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Introduction

Albert Einstein might not have expected to its full extent the importance of the theory

of General Relativity (GR) to our current understanding of physics. Of course, much

of the importance we attribute to it nowadays stems from the excellent agreement of

its predictions (which partially were made by Einstein himself) with experiment. It is

often stated that this agreement is especially remarkable since GR shows a huge range of

applicability. GR has given predictions that have shown to be consistent with experiment

for the whole universe as an integral part of the standard model of cosmology, the large

scale structure of the universe, for black holes [1, 2, 3], for gravitational waves [4, 5],

gravitational lensing [6], orbital mechanics (e.g. the famous precession of Mercury), the

bending of light [7] and gravitational redshifts [8].

The maybe less expected part about the development of GR is the essential role it takes

in modern day theoretical physics as a tool to understand other theories. The language

and concepts of GR are vitally important for the formulation of string theory and even in

the description of physical systems that do not contain any gravity at all. The formalism

of general relativity can be used to make predictions through dualities commonly known as

the gauge/gravity-duality or holography. This aspect of GR seems unlikely to be foreseen

in the earlier days of the theory.1

Both of these developments, string theory and holography, go hand in hand with

the concept of extra-dimensions, i.e., the consideration that physical laws can also be

formulated in more than 3 + 1 dimensions. Or more generally speaking, these theories

fostered the perspective to view the number of spacetime dimensions D as a parameter

in the formulation of our theories, to adapt to di↵erent physical situations. Furthermore

these developments have increased interest to understand better the behavior of spacetimes

in higher dimensions.

In many (or even the most) cases of interest, these spacetimes contain horizons often

as a part of black holes, the most extreme objects of GR. In higher dimensional spacetimes

the dynamics of black holes is considerably richer than in D = 4 spacetime dimensions:

Black hole horizons can appear in di↵erent topologies [9, 10], the uniqueness theorems

valid in D = 4 do not apply, and many black hole solutions exhibit instabilities suggesting

1Of course Einstein himself tried in his later life to integrate the at that time known forces into a unified

theory using a geometrized formulation akin to that of GR, and accordingly he had some high expectations

for his theory and its new way of formulating laws of physics. We also do not want to make any historically

accurate claims here and just want to point out that the maturation of GR has taken some interesting

turns in its roughly 100 years of existence.



2 Introduction

that there exist transitions between the di↵erent solutions.

The study of the mentioned processes, poses a challenging task, because they are

inherently connected to the non-linear equations of GR, often in the case of little symmetry.

And one is typically left with the di�cult problem of solving non-linear coupled partial

di↵erential equations. This can be addressed by resorting to numerical approaches, which

in many cases are very resource intensive.

A di↵erent approach is to come up with e↵ective descriptions that simplify the equa-

tions at the cost of having a more limited range of applicability. These simplified e↵ective

theories often have the advantage of yielding more analytical control than the original

theory and also can be used to ease the cost of solving the equations numerically.

One such approach that we are going to consider in this thesis is the so-called large D

e↵ective theory for GR, where the number of spacetime dimensions is taken as an expansion

parameter to simplify the theory. We are going to explain the main idea in chapter 1.

The equations of the large D e↵ective theory can take di↵erent forms depending on the

black hole under study and depending on which quantities are taken to be fixed while

the limit is taken. The maybe most tractable and best understood form of the e↵ective

theory is the hydro-elastic formulation of the equations [11] in the case of asymptotically

flat and asymptotically AdS black branes, where the equations take a non-relativistic

hydrodynamic form.

Interestingly this e↵ective theory contains, apart from the black branes and its non-

uniform counterparts, further ’blob’-like solutions that, as we will argue should be in-

terpreted as solutions with a spherical topology rather than a planar one of the for-

mer solutions. This type of solution is the main subject studied in the publications

[12, 13, 14, 15, 16, 17] that are presented in this thesis.

We are going to introduce the general idea of describing localized black holes as blobs

on a membrane in chapter 2 and will introduce the general idea of describing localized black

holes as blobs on a membrane. We are going to describe further new types of solutions in

chapter 3 where we show how this approach easily provides solutions for charged rotating

black holes and chapter 4 will present additional non-uniform counterparts of these blobs.

The last chapters are going to describe further applications that can be investigated

with the insight into these types of solutions: Chapter 5 studies the collisions of black

holes and how the e↵ective equations can be used to study the evolution of ultra-spinning

instabilities. Chapter 6 describes how we can associate an entropy current to the theory

and how entropy growth occurs in these processes. All the above mentioned chapters

contain a first section that summarizes the main idea and contents of the chapter. The

final two chapters 7 and 8 provide rather short summaries of the results in English and

Spanish respectively.



