring
opening reaction (5V6V) and the other two were formed through
disulfide formation (4LUC, 4LV6). We limited the set to the 12 acryl-
amide-based complexes due to the limited commercial availability
of screening compounds able to react via ring opening or disulfide
formation, and the narrower chemical space of available vinyl-
sulfonamides (roughly 2000 purchasable compounds in ZINC,
versus 50 000 purchasable acrylamides[16]). The average RMSD of
these 12 structures in the flexible switch II loop was 2.41 a (Sup-
porting Information Table S1). From these 12, those structures in
which at least one H-bond with the co-crystallized ligand was
stronger than 6 kcal mol@1 (as evaluated by DUck) were selected for
the ensemble approach in DUckCov.

Protein structure preparation (in silico): All of the selected PDB
structures were prepared in MOE as follows: I) the structure was
corrected (termini were capped, gaps were capped or a homology
of the sequence of a similar structure was built, alternate confor-
mations were chosen if more than one was present, correct tauto-
meric states for the residues were assigned); II) the structure (in-
cluding the covalently bound ligand) was protonated at pH 7;
III) the covalent bond between the residue and the ligand was
manually broken; IV) the ligand warhead in its pre-reaction form
was built with MOE builder by making the acrylamide’s Ca-Cb

bond double, and finally; V) the cysteine was rebuilt, then mini-
mized in the presence of the pre-reaction ligand.

The structures for the CovDock simulations were prepared with
the Protein Preparation Wizard provided in the Schrçdinger
Suite,[35, 36] in order to further refine the protein’s H-bond network
and to perform a restrained minimization of hydrogen atoms. The
receptor grid box required for docking calculations was centered
on the corresponding co-crystallized ligand.

Datasets for VS : As one of the main features of the protocol is its
efficiency, it is most beneficial when a large collection of electro-
philic ligands is available. In general, if the protein has already
been targeted by covalent inhibitors, the library can be compiled
by collecting commercially available ligands and/or by enumerat-
ing synthetically accessible compounds bearing the same warhead
type as the crystallized inhibitor. For JAK3, the vast majority of
known covalent inhibitors bind through an acrylamide warhead,
while for KRasG12C, most of the known potent covalent inhibitors
bind through either an acrylamide or a vinylsulfonamide warhead.
Further on, due to the limited commercial availability of screening
compounds containing other types of warheads, we used the ac-
rylamide dataset (roughly 50 000 compounds) collected by London
et al. (for testing their recently published covalent docking pro-
gram, DOCKovalent), to validate our protocol.[16] Prior to docking
simulations, LigPrep by Schrçdinger was used to prepare 3D con-
formations from SMILES codes and to generate tautomeric and
ionization states at pH 6–8 while retaining specified chiralities.[35, 36]

General workflow description : An overview of the protocol is
shown in Figure 1. The collected library (here: ZINC acrylamide col-
lection) is first docked with rDock against the target of interest,
while simultaneously tethering the covalent warhead to its refer-
ence coordinates and using pharmacophoric constraints to enforce
the main noncovalent interaction. Because the protein structure is
derived from a crystallized covalent complex, a distance cutoff is
set to avoid large deviations of the electrophilic warhead from the
position defined in the reference ligand. H-bond pharmacophoric

constraints are applied in the docking simulation to keep only
those ligands that can establish the H-bond interactions defined as
important for binding. DUck is then used to evaluate the strength
of the H-bond. For DUck, only H-bonds are assessed, as they are
known to be key contributors to affinity in many targets.[37, 38] In a
DUck simulation, the ligands are pulled from 2.5 to 5.0 a relative
to the defined H-bond interaction point in the protein, during a
user-defined number of MD and SMD replicas. The force necessary
to pull out the ligand is then used to calculate a work value (WQB),
which corresponds to the strength of the H-bond. What makes
DUck exceptionally fast, is that only the local environment of the
residue involved in the interaction is required for the simulation.
Lastly, only those ligands that display the best noncovalent interac-
tions (according to rDock and DUck) are covalently docked with
CovDock using the most accurate pose prediction module.

