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Abstract

In this work, we study Riemannian and pseudo-Riemannian manifolds and their
main properties. From them, we examine the special and general theories of rela-
tivity, and see how they arise from modelling space-time as special kinds of pseudo-
Riemannian manifolds, the Lorentzian manifolds. Within this theory, we are able
to give a rigorous formulation of the fundamental properties of cosmology and the
Schwarzschild space-time.

We also wish to relate the behaviour of geodesics in a manifold with the intrin-
sic structure of the manifold. This results in the formulation of the Hopf-Rinow
theorem in the case of Riemannian manifolds, and the Hawking singularity theorem,
in Lorentzian manifolds.
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“The views of space and time which I wish to lay
before you have sprung from the soil of experimental
physics, and therein lies their strength. They are radi-
cal. Henceforth, space by itself, and time by itself, are
doomed to fade away into mere shadows, and only a kind
of union of the two will preserve an independent reality.”

—Hermann Minkowski (1908)



Introduction

The theory of relativity remains as one of the greatest achievements of hu-
mankind. It is a complete reformulation of the classic kinematics and gravitational
laws, that goes beyond them and ultimately challenges our understanding of reality.
While being a physical theory with undisputed experimental validation, its formula-
tion and results hold a striking beauty within them.

The general theory of relativity is rooted on the area of differential geometry, bor-
rowing a lot of mathematical concepts from there and ultimately modelling space
and time by bundling them as pseudo-Riemannian manifolds. Thus, in order to
comprehend the meaning and formulation of general relativity, it is compulsory to
understand a good deal of the underlying geometric objects and their functioning.
Our intention in this work is twofold: first, to understand and present the math-
ematical elements in which general relativity is based; and secondly, to prove and
compare, with the help of these mathematical concepts, the powerful Hopf-Rinow
and Hawking theorems.

There is a myriad of literature which deals with general relativity, so in this work
we intend not only to explain the important results, but to engage the reader in
this wondrous endeavour, by illustrating the motivation behind the concepts that
will show up. With the purpose of seeing how the theory unfolds naturally from its
mathematical description, we present in this work the whole geometric background,
that eventually leads to the basic results and applications of general relativity. After
that, the final milestone of this work is to present a thorough deduction of the Hawk-
ing singularity theorem, and to see its relationship with the Hopf-Rinow theorem,
its Riemannian version. The work is structured as follows.

In Chapter 1, we review the fundamental concepts and properties of smooth mani-
folds, which are the basic structures from which differential geometry is constructed.
We will be following [Lee03].

Chapter 2 is the core of the geometric study that is done in this work. We start
by adding an extra structure to smooth manifolds, the Riemannian metric, which
allows us to relate different points of any smooth manifold to an extent unimaginable
in the context of only smooth manifolds. Key concepts which we describe in detail
are the ones of affine connections, covariant derivatives, geodesics and curvature, to
name the main ones. They will be of invaluable help in the next chapter. Finally, we
study the Hopf-Rinow theorem, whose translation into Lorentzian manifolds, as we
said, will be seen to be the Hawking theorem. Here, we will mainly follow [GoNa14].



Introduction

In Chapter 3, we introduce some physical facts and present the crucial concept of
Lorentzian manifolds. Them both, in combination with our newly acquired knowl-
edge of differential geometry, will allow us to derive the special and general theories
of relativity, ending with the fascinating Einstein field equations.

After that, we can apply this whole framework to two highly relevant physical set-
tings, namely the formulation of cosmology in the Robertson-Walker metric and the
Schwarzschild spherical case. This is done in Chapter 4.

Finally, in Chapter 5, we derive Hawking’s singularity theorem step by step, in a
process that will give insight on the key properties of geodesics in Lorentzian mani-
folds. Again, in this chapter we will follow [GoNa14].



Chapter 1

Some background in smooth
manifolds

If we wish to study the general theory of relativity, we must be really familiar
with the nature of the mathematical building blocks it is constructed with. Thus, we
consider essential to delve into the nature of the spaces in which general relativity is
formulated: smooth manifolds.

First, we shall define what a topological manifold M is. It is a topological space
which is Hausdorff, second countable and locally Euclidean. The first two properties
are not usually of great importance in the study of smooth manifolds. However, the
third property is key, and it means that for all p ∈M there exist open sets U ⊂M ,
U ′ ⊂ Rn such that p ∈ U ⊂M and there exists an homeomorphism ϕ : U → U ′. We
may say then that the dimension ofM is n, and that any pair (U,ϕ) is a coordinate
chart on M .

Smooth manifolds are born from topological manifolds, where some extra structure
is defined in order to control how the various coordinate charts relate in the points
where they intersect. Given two charts (U,ϕ), (V, ψ) for which U ∩ V 6= ∅, we define
the transition map as ψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V ), which lives in Rn, so the
basic analysis definitions hold. It is said that two charts with non-zero intersection
are smoothly compatible if the transition map is a diffeomorphism.

Now, if we say that an atlas is a set of smoothly compatible charts that covers
M, then a maximal smooth atlas will be one which is not contained into a strictly
larger smooth atlas. It can be proved that any smooth atlas determines a unique
maximal smooth atlas, so we can define a smooth manifold as a topological man-
ifold which is endowed with a smooth atlas.
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2 Some background in smooth manifolds

Given the smooth manifolds M and M ′, a map F : M →M ′ is said to be a smooth
map if for all p ∈ M there exist smooth charts (U,ϕ), (V, ψ) such that p ∈ U ⊂ M

and F (U) ⊂ V ⊂M ′ and the map ψ◦F ◦ϕ−1 is smooth as a map between subspaces
of Rn. Thus, analogously to the case in Rn, a map F : M → M ′ is said to be
a diffeomorphism if it is a smooth map and it has an inverse map which is also
smooth.

Now, a smooth covering map π between two connected and locally path connected
smooth manifolds M and M ′ is a surjective smooth map for which, for all p ∈ M ,
there exists a connected neighborhood U of p such that for every arc-connected com-
ponent C of π−1(U), π|C is a diffeomorphism. An interesting result is that any map
which is a proper1 local diffeomorphism is a smooth covering map.

In order to study the more advanced objects that are the building blocks of gen-
eral relativity (covector fields, and, more generally, covariant tensors), we shall first
understand how vectors and vector fields act on smooth manifolds. At any point
p ∈M , a tangent vector at p is defined to be a derivation at p, where a derivation
is a linear map X : C∞(M)→ R that follows the product rule: for all f, g ∈ C∞(M),
X (fg) = f(p)X g + g(p)Xf . The tangent space to M at p, TpM , is the set of all
derivations at p. This seemingly non-intuitive definition for tangent vectors turns
out to be really useful, for it is seen that they adopt an expression that is quite
simple and, indeed, intuitive.

Let us introduce an object that will play an important role in the understanding
of tangent vectors and everything afterwards. Given a smooth map between smooth
manifolds F : M → N , the differential of F will be the map dpF : TpM → TF (p)N

such that for any X ∈ TpM , for all f, g ∈ C∞(M), we have that dpF (X )|f = X (f◦F ).
It is well-defined and it is seen that, given any neighborhood U of a point p, the dif-
ferential of the inclusion dpi : TpU ↪−→ TpM is an isomorphism.

This means that tangent spaces can be identified to tangent spaces in Rn by means
of differentials applied to smooth charts. Thus, a tangent vector X ∈ TpM can be
expressed as a combination of some basis vectors

(
∂
∂x1
|p, . . . , ∂

∂xn |p
)
which are in turn

related to the chosen local coordinates (x1, . . . , xn). Using this expression for tan-
gent vectors, it is found that the differential of a map F can be explicitly computed
on a given chart (U,ϕ) by obtaining the Jacobian matrix, in its usual form as the
derivative in Rn, in terms of the coordinate basis vectors.

1A map is said to be proper if the preimage of every compact set is compact.
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With this definition in mind, one may want to operate not only with the tangent
space to a given point, but with all tangent spaces together, or even generalize this
to a broader class of vector spaces (which includes tangent vectors as well as other
possible definitions of vector spaces attached to a given point). With this aim, a
vector bundle of rank k over M is defined to be a smooth manifold E equipped
with a smooth projection map π : E → M such that for each p ∈ M , π−1(p) is a
real vector space of dimension k. Also, for every p there is a neighborhood U of p
such that π−1(U) is diffeomorphic to U×Rk, and π|π−1(U) is the standard projection
p1 : U × Rk → U . Moreover, a smooth section of E is a smooth map σ : M → E

such that π ◦ σ = Id|M .

It can be proved that the disjoint union of all the tangent spaces TpM is indeed
a smooth vector bundle, the so-called tangent bundle TM , where the projection
map is the one that sends each vector to the point it is tangent to. Then, a smooth
vector field on M is a smooth section X of the projection π : TM → M , and it
smoothly assigns to each p ∈ M a vector Xp ∈ TpM . Vector fields act on smooth
functions in the following way: For any f ∈ C∞(M), a smooth vector field X will
induce the real-valued function Xf , defined by Xf(p) = Xpf . It can be seen that
this operation follows the product rule, and that the set of all vector fields over M
is a vector space, T (M). Finally, for any smooth map F : M → N and any smooth
vector field X over M , the differential of X is the differential of every vector of
the field. However, it does not necessarily yield a vector field over N, let alone a
smooth one. After this fact, it is said that two smooth fields X and Y (over M and
N respectively) are F-related if the differential of X by F is Y .

Given the algebraic nature of the vector spaces TpM , we can consider their dual
spaces, T ∗pM , which are the cotangent spaces at p. This will result in another
smooth vector bundle, the so-called cotangent bundle T ∗M , which, as a set, is
the disjoint union of all cotangent spaces T ∗pM , where the projection map is also the
natural projection as with vector bundles. A smooth covector field, also called
1-form, is a smooth section of the projection map π : T ∗M → M , that assigns to
each p ∈M a covector ωp : TpM → R.

Taking coordinates and defining some basis of TpM , the basis for the cotangent
space T ∗pM will be the collection (λ1|p, . . . , λn|p) of the dual counterparts of the
tangent space basis. Let us define the differential covector field of a function
f ∈ C∞(M) as the one acting on every Xp ∈ TpM as dfp(Xp) = Xpf . It is seen that,
for any coordinate chart (U, xi), the correspondent cotangent basis vectors will be
the differentials of the coordinate functions: λip = dxip, for i = 1, . . . , n.
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An important definition is the one of the pullback F ∗ of a smooth map F : M → N ,
which is the dual map of the differential defined before. By the nature of dual maps,
it will locally have the form F ∗ : T ∗F (p)N → T ∗pM , where for each ωp ∈ T ∗F (p)N its
image F ∗ω will act on vectors X ∈ TpM as (F ∗ω)(X ) = ω(dpF (X)). Contrary to the
rather elusive nature of differentials when it is time to express them on coordinates,
the pullback of a map F : M → N will be easily calculated as a function of the
coordinates (yj) of N as2 F ∗ω = (ωj ◦F )d(yj ◦F ). Moreover, an important property
of pullbacks is that they are well-defined on 1-forms, i.e. the pullback of a 1-form is
also a 1-form, which is not generally the case for differentials applied to vector fields.

Finally, the concept of line integrals, which is understood intuitively in Rn, can
now be generalized to smooth manifolds. Given a smooth curve segment3 γ, where
γ : I = [a, b] → M , and a smooth covector field ω, the line integral of ω over γ
is defined as

∫
γ ω =

∫
[a,b] γ

∗ω. The properties of line integrals over manifolds are
quite similar to the ones over Rn, like the fact that for the differential df of a smooth
function its line integral over any smooth curve will be the difference of the values
of f at the endpoints of the curve.

Also in the same way as in Rn, a smooth covector field is said to be conservative if
its line integral over any closed smooth curve is zero. Another useful characteristics
of smooth covector fields are exactness and closedness. A smooth covector field ω is
exact if it is the differential of some smooth function f , and it is closed if its deriva-
tive over any smooth coordinates (xi) fulfils the equation ∂ωj

∂xi
= ∂ωi

∂xj
for all i, j. It

is seen that the properties of being conservative and exact are equivalent, and they
relate to the closedness just locally. Explicitly, a closed covector field will be a field
that is exact in some neighborhood of every point p ∈M .

The utility of the differential does not stop at the results we have summed up here. If
F : M → N is a smooth map, let us define the rank of F at p as the rank, given by lin-
ear algebra, of the associated differential. A crucial result, that stems from its coun-
terpart in Rn, is the rank theorem, which says that if F has constant rank k on all
points, it can take a simple form F

(
x1, . . . , xk, xk+1, . . . , xn

)
=
(
x1, . . . , xk, 0, . . . 0

)
after choosing the right coordinates. This, together with the following definitions,
will be the basis after which the concept of submanifold can be constructed. We
define a smooth map F to be an immersion or a submersion if the differential

2It is expressed in the so-called Einstein summation convention, which sums along every
two repeated indices that are one up and one down (e.g. xiEi :=

∑
i x

iEi). We will be using this
notation throughout this work.

3Everything we mention for smooth curve segments can be extended to piecewise smooth curve
segments, which are smooth in all but a finite set of points.
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dpF is, respectively, injective or surjective at each point p ∈M . An immersion that
is an homeomorphism onto its image is called a smooth embedding.

Now, we define a subset S ⊂ M to be an embedded submanifold of dimen-
sion k if the inclusion map i : S ↪−→ M is a smooth embedding of rank k. Since
this is a rather complex hypothesis to prove, there is a result that simplifies the
identification of submanifolds, the regular level set theorem. It says that, for any
smooth map F : M → N and given a point c ∈ N , for every set S := F−1(c) ⊂ M

such that the differential of F at p is surjective at all points of F−1(c), the set S is
an embedded submanifold of M of dimension k = dim(M)− dim(N).

