
GRAU DE MATEMÀTIQUES

Treball final de grau

Analysis of Neural Networks.
Applications to Interpretability

and Uncertainty

Autor: Gabriel Marín Sánchez

Directors: Dr. Antoni Benseny Ardiaca

Departament de Matemàtiques

i Informàtica

Alberto Rubio Muñoz

SCRM - Lidl International Hub

Barcelona, 21 de juny de 2020





Acknowledgements

M’agradaria donar les gràcies a totes aquelles persones sense les quals ni aquest
treball ni els meus estudis haguessin estat possibles.

Als meus pares per atorgar-me el privilegi d’estudiar un grau universitari que, per
desgràcia, no tothom pot tenir.

A la Laia, per estar sempre allà i ensenyar-me tantes coses sobre balenes. De ben
segur que sense tu, ni jo ni aquest treball seríem el mateix.

A en Martí, per acompanyar-me en aquesta aventura des del primer dia i per
ajudar-me sempre. També per animar-me a començar els estudis d’Informàtica,
sense els quals aquest treball no hagués estat possible.

A Elias y a Pablo, por darme la energía necesaria para completar mi último curso.

To Alex, for all your support and for always believing in me.

Als companys i companyes de SCRM, i en particular al Chapter de Data Science,
per acompanyar-me durant aquest últim any i ensenyar-me tantes coses.

Gràcies, Antoni, per acompanyar-me durant aquest treball i per tots els consells.

Gracias, Alberto, por todo el tiempo que me has dedicado y por introducirme a
este maravilloso mundo de las redes neuronales y la inteligencia artificial. Es y ha
sido un placer escucharte y aprender de ti.



Abstract

From image creation and pattern recognition to speech and text processing, the
outstanding performance of neural networks in a wide variety of fields has made
them a popular tool among researchers. However, the fact that we do not fully
understand why their performance is so successful or how they operate converts
this technology into a black-box model based on trial and error. In this work, we
attempt to give deep neural networks a mathematical representation and present
different examples and applications that bring light to the understanding of neural
networks’ behaviour and usage.

2020 Mathematics Subject Classification. 68T01, 68T07



Contents

Introduction iii

1 Feed-Forward Neural Networks 1
1.1 Mathematical Description . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Learning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Training Step Algorithm . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Activation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Supervised Learning 11
2.1 Case Study: Two Concentric Circles . . . . . . . . . . . . . . . . . . . 11
2.2 1D Segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Injective activation function . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Non-injective activation function . . . . . . . . . . . . . . . . . 16

3 Unsupervised Learning 19
3.1 Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Case Study: Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Interpretability 27
4.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . 28
4.2 Interpretability Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Backpropagation: Integrated Gradients . . . . . . . . . . . . . 30
4.2.2 Input Modification: Occlusion . . . . . . . . . . . . . . . . . . 31
4.2.3 Attention: Class Activation Mapping . . . . . . . . . . . . . . 31

4.3 Algorithm Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Uncertainty 35
5.1 NormalLoss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Regression Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

i



5.3 Regressor Neural Network with Uncertainty . . . . . . . . . . . . . . 37
5.4 Uncertainty Neural Network for Black-Box Regressor . . . . . . . . . 38
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Conclusions 43

Bibliography 45



Introduction

Even though the term Deep Learning was first coined at the beginning of 2006
[1], its concept has been around since the first half of the last century. With the goal
of imitating the functioning of the human brain, the first artificial neural models
were the McCulloch-Pitts neuron [2] and the perceptron [3], introduced in 1943
and 1958, respectively. Due to the lack of computational power and mathemat-
ical theory that explained their performance, the usage of such models was not
extended.

It was not until the 1990s, with the introduction of the universal approximation
theorems [4, 5], that neural networks lived a second significant wave. Those the-
orems stated and proved that feed-forward neural networks with a hidden layer
can approximate any continuous function. The only concern, though, is that for
these theorems to hold, the number of neurons in the hidden layer must need to
be arbitrarily large.

With the proven success of neural networks in tasks such as computer vision,
text processing and data classification, it is clear that this field is revolutionising
data-driven application. In addition, scientists are starting to apply this technology
to areas like Physics and Applied Mathematics. A clear example is [6], where
researchers showed that a deep neural network can learn to solve the three-body
problem.

The counterpart, though, is that with many new papers released every day,
scientists tend to focus on the computational part and avoid the mathematical
treatment behind the development. This causes that users end up employing neu-
ral networks just because they know they will perform well, but not understand
why.

This work aims to analyse the behaviour of neural networks from a mathemat-
ical perspective. In chapter 1, we start by presenting a mathematical description
of a feed-forward neural network as well as the learning process.

We then explore, in chapters 2 and 3, the supervised and unsupervised types
of learnings. We present examples of classification and representation problems.

iii



iv Introduction

In chapter 4, we address the interpretability problem in deep neural networks
and describe three existing algorithms. Also, we test these algorithms in an image
to evaluate their functionalities. In particular, we will attempt to find the parts of
the picture that the neural network considers to be more important when classify-
ing it.

Finally, in chapter 5, we present a method to add uncertainty to a black-box
regressor model with the use of a neural network, as well as predicting probability
distributions.

The code developed in this work has been written in Python language and
can be found on my github page2, divided in different Jupyter Notebooks. The
neural networks have been implemented using the PyTorch3 library. Also, to create
the plots, we used the matplotlib4 package.

2https://github.com/gms12/TFG_Matematiques_Primavera_2020
3https://github.com/pytorch/pytorch
4https://github.com/matplotlib/matplotlib



Chapter 1

Feed-Forward Neural Networks

1.1 Mathematical Description

Let us consider a function f ′. The goal of a feed-forward neural network is to
find a function f that approximates f ′ [7, Ch. 6]. We will proceed to define the
necessary concepts to give feed-forward neural networks a mathematical descrip-
tion.

Let n and m be positive integers. Consider the parameters w ∈ Rn×m and
b ∈ Rm. We define the linear function φ : Rn → Rm as

φ(x) = wTx + b, (1.1)

where x ∈ Rn. The parameters w and b will be called weight and bias, respectively.
From now on, n and m will denote the dimensions of the input and output

space, i.e. Rn will be the input space and Rm the output space. The input and
output spaces are also called feature or target spaces.

Let f : Rn → Rm and g : R → R be two functions. We define the component-
wise composition of f and g as

(g • f )(x) = ((g ◦ f1)(x), . . . , (g ◦ fm)(x)) , (1.2)

where x ∈ Rn and fi corresponds to the i-th component of f , for i = 1, . . . , m.

Definition 1.1. Let L be a positive integer. Also, let {kl}l=0,...,L be a set of positive
integers such that k0 = n and kL = m. Then, a feed-forward neural network is a
continuous function f : Rn → Rm described as

f = hL • φL ◦ · · · ◦ h1 • φ1, (1.3)

where φl : Rkl−1 → Rkl is a liniar function obeying Equation (1.1) and hl : R → R

is a continuous and non-linear function known as activation function, for l =

1, . . . , L. In addition, L + 1 denotes the number of layers of the network.

1



2 Feed-Forward Neural Networks

As a remark, the function f depends on a set of parameters θ, which corre-
spond to the weights and biases of each linear function φl , for l = 1, . . . , L. Then,
we will write the feed-forward neural network as fθ .

As seen in Definition 1.1, a neural network can be divided into layers. There
are three types of layers: Input, Output and Hidden.

• The Input Layer is the first layer of the network. It takes the input data and
does not perform any operation.

• The Output Layer is the last layer of the network. It returns the output data
and performs the function hL • φL.

• The Hidden Layer is any layer between the Input and Output Layers. It per-
forms the function hl • φl for l = 1, ..., L − 1, when L > 1. The number of
hidden layers of a feed-forward neural network is L− 1.