Chapter 1

The large D expansion of General

Relativity

1.1 The idea

General relativity when not coupled to any matter does not contain any (naive) parameter

that can be used to treat the theory perturbatively. This is directly apparent in the

Lagrangian formulation of GR or in its equation of motion in vacuum

LGR =
p
gR , ! Gµ⌫ = 0 . (1.1)

One is confronted with a similar situation in the study of the non-linear equations of

self-interacting, non-abelian Yang-Mills theories. In this case it has been know for years

that the theory can be expanded in the inverse of the rank N of the gauge group SU(N)

[18], which makes it possible to reorganize the theory in a genus expansion and ultimately

helped to reformulate the theory as a theory of strings and quantum gravity through

holography [19, 20].

With this backdrop one might come up with the idea to consider the number of space-

time dimensions D as a parameter for a similar expansion of GR. However up to now

a treatment that mimics the approach of the large t’Hooft-expansion for a semi-classical

quantum theory of gravity has not been found. Nevertheless there has been great progress

in using 1/D as a expansion parameter for the classical theory of gravity mostly in the

case when black holes are present. (See also [21] for more discussion on this specifically

and more generally as a well-written and extensive review of the large D expansion and

its applications.)

The relevant physics that occur when taking the limit of a large number of dimensions

for the classical theory can be understood rather easily: For this consider an asymptotically

flat p-brane in D dimensions in

ds2 = 2dtdr �
✓
1� rn

0

rn

◆
dt2 + �ijd�

id�j + r2d⌦n+1 .

This solution gives rise to the gravitational potential � on its outside

� /
⇣r0
r

⌘
D�p�3

.
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Now, as the dimensionality of the spacetime increases the gravitational potential steepens

and gets more and more localized close to the horizon at r0. More precisely the gravita-

tional potential gets confined to a near-horizon zone of extent r�r0 . O
�
D�1

�
, while the

far zone further outside is left without a potential and e↵ectively becomes flat Minkowski

space.

Furthermore it was found in [22, 23] that linear perturbations of large classes of black

holes show a decoupling phenomenon of di↵erent modes at large D. The modes separate

into non-decoupled modes with high frequency ! ⇠ D

r0
and decoupled modes of lower fre-

quency ! ⇠ 1

r0
. The decoupled modes are mostly supported in the near-horizon region

and thereby decouple from the far zone. They encode physics particular to the black hole

under consideration, whereas the non-decoupled modes are largely localized in the far zone

and are independent of the features of the black hole apart from its horizon radius and

shape.

This geometrical picture of localization and the separation of scales in the quasi-normal

mode spectrum at large D suggest that there should be an e↵ective theory that captures

the physics of the black hole in terms of a membrane embedded in an exterior spacetime

and its fluctuations. Indeed, formulations of a full non-linear e↵ective theory were first

given in partially di↵erent formulations in [24, 25, 26, 27, 28, 29].

The e↵ective theory can be considered for di↵erent black holes and in di↵erent regimes.

In some instances the e↵ective equations are more manageable than in others. They are

particularly simple for black branes, either asymptotically flat or asymptotically AdS

[27, 30, 31].

In this thesis we are going to focus mostly on the equations for asymptotically flat

black holes, which trivially can be solved to describe black branes and to study the main

dynamical feature of these objects: the linearized instability discovered by Gregory and

Laflamme (GL) [32], as well as its subsequent non-linear evolution. We are going to

describe the derivation of these equations and the aforementioned application in the sub-

sequent chapters.

1.2 E↵ective black brane equations

We begin with an extensive review of the e↵ective theory of large-D black branes as derived

in [27] and further developed in [31].

We write the metric for a dynamical, neutral, vacuum black p-brane to leading order

at large-D in Eddington-Finkelstein coordinates as

ds2 = 2dtd⇢�Adt2 � 2

n
Cid�

idt+
1

n
Gijd�

id�j + ⇢2d⌦n+1 , (1.2)

with n = D�3�p. The radial coordinate orthogonal to the brane is ⇢, and �i, i = 1, . . . , p,

are spatial coordinates along the brane. The lengths along these directions have been

rescaled by a factor 1/
p
n. The coordinate t is null in (1.2) but it will play the role of

time in the e↵ective membrane theory, which can be regarded as living on a surface at

a distance in ⇢ of order 1/n away from the horizon. Note also that the time scales we
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consider are order one in n (i.e., O
�
n0
�
), and thus are slow compared to the short time

scales O (1/n) of the fast quasinormal frequencies that are integrated out in the e↵ective

theory.