The notions for manifolds seen so far are of use in embedded submanifolds too: the
restriction of the domain and range of a smooth map to an embedded submanifold is
also a smooth map; the tangent space to a point is a vector subspace of the tangent
space, TpS ⊂ TpM , of dimension k; and if a smooth vector field in M is tangent to
TpS at all points, its restriction to S is a smooth vector field over S (for covector
fields it is even more immediate, since they always restrict to a covector field over S).

With everything we briefly described so far, we can define a mathematical object
that will be present from now on. A covariant k-tensor on a vector space V is
a multilinear function T : V × · · · × V → R, where multilinear means that T is
linear on every one of its arguments. Tensors can be thought as a generalization
of covectors, and, given a basis (ε1, . . . , εn) of V ∗, we can express every tensor as a
linear combination T = Ti1,...,ikε

i1 ⊗ · · · ⊗ εik , where 1 ≤ i1, . . . , ik ≤ n.

Hence, we can define the bundle of covariant k-tensors T kM on a smooth man-
ifold M as the vector bundle formed by covariant tensors that act on the vector
spaces TpM × · · · × TpM . Smooth k-tensor fields, therefore, are smooth sections
of the natural projection π : T kM → M , that assign to each p ∈ M a k-tensor over
its tangent space TpM . Pullbacks on smooth covariant tensor fields behave simi-
larly as with covector fields, and given a map F : M → N , the tensor pullback is
F ∗ : T k(TF (p)N) → T k (TpM), which acts on covariant tensor fields S at any given
point as (F ∗S)(X1, . . . ,Xk) = S(dF (X1), . . . , dF (Xk)).

After introducing all this necessary background in smooth manifolds, we are now
in position to start our analysis of the spaces in which general relativity is formu-
lated: Riemannian and pseudo-Riemannian manifolds.



Chapter 2

Riemannian Manifolds

2.1 Basic Notions

One may wonder that, if every point has its own tangent space which is not
necessarily equivalent to tangent spaces at other points, there is no way in a smooth
manifold to compare vectors at different points. Even the idea of measuring the
distance between two points is foreign to smooth manifolds as far as we have seen,
because the distance is usually defined in terms of the length of a given path. But,
which path should we choose between two arbitrary points? How is length defined if
the tangent space to a curve varies from point to point? To answer these questions,
we need to add a new layer of structure over smooth manifolds, the concept of
metric.

Definition 2.1. A Riemannian metric g on a smooth manifold M is a smooth
2-tensor field on M which, given any p ∈ M and any pair1 v, w ∈ TpM , has the
following properties:

(i) It is symmetric: g(v, w)p = g(w, v)p;

(ii) It is positive definite: g(v, v)p ≥ 0, and g(v, v)p = 0 if and only if v = 0.

A smooth manifold M endowed with a Riemannian metric g is thus labelled as the
Riemannian manifold (M, g). For the sake of convenience, we will also refer to g
at some point p as 〈·, ·〉p, with 〈v, w〉p := g(v, w)p. Now, we may extend the notion
of diffeomorphism so that it transforms Riemann manifolds in such a way that their
metrics are preserved.

1Having departed from the more abstract notions of tangent vectors as derivations X , from now
on we will label tangent vectors as usual: v, w, and so on.

6
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Definition 2.2. An isometry between two Riemannian manifolds (M, gM ), (N, gN )

is a diffeomorphism F : M → N with the property that the pullback of the tensor gN
is gM . Explicitly: (F ∗gN )|F (p)(v, w) = gM |p(v, w) for all p ∈M , v, w ∈ TpM .

Two Riemannian manifolds for which there exists an isometry that connects them are
called isometric Riemannian manifolds. Using the tensor formalism, we can write
a Riemannian metric g in local coordinates as g = gijdx

i ⊗ dxj , using the Einstein
convention.

Let us now define some basic concepts, which start to give answers to the ques-
tions we posed in the beginning of this chapter.

Definition 2.3. The length of a vector v ∈ TpM is |v|p := 〈v, v〉1/2p .

Definition 2.4. The angle θ between two non-zero vectors v, w ∈ TpM is the angle
correspondent to cos θ =

〈v,w〉p
|v|p|w|p .

Definition 2.5. If we define the tangent vector to a smooth curve γ : I → M at a
point t0 as γ̇(t0) = dt0γ( ddt), the length of the curve γ is Lg(γ) =

∫ b
a |γ̇(t)|gdt.

It can be seen that the length of any curve is independent on its parametrization,
so it is a quantity that is intrinsic of the curve. Knowing that, and before we start
working on connections, we can give an idea of what the distance between two points
is, in a Riemannian manifold.

Definition 2.6. Given two points p, q ∈M , the distance between p and q is defined
as dg(p, q) = inf{Lg(γ) : γ smooth curve from p to q}.

A remarkable result is that, equipped with this distance, every connected Rieman-
nian manifold is a metric space.

As we drive towards an understanding of general relativity, it is the time now to de-
fine a key concept, the one of pseudo-Riemannian manifolds. They are smooth
manifolds endowed with a smooth symmetric 2-tensor field g which is nondegenerate
at every point. This last feature means that if g(v, w)p = 0 for every vector w, then
v must be 0, which is a weaker assumption than the one of being positive definite.
As we see, Riemannian and pseudo-Riemannian manifolds have a quite similar defi-
nition, so they will have some analogous properties.

With this in mind, and before departing from the Riemannian metrics in our fu-
ture journey through the pseudo-Riemannian Lorentzian metrics, we will remain a
bit more within the scope of Riemannian manifolds in order to define and study there
some structures that we will deal with later.
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2.2 Affine Connections

The definition of distance between two points that we have seen, the infimum
length between all curves that join the points, although formally correct, it is still
not complete for us. For example, in a general case, we do not still have appropriate
tools in order to identify such path of infimum distance, and we cannot compare
tangent vectors at different points on M yet. For this purpose, we introduce the
concept of affine connections.

Definition 2.7. Given a smooth manifold M , an affine connection will be a map
∇ : T (M) × T (M) → T (M) such that, for all X,Y, Z ∈ T (M) and f, g ∈ C∞(M),
the following conditions are fulfilled:

(i) ∇fX+gY Z = f∇XZ + g∇Y Z;

(ii) ∇X(Y + Z) = ∇XY +∇XZ;

(iii) ∇X(fY ) = (Xf)Y + f∇XY .

A technical concept which comes in useful in the analysis of Riemannian manifolds
is the one of Christoffel symbols. In a given coordinate chart (U, xi), they are the
smooth functions Γijk : U → R, which are related to the affine connections of the
basis vectors in the following way:

∇ ∂

∂xj

∂

∂xk
=

n∑
i=1

Γijk
∂

∂xi
. (2.1)

Using the conditions given in (2.7), it can be proved that any connection ∇ will have
the following expression, in a given coordinate chart:

∇XY =
n∑
i=1

XY i +
n∑

j,k=1

ΓijkX
jY k

 ∂

∂xi
, (2.2)

for every two vector fields X = Xi ∂
∂xi

, Y = Y i ∂
∂xi

of T (M). This means, in par-
ticular, that the connection is defined locally, i.e. that its value at a point p only
depends on the behaviour of X and Y in an arbitrarily small neighborhood of p.

This apparently abstract concept of affine connections will allow us to study the
degree in which a vector field is aligned with a given curve, which is closely related
to the analysis of paths between points in the manifold. Let us see:

Definition 2.8. For any smooth curve γ : I → M , a vector field along γ is a
smooth map X : I → TM for which X(t) ∈ Tγ(t)M for all t ∈ I.
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If γ̇(t) 6= 0, and knowing that γ̇(t) is trivially a vector field along γ, the covariant
derivative of V along γ is defined as

DX

dt
(t) = ∇γ̇(t)X. (2.3)

This allows us to define parallel transport, and from there the crucial concept of
geodesics.

Definition 2.9. A vector field X along γ is parallel along γ if DX
dt (t) = 0 for all

t ∈ I. A curve c whose tangent field ċ is parallel along c is called a geodesic.

To distinguish the curves which are geodesics in a given Riemannian manifold M ,
we will label as c a geodesic of M , and a general curve as γ. Now, by the expression
of the affine connection in terms of Christoffel symbols in (2.2), we see that a vector
field X locally given by X(t) = (X1(t), ..., Xn(t)) will be parallel along γ if there is
a covering of γ(I) by coordinate charts such that, on any of them,

Ẋi +

n∑
j,k=1

Γijkẋ
jXk = 0, (2.4)

for i = 1, ..., n, where we note Ẋi = ∂Xi

∂t . Similarly, a geodesic that is locally given
by c(t) = (x1(t), ..., xn(t)) will fulfil the equations

ẍi +
n∑

j,k=1

Γijkẋ
j ẋk = 0. (2.5)

Thus, the study of geodesics and parallelism of vectors along a curve is also a study
of these ODEs. The theory of differential equations tells us that there is a unique
solution for these two sets of equations, given their initial conditions. That is to say,
given a starting pair (p, v) ∈ TM , there is a unique geodesic cv starting at p with
initial tangent vector equal to v. In the same manner, given a curve γ with γ(0) = p,
there is also a unique vector field X parallel along γ for which X(0) = v.

We now introduce a special case of affine connection, which has some interesting
features: the Levi-Civita connection. Before that, we shall define two more con-
cepts regarding connections.

Definition 2.10. A connection ∇ on M is symmetric if, for all X,Y ∈ T (M),

∇XY −∇YX = [X,Y ] , (2.6)

which, by the definition of Christoffel symbols, is equivalent to

Γijk = Γikj , (2.7)

for all i, j, k ∈ {1, . . . , n}.
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Definition 2.11. Given a Riemannian manifold (M, 〈·, ·〉), a connection ∇ will be
compatible with 〈·, ·〉 if

X〈Y, Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉, (2.8)

for all X,Y, Z ∈ T (M).

Above, X〈Y,Z〉 refers to the product of the vector field X over the smooth map 〈·, ·〉
applied to the function 〈Y,Z〉.

Definition 2.12. We define a Levi-Civita connection as being a connection ∇
on (M, 〈·, ·〉) which is symmetric and compatible with 〈·, ·〉.

This definition, however, does not tell us neither if this connection can be found on
an arbitrary manifold, nor which expression would it take. This is addressed in the
following important theorem.

Theorem 2.13. (Fundamental Theorem of Riemannian Geometry) For any
Riemannian manifold (M, g), the Levi-Civita connection exists and is unique. The
corresponding Christoffel symbols, after taking coordinates (xi), are

Γijk =
1

2

n∑
l=1

gil
(
∂gkl
∂xj

+
∂gjl
∂xk
−
∂gjk
∂xl

)
, (2.9)

with gil = (gil)
−1.

Proof. We define the connection between X,Y ∈ T (M) as the one satisfying the
Koszul formula for every Z ∈ T (M):

2〈∇XY,Z〉 =X〈Y,Z〉+ Y 〈X,Z〉 − Z〈X,Y 〉−
− 〈[X,Z], Y 〉 − 〈[Y,Z], X〉+ 〈[X,Y ], Z〉.

(2.10)

This is well-defined, and satisfies the connection axioms defined in (2.7), so it is a
connection. It is easily seen that the Koszul formula is constructed in such a way
that the connection is symmetric and compatible with g. Now, to observe the form
of the Christoffel symbols that is derived from the Koszul formula, we see that

2

〈
∇ ∂

∂xj

∂

∂xk
,
∂

∂xl

〉
=

∂

∂xj
gkl +

∂

∂xk
gjl −

∂

∂xl
gjk ⇔

⇔

〈
n∑
i=1

Γijk
∂

∂xi
,
∂

∂xl

〉
=

1

2

(
∂gkl
∂xj

+
∂gjl
∂xk
−
∂gjk
∂xl

)
⇔

⇔
n∑
i=1

gilΓ
i
jk =

1

2

(
∂gkl
∂xj

+
∂gjl
∂xk
−
∂gjk
∂xl

)
,

which gives us the expression (2.9).
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2.3 The Exponential Map

Now we have seen the first properties of connections, but we are still on a rather
abstract level. In order to obtain more tangible results, operating with the so-called
exponential map is really convenient.

Let ∇ be an affine connection defined in a Riemannian manifold (M, g). Given a
pair (p, v) ∈ TM , we know that there exists a unique geodesic cv : I → M which
is defined in a neighborhood Iv = (−ε, ε)v of 0, for which cv(0) = p and ċv(0) = v.
Given some a ∈ R, we consider the interval Jv =

{
t
a : t ∈ Iv

}
, and define the curve

γv : Jv →M as γv(t) = cv(at).

Since a is a constant number, then γ̇v(t) = aċv(at) and γv is also a geodesic. Thus,
γv(t) := cv(at) is the geodesic correspondent to the initial pair (p, av) ∈ TM , so
cv(at) = cav(t). Thanks to this “linear” property of geodesics, we can define the
exponential map.

Definition 2.14. Given some set U ⊂ TpM such that 1 ∈ Iv for all v ∈ U , the
exponential map of U is defined as expp : U →M , with expp(v) = cv(1).

As we can see in Figure 2.1, the exponential map brings a vector v ∈ TpM to the
point through which the geodesic cv is passing at t = 1. The following result is easy
to see.

Proposition 2.15. For any p ∈M , there exists an open neighborhood U ⊂ TpM of ~0
such that the exponential map of U is a diffeomorphism onto its image, expp(U) := V .
The image V is said to be a normal neighborhood of p.