In addition, each layer can be divided into neurons. The number of neurons
per layer corresponds to the dimension of the space where this layer lies in. For
instance, if we consider the l-th layer, the number of neurons will be kl . Also,
the j-th neuron of this layer will perform the operation corresponding to the j-th
component of hl • φl , which is (hl • φl)j = hl ◦ (φl)j.

In the Fig. (1.1) we have a graphical representation of a feed-forward neural
network with L = 2. The weight of the edges connecting the neurons correspond
to the weights of the linear functions, while the bias terms correspond to the
weights of the edges connecting imaginary neurons with an output value of 1 and
the neurons of the layer.

1.2 Learning Process

Now that we have defined the operation performed by a neural network, we
can proceed with the learning process. The goal of this process, also called train-
ing, is to find an optimal set of parameters θ̂ for which the function fθ̂ better
approximates the original function f ′.

1.2.1 Loss Function

To compute the error of the neural network prediction, a loss or cost function
Jθ is used. This function maps the prediction and real value into R and describes
how well is the network performing. The different loss functions can be classified
into two families, depending on the problem: regression and classification [7, 8].



1.2 Learning Process 3

...

h1 ◦ (φ1)1

h1 ◦ (φ1)k1

... ...

x1

x2

xn

h2 ◦ (φ2)1

h2 ◦ (φ2)2

h2 ◦ (φ2)m

Input
layer

Hidden
layer

Ouput
layer

Figure 1.1: Feed-forward neural network with three layers. The parameters n, k1

and m denote the input, hidden and output dimensions, respectively.

Regression

In regression problems, the target y′ can take any value in the output space
Rm. In these cases, a common loss function used is the squared error loss. Given
an input value x ∈ Rn and a target value y′ ∈ Rm, the squared error loss function
is

JSE
θ (x, y′) = ‖y′ − fθ(x)‖2 = ‖y′ − y‖2, (1.4)

where y is the prediction of the neural network.
For a training data with N samples, we can consider the mean squared error

loss function (MSELoss),

JMSE
θ (x, y′) =

1
N

N

∑
i=1

JSE
θ (xi, y′i), (1.5)

with x = {xi}i=1,...,N and y′ = {y′i}i=1,...,N .

Classification

In classification problems, the target can only take specific values, called classes.
In these cases, the model returns a value between 0 and 1 for each class. These
values correspond to the probability of the input of being from that class. A com-
mon loss function used for classification is the log loss, also called cross-entropy
[9]. For an input value x ∈ Rn, a target y′ ∈ Rm and a set of classes C, this loss



4 Feed-Forward Neural Networks

function is
JCE
θ (x, y′) = −∑

c∈C
y′clog( fθ,c(x)), (1.6)

where fθ,c(x) corresponds to the probability of x being from the class c. Also, y′c is
a binary indicator with value 1 if x is indeed from the class c, 0 otherwise.
In binary cases there is only one output and the previous equation is reduced to

JBCE
θ (x, y′) = −

(
y′log( fθ(x)) + (1− y′)log(1− fθ(x))

)
. (1.7)

For a training data with N samples, we can consider the mean of the cross-
entropy loss function,

JMCE
θ (x, y′) =

1
N

N

∑
i=1

JCE
θ (xi, y′i), (1.8)

with x = {xi}i=1,...,N and y′ = {y′i}i=1,...,N .

1.2.2 Gradient Descent

To optimise the loss function Jθ with respect to the set of parameters θ, which
correspond to the weights and biases, the conventional approach is to use Gradient
Descent. This method was first introduced by Louis Augustin Cauchy [10] and
consists on updating the parameters by subtracting the partial derivative of the
function with respect to each parameter, multiplied by variable called the learning
rate. For example, the weight component wl

ij of a layer l will be updated in the
following way,

wl
ij = wl

ij − η
∂Jθ

∂wl
ij

, (1.9)

where η is the learning rate. A proof that this method does indeed converge to a
local minimum under specific conditions can be found in [11, 12].

The performance of this optimisation method depends vastly on the value of
the learning rate, which has to be chosen taking into consideration the context of
the problem the neural network is attempting to solve. If this value is too small, it
can lead to slow convergence, whereas a value too large may cause divergence or
fluctuations around a minimum.

A limitation of the gradient descent is that there is no guarantee that the mini-
mum reached is global, so the training process can get stuck in local minimum or
saddle points, especially for highly non-convex loss functions [13].

Many new optimisation algorithms based on the gradient descent method at-
tempt to face these problems. Some examples are the Adagrad and Adam meth-
ods, widely used in Deep Learning models [14].



1.2 Learning Process 5

1.2.2.1 Backpropagation

Another issue found when using gradient-based methods is the calculation of
the gradients, which can be computationally expensive. To minimise this cost, the
concept of backpropagation was introduced and developed [15, 16, 17]. The main
idea behind it is the chain rule.

This algorithm consists of, once calculated the loss function, computing the
gradients of the output layer and use those to compute the rest going backwards.

For convenience, let us introduce some notation. Following Definition 1.1, let
u(l), z(l) ∈ Rkl be such that

u(l) = φl(z(l−1)) = (w(l))Tz(l−1) + b(l) (1.10)

z(l) = hl • φl(z(l−1)), (1.11)

for l = 1, . . . , L. It is clear that z(0) = x, the input, and z(L) = y, the output.

Lemma 1.2. (Backpropagation) Let l ∈ {1, . . . , L} be the number of the layer and
j ∈ {1, . . . , kl} be the index of a certain neuron in that layer. Let A = {1, . . . , kl+1}
be the set of indexes corresponding to the neurons of the layer l + 1. Then, the
partial derivatives of the loss function with respect to the weights and bias of this
layer are

∂Jθ

∂w(l)
ij

= β
(l)
j z(l−1)

i ;
∂Jθ

∂b(l)j

= β
(l)
j , (1.12)

where

β
(l)
j =


∂Jθ

∂z(l)j

∂hl

(
u(l)

j

)
∂u(l)

j

, if l = L(
∑a∈A w(l+1)

ja β
(l+1)
a

) ∂hl

(
u(l)

j

)
∂u(l)

j

, otherwise
(1.13)

for i = 1, . . . , kl−1.

Proof. Using the chain rule we obtain the following:

∂Jθ

∂w(l)
ij

=
∂Jθ

∂z(l)j

∂z(l)j

∂u(l)
j

∂u(l)
j

∂w(l)
ij

;
∂Jθ

∂b(l)j

=
∂Jθ

∂z(l)j

∂z(l)j

∂u(l)
j

∂u(l)
j

∂b(l)j

(1.14)

Now we need to compute each component. Using the expressions of u(l)
j and z(l)j ,



6 Feed-Forward Neural Networks

from Equations (1.10) and (1.11), we get:

∂z(l)j

∂u(l)
j

=
∂hl

(
u(l)

j

)
∂u(l)

j

(1.15)

∂u(l)
j

∂w(l)
ij

=
∂

∂w(l)
ij

(
kl

∑
k=1

wkjz
(l−1)
k + bj

j

)
= z(l−1)

i (1.16)

∂u(l)
j

∂b(l)j

=
∂

∂b(l)j

(
kl

∑
k=1

wkjz
(l−1)
k + bj

j

)
= 1 (1.17)

Only one term is left to compute. When l = L, i.e., the neuron is in the output layer,
we have z(L)

j = yj, and the derivative can be calculated directly. For l 6= L, we can

consider the loss function Jθ as a function of the elements of the set {u(l+1)
a }a∈A.

Then, by taking the total derivative, we obtain the following:

∂Jθ

∂z(l)j

= ∑
a∈A

∂Jθ

∂u(l+1)
a

∂u(l+1)
a

∂z(l)j

= ∑
a∈A

∂Jθ

∂z(l+1)
a

∂z(l+1)
a

∂u(l+1)
a

∂u(l+1)
a

∂z(l)j

= ∑
a∈A

∂Jθ

∂z(l+1)
a

∂hl+1

(
u(l+1)

a

)
∂u(l+1)

a

w(l+1)
ja (1.18)

We have a recursive expression, and by defining the parameter β
(l)
j as in Equation

(1.13), we obtain the Equations (1.12).