The radial dependence in the Einstein equations can be solved to determine that the

metric functions are

A = 1� m(t,�)

R
, (1.3)

Ci =
pi(t,�)

R
, (1.4)

Gij = �ij +
1

n

pi(t,�)pj(t,�)

m(t,�)R
, (1.5)

where we have introduced the near-horizon radial coordinate R = ⇢n. Then, the remaining

Einstein equations reduce to a set of e↵ective equations for the functions m(t,�) and

pi(t,�), namely

@tm�r2m = �rip
i , (1.6)

@tpi �r2pi = rim�rj

✓
pipj

m

◆
, (1.7)

where the derivatives are taken in the flat spatial geometry �ijd�id�j .1

These equations encode the e↵ective non-linear dynamics of a black brane at large

D and we will use them to investigate the properties of black holes in this limit. As

we explained in the introduction, our approach is based on the fact that the uniform

black branes (the solutions with m = 1, pi = 0) are unstable and tend to localize into

black-hole-like lumps.

We have written the e↵ective equations as resembling di↵usion equations, but they

can also be recast in other forms. For instance, they take on a hydrodynamical aspect if

instead of pi we use the velocity vi, such that

pi = rim+mvi . (1.8)

Then the equations (1.6), (1.7) are those of mass continuity

@tm+ri(mvi) = 0 , (1.9)

and momentum continuity

@t(mvi) +rj (mvivj + ⌧ij) = 0 , (1.10)

with e↵ective stress tensor

⌧ij = �m�ij � 2mr(ivj) �mrjri lnm. (1.11)

The function m(t,�) is (up to constant factors) the e↵ective mass density of the black

brane. Since the horizon is at R = m, we see that (to leading order in 1/D) m is also

equal to the area density. The radius of the horizon is then

⇢H = 1 +
R(t,�)

n
+O

�
1/n2

�
, (1.12)

1The generalization to curved membrane geometries has been given in [33].
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where we have introduced the field

R(t,�) = lnm(t,�) , (1.13)

as a convenient measure of the area-radius. This radius variable is useful for another, more

geometric interpretation of the e↵ective equations and their solutions: the elastic ‘soap

bubble’ viewpoint discussed in sec. 1.3.2.

The e↵ective equations have two important symmetries. First, if we perform a Galilean

boost

�i ! �i � uit , (1.14)

then the velocity gets shifted accordingly,

vi ! vi + ui . (1.15)

The symmetry is Galilean rather than relativistic since when D is large the e↵ective speed

of sound on the black brane decreases as ⇠ 1/
p
D. In (1.2) we rescale the lengths so as

to maintain this speed finite.

Second, the equations are invariant under constant rescalings m ! �m, pi ! �pi.

This symmetry corresponds to the scaling invariance of the vacuum Einstein equations,

and allows to fix a reference scale arbitrarily, e.g., to fix the mass of the solutions.

The spatial integrals of m, pi, and mvi are conserved in time when spatially periodic

boundary conditions are imposed, or when these fields vanish at infinity. These are the

conservation laws of mass and momenta. The conserved quantities in the e↵ective field

theory are given by

Jij =

Z
dp�m(�ivj � �jvi) =

Z
dp� (�ipj � �jpi) , (1.16)

M =

Z
dp�m. (1.17)

1.3 Stationary configurations

1.3.1 Master equation

We define stationary configurations as those that are invariant under the action of a vector

k = @t + vi@i . (1.18)

Observe that we do not require that the solution be time-independent. Nevertheless,

k(m) = 0 determines that

@tm = �vi@im. (1.19)

Then the mass continuity equation (1.9) becomes the condition that the expansion vanishes

riv
i = 0 . (1.20)
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If in addition we require that k is a Killing vector, r(µk⌫) = 0, then we obtain that the

velocity flow is also time-independent and shear-free,

@tv
i = 0 , r(ivj) = 0 . (1.21)

It may not be obvious that one should require that k be a Killing vector, but this can

be proved from the requirement of absence of shear and expansion [34], since otherwise

viscosity (both shear and bulk) would generate dissipation in the system. The velocity

flow may still have vorticity.