Tethered and constrained docking : Using rDock, the cavity was
prepared with the reference ligand method, using the respective
co-crystallized ligand. Tethered docking was used to restrain the
electrophile close to the reactive residue. Tethered docking consists
of two steps, namely, I) superposing atoms according to the de-
fined SMARTS pattern, and II) docking, during which the super-
posed atoms can only deviate from the original position by a user-
defined cutoff. The warhead was defined by the SMARTS pattern
“[#6] = [#6]@[#6] = [#8]” for the acrylamide motif. During docking,
the tethered part of the ligand could move freely in terms of the
dihedral degrees of freedom, while the translational and rotational
degrees of freedom could deviate by max. 0.1 a per docking run.
This is meant to allow some flexibility in the sampling, also taking
into consideration that the targeted cysteine residue could display
a significant degree of flexibility.

Furthermore, a pose is penalized if the defined pharmacophoric
constraints are not met. Here, a 1 a deviation was permitted to in-
crease sampling, considering that the strength of the H-bond
would still be assessed by DUck later on. For JAK3, the pharmaco-
phoric constraints were defined as an acceptor (E903 backbone C=
O) and a donor (L905 backbone NH), both of which interact with
the reference ligand in 5TOZ. For KRasG12C, the pharmacophoric
constraints were defined based on the H-bond interactions ob-
served between the reference ligands and the protein in the se-
lected structures: these interactions (along with their WQB values
evaluated by DUck) are summarized in Table 1.

Next, the high-throughput VS protocol (HTVS) of rDock was imple-
mented, which consisted of three docking stages for each ligand.
In each stage, the number of docking runs increases (for better
sampling), and the threshold for the docking score decreases
(better scores). The ligand only proceeds to the next stage if its
docking score is better than the defined threshold within the
specified number of runs. This is done to increase the efficiency of
the simulation by progressively decreasing the number of ligands
moved forward. The docking score filters were selected based on
the score of the reference ligands, while being stricter for JAK3 (as
the defined noncovalent interactions necessary for binding are
well known) and less strict for KRas (as the defined noncovalent in-
teractions necessary for binding are not known). For the same
reason, the total number of docking runs for JAK3 was significantly
lower than for KRas. The exact HTVS protocols are given in Sup-
porting Information Schemes S2 (for JAK3) and S3 (for KRas) along
with the in-place rDock SCORE.INTER scores in Supporting Informa-
tion Table S4.

Dynamic undocking : The first step for a DUck simulation is the
definition of the chunk (a part of the protein structure) that repre-
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sents the local environment surrounding the residue interacting
with the ligand. Thus, for every interaction point, a separate chunk
is created. When selecting residues for the chunk, the following
guidelines were considered: I) selecting as little residues as possi-
ble to reduce computational time; II) residues were not selected if
they would block the ligand from exiting the pocket during the
simulations based on the directionality of the H-bond; III) residues
were not removed if this would lead to the possibility of solvent
entering the pocket from areas other than where the ligand is exit-
ing; and lastly IV) preserving the local environment. This was done
from the already prepared structures. The gaps created during the
process of selecting the chunk residues were capped. For this,
each section of residues was split into separate chains, and the ter-
mini of each chain were acetylated or methylated. Lastly, the
chunk was checked for clashes possibly created during the capping
of the chains. The corresponding chunk definitions for JAK3 and
KRas are included in Supporting Information Table S5.

After production of the chunk, DUck automatically does the follow-
ing: I) automatic ligand parameterization in MOE, II) minimization,
III) equilibration, and IV) a series of SMD (at two different tempera-
tures), then MD simulations, in which the ligand is pulled from 2.5
to 5.0 a relative to the defined H-bond interaction. Steps II) to IV)
were performed with GPU-based pmemd.cuda in AMBER.[39] Five
replicas of step IV) were performed, during which a WQB threshold
of 6 kcal mol@1 (force necessary to pull the ligand) was maintained,
so that the simulation was stopped if the measured WQB value of
the H-bond was smaller. Additionally, for KRas, the inclusion of co-
crystallized GDP in the chunk was necessary, as its absence would
have led to the surface being more exposed to bulk solvent. For
this, GDP was parameterized using MOE’s PFROST forcefield, and
the generated parameters were automatically included in the DUck
protocol.