As a remark, we are assuming the neural network is fully-connected, i.e., all
neurons of layer l are connected with the neurons of the layer l + 1. When this is
not the case, we can consider the weights of the non-existing edges to have a value
of 0.

Also, the values of ∂Jθ

∂z(L)
j

and
∂hl

(
u(l)

j

)
∂u(l)

j

depend on the selection of the loss and

activation functions. For example, if we take the squared loss function and the
sigmoid activation function, Equations (1.4) and (1.21), we have:

JSE
θ (y′, z(L)) = ‖y′ − z(L)‖2 =⇒

∂JSE
θ

∂z(L)
j

= 2
(

z(L)
j − y′j

)
(1.19)

hl(x) =
1

1 + e−x =⇒
∂hl

(
u(l)

j

)
∂u(l)

j

= hl(u
(l)
j )
(

1− hl(u
(l)
j )
)

(1.20)



1.2 Learning Process 7

1.2.3 Training Step Algorithm

In Algorithm 1 we can see the pseudo code representing a step of the training
process.

Algorithm 1 One iteration of the training process using gradient descent

1: function TrainStep(x, y′, L, d, b, w, η)
2: z(0) ← x
3: for l = 1, . . . , L do . Feed-forward
4: u(l) ← φl

(
z(l−1)

)
5: z(l) ← hl • φl

(
z(l−1)

)
6: end for
7: for l = L, . . . , 1 do . Backpropagation
8: for j = 1, . . . , kl do

9: a←
∂hl

(
u(l)

j

)
∂u(l)

j

10: if l = L then
11: β

(l)
j ←

∂Jθ

∂z(l)j

× a

12: else
13: β

(l)
j ←

(
∑a∈A w(l+1)

ja β
(l+1)
a

)
× a

14: end if
15: for i = 1, . . . , kl−1 do
16: w(l)

ij ← w(l)
ij − ηβ

(l)
j z(l−1)

i . Update weight value
17: end for
18: b(l)j ← w(l)

ij − ηβ
(l)
j . Update bias value

19: end for
20: end for
21: return w, b
22: end function

During the neural network’s learning process, this step will be repeated iter-
atively for a given number of rounds until, ideally, the value of the loss function
converges to a minimum.



8 Feed-Forward Neural Networks

1.3 Activation Function

The activation functions are a fundamental part of the architecture of a deep
neural network, as seen in the Definition (1.1). They are used to control the output
of each neuron and also to decide whether a neuron can be fired or not [20].

One of the main factors to take into account when selecting an activation func-
tion is non-linearity. Only non-linear functions satisfy the conditions of the uni-
versal approximation theorems [4, 5]. Also, if all activation functions of a neural
network are linear, then the model becomes the same as a network with only one
layer. However, linear activation functions can indeed be used in some applica-
tions.

Differentiability and the range of the function are also essential properties.
When the function is not differentiable, errors can arise during the backpropaga-
tion process. Besides, for finite ranges, optimisation tends to be more stable.

Now, we proceed to present and describe some of the most commonly used
activation functions.

Sigmoid

The sigmoid function can be seen in Fig. (1.2a) and is given by:

sigmoid(x) =
1

1 + e−x . (1.21)

Its range lies between 0 and 1, which makes this function very useful for output
neurons when the desired prediction is a probability, especially in binary classifi-
cation problems.

The downside of using the sigmoid as the activation function is that it be-
comes almost flat on both sides, which implies that, for large and small values,
the gradient will be very small. Hence, the gradient descent process can be slowed
down.

Hyperbolic Tangent

The Hyperbolic Tangent function can be written as

tanh(x) =
ex − e−x

ex + e−x . (1.22)

As seen in Fig. (1.2b), it is a shifted version of the sigmoid but centred at the
0 value with a range that lies between -1 and 1. Even though it has the same
downside as the sigmoid function, the fact that it has a wider range and is centred
at 0, makes its performance superior in hidden neurons.



1.3 Activation Function 9

ReLU

The rectified linear unit (ReLU) function, seen in Fig. (1.2c), was first intro-
duced by Hinton et. al. in 2010 [21] and is given by

ReLU(x) = max(0, x). (1.23)

It has been proven that the learning process is faster using this activation function
[22]. Besides, it has an improved performance in comparison with the previous
functions and can generalise better [20]. For these reasons, the ReLU function is
very popular among researchers and used in most of the state-of-the-art models.

An inconvenience of this function is that it is not differentiable at 0. However,
it is not very likely to obtain an absolute 0 value during the training process.

Another drawback is that the gradient is null for negative values, which im-
plies that there is no effect in the learning process. The leaky ReLU, seen in Fig.
(1.2d), attempts to solve this issue by adding a small slope to the negative part.
Nevertheless, the usage of the leaky ReLU is not very common.

(a) Sigmoid function. (b) Tanh function.

(c) ReLU function. (d) Leaky ReLU function.

Figure 1.2: Examples of activation functions.

In conclusion, all active functions have their pros and cons; the selection de-
pends on the problem one is attempting to solve.



10 Feed-Forward Neural Networks



Chapter 2

Supervised Learning

In supervised learning the network has a specific target for each input [7, Ch. 5].
Then, the network’s goal is to approximate the function that maps the input to the
target.

In this chapter, we will explore the performance of neural networks in different
classification problems. The network will have to learn how to divide the space
given a training dataset with their respective classes, i.e. define the frontiers. In
particular, we will study two different cases:

• Binary classification of two concentric circles.

• Binary classification of points in a 1D segment.

We will be using a neural network with one hidden layer and the binary cross-
entropy function loss, Equation (1.7), in both problems. The selected optimisation
method is the Adam algorithm, which, as we have seen in the previous chapter, is
based on the gradient descent technique.

2.1 Case Study: Two Concentric Circles

In Fig. (2.1) we observe the training data, which consists of 200 different points.
The network will return a value between 0 and 1, corresponding to the probability
of a point of being from the class 1.

The issue now is to decide the number of neurons in the hidden layer. The
decision boundary, also called the frontier, is set by a hyperplane in the latent
space [18] and formed by the points with an output value of 0.5.

Then, if we consider a hidden layer with 2 neurons, we need a mapping where
the transformed points are linearly separable. To achieve this, we can consider
the square function as the activation function. In Fig. (2.2a) we see the frontier

11



12 Supervised Learning

Figure 2.1: Training data for the two concentric circles problem. 200 different
points form the two circles, with noise added. Yellow points have label 1 and
purple points label 0.

learned by the network after a training process of 10000 steps and a learning rate
of 0.01. It is clear that the model has successfully learned to classify the training
data and can generalise this classification to the rest of the points of the space.
Also, in Fig. (2.2b) we have the evolution of the loss function, which shows that,
since it converges to a value of 0, the learning process has been satisfactory.

(a) Learned frontier. (b) Evolution of the loss function.

Figure 2.2: Result of the learning process of the neural network for a learning rate
of 0.01 and 10000 steps with a hidden layer of 2 neurons and the square function
as the activation function.



2.1 Case Study: Two Concentric Circles 13

In Fig. (2.3) we have the mapped data in the latent space of the trained net-
work. In this new space, the points are linearly separable, and this is why the
model can classify the original space correctly.

Figure 2.3: Training data mapped into the network’s 2D latent space.

In general, though, the square function is not a good option as an active func-
tion. The reason behind it is that x2 is not bounded, and its values increase quickly.
Then, large values in the training data would have more weight in the learning
process, and the model would not be able to generalise correctly.

Now we will consider tanh as the activation function and 3 neurons in the
hidden layer. The same training parameters will be used.

(a) Learned frontier. (b) Evolution of the loss function.

Figure 2.4: Result of the learning process of the neural network for a learning rate
of 0.01 and 10000 steps with a hidden layer of 3 neurons and tanh as the activation
function.



14 Supervised Learning

Figure 2.5: Training data mapped into the network’s 3D latent space.