Under these conditions we can follow the steps in [31] and show that, using the mem-

brane radius R (1.13), we can write

@t(mvi) +rj(mvivj) = �1

2
eRri(v

2) (1.22)

and

rj⌧ij = �eRri

✓
R+r2R+

1

2
(rR)2

◆
. (1.23)

This reduces the momentum continuity equations (1.10) to a single equation for R,

r2R+
1

2
(rR)2 +R+

v2

2
= 0 , (1.24)

where we have absorbed an integration constant by appropriately shifting the value of R.

Eq. (1.24) is the master equation that governs the stationary sector of solutions. The

derivation of this equation in [31] made the assumption that @tm = 0. We now see that it

also applies to more general stationary configurations in which (1.19) holds instead.

1.3.2 Elastic viewpoint

The master equation (1.24) admits an interpretation as an elasticity equation for a soap

bubble [24, 26, 31]. To see this, consider embedding the surface

⇢ = 1 +
R(�)

n
(1.25)

in a constant-time section of the Minkowski geometry that appears at large R in (1.2),

(1.3),

ds2 = �dt̂2 + d⇢2 +
1

n
�ijd�

id�j + ⇢2d⌦n+1 (1.26)

(we have changed from the Eddington-Finkelstein null coordinate t in (1.2) to Minkowski

time t̂). The trace of the extrinsic curvature of this surface is

K = n+ 1�
✓
R+r2R+

1

2
(rR)2

◆
+O (1/n) . (1.27)

Then eq. (1.24) can be written, up to next-to-leading order in 1/n, as

p
1� v2K = constant , (1.28)

where v = v/
p
n is the physical velocity along the brane, since the lengths in (1.26) are

rescaled by a factor 1/
p
n. The Young-Laplace equation K = constant famously describes
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the shape of soap bubbles (more generally, interfaces between fluids). Eq. (1.28), which

was first derived for large-D black holes in [26], includes a Lorentz-redshift factor that

accounts for the possible rotation of the bubble (or any motion along its surface).

This elastic interpretation of the e↵ective theory allows to make sense of some features

of the e↵ective equations that remain obscure in the hydrodynamic version. In the latter,

the constitutive relations (1.11) contain only one term at next-to-viscous order, and none

at higher gradient order. But the large-D expansion is not an expansion in worldvolume

gradients. Why should the e↵ective theory involve only a finite number of them? The

mystery dissipates (at least for stationary solutions) in the elastic interpretation, which

leaves no room for any other form of ⌧ij than precisely (1.11), since this is the one that

completes the expression for K in (1.27).

Furthermore, the elastic viewpoint, in which a membrane with positive tension forms

soap bubbles, may look more natural than a hydrodynamic view where an unstable fluid

with negative pressure (as in (1.11)) clumps into blobs of fluid.2,3

1.4 Charged equations

The above equations can be generalized in several directions: They can be formulated for

branes with electric charge and p-brane charge, and external electric field [31], for curved

background geometries (deformed boundary metrics) [33], for higher-curvature theories

[36, 37, 38], for di↵erent classes of deformations of AdS black branes [39]. They can also

be generalized to include higher orders in 1/D [40, 41, 11], and also exist as similar theories

for finite black holes [28, 42, 43, 44, 45, 38].

In this section we are going to focus only on the charged generalization of the equations,

which will serve us a s a useful tool in chapter 3. For this we study electrically charged

black holes of the Einstein-Maxwell theory

I =

Z
dDx

p
�g

✓
R� 1

4
F 2

◆
, (1.29)

in the limit of large D, following ref. [31] and using the same notation as in the previous

section we again consider fluctuations of a p-brane,

ds2 = 2dtdr �Adt2 � 2

n
Cid�

idt+
1

n
Gijd�

id�j + r2d⌦n+1 , (1.30)

but now allow for a new degree of freedom q(t,�) that will appear in the e↵ective theory

A = 1� m(t,�)

R
+

q(t,�)2

2R2
, Ci =

✓
1� q(t,�)2

2m(t,�)R

◆
pi(t,�)

R
, (1.31)

2For a black brane in AdS the hydrodynamic interpretation is apt since the large-D e↵ective fluid has

positive pressure and is stable. Curiously, the e↵ective elastic equation is one with positive tension, but

the membrane is subject to a gravitational potential from the AdS geometry.
3Note the contrast with the blackfold approach of [35] (which is another e↵ective theory of black brane

dynamics): in the latter some collective degrees of freedom are elastic and others are hydrodynamic,

whereas in the large-D e↵ective theory the same degrees of freedom admit one or the other interpretation.
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Gij = �ij +
1

n

⇢✓
1� q(t,�)2

2m(t,�)R

◆
pi(t,�)pj(t,�)

m(t,�)R

� ln

✓
1� m�(t,�)