Covalent docking with CovDock : Because Schrçdinger’s CovDock
pose prediction module outperformed most of the other covalent
docking tools, we used this approach to rank and predict the bind-
ing mode of the virtual hits identified to have strong noncovalent
interactions by the previous workflow steps.[23] CovDock ranks the
compounds according to an “Affinity Score”, which is calculated as
the average of the pre-reaction Glide score and the post-reaction
in-place docking score. By deeming the energy of bond formation
as constant across a set of compounds having the same warhead
involved in the chemical reaction (as in the case of DUckCov), the
affinity score can be used to compare and rank ligands in a set.
CovDock affinity scores for the reference ligands of the structures
that led to hits are given in Supporting Information Table S4. Con-
trary to the first docking step in the workflow, no additional re-
straints were applied in the covalent docking simulation other
than those used by default in CovDock. Binding site residues were
defined by centering the receptor grid on the ligand co-crystallized
in the structure under investigation. When setting up the simula-
tion, the acrylamide warhead was automatically recognized in each
ligand structure through the SMARTS-based definition of the “Mi-
chael addition” reaction type. Ultimately, this step was incorporat-
ed to evaluate if a change in binding mode would take place upon
covalent bond formation, which would prevent the ligand from es-
tablishing the interactions defined as necessary by previous work-
flow steps. To that end, root-mean-squared deviation (RMSD)
values between the rDock and CovDock conformations were calcu-
lated by means of a Python script provided by Schrçdinger
(rmsd.py). A small RMSD, typically lower than 2.0 a, was considered
as favorable. Furthermore, the defined interaction patterns were
also visually inspected for consensus.

Biochemical and structural characterization of the identified vir-
tual hits : Compounds 1, 3, 5, 8 and 9 were tested at 10 mm in du-
plicate with the Z’-LYTE kinase inhibition assay (Life Technologies).
The assay uses a fluorescence-based format and is based on the
different sensitivity of phosphorylated and non-phosphorylated
peptides to proteolytic cleavage. A suitable peptide substrate is la-
beled with two fluorophores (coumarin and fluorescein), forming a
FRET pair. After incubating the kinase + peptide + test compound
mixture for an hour, a development reaction is carried out. Any
peptide that was not phosphorylated by the kinase is cleaved, dis-
rupting the resonance energy transfer between the FRET pair. The
reaction progress is quantified based on the ratio of the detected
emission at 445 nm (coumarin) and 520 nm (fluorescein), that is,
the ratio of cleaved versus intact peptide. A more detailed descrip-
tion of the assay is available on the website of Life Technologies.[40]

IC50 values were determined from 10 points titration measurements
using the same assay.

Binding of compounds 11–13 and 15–20 to KRasG12C was tested
and structurally characterized by NMR measurements, performed
on a Bruker Avance III 700 MHz spectrometer equipped with a 5-
mm Prodigy TCI H&F-C/N-D, z-gradient probe head operating at
700.05 MHz for 1H and 70.94 MHz for 15N nuclei. 1H,15N-HSQC spec-
tra were recorded at 298 K to obtain the protein 1H and 15N reso-
nances in both free and small-molecule-bound state and the
changes in chemical shifts were followed upon complex formation.
NMR samples contained 15N-labeled KRasG12C (catalytic domain, resi-
dues 1–169) in 150 and 50 mm concentration in free protein mea-
surement (as a reference) and binding test, respectively, 5 mm GDP,
10 mm EDTA, 15 mm MgCl2 in PBS buffer, 5 % DMSO and 10 % D2O
at pH 7.4 and 150–500 mm ligand. Because some of the ligands
were not fully dissolved, we used a longer incubation time (96 h),
and a high number of scans for every HSQC spectrum (NS = 128).
To avoid false-positive results, the free protein was incubated for
four days as well, and the spectra of the samples were compared
with the spectrum of the incubated free protein. All 1H chemical
shifts were referenced to the DMSO peaks (which were calibrated
to DSS resonance before in free protein measurements) as DSS
was not added to avoid any side reactions with the ligand. 15N
chemical shift values were referenced indirectly using the corre-
sponding gyromagnetic ratios according to the IUPAC convention.
Sequence-specific assignments of HN and N in the bound KRasG12C

