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Abstract

The aim of this work is to study the Brownian motion from a theoretical ap-
proach. Brownian motion (also named Wiener process) is one of the best known
stochastic processes and plays an important role in both pure and applied Mathe-
matics.

In the first chapter, we present the basic concepts of the theory of stochastic
processes such as filtrations, stopping times and martingales which are needed to
develop further sections of the project.

In the second chapter, we define the Brownian motion itself. Furthermore, two
different constructions of Brownian motion are provided. The first one presents
theorems of existence and continuity of stochastic processes from which we end up
building the Brownian motion. The second construction provides another proof
for the existence of Brownian motion based on the idea of the weak limit of a
sequence of random walks.

In the third chapter, we present a discussion of some properties of Brownian
motion paths, also called sample path properties. These include characterizations
of bad behaviour such as the nondifferentiability, as well as characterizations of
good behaviour like the law of the iterated logarithm. Moreover, we study the
zero sets, the quadratic variation and the lack of monotonicity of the Brownian
paths.

Finally, we show some Python simulations of one dimensional Brownian paths.

2010 Mathematics Subject Classification. 60G07, 60G44, 60J65



Resum

L’objectiu d’aquest treball és l’estudi del moviment Brownià des d’un punt
de vista teòric. El moviment Brownià (també anomenat procés de Wiener) és
un dels processos estocàstics més coneguts i té un paper important tant en les
Matemàtiques pures com aplicades.

En el primer capítol es presenten els conceptes bàsics de la teoria de processos
estocàstics, així com les filtracions, els instants d’aturada i les martingales, que
seran necessaris per a desenvolupar seccions posteriors en el treball.

En el segon capítol es defineix de manera rigurosa el moviment Brownià. A
més a més, es demostren dues construccions diferents per al moviment Brownià.
La primera presenta teoremes d’existència i de continuitat de processos estocàstics
a partir dels quals podem construir el moviment Brownià. La segona construcció
proporciona una altra demostració d’ existència del moviment Brownià basada en
la idea de la convergència feble d’una seqüència de camins aleatoris.

En el tercer capítol presentem les propietats més representatives dels camins
del moviment Brownià. Aquestes inclouen caracteritzacions de mal comportament
com per exemple la no-diferenciabilitat, i també caracteritzacions de bon compor-
tament com ara la llei del logaritme iterat. Adicionalment, estudiem el conjunt de
zeros, la variació quadràtica i la manca de monotonia dels camins Brownians.

Finalment, es mostren simulacions unidimensionals dels camins del moviment
Brownià realitzades en Python.



iv Introduction

Motivation of the project

I studied the double degree in Physics and Mathematics and my interest in
Brownian motion began in a class of the subject called Statistical Physics. In 1827,
the Scottish botanist Robert Brown made microscopic observations of the irregular
movement that pollen grains describe when they are suspended in water. Many
scientists attempted to interpret this strange phenomenon. This erratic motion,
named Brownian motion, comes from the extremely large number of collisions of
the suspended pollen particles with the molecules of the liquid. Albert Einstein
also studied this phenomenon, giving a theoretical and quantitative approach to
Brownian motion, such as the diffusion coefficient, the diffusion equation or Ein-
stein’s equation. In addition to this physical analysis, I wanted to go in depth in
the mathematical treatment of Brownian motion, seen as a stochastic process.

Moreover, students of the double degree don’t take the subject named Mod-
elització where stochastic processes and martingales are introduced. So, this is
another reason why I decided tho study Brownian motion.

Note that the mathematical study of Brownian motion was highly developed
by Bachelier, Lévy and Wiener during the twentieth century. The first quantitative
work on Brownian motion is due to L. Bachelier (1900) who was interested in stock
prices fluctuations. A rigorous mathematical treatment began with N. Wiener
(1923) who provided the first existence proof. For this reason, Brownian motion
is also named Wiener process. Furthermore, the most profound work is that of
P. Lévy (1939, 1948) who described in detail the properties of Brownian sample
paths.
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I would also like to extend my gratitude to my family for all the support and
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Chapter 1

Introduction to stochastic
processes

In this chapter we present the basic concepts of probability theory and stochas-
tic processes which will be needed in the next chapters to study the Brownian
motion. The references that have been followed are [1], [2] and [4].

1.1 Stochastic processes and filtrations

A stochastic process is a mathematical model of a random phenomenon fluc-
tuating in time. In other words, it is a mathematical model that aims to describe a
random phenomenon at each moment after the initial time. Let (Ω, F ) be a mea-
surable space, called the sample space, where probability measures can be placed.
Remember that a measurable space is an ordered pair where Ω is a non-empty set
and F is a σ-algebra of subsets of Ω.

Definition 1.1. A stochastic process is a collection of random variables X = {Xt; t ∈ T }
defined on the probability space (Ω, F , P), where t is to be thought as the time
parameter.

T is the set of parameters. If T is a finite or infinite interval subset of R+, then
the process X is said to be a continuous time process. Otherwise, if T is Z+ or a
subset of Z+, then X is a discrete time process. In this work, only continuous time
processes are taken into account. So, X can also be written as X = {Xt; 0 ≤ t < ∞}.

The collection of random variables take values in another measurable space (S,
S) called state space. In this project we will have S = Rd and S=B(Rd). Note that
B(Rd) is the smallest σ-field containing all open sets of the space Rd.

Definition 1.2. For a fixed sample point ω ∈ Ω, the function t 7→ Xt(ω) is the
sample path or trajectory of the process X associated with ω.

1



2 Introduction to stochastic processes

A stochastic process can be expressed as the following way,

X : (t, ω) ∈ T ×Ω −→ Xt(ω) ∈ Rd (1.1)

Definition 1.3. A stochastic process X is measurable if for every U ∈ B(Rd), the set
{(t, ω); Xt(ω) ∈ U} belongs to B([0, ∞))

⊗F .

Definition 1.4. A filtration on (Ω,F ) is a non-decreasing family {Ft; 0 ≤ t < ∞}
of sub-σ-fields of F such that, Fs ⊆ Ft ⊆ F for 0 ≤ s < t < ∞, and Ft ⊆ F for
0 ≤ t < ∞.

Definition 1.5. A stochastic process X is adapted to the filtration {Ft; 0 ≤ t < ∞}
if, for each t ≥ 0, Xt is an Ft-measurable random variable.

Definition 1.6. Let X be a stochastic process. Its natural filtration is defined as the
succession of σ-fields

FX
t := σ{Xs; 0 ≤ s ≤ t}

which are the σ-fields generated by the process variables themselves.

Remark 1.7. Every stochastic process is adapted to its natural filtration.

Notice that the σ-field Ft can be interpreted as the accumulated information of
the process up to time t. σ-fields are included in the study of stochastic processes
to keep track of information. At every moment t ≥ 0 we can think about past,
present and future, and we can ask how much an observer of the process knows
about it at the present, compared to how much she knew at some point in the past
or how much she will know at some point in the future. That is the reason why
our sample space (Ω,F ) is equipped with a filtration (as defined in Definition 1.4).
If A ∈ FX

t , it means that by time t an observer of the process X knows whether A
has occurred or not.

Definition 1.8. Let {Ft; t ≥ 0} be a filtration. We define Ft− , σ(
⋃

s<t Fs) as the
σ-field of events strictly prior to t > 0 and Ft+ , σ(

⋂
ε>0 Ft+ε) as the σ-field of events

immediately after t ≥ 0. We establish F0− , F0 and we say that the filtration {Ft}
is right-continuous (respectively left-continuous) if F = Ft+ (respectively F = Ft−)
holds for every t ≥ 0.

Definition 1.9. A filtration {Ft} satisfies the usual conditions if it is right-continuous
and F0 contains all the P-negligible events in F . Recall that a subset of Ω is called
P-negligible if it belongs to a subset of F of probability zero.
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1.2 Stopping times

In this section, the useful concept of stopping time is introduced. Let’s suppose
that we are interested in the instant at which a given stochastic process exhibits a
certain behavior of interest, for example, the moment at which the price of a stock
exceeds a certain value. We name T(ω) the instant at which the phenomenon
manifests itself for the first time.

Definition 1.10. A random time is an F -measurable random variable which takes
values in [0,∞]. We can write

T : ω ∈ Ω −→ T(ω) ∈ T ∪ {∞} (1.2)

Definition 1.11. Let (Ω,F ) be a measurable space equipped with a filtration {Ft}.
A random time T is a stopping time with respect to the filtration {Ft} if the event
{T ≤ t} belongs to the σ-field Ft, for every t ≥ 0.

Intuitively, this condition means that the "decision" of whether to stop at time
t must be based only on the information present at time t, not on any future
information.

Example 1.12. One dimensional simple random walk. Let {Yi}i≥0, i ∈ N, be a
collection of independent identically distributed random variables that can only
take two values, each one with probability 1/2:

Yi =

{
+1, p = 1

2
−1, p = 1

2

Now we define for each integer t, t ≥ 0,

X0 = 0, Xt =
t

∑
i=0

Yi

and then, the collection of random variables {X0, X1, X2, . . . } is called simple ran-
dom walk. This is a discrete time stochastic process. Imagine the coin toss game,
and that at each turn the balance goes up $1 or goes down $1 (starting with $0).
The total balance at each turn can be described as a simple random walk. To pro-
vide an example of stopping time, imagine that a player plays until he wins $100,
and let T be the first time at which the balance becomes $100. Then T is a stopping
time. On the contrary, let τ be the time at which the balance reaches the maximum
amount of money; then τ is not a stopping time because it requires information
about the future as well as the present and past.
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Example 1.13. Hitting time. Let X be a stochastic process adapted to a filtration
{Ft}. Consider a subset Γ ∈ B(Rd) of the state space of the process. Then the
hitting time is defined as

HΓ(ω) = inf{t ≥ 0; Xt(ω) ∈ Γ}.

Furthermore, we can ask how to measure the information accumulated up to
a stopping time T. Suppose that an event A is part of this information, that is, by
time T the occurrence or non occurrence of A is known. If by time t we observe
the value of T (which is possible if t ≥ T) then we will also be able to tell whether
A has occurred or not. In other words, A ∩ {T ≤ t} and Ac ∩ {T ≤ t} must both
be measurable, for every t ≥ 0.

Definition 1.14. Let T be a stopping time of the filtration {Ft}. The σ-algebra FT

of events determined prior to the stopping time T consists of those events A ∈ F for
which A ∩ {T ≤ t} ∈ Ft for every t ≥ 0.