Proof. It is seen in [Pe16] p.172-173 (Lemma 5.2.6 and Theorem 5.2.3, the latter
being a result from the theory of ODEs) that there is some open neighborhood
W ⊂ TpM of ~0 where the exponential map is well-defined and smooth. Now, if we
see that its differential at the origin is bijective, by the inverse function theorem
it follows that there is some open neighborhood U of ~0 such that U ⊂ W and the
exponential map is a diffeomorphism in U .

To see this, we use the fact that the differential of a map F can be found as the
derivative of the curve F (γ(t)) at t = 0, where γ is any smooth curve such that
γ(0) = p and γ̇(0) = v. In our case,

d expp(v)|~0 =
d

dt
expp(tv)|t=0 =

d

dt
cv(t)|t=0 = v,

so the differential is the identity, and hence the exponential map is indeed a local
diffeomorphism at ~0.
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expp(v)

v

TpM

p

M

Figure 2.1: Visualization of the action of the exponential map over some v ∈ TpM .

Example 2.16. The vector field E on TpM \{0} defined by Ev = v
‖v‖ for all non-zero

vectors of TpM will have a differential by the exponential as

(dv expp)(Ev) =
d

dt
expp

(
v +

tv

‖v‖

) ∣∣∣∣
t=0

=
ċv(1)

‖v‖
. (2.11)

We see that the differential of every vector of the field is the unit tangent vector to
its geodesic at t = 1 (as ‖ċv(t)‖ = ‖v‖ for all t ∈ I). This will be useful, for it is a
way of parametrizing the tangent field along any geodesic cv.

Now, we will see that the exponential map allows us to translate the concept of
open balls in Rn to Riemannian manifolds, where the geodesics cv obtained with the
exponential map correspond to the radii of the ball.

Definition 2.17. Given an ε > 0 for which Bε(0) ⊂ U , the normal ball Bε(p)
centered at p with radius ε is the image by the exponential map of Bε(0) ⊂ TpM , i.e.
Bε(p) = exp(Bε(0)). Analogously, the normal sphere is Sε(p) = exp(∂Bε(0)).

The first step to see that the geodesics cv are the equivalent of radii of a ball in Rn

is the following proposition:

Proposition 2.18. Given any normal sphere Sε of p, the geodesics cv starting at p
are orthogonal to Sε(p).

Proof. To prove the claim, we see that the vector fields ċv are orthogonal to any
normal sphere, or what is the same, that d expp(E) is orthogonal to normal spheres.
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We parametrize TpM as ϕ̃(r, θi) := rϕ
(
θ1, . . . , θn

)
, where ϕ is the standard parame-

trization of the sphere, r is the radial coordinate and (θi) are the angular coordinates
of the sphere. We see that the field E is parallel to the radial coordinate and that
‖ ∂
∂θi
‖ = ‖ ∂ϕ̃

∂θi
‖ = r‖ ∂ϕ

∂θi
‖, so the angular coordinates vanish in the limit r → 0.

Hence, the field X := d expp(E) is also tangent to the radial directions ∂
∂r , and the

differentials Yi of the vectors ∂
∂θi

are the angular coordinates of the normal spheres,
which also approach 0 with r → 0.

By the naturality of Lie brackets ([Lee03], p.92), we have [X,Yi] = d expp
([

∂
∂r ,

∂
∂θi

])
,

which is 0 by construction. By the properties of affine connections, and because the
norm of X is constant and equal to 1, it is seen that 〈X,Yi〉 is constant over any
geodesic cv:

X〈X,Yi〉 = 〈X,∇YiX〉 =
1

2
Yi〈X,X〉 = 0.

Finally, since Yi vanish when r → 0, this means that

〈X,Yi〉(expp v) = lim
t→0

(
〈X,Yi〉(expp(tv)

)
= 0.

so we have indeed that X is orthogonal to the sphere Sε(p) for every ε.

There is another property that the radius of a sphere Sp(ε) has to fulfil, which is
being the curve that minimizes the distance from p to any q ∈ Sp(ε). This is precisely
the object of the following proposition.

Proposition 2.19. For any smooth curve γ : [0, 1] → M such that γ(0) = p and
γ(1) ∈ Sε(p), we will always have that L(γ) ≥ ε. Furthermore, L(γ) = ε if and only
if γ is a reparametrization of a geodesic cv.

Proof. Safely imposing that γ(t) = p only at t = 0, and that γ([0, 1]) ⊂ Bε(p), we can
parametrize γ as the differential of the vector r(t)n(t). Analogously as before, r(t)
and n(t) are, respectively, the radial and angular components of the correspondent
vector in TpM . By the product rule,

γ̇(t) = d expp(ṙn(t) + r(t)ṅ(t)),

where, since n(t) are angular components of the sphere, we have that n(t) is normal
to Sr(t) and ṅ(t) is tangent to Sr(t). With that, we can express γ̇(t) as a function of
the radial and angular fields X := d expp(

∂
∂r ) and Y := r(t)d expp(ṅ(t)):

γ̇(t) = ṙ(t)Xγ(t) + Y (t).



14 Riemannian Manifolds

Since these fields are orthogonal by construction, the length function is easily seen
to satisfy

L(γ) =

∫ 1

0
〈ṙ(t)Xγ(t) + Y (t), ṙ(t)Xγ(t) + Y (t)〉

1
2dt

=

∫ 1

0

(
ṙ(t)2 + ‖Y (t)‖2

) 1
2 dt ≥

∫ 1

0
ṙ(t)dt = r(1)− r(0) = ε,

where the equality is obtained only when Y (t) = ṅ(t) = 0 for all t ∈ [0, 1], and r(t)
is a monotone function of t, i.e. when γ is a geodesic.

This allows us to introduce a particularly interesting parametrization: the so-called
normal coordinates. They can be defined on any normal neighborhood of a point
p as ϕ : U ⊂ Rn →M , where ϕ acts on any n-tuple of Rn like

ϕ(x1, . . . , xn) = expp(x
1v1 + · · ·+ xnvn).

These coordinates have some conceptually important properties, as:

(i) The Christoffel symbols are zero at p, Γijk(p) = 0. That means, for example,
that the coordinate representation of the geodesic cv for a given v ∈ TpM ,
v = (v1, . . . , vn), is simply (tv1, . . . , tvn).

(ii) Given an orthonormal basis of TpM , the Riemannian metric tensor at p is the
identity, i.e gij |p = δij .

These coordinates are constructed with the exponential map, which is in turn closely
related to the behaviour of geodesics. Because of it, the parametrization of curves
in this way is a measure of the length of the curve itself, so we can say that nor-
mal coordinates are the generalization to Riemannian manifolds of the arc length
parametrization.

Now that we have seen how to find a neighborhood in which the geodesics are indeed
the measure of distances, we wish to extend this to the whole manifold (M, g). We
will prove the intuitive fact that the curves with minimum length between any two
points, and hence the measure of distance between them, are given by geodesics.
Before that, we will define a property that normal neighborhoods can have, which is
the one of being totally normal.

Definition 2.20. A totally normal neighborhood V ⊂ M of p is a normal
neighborhood such that there exists some ε > 0 for which V ⊂ Bε(q) for all q ∈ V .
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Lemma 2.21. For every p ∈M , there exists a totally normal neighborhood V such
that p ∈ V .

Proof. For every (p, v) = (x1, . . . , xn, v1, . . . , vn) ∈ TM , the associated geodesic
starting at (p, v) can also be expressed as, for i = 1, . . . , n,{

ẋi = vi

v̇i = −
∑n

j,k=1 Γijkẋ
j ẋk

We can then express the solution of this equation as the vector field X = ((ẋ)i, (v̇)i),

X =
n∑
i=0

ẋi +
n∑
i=0

v̇i =
n∑
i=0

vi −
n∑

i,j,k=0

Γijkẋ
j ẋk.

This is the so-called geodesic flow, which in general is not globally defined. How-
ever, we can always define (see [GoNa14], p.30) a local restriction to W × I, where
W ⊂ TM is a neighborhood of p for which all vectors fulfil ‖v‖ < ε, in which the
local field is indeed well-defined. The number ε > 0 can be arbitrarily small, so the
open interval I ⊂ R can be arbitrarily large.

We define a map G : W → M ×M as G(q, v) := (q, expq(v)), lowering ε if nec-
essary. Analogously as in Proposition 2.15 we see that G is a diffeomorphism locally,
so, shrinking W if necessary, we can assume that G is a diffeomorphism onto its
image. Let V be an open neighborhood of p such that V ×V ⊂ G(W ). We see that,
for any point q ∈ V , we have that {q} × expq(Bε(0)) is exactly the subset of G(W )

for which the first component is q. Therefore, we finally obtain that V ×V ⊂ G(W ),
so V ⊂ expq(Bε(0)) and hence V is a totally normal neighborhood of the point p.

Having proved this technical lemma, we can finally observe that, as we were foreseeing
during this chapter, geodesics are the paths between points that minimize the length
function.

Theorem 2.22. If c : I → M is a piecewise smooth curve between any two points
p, q ∈M such that its length is minimal among all curves that connect p and q, then
c is a reparametrization of a geodesic.

Proof. The curve c can be divided in smooth segments for which the endpoints belong
to a shared totally normal neighborhood U . By Proposition 2.19, in every one of
these neighborhoods c|U will be a reparametrization of a geodesic, which extends to
the fact that the whole curve c is indeed a reparametrization of a geodesic.

Along this chapter, we have seen how closely related are the concepts of geodesics and
distance. This is brought to another level with the crucial Hopf-Rinow theorem,
which deserves to be a section on its own.
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2.4 Hopf-Rinow Theorem

As we have been advancing in the knowledge of the nature of geodesics, every
new result has pointed us to the fact that geodesics in (M, g) are the curves that
determine the distance between any two points. Willing to relate geodesics with
the structure of the metric space induced by g, we will look into the Hopf-Rinow
theorem. Before, let us write some preliminary definitions.

Definition 2.23. A Riemannian manifold (M, g) is geodesically complete if the
exponential map is defined in all of TpM , for every p ∈M .

We said at the beginning of the chapter that any connected Riemannian manifold
is a metric space, endowed with the distance defined in 2.6. An additional property
that can hold in metric spaces is the following.

Definition 2.24. A metric space (M,d) is said to be complete if every Cauchy
sequence is convergent. Remember that by definition a Cauchy sequence (xn)n∈N
satisfies that, for any ε > 0, there exists some n0 ∈ N such that d(xn, xm) < ε for
every n,m > n0.

One may suspect, since we have used the same word for both geodesics and metric
spaces, that for a Riemannian manifold it is equivalent to be complete in terms of
geodesics and as a metric space. This is addressed in the Hopf-Rinow theorem.

We have seen that geodesics between two points, if they exist, are the curves mini-
mizing distance. We shall see in the following proposition, that will be central in the
proof of the Hopf-Rinow theorem, that the property of being geodesically complete
allows us to affirm that such geodesics always exist.

Proposition 2.25. If (M, g) is a connected Riemannian manifold which is geodesi-
cally complete, it holds that for any two points p, q ∈M there exists a geodesic joining
them with length equal to d(p, q).

Proof. We denote the distance between p and q as d(p, q) =: r > 0. Let us consider
some ε ∈ (0, r) for which Sε(p) is a normal sphere centered at p. Since Sε(p) is a
compact submanifold of M and the distance function x 7→ d(x, q) is continuous, it
will have a minimum value x0 ∈ Sε(p). This x0 corresponds to some vector v ∈ TpM ,
and we can express it as x0 = expp(εv). Let us see that this is actually the wanted
geodesic between p and q, i.e. that q = expp(rv) = cv(r).

If we define the set A as

A = { t ∈ [0, r] : d(cv(t), q) = r − t }, (2.12)
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then A is non-empty, since 0 ∈ A, and closed (for the map α : t 7→ d(cv(t), q) is
continuous and A = α−1([0, r])). To prove the proposition, we have to show that
r ∈ A.

If r /∈ A, then there would be some maximum t̃ < r of A, with x̃ := cv(t̃). We
can find some normal sphere centered in x̃, with radius δ ∈ (0, r). As before, there
exists some point x1 in this Sδ(x̃) that minimizes the function x 7→ d(x, q). Let us
see that the geodesic between x̃ and x1 is the “continuation” of our geodesic cv, i.e.
x1 = cv(t̃+ δ), and hence t̃ was not the maximum of A.

As x̃ ∈ A, we have that d(x̃, q) = r− t̃. Since Sδ(x̃) is a normal sphere, we also have
that d(x̃, q) = δ + minSδ(x̃) d(x, q) = δ + d(x1, q), so

d(x1, q) = r − t̃− δ. (2.13)

We have that d(p, q) − d(x1, q) = r − (r − t̃ − δ) = t̃ + δ, and as (M,d) fulfils the
triangle inequality, then

d(p, q) ≤ d(p, x1) + d(x1, q) =⇒ d(p, x1) ≥ t̃+ δ. (2.14)

The piecewise smooth curve constructed as cv(t) until t̃, and then as the geodesic
between x̃ and x1, has length equal to t̃ + δ. Then, since it minimizes the distance
between p and x1, it is a geodesic, with x1 = cv(t̃+ δ). Finally, we have that

d(cv(t̃+ δ), q) = r − (t̃+ δ), (2.15)

so t̃+ δ ∈ A, and it is proved that t̃ is not a maximal element of A.

We are now in position to prove the theorem. Let us see:

Theorem 2.26. (Hopf-Rinow Theorem) For a Riemannian manifold (M, g), the
following statements are equivalent:

(i) M is geodesically complete.

(ii) The induced metric space (M,d) is complete.