spectra were transferred from our results to be published else-
where (BMRB entry code: 27646). There were ambiguities in a
number of resonances in crowded spectral regions; however, this
fact did not influence the final outcome. All spectra were pro-
cessed with Bruker TOPSPIN and analyzed using NMRFAM-SPARKY
software.[41]
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Discovery of a novel kinase hinge binder fragment
by dynamic undocking

Moira Rachman, ab Dávid Bajusz, b Anasztázia Hetényi,c Andrea Scarpino, b

Balázs Merő,d Attila Egyed,b László Buday,d

Xavier Barril ae and György M. Keserű *b

One of the key motifs of type I kinase inhibitors is their interactions with the hinge region of ATP binding

sites. These interactions contribute significantly to the potency of the inhibitors; however, only a tiny

fraction of the available chemical space has been explored with kinase inhibitors reported in the last twenty

years. This paper describes a workflow utilizing docking with rDock and dynamic undocking (DUck) for the

virtual screening of fragment libraries in order to identify fragments that bind to the kinase hinge region.

We have identified 8-amino-2H-isoquinolin-1-one (MR1), a novel and potent hinge binding fragment,

which was experimentally tested on a diverse set of kinases, and is hereby suggested for future fragment

growing or merging efforts against various kinases, particularly MELK. Direct binding of MR1 to MELK was

confirmed by STD-NMR, and its binding to the ATP-pocket was confirmed by a new competitive binding

assay based on microscale thermophoresis.

Introduction

Protein kinases are a major class of drug targets, with over 30
marketed drugs and 250 drug candidates undergoing clinical
studies, mainly but not only in various oncology indications.1

The majority of kinase inhibitors target ATP binding sites
(type I), which contain a conserved hinge region. For this
reason, one of the main challenges in the development of
kinase inhibitors is obtaining selectivity. Another major
challenge is avoiding an already congested IP space, as the
diversity of hinge binder scaffolds used in type I kinase
inhibitors is relatively limited.2 Consequently, these
chemotypes have barely been sampled, which prompts the
thorough exploitation of their chemical space.3,4 For example,
it has been shown recently that only 1% of potential hinge
binders are present in known kinase inhibitors.5

Fragment-based drug discovery (FBDD) has already been
used in many kinase programs4 and has the potential to

identify novel fragment-sized hinge binders and specifically
“evolve” the fragment for the targeted kinase.6,7 In fact, the
first FBDD derived drug on the market, vemurafenib, targets
the oncogenic V600E mutant of the B-Raf kinase.8 Structure-
based virtual screening approaches have been used effectively
for both the identification of novel fragment-sized hinge
binders and their optimization. In one case study, Kolb and
colleagues screened 730 000 compounds and discovered two
ligands with different hinge binder moieties. The initial set
was first filtered by kinase hinge binding pharmacophore
restraints and the resulting 21 418 compounds were docked
to the ATP site.9 In another study, Urich and colleagues
extracted core fragments from 2.3M commercially available
compounds. The resulting unique fragments were filtered for
kinase hinge pharmacophores, and were subsequently
docked into a panel of protein kinases. This strategy
identified a number of hinge binder fragments with no
previously reported activity against the investigated kinases.10