1.3 Martingales

Now, let’s define a martingale in continuous time. The standard example of a
continuous-time martingale is the one-dimensional Brownian motion, as we will
see in next chapter. Consider a real-valued process X = {Xt; 0 ≤ t < ∞} on a
probability space (Ω,F , P), which is adapted to a given filtration {F}.

Definition 1.15. The process {Xt,Ft; 0 ≤ t < ∞} is a submartingale (respectively a
supermartingale) with respect to the filtration {F} if,

1. Xt ∈ Ft for every t ≥ 0,

2. E(|Xt|) < ∞ for every t ≥ 0,

3. for every 0 ≤ s < t < ∞, we have that, a.s.P -almost surely P-, E(Xt|Fs) ≥ Xs

(respectively a E(Xt|Fs) ≤ Xs).

Then, {Xt,Ft; 0 ≤ t < ∞} is a martingale if it is both a submartingale and a
supermartingale.

If we have a discrete time process M = {Mn,Fn; n ∈ Z+}, condition 3 in
Definition 1.15 can be written as E(Mn|Fn−1) ≥ Mn−1 for a submartingale, and
E(Mn|Fn−1) ≤ Mn−1 for a supermartingale.

If M is a martingale, then E(Mn|Fn−1) = Mn−1 and it can also be written as
E(Mn −Mn−1|Fn−1) = 0, a.s. for every n ∈N.
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Definition 1.16. Let X = {Xt,Ft; t ≥ 0} be a right-continuous martingale. We say
that X is square-integrable if E(X2

t ) < ∞ for every t ≥ 0. If, in addition X0 = 0 a.s.,
we write X ∈ M2 (or X ∈ Mc

2, if X is also continuous). M2 (Mc
2) is the space of

(continuous) square-integrable martingales.

1.4 Markov Processes

Definition 1.17. The stochastic process {Xt,Ft; 0 ≤ t < ∞} on (Ω,F , P) is a
Markov process if, for all B ∈ R, and {t1, . . . , tn} ⊂ [0, ∞) we have

P(Xtn ∈ B|Ftn−1) = P(Xtn ∈ B|Xtn−1), a.s.

In other words, the probability of each event depends only on the state attained in
the previous event.

The past σ(Xs, s ≤ t) and the future σ(Xs, s ≥ t) play symmetric roles, and
the intuitive meaning is that the past and the future are independent given the
present. Note that if the probability measure P is changed, there is no reason why
X should remain a Markov process.

A similar statement, only when the deterministic time tn−1 is changed by a
stopping time T, is typically referred to as the Strong Markov Property [4], [12].
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Chapter 2

Brownian motion. Constructions
of Brownian motion

The range of application of Brownian motion as defined here goes far beyond
a study of microscopic particles in suspension and includes modeling of stock
prices, of thermal noise in electrical circuits and of random perturbations in phys-
ical, biological and economic systems, among others. In this chapter, we define in
a rigorous way the Brownian motion, and furthermore we prove its existence and
construction in two different ways. We mainly follow references [1] and [5].

2.1 Definition of Brownian motion

Definition 2.1. A standard, one-dimensional Brownian motion is a continuous,
adapted process B = {Bt,Ft; 0 ≤ t < ∞} defined in a probability space (Ω,F , P),
accomplishing that B0 = 0, a.s. and for 0 ≤ s < t, the increment Bt − Bs is inde-
pendent of Fs and it is normally distributed with mean zero and variance t− s.

If B is a Brownian motion and 0 = t0 < t1 < ... < tn < ∞, the increments
{Bti − Bti−1}n

i=1 are independent random variables and the distribution of Bti −
Bti−1 depends only on the difference ti − ti−1. So, it is a normal distribution with
mean zero and variance ti − ti−1. Then we say that the process B has stationary,
independent increments. The distribution function for (Bt1 , . . . , Btn) is,

F(t1,...,tn)(x1, . . . , xn) =

∫ x1

−∞

∫ x2

−∞
· · ·

∫ xn

−∞
p(t1; 0, y1)p(t2 − t1; y1, y2) . . . p(tn − tn−1; yn−1, yn) dyn . . . dy2 dy1,

(2.1)

7



8 Brownian motion. Constructions of Brownian motion

for (x1, . . . , xn) ∈ Rn and p is the Gaussian distribution,

p(t; x, y) ,
1√
2πt

e
−(x−y)2

2t , t > 0; x, y ∈ R. (2.2)

Definition 2.2. Let d be a positive integer. A standard d-dimensional Brownian motion
is a vector-valued stochastic process Bt = (B(1)

t , B(2)
t , . . . , B(d)

t ), t ≥ 0, whose com-
ponents B(i)

t , i = 1, . . . , d, are independent, standard one-dimensional Brownian
motions.

We present now the Dynkin system theorem which is used when we need to
establish that a certain property (which holds for a collection of sets closed under
finite intersection) also holds for the σ-field generated by this collection.

Definition 2.3. A collection D of subsets of a set Ω is a Dynkin system if

1. Ω ∈ D

2. A, B ∈ D and B ⊆ A imply that A \ B ∈ D

3. {An}∞
n=1 ∈ D and A1 ⊆ A2 ⊆ . . . imply that

⋃∞
n=1 An ∈ D.

Theorem 2.4. Let C be a collection of subsets of Ω which is closed under pairwise in-
tersection. If D is a Dynkin system containing C, then D also contains the σ-field σ(C)
generated by C.

Remark 2.5. Remember that a collection C of subsets of Ω is closed under intersec-
tion if A ∩ B belongs to C whenever A and B belongs to C.

Remark 2.6. Let X = {Xt; 0 ≤ t < ∞} be a stochastic process which accom-
plishes that X0, Xt1 − Xt0 , . . . , Xtn − Xtn−1 are independent random variables, for
every integer n ≥ 1 and indices 0 = t0 < t1 < · · · < tn < ∞. Then for any fixed
0 ≤ s < t < ∞, the increment Xt − Xs is independent of FX

s .
Indeed, for fixed 0 ≤ s < t < ∞, n ≥ 1 and indices 0 = s0 < s1 < · · · < sn = s,

the σ-algebra σ(X0, Xs1 , . . . , Xsn) = σ(X0, Xs1 −Xs0 , . . . , Xsn −Xsn−1) is independent
of Xt − Xs. The union of all σ-algebras of this form constitutes a collection C of
sets independent of Xt−Xs which is closed under finite intersections. Now D, the
collection of all sets in FX

s which are independent of Xt − Xs, is a Dynkin system
containing C. From Theorem 2.4 we can conclude that FX

s = σ(C) is contained in
D.
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The filtration {Ft} is part of the definition of Brownian motion. However, if we
have B = {Bt; 0 ≤ t < ∞} with no filtration, and we know that B has stationary,
independent increments and that Bt = Bt − B0 is normal with mean zero and
variance t, then {Bt,F B

t ; 0 ≤ t < ∞} is a Brownian motion (which follows from
the discussion on Remark 2.6 above).

When we study the Brownian motion, one of the first problems that we come
across is its existence. In this work two different constructions of Brownian motion
are provided. First in Section 2.2, given the finite-dimensional distributions of the
process we can construct a probability measure and a process on an appropriate
measurable space in order to obtain the original finite-dimensional distributions.
In Section 2.3 a proof based on the weak convergence of random walks is provided.
Moreover, if the reader is interested, another construction of Brownian motion can
be found in Chapter 2 in [1]. It is an approach for Brownian motion which exploits
the Gaussian property of this process and it is also based on Hilbert space theory.
It is very similar to Wiener’s original construction (1923), which was later modified
by Lévy (1948).

2.2 First construction of Brownian motion

In this section we present the Kolmogorov consisteny theorem (or Daniell-
Kolmogorov theorem) that guarantees that a suitable consistent collection of finite-
dimensional distributions can define a stochastic process. With this proposal in
mind, we first define the concept of a family of finite-dimensional distributions,
and then we proof the Kolmogorov consisteny theorem. In what follows, in order
to avoid heavy notations we restrict to the one dimensional case, d = 1.

The Kolmogorov-Čentsov theorem (or Kolmogorov continuity theorem) is stated
and proved in the second part of this section. As in the definition of Brownian
motion it is required that the sample paths are continuous almost surely, we use
the Kolmogorov continuity theorem to construct a continuous modification of the
process obtained by the Kolmogorov consistency theorem.

Definition 2.7. Let T̃ be the set of finite sequences t
˜
= (t1, . . . , tn) of distinct non-

negative numbers, where n ∈ N. Suppose that for every t
˜

of length n there exists

a probability measure Qt
˜

on the measurable space (Rn,B(Rn)). The collection

{Qt
˜
}{t

˜
∈T̃} is called a family of finite-dimensional distributions. This family is consistent

if the following two conditions are satisfied:

i) If s
˜
= (ti1 , . . . , tin) is a permutation of t

˜
= (t1, . . . , tn), then for any Ai ∈ B(R),

i = 1, . . . , n, we have that Qt
˜
(A1×A2×· · ·×An) = Qs

˜
(Ai1 ×Ai2 ×· · ·×Ain).
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ii) If t
˜
= (t1, t2, . . . , tn) with n ≥ 1, s

˜
= (t1, t2, . . . , tn−1), and A ∈ B(Rn−1) then

we have that Qt
˜
(A×R) = Qs

˜
(A).

We consider R[0,∞) the set of all real-valued functions in [0,∞).

Definition 2.8. We define an n-dimensional cylinder set in R[0,∞) which is a set of
the form

C , {ω ∈ R[0,∞); (ω(t1), . . . , ω(tn)) ∈ U}, (2.3)

taking into account that U ∈ B(Rn) and ti ∈ [0, ∞), i = 1, . . . , n. Let C be the field
of all cylinder sets of all finite dimensions in R[0,∞).

If we have a probability measure P on the space (R[0,∞),B(R[0,∞))), it is possi-
ble to define a family of finite-dimensional distributions by,

Qt
˜
(U) = P[ω ∈ R[0,∞); (ω(t1), . . . , ω(tn)) ∈ U], (2.4)

where U ∈ B(Rn) and t
˜
= (t1, . . . , tn) ∈ T̃. The inverse fact is of great interest

because it allows the construction of the probability measure P using the finite-
dimensional distributions of Brownian motion.

2.2.1 Daniell-Kolmogorov Theorem

The Daniell-Kolmogorov theorem (or Daniell-Kolmogorov extension theorem,
or Kolmogorov consistency theorem) is a very important theorem of the theory of
stochastic processes because it provides existence results for probability measures.