In Fig. (2.4a) we see the frontier learned by the network. Also, in Fig. (2.4b)
we see the evolution of the loss function, which shows the learning process. The
model has successfully learned to divide the space correctly with this training
data.

In Fig. (2.5) we have the training data mapped into the 3D latent or hidden
space. We see that the network, with the use of an extra dimension, elevates the
points. Then, a hyperplane of this space, which is, in this case, a plane, will be
able to separate the points of the two different classes. The plane projected to the
original space will be the frontier. This process is known as Kernel trick [19].

2.2 1D Segment

Assume we have a set of points that lie in a segment of 1D. Also, assume those
points are divided into subsets, distributed one next to each other, and each one is
from one of two different classes, respectively. Let s > 1 be the number of subsets.
In Fig. (2.6) we have the training data.

1 2 3 s− 1 s

Figure 2.6: Training data for the 1D segment classification problem with s subsets.

As in the previous case, we need to choose the number of neurons in the
hidden layer. We will consider two different situations: injective and non-injective
activation functions. In both cases, each subset will contain 30 different points.



2.2 1D Segment 15

2.2.1 Injective activation function

Let us take the function tanh as the injective activation function. First, let us
consider the simple case of s = 3 and a neural network with two neurons in the
hidden layer. As seen in Fig. (2.7b), this network, with a learning rate of 0.01
and 2000 steps, can achieve a loss value of 0, which means that it has learned to
classify all the points successfully. Besides, we see that in the latent space in Fig.
(2.7a) the subsets are linearly separable and have an "L" shape.

(a) Transformed training data in the latent
space.

(b) Evolution of the loss function.

Figure 2.7: Result of the learning process of the neural network for a learning rate
of 0.01 and 2000 steps with a hidden layer of 2 neurons and tanh as the activation
function.

Now, for an s = 4, if we try to use the same network as before, it will not be
able to learn to classify all points. Due to the injectivity of the transformation, it is
not possible to add another subset in the 2D latent space and still make it linearly
separable.

Instead, if we use 3 neurons in the hidden layer, the model can solve the prob-
lem. With a learning rate of 0.01 and 20000 steps, we see in Fig. (2.8b) that the
loss function converges to a value of 0. The evolution, though, is not as smooth
as in the previous case. The reason behind it is the fact that this problem is more
complex, and the search for the global minimum is more difficult.

In Fig. (2.8a) we have the points mapped into the 3D latent space. We see that,
as expected, the network uses the extra dimension to add the new subset. Then,
we need to increase the number of neurons in the layer for every subset that we
add.



16 Supervised Learning

(a) Transformed training data in the latent
space.

(b) Evolution of the loss function.

Figure 2.8: Result of the learning process of the neural network for a learning rate
of 0.01 and 20000 steps with a hidden layer of 3 neurons and tanh as the activation
function.

2.2.2 Non-injective activation function

Let us now consider the sine function as the non-injective activation function.
If the points from the training data are transformed into the shape of the sine
function, i.e., each subset goes to the corresponding maximum or minimum, the
system will be linearly separable. In this case, only two neurons in the hidden
layer would be sufficient to solve this classification problem for any value of s.

In Fig. (2.9) we have the learning process results of three neural networks for
the cases of s = 3, 5, 7, respectively. The learning rate used for the three models is
0.01, while the number of steps is 1000, 4000 and 6000, respectively.

It is clear that, in all cases, the network can classify the subsets with 2 neurons
in the hidden space if the activation function is the sine. Even though we could
replicate these results for larger values of s, we would need to improve our models
to do so, since every time the loss function’s global minimum is harder to find.



2.2 1D Segment 17

(a) Transformed training data in the 2D latent
space for s = 3.

(b) Evolution of the loss function for s = 3.

(c) Transformed training data in the 2D latent
space for s = 5.

(d) Evolution of the loss function for s = 5.

(e) Transformed training data in the 2D latent
space for s = 7.

(f) Evolution of the loss function for s = 7.

Figure 2.9: Result of the learning process of the neural network for a learning rate
of 0.01 and 20000 steps with a hidden layer of 3 neurons and tanh as the activation
function.



18 Supervised Learning



Chapter 3

Unsupervised Learning

In unsupervised learning the network does not have a specific target for each
input [7, Ch. 5]. Then, after experiencing the input data, the network’s goal is to
learn properties from it.

In this chapter, we will explore the learning of a good simple representation of
the data, i.e., a representation that preserves as much information as possible but
with some constraints applied. To do so, we will consider a time series dataset
and an Autoencoder architecture for the neural network.

3.1 Autoencoder

An Autoencoder is a neural network model that returns an approximation of
the input data [7, Ch. 14], so the input and output spaces are the same. Assume
the network has only one hidden layer. Then, following Definition 1.1, it consists
of two parts: an encoder, with e(x) = (h1 • φ1)(x), and a decoder, with d(x′) =

(h2 • φ2)(x′).
Besides, the dimension of the hidden layer is assumed to be lower than the

dimension of the input space. Under this construction, the encoding function
projects the input data into a lower dimension space, and the decoder reconstructs
this projection. Then, this network acts as an information bottleneck and can
capture the most significant properties from the training data.

3.2 Case Study: Time Series

The training dataset for this case study consists of the daily historic market
data from 500 random companies, obtained from Yahoo! finance with the help of

19



20 Unsupervised Learning

the library yfinance1. Also, we will divide this data into time series of length 365,
corresponding to the number of days in a year. In total, the dataset contains 3071
time series.

The neural network used is an Autoencoder with a single hidden layer, the
hyperbolic tangent as the activation function, and the MSELoss function, seen in
Equation (1.5). Besides, the selected optimisation method is the Adam algorithm.
We will explore the results for different numbers of neurons in the hidden layer:
1, 2, 3, 5, 10, and 30. To simplify notation, instead of writing k1, we will use k to
denote the hidden layer’s dimension. The input and output dimensions are 365.
As for the learning rate and the number of training steps, the chosen values are
0.001 and 15000, respectively, for all cases.

In Fig. (3.1) we have the architecture of the Autoencoder neural network.

...

e1

ek

... ...

I1

I2

I365

d1

d2

d365

Input
layer

Hidden
layer

Ouput
layer

Figure 3.1: Neural Network corresponding to the Autoencoder for the Time Series,
where k denotes the dimension of the hidden or latent space.

Before starting with the training process, though, we first need to transform
and rescale the data features. The reason behind it is that the range of values in
the original data might be too wide. In this case, larger values may have more
weight, so the network will not be able to generalise correctly.

To rescale the data, we will consider the standardisation and normalisation
transformations. In the first case, the resulting data has 0 mean and a variance of
1. On the other hand, the normalisation transformation takes the minimum value
to 0 and the maximum to 1.

1https://github.com/ranaroussi/yfinance



3.2 Case Study: Time Series 21

Now we can proceed with the learning process. In Fig. (3.2) we have the evo-
lution of the loss function for all the experiments. We observe that the behaviour
is similar for all cases, and they all quickly reach a converging value. Even though
the final errors for the normalised data are lower than the standardised ones, this
is not a sign that the first networks will perform better than the latter ones. The
reason behind it is that since the range of values for the normalised data is nar-
rower than the one for the standardised features, the network’s output will be
closer to the original data and hence the error will be lower.

(a) Normalised case. (b) Standardised case.

Figure 3.2: Evolution of the loss function for the training process using normalised
and standardised data and 1, 2, 3, 5, 10 and 30 neurons in the hidden space.

To evaluate the results, we will take a random time series. In Fig. (3.3) we have
the network’s predictions for the normalised and standardised time series and the
different numbers of neurons. As expected, the higher the number of neurons
in the hidden layer, the better the prediction is. Also, we see that with only 30
neurons, the prediction is very accurate. Then, in Fig. (3.4), we see a comparison

(a) Normalised case. (b) Standardised case.