In this work, we used a novel screening strategy to find
potent hinge binding fragments. Our dynamic undocking11

based approach identified MR1 (Fig. 1A) that has been
experimentally validated against five kinase targets (Table 1).
Future fragment growing or merging efforts toward these
targets could avoid a congested druggable chemical space
(e.g. for JAK2) and could provide a suitable chemical starting
point to unmet medical needs (e.g. for MELK). JAK2 belongs
to the non-receptor tyrosine kinase family, for which the
V617F mutation is known to be implicated in
myeloproliferative disorders.12,13 MST3 belongs to the Ste20
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Fig. 1 A) Summary of the virtual screening workflow. B) Predicted binding modes of MR1 in the JAK2 ATP pocket. Both binding modes utilize
tridentate H-bond interactions with the backbone carbonyl and amide groups of the hinge residues E930 and L932. C) Kinase inhibitory profile of
MR1 overlaid on the kinase phylogenetic tree28 (coloured blue to red, from most active to least active). The table summarizes the respective IC50

values in μM units, with the same colouring scheme (illustration reproduced courtesy of Cell Signaling Technology, Inc., www.cellsignal.com). D)
1H NMR spectrum of MR1 (a) and saturation transfer difference NMR spectrum of MR1 in the presence of MELK (b). E) In the competitive, MST-
based binding assay, titration of MELK with MR1 reveals concentration-dependent binding with a Ki value of 5.47 μM and confirms the ATP-pocket
as the location of binding.
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serine/threonine protein kinase family, which has been
shown to promote proliferation and tumorigenicity.14

Maternal embryonic leucine zipper kinase (MELK) is a serine/
threonine kinase belonging to the CAMK family, and was
initially found to be expressed in a wide range of early
embryonic cellular stages.

More recently, MELK has been identified to be present in
several human cancers and stem cell populations with a
unique spatial and temporal pattern, which suggests a
prominent role in cell cycle control, cell proliferation,
apoptosis, cell migration, cell renewal, embryogenesis,
oncogenesis, and cancer treatment resistance and
recurrence.16 ERK2 is part of the Ras/Raf/MEK/ERK pathway,
which is often overactivated in a very wide range of cancers,
while RSK2 is a downstream effector of this pathway and
phosphorylates substrates involved in transcription,
translation, cell cycle regulation, and cell survival.15

Results and discussion

Here, we present a novel and potent hinge binding fragment,
MR1 (Fig. 1A), that was discovered through virtual screening
(VS) of our in-house fragment library19 using kinase hinge
pharmacophore information in a hierarchical VS strategy
(Fig. 1A). Our initial screening has been performed on JAK2
as a prototypic protein kinase with a large number of type I
inhibitors. It is well known that the kinase hinge region
exhibits a pronounced H-bond pattern with ATP or ATP-site
competitors and that these interactions are imperative for
type I kinase inhibitors to bind. As such, a typical VS strategy
would incorporate such information by ensuring that the
retained ligands maintain these features through the use of
e.g. pharmacophoric restraints. Here, we employ an
additional filter that emphasizes the importance of the
defined H-bonds through dynamic undocking (DUck11),
which estimates the robustness of H-bonds. DUck is an
orthogonal method to approaches meant to predict binding
free energies. Instead, it assesses structural stability through
evaluation of the robustness of H-bonds. The VS strategy
consisted of docking with rDock20 using pharmacophoric
restraints to ensure that the features necessary for H-bonding
with the hinge were present, then using DUck to estimate the
resistance to rupture of these H-bonds. This strategy led to
the discovery of MR1, which was tested on five kinases from
the major branches of the kinase phylogenetic tree (Fig. 1C),
each with several relevant indications (Table 1). MST3 and
MELK, in particular, have only few known potent inhibitors.