Theorem 2.9. (Daniell-Kolmogorov Theorem). Let {Qt
˜
} be a consistent family of

finite-dimensional distributions. Then, there exists a probability measure P on the space
(R[0,∞),B(R[0,∞))) such that Equation (2.4) holds for each t

˜
∈ T̃.

Before starting with the proof of Theorem 2.9 we present the Carathéodory
Extension Theorem and a useful lemma that will be used in the demonstration.
The proof of Lemma 2.11 can be found in [5].

Theorem 2.10. (Carathéodory Extension Theorem) Let Ω be a non-empty set and let
G be a family of subsets that satisfy:

i) Ω ∈ G,

ii) If A, B ∈ G ⇒ A ∪ B ∈ G,
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iii) If A ∈ G ⇒ Ω \ A ∈ G.

Let σ(G) be the σ-algebra generated by G. If Q0 is a σ-additive measure on the space
(Ω,G) which is σ-finite, then there exists a unique σ-additive measure Q on (Ω, σ(G))
such that for A ∈ G, Q0(A) = Q(A).

Lemma 2.11. Let Bn ⊂ Rn, n ∈ N be a sequence of Borel sets that satisfy Bn+1 ⊂
Bn ×R. Let us assume that for every n ∈ N a probability measure µn is given on the
space (Rn,B(Rn)) and that these probability measures are compatible in the sense that,
µn(A1 × A2 × · · · × An−1 ×R) = µn−1(A1 × A2 × · · · × An−1), where Ai ∈ B(Rn)

and satisfy that µn(Bn) > ε, with 0 < ε < 1. Then, there exists a sequence of compact
sets Kn ⊂ Rn, such that:

i) Kn ⊂ Bn,

ii) Kn+1 ⊂ Kn ×R,

iii) µn(Kn) ≥ ε/2.

Proof. (Theorem 2.9 Daniell-Kolmogorov) We begin by defining a set function Q
on the field of cylinders C. If C is given by Definition 2.8 and t

˜
= (t1, t2, . . . , tn) ∈ T̃,

we set
Q(C) = Qt

˜
(U), C ∈ C. (2.5)

Thanks to the assumptions on {Qt
˜
}, the set function Q is well defined and it is

finitely additive on C, with Q(R[0,∞)) = 1.
The set of all possible cylinders C satisfies the assumptions of Carathéodory’s

theorem. So, in order to conclude, we only have to prove the countable additivity
of Q on C, and we can then use the Carathéodory’s theorem to assert the existence
of the desired extension P of Q to B(R[0,∞)). Therefore, we have to show that, if
{Cn}∞

n=0 is a sequence of pairwise disjoint cylinders in C and C = ∑∞
n=0 Cn is a

cylinder also in C, then

Q(C) =
∞

∑
n=0

Q(Cn). (2.6)

This is the most difficult part of the proof. For M ∈N we have

Q(C) = Q(C \
M⋃

n=0

Cn) + Q(
M⋃

n=0

Cn) = Q(C \
M⋃

n=0

Cn) +
M

∑
n=0

Q(Cn), (2.7)

due to the finite additivity of Q. So, countable additivity will follow from

lim
M→∞

Q(C \
M⋃

n=0

Cn) = 0. (2.8)
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We name DM = C \ ⋃M
n=0 Cn. Observe that, Q(DM) = Q(DM+1) + Q(CM+1) ≥

Q(DM+1), so the limit in equation (2.8) exists and {Q(DM)}M∈N is a positive
decreasing sequence. At this point, let’s assume that this sequence converges
toward ε > 0, and we shall see that in that case,⋂

M∈N

DM 6= ∅ (2.9)

which is clearly absurd.
DM is a cylinder, then

⋃
M∈N DM only involves a countable sequence of times

t1 < t2 < . . . and every DM can be described as follows (as in Definition 2.8)

DM = { f ∈ R[0,∞); ( f (t1), . . . , f (tM)) ∈ BM} (2.10)

where Bn ⊂ Rn, n ∈ N, is a sequence of Borel sets satisfying that Bn+1 ⊂ Bn ×R.
Since we assumed that Q(DM) ≥ ε, we can use the previous lemma to construct a
sequence of compact sets Kn ⊂ Rn, n ∈N, accomplishing that

i) Kn ⊂ Bn,

ii) Kn+1 ⊂ Kn ×R,

iii) Qt
˜
(Kn) ≥ ε/2.

Since Kn is a non-empty set, we can pick (xn
1 , . . . , xn

n) ∈ Kn. We know that the
sequence (xn

1 )n∈N has a convergent subsequence (xj1(n)
1 )n∈N that converges to x1 ∈

K1. The same way, the sequence (xn
1 , xn

2 )n∈N has a convergent subsequence which
converges to (x1, x2) ∈ K2. By repeating this process, we obtain a sequence (xn)n∈R

such that for every n ∈N, (x1, . . . , xn) ∈ Kn.
Then, the event

{ f ∈ R[0,∞), ( f (t1), . . . , f (tM)) = (x1, . . . , xM)}

is in DM, which contradicts the fact that
⋂

M∈N DM = ∅. Therefore, the sequence
{Q(DM)}M∈N converges towards 0, which implies the σ-additivity of Q.

Our goal is to build a probability measure P on (Ω,F ) = (R[0,∞),B(R[0,∞))) in
a way that the process B = {Bt,F B

t ; 0 ≤ t < ∞} defined by the coordinate mapping
process, Bt(ω) , ω(t), is a standard one-dimensional Brownian motion under the
probability P. Remember that, F B

t , σ(Bs; 0 ≤ s ≤ t).
Now, let t

˜
= (t1, t2, . . . , tn) with ti’s distinct (i = 1, . . . , n), and let the random

vector (Bt1 , . . . , Btn) have the distribution determined by the expression in (2.1)
(the ti must be ordered from smallest to largest). For U ∈ B(Rn), let Qt

˜
(U) be the
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probability under this distribution that (Bt1 , . . . , Btn) is in U. This defines a family
of finite-dimensional distributions {Qt

˜
}t

˜
∈T̃, which is consistent. Clearly, given

t
˜
= (t1, t2, . . . , tn) and s

˜
= (ti1 , ti2 , . . . , tin) a permutation of t

˜
, we have constructed

a distribution for the random vector (Bt1 , Bt2 , . . . , Btn) under which

Qt
˜
(U1 ×U2 × · · · ×Un) = P[(Bt1 , Bt2 , . . . , Btn) ∈ U1 ×U2 × · · · ×Un]

= P[(Bti1
, Bti2

, . . . , Btin
) ∈ Ui1 ×Ui2 × · · · ×Uin ]

= Qs
˜
(Ui1 ×Ui2 × · · · ×Uin).

Moreover, for U ∈ B(Rn−1) and s′
˜
= (t1, t2, . . . , tn−1) we have that,

Qt
˜
(U ×R) = P[(Bt1 , Bt2 , . . . , Btn−1) ∈ U] = Qs′

˜
(U).

From Theorem 2.9 we get the following Corollary.

Corollary 2.12. There exists a probability measure P on the space (R[0,∞),B(R[0,∞)))

under which the coordinate mapping process Bt(ω) = ω(t), ω ∈ R[0,∞), t ≥ 0, has
stationary, independent increments. That is, an increment Bt− Bs, 0 ≤ s < t, is normally
distributed with mean zero and variance t− s.

Remark 2.13. Note that the Brownian motion that we have built is on the sample
space R[0,∞) of all real-valued functions on [0, ∞), not on the space of all continu-
ous functions on [0, ∞), denoted as C[0, ∞).

2.2.2 Kolmogorov’s Continuity Theorem

Definition 2.14. A stochastic process X with values in (Ω,F ) is a.s. continuous if,
for almost all ω ∈ Ω, the function t −→ Xt(ω) is continuous.

We would like our process B to have this property, but note that there is no
reason why the set {ω : t −→ Xt(ω) continuous} should be measurable. In fact,
the only B(R[0,∞))-measurable set contained in C[0, ∞) is the empty set.

Since we want to construct the Brownian motion with state space R it is tempt-
ing, as we did, to use as sample space R[0,∞) of all possible paths, and as random
variables Xt the coordinate mapping over t, namely Xt(ω) = ω(t). Each set in
B(R[0,∞)) depends only in a countable set of coordinates and therefore the set
of continuous ω’s is not in B(R[0,∞)). That is, C[0, ∞) is not in the σ-algebra
B(R[0,∞)), and P(C[0, ∞)) is not defined. To overcome this issue we will con-
struct a continuous modification of the coordinate mapping process seen in Corol-
lary 2.12. Next, some useful concepts are defined to continue with the construction
of the continuous Brownian motion process.
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Definition 2.15. Let X and Y be two stochastic processes defined on the same
probability space (Ω,F , P). We say that X and Y are modifications of each other if,
for every t ≥ 0, we have that,

P{ω ∈ Ω : Xt(ω) = Yt(ω)} = 1.

Note that two processes can be modifications of one another and have com-
pletely different sample paths.

Definition 2.16. Let X and Y be two stochastic processes defined on the same
probability space (Ω,F , P). We say that X and Y have the same finite-dimensional
distributions if, for any integer n ≥ 1, real numbers 0 ≤ t1 < t2 < · · · < tn < ∞,
and U ∈ B(Rn), we have that,

P[(Xt1 , Xt2 , . . . , Xtn) ∈ U] = P[(Yt1 , Yt2 , . . . , Ytn) ∈ U].

Definition 2.17. Let f be a function f : [0, ∞) −→ Rd. We say that f is Hölder-
continuous if there exist nonnegative real constants C, α > 0 such that,

| f (t)− f (s)| ≤ C‖t− s‖α (2.11)

for every s, t ∈ [0, ∞).

Remark 2.18. As we will see in Theorem 2.23 we are also interested in functions
which are locally Hölder-continuous.

Now, three useful lemmas are sketched out.

Lemma 2.19. (The Borel-Cantelli Lemma). Let {An} be a sequence of events.