Figure 3.3: Prediction of a time series for the training process using normalised
and standardised data and 1, 2, 3, 5, 10 and 30 neurons in the hidden space.



22 Unsupervised Learning

between the predictions of the networks trained with the two types of data and
the same number of neurons for the given time series. For k = 1, 10, in Fig. (3.4a,
3.4c), we see that the predictions are very close, but for k = 2, 30, in Fig. (3.4b,
3.4d), we have some differences.

In the case of two neurons we see that, while the normalised network’s predic-
tion is similar to the mean, the standardised one has learned the general trend of
the original time series, which is to first grow and then decrease. For thirty neu-
rons, we observe that the neural network trained with standardised data is able to
approximate the sudden peaks and lows better.

An explanation of this behaviour relies on the differences between the two data
transformation methods. First of all, by using the standardised data, the neural
network does not need to learn the mean and variance, since they are always the
same, 0 and 1. Then, these networks can learn other useful features with fewer
neurons. Besides, the normalised transformation does not work well with outliers
since all data is located between 0 and 1. For this reason, the networks trained with
normalised data are not able to capture the outliers behaviours, sudden peaks and
lows, as well as the ones trained with standardised data.

(a) k = 1. (b) k = 2.

(c) k = 10. (d) k = 30.

Figure 3.4: Normalised vs Standardised predictions for a randomly chosen time
series and different numbers of neurons in the hidden layer.



3.2 Case Study: Time Series 23

To further explore the results, we will take a look at the latent spaces generated
by the hidden layers of each trained neural network. In particular, we will analyse
the networks’ latent spaces for 2 and 3 neurons in the hidden layer. In Fig. (3.5a,
3.5b) we have the latent spaces generated with normalised and standardised time
series, respectively, for k = 2.

(a) Normalised training data, k = 2. (b) Standardised training data, k = 2.

(c) Normalised training data, k = 3.
(d) Standardised training data, k = 3.

Figure 3.5: Latent spaces generated by the networks trained with normalised and
standardised time series and k = 2, 3, where the colour of each element represents
the number of neighbouring points.

In both cases, we see that there are two zones with larger density of neigh-
bours and, if we inspect the times series that are encoded there, we get that they
correspond to the increasing and decreasing time series. Specifically, the highest
density zone is formed by increasing time series, which makes sense since most of
the time series have that shape. The rest of the points correspond to the transitions
between these two cases.

A difference between the two latent spaces is the shape the points form. For
the normalised data, the encoded time series seem to concentrate around the two
dense zones. In contrast, the standardised data encoded points form an elliptical
shape, and the two dense zones are pushed to opposite extremes.



24 Unsupervised Learning

For k = 3, in Fig. (3.5c, 3.5d), we observe a similar behaviour as before. Again,
the dense zones correspond to increasing and decreasing time series, and the
shapes are the same ones but with an extra dimension.

Finally, we will inspect the contribution of each coordinate of the latent space
in the network’s prediction. To do so, we will consider a random point located in
each of the hidden spaces and compare its decoding to the prediction of the same
point adding and subtracting a δ value to each component. In Fig. (3.6) we have
the results for the four different cases.

(a) Normalised training data and k = 2. (b) Standardised training data and k = 2.

(c) Normalised training data and k = 3. (d) Standardised training data and k = 3.

Figure 3.6: Comparison between the decoding of a random point in the latent
spaces and the decoding of the same point adding and substracting a value of
δ = 0.25 to each component, for k = 2, 3 and both types of training data.

For the network with two neurons in the hidden layer and normalised training
data, seen in Fig. (3.6a), we have that the x component is more sensitive to the first
half of the time series’ prediction while the y one is more sensitive to the second
half. Also, when adding a third neuron, seen in Fig. (3.6c), the new component z
modifies the middle part of the prediction.



3.2 Case Study: Time Series 25

From these results, we can tell that, under these conditions, each coordinate
attempts to learn how to approximate one specific section of the time series.

On the other hand, for the networks trained with standardised data, we have
that the behaviour of each component is more complex than in the previous cases,
as seen in Fig. (3.6b, 3.6d), and this is why their predictions tend to be closer to
the original time series.



26 Unsupervised Learning



Chapter 4

Interpretability

Deep neural networks are widely used in areas such as image classification,
text processing, medical research, product recommendation, and a large etc.. Still,
their black-box nature prevents its users to fully understand the reason behind
their predictions. As defined by O. Biran and C. Cotton in [23], interpretability is
the degree to which a human can comprehend the cause of a decision.

The lack of interpretability is one of the reasons why, in areas like medical
diagnosis and therapy, the usage of artificial intelligence, and neural networks, in
particular, is not more extended. Also, since the European Union approved the
General Data Protection Regulation, users have the right to demand explanations
to companies on how deep learning algorithms are making decisions about them
[25]. Then, understanding why a recommender system is suggesting a specific
product to a user, for instance, has become vital for businesses.

Besides, by not clearly understanding how and why the neural networks work,
it is very complicated to improve the existing models, since the only approach is
trial and error.

In this chapter, we present and describe different existing interpretability algo-
rithms and implement three of them on a deep neural network trained to perform
image classification. The reason to focus on the effect on image classification is
that the output of this type of problem is more visual and natural to predict. In
particular, for each of the interpretability algorithms, we will select a picture and
evaluate which parts of it are more important to the model to make its prediction.

Before, though, we introduce the Convolutional Neural Networks, a deep
learning model applied to image analysis, among others, that we will use to com-
pare the interpretability algorithms.

27



28 Interpretability

4.1 Convolutional Neural Networks

Convolutional Neural Networks, or CNNs, are a type of neural network model
for processing data that has a grid-like topology [7, Ch. 9]. Digital images, for
instance, can be represented as a two-dimensional grid of pixels. These models
are very good at detecting patterns and, in the case of images, edges.

At the end of a CNN, we usually have a fully-connected network that takes the
processed data and attempts to solve the original problem, which could be image
classification, for example.

Its architecture is based on the convolution operation. The convolution of two
given functions f and g, denoted as f ∗ g, is defined as

( f ∗ g)(t) =
∫ ∞

−∞
f (t)g(t− τ)dτ, (4.1)

which is commutative. For discretised data, it can be written with a sum instead
of an integral. The first and second arguments of the operation are named input
and kernel, respectively, while the output is referred to as the feature map.

In machine learning applications, the input and kernel are usually tensors, i.e.
multidimensional arrays, where the first one contains the data, and the latter the
parameters learned during the training process.

In addition, the convolution is often performed over more than one axis at the
same time. So if we consider a two-dimensional input I and a two-dimensional
kernel K, we can write the operation as

(I ∗ K)(i, j) = ∑
m

∑
n

I(i + m, j + n)K(m, n), (4.2)

where the values of m and n range between the valid values of the indices of the
kernel tensor.

Another fundamental concept is the stride, which is the distance between two
successive kernel positions. It defines how the values m and n increase and usually
has a value of 1 [33]. In Fig. (4.1) we have an example of a convolution operation
between a 5× 5 input, 3× 3 kernel and stride 1.

A typical CNN layer is formed by two blocks. The first one corresponds to the
convolution operation, as seen before, plus a nonlinear activation function. The
second one is the pooling layer. It reduces the dimensionality of the feature map
in order to make the output invariant to small translations of the input [7, Ch.
9][33].

Some of the most used pooling layer operations are the max-pooling [35],
which takes the maximum value of the window, and global average-pooling [36],



4.2 Interpretability Algorithms 29

Figure 4.1: Convolution operation between an input of size 5× 5 and a kernel of
size 3× 3 and stride 1, from [33].

which computes the average of the elements in the tensor. In Fig. (4.2) we have an
example of a max-pooling operation.

Figure 4.2: Example of max-pooling operation with a filter size of 2 × 2 and a
stride of 2, from [33].

Finally, in Fig. (4.3) we have an example of a CNN model. We can see that
multiple kernels can be applied in an input tensor, generating different feature
maps in each layer.