MR1 was found to inhibit four of the target kinases with
IC50 values in the low to mid-micromolar range
(corresponding to ligand efficiencies between 0.54–0.59),21

which is in line with its small size and other hinge binders of
this complexity.7 ERK2 was the only kinase that was not
inhibited; one possible reason behind this is the higher ATP
concentration (100 μM) in the ERK2 inhibition assay, as
compared to the rest of the kinases (10–50 μM), resulting in
a stronger competition of ATP toward the binding site. The
assessment of the binding mode of MR1 was based on the
docking and DUck scores. Two plausible solutions were
generated (Fig. 1B), both of which adopt a tridentate
interaction with the hinge. This was verified also for MELK:
here, pose 2 is clearly preferred (WQB value of 7.7 kcal mol−1, vs.
1.6 kcal mol−1 for pose 1). The ability of fragments to bind
simultaneously in multiple orientations has been reported in
numerous occasions, and can even be favourable from an
entropic perspective.22 Depending on how the fragment is then
elaborated, it freezes into one binding mode or the other,23,24

which will likely stay conserved during the elaboration
process25 (this also means that the mentioned entropic gain
will be lost, but ideally, this is compensated by a larger
favourable enthalpy decrease due to additional secondary
interactions between the protein and the elaborated ligand).
The tridentate interaction is not often observed within kinases
(a bidentate interaction being the most common), but – as
supported by the inhibition data – a third interaction allows for
high versatility.26 This can be constrained at the optimization
phase for introducing family-specific substituents. In fact, it is
not the hinge binder but rather its decoration that determines
kinase selectivity. Consequently, selective kinase inhibitors can
stem from an unselective fragment.7,27

In addition to identifying MR1, we have observed a
stepwise enrichment of known hinge binders along the
workflow: while the whole fragment library contained known
hinge binders in 14.4% of the compounds (90 out of 624), this
ratio was 64.7% for the virtual hits after the DUck calculations
(11 out of 17). This can be considered as a retrospective
validation of the presented virtual screening workflow.

Next, we aimed to confirm the direct and ATP-competitive
binding of MR1 experimentally. For this purpose, we have
selected MELK, as MR1 displayed the strongest inhibitory
activity against this kinase. Direct binding to MELK was
confirmed by an STD-NMR measurement (Fig. 1D), while the
binding site was validated with a competitive MST-based
(microscale thermophoresis) assay developed in our lab
(Fig. 1E).

Table 1 Summary of the kinase targets investigated in this study

Branch Kinase Uniprot ID Clinical indications

AGC RSK2 P51812 Oncogenesis and leukemia15

CAMK MELK Q14680 Oncogenesis and cancer treatment resistance16

CMGC ERK2 P28482 Cervical17 and colorectal18 cancer
STE MST3 Q9Y6E0 Breast cancer14

TK JAK2 O60674 Myeloproliferative neoplasms (MPNs)12,13
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The assay is based on the displacement of a fluorescently
labelled type I reference ligand (see the Experimental section)
and it has additionally enabled us to quantify the
dissociation constant of MR1 from MELK as 5.47 μM. Its
high ligand efficiency (LE = 0.67) nominates MR1 as a viable
starting point for optimizing ATP-site kinase inhibitors.

Experimental
Virtual screening

The structures were prepared using MOE 2016,29 by
removing water and cofactors, capping the termini and
gaps, and for protonation with default settings. For the
virtual screening, the JAK2 PDB structure, 3E64 (chain A)
was used.30 For docking, the cavity was defined in the
prepared structure by the reference ligand method, using
the crystallized ligand as reference. The fragment library
consisted of 624 compounds and was prepared with
LigPrep,31 so that ligands above 300 Da would be ignored,
at most eight stereoisomers, six tautomers and eight ring
conformers would be generated and lastly, probable
ionization states within the pH range of six to eight would
be generated.