R

◆
2�ij +ri

pj(t,�)

m(t,�)
+rj

pi(t,�)

m(t,�)

��
. (1.32)

The electric potential is

At = �q(t,�)

R
. (1.33)

The worldvolume collective fields m(t,�), q(t,�) are the mass and charge density of

the black brane. It is convenient to define

m± =
1

2

⇣
m±

p
m2 � 2q2

⌘
. (1.34)

The Einstein-Maxwell equations are solved to O (1/D) if and only if these collective

fields satisfy the e↵ective equations for mass continuity (using the definition of velocity

fields according to (1.8) as before),

@tm+ri(mvi) = 0 , (1.35)

the equations for momentum continuity,

@t(mvi) +rj(mvivj + ⌧ ij) = 0 (1.36)

with stress tensor

⌧ij = � (m+ �m�) �ij � 2m+r(ivj) � (m+ �m�)rirj lnm, (1.37)

and for charge continuity,

@tq +rij
i = 0 (1.38)

with current

ji = qvi �mri

⇣ q

m

⌘
. (1.39)

In addition to the conserved quantities of the uncharged theory (1.16), we can define the

conserved U(1)-charge of these theories

Q =

Z
dp� q . (1.40)

Note that the one-derivative terms in ⌧ij and ji can be interpreted as viscous stresses

and charge di↵usivities. It has been proven in [31] that, with these equations, charge

di↵usion leads to entropy production at leading order but viscosity does not. See chapter

6 for further discussion on this.

The solutions have an outer event horizon at R = m+(t,�) wherever and whenever

m(t,�) >
p
2q(t,�). In principle the extremal limit m =

p
2q lies outside the range of

validity of the approximations made in the derivation. Taking the extremal limit requires

separate study, and therefore we will always remain strictly away from it here.
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1.4.1 Stationary configurations

Following section 1.3 (and with that [12]), we investigate stationary configurations where

the mass and charge density are Lie-dragged with velocity vi,

(@t + vi@i)m = 0 , (@t + vi@i)q = 0 , (1.41)

but without acceleration, @tvi = 0. In addition we require that dissipative e↵ects are

absent, be they viscous shear and expansion or charge di↵usion, so that

r(ivj) = 0 (1.42)

and

ri

⇣ q

m

⌘
= 0 . (1.43)

The latter implies that

q ⌘ q

m
(1.44)

is a constant, so that the charge density must proportionally track the mass density exactly.

This property of the charge distribution in stationary configurations provides the crucial

simplification that will allow us to easily obtain charged rotating black hole solutions from

neutral ones.

In order to see how this occurs, we derive a single master equation for stationary

configurations in terms of the area-radius variable

R = lnm. (1.45)

The derivation piggybacks on [31] and [12] to arrive at

ri

✓
v2

2
+

m+ �m�

m

✓
R+rjrjR+

1

2
rjRrjR

◆◆
= 0 . (1.46)

Noting that (1.44) implies that m±/m are constants, we define a ‘charge-rescaled velocity’

viq =

r
m

m+ �m�

vi =
vi

(1� 2q2)1/4
. (1.47)

Then, after absorbing an integration constant by shifting R (which is simply a rescaling

of the mass), the master equation takes the form

v2q
2

+R+rjrjR+
1

2
rjRrjR = 0 . (1.48)

All of the dependence on the charge in this equation is encoded in vq. Therefore,

given a neutral stationary solution for R with velocity v, we can immediately construct

a charged stationary solution by substituting v ! vq. Note that this substitution must

not be applied when v appears through the comoving dependence on �i � vit, since this

is fixed by the stationarity condition of invariance under @t + vi@i.

After obtaining in this manner the mass density m = expR for the new charged

solution in terms of vq, the actual velocity of the flow, v, will be given in terms of vq

through (1.47), and the charge density will be proportional to m as in (1.44).
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Observe that this mapping from neutral to charged solutions implies that two black

holes can have the same profile for m even if their charges and rotations are very di↵erent.

In particular, an almost static (small v) but highly charged black hole (q slightly below

1/
p
2), can have the same shape as a neutral black hole with large velocity if the two

solutions have the same value of vq.

1.5 Black branes and the GL instability

In this section we are going to explore the brane-like solutions as the first class of solutions

that were found for this theory. We will present how the e↵ective theory is capable of

capturing the most prominent feature of the dynamics of these objects: thin enough black

branes are unstable [32, 46].