1. If ∑n P(An) < ∞, then
P
[

lim
n→∞

sup An

]
= 0, (2.12)

2. If ∑n P(An) = ∞ and, in addition, the events of the sequence {An} are pairwise
independent, then

P
[

lim
n→∞

sup An

]
= 1. (2.13)

Lemma 2.20. (Markov’s inequality). Let X be a positive random variable, then for every
a > 0,

P(X ≥ a) ≤ E(X)

a
. (2.14)
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Lemma 2.21. (Tchebychev’s inequality). Suppose that X is a random variable with finite
variance V(X). Then we have the following inequality:

P (|X− E(X)| ≥ t) ≤ V(X)

t2 , t > 0. (2.15)

Lemma 2.22. (Kolmogorov’s inequality). Suppose that {Xn} is an independent sequence
of random variables with finite variance and Sn = ∑n

k=1 Xk. Then we have the inequality,

P
(

max
1<k<n

|Sk − E(Sk)| ≥ t
)
≤ V(Sn)

t2 , t > 0. (2.16)

Theorem 2.23. (Kolmogorov’s Continuity Theorem). Suppose that a real-valued pro-
cess X = {Xt; 0 ≤ t ≤ T} on a probability space (Ω,F , P) satisfies the following
condition,

E(|Xt − Xs|α) ≤ C|t− s|1+β (2.17)

for 0 ≤ s, t ≤ T and for some positive constants α, β and C. Then there exists a contin-
uous modification of X, X̃ = {X̃t; 0 ≤ t ≤ T} which is locally Hölder-continuous with
exponent γ for every γ ∈ (0, β/α), it means that,

P

ω; sup
0<t−s<h(ω)

s,t∈[0,T]

|X̃t(ω)− X̃s(ω)|
|t− s|γ ≤ δ

 = 1, (2.18)

where h(ω) is a positive random variable and δ > 0 is an appropiate constant.

Proof. In order to simplify the notation we take T = 1, without loss of generality.
As a consequence of Lemma 2.20 and using the hypothesis of the theorem we have
that, for any ε > 0,

P [|Xt − Xs| ≥ ε] ≤ E|Xt − Xs|α
εα

≤ C
εα
|t− s|1+β, (2.19)

so when s → t then Xs → Xt in probability. Moreover, setting t = k
2n , s = k−1

2n and
ε = 2−nγ, with 0 < γ < β

α , we obtain the following inequality:

P
[
|X k

2n
− X k−1

2n
| ≥ 2−nγ

]
≤ C2−n(1+β−αγ), (2.20)

and consequently,

P
[

max
1≤k≤2n

|X k
2n
− X k−1

2n
| ≥ 2−nγ

]
= P

[
2n⋃

k=1

|X k
2n
− X k−1

2n
| ≥ 2−nγ

]
≤

≤
2n

∑
K=1

P
[
|X k

2n
− X k−1

2n
| ≥ 2−nγ

]
≤ C2−n(β−αγ)

(2.21)
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where the last inequality comes from the above inequality (2.20). Observe that

∞

∑
n=1

P
[

max
1≤k≤2n

|X k
2n
− X k−1

2n
| ≥ 2−nγ

]
< +∞, (2.22)

due to the fact that γ ∈ (0, β/α). So, we can use the Lemma 2.19 (Borel-Cantelli)
and we obtain that

P
[

lim
n→∞

sup
(

max
1≤k≤2n

|X k
2n
− X k−1

2n
| ≥ 2−nγ

)]
= P [Ω0] = 0.

So that, there exists a set Ω′ = Ω \Ω0 ∈ F with the property P(Ω′) = 1 such
that for each ω ∈ Ω′,

max
1≤k≤2n

|X k
2n
(ω)− X k−1

2n
(ω)| < 2−nγ, (2.23)

for every n ≥ n′(ω), where n′(ω) is a positive, integer-valued random variable.
Now, let us consider, for each integer n ≥ 1, the partition Dn = {(k/2n); k =

0, 1, . . . , 2n} of the considered interval [0, 1], and then, D =
⋃∞

n=1 Dn is the set of
dyadic rationals in [0, 1]. We now claim that the paths of the restricted process
X|Ω′ are γ-Hölder continuous on D. We shall fix ω ∈ Ω′ and n ≥ n′(ω) and show
that for every m > n, we have

|Xt(ω)− Xs(ω)| ≤ 2
m

∑
j=n+1

2−jγ, ∀t, s ∈ Dm, 0 < t− s < 2−n. (2.24)

We prove it inductively. For the initial case m = n + 1, we only have t = k/2m and
s = (k− 1)/2m and the expression in (2.24) comes from the expression in (2.23).
Let’s suppose that (2.24) is valid for m = n + 1, . . . , M− 1. Now take s < t, s, t ∈
DM and consider the numbers t1 = max{u ∈ DM−1; u ≤ t} and s1 = min{u ∈
DM−1; u ≥ s}, which follow these relationships: s ≤ s1 ≤ t1 ≤ t, s1 − s ≤ 2−M

and t − t1 ≤ 2−M. From the expression (2.23) we have that |Xs1(ω) − Xs(ω)| ≤
2−Mγ and |Xt(ω)− Xt1(ω)| ≤ 2−Mγ. Using these two inequalities together with
inequality (2.24) in the case m = M− 1, we get

|Xt1(ω)− Xs1(ω)| ≤ 2
M−1

∑
j=n+1

2−jγ,

Consequently we obtain (2.24) for m = M.
At this point, we can show that {Xt(ω); t ∈ D} is uniformly continuous in t for

every ω ∈ Ω′. Given s, t ∈ D with 0 < t− s < h(ω) , 2−n′(ω), we select n ≥ n′(ω)

such that 2−(n+1) ≤ t− s < 2−n. Then, from (2.24) we have

|Xt(ω)− Xs(ω)| ≤ 2
∞

∑
j=n+1

2−jγ ≤ δ|t− s|γ, 0 < t− s < h(ω), (2.25)
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where δ = 2/(1− 2−γ). With this we have proved the desired γ-Hölder continuity.
Now, let’s construct the continuous modification of X. We start by defining X̃

as follows.

1. For ω /∈ Ω′, we set X̃t(ω) = 0, 0 ≤ t ≤ 1.

2. For ω ∈ Ω′ and t ∈ D, we set X̃t(ω) = Xt(ω).

3. For ω ∈ Ω′ and t ∈ Dc ∩ [0, 1], we choose a sequence {sn}∞
n=1 ⊆ D with sn →

t. Then, uniform continuity and Cauchy criterion imply that {Xsn(ω)}∞
n=1

has a limit which depends on t but not in the particular sequence {sn}∞
n=1 ⊆

D that we have chosen to converge to t. We set X̃t(ω) = limsn→t Xsn(ω).

Then the resulting process X̃ is continuous; indeed, X̃ satisfies (2.25), so (2.18) is
established. Finally, we see that X̃ is a modification of X. For t ∈ D we have
that X̃t = Xt a.s.. For t ∈ [0, 1] ∩ Dc and {sn}∞

n=1 ⊆ D with sn → t we have that
Xsn → Xt in probability and Xsn → X̃t a.s., so X̃t = Xt a.s.

In the case of our process B, which satisfies that Bt − Bs, 0 ≤ s < t, is normally
distributed with mean zero and variance t − s, then for each positive integer n,
there exists a positive constant Cn for which we have

E(|Bt − Bs|)2n = Cn|t− s|n. (2.26)

Equation (2.26) comes from the calculation of the moments of the normal distri-
bution, whose expressions can be found in [6]. In particular,

E(|Bt − Bs|)4 = 3 · |t− s|2, (2.27)

so the Kolmogorov’s continuity theorem can be applied and the following corol-
lary can be stated.

Corollary 2.24. There exists a probability measure P on (R[0,∞),B(R[0,∞))), and a
stochastic process W = {Wt,FW ; t ≥ 0} on the same space, such that under P, the
process W is a Brownian motion.

Proof. According to Kolmogorov continuity theorem (Theorem 2.23) and expres-
sion in equation (2.27), there exists for each T > 0 a modification WT of the process
B in Corollary 2.12 such that WT is continuous in [0, T]. Let

ΩT = {ω; WT
t (ω) = Bt(ω) for every rational t ∈ [0, T]},

so P(ΩT) = 1. On
⋂∞

T=1 ΩT we have that for positive integers T1 and T2, WT1
t (ω) =

WT2
t (ω), for every rational t ∈ [0, T1 ∧ T2]. Since both processes are continuous
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on [0, T1 ∧ T2], we must have WT1
t (ω) = WT2

t (ω) for every t ∈ [0, T1 ∧ T2], ω ∈⋂∞
T=1 ΩT. And we define Wt(ω) to be this common value. For ω /∈ ⋂∞

T=1 ΩT, we
set Wt(ω) = 0 for all t ≥ 0.

2.3 Second construction of Brownian motion

The most convenient space for Brownian motion is the space of all continuous
real-valued functions on [0, ∞), C[0, ∞), with the following metric,

ρ(ω1, ω2) ,
∞

∑
n=1

1
2n max

0≤t≤n
(|ω1(t)−ω2(t)| ∧ 1). (2.28)

In this section, we show how to construct a measure, named Wiener measure, on
the space C[0, ∞) in a way that the coordinate mapping process is a Brownian mo-
tion. With this aim, the notion of weak convergence of random walks to Brownian
motion will be needed.

If X is a random variable in a probability space (Ω,F , P) with values in a mea-
surable space (S,B(S)), that is, the function X : Ω 7−→ S is F/B(S)-measurable,
then X induces a probability measure PX−1 on (S,B(S)) by the following expres-
sion:

PX−1(B) = P{ω ∈ Ω; X(ω) ∈ B}, B ∈ B(S). (2.29)

Definition 2.25. Particularly, when X = {Xt; t ≥ 0} is a continuous stochastic
process on (Ω,F , P) and X can be regarded as a random variable with values in
(C[0, ∞),B(C[0, ∞)), then PX−1 is called the law of X.

Remark 2.26. The law of a continuous process is determined by its finite dimen-
sional distributions.

Definition 2.27. Recalling the cylinders defined in Definition 2.8, at this point we
name C the collection of finite-dimensional cylinder sets of the form

C = {ω ∈ C[0, ∞); (ω(t1), . . . , ω(tn)) ∈ U}; n ≥ 1, U ∈ B(Rn) (2.30)

where for all i = 1, . . . , n, ti ∈ [0, ∞). And we denote C the smallest σ-field
containing C.

Remark 2.28. B(C[0, ∞)) is generated by the one-dimensional cylinder sets.
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2.3.1 Weak Convergence

Definition 2.29. Let (S, ρ) be a metric space with Borel σ-field B(S). Let {Pn}∞
n=1

be a sequence of probability measures on (S,B(S)), and let P be another measure

on this space. We say that {Pn}∞
n=1 converges weakly to P (and we write Pn

W−→ P), if
and only if,

lim
n→∞

∫
S

f (s)dPn(s) =
∫

S
f (s)dP(s)

for every bounded, real-valued continuous function f on S.

It follows, in particular, that the weak limit P is a probability measure and that
it is unique.