Proof. If M is geodesically complete, we will see that for any p ∈ M , every closed
and bounded set K ⊂M containing p is compact, from where it is easy to see then
that (M,d) is complete. First, if K is bounded, there is some R > 0 such that it
fits inside BR(p) := {q ∈ M : d(p, q) < R}. By Proposition 2.25, any q ∈ BR(p)

is connected to p by some geodesic, which will have length shorter than R. Hence,
BR(p) ⊂ expp

(
BR(0)

)
, where expp

(
BR(0)

)
is compact for being a continuous im-

age of the compact set BR(0).
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Finally, K is compact since it is a closed subset of a compact set. It follows that the
closure of any Cauchy sequence in M is compact, for it being closed and bounded,
so every Cauchy sequence has a convergent subsequence. Since this applies to any
such sequence, we have that, indeed, every Cauchy sequence converges, so (M,d) is
complete.

Conversely, let us assume that (M,d) is a complete metric space and let us con-
sider some normalized geodesic c defined only for all t < t̃, where by normalized we
mean that ||ċ(t)|| ≡ 1. By this property, given any sequence {tn}, we will have that
d(c(tn), c(tm)) ≤ |tn − tm|. Therefore, if we take any sequence {tn} converging to
t̃, the corresponding sequence {c(tn)} will be a Cauchy sequence, and hence it will
converge to p := limt→t̃ c(t). By the result seen in [One83], p.130 (8. Lemma), we
just proved that c can be extended ad infinitum, hence proving the completeness of
geodesics.

This theorem is of great importance, and not only because it characterizes the rela-
tionship between geodesics and distances. We will see that the Hawking singularity
theorem, which we aim to understand in this work, can be seen as the translation of
the Hopf-Rinow theorem into pseudo-Riemannian manifolds.

As we mentioned before, although we wish to jump into pseudo-Riemannian mani-
folds, into which general relativity is formulated, we are considering first the case of
Riemannian manifolds. We have several reasons to proceed in this way. First, since
there are a lot of notions that are shared by them both, it is harmless (and very ped-
agogical!) to work first with Riemannian manifolds, and then make the according
modifications for the pseudo-Riemannian case.

Also, there is the fact that Riemannian manifolds can be understood quite intu-
itively, and the results seem to be “logical” from our experience. For instance, the
fact that the distance between two points corresponds to some minimizing geodesic
(a straight line in the case of Rn) seems not difficult to grasp. However, as we will
see, this gets a bit trickier when we deal with pseudo-Riemannian metrics.

The first part of this chapter, dealing with fundamental definitions and connec-
tions, can safely remain untouched when we deal with pseudo-Riemannian metrics,
for the positive definiteness is not a necessary condition there (non-degeneracy suf-
fices). Nevertheless, everything concerning distance may have to be reformulated, or
at worst, abandoned, in pseudo-Riemannian manifolds. Before getting there, though,
we shall introduce a crucial concept in both types of manifolds, which is none other
than the curvature.
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2.5 Curvature

Curvature has been a subject of study since the origins of mankind, or at least
since the origins of mathematics. From the Greeks until Gauss, there had been a
consistent effort in order to parametrize the behaviour of curves and surfaces. But,
despite it being an interesting field on its own, there was still something missing in
order to incorporate the notion of curvature into general manifolds, not necessarily
inhabiting real Euclidean spaces. As we have seen for other concepts, we need to
introduce it as a theoretical construct, which, although it may seem too abstract at
first, it will make sense as we advance.

Definition 2.27. Given a manifold M and some connection ∇ defined on M , the
curvature R∇ is an operator that assigns to every two vector fields X,Y ∈ T (M)

the map R∇X,Y : T (M)→ T (M), defined as

R∇X,Y (Z) = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

We may notate it equivalently as R∇X,Y (Z) or R∇(X,Y )Z, depending on the com-
plexity of the expression for the fields X, Y , Z.

Now, this can be seen as a map that, in every point p ∈ M , takes three vectors
Xp, Yp, Zp ∈ TpM and outputs another vector, namely R∇Xp,Yp(Zp). Hence, if it is
seen to be multilinear in X,Y and Z, the curvature will be a smooth (1, 3)-tensor
field. Indeed, it is easy to see, using the properties of connections, that, for any
smooth fields and maps,

(i) R∇(fX1 + gX2, Y )Z = fR∇(X1, Y )Z + gR∇(X2, Y )Z,

(ii) R∇(X, fY1 + gY2)Z = fR∇(X,Y1)Z + gR∇(X,Y2)Z,

(iii) R∇(X,Y )(fZ1 + gZ2) = fR∇(X,Y )Z1 + gR∇(X,Y )Z2.

This tensor field is called the Riemann tensor, and it will play a central role in
general relativity. Let us see now how its tensor coordinates R∇lijk look like, where

R∇ =
n∑

i,j,k,l=1

R∇lijkdx
i ⊗ dxj ⊗ dxk ⊗ ∂

∂xl
.

Since a tensor can be fully defined from its action on basis vectors, then the following
result allows us to determine R∇.
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Proposition 2.28. For some chart (U, (xi)), if the Christoffel symbols of the con-
nection ∇ are Γijk, then the Riemann tensor coordinates are

R∇lijk =
∂Γljk
∂xi

−
∂Γlik
∂xj

+
n∑

m=1

ΓmjkΓ
l
im −

n∑
m=1

ΓmikΓ
l
jm. (2.16)

Proof. Let us see how R∇ looks applied to basis vectors ∂
∂xi

, where
[
∂
∂xi
, ∂
∂xj

]
= 0.

R∇
(
∂

∂xi
,
∂

∂xj

)
∂

∂xk
= ∇ ∂

∂xi
∇ ∂

∂xj

∂

∂xk
−∇ ∂

∂xj
∇ ∂

∂xi

∂

∂xk

= ∇ ∂

∂xi

(
n∑

m=1

Γmjk
∂

∂xm

)
−∇ ∂

∂xj

(
n∑

m=1

Γmik
∂

∂xm

)
Operating and reordering terms, we get that it is equal to

n∑
m=1

(
∂

∂xi
Γmjk −

∂

∂xj
Γmik

)
∂

∂xm
+

n∑
m,l=1

(
ΓmjkΓ

l
im − ΓmikΓ

l
jm

) ∂

∂xl

=
m∑
l=1

(
∂Γljk
∂xi

−
∂Γlik
∂xj

+
n∑

m=1

(
ΓmjkΓ

l
im − ΓmikΓ

l
jm

)) ∂

∂xl

which is the result we wanted to obtain.

Note that we have not introduced the concept of metric into the curvature yet. Theo-
rem 2.13 still holds for pseudo-Riemannian manifolds, so there is a unique Levi-Civita
connection ∇ which is well-defined for any pseudo-Riemannian manifold. Hereafter,
we consider some Riemannian or pseudo-Riemannian manifold (M, g) and the corre-
spondent Levi-Civita connection∇, together with our new acquaintance, its Riemann
tensor R := R∇.

To explain qualitatively how the Riemann tensor works, let us consider parallel
transport of a vector through a closed curve. Trivially, in Euclidean spaces the vec-
tor at the endpoints of the curve is the same, but it is not always like this for other
manifolds. The curvature of the manifold alters the parallel transport of vectors, and
the Riemann tensor is a way to measure this displacement and hence the curvature
itself. This is why it is formulated in terms of the Levi-Civita connection, because
it is the manner in which we analyse parallel transport of vectors.

However, working with a (1, 3) tensor is rather cumbersome, for it is a mixed tensor
and both our understanding of its behaviour and operating with it can get quite
involved. This is the reason why we would rather lower2 the first index so that we

2The operation of lowering or raising tensor indices, which is not trivial, can be done considering
the so-called musical isomorphisms (see e.g. [Lee18], p.26).
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are left with a (0, 4) Riemann tensor3, which acts on smooth vector fields as

R(X,Y, Z,W ) = g(R(X,Y )Z,W ). (2.17)

Looking at equation (2.16), and knowing that the Levi-Civita connection is sym-
metric, we guess that the Riemann tensor should have some symmetries over its
arguments.

Proposition 2.29. For any X,Y, Z,W ∈ T (M), the Riemann tensor R has the
following properties:

(i) R(X,Y, Z,W ) = −R(Y,X,Z,W ),

(ii) R(X,Y, Z,W ) = −R(X,Y,W,Z),

(iii) R(X,Y, Z,W ) = R(Z,W,X, Y ),

(iv) R(X,Y, Z,W ) +R(Y, Z,X,W ) +R(Z,X, Y,W ) = 0 (Bianchi identity).

Proof. Proving these properties is a matter of operating with equation (2.16), as-
suming that ∇ is symmetric and compatible with the metric. We omit the details,
because they hold little relevance for our purpose in this work. For an explicit proof,
see for example [GoNa14], p.125-127.

A concept that will come in useful in order to define an appropriate metric for
cosmology applications in Chapter 4, is the one of sectional curvature.

Definition 2.30. For any 2-dimensional subspace Π ⊂ TpM , for any two non-
proportional vectors Xp, Yp ∈ Π, their sectional curvature K is defined as

K(Xp, Yp) = − R(Xp, Yp, Xp, Yp)

‖Xp‖2‖Yp‖2 − 〈Xp, Yp〉2
.

This can be seen to be independent of the choice of coordinates and vectors, and
equivalent to the Riemann tensor when considered over all possible subspaces. Now,
although we have made some steps to make the Riemann tensor more feasible to
work with, we can still simplify it more by the means of contraction, which we
define loosely as follows.

Definition 2.31. Given a tensor T j1,...,jri1,...,is
of rank (r, s), a metric contraction

T
j1,...,jr−1

i1,...,is−1
consists in choosing two indices ik, jl =: m and summing over them.

T
j1,...,jr−1

i1,...,is−1
=

n∑
m=0

T j1,...,m,...,jri1,...,m,...,is
(2.18)

3It is sometimes labelled as curvature tensor. For the sake of simplicity, we stick with the first
denomination.
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We shall note that this can be extended to the covariant and contravariant case,
where we would respectively take two indices ik, il and jk, jl. To give an easy ex-
ample, the contraction of a (2, 0) tensor, i.e. a matrix, is its trace. Indeed, given
a matrix (aij) with dimension n, the only possible contraction is the contravariant
contraction i, j =: m, that results in tr(a) =

∑n
m=0 a

mm.

It can be seen that this contraction operation does not change the tensor basic
properties, and that the covariant derivative commutes with it (see [One83], p.83).
We may wonder if we could use this to simplify the Riemann tensor to an extent that
it still retains its main structure but is instead a (0, 2) tensor. As we will see later,
this works, and the tensor is named after the inventor of tensor calculus, Gregorio
Ricci-Curbastro.

Definition 2.32. The Ricci curvature, Ric, is the following contraction of the
Riemann tensor Rijlk:

Ricij =
n∑
k=1

Rkkij

It can be easily seen, by applying the symmetry conditions of R given in Proposi-
tion 2.29, that the Ricci tensor is symmetric, so given any X,Y ∈ M, we will have
Ricij(X,Y ) = Ricij(Y,X).

Going even further, we could wonder what would happen if we took one more step,
i.e. if contracting the Ricci tensor yields any significant quantity.

Definition 2.33. We define the scalar curvature S as the trace of the Ricci tensor:

S =
n∑
i=1

Ricii

It turns out that, indeed, both the Ricci and scalar curvature are key objects in
general relativity. Time will come when we remember them again, in the unveiling
of Einstein field equations. Now that we have the main mathematical ingredients, let
us introduce the physical context, to put ourselves in the situation in which Einstein
was in 1905.



Chapter 3

The Theory of Relativity

3.1 Special Relativity

Einstein’s theory of relativity was a pivotal accomplishment in our understanding
of space, time, and the relation between them, which still puzzles us a century later.
But, to begin with, what do we understand by space and time? Is space the scenario
in which some processes occur and evolve through time? Can we still cling to some
construction which we can label as “absolute space and time”, some special point of
view in which we formulate the fundamental laws of physics? Let us look first into
how can we give sense mathematically to the physical concepts of space and time.

Definition 3.1. A reference frame S is a choice of space and time coordinates.
We call it an inertial reference frame if every free particle (one which is not
subject to any force) either stays at rest or moves at constant speed with respect to
this system.

It follows that, given an inertial frame, another reference frame will be inertial if
their relative velocity ~v is constant, i.e. if they are not accelerated with respect to
each other.

Before Einstein, the established model was the one inherited from the classical ideas
of Newton and Galileo. In it, each reference frame is the assignment of the real
space R3, with some basis (e1, e2, e3), to some trajectory along the time coordinate,
t ∈ R. All phenomena happening in some inertial frame can be translated to any
other inertial frame by the means of Galilean transformations. In the simple case
where the two frames S, S′ are such that S′ is going away from S in the x direction
at positive speed v, the coordinates of any point in S′ will relate to the ones in S by

x′ = x− vt; y′ = y; z′ = z; t′ = t.

23
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v

x′x
S

z z′

y y′

S′

Figure 3.1: An inertial frame S′ departing from S at constant speed ~v = (v, 0, 0).

Here, it is taken as an axiom that time is an absolute static quantity, which is the
same on every frame. As is usually the case, this axiom does not come from some
observational proof but more from a intuitive or philosophical statement taken as
truth. The relationship between coordinates and relative velocity is also intuitively
seen as true: If I am driving at 100 km/h and a car passes me at 120 km/h, then I
see this car (and all of its reference frame) going away from me at 20 km/h, in the
direction we are driving in.