1.5.1 Quasinormal modes

To see this we consider perturbations of the uniform equilibrium solution for a charged

black brane with mass and charge density given by the constants m0, q0:

m = m0 + �me�i!t+ikj�
j

, (1.49)

q = q0 + �qe�i!t+ikj�
j

, (1.50)

vi = �vie�i!t+ikj�
j

. (1.51)

Solving the perturbation equations resulting from this ansatz in the equations of motion

(1.35,1.36), the authors of ref. [31] found the following modes.

Charge di↵usion mode which has �q/�m 6= q0/m0 and is purely dissipative

! = �ik2 . (1.52)

Shear mode which is also dissipative

! = �ia+k
2 , (1.53)

where we introduced

a± =
⇣m±

m

⌘

0

=
1

2

 
1±

s

1� 2q2
0

m2

0

!
 1 . (1.54)

Sound mode which satisfies �q/�m = q0/m0 and has frequencies

!± = ±ik
q
a+ � a� + k2a2

�
� ia+k

2 . (1.55)

The +-mode is unstable for all wavelengths k < kGL = 1 and has the positive growth rate

⌦ = �i!+ = k
q
a+ � a� + k2a2

�
� a+k

2 . (1.56)
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This instability exists for all charges captured in the e↵ective theory but becomes weaker

for larger charges.

The marginal mode with kGL at threshold of the instability was computed also to

higher orders in 1/n and found to be [47, 48]

kGL = 1� 1

2n
+

7

8n2
+

�25

16
+ 2⇣(3)

n3
+

363

128
� 5⇣(3)

n4
+O

�
n�5

�
. (1.57)

This analytic result reproduces numerical calculations down to D = 6 up to an accuracy

of 2.4%.

1.5.2 Static solutions

To find static stringlike solutions that are admitted in the e↵ective theory we solve eq.

(1.48) in one e↵ective variable z in which the solution should satisfy periodic boundary

conditions and set vq = 0 [24]. The resulting equation

@2zR+
1

2
(@zR)2 +R = 0 , (1.58)

can be integrated to obtain
1

2
R02 + U(R) = 1 , (1.59)

with

U(R) = R+ ⌧e�R , (1.60)

where ⌧ is the constant of integration, and corresponds to the tension of the string. In

this form the static equation can be interpreted as an equation of motion for a classical

particle in one dimension, i.e.,we could view R as the position of a particle, z as the time

variable and E = 1 as the (fixed) energy of the particle in the potential U .

When ⌧ > 0 this potential has a minimum and allows for bound states. The uniform

string is obtained when the particle sits still at the minimum of the potential at U = 1 +

log ⌧ , i.e.,when ⌧ = 1. Bound states above the minimum correspond to non-uniform black

strings (since they satisfy periodic boundary conditions), and are possible for 0 < ⌧ < 1.

These solutions can not be obtained analytically but they were constructed numerically

in [24].

It is however possible and interesting to consider approximate solutions to these equa-

tions at a fixed positive, small ⌧ . In the particle picture we can see that the potential U

has a steeper side for negative R and the particle will spend less time there. That is this

solution will only extend over a short extent of z. While for large (positive) R we see that

U ' R, that is the potential is flatter on this side and the particle will spend more time

in the R > 0 region. In this case we can find the approximate solution

R ' R0 �
1

2
z2 . (1.61)

The solutions thus have the form of long extended bulges that are approximately Gaussian

when expressed in m = exp(R) and these bulges are connected by thin short necks.
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Figure 1.1: Mass and entropy for the stable and unstable uniform black string branches (UBS)

and for non-uniform black strings (NUBS). The right panel shows the case above the critical

dimension D? where unstable UBS can transition into NUBS via a second order phase transition,

while below the critical dimension shown in the left panel there is no NUBS that the unstable UBS

can transition into. (Figure taken from [11])

Ref. [11] studied further these non-uniform black strings (NUBS). The authors con-

structed NUBS analytically to higher orders in non-uniformity �m and to higher orders

in 1/n and calculated their thermodynamic properties, they calculated their mass M and

entropy S (normalized to the critical string)

M = 1 + n �m2

✓
� 1

24
+

1

3n
+

7

12n2
+O

�
n�3

�◆
+O

�
�m4

�
, (1.62)

S = 1 + n �m2

✓
� 1

24
+

11

12n
+

7

24n2
+O

�
n�3

�◆
+O

�
�m4

�
. (1.63)

Crucially it can be seen that the O
�
n �m2

�
-correction to the mass undergoes a sign change

at n⇤ = 9.48 which is equivalent to the dimension

D⇤ = 13.48 . (1.64)

The behavior of the solutions is depicted in figure 1.1, it can be seen that below D⇤ there

is no weakly non-uniform black string that the dynamically instable UBS can decay into,

while in dimensions above D⇤ it can be seen that there exist NUBS that the dynamically

instable UBS can decay into via a second order phase transition. This critical behavior of

the black string was first described in [49].
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Figure 1.2: Evolution of a perturbed UBS with kL = 0.98. The final shape is only weakly

non-uniform and approximately sinusoidal.