Definition 2.30. Let {(Ωn,Fn, Pn)}∞
n=1 be a sequence of probability spaces, and

consider on each of them a random variable Xn with values in the metric space
(S, ρ). Let (Ω,F , P) be another probability space and a random variable X on it,
with values in (S, ρ). We say that {Xn}∞

n=1 converges to X in distribution (and we

write Xn
D−→ X), if the sequence of measures {PnX−1

n }∞
n=1 converges weakly to the

measure PX−1.
Equivalently, Xn

D−→ X if and only if

lim
n→∞

En f (Xn) = E f (X)

for every bounded, real-valued continuous function f on S, and where En and E
denote the expectations with respect to Pn and P, respectively.

A very important example of convergence in distribution is that provided by
the Central Limit Theorem, which asserts that if {ξn}∞

n=1 is a sequence of indepen-
dent, identically distributed random variables with mean zero and variance σ2,
then {Sn} defined by

Sn =
1

σ
√

n

n

∑
k=1

ξk,

converges in distribution to a standard normal random variable. As we will see
in next sections, it is this fact which dictates that a properly normalized sequence
of random walks will converge in distribution to a Brownian motion (Donsker’s
Invariance Principle).

2.3.2 Tightness Property

We introduce here the concept of tightness which will be used in next sections.
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Definition 2.31. Let (S, ρ) be a metric space and let Π be a family of probability
measures on (S,B(S)). We say that Π is relatively compact if every sequence of
elements of Π has a weakly convergent subsequence.

We say that Π is tight if for every ε > 0, there exists a compact set K ⊆ S such
that P(K) ≥ 1− ε, for every P ∈ Π.

If {Xα}α∈A is a family of random variables, each of them defined in a proba-
bility space (Ωα,Fα, Pα) and take values in S, we say that this family is relatively
compact or tight if the measures {PαX−1

α } is relatively compact or tight, respectively.

We state two theorems which will be used in further sections to prove the
Invariance Principle of Donsker (Theorem 2.43).

Theorem 2.32. (Prohorov) Let Π be a family of probability measures on a complete,
separable metric space S. This family is relatively compact if and only if it is tight.

Theorem 2.33. Let {Pn}∞
n=1 be a sequence of probability measures on (C[0, ∞),B(C[0, ∞))).

It is tight if and only if
lim

λ→∞
sup
n≥1

Pn[ω; |ω(0)| > λ] = 0,

lim
δ→0+

sup
n≥1

Pn[ω; mT(ω, δ) > ε] = 0; ∀T > 0, ε > 0,

where mT(ω, δ) is the modulus of continuity on [0,T] defined as

mT(ω, δ) , max
|s−t|≤δ
0≤s,t≤T

|ω(s)−ω(t)|

with ω ∈ C[0, ∞) and T, δ > 0.

The proofs of these theorems can be found in [1] (pages 62-64).

2.3.3 Convergence of finite-dimensional distributions

We begin by considering that X is a continuous process on (Ω,F , P). For
each ω ∈ Ω, the function t 7−→ Xt(ω) (which we denote by X(ω)) is on C[0, ∞).
Furthermore, since B(C[0, ∞)) is generated by the one-cylinder sets and Xt(·) is
F -measurable for each t, the random function X : Ω 7−→ C[0, ∞) is F/B(C[0, ∞))-
measurable. Thereby, if {X(n)}∞

n=1 is a sequence of continuous processes which can

be defined on different probability spaces, we can ask whether X(n) D−→ X in the
sense defined in Definition 2.30.
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Definition 2.34. Let {t1, . . . , td} be a finite subset of [0, ∞). We define the projection
mapping πt1,...,td : C[0, ∞) −→ Rd as follows,

πt1,...,td(ω) = (ω(t1), . . . , ω(td)).

If a function f : Rd −→ R is continuous and bounded, so it is f ◦πt1,...,td . Thus,

if X(n) D−−−→
n→∞

X, then

lim
n→∞

En f (X(n)
t1

, . . . , X(n)
td

) = lim
n→∞

En( f ◦ πt1,...,td)(X(n))

= E( f ◦ πt1,...,td)(X) = E f (Xt1 , . . . , Xtd).
(2.31)

So that, if the sequence of processes {X(n)}∞
n=1 converges in distribution to the

process X, then all finite-dimensional distributions converge as well.

Remark 2.35. The converse holds in the presence of tightness, but not in general,
as we see in next theorem.

Theorem 2.36. Let {X(n)}∞
n=1 be a tight sequence of continuous processes accomplishing

that, with 0 ≤ t1 < · · · < td < ∞, the sequence of random vectors {(X(n)
t1

, . . . , X(n)
td

)}∞
n=1

converges in distribution. Let Pn be the measure induced by X(n) on (C[0, ∞),B(C[0, ∞))).
Then, {Pn}∞

n=1 converges weakly to a measure P, under which the coordinate mapping
process Wt(ω) , ω(t) on C[0, ∞) satisfies that

(X(n)
t1

, . . . , X(n)
td

)
D−→ (Wt1 , . . . , Wtd), 0 ≤ t1 < · · · < td < ∞, d ≥ 1.

Proof. Every subsequence {X̃(n)} of {X(n)} is tight, and therefore has a further
subsequence {X̂(n)} such that the measures induced on C[0, ∞) by {X̂(n)} con-
verge weakly to a probability measure P, by Theorem 2.32 (Prohorov Theorem): If
another subsequence {X̌(n)} induces measures on C[0, ∞) converging to a proba-
bility measure Q, then P and Q must have the same finite-dimensional distribu-
tions, that is,

P[ω ∈ C[0, ∞); (ω(t1), . . . , ω(td)) ∈ A] = Q[ω ∈ C[0, ∞); (ω(t1), . . . , ω(td)) ∈ A],

where 0 ≤ t1 < t2 < · · · < td < ∞, A ∈ B(Rd) and d ≥ 1. This means P = Q.
Suppose the sequence of measures {Pn}∞

n=1 induced by {Xn}∞
n=1 did not converge

weakly to P. Then, there must be a bounded, continuous function f : C[0, ∞) −→
R such that limn→∞

∫
f (ω)Pn(dω) does not exist, or it does exist but it is different

from
∫

f (ω)P(dω). In both cases, we can chose a subsequence {P̃n}∞
n=1 for which

limn→∞
∫

f (ω)P̃n(dω) exists, but it is different from
∫

f (ω)P(dω). Consequently,

this subsequence can have no further subsequence {P̂n}∞
n=1 with P̂n

W−→ P, and this
fact contradicts the conclusion of the previous paragraph.
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Proposition 2.37. Let {Xn}∞
n=1, {Yn}∞

n=1 and X be random variables with values in the
metric space (S, ρ), and we assume that for each n ≥ 1, X(n) and Y(n) are defined on the

same probability space. If X(n) D−→ X and ρ(X(n), Y(n))→ 0 in probability, when n→ ∞,

then Y(n) D−→ X as n→ ∞.

Proof. Let (Ωn,Fn, Pn) denote the space on which Xn and Yn are defined, and let
En denote the expectation with respect to Pn. Let X be defined on (Ω,F , P). Due
to the hypothesis, we know that limn→∞ En f (X(n)) = E( f (X)) for every bounded,

continuous function f : S −→ R. To prove that Y(n) D−→ X it suffices to show
that limn→∞ En[ f (X(n)) − f (Y(n))] = 0, whenever f is bounded and continuous.
Suppose that such and f is given, and set M = supx∈S| f (x)| < ∞. Since {Xn}∞

n=1
is relatively compact it is tight. So, for each ε > 0 there exists a compact set K ⊂ S,
such that Pn[X(n) ∈ K] ≥ 1 − ε/6M, ∀n ≥ 1. We now choose 1 > δ > 0 so
| f (x)− f (y)| < ε/3 whenever x ∈ K and ρ(x, y) < δ. Finally, we choose a positive
integer N such that Pn[ρ(X(n), Y(n)) ≥ δ] ≤ ε/6M, ∀n ≥ N. We have∣∣∣∣∫Ωn

[ f (X(n))− f (Y(n))]dPn

∣∣∣∣ ≤ ε

3
Pn[X(n) ∈ K, ρ(X(n), Y(n)) < δ]+

+2M · Pn[X(n) /∈ K] + 2M · Pn[ρ(X(n), Y(n)) ≥ δ] ≤ ε.

We state a proposition which will be used in next section.

Proposition 2.38. Let {Xn}∞
n=1 be a sequence of random variables taking values in a

metric space (S1, ρ1) and converging in distribution to X. Suppose that (S2, ρ2) is an-
other metric space, and φ : S1 −→ S2 is continuous. Then, Yn , φ(Xn) converges in
distribution to Y , φ(X).

2.3.4 The Wiener Measure and the Invariance Principle

We are going to consider a sequence of independent, dentically distributed an-
dom variables {ξ j}∞

j=1 with mean zero and variance σ2, 0 < σ2 < ∞. We consider

as well the sequence of partial sums S0 = 0, Sk = ∑k
j=1 ξ j, k ≥ 1. A continuous-

time process Y = {Yt, t ≥ 0} can be obtained from the sequence {Sk}∞
k=1 by the

following way (linear interpolation):

Yt = Sbtc + (t + btc)ξbtc+1, t ≥ 0, (2.32)

where btc denotes the greatest integer less than or equal to t. From Y we can
obtain another sequence of processes {X(n)},

X(n)
t =

1
σ
√

n
Ynt, t ≥ 0. (2.33)
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Remark 2.39. Note that using s = k/n and s = (k + 1)/n, then the increment
X(n)

t − X(n)
s = (1/σ

√
n)ξ(k+1) is independent of FX(n)

s = σ(ξ1, . . . , ξk). Moreover,

X(n)
t − X(n)

s has mean zero and variance t− s. This fact suggests that {X(n)
t ; t ≥ 0}

is approximately a Brownian motion. With the following results we show that,
although the random variables ξ j are not necessary normal, the Central Limit
Theorem dictates that the limiting distributions of the increments of X(n) are nor-
mal.

Theorem 2.40. Let {X(n)} be defined by the expression in (2.33) and 0 ≤ t1 < · · · <
td < ∞, we have

(X(n)
t1

, . . . , X(n)
td

)
D−→ (Bt1 , . . . , Btd), as n→ ∞,

where {Bt,F B
t ; t ≥ 0} is a standard, one-dimensional Brownian motion.