This approach, however, has a huge pitfall. If we were to apply this Galilean trans-
formation to a ray of light, then from different reference frames we could see light
going away from us at different speeds. However, it was seen in Maxwell’s theory
of electromagnetism (and backed up experimentally in the Michelson-Morley exper-
iment) that the speed of light is an absolute constant, c, which is independent of
the reference frame. This deemed the classical viewpoint incomplete, or even plain
incorrect, until Einstein came up with a solution. It is said that one man’s trash is
another man’s treasure, so if this invariance of c brings problems, let us assume it as
a hypothesis.

3.1.1 Lorentz Transformations

Einstein’s theory of special relativity starts its reasoning with two postulates:

1. All the laws of physics are equivalent in all inertial reference frames.

2. The speed of light, c, is the same in every inertial reference frame.

We saw that Galilean transformations fail to satisfy Postulate 2, so the transforma-
tion laws between inertial reference frames have to come in the form of the Lorentz
transformations. In these transformations, the quantities of space and time are
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entangled in the quantity Xµ := (ct, x, y, z), which determines completely any tra-
jectory in a given reference frame. Assuming the postulates, again for frames S, S′

where S′ moves at ~v = (v, 0, 0) respect1 to S, it can be seen that the transformation
law for a point Xµ into S′ will be:

ct′

x′

y′

z′

 =


γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1



ct

x

y

z

 , (3.1)

where we label β = v
c and γ = 1√

1−β2
. As a proof for this result, we can refer to the

reasoning of Einstein himself in [Ein16], p.139.

As we see, the concepts of time and space are intertwined, and are unique in ev-
ery inertial frame. If one does some simple calculations, it is seen that ct′ and x′

respectively grow and decrease with v, reaching asymptotic values when v → c.
These are well-documented consequences of the postulates, known as time dila-
tion and length contraction. Note too that, by just assuming that c is constant
in every inertial frame, we have seen that in fact the speed of light c is unsurpassable.

Given all of this, it is obvious that we need to substitute the Galilean conception of
space and time as R×R3 by some alternative formulation, and this is exactly where
pseudo-Riemannian metrics enter the conversation. For this, we should abandon the
idea that the space in which we work is “intuitive”, for we have seen that the most
“intuitive” approach was not capable of handling the invariance of c.

Let us consider the space of the elements of the form Xµ = (ct, x, y, z), which is
obviously R4 when considered purely as a smooth manifold, with the identification
TXµR4 ∼= R4 for every Xµ. We want to endow it with some metric which, as said in
the first postulate, is invariant under change of frame, i.e. invariant under Lorentz
transformations.

If one looks at the expression (3.1) and considers some arbitrarily small trajectory
(ct, x, y, z)→ (ct+ ∆(ct), x+ ∆x, y + ∆y, z + ∆z), then for any two inertial frames
S, S′ it holds that

− (∆ct′)2 + (∆x′)2 + (∆y′)2 + (∆z′)2 = −(∆ct)2 + (∆x)2 + (∆y)2 + (∆z)2. (3.2)

This quantity, which is invariant over change of frame, is called the action, labelled
as s2.

1Of course it applies to any possible direction, not just the direction x̂. We base our calculations
in this chapter in that S′ departs from S at ~v = vx̂.
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The invariance of s2 seen in (3.2) can be extended to differential displacements, where

ds2 = −c2dt2 + dx2 + dy2 + dz2. (3.3)

This expression is familiar to us, for it being analogous to the definition of a metric
tensor. In fact, if we define the Minkowski metric as the pseudo-Riemannian
metric over R4 defined by equation (3.3), we have the desired metric. Using the
so-called natural units, where we assign c = 1, then the matrix expression of the
metric is, in the canonical standard basis of R4,

ηµν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,

where µ, ν = 0, ..., 3. We have not specified the point p ∈ R4 in whose tangent
space we work, because it is identical in all of R4. Thus, given any two vectors
v, w ∈ TpR4 at some point p, their inner product by the Minkowski metric will be
η(v, w) = ηµνv

µwν . Applying the results seen so far to various physical situations
where some object is travelling at speeds closer to c yields bewildering and counter-
intuitive results2 that are indeed correct, such is the power of this reformulation of
space and time. Or, should we say, of space-time.

3.2 Lorentzian manifolds

Now we have a metric which is invariant under Lorentz transformations, and
hence faithful to the postulates of special relativity. However, thus far we have been
studying phenomena occurring in Riemannian manifolds, but we see that we are not
in this case any more: we have to introduce the concept of Lorentzian manifolds.

Definition 3.2. Given a pseudo-Riemannian metric tensor gp in a manifold M , the
signature ν = (p, n, z) ∈ N3 of gp is the array defined by:

- p = dim{v ∈ TpM : g(v, v) > 0},

- n = dim{v ∈ TpM : g(v, v) < 0},

- z = dim{v ∈ TpM : g(v, v) = 0}.

In terms of matrix representation, by simple linear algebra, it reduces to the number
of positive, negative and zero eigenvalues of the matrix expression of gp. It can be
seen, too, that the signature is the same all over the manifold M .

2The interested reader may appreciate, for example, the thorough analysis of the so-called Twin
paradox found in [Be12].
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Example 3.3. The Minkowski metric has signature ν = (3, 1, 0), and we denote R4

equipped with the Minkowski metric as R3
1.

Definition 3.4. A Lorentzian manifold is a pseudo-Riemannian manifold of di-
mension n ≥ 2 such that its signature is ν = (n−1, 1, 0). A 4-dimensional Lorentzian
manifold is called a space-time.

As we mentioned earlier, the concepts and basic properties of connections, geodesics
and curvature for Lorentzian manifolds (which are a specific case of pseudo-Riemannian
manifolds) are in general the same as seen in Chapter 2. It is everything related to
distance that falls apart under the light of pseudo-Riemannian metrics, because dis-
tance is a concept essentially defined for positive definite metrics.

For example, in the case of R3
1 it is obvious that we cannot find minimizing geodesics

or define a metric structure under which distances are defined. We could see, actually,
that the length of a path in R3

1 between two given events is maximized by the Eu-
clidean straight line, which is exactly the opposite of what happens in the Riemannian
case3. Talking about paths, since the Minkowski metric allows for negative-valued
inner products, we shall introduce the following classification in order to compare
different curves in R3

1.

Definition 3.5. Any vector v ∈ R3
1 is defined as

(i) spacelike if η(v, v) > 0,

(ii) lightlike if η(v, v) = 0,

(iii) timelike if η(v, v) < 0.

A curve γ ⊂ R3
1 will be spacelike, lightlike or timelike if its tangent field γ̇ is

always spacelike, lightlike or timelike, respectively.

The set of timelike vectors, which is clearly bounded by the set of lightlike vectors
(named the light cone), has two connected components, as can be seen in Figure 3.2.
Given that timelike vectors are inherent to the movement of regular bodies, this sep-
aration of components gives a way to discern the past from the future. To pick one of
the components as future-pointing gives the Minkowski space a time orientation.

This gives rise to the essential concept of causality. It is said that there is a
causal relation between two events A and B in space-time if there is some timelike
or lightlike path γ connecting them. In this case, if this timelike curve γ starts at A,

3Actually, it can be proven a kind of “reversed” triangle inequality, where the length of the path
is smaller if the spatial part of the path is longer. For a proof of this result, see e.g. [Man93]
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it can be proved that A comes before B in every reference frame, and vice versa. On
the other side, if there is some spacelike path connecting A and B we say that there
is no causality between A and B. This means both that these two events cannot
influence each other, and that there exist two inertial frames, where in one of them
A precedes B, and in the other one it is the opposite case. In this way, the concept
of simultaneity as it was known before is broken once and for all.

vs

vt

vl

p

Figure 3.2: Different vectors in relation to the light cone of some point p. In this case,
vt, vl and vs are respectively timelike, lightlike and spacelike vectors. In particular,
the light cone of a point encompasses all points of the past and future (given a certain
time orientation) that have a causal relationship with it.

3.3 General Relativity

We have seen that, strange as it may be, movement in the absence of external
force is determined by the Lorentz transformations. However, this is a rather partic-
ular description of nature, for the bodies in the universe are usually subject to forces
of some kind. So, in order for a theory of gravity to be a proper substitution of the
classical theories of motion and dynamics from Newton and Galileo, the action of
force had to be considered. But, which force? We know that there are four main
forces in nature: the strong and weak nuclear forces, the electromagnetic force and
gravity.
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General relativity, like Newtonian physics, is meant to model macroscopic phenom-
ena, a term historically defined as those phenomena that can be distinguished by
the naked eye. Since the action of nuclear forces is at the scales of atomic size, they
are not considered in general relativity. Electromagnetism, differently, is a force that
theoretically has infinite range, in the same ratio as gravity, 1/r2. But, since it is
seen that at macroscopic scales bodies are usually neutral in terms of charge, and
hence immune to electromagnetic force, this third force can be neglected as well.
This is, of course, not the case for gravity.

3.3.1 The Equivalence Principle

How can we take gravity into account if acceleration yields non-inertial reference
frames, which the relativity principle does not consider? Einstein made a crucial
observation, in the form of the equivalence principle.

Prior to Einstein, there was a physical equivalence he was well aware of: the fact
that inertial mass, the one that is accelerated by some force F = mia is undistin-
guishable from gravitational mass, which is the ratio between the gravitational force
and acceleration, Fg = mgg.

Going further, in one of his most celebrated mental experiments4, he affirmed that
this equivalence actually extends to a and g, in the following way. An observer
bound to a gravitational field would feel the same as another observer in vacuum
which was suffering an acceleration a = g. Even more interestingly, an observer at
rest in vacuum would feel the same as an observer under free fall, on a gravitational
field. Then, the equivalence principle can be expressed as:

A reference frame in free fall is locally equivalent to an inertial reference frame.

This was the missing link, as we will see, by which the results of special relativity
could be applied to accelerating frames, thus allowing a general theory of relativity
to come to fruition.

3.3.2 Einstein Field Equations

In the same fashion as in special relativity, we want to consider space-time as a
Lorentzian manifold M and model its behaviour. As said before, there are always
some assumptions prior to any physical model, so let us impose the following two:
the principle of equivalence and the hypothesis of general covariance.

4See his own considerations in [Ein07], section V.
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This general covariance principle can be seen as an extension of the first postulate of
special relativity. It states that physical laws are actually invariant over all reference
frames, not only inertial ones. This also means that these laws can (and should) be
expressed with mathematical objects that are not dependent on the frame, such as
tensors.

These two principles suggest that we should also assume that the structure of M
is such that

(i) The geodesics in space-time are the free-falling trajectories.

(ii) M locally reduces to the special relativistic case. In other words, the tangent
spaces to each point are Minkowski spaces, R3

1.

This is explained in more detail in [Wa10], p.66-68. We should thus be able to for-
mulate the basic rules of motion considering the geometry of M , by acknowledging
how the structure of M affects trajectories of objects. This was the very intention of
Einstein. For that purpose, the Riemann tensor was a good bet, for the behaviour
of geodesics and intrinsic properties of M are encoded within it. For the sake of
simplicity, we could consider instead the Ricci and scalar curvatures.

On the other side, the mass, or energy (which were deemed equivalent in special
relativity), should also have some effect on the dynamics of gravitation, and the final
result should reduce to the Newtonian case at conditions of low speed or weak force.
This fact is sometimes added as an assumption too, and is quantitatively expressed
in the Poisson equation

∆ϕ = 4πGρ, (3.4)

where ρ is the matter density and ϕ is the gravitational field, G being the New-
tonian gravitational constant. As we wish to compare this distribution of energy
with some tensorial combination that includes Ric and S, it has to be expressed as a
tensor too. This gives rise to the appearance of the (0, 2) stress-energy tensor, Tµν .

Like in the case of the Minkowski metric, from now on we will work with natu-
ral units, which are c = 1 and G = 1. We will not expand on how the actual
equations were obtained, but just sketch some possible procedure.

First, the stress-energy tensor, which models the distribution of energy as a fluid,
satisfies that ∇(Tµν) = 0. There is also a property of the curvature tensors, which
is seen e.g. in [Lee18], p.209, by which ∇(Ricµν − 1

2Sgµν) = 0, where g is the metric
tensor of the Lorentzian manifold.
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Thus, adding a constant term Λ to fine-tune the expression, we finally get the Ein-
stein field equations:

Ricµν −
1

2
Sgµν + Λgµν = 8πTµν , (3.5)

where the 8π factor comes from the boundary condition given by the Poisson equa-
tion, and the constant Λ is called the cosmological constant. We see that this is
an equation relating (0, 2) tensors on a manifold of dimension 4, so it translates into
a system of 16 partial differential equations.

In the Einstein field the following facts are made tangible: that the existence of
energy results in the curvature of space-time, and that the gravitational force is en-
coded into how the trajectories of objects are affected by this curvature.

Thus, the curvature of space-time is the medium through which the gravitational
interaction takes place.



Chapter 4

Notable applications

We have just seen that space-time is determined by a Lorentzian metric, and
that for a given space-time to be feasible option to describe a real setting, its metric
has to satisfy the Einstein field equations. However, the Einstein field equations, as
beautiful as they might be, are really complex to solve analytically. Working with
the curvature tensors and generalizing them to all the space in which we are working
can be a strenuous task, if not impossible.

Nevertheless, there have been a handful of studied settings which are simple enough
to make such analytic derivation of the resulting metric. We are going to review the
two most important ones, the Schwarzschild solution and the arising of cosmology.

4.1 The Schwarzschild Solution

One of the cases for which Newtonian gravitation theory had a straight-forward
solution was the simple case of a single sphere or point of mass M . In this case,
the gravitational pull felt by a body of mass m in the vicinity of M would go in the
direction between them, and have modulus

F = G
M ·m
r2

, (4.1)

where r is the modulus of the distance between them.