1.5.3 Non-linear evolution

Apart from the static thermodynamic analysis the e↵ective large D equations also allow

to perform direct evolutions of the GL-instability [27, 50, 41].

Ref. [27] evolved the e↵ective dynamical equations (1.6, 1.7) with a perturbed uniform

black string m(0, z) = 1+�m0(z), �p(0, z) = �p0(z), where the coordinate along the string

is taken to be periodic on an compactification length L. With these boundary conditions

the smallest wavenumber the perturbation can have is

kL =
2⇡

L
. (1.65)

As expected from the linear analysis, it was found there that for strings with kL > kGL =

1 the perturbations quickly disappear and the dynamics is purely dissipative. Also in

accordance with the perturbative analysis, thinner strings with kL < 1 evolve initially at

an approximately exponential rate but ultimately settles down at a stable configuration

that resembles strongly the NUBS found in the linear analysis. Figures 1.2 and 1.3 show

to examples of such evolutions at di↵erent compactification lengths.



1.5. BLACK BRANES AND THE GL INSTABILITY 15

-4 -2 0 2 4

-4

-2

0

2

4

m

z

t = 0

-4 -2 0 2 4

-4

-2

0

2

4

m

z

t = 10

-4 -2 0 2 4

-4

-2

0

2

4

m

z

t = 15

-4 -2 0 2 4

-4

-2

0

2

4

m

z

t = 20

-4 -2 0 2 4

-4

-2

0

2

4

m

z

t = 35

Figure 1.3: Evolution of a perturbed UBS with kL = 0.55. The final shape is only strongly

non-uniform and approximately a gaussian.

The very non-uniform endpoints of the evolution are very approximately gaussian,

with profile

m(z) ' Lp
2⇡

e�z
2
/2 . (1.66)

In the following chapters we are going to describe that the e↵ective theory actually

contain a solution that is proportional to this expression and we are going to see that

these blobs capture a lot of physics of topologically spherical black holes.
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Chapter 2

Black holes as blobs on a

membrane

2.1 Main idea

Consider the simplest case of a black string compactified on a long circle. As described in

the previous chapter the perturbed string becomes increasingly inhomogeneous driven by

the GL instability and develops lumps along its length. The endpoint of the instability

depends on the number of spacetime dimensions [49, 51, 52, 11], but for a thin initial

string and at large enough D, the system stabilizes on a configuration with large blobs

that approach the shape of a Schwarzschild black hole, and which are connected by thin

tubes of black string [27]. For a black brane the end result is similar: black-hole-like bulges

on a thin membrane (see fig. 2.1). We will show that there is a simple, exact solution of the

e↵ective black brane equations that describes a bulge with many of the physical properties

of a Schwarzschild black hole. It can be boosted to move at constant velocity like a black

hole would, and it also generalizes to a solution that rotates around its axis like a MP

black hole.

In the large-D approximation, the bulge on the brane is a good approximation for only

a ‘cap’ of the Schwarzschild (or Myers-Perry) black hole horizon. It may then be surprising

that, even though the angular extent of this cap is small, ⇠ 1/
p
D, it is nevertheless large

enough to accurately account for much of the physics of the black hole when D � 1.

In order to illustrate how this is possible, let us take a sphere SD, built as a fibration

of spheres SD�2 over a hemisphere (a topological disk) parametrized by ✓ 2 [0,⇡/2],

� 2 [0, 2⇡), such that its metric is

d⌦D = d✓2 + sin2 ✓ d�2 + cos2 ✓ d⌦D�2 . (2.1)

The area of this sphere can be computed in an exact, recursive manner as

⌦D = ⌦D�2 2⇡

Z
⇡/2

0

d✓ sin ✓ (cos ✓)D�2

=
2⇡

D � 1
⌦D�2 . (2.2)
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Figure 2.1: Black holes as gaussian lumps. Driven by the GL instability, a black membrane

develops a bulge where most of its area and mass are concentrated with a profile that, when

D ! 1, is a gaussian, as shown in the figure. Representing Schwarzschild and Myers-Perry

black holes in this manner accurately captures much of their physics, including their quasinormal

vibrations.