The prepared library was docked with pharmacophoric
restraints at the hinge region, namely, Glu930, O and
Leu932, N. The pharmacophore was defined as a 2 Ångström
radius around the mentioned receptor atoms. If the feature
did not adhere to the positional constraints, rDock would
assign a positive (unfavourable) pharmacophore restraint
score, for which the cutoff was set to 0.5. Furthermore, a
high-throughput VS (HTVS) protocol was implemented, which
consisted of three stages, for which at every stage the number
of docking runs increases, and the rDock “SCORE.INTER”
filter becomes stricter. The filter was adapted to scores
expected for fragment-sized molecules which resulted in 93
compounds in total. DUck was performed on this set of
compounds, pulling from Leu932, N (pulling from Glu930, O
did not result in any additional filtering). The first step for a
DUck simulation is the definition of the chunk (a part of the
protein structure) that represents the local environment
surrounding the residue interacting with the ligand. When
selecting residues for the chunk, the following guidelines
were considered: I) selecting as few residues as possible to
reduce computational time, II) residues were not selected if
they would block the ligand from exiting the pocket during
the simulations based on the directionality of the H-bond,
III) residues were not removed if this would lead to the
possibility of solvent entering the pocket from areas other
than where the ligand is exiting, and lastly IV) preserving the
local environment of the interacting atoms in the already
prepared structures. The sequence gaps created during the
process of selecting the chunk residues were capped. For
this, each section of residues was split into separate chains,
and the termini of each chain were acetylated or methylated.
Lastly, the chunk was checked for clashes possibly created
during the capping of the chains. The chunk included the

following residues: 853–859, 861–865, 879–882, 898, 902, 911,
912, 927, 929–941, 976, 978, 980–984 and 993–996. After
production of the chunk, DUck performs I) automatic ligand
parameterization in MOE, II) minimization, III) equilibration,
and IV) two SMD simulations (at two different temperatures,
300 K and 325 K), in which the distance between the
interacting atoms in the ligand and protein is increased from
2.5 to 5.0 Å, and V) if the WQB value (work necessary to break
the H-bond) in the previous step reaches a pre-defined
threshold, then the system is sampled by a short unbiased
MD simulation, after which the resulting new structures are
fed into steps IV) and V); the last two steps being repeated in
a finite number of cycles (replicas).11 Steps II) to V) were
performed with GPU-based pmemd.cuda in AMBER. Here, up
to five replicas of steps IV) and V) were performed, during
which a WQB threshold of 6 kcal mol−1 (work necessary to
break the H-bond) was used, so that the simulations were
discontinued if the measured WQB in any replica was below
the threshold. If five runs were completed, the lowest
obtained WQB value was used, which resulted in 17
compounds that surpassed the threshold. Finally, we checked
the novelty of these fragments against known kinase
inhibitors by substructure searches, which ultimately led to
the selection of compound MR1 for experimental validation.

To suggest a binding pose for MELK, MR1 was docked in
all liganded MELK structures available. Both poses in Fig. 1B
were identified and submitted to a DUck simulation, pulling
from the NH atom in the hinge (Cys 89 N). Chunks were
derived by selecting residues within 10 Å from Cys89 N.

To check for known hinge binders in the fragment library,
all kinase inhibitors found in the ATP binding site were
downloaded from the KLIFS database.32 The cores (5
Angstrom from the hinge NH group) were extracted from
known binders from KLIFS and from the compounds in the
fragment library. A substructure search was performed to
find which of the fragment cores in the library were present
in the known hinge binder cores.

Kinase inhibition assay

MR1 (purity 97% by LC/MS) was tested against the target
kinases with the Z′-LYTE kinase inhibition assay (Life
Technologies). The assay employs a fluorescence-based
format and is based on the different sensitivities of
phosphorylated and nonphosphorylated peptides to
proteolytic cleavage. A suitable peptide substrate is labelled
with two fluorophores, forming a FRET pair. After incubating
the kinase + peptide + test compound mixture for an hour, a
development reaction is carried out. Any peptide that was not
phosphorylated by the kinase is cleaved, disrupting the
resonance energy transfer between the FRET pair. The
reaction progress is quantified based on the ratio of the
detected emission at 445 nm (coumarin) and 520 nm
(fluorescein), i.e. the ratio of cleaved vs. intact peptides. A
more detailed description of the assay is available on the
website of Life Technologies.33 IC50 values were determined
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from 10-pt titration measurements (with duplicate
datapoints) using the SelectScreen™ Biochemical Kinase
Profiling Service available at Life Technologies.