One could wonder if the analogous of such simple solution could be attained by
the means of general relativity. This is what Schwarzschild did, just after Einstein’s
general relativity came out. Let us see.

32
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The assumptions to find the field outside the sphere will be the following:

(i) The sphere is the unique source of gravitational force, and any other mass
outside of it is neglected.

(ii) Spherical symmetry: The field created by the sphere, and thus the whole sys-
tem, is invariant under rotations.

(iii) Time invariance: The system is static, i.e. there is no variation in the gravita-
tional field over time.

(iv) The cosmological constant Λ is 0.

Now, we can express any possible Lorentzian metric in spherical coordinates as

ds2 = −A(r, t)dt2 +B(r, t)dr2 + C(r, t)r2dθ2 +D(r, t)r2sin2θdφ2, (4.2)

for some functions A,B,C and D dependent on r and t. Since the system is static,
these functions will be just functions of r. Also, at a given radius r, the expression of
ds2 needs to be the same along all angular coordinates because of spherical symmetry,
so C(r) = D(r) for all r. We can set C = D = 1 without loss of generality, by
adjusting A and B conveniently. Then, the metric is of the form

ds2 = −A(r)dt2 +B(r)dr2 + r2dθ2 + r2sin2θdφ2. (4.3)

To solve the system, we “just” have to find the functions A(r) and B(r), using the
Einstein field equations. By assumption (iii), the absence of mass outside the sphere
implies that Tµν = 0, so the Einstein equations reduce to the so-called vacuum
Einstein equations:

Ricµν −
1

2
Sg = 0. (4.4)

Since we have the expression for the metric, calculating the Ricci and scalar curva-
tures it is a matter of finding the Christoffel symbols and using equation (2.16) to
find R, and finally contracting R into Ric and S. To the delight of the reader, we
spare the tedious details of such calculation, and give the expression for the tensors.

Ric00 = −A
′′

2B
+
A′B′

4B2
+

(A′)2

4AB
− A′

r ·B
;

Ric11 =
A′′

2A
− (A′)2

4A2
− A′B′

4AB
− B′

r ·B
;

Ric22 = −r ·A
′

2AB
+

1

B
− r ·B′

2B2
− 1;

Ric33 = sin2 θR22;

Ricij = 0, if i 6= j,
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where of course A and B are still functions of r, and by A′ and A′′ we mean the
ordinary differentiation of the function respect to r. The scalar curvature will be

S = − A
′′

AB
+

(A′)2

2A2B
+

A′B′

2AB2
− 2A′

r ·AB
+

2B′

r ·B2
− 2

r2 ·B
+

2

r2
.

Putting Ric and S into the Einstein field equations and operating with the differential
equations thus obtained (there are terms A′, A′′ in the mix) we finally get

A = K1

(
1− K2

r

)
, B =

1

1−K2/r
,

where K1 and K2 are integration constants. The metric is thus

ds2 = −K1

(
1− K2

r

)
dt2 +

1

1−K2/r
dr2 + r2dθ2 + r2sin2θdφ2.

As gravity vanishes at infinite distance from the source, the limit when r → ∞ has
to be the Minkowski metric, the one corresponding to flat space, and hence K1 = 1.
Also, since Newtonian gravity must be a particular case for weak gravity fields, it is
seen that K2 = 2M (in natural units), M being the mass of the sphere. Then,

ds2 = −
(

1− 2M

r

)
dt2 +

1

1− 2M/r
dr2 + r2dθ2 + r2sin2θdφ2. (4.5)

As we have the metric of space-time, the geodesic structure can be found, and with
it the velocity and acceleration of any free-falling body, the latter being1

a =
d2r

dτ2
=
M

r2
(1− 2M/r)−

1
2 . (4.6)

After applying this solution to the Solar System, it was found that it was not only
extremely precise, but also it accurately modelled the orbit of Mercury, which was not
predicted well with Newton’s theory. We now know that this was because Newton’s
theory is only an approximation for the case where the gravitational field is weak,
which is not the case at the location of Mercury. This was the first huge success of
general relativity, in a chain of never-ending valid predictions. It would be all good
only if we had not noticed that some coefficients of the metric reach infinity values
in two cases:

(i) r = 0: This one is somehow understandable, since it could mean that the
metric is not well-defined at the center of the sphere.

(ii) r = 2M : This spherical shell is labelled as the event horizon, and rS = 2M

is called the Schwarzschild radius.
1Assuming non-angular motions and a(0) = 0. It is expressed in units of proper time τ , where

this proper time quantity models the flow of time considering relativistic effects.
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We define the points at which the metric goes to infinity as singular points, or
just singularities. By (ii), the submanifold rS = 2M divides the manifold in two
parts, and prevents the metric to be defined along all the space. This is extremely in-
teresting, for it has no obvious explanation in terms of classical or relativistic physics.

How would this look like, in a physical sense? Let us consider that the massive
sphere is a single star, which is a good approximation since its mass completely
overwhelms any other lesser (non-star) body nearby. From basic astrophysics, it is
known that nearly all kinds of stellar bodies satisfy that their radius R is bigger than
rS , so this singularity cannot be found on the outside of any of them2. Otherwise,
any stellar body for which rS is bigger than its radius is then defined to be a black
hole.

These mysterious objects, whose existence was proven five decades later, feature
this supposed singularity at their Schwarzschild radius, which is now relevant for it
falls outside of them. They are the remnants of a star that collapsed within itself
and whose density is sufficiently high to permit that R < 2M . But, why are they
called this way?

To see it qualitatively, if the event horizon existed in a Schwarzschild metric, the
space would no longer be connected. Hence, if it were indeed a physical singularity,
no geodesic could trespass this spherical shell, in any direction. However, there is
physical evidence that black holes accrete matter and light, thus the space (except
at r = 0) should be geodesically complete, regardless of this apparent singularity. It
turns out that this singularity was produced by the choice of coordinates, and it was
corrected later in the so-called Kruskal extension. Nevertheless, it is a surprising
coincidence that the Schwarzschild radius is exactly the maximum radius at which
light cannot escape the gravitational influence of the mass. By the maximality of c,
it means in particular that every body that crosses the event horizon can never go
back again, including light.

To recapitulate, although we have seemingly solved the Schwarzschild setting and
found an explanation for the discontinuity of ds2 at r = 2M , we still have this sin-
gularity at r = 0 chiming in. In order to understand the fundamental nature of
singularities, we have to delve into what the Hawking theorem says to us, which will
be exactly the object of next chapter. Before that, we still want to see another huge
consequence of general relativity, in the following section.

2To see how ridiculously small is the Schwarzschild radius in “common” bodies, we have for
example that for the Sun it is rS ≈ 3 km, and for the Earth it is rS ≈ 1 cm.
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4.2 Cosmology

We have seen that just the Schwarzschild solution alone is already a replacement
and refinement of the classical theory of gravitation. We may wonder, then, if we
could apply relativity to less simple settings, so what about trying to model the
Universe as a whole? In this case, we have to assume that the Universe satisfies two
important hypotheses: the one of perfect fluid and the so-called cosmological
principle. Let us quickly review them:

The cosmological principle is the combination of the assumption of isotropy
(which is proved by observations), and the so-called Copernican principle, which
roughly says that we are not in a privileged position inside the Universe. Combining
both statements we claim that at sufficiently large scales, the Universe is isotropic
and homogeneous, and so is the expression of the metric.

Also at sufficiently large scales (also named cosmological scales), we may assume
the hypothesis that the distribution of energy in the Universe is given by the one of
perfect fluid. This is the simplest possible model of fluid, which is isotropic, and
there is neither transport of energy nor friction, and hence the stress-energy tensor
takes a very simple form. Indeed, as it can bee seen in [Cep07], p.111, the tensor is
diagonal, and has the following form:

Tµν =


−ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 , (4.7)

ρ being the energy density and p the pressure of the fluid.

As before, we need to characterize the metric in order to solve the Einstein equations.
Now, although we may consider that the Universe varies over time, which is true, let
us separate the time and space description, defining the metric as

ds2 = −b(t)2dt2 + a(t)2ds̃2.

As before, we can take b(t)2 = 1 without loss of generality. Here, ds̃2 will be the
spatial description of the metric, where space is a Riemannian 3-submanifold N ,
since the metric is positive definite in N . As N is isotropic, the Riemann tensor is
defined by

Rijkl(p) = Kp(gilgjk − gikgjl) (4.8)

(see a proof in [GoNa14], p.128).
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Since the Universe is homogenous, if we change the origin of coordinates the cur-
vature should not change, so we see that actually Kp is constant, i.e. the spatial
submanifold N has constant curvature3, which we denote by K. Since the concept
of sectional curvature, defined in Chapter 2, has the same information as the Rie-
mann tensor, this means that every possible sectional curvature all over N is constant
and equal to K. By the Killing-Hopf theorem, which is detailed in [Lee18], p.348,
this means that the manifold N is either isometric to S3, R3 or H3, for the cases
when, respectively, K > 0,K = 0 and K < 0. Thus, we have three possible metrics
for N , and we can find spherical coordinates (r, θ, φ) such that they look like

ds̃2 = dr2 + sin2 r
(
dθ2 + sin2θdφ2

)
, if K > 0;

ds̃2 = dr2 + r2
(
dθ2 + sin2 θdφ2

)
, if K = 0;

ds̃2 = dr2 + sinh2 r
(
dθ2 + sin2 θdφ2

)
, if K < 0.

(4.9)

This, in turn, after the due reparametrizations, can easily be expressed in a more
compact form,

ds̃2 =
dr2

1− kr2
+ r2

(
dθ2 + sin2θdφ2

)
, (4.10)

where k is a parameter of just the sign of the curvature, that can be k = 1, 0,−1, and
relates to K in that K(t) = k/a(t)2. This is as far as we can get with our hypotheses,
and now adding ds̃2 to the whole metric, we obtain the so-calledRobertson-Walker
metric.

ds2 = −dt2 + a(t)2
(

dr2

1− kr2
+ r2

(
dθ2 + sin2θdφ2

))
. (4.11)

In the same manner as with the Schwarzschild metric, we need to find the expression
for the curvature tensors and solve the needed differential equations, this time over
a(t). Again, after a laborious calculation of the Christoffel symbols and then the
Riemann tensor, we obtain the Ricci and scalar curvatures:

Ric00 = −3
ä

ȧ
;

Ricii =
ä

a
+

2ȧ2

a2
+

2k

a2
, for i = 1, 2, 3;

S = −6

[(
ȧ

a

)2

+
ä

a
+

k

a2

]
,

where as before the Ricci tensor is diagonal. Putting these expressions into the
Einstein field equations, together with the stress-energy tensor seen in (4.7), we get

3We should not mistake this curvature, which concerns the spatial submanifold N of space-time,
with the curvature of the tetra-dimensional space-time. For instance, the spatial curvature can be
0, but, as we have seen, space-time is always curved since there is matter in it. This is still a source
of confusion nowadays, so it must be made clear.
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the following two differential equations for a(t), the Friedmann equations:

ä(t)

a(t)
= −4π

3
(ρ(t) + 3p(t)) +

Λ

3
(4.12)(

ȧ(t)

a(t)

)2

=
8π

3
ρ(t) +

Λ

3
− k

a(t)2
. (4.13)

Let us just admire for a moment the fact that the Einstein equations have allowed
us to naturally parametrize the whole universe, from just the assumptions of perfect
fluid and the cosmological principle. With the Friedmann equations, the science of
cosmology was born.

If we want to determine what the exact spatial curvature of universe is, we have
to get help from observational data. As an overly simplified explanation, it was ob-
served that, looking the furthest away possible, any triangle of cosmic size satisfies
that the sum of its angles is 180◦. Hence, the space is actually flat, and k = 0.

However, we are still clueless about some issues. What is this function a(t), and
the constant Λ? If these equations are really determining a dynamical system, is
the universe evolving over time? Also, why do we have an under-determined system,
with three variables and just two equations? Let us answer the first two questions.

If we look at the Robertson-Walker metric, we see that a(t) is a function that tells
about the “size” of the metric, in that the distance between any two points will be
proportional to the value of a(t)2. Then, if we fix any two points, although we do
not move the points, their relative distance will vary with time according to a(t).
The Friedmann equations tell us that in general a(t) is not a constant function, so it
is obtained that the metric, and hence the universe itself, expands or contracts with
the passing of time.

Einstein, who was an advocate of a static universe, introduced in his equations a
mathematically valid artefact, the cosmological constant Λ. By carefully adjusting
this constant, a static universe can be obtained4. However, as it was later seen by
observing the rate at which other galaxies depart from us, the Universe is expanding,
so theoretically this constant was no longer required. But finally, ground-breaking
observations at the end of the 20th century pointed out that the universe expansion
was actually accelerating. It turns out that this constant Λ can be a measure of this
acceleration, whose source is not understood and thus named dark energy.

4As we see in the first Friedmann equation, if we remove the cosmological constant term and
consider that ρ, p > 0, which was the classical view, then we obtain a negative acceleration ä(t) and
hence an always present tendency of the universe to contract.
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Finally, we should mention that we have derived the Friedmann equations from the
most general setting possible, but we have not yet introduced any actual assumption
on the nature of the constituents of the universe. Then, it is logical that the system
of equations is under-determined. In physics, one characterizes the properties of a
substance through its equation of state, which usually relates its correspondent
thermodynamic quantities: pressure, volume, density... It makes sense to introduce
an equation of state of any component of the universe as

p = ωρ, (4.14)

where ω is a constant that is characteristic of the substance. For example, for ordi-
nary matter we have ω = 0, whereas for dark energy we have ω = −1.5

In this case, the system of equations is well-determined, and, after some experi-
mental data that tells us about the evolution of the components of the universe
through time, the evolution of the expansion of the universe can be obtained. There
is attached below a (very) qualitative representation of this evolution.

t0

a(t0)

a(t)

ttBB

Figure 4.1: Evolution of a(t), from the Big bang (BB) until present (t0). A rigorous
explanation and plot can be found e.g. in [Cep07] p.174.