4.2 Interpretability Algorithms

When addressing the interpretability of a neural network model, we can eval-
uate three different contributions to determine an importance value: features and
input data, neurons and layers. We will only focus on the first type.



30 Interpretability

Figure 4.3: Example of Convolutional Neural Network architecture, from [34].

Many of the existing methods require a baseline to compare the predictions
and assign importance values to the input elements. The selection of this element
depends on the context of the problem and usually represents a lack of features.
For example, if the input data consists of images of numbers with a black back-
ground, a common baseline would be a black picture.

Since the interpretability methods are hard to evaluate empirically, it is chal-
lenging to design such algorithms and compare them. However, we can consider
two axioms that can help us: Implementation Invariance and Sensitivity [26].

Given an interpretability algorithm, it holds the Implementation Invariance ax-
iom if, for two different networks that return the same output for the same input,
it gives the features the same attribution values.

To hold the Sensitivity axiom, if the input differs from the baseline and the
network returns a different prediction, then the method must give to the distinct
feature a non-zero attribution value.

Moreover, a useful method must be able to be applied to an existing neural
network model without the need of modifying its architecture.

Finally, we can classify most of the existing algorithms into two categories,
those which use the backpropagation process and the ones that modify the input
space. We proceed to analyse the two groups and present one algorithm per each.
Furthermore, we also explore a different approach called attention.

4.2.1 Backpropagation: Integrated Gradients

This family of methods is formed by the algorithms that make use of the gradi-
ents or a similar parameter computed during the backpropagation process. Their
goal is to assign a value to each feature corresponding to its contribution to the
network’s prediction.



4.2 Interpretability Algorithms 31

Some examples are the Gradient X Input, DeepLIFT [29], GradientSHAP [30]
and Integrated Gradients [26].

Due to the nature of the chain rule, the usage of gradients guarantees that
the Implementation Invariance axiom holds. However, the Sensitivity axiom does
not in many of these implementations [31]. On the other hand, methods such as
DeepLIFT, that replaces the gradients with differences, do hold Sensitivity but fail
to hold the first axiom; they depend on the network’s architecture.

A backpropagation based method that does hold both axioms is Integrated
Gradients. This algorithm consists of computing the integral of the gradient of the
path between input and the baseline. Given the input x, the baseline x′ and the
network function F(x), the ith element of the integrated gradient is defined as

(
xi − x′i

)
×
∫ 1

0

∂F (x′ + α(x− x′))
∂xi

dα. (4.3)

A drawback of this method, though, is that the calculation of the integrals can be
computationally expensive.

4.2.2 Input Modification: Occlusion

The interpretability methods that are based on input or feature modification
change the value of each feature of the input data and compare its prediction to
the original one so they can assign an importance value to it. The more significant
the difference between the prediction, the more relevant this feature is.

The problem with this type of methods is that, since they have to compute the
network’s prediction for each modification, it can be computationally expensive in
comparison with other methods.

Some examples are Feature Permutation [24, Ch. 5.5], Shapley Value [32] and
Occlusion [27]. In particular, the Occlusion method is focused on image data
and, instead of going pixel by pixel, it divides the image in rectangles of a given
size and replaces one of them for a baseline each time. By using a window of
pixels rather than modifying one at each step, the computational cost decreases
substantially.

4.2.3 Attention: Class Activation Mapping

Attention-based methods take a different approach, and instead of comput-
ing new parameters or modifying the input data to grant importance values to
features, they focus on analysing the existing weights given to each feature. In
particular, we will explore the Class Activation Mapping (CAM), an interpretabil-
ity algorithm for image classification using CNNs [28].



32 Interpretability

CAM attempts to detect in which parts of the image the network is looking at
in order to make its prediction by making use of the architecture of most of the
image classification models.

Figure 4.4: Illustration of the Class Activation Mapping architecture, from [28].

This architecture consists of a CNN connected to a feed-forward neural net-
work with two layers that will perform the classification. The input layer of this
second network will receive the result of applying the global average pooling on
the feature maps from the last convolutional network. This operation returns a
single value for each feature map, so the dimension of the input layer is the same
as the number of feature maps in the previous layer. The output returns a value
between 0 and 1 for each possible class corresponding to the predicted probability.

Once a prediction is made, the process of creating a class activation map is
straightforward. First of all, we consider the class we want to study and select
the corresponding output neuron. Then, we take the weights of the connections
between this neuron and the previous layer. Finally, we multiply each weight to
the associated feature map from the last convolutional layer, which is an image,
and sum all the results. This weighted sum will be the class activation map. For
clarity, in Fig. (4.4) we have an illustration of the procedure to create these maps.

Let us take the ResNet model [37] as an example. This network takes images
with a size of 224× 224, and the last convolutional layer contains 2048 7× 7 feature
maps, i.e. 2048 pictures of size 7 × 7. After the pooling process, we will have
2048 single values. Then, given a class prediction, we perform a weighted sum
of the 2048 feature maps with the corresponding weights. Finally, we rescale the
resulting map of size 7× 7 to 224× 224 to compare it with the original image.



4.3 Algorithm Comparison 33

4.3 Algorithm Comparison

In this section, we present a comparison between the results obtained by ap-
plying the described interpretability algorithms to an image. We have used the
library captum1 for the Integrated Gradients and Occlusion methods implemen-
tations. As for the CAM algorithm, we have used the developers’ source code2.
Finally, as for the neural network, we have used the ResNet-18 convolutional net-
work [37], pretrained with more than a million images from the ImageNet dataset3.

In Fig. (4.5) we have the results of the three algorithms. The input image
consists of an orca breaching, and the trained network correctly classifies it as a
killer whale. We see that all the methods detect that the important part of the
image, as for the network, is the orca itself, as expected.

We see that using Integrated Gradients and Occlusion, the most relevant sec-
tion of the image are the pectoral fins. Besides, we can observe that the network
does not pay attention to the land behind the cetacean.

Even though the Integrated Gradients output seems to be more precise, this
might not be the case for any other image, as this picture has been cherry-picked
to show the behaviour of the three methods.

Finally, an important aspect to take into account when comparing algorithms
is the time of execution. For CAM, since the only operation performed is ob-
taining the weights, the process is relatively fast and takes less than a second to
finish, which makes this algorithm very useful for real-time applications. On the
other hand, Occlusion lasts around 20 seconds and the Integrated Gradients over
2 minutes, mainly due to the computation of the integrals.

1https://github.com/pytorch/captum
2https://github.com/zhoubolei/CAM
3http://www.image-net.org



34 Interpretability

(a) Integrated Gradients.

(b) Occlusion.

(c) Class Activation Mapping.

Figure 4.5: Output of the three different algorithms for an image of an orca. Credit
for the original image: Kenneth Balcomb, Center for Whale Research.



Chapter 5

Uncertainty

So far, we have seen that neural networks make predictions after a learning
process with training data. However, in general, these predictions do not come
with a confidence interval that measures how positive the model is about the
output. Without the measurement of the uncertainty, the predictions can become
useless, no matter how good they are.

Regression and prediction problems are a clear example. Let us consider the
case of a model that predicts the number of units that will be sold of a given
product. If for a specific day the output is 10, for instance, there is a massive
difference if the error is 1 or 100. Then, without error estimation, decisions cannot
be taken from the model’s predictions.

In this chapter, we will see that neural networks can indeed learn to compute
confidence intervals. In particular, we will study a regression problem in two
different scenarios. In the first one, we will train a deep neural network to return
both the regression prediction and the error. In the second one, we will take a
black-box regressor model and use a neural network to add uncertainty to the
regression prediction.

Previously, though, we will introduce the NormalLoss, a loss function that will
allow us to obtain the confidence intervals based on the normal distribution.