NMR measurements

The human MELK protein (Q14680) DNA was obtained from
OriGene and the kinase–uba domain (1–337) sequence was
cloned into a modified pET vector encoding an N-terminal
His-tag. The recombinant protein was expressed in E. coli
BL21 pLysS cells, harvested by centrifugation and purified by
immobilized metal affinity chromatography and anion
exchange chromatography. 1H and STD-NMR measurements
were performed using a 600 MHz Bruker Avance III
spectrometer equipped with a 5 mm cryo-TXI (1H, 13C, 15N)
probe with z-gradient at 298 K. The MELK protein and MR1
were dissolved in a 10% (v/v) D2O and H2O mixture
containing 20 mM Tris buffer (pH 8.0), 260 mM NaCl, 1 mM
TCEP and 5% glycerol. Spectra were acquired with water
suppression using excitation sculpting with the pulsed
gradient scheme. For the 1H and STD measurements, the
MELK and MR1 concentrations were 2.14 and 50 μM,
respectively. As a reference, STD experiments were also
performed without the target, containing the ligand species
alone.

STD-NMR spectra were acquired using a series of 40
equally spaced 50 ms Gaussian-shaped pulses for selective
saturation of the protein, with a total saturation time of 2 s
and a 50 ms spinlock to suppress protein signals. The
frequency of the on-resonance saturation was set at 1.0 ppm
and the off-resonance saturation frequency was set at 40.0
ppm. A total of 2000 scans were collected for each pseudo-2D
experiment.

Microscale thermophoresis binding assay

Microscale thermophoresis measurements were conducted
on a NanoTemper Monolith NT.115 device, using the red
fluorescence channel. MELK was stored and applied in a
buffer consisting of 20 mM Tris, 260 mM NaCl, 1 mM TCEP
and 5% glycerol, at a pH of 8.0. The MR1 stock was prepared
in DMSO and diluted into the protein buffer, with the final
DMSO concentrations not exceeding 1%. We have applied
the ligand displacement assay principle to detect the
thermophoresis of the fluorescently labeled MELK reference
ligand Kinase Tracer 236 (ThermoFisher, cat. no. PV5592) at
increasing concentrations of MR1. A titration curve was
acquired with serial 1 : 1 dilutions starting from 100 μM
ligand concentration (with 0.56 μM protein, 50 nM Kinase
Tracer 236, 60% LED power, 20% MST power), with 11
datapoints. Each datapoint was acquired in triplicate. The
primary result was a relative EC50 value of MR1 against MELK
(21.1 μM), which was converted to a Ki value of 5.47 μM,
using the following formula:

K i ¼ EC50

T½ �50
Kd

þ P½ �0
Kd

þ 1
(1)

In formula (1), [P]0 is the protein concentration at 0%
binding, [T]50 is the concentration of free tracer at 50% and
Kd is the dissociation constant of the tracer and protein,
which was evaluated to be 208 nM under the assay conditions
in a direct binding measurement.

Conclusions

Here, we report the discovery of a novel hinge binder using
a new computational screening protocol based on dynamic
undocking. 8-Amino-2H-isoquinolin-1-one (MR1) was found
to inhibit kinases from four major branches of the kinase
phylogenetic tree, with low to mid-micromolar potencies
(translating to ligand efficiencies between 0.54–0.59). All of
these kinases are relevant clinical targets, mostly for
oncological indications. In particular, MST3 and MELK have
few known potent inhibitors, presenting the opportunity to
create novel chemical matter for these kinases with a less
congested IP space. In addition to its versatile inhibitory
profile, direct binding of MR1 to MELK was confirmed by
STD-NMR, and its binding to the ATP site was validated by
an MST-based (microscale thermophoresis) ligand
displacement assay developed as part of this work.
Together, these findings nominate MR1 as a viable fragment
starting point for a range of type I kinase inhibitor
programs.
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