We can see that if we go sufficiently far away to the past, about 13.8 · 109 years, a(t)

tends to reach zero, for which a quick look into the Friedmann equations sees that
this would provoke a singularity. This hypothetical singularity is named the Big
Bang, and it should mark the origin of the universe as we know it.

We have collected in this chapter some reasons to desire to understand the nature of
singularities. Luckily, it is now time to do so.

5This seemingly unrealistic equation of state, where the density of energy does not decay when
the universe expands, corresponds to the Λ term (and thus to dark energy) in the Friedmann
equations, as seen e.g. in [Cep07], p.130.



Chapter 5

Hawking Singularity Theorem

Let us look now into the nature of singularities. We have seen that at certain
points of space-time the expression for the metric may have an asymptotic disconti-
nuity, and we want to characterize how does space-time behave in the vicinity of those
points. Since singularity points limit the completeness of geodesics (i.e. geodesics
cannot trespass those points), we want to obtain a way to relate this completeness
of geodesics with intrinsic properties of the manifold.

This sounds familiar, for it is exactly what was done in the Hopf-Rinow theorem.
However, this was a theorem for Riemannian manifolds, where it is used that any
such manifold can be given a metric structure and we had appropriate means to
calculate distances in terms of geodesics. This is not the case for Lorentzian mani-
folds, so we want to see how can we manage to obtain a corresponding result in this
context.

5.1 Preliminary notions on causality

First, we need to make some more assumptions on the structure of space-time,
so that we are working with manifolds that are realistic enough. We thus need to
extend the notions given in Definition 3.5, which are the starting point to understand
the relations of causality in space-time.

Definition 5.1. A space-time M is time-orientable if there exists some smooth
vector field X ∈ T (M) for which 〈X,X〉 < 0 at all points p ∈M . It is possible then
to have a definite time orientation of the space-time by orienting all the tangent
spaces (which are Minkowski spaces) either towards the future or the past.

This allows us to rigorously quantify the arrow of time. Giving a space-time a time-
orientation we can check if a curve points to the future, the past, or neither of them.

40
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Definition 5.2. A timelike trajectory c : I → M is future-directed if ċ(t) is
future-pointing for all t ∈ I. For every p ∈ M , the set I−(p) of all points that can
be linked to p by some timelike curve is denominated as the chronological past of
p. Conversely, the set I+(p) of points that that can be connected with p by a timelike
trajectory starting at p is the chronological future of p.

If we allow the tangent vectors to the trajectory to be either timelike or lightlike
(instead of them being all timelike), then c is said to be a causal curve, and the
correspondent concepts to I−(p) and I+(p) will be the ones of the causal past
J−(p) and causal future J+(p). Since we want to know when space-times are
not geodesically complete (i.e. when geodesics cannot be extended any more), the
following definitions are crucial:

Definition 5.3. A smooth future-directed causal curve c : (a, b)→M will be future-
inextendible if limt→b c(t) does not exist. This gives also the definition for past-
inextendible curves, which is the analogous case for past-directed curves. Given
some set S ⊂ M , the future domain of dependence D+(S) is the set of points
p ∈ M for which all past-inextendible causal curves starting at p intersect S. With
an analogous definition we also get the past domain of dependence D−(S).

The domains of dependence are then a measure of the incompleteness of geodesics in
a given region around any set of points S. They also allow us to define the following
important concepts.

Definition 5.4. A space-time M is stably causal if there exists a smooth function
t : M → R, called time function, such that its gradient is timelike. Let M be any
such manifold. Then, we define a Cauchy hypersurface1 as a level set Sa := t−1(a)

of some a ∈ R such that D(Sa) := D+(Sa)∪D−(Sa) = M . If all level sets of the time
function t are Cauchy hypersurfaces, then M is said to be globally hyperbolic.

The property of a space-time being globally hyperbolic assures us that the causal
relations are not unnatural and is therefore a sign of physically sensible properties.
Hereafter, when we refer to any space-time M we will implicitly assume that it is
stably causal and globally hyperbolic. We shall prove now the following technical
proposition, that will be important later on.

Proposition 5.5. Given a space-time M , a Cauchy hypersurface S and a point
p ∈ D+(S), then A := D+(S) ∩ J−(p) is a compact set of M .

Proof. Since we have to derive topological properties, we define a basis for the topol-
ogy of M that will be useful. A geodesically convex set U ⊂ M (i.e. such that all

1It can easily be seen that they are 3-submanifolds of M , hence the hypersurface label.
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points within U can be linked with some geodesic) will be a simple neighborhood
if it is diffeomorphic to an open ball bounded by a compact submanifold of a bigger
geodesically convex open set.

It can be seen that simple neighborhoods are a basis for the topology of M , and
thus every open cover ofM can be expressed in terms of some union of simple neigh-
borhoods. We want to prove that any open cover of A by simple neighborhoods
has some finite subcover. Let us assume it is false, for some cover {Un}n∈N (we
can assume that this cover is countable because smooth manifolds satisfy the second
countability axiom). We take a sequence {qn}n∈N such that qn ∈ A∩Un and qn 6= qm
if n 6= m. In this way, the sequence does not have accumulation points, and since by
definition Un is compact, in each Un there is only a finite amount of such points.

We now define a sequence {pn}n∈N that will cause a contradiction and thus prove
the claim. We start by setting p1 = p, where p belongs to some U1, and take some
qm such that qm /∈ U1. By construction there is some future-directed causal curve
c1 from qm to p1 (because A ⊂ J−(p)) that crosses the boundary ∂U1 at some point
r1m. Since we have assumed that A is not compact, there are infinite points qm and
therefore infinite points r1m ∈ ∂U1. They accumulate at some point p2 ∈ ∂U1, by
the compactness of U1, as pictured in Figure 5.1.

p = p1
U1q1

U2

p2

p3

U3

q3

q2

S

D+(S)

Figure 5.1: Construction of the sequence {pn}n∈N.
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This sequence of points r1m corresponds to a sequence of causal geodesics {γ1m},
which by the properties of simple neighborhoods also converges naturally to a causal
geodesic γ1 between p1 and p2. Then, p2 ∈ J−(p). Since p ∈ D+(S), then
t(r1m) ≥ t(S), which implies t(p2) ≥ t(S) and thus p2 ∈ D+, so p2 ∈ A. Also,
p2 /∈ U1, so we now consider a simple neighborhood U2 for which p2 ∈ U2.

Doing the exact same procedure we find p3 as an accumulation point of the in-
tersections between causal curves from p2 to qm and ∂U2. Again, it is found that p2
and p3 are joined by a causal curve γ2, and equally as before p3 ∈ A. We can repeat
this ad infinitum, since the cover {Un} has no finite subcover, and find a sequence
{pn} such that all points belong to different neighborhoods Ui and all successive
points are joined by a causal geodesic γn.

This piecewise smooth causal curve ∪iγi can be smoothed on each pi so that we
finally have a past-directed causal curve γ starting at p. We have seen recursively
that for all points pi we have t(pi) ≥ t(S), and therefore γ∩S = ∅. Also, the sequence
{pn} has no limit, since there are no accumulation points by the construction in terms
of simple neighborhoods. To sum it up, we have obtained a past-inextendible smooth
causal curve starting at p that does not intersect S, reaching a contradiction with
the definition of D+(S) and therefore proving that A is indeed compact.

5.2 Singular space-times

A common justification of the singularities featured in the models we have stud-
ied was that they appeared because the model was an ideal and perfectly symmetric
one, and that they should disappear once real-world effects were taken in account.
We intend to prove in what follows that this is false, for they are instead intrinsic real
properties of the physical setting. Labelling as singular all space-times that are not
geodesically complete, we will analyse under which conditions a space-time happens
to be singular. Let us apply some of the geometric concepts into our situation:

Given a space-time M and a Cauchy hypersurface S ⊂M , we can extend the expo-
nential map (which defines the geodesics) to all p ∈ S, in the following way. Given
the unique future-pointing unit vector field n that is normal to S, and some set of
geodesics {cp}p∈S with initial tangent vectors np at every p, the exponential map of
some open set U ⊂ R× S is defined as exp(t, p) = cp(t). An important definition is
the one of conjugate points to S, which are all the points which are critical points
of some exponential map expp = cp, for p ∈ S.
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Since S = t−1(a) has constant time, the restriction of the metric g to S will be
zero on all the components related to time: g0i|S = 0. We can take local coordinates
(x1, x2, x3) on S around some point p, and adding the time coordinate we will have
full local coordinates (t, x1, x2, x3) in some open neighborhood V around p. The
neighborhood V will contain any point q = exp(t0, p) which is not conjugate to S,
so we can find the value of ∂g0i∂t along the geodesic expp, for i = 1, 2, 3:

∂g0i
∂t

=
∂

∂t

〈
∂

∂t
,
∂

∂xi

〉
=

〈
∂

∂t
,∇ ∂

∂t

∂

∂xi

〉
=

〈
∂

∂t
,∇ ∂

∂xi

∂

∂t

〉
=

1

2

∂

∂xi

〈
∂

∂t
,
∂

∂t

〉
= 0,

which follows naturally from the compatibility with 〈·, ·〉 and the symmetry properties
of ∇. Thus, in this coordinates, g0i are the same as in S (g0i = 0), and we have that
S has not only constant time, but that it is also orthogonal to the time coordinate.
This set of coordinates is called a synchronized coordinate system. If we set
γij :=

〈
∂
∂xi
, ∂
∂xj

〉
, we have that the Christoffel symbols are

Γ0
00 = Γi00 = 0,

Γi0j =

3∑
k=1

γikβkj ,

with γij = (γij)
−1 and βij = 1

2
∂γij
∂t . Then, with this notation, the Ricci tensor has

the following first component:

Ric00 = − ∂

∂t

 3∑
i,j=1

γijβij

− 3∑
i,j,k,l=1

γjkγilβkiβlj . (5.1)

Defining θ :=
∑3

i,j=1 γ
ijβij we obtain, by applying the matrix equality (log(detA))′ =

tr(A−1A′), that

θ =
1

2
tr

(
(γij)

−1 ∂

∂t
γij

)
=

1

2

∂

∂t
log γ. (5.2)

This new function, which is named the expansion, facilitates greatly our work, since
it has a singularity for points where the synchronized coordinates are zero, and these
are precisely the conjugate points to S.

Another hypothesis that will have to be assumed in order to deal with “realistic”
space-times is the strong energy condition, which is defined as the property that
every timelike vector field V ∈ T (M) satisfies that Ric(Vp, Vp) ≥ 0, for all p ∈ M .
Assuming this, while using the tools we have just defined, allows us to walk our steps
towards the Hawking theorem.
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Proposition 5.6. Given a space-time M that satisfies the strong energy condition,
let S ⊂M be a Cauchy hypersurface. For every point p ∈ S such that θ = θ0 < 0, its
associated geodesic cp contains at least a point conjugate to S, whose distance from
S is, at most, of − 3

θ0
in the future.

Proof. Applying the strong energy condition to (5.1) and (5.2), we get

∂θ

∂t
+

3∑
i,j,k,l=1

γjkγilβkiβlj ≤ 0. (5.3)

We are free to choose an orthonormal basis, by applying the Gram-Schmidt process
to the xi coordinates, so we can set γij = δij . Also, using the algebraic matrix
inequality (tr(A))2 ≤ n · tr(AtA), we obtain that the second term of (5.3) satisfies

3∑
i,j,k,l=1

γjkγilβkiβlj =

3∑
i,j=1

βjiβij = tr(βij · (βij)t) ≥
1

3
θ2,

so then we have that ∂θ
∂t + 1

3θ
2 ≤ 0, which brings us to −∂θ

θ2
≤ ∂t

3 . Integrating:

1

θ
≥ 1

θ0
+
t

3
(5.4)

Hence, 1/θ crosses zero at some t ≤ − 3
θ0
, which signals a point conjugate to S.

We have seen a result that tells us when a conjugate point is expected to be found,
starting from some arbitrary point in S. It can be seen that in this case the geodesic
cp does not maximize distance2, which is made tangible in the following proposition.

Proposition 5.7. Given a space-time M and a Cauchy hypersurface S, we consider
a point p ∈M and a timelike geodesic c which goes through p and is also orthogonal
to S. Then, c will not be a maximizing geodesic between p and S if there is a point
q between p and S which is conjugate to S.

Proof. The proof is outlined in [GoNa14], p.302. Since q is conjugate to S, it is seen
as an intersection point of geodesics that are orthogonal to S. We can thus find one
such geodesic c̃ that has the same length from S to q as c. Then, considering some
geodesically convex neighborhood V of q, and two points r, s ∈ V such that r ∈ c̃
and s is in c between p and q, there is a geodesic cV in V between r and s. The new
curve formed by c̃, cV and the upper part of c has strictly more length than c, since
in a geodesically convex neighborhood the distance is maximized by geodesics3.

2Note that, as we said in p.27, in Lorentzian manifolds the geodesics are not minimizing curves,
but rather tend to be instead maximizing trajectories. In Minkowski space-time geodesics are always
maximizing curves, but this is not necessarily true in more general space-times.