Proof. In order to make the notation simpler, we take the case d = 2. We set, s = t1

and t = t2. Thereby, we want to show that (X(n)
s , X(n)

t )
D−→ (Bs, Bt). From equations

(2.32) and (2.33) we have that,∣∣∣∣X(n)
t −

1
σ
√

n
Sbntc

∣∣∣∣ = 1
σ
√

n
(nt− bntc)

∣∣ξbntc+1
∣∣ ≤ 1

σ
√

n

∣∣ξbntc+1
∣∣ ,

and by the Chebyshev inequality,

P
[∣∣∣∣X(n)

t −
1

σ
√

n
Sbntc

∣∣∣∣ > ε

]
≤ 1

ε2n
→ 0, as n→ ∞.

Therefore,

‖(X(n)
s , X(n)

t )− 1
σ
√

n
(Sbnsc, Sbntc)‖ → 0 in probability.

So, by the Proposition 2.37, it suffices to show that

1
σ
√

n
(Sbnsc, Sbntc)

D−→ (Bs, Bt).

From Proposition 2.38 we observe that it is equivalent to proving

1
σ
√

n

bnsc

∑
j=1

ξ j,
bntc

∑
j=bnsc+1

ξ j

 D−→ (Bs, Bt − Bs).
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Since {ξ j}∞
j=1 are independent random variables, we know that,

lim
n→∞

E

exp{ iu
σ
√

n

bnsc

∑
j=1

ξ j +
iv

σ
√

n

bntc

∑
j=bnsc+1

ξ j}


= lim

n→∞
E

[
exp{ iu

σ
√

n

bnsc

∑
j=1

ξ j}
]
· lim

n→∞
E

exp{ iv
σ
√

n

bntc

∑
j=bnsc+1

ξ j}

 ,

(2.34)

whenever both limits on the right-hand side exist. We start studying the first limit,
and the other one is treated the same way. Since∣∣∣∣∣ 1

σ
√

n

bnsc

∑
j=1

ξ j −
√

s
σ
√
bnsc

bnsc

∑
j=1

ξ j

∣∣∣∣∣→ 0, in probability,

and by the Central Limit Theorem (
√

s/σ
√
bnsc)∑bnsc

j=1 ξ j converges in distribution
to a normal random variable with mean zero and variance s, we have then

lim
n→∞

E

[
exp{ iu

σ
√

n

bnsc

∑
j=1

ξ j}
]
= e

−u2s
2 .

Likewise,

lim
n→∞

E

exp{ iv
σ
√

n

bntc

∑
j=bnsc+1

ξ j}

 = e
−v2(t−s)

2 .

Finally, if we substitute this two equations into (2.34) we complete the proof.

To show that the sequence {X(n)} defined in (2.33) converges to a Brownian
motion in distribution we need tightness (recall Theorem 2.36). To see that tight-
ness is assured, we need these two following lemmas, whose proofs can be found
in [1] (pages 68-70).

Lemma 2.41. Set Sk = ∑k
j=1 ξ j, being {ξ j}∞

j=1 a sequence of independent, identically
distributed random variables, with mean zero and finite variance σ2 > 0. Then, for any
ε > 0,

lim
δ→0+

lim
n→∞

1
δ

P
[

max
1≤j≤bnδc+1

|Sj| > εσ
√

n
]
= 0

Lemma 2.42. Under the assumptions on Lemma 2.41, we have that for every T > 0,

lim
δ→0+

lim
n→∞

1
δ

P

 max
1≤j≤bnδc+1
0≤k≤bnTc+1

|Sj+k − Sk| > εσ
√

n

 = 0.
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With these results we can establish the convergence in distribution of the se-
quence of normalized random walks in (2.33) to Brownian motion. This result is
also known as the invariance principle.

Theorem 2.43. (The Invariance Principle of Donsker). Let (Ω,F , P) be a probability
space on which is given a sequence {ξ j}∞

j=1 of independent, identically distributed random

variables with mean zero and variance σ2 > 0. Define X(n) = {X(n)
t ; t ≥ 0} as (2.33),

and let Pn be the measure induced by X(n) on (C[0, ∞),B(C[0, ∞))). Then, {Pn}∞
n=1

converges weakly to a measure P∗ under which the coordinate mapping process Wt(ω) ,
ω(t) on C[0, ∞) is a standard, one-dimensional Brownian motion.

Proof. Taking into account Theorem 2.36 and Theorem 2.40, now it only remains to
show that {X(n)}∞

n=1 has the property of tightness. To do so, we use Theorem 2.33.
Observe that X(n)

0 = 0 a.s. for every n (see the way we defined it in expressions
(2.32) and (2.33)). Thereby, we only need to show that, for arbitrary ε > 0 and
T > 0,

lim
δ→0+

sup
n≥1

P

 max
|s−t|≤δ
0≤s,t≤T

|X(n)
s − X(n)

t | > ε

 = 0. (2.35)

Here we may replace supn≥1 in this expression by limn→∞, since for a finite num-
ber of integers n we can make the probability in (2.35) as small as we choose, by
reducing δ. But,

P

 max
|s−t|≤δ
0≤s,t≤T

|X(n)
s − X(n)

t | > ε

 = P

 max
|s−t|≤nδ
0≤s,t≤nT

|Ys −Yt| > εσ
√

n

 ,

and
max
|s−t|≤nδ
0≤s,t≤nT

|Ys −Yt| ≤ max
|s−t|≤bnδc+1
0≤s,t≤bnTc+1

|Ys −Yt| ≤ max
1≤j≤bnδc+1
0≤k≤bnTc+1

|Sj+k − Sk|

where the last inequality follows from the fact that Y is piecewise linear and
changes slope only at integer values of t. Then, (2.35) follows from Lemma 2.42.

Definition 2.44. The probability measure P∗ on (C[0, ∞),B(C[0, ∞))), under which
the coordinate mapping process Wt(ω) , ω(t), t ≥ 0, is a standard, one dimen-
sional Brownian motion, is called Wiener measure.

We can think of a standard, one-dimensional Brownian motion defined on any
probability space, as a random variable with values in C[0, ∞). This way, Brow-
nian motion induces the Wiener measure on (C[0, ∞),B(C[0, ∞))). Because of
that, (C[0, ∞),B(C[0, ∞)), P∗) is named the canonical probability space for Brownian
motion.
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Chapter 3

Properties of Brownian Motion

In Section 2.2 we observed the continuity, for almost all ω, of the sample func-
tion t → Bt(ω), t ≥ 0, of Brownian motion. Questions naturally arise concerning
the more refined properties such as differentiability or asymptotic behaviour as
t→ ∞. So, in this section some typical results in this area are presented.

Throughout this section, W = {Wt,Ft; 0 ≤ t < ∞} is a standard linear Brown-
ian motion on (Ω,F , P). In particular, W0 = 0 a.s. P. For fixed ω ∈ Ω, we denote
by W·(ω) the sample path t 7→Wt(ω).

Proposition 3.1. Let W = {Wt,Ft; 0 ≤ t < ∞} be a standard linear Brownian motion.
Then the following properties hold:

a) (Symmetry). The process −W = {−Wt,Ft; 0 ≤ t < ∞}, is a Brownian motion.

b) (Scaling). For every c > 0, the process X = {Xt,Fct; 0 ≤ t < ∞} defined by
Xt = (1/

√
c)Wct is a Brownian motion.

c) (Time-inversion). The process X = {Xt,FX
t ; 0 ≤ t < ∞} defined by X0 = 0,

Xt = tW1/t, for t > 0, is a Brownian motion.

The prove of these properties can be found on [12].

Remark 3.2. Observe that a consequence of c) is the Law of Large Numbers for
the Brownian motion, namely P[limt→∞ t−1Wt = 0] = 1.

Proposition 3.3. Let W = {Wt,Ft; 0 ≤ t < ∞} be a standard one dimensional Brown-
ian motion. Define, for each ω ∈ Ω the new process

M(t) = max
0≤s≤t

Ws(ω).

Then, for all t > 0 and a > 0, P[M(t) > a] = 2 · P[Wt(ω) > a].

27
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Proof. We define τa = min{t ≥ 0; Wt(ω) = a}. We will use the notation Wt(ω) =

ω(t). We have the following equality,

P[(ω(t)−ω(τa)) > 0|t > τa] = P[(ω(t)−ω(τa)) < 0|t > τa]. (3.1)

Then,

P[M(t) > a] = P[t > τa]

=P[{(ω(t)−ω(τa)) > 0} ∩ {t > τa}] + P[{(ω(t)−ω(τa)) < 0} ∩ {t > τa}]
=2 · P[{(ω(t)−ω(τa)) > 0} ∩ {t > τa}] = 2 · P[{(ω(t)− a) > 0} ∩ {t > τa}]
=2 · P[ω(t) > a ∩ {t > τa}] = 2 · P[ω(t) > a],

where we have used equation (3.1) and the fact that ω(τa) = a. Finally, the last
equality holds because if we know that ω(t) > a, it means that necessarily t > τa,
by the definition of τa.

3.1 Markov Property and Strong Markov Property

Proposition 3.4. (Markov Property). Let Wt be a Brownian motion. For any s > 0,
the process X = {Xt,FX

t ; 0 ≤ t < ∞}, defined by Xt = Ws+t −Ws, with 0 ≤ t ≤ s, is a
Brownian motion independent of σ(Wu; u ≤ s). ([12], [1] Chapter 2.5.)

Proposition 3.5. (Strong Markov Property). For every almost surely finite stopping
time T, the process WT+t −WT is a standard Brownian motion independent of Ft. ([12],
[1] Chapter 2.6.)

3.2 The zero set

Definition 3.6. The zero set of the Brownian path is defined as follows,

Z , {(t, ω) ∈ [0, ∞)×Ω; Wt(ω) = 0}.

And for fixed ω ∈ Ω, the zero set of W·(ω) is defined as,

Zω , {0 ≤ t < ∞; Wt(ω) = 0}.

Proposition 3.7. Almost surely, Wt has infinitely many zeros in every time interval
(0, ε), with ε > 0.



3.2 The zero set 29

Proof. We induct on the number of zeros in (0, ε). First, we show that there must
be a zero in this interval. Let M+

t and M−t be the maximal and the minimal
processes, respectively. We fix ε > 0. By Proposition 3.3, we know that P(M+

ε >

a) = 2 · P(Wε > a), for a > 0. By taking the limit as a → 0+ we obtain that
P(M+

ε > 0) = 2 · P(W+
ε > 0) = 2 · (1/2) = 1, since Wt is symmetric. By symmetry,

P(W−ε < 0) = 1. Due to the fact that Wt is almost surely continuous we employ
the intermediate value theorem and conclude that Wt = 0 for some t ∈ (0, ε).