5.1 NormalLoss

Let µ ∈ R be the mean and σ > 0 the standard deviation. Then, the likelihood
of a point x of being in the normal distributionN (µ, σ2) is given by the probability
density function:

f (x) =
1√

2πσ2
e−

(x−µ)2

2σ2 . (5.1)

35



36 Uncertainty

Our goal is to find the parameters µ and σ that best fit x in N (µ, σ2), i.e. that
maximise the likelihood. For computational reasons, it is easier if we take the
logarithm of the expression. Then, by changing the sign and ignoring a constant
term, we obtain the NormalLoss function, which will have to be minimised:

J(x, µ, σ) = log(σ) +
(x− µ)2

2σ2 . (5.2)

Finally, if we have a set of N points in the training data, we can express the
NormalLoss as

J(x, µ, σ) =
1
N

N

∑
i=1

(
log(σi) +

(xi − µi)
2

2σ2
i

)
, (5.3)

where x = {xi}i=1,...,N , µ = {µi}i=1,...,N and σ = {σi}i=1,...,N , and the goal is to fit
xi in N (µi, σ2

i ) for i = 1, . . . , N.

5.2 Regression Data

The training data for the regression problem, which can be seen in Fig. (5.1),
will consist of N = 300 different points between 0 and 1, obeying the function
sin(6x + 0.6) and noise added. We observe that points with a value closer to 0
have less noise. The reason behind doing that is to test whether the network will
be able to detect areas with different amounts of noise.

Figure 5.1: Training data for the regression problem consisting of N = 300 points.



5.3 Regressor Neural Network with Uncertainty 37

5.3 Regressor Neural Network with Uncertainty

For the first scenario, we implement a deep neural network with two hidden
layers and 128 neurons in each one. The input layer will contain only one neuron,
corresponding to the input point, and the output layer two, corresponding to the
predicted mean and standard deviation.

The activation functions for the first and second layers is the ReLU, Equation
(1.23), and as for the loss function, the NormalLoss. The optimisation method used
is the Adam algorithm. Lastly, the selected learning parameters are a learning rate
of 0.001 and 5000 steps. In Fig. (5.2) we have the evolution of the NormalLoss
function during the training process. We observe that it quickly converges to a
value close to 0.

Figure 5.2: Evolution of the NormalLoss loss function for the training process of
the regressor neural network with uncertainty.

In Fig. (5.3) we have the prediction of our model. We observe that the network
is able to learn to fit all points in confidence intervals. These confidence inter-
vals have been built adding and subtracting multiples of the predicted standard
deviation to the mean. As expected, areas with more noise present larger uncer-
tainty, whereas where the noise is null, the uncertainty is almost zero. It is clear
then that a neural network, with the use of the NormalLoss, can return a normal
distribution for every point instead of simply predicting the regression.



38 Uncertainty

Figure 5.3: Regression and uncertainty predicted by the neural network. The red
line corresponds to the mean and the orange area to the confidence interval, built
summing the predicted standard deviation to the mean.

5.4 Uncertainty Neural Network for Black-Box Regressor

In this second scenario, the mean is predicted by a trained black-box regres-
sor model, and we will implement a neural network that predicts the standard
deviation.

The architecture of the deep neural network is the same as the previous case
but with 64 neurons in each hidden layer. Also, the output layer will only contain
one neuron, corresponding to the standard deviation.

Again, the loss function used will be the NormalLoss, but this time the mean
of each point will not be learned by the network. Instead, it will have a fixed value
during the learning process, initially predicted by the regressor.

The selected learning parameters are a learning rate of 0.0001 and 6000 steps.
The first regressor to be evaluated is a Decision Tree [38] with a maximum

depth of 5. In particular, we will implement this model using the scikit-learn1

library. Since the max depth of the tree will be 5, the learned regression will have,
at most, 25 = 32 different values. In Fig. (5.4) we have the regression learned with
our tree model. We see that in noisy areas, the predicted values correspond to the
mean of the points.

1https://github.com/scikit-learn/scikit-learn



5.4 Uncertainty Neural Network for Black-Box Regressor 39

Figure 5.4: Predicted regression by the Decision Tree model with a max depth of
5.

Now, with the prediction from the regressor taken as the mean, we can pro-
ceed to train the network. In Fig. (5.5) we have the evolution of the NormalLoss
function during the training process. We observe that it quickly converges to a
value close to 0.

Figure 5.5: Evolution of the NormalLoss loss function for the training process of
the uncertainty neural network.

In Fig. (5.6) we have the confidence intervals predicted by the neural network.
We observe that the predicted uncertainty successfully fits all points according to
their distance to the regression. Besides, if we take a look at the maximum and



40 Uncertainty

minimum zones, we see that the network correctly captures the variation of noise
at each point. In both cases, the predicted standard deviation first grows, reaches
a maximum, and then decreases, as expected.

Figure 5.6: Uncertainty predicted by the neural network. The red line corresponds
to the mean predicted by the regressor model and the orange area to the confi-
dence interval, built summing the predicted standard deviation to the mean.

Now, we will consider two more regressor models, both implemented using
the scikit-learn library as well. The first one will be a Gradient Boosting [39]
with 25 estimators and the second one a Support Vector Regression (SVR) with a
radial basis function (RBF) kernel [40, 41].

(a) Gradient Boosting with 25 estimators. (b) SVR with a RBF kernel.

Figure 5.7: Uncertainty predictions for two different regressor models.



5.5 Conclusions 41

In Fig. (5.7) we have the results of the neural network trained with the two dif-
ferent regression predictions. We observe that, given a more complex regression,
the network is still able to learn to predict the standard deviation for each point.

5.5 Conclusions

After exploring the two different scenarios, we can conclude that with these
simple neural network architectures, one can obtain probability distributions in-
stead of simple regression predictions.

It is also clear that, by wrapping any black-box regressor model with this net-
work, we can add uncertainty to the original regression prediction.

Even though here we have used the normal distribution, which is symmetric,
we could also use asymmetric distributions to obtain more complex and accurate
confidence intervals, as seen in [42]. Moreover, this method has also been proved
to perform well with black-box classifier models [43].



42 Uncertainty



Conclusions

We proceed to evaluate the work done in this project and the achieved goals.
First of all, we have been able to give feed-forward neural networks a mathe-

matical description. We have also presented an analysis of the learning process.
Then, after introducing the two most important types of learning approaches,

we have implemented different neural networks to solve classification problems.
We have also explored a representation problem using time series. We have seen
that by visualising the latent space, we can understand further how the network
is making the predictions.

Once learned the fundamentals of deep learning, we have presented two dif-
ferent applications. First, we have introduced the interpretability problem and
described three distinct algorithms that attempt to evaluate which features are
important for a neural network to make their prediction.

We have also seen how neural networks can learn to predict probability distri-
butions instead of simple predictions. In addition, we have proved this model can
be used to add uncertainty to existing predictions.

Moreover, we have introduced two of the main deep learning architectures,
which are the Autoencoders and the Convolutional Neural Networks.

To conclude, we have not only successfully constructed a mathematical frame-
work to analyse deep neural networks but also learned how to implement them
and understand how such models behave in classification and representation prob-
lems. Furthermore, we have seen their applications in the fields of interpretability
and uncertainty.

The next step from here is to study the remaining type of learning task that we
did not explore, which is reinforcement learning[44], and keep investigating other
neural networks’ architectures that are revolutionising this field such as generative
models[7, Ch. 20].

43



44 Conclusions

Due to the enormous potential that deep learning offers, this technology is
expanding to many research areas. From Astronomy [45] to Marine Biology[46],
scientists are starting to see the utility of this tool. As for the author, this work
has been a step towards a research career related to quantum artificial intelligence
and quantum information.



Bibliography

[1] G. Hinton, S. Osindero, and Y. Teh, A fast learning algorithm for deep belief nets,
Neural computation, 18(7):1527-1554, 2006.

[2] W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous
activity, The bulletin of mathematical biophysics, 5(4):115-133, 1943.

[3] F. Rosenblatt, The perceptron: a probabilistic model for information storage and
organization in the brain, Psychological review, 65(6):386, 1958.

[4] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math.
Control Signal Systems 2, 303-314, https://doi.org/10.1007/BF02551274,
1989.