3It is because of the generalized twin paradox ([GoNa14], p.262), which roughly states that,
among two trajectories with the same spatial endpoints, the maximal path is the one which has
undergone less acceleration.
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Although we guess that all these results are important on their own, we may not
find yet any intuitive significance in them. With the introduction of the following
important theorem, which is the critical argument in the proof of Hawking’s theorem,
we will understand their part in the picture.

Theorem 5.8. Given a space-time M , a Cauchy hypersurface S and some point
p ∈ D+(S), there exists a timelike curve between p and S which has maximal length
and is a geodesic orthogonal to S.

Proof. Let T (S, p) be the set of timelike curves between p and S, which are closed
subsets of A = D+(S) ∩ J−(p) and hence compact, since A has been showed to be
compact in Proposition 5.5. It can be seen (e.g. in [Nab88], p.166) that the set C(A)

of all compact subsets of A is a compact metric space, with the so-called Hausdorff
metric dH . This metric, given an underlying metric d, acts on every two subsets of
A in the following way:

dH(K,L) = inf{ε > 0 : K ⊂ Uε(L);L ⊂ Uε(K)},

where the ε-neighborhoods Uε are defined as Uε(Σ) := {p : d(p,Σ) < ε} (as pictured
qualitatively in Figure 5.2). Since the set of lightlike vectors is the boundary for the
set of timelike vectors, the set T (S, p) can be seen as the set of continuous causal
curves between p and S. Now, we can assume without loss of generality that t(S) = 0,
and then the length of a given geodesic c is simply

τ(c) =

∫ t(p)

0
|ċ(t)|dt. (5.5)

We want to see that this length function is upper semicontinuous, i.e. that for ev-
ery δ > τ(c) there is a neighborhood V of c such that τ(γ) < δ for all the curves
γ ⊂ V . We can work with the arclength function u, which in the case of c is equiva-
lent to τ . Let us see how will be the length of some curve γ in a small open set Uε(c).

Shrinking Uε if necessary, we can define an arclength function in all of Uε from
the original u(c), by imposing that the constant length lines are orthogonal to c (this
is again better seen in Figure 5.2). In this way, the gradient of u reduces to ċ when
applying it on c. This means that for γ it will be equivalent to say that du(γ̇) = 1

in some point than to say that the gradient reduces to γ̇ there, i.e. 〈γ̇, grad(u)〉 = 1.
By this, we can express the vector γ̇ at any point as the sum of the tangent and
orthogonal components to grad(u), where we label the orthogonal component as X :

γ̇ =
1

〈grad(u), grad(u)〉
grad(u) +X =⇒ |γ̇| =

∣∣∣∣ 1

〈grad(u), grad(u)〉
+ 〈X,X〉

∣∣∣∣ 12 ,
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u = 0

S
c

γ

p

u = τ(c)

Uε(c)

Figure 5.2: Sketch of the situation. In a neighborhood Uε(c) of c we consider curves
γ and see that the length function is upper semicontinuous.

since the components are orthogonal. Now, as grad(u) is timelike, the product
〈grad(u), grad(u)〉 is negative, and is exactly −1 along c by definition. For any
δ > 0, we can find an ε > 0 such that Uε allows for so little variation of γ from c

that the following is satisfied:

− 1

〈grad(u), grad(u)〉
<

(
1 +

δ

2τ(c)

)2

.

Then, taking into account the fact that γ can start in a different point than c(0),
which we label as γ0, using the arclength parametrization we have

τ(γ) =

∫ τ(c)

u(γ0)
|γ̇|du, (5.6)

so, by the previous inequality,

τ(γ) =

∫ τ(c)

u(γ0)

∣∣∣∣− 1

〈grad(u), grad(u)〉
− 〈X,X〉

∣∣∣∣ 12
<

∫ τ(c)

u(γ0)

(
1 +

δ

2τ(c)

)
du =

(
1 +

δ

2τ(c)

)
· (τ(c)− u(γ0)).

Again, shrinking Uε if needed, we can have that, for a given δ, u is sufficiently small
so that τ(γ) < τ(c)+δ, and thus τ is upper semicontinuous over c. This can naturally
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be extended to the curves living in T (S, p), by taking the limit:

τ(c) = lim
ε→0

sup{τ(γ) : γ ∈ Bε(c) ∩ T (S, p)}. (5.7)

If we add the fact that T (S, p) is compact, then the extended τ function must have a
maximum for some element c̃ ∈ T (S, p). For the moment, this just means that there
is some sequence {cn} that tends to c̃, so we want to see that this maximal element
corresponds actually to some real geodesic between S and p.

This can be done by dividing c̃ so that each step is in a geodesically convex neighbor-
hood, and constructing a finite sequence of points {pi} along c̃ in which also each step
is in such a well-behaved neighborhood. Given the fact that locally the time function
is well-defined, the sequence {cn} → c̃ translates into the sequences of points {pin},
that converge to the points pi. The piecewise smooth curve γ̃ joining all points pi
from S until p is clearly a piecewise smooth geodesic, and by construction has length
equal to τ(c̃).

p0

pn = p

pn−1

p1

γ̃

p(n−1)0

p10

p00
S

Figure 5.3: Sketch of the procedure to obtain the maximal geodesic γ̃. The curves
of the sequence that tends to γ̃ are piecewise smooth, and γ̃ is smooth.

Since a piecewise smooth curve has to be smooth also on the division points in or-
der to be maximal (again, by the generalized twin paradox), we have that γ̃ is a
smooth curve, and therefore a timelike geodesic. Since it has maximal length, if it
were not orthogonal to S at γ̃(0), by the expression of synchronized coordinates at
γ̃(0) we could obtain an alternative curve orthogonal to S with larger length than
γ̃. In conclusion, γ̃ is a maximizing geodesic between S and p which is orthogonal
to S.

We are ready to state and prove Hawking’s theorem in a simple and natural way.
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Theorem 5.9. (Hawking Singularity Theorem) Let M be a space-time that
fulfils the strong energy condition. If the expansion θ is such that θ ≤ θ0 < 0 on
some Cauchy hypersurface S, then M is singular.

Proof. Let us see that all future-directed timelike geodesics which are orthogonal to
S are future-inextendible after τ̃ = − 3

θ0
. If this was not true, we could consider for

instance some geodesic c defined along [0, τ̃ + ε], with ε > 0.

If we now consider the point p := c(τ̃+ε), by Theorem 5.8 we would have a geodesic of
maximal length γ between S and p. By this maximizing property, this curve would
satisfy τ(γ) ≥ τ̃ + ε, and thus have some conjugate point q to S, by Proposition
5.6. This means, by Proposition 5.7, that γ is not a maximizing geodesic anymore,
therefore reaching contradiction.

In a nutshell, this theorem gives a condition on the expansion quantity θ that results
in unavoidable singularity points. Also, considering a perturbation on the space-time
to account for “real-world effects”, if θ is still bounded below 0 then the singularities
do not vanish.

Let us see now the singularities that we encountered in the previous chapter, in
the light of this new knowledge. Both the Schwarzschild 4 and cosmology solu-
tions satisfy the strong energy condition, as a quick peek in the expression of the
stress-energy tensor can reveal. Also, since the property of being globally hyperbolic
means that the inextendible geodesics from every point in the considered space-time
intersect every constant time hypersurface, they are seen to be globally hyperbolic,
singularity points aside.

Indeed, both Schwarzschild and Robertson-Walker metrics are stably causal, given
that in both of them the time coordinate gives a way to obtain a global smooth
time function. Then, for the Schwarzschild case, the time invariance of the system
implies that any “time snapshot” S(t = a) (i.e. any Cauchy hypersurface) intersects
any geodesic from any point in space-time that is time-oriented towards S(t = a).
In other words, any geodesic within r < 2M will, at some point, pass through some
point with t = a.

For the zero curvature Robertson-Walker metric (the one that is the current descrip-
tion of the universe and hence the one we will consider), it is clear by homogeneity
and the flatness of its Cauchy hypersurfaces that it is also globally hyperbolic.

4Given the apparent singularity at r = 2M , we consider in what follows just the internal region
r < 2M .
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For the Schwarzschild setting, we want to look at points within the event horizon,
r < 2M , since, as we said, our understanding of the metric gives an artificial singu-
larity at r = 2M . In this region, we have that the metric can be expressed in another
way by replacing the coordinate dr2 by the now more appropriate dτ2, where

τ =

∫ 2M

r

(
2M

u
− 1

)− 1
2

du.

This coordinate will act as the temporal coordinate. Since (2Mr − 1) > 0 because
in this case r < 2M , the temporal dt coordinate from the original Schwarzschild
metric will become a spatial one, in substitution for the removed dr2. They are a
synchronized system of coordinates, and the metric is

g = −dτ2 +

(
2M

r
− 1

)
dt2 + r2dθ2 + r2 sin2 θdφ2.

A straightforward calculation from this yields
3∑

i,j=1

βijdx
idxj =

dr

dτ

(
−M
r2
dt2 + rdθ2 + r sin2 θdϕ2

)
.

Taking into account the Barrow law, and after that the inverse function theorem, we
have that

dτ

dr
= −

(
2M

r
− 1

)− 1
2

=⇒ dr

dτ
= −

(
2M

r
− 1

) 1
2

.

The expression of θ can now be obtained:

θ =

(
2M

r
− 1

)− 1
2
(

2

r
− 3M

r2

)
, (5.8)

which is negative in the region r < 3M
2 . This means that we have indeed a singular-

ity which is inevitable after crossing this region, and which cannot be “corrected” by
small perturbations. In short, the singularity is physical and real. This results in the
astrophysical fact that once a star collapse crosses some threshold (which depends
on its initial mass) then it necessarily ends in the formation of a black hole.

On the other side, the case of the flat Robertson-Walker metric for cosmology is
way simpler, since we can directly see that βij = ȧ

aγij , and then

θ =
3ȧ

a
. (5.9)

We know that the singularity should happen at t → 0, so we want to look in the
past-oriented direction. The fact that the Universe has been constantly expanding
means that ȧ is always negative looking into the past. This produces an always
negative value for θ and thus, as before, the Big Bang singularity is confirmed and
solid.



Conclusions

After all has been said and done, we see that we have been able to get a big pic-
ture on the mathematical nature of space-time. We have studied the main building
blocks of differential geometry and have applied them to understand the model of
space and time that is the general theory of relativity.

We have started from the fundamental tools and definitions from the field of smooth
manifolds, and then we have devoted ourselves to the analysis of Riemannian geom-
etry. One thing that we have noted is that in differential geometry, both for smooth
and Riemannian manifolds, it is common to define concepts in a manner that seems
rather abstract at first, but that makes more sense as the subject is developed. Since
there are often various ways to approach a subject, the one that is more intuitive at
first is not necessarily the wisest option.

When working on the special and general theory of relativity in this work, we have
tried to maintain a balance: since we are interested in its mathematical aspects, we
have tried to formulate it by always having in mind the underlying geometric theory,
studied in the previous chapters. Nonetheless, we have tried at the same time to
explain the most relevant physical properties, in order to see the extent of the revo-
lution that was brought to physics by the appearance of differential geometry (and
specially pseudo-Riemannian geometry).

These revolutionary physics are epitomized in the analysis of the Schwarzschild and
the Robertson-Walker metrics. We have seen, on the one hand, how a geometric
treatment really facilitates the calculations in some situations that were too complex
otherwise. On the other hand, we have been able to contemplate how incredibly
precise yet mind-blowing is general relativity when it is put into practice.

The final chapter has brought the difficulty to another level, with intricate math-
ematical reasonings that were both challenging and motivating, and in any case
totally worthwhile. We have seen that, while in Riemannian manifolds the condition
for geodesic completeness is related to the simple property of metric completeness,
in Lorentzian manifolds there is a much more subtle and complex relationship. The
Hawking singularity theorem is a big modern milestone in the history of mathematics
and physics, which is a great continuation of general relativity and a wonderful way
to end this work.



Bibliography

[Be12] L. Benguigui, A tale of two twins, arXiv:1212.4414 (2012).

[Cep07] J. Cepa, Cosmología Física, Ediciones Akal (2007).

[Ein16] A. Einstein, Relativity: The Special and General Theory, New York,
H. Holt and company (1916).

[Ein07] A. Einstein, On the relativity principle and the conclusions drawn
from it (English translation), Jahrbuch der Radioaktivität und Elek-
tronik, 4, 411-462 (1907).

[GoNa14] L. Godinho, J. Natário, An Introduction to Riemannian Geometry,
Springer (2014).

[Lee03] J. M. Lee, Introduction to Smooth Manifolds, Springer (2003).

[Lee18] J. M. Lee, Introduction to Riemannian Manifolds, Springer (2018).

[Man93] E. B. Manoukian, On the reversal of the triangle inequality in
Minkowski spacetime in relativity, European Journal of Physics, Vol-
ume 14, Issue 1, pp. 43 (1993).

[Nab88] G. L. Naber, Spacetime and Singularities: An Introduction, Cam-
bridge University Press (1988).

[One83] B. O’Neill, Semi-Riemannian Geometry: With Applications to Rel-
ativity, Academic Press (1983).

[Pe16] P. Petersen, Riemannian Geometry, Springer (2016).

[Wa10] R. M. Wald, General Relativity, University of Chicago Press (2010).

52


	Introduction
	Some background in smooth manifolds
	Riemannian Manifolds
	Basic Notions
	Affine Connections
	The Exponential Map
	Hopf-Rinow Theorem
	Curvature

	The Theory of Relativity
	Special Relativity
	Lorentz Transformations

	Lorentzian manifolds
	General Relativity
	The Equivalence Principle
	Einstein Field Equations


	Notable applications
	The Schwarzschild Solution
	Cosmology

	Hawking Singularity Theorem
	Preliminary notions on causality
	Singular space-times

	Conclusions
	Bibliography