Now take some finite set S of zeros of Wt on the interval (0, ε). We define
T = min{t ≥ 0; t ∈ S}. Since ε was arbitrary when we established that Wt had a
zero in (0, ε), by the same argument we can see that Wt almost surely has a zero
in (0, T). By the minimality of T, this zero must not be in S, thus there is no finite
set containing all the times Wt hits zero, so Z is almost surely infinite.

Remark 3.8. Thus, Wt(ω) crosses the t-axis infinitely often.

Theorem 3.9. For P− a.e. ω ∈ Ω, the zero set Zω

(i) has Lebesgue measure zero,

(ii) is closed and unbounded,

(iii) has no isolated point in (0, ∞).

Proof. (i) Let |Zω| be the Lebesgue measure of Zω. By Fubini’s theorem, we com-
pute the expectation,

E(|Zω|) = E
∫ ∞

0
χ{0}(Wt)dt =

∫ ∞

0
(1 · P(Wt = 0) + 0 · P(Wt 6= 0))dt

=
∫ ∞

0
P(Wt = 0)dt = 0.

We know that |Zω| is non-negative since it is a measure. We now show that non-
negative random variables with expectation zero are almost surely zero. Suppose
X ≥ 0 is a random variable with E(X) = 0 and fix a > 0. Then,

0 = E(X) =
∫

Ω
X · dP ≥

∫
{X≥a}

≥ a · P(X ≥ a) ≥ 0.

So, P(X ≥ a) = 0 for all a > 0. Letting a → 0+, we see that P(X > 0) = 0, and
therefore X = 0 almost surely. We conclude that if E(|Zω|) = 0, then |Zω| = 0.

We should have expected this result because Wt is almost surely nonzero for
all nonzero t since the increment Wt −W0 = Wt is a normal random variable.
Nonetheless, Wt hits 0 infinitelly many times in any interval to the right of the
origin.
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(ii) For P- a.e., ω ∈ Ω, the mapping t 7→ Wt(ω) is continuous, then Zω =

W−1
t ({0}) is closed because it is the inverse image of the closed set {0}. It follows

from an application of the reflection principle that P(supt≥0 Wt/
√

t = +∞) = 1
and P(inft≥0 Wt/

√
t = −∞) = 1 (see [9], [10]). Therefore, given any T > 0 there

must be a time instant t > T such that Wt = 0. If there were a finite last time such
that Wt = 0, then for the sample path, the supremum and the infimum cannot
simultaneously be infinite. This means that the zero set is unbounded.

(iii) To show that the zero set has no isolated points in (0, ∞) consider the time
τq = inf{t ≥ q; Wt = 0} where q ∈ Q. It is clearly a stopping time and it is almost
surely finite because of Proposition 3.7. Moreover, the infimum is a minimum
because Zω is almost surely closed. We apply the Strong Markov property at τq

and we get that Wt+τq −Wτq is a standard Brownian motion. Because we already
know that a Brownian motion crosses 0 in every small interval to the right of the
origin, τq is not isolated from the right in Zω.

Now suppose that we have some z ∈ Zω that is not in {τq|q ∈ Q}. We take
some sequence {qn}∞

n=1 of rational numbers that converges to z. For each qn there
must exist some tn ∈ Zω such that qn ≤ tn < z since z 6= τqn . Because qn → z, we
have that tn → z. So, z is not isolated from the left in Zω.

3.3 Non-differentiability

As we will see in Theorem 3.11, Wt(ω) is nowhere differentiable. So, we can’t
use standard Differential Calculus with Brownian sample paths. Instead, Stochas-
tic Calculus (also named Itô’s Calculus) is used.

Definition 3.10. Let f : [0, ∞)→ ∞ be a continuous function. We denote by

D± f (t) = lim
h→0±

f (t + h)− f (t)
h

the upper (right and left) Dini derivates at t , and by

D± f (t) = lim
h→0±

f (t + h)− f (t)
h

the lower (right and left) Dini derivates at t . The function f is said to be differentiable
at t from the right (respectively, the left) if D+ f (t) and D+ f (t) (respectively, D− f (t)
and D− f (t)) are finite numbers and are equal. The function f is said to be differ-
entiable at t > 0 if it is differentiable from both right and left, and the four Dini
derivates are equal. At t = 0, differentiability is defined as from the right.
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Theorem 3.11. (Paley, Wiener and Zygmund). For almost every ω ∈ Ω, the Brownian
sample path W.(ω) is nowhere differentiable.

Before giving the proof of the theorem we present the underlying idea. For
small h > 0 the increment Wt+h(ω)−Wt(ω) is a Gaussian random variable with
mean 0 and variance h, from where it follows that h−1/2[Wt+h(ω) −Wt(ω)] is
a standard (mean 0 and variance 1) Gaussian random variable and so can be
thought of as being of ordinary magnitude, however small the value of h. If we
then consider the ratio h−1[Wt+h(ω)−Wt(ω)] and let h tend to 0, we see that the
variance of this ratio will become arbitrarily large, and so we would never expect
the existence of a limit of the ratio for each ω, which would have to be the case to
have a time derivative of Wt(ω).

Proof. By the Markov property it suffices to prove the theorem for t ∈ [0, 1]. Sup-
pose that Wt(ω) was differentiable at some point s ∈ [0, 1). Then, since Wt(ω) is
differentiable from the right at s, there exists ε > 0 and an integer l ≥ 1 such that
for 0 < t− s < ε,

|Wt(ω)−Ws(ω)| < l(t− s).

Now we take a larger integer n, and set i = bnsc+ 1. Let j run over i + 1, i + 2,
i + 3, successively. Then we can obtain the following inequality,

W j
n
(ω)−W j+1

n
(ω) <

7 · l
n

, j=i+1, i+2, i+3, (3.2)

where it will become clear in the computations which follow why we take three
successive j′s.

Let Ai,j
l,n be the set of all ω satisfying inequality (3.2), which is a Borel measur-

able set. Let us consider the Borel measurable set

A =
⋃
l≥1

⋃
m≥1

⋂
n≥m

⋃
0<i≤n

⋂
i<j≤i+3

Ai,j
l,n

This set is the event that there exists an integer l such that for all n sufficiently
large, the inequality (3.2) holds at some point i/n. Thus, A includes every ω for
which W·(ω) is differentiable at some point t. So, if we can prove that P(A) = 0,
the proof will be completed. We note that,

P

 ⋂
n≥m

⋃
0<i≤n

⋂
i<j≤i+3

Ai,j
l,n

 ≤ lim
n→∞

inf nP
(∣∣W 1

n
(ω)

∣∣ < 7l
n

)3

=

= lim
n→∞

inf nP
(
|W1(ω)| < 7l√

n

)3

≤ lim
n→∞

n
{

1√
2π

14l√
n

}3

= 0.

Thus the set A is the union of a countable number of sets of probability zero, as
we wanted to prove.
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We have followed reference [2] (Chapter 2, Section 2) in order to prove the
theorem above.

Remark 3.12. Many problems in the natural, social, and biological sciences could
be studied when Newton and Leibniz invented the calculus. The primary compo-
nents of this invention were the use of differentiation to describe rates of change,
the use of integration to pass to the limit in approximating sums, and the fun-
damental theorem of calculus. All of this gave rise to the concept of ordinary
differential equations. Stochastic calculus appeared because of the need to as-
sign meaning to ordinary differential equations involving continuous stochastic
processes. The most important stochastic process, Brownian motion, cannot be
differentiated, so that stochastic calculus plays a different role to that of classical
calculus, which is the stochastic integral. In stochastic calculus, differential has no
meaning apart from that assigned to it when it enters an integral.

3.4 Quadratic variation of the Brownian motion paths

Theorem 3.13. Let W = {Wt,Ft; 0 ≤ t < ∞} be a standard one dimensional Brownian
motion. Let T > 0 and the time interval [0, T]. Suppose a subdivision of [0, T] into n parts,
∆n[0, T] = {0 = tn

0 < tn
1 < · · · < tn

n = T}, where tn
k = (k/n)T, with k = 0, . . . , n.

Then, the following convergence takes place in probability,

lim
n→∞

n

∑
k=1

(
W k

n T −W( k−1
n )T

)2
= T. (3.3)

Proof. Let’s define ti = (i/n)T with i = 0, . . . , n. Observe that ti+1 − ti = T/n. So,
(Wti+1 −Wti) ∼ N(0, T/n). Therefore,

n−1

∑
i=0

(
Wti+1 −Wti

)2
=

n−1

∑
i=0

X2
i

where Xi ∼ N(0, T/n). We denote Yi = X2
i . Then, E(Yi) = E(X2

i ) = T/n because
T/n = Var(Xi) = E[(Xi − E(Xi))

2] = E(X2
i ). Thus,

lim
n→∞

n−1

∑
i=0

(
Wti+1 −Wti

)2
= lim

n→∞

n−1

∑
i=0

X2
i = lim

n→∞

n−1

∑
i=0

Yi = lim
n→∞

n

(
1
n

n−1

∑
i=0

Yi

)
= n · T

n
= T

because the random variables Yi are independent and identically distributed, and
due to the Strong Law of Large Numbers we have

1
n

n−1

∑
i=0

Yi −−−→n→∞

T
n

.
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Remark 3.14. Remember that the Strong Law of Large Numbers states that if X is a
real-valued random variable, {X1, X2, . . . } is an infinite sequence of independent
and identically distributed copies of X, and Xn is the average of this sequence,
then, P(limn→∞ Xn = E(X)) = 1. The proof can be found in [7].

See Figure 3.1 in Section 3.7 in order to observe the quadratic variation of a
Brownian sample path.

Remark 3.15. Suppose now that we have a continuous and differentiable function
f and we compute the quadratic variation.

n−1

∑
i=0

( f (ti+1)− f (ti))
2 ≤

n−1

∑
i=0

(
f ′(si) · (ti+1 − ti)

)2 ≤

≤
(

max
0≤s≤T

f ′(s)2
)
·

n−1

∑
i=0

(ti+1 − ti)
2 = A · T2

n
−−−→
n→∞

0,

(3.4)

unlike what we found in Theorem 3.13, because in this case the function f is
differentiable.