[5] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural
networks, 4(2):251-257, 1991.

[6] P. G. Breen, C. N. Foley, T. Boekholt and S. P. Zwart, Newton versus the ma-
chine: solving the chaotic three-body problem using deep neural networks, Monthly
Notices of the Royal Astronomical Society, 494:1365-2966, 2020.

[7] I. J. Goodfellow, Y. Bengio and A. Courville, Deep Learning, The MIT Press,
2016.

[8] A. Caterini, A Novel Mathematical Framework for the Analysis of Neural Net-
works, UWSpace, http://hdl.handle.net/10012/12173, 2017.

[9] K. Janocha and W. M. Czarnecki, On Loss Functions for Deep Neural Networks
in Classification, arXiv:1702.05659, 2017.

[10] A. Cauchy, Méthode générale pour la résolution des systèmes d’équations simul-
tanées, C. R. Acad. Sci. Paris, 25:536-538, 1847.

[11] L. Armijo, Minimization of functions having Lipschitz continuous first partial
derivatives, Pacific J. Math. 16, no. 1, 1-3, 1966.

45



46 BIBLIOGRAPHY

[12] T. T. Truong and T. H. Nguyen, Backtracking gradient descent method for general
C1 functions, with applications to Deep Learning, arXiv:1808.05160, 2018.

[13] Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli and Y. Bengio,
Identifying and attacking the saddle point problem in high-dimensional non-convex
optimization, arXiv:1406.2572, 2014.

[14] S. Ruder, An overview of gradient descent optimization algorithms,
arXiv:1609.04747, 2016.

[15] D. Rumelhart, G. Hinton and R. Williams, Learning representations by back-
propagating errors, Nature 323, 533-536, https://doi.org/10.1038/323533a0,
1986.

[16] D. Rumelhart, G. Hinton, and R. Williams, Learning Internal Representations
by Error Propagation, Parallel Distributed Processing, chapter 8, The MIT
Press, 1986.

[17] M. Alber, I. Bello, B. Zoph, P.J. Kindermans, P. Ramachandran and Q. Le,
Backprop Evolution, arXiv:1808.02822, 2018.

[18] E. van den Berg, Some Insights into the Geometry and Training of Neural Net-
works, arXiv:1605.00329, 2016.

[19] C. R. Souza, Kernel Functions for Machine Learning Applications, 17 Mar. 2010.
Web http://crsouza.blogspot.com/2010/03/kernel-functions-for-machine-
learning.html.

[20] C. E. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, Activation
Functions: Comparison of trends in Practice and Research for Deep Learning,
arXiv:1811.03378.

[21] V. Nair and G. Hinton, Rectified Linear Units Improve Restricted Boltzmann
Machines, Proceedings of ICML, 27, 807-814, 2010.

[22] Y. LeCun, Y. Bengio and G. Hinton, Deep learning, Nature 521, 436-444,
https://doi.org/10.1038/nature14539, 2015.

[23] O. Biran and C. Cotton, Explanation and justification in machine learning: A
survey, IJCAI 2017 Workshop on Explainable Artificial Intelligence (XAI),
8–13, 2017.

[24] C. Molnar, Interpretable machine learning. A Guide for Making Black Box Mod-
els Explainable, Web https://christophm.github.io/interpretable-ml-book/,
2019.



BIBLIOGRAPHY 47

[25] F. Fan, J. Xiong and G. Wang, On Interpretability of Artificial Neural Networks,
arXiv:2001.02522, 2020.

[26] M. Sundararajan, A. Taly and Q. Yan, Axiomatic Attribution for Deep Networks,
arXiv:1703.01365, 2017.

[27] M. D. Zeiler and R. Fergus, Visualizing and Understanding Convolutional Net-
works, arXiv:1311.2901, 2013.

[28] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva and A. Torralba, Learning Deep
Features for Discriminative Localization, arXiv:1512.04150, 2015.

[29] A. Shrikumar, P. Greenside and A. Kundaje, Learning Important Features
Through Propagating Activation Differences, arXiv:1704.02685, 2017.

[30] S. Lundberg and S. Lee, A Unified Approach to Interpreting Model Predictions,
arXiv:1705.07874, 2017.

[31] A. Shrikumar, P. Greenside, A. Shcherbina and A. Kundaje, Not Just a Black
Box: Learning Important Features Through Propagating Activation Differences,
arXiv:1605.01713, 2016.

[32] J. Castro, D. Gómez and J. A. Tejada Cazorla, Polynomial calculation of the
Shapley value based on sampling, Computers and Operations Research, 36 (5).
pp. 1726-1730. ISSN 0305-0548, 2009.

[33] R. Yamashita, M. Nishio1, R. K. G. Do and K. Togashi, Convolutional neural
networks: an overview and application in radiology, Insights Imaging 9, 611-629,
https://doi.org/10.1007/s13244-018-0639-9, 2018.

[34] Y. LeCun and Y. Bengio, Convolutional networks for images, speech, and time
series, The handbook of brain theory and neural networks, The MIT Press,
Cambridge, MA, USA, pp. 255-258, 1998.

[35] Y.T. Zhou and R. Chellappa, Computation of optical flow using a neural network,
IEEE 1988 International Conference on Neural Networks, 71-78 vol.2., 1988.

[36] M. Lin, Q. Chen and S. Yan, Network in network, arXiv:1312.4400, 2013.

[37] K. He, X. Zhang, S. Ren and J. Sun, Deep Residual Learning for Image Recogni-
tion, arXiv:1512.03385, 2015.

[38] W.Y. Loh, Classification and Regression Trees, Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 1, 14-23, 2011.



48 BIBLIOGRAPHY

[39] J. Friedman, Greedy function approximation: a gradient boosting machine, Annals
of Statistics, 29(5):1189-1232, 2001.

[40] H. Drucker, C. C, L. Kaufman, A. Smola, V. Vapnik, Support Vector Regression
Machines, Advances in Neural Information Processing Systems, 9, 2003.

[41] J.P. Vert, K. Tsuda, and B. Schölkopf, A primer on kernel methods, Kernel Meth-
ods in Computational Biology, 35-70, 2004.

[42] A. Brando, J. A. Rodríguez-Serrano, J. Vitrià and A. Rubio, Modelling het-
erogeneous distributions with an Uncountable Mixture of Asymmetric Laplacians,
arXiv:1910.12288, 2019.

[43] J. Mena, A. Brando, O. Pujol and J. Vitrià, Uncertainty Estimation for Black-Box
Classification Models: A Use Case for Sentiment Analysis, Pattern Recognition
and Image Analysis, Springer International Publishing, pp. 29-40, 2019.

[44] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, The
MIT Press, 2018.

[45] D. Baron, Machine Learning in Astronomy: a practical overview,
arXiv:1904.07248, 2019.

[46] Y. Shiu, K.J. Palmer, M.A. Roch, E. Fleishman, X. Liu, E.M. Nosal,
T. Helble, D. Cholewiak, D. Gillespie and H. Klinck, Deep neural net-
works for automated detection of marine mammal species, Sci Rep 10, 607,
https://doi.org/10.1038/s41598-020-57549-y, 2020.


	Introduction
	Feed-Forward Neural Networks
	Mathematical Description
	Learning Process
	Loss Function
	Gradient Descent
	Training Step Algorithm

	Activation Function

	Supervised Learning
	Case Study: Two Concentric Circles
	1D Segment
	Injective activation function
	Non-injective activation function


	Unsupervised Learning
	Autoencoder
	Case Study: Time Series

	Interpretability
	Convolutional Neural Networks
	Interpretability Algorithms
	Backpropagation: Integrated Gradients
	Input Modification: Occlusion
	Attention: Class Activation Mapping

	Algorithm Comparison

	Uncertainty
	NormalLoss
	Regression Data
	Regressor Neural Network with Uncertainty
	Uncertainty Neural Network for Black-Box Regressor
	Conclusions

	Conclusions
	Bibliography