1. In the first inequality in (3.4) we have used the Mean Value Theorem and
si ∈ [ti, ti+1].

2. In the last equality we have used that A = max{0≤s≤T} f ′(s)2.

As a consequence of equation (3.3) the paths of the process W almost surely
have an infinite variation on the interval time [0, T]. To show that, we only need
to prove that there exist a sequence of subdivisions ∆n[0, T] such that almost
surely limn→∞ ∑n

k=1 |Wtn
k
−Wtn

k−1
| = +∞. Reasoning by absurd, let us assume

that the supremum on all the subdivisions of the time interval [0, T] of the sums
limn→∞ ∑n

k=1 |Wtn
k
−Wtn

k−1
| may be bounded from above by a positive M. From

the above result, since the convergence in probability implies the existence of an
almost surely convergent subsequence, we can find a sequence of subdivisions
∆n[0, T] whose mesh tends to zero and such that almost surely

lim
n→∞

n

∑
k=1

(
Wtn

k
−Wtn

k−1

)2
= T.

We get then,

n

∑
k=1

(
Wtn

k
−Wtn

k−1

)2
≤ M sup

1≤k≤n
|Wtn

k
−Wtn

k−1
| −−−−→

n→+∞
0,

which is a contradiction.
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3.5 No monotonicity

Theorem 3.16. For almost every ω ∈ Ω, the sample path W·(ω) is monotone in no
interval.

Proof. If we denote by F the set of ω ∈ Ω with the property that W·(ω) is monotone
in some interval, then we have,

F =
⋃

s,t∈Q
0≤s<t<∞

{ω ∈ Ω, W·(ω) is monotone in [s,t]},

since every nonempty interval includes one with rational endpoints. Therefore, it
suffices to show that on any such interval, say on [0, 1], the path W·(ω) is monotone
for almost no ω. Thanks to the symmetry property on Proposition 3.1 we only
need to show that the event

A , {ω ∈ Ω, W·(ω) is nondecreasing on [0,1]}

is in F and has probability zero. A =
⋂∞

n=1 An, where

An ,
n−1⋂
i=0

{ω ∈ Ω, W(i+1)/n(ω)−Wi/n(ω) ≥ 0} ∈ F

has probability P(An) = ∏n−1
i=0 P[W(i+1)/n −Wi/n ≥ 0] = 2−n. Thus, P(A) ≤

limn→∞ P(An) = 0.

3.6 Law of the Iterated Logarithm

The Law of the Iterated Logarithm describes the oscillations of Brownian mo-
tion near t = 0 and as t→ ∞.

Theorem 3.17. (Law of the Iterated Logarithm). For almost every ω ∈ Ω, we have

(i) lim
t→0

Wt(ω)√
2t log log(1/t)

= 1, (ii) lim
t→0

Wt(ω)√
2t log log(1/t)

= −1, (3.5)

(iii) lim
t→∞

Wt(ω)√
2t log log(t)

= 1, (iv) lim
t→∞

Wt(ω)√
2t log log(t)

= −1, (3.6)

By symmetry, property (ii) follows from (i), and by time-inversion properties
(iii) and (iv) follow from (i) and (ii), respectively (see Proposition 3.1). Then , it
only suffices to prove (i).
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Proof. We want to prove (i), so we are going to prove the two following inequalities.

P

(
lim
t→0

Wt(ω)√
2t log log(1/t)

≥ 1

)
= 1, P

(
lim
t→0

Wt(ω)√
2t log log(1/t)

≤ 1

)
= 1.

First, we recall the upper and lower bounds on the tail of the normal distribution.
For every x > 0, we have [11]

x
1 + x2 e−x2/2 ≤

∫ ∞

x
e−u2/2du ≤ 1

x
e−x2/2. (3.7)

We name h(t) =
√

2t log log(1/t). Let α, β > 0, and we apply the Doob’s

Maximal Inequality [5] to the martingale
(

eαWt− α2
2 t
)

, t ≥ 0. Then, we have for
t ≥ 0:

P

(
sup

0≤s≤t
(Ws −

α

2
s) > β

)
= P

(
sup

0≤s≤t
eαWt− α2

2 t > eαβ

)
≤ e−αβ.

Let now δ, θ ∈ (0, 1). Taking into account the previous inequality, for every n ∈N

with t = θn, α = [(1 + δ)h(θn)]/θn and β = (1/2)h(θn), yields when n→ ∞,

P

(
sup

0≤s≤θn

(
Ws −

(1 + δ)h(θn)

2θn s
)
>

1
2

h(θn)

)
= O

(
1

n1+δ

)
.

Therefore, from the Borel-Cantelli Lemma (Lemma 2.19), for almost every ω ∈ Ω,
we may find N(ω) ∈N such that for n ≥ N(ω),

sup
0≤s≤θn

(
Ws −

(1 + δ)h(θn)

2θn s
)
≤ 1

2
h(θn). (3.8)

Equation (3.8) implies that for θn+1 ≤ t ≤ θn,

Wt(ω) ≤ sup
0≤s≤θn

Ws(ω) ≤ 1
2
(2 + δ)h(θn) ≤ (2 + δ)h(t)

2
√

θ
. (3.9)

We conclude that,

P

(
lim
t→0

Wt√
2t log log(1/t)

≤ 2 + δ

2
√

θ

)
= 1.

With θ → 1 and δ→ 0 we have,

P

(
lim
t→0

Wt√
2t log log(1/t)

≤ 1

)
= 1.
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Let us now prove that

P

(
lim
t→0

Wt√
2t log log(1/t)

≥ 1

)
= 1.

Let θ ∈ (0, 1). We denote An = {ω, Wθn(ω) −Wθn+1(ω) ≥ (1 −
√

θ)h(θn)} for
n ∈N. We want to prove that ∑∞

n=1 P(An) = +∞. From equation (3.7) we have,

P(An) =
1√
2π

∫ +∞

an

e−
u2
2 du ≥ an

1 + a2
n

e−
a2
n
2 ,

with an = (1−
√

θ)h(θn)

θn/2
√

1−θ
taking into account that (Wθn −Wθn+1) ∼ N(0, θn(1− θ)) ∼

θn/2
√

1− θN(0, 1).

When n → ∞, an
1+a2

n
e−

a2
n
2 = O

(
1

n
1+θ−2

√
θ

1−θ

)
. Therefore, ∑∞

n=1 P(An) = +∞. As

a consequence of the independence of the Brownian increments and of Borel-
Cantelli Lemma, we know that the event Wθn −Wθn+1 ≥ (1−

√
θ)h(θn), will occur

almost surely for infinite many n’s. Moreover, from the first part of the proof we
know that, for almost every ω, we may find N(ω) such that for n ≥ N(ω),

Wθn+1 > −2h(θn+1) ≥ −2
√

θh(θn).

Thus, almost surely, the event Wθn > h(θ)(1− 3
√

θ) will occur almost surely for
infinite many n’s. This implies that

P

(
lim
t→0

Wt√
2t log log(1/t)

≥ 1− 3
√

θ

)
= 1.

By letting θ → 0 we finlly get that,

P

(
lim
t→0

Wt√
2t log log(1/t)

≥ 1

)
= 1.

3.7 Sample path simulations using Python

In this section we simulate a one dimensional Brownian sample path in the
time interval [0, T], with 0 < T < ∞. To carry out the simulations we divide the
time interval [0, T] into N subintervals, each one of length T/N. In other words,
let 0 = t0 < t1 < · · · < tN = T. Then, assuming that {Bt, t ≥ 0} is a Brownian
motion and knowing that Bti+1 − Bti ∼ Bti+1−ti ∼ N(0, ti+1 − ti), we have that

Bti+1 = Bti + (Bti+1 − Bti) = Bti +
√

ti+1 − tiZi, (3.10)
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where Zi ∼ N(0, 1) and ti+1 − ti = T/N which will be named the length of the
step. With all this information, we implement the following Python code. Firstly,
we import all the packages that we will need.

import random
import math
import numpy as np
from bokeh.io import show, output_notebook
from bokeh.plotting import figure
random.seed(17)
output_notebook(hide_banner=True)

Then, using (3.10) we define a function to simulate the Brownian path, taking
into account that the numpy function named np.random.randn returns a sample
(or samples) from the standard normal distribution, and the function np.cumsum
returns the cumulative sum of the elements along a given axis.

def brownian_path(N):
dt_sqrt = math.sqrt(T / N)
Z = np.random.randn(N)
Z[0] = 0
B = np.cumsum(dt_sqrt * Z)
return B

Once we have defined the Brownian path function we are able to plot it in a
graphic, by setting previously the parameters T and N.

T = 15
N = 1000
steps = [x for x in range(N)]
B = brownian_path(N)
p = figure(title=’Sample path of a brownian motion’, plot_width=600, plot_height=400)
p.xaxis.axis_label = "Step"
p.yaxis.axis_label = "B"
p.line(steps, B)
show(p)

Additionally, we want to observe graphically the quadratic variation conver-
gence (expression (3.3)). With this purpose we define a function which sums the
squares of the differences between consecutive values of the Brownian path.
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def ssq(B):
dB = np.diff(B)
dBsq = np.square(dB)
dBqv = np.sum(dBsq)
return dBqv

On the next lines of code, we generate a sequence with the values of the sums
of the quadratic increments of the Brownian path as the number of subdivisions
N increases.

N_lim = 100000
N_seq = np.arange(100, N_lim, step=100)
dBqv_seq = np.empty(N_seq.shape)
for k, n in enumerate(N_seq):

B = brownian_path(n)
dBqv_seq[k] = ssq(B)

opts = dict(plot_width=450, plot_height=450, min_border=0)
p_qv = figure(**opts, title=’Sum of squares sequence’)
p_qv.xaxis.axis_label="N"
p_qv.line(N_seq, dBqv_seq)
show(p_qv)

(a) Simulation of Brownian sample path, for
T = 10, and N = 1000.

(b) ∑N
k=1

(
B k

N T − B( k−1
N )T

)2
as a function of N.

Figure 3.1: Observe that in image (b) ∑N
k=1

(
B k

N T − B( k−1
N )T

)2
→ T as the value of

N increases.



Conclusions

Brownian motion is the most studied real valued continuous-time stochastic
process, due to its numerous applications. The results shown in this project are of
very importance in pure and applied mathematics, economics and finance.

Firstly, in order to study the Brownian motion, we have introduced the branch
of probability known as Theory of stochastic processes. Then, we have pro-
vided the construction of a probability measure from a consistent family of finite-
dimensional distributions (Daniell-Kolmogorov Theorem) as well as the existence
of a continuous modification of the coordinate mapping process (Kolmogorov’s
Continuity Theorem). Furthermore, we have seen the Wiener process as a limit of
random walks and we have defined the Wiener measure.

Some properties of Brownian sample paths are detailed in the last chapter
of this work because they are of great interest, especially the nondifferentiability
which leads to stochastic calculus.

Elaborating this project I have acquired a lot of new concepts about stochastic
processes and Brownian motion that I had never studied before.

39
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