However, for us it is more interesting to observe that when D is very large the above

integrand is strongly peaked around the center of the hemisphere, ✓ ⇡ 0. We can then

estimate the integral using a saddle-point approximation. If we make

✓ =
rp
D

, (2.3)

so that cos ✓ ⇡ 1� r2/(2D), then the ‘density of SD�2-area’ on the plane (r,�) becomes

a(r) = (cos ✓)D�2 ⇡ e�r
2
/2 , (2.4)

and we compute

⌦D ⇡ 2⇡

D
⌦D�2

Z
1

0

dr r e�r
2
/2 =

2⇡

D
⌦D�2 , (2.5)

which is indeed the leading order approximation to the exact result (2.2) when D � 1.

The upshot is that almost all of the area of the sphere is concentrated with a gaussian

profile in a section of small angular extent �✓ ⇠ 1/
p
D.

When the sphere is that of a large-D black hole, essentially the same argument reveals

that not only its area, but also the mass and other extensive quantities, as well as the

far-zone gravitational potential 1/rD�3 of the black hole, can be recovered from a small

cap, which can be alternatively viewed as a gaussian bulge on a black brane [53, 24]. More

generally, if we view the SD as a fibration of SD�p over a ball Bp (with p � 1 finite as

D ! 1), then the black hole is very well approximated by a gaussian bulge of width

⇠ 1/
p
D on a black p-brane.

This observation had essentially been made already in [24] and [53]. What we have

discovered, and will demonstrate here, is that this small cap of the horizon is su�cient to

capture not only static, integrated magnitudes of the black hole: it also contains dynamical
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information such as the spectrum and profiles of its quasinormal excitations. Moreover,

the simplicity of the equations has allowed us to identify a new kind of black hole, namely

a rotating black bar, which is stationary when D ! 1 but should be slowly radiating and

long-lived for large but finite D. The instability of rotating black holes that is associated

to this new branch of solutions is captured by our leading large-D calculation at per-cent

level accuracy when compared to earlier numerical results [54, 23].

Our study can be usefully related and compared with the e↵ective theory of stationary

black holes at large D that was derived and solved in [26]. In that theory, the singly-

spinning MP black hole is represented as an spheroidal elastic membrane rotating in a flat

background. The theory also yields the quasinormal spectrum of the MP black hole. In

our approach, the bulges of the membrane match the spheroidal membrane around the

symmetry axis on a region of angular size ⇠ 1/
p
D. The two descriptions complement each

other well: the equations of [26] capture all of the horizon, but ours have finer resolution

in the region near the symmetry axis, as we will argue. When the two approaches overlap

we find perfect agreement; in particular, the quasinormal spectra coincide exactly.

Very recently, the elegant formulation of the large-D e↵ective theory by Bhattacharyya,

Minwalla and collaborators [25, 29] has been applied in [55] to describe the simplest

stationary black holes, namely, MP black holes and black rings, in good agreement with

the construction of [26, 28]. It should be interesting to also investigate our approach within

this framework.

2.2 E↵ective 2+1 membrane equations

For the case of singly spinning solutions it is useful to use the e↵ective theory in the case

p = 2, i.e.,we will consider membranes (2-branes), for which we write the spatial geometry

as

ds2 = dr2 + r2d�2 (2.6)

and set

p = prdr + p�d� . (2.7)

The e↵ective equations of motion (1.6,1.7) in these coordinates take the form

@tm = @2rm+
@rm

r
+
@2
�
m

r2
� @rpr �

pr
r

�
@�p�
r2

, (2.8)

@tpr = @rm+ @2rpr +
@rpr
r

� pr
r2

+
@2
�
pr

r2
�

2@�p�
r3

�@r
✓
p2r
m

◆
� p2r

rm
� 1

r2
@�

⇣prp�
m

⌘
+

p2
�

r3m
, (2.9)

@tp� = @�m+
@2
�
p�

r2
�
@rp�
r

+ @2rp� +
2

r
@�pr

� 1

r2
@2
�

 
p2
�

m

!
� @r

⇣prp�
m

⌘
�

prp�
rm

. (2.10)
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2.2.1 Time-independent axisymmetric configurations

For configurations that are independent of t and �, eq. (2.8) is solved by

pr = @rm, (2.11)

i.e., vr = 0. Using this, eq. (2.10) can be rewritten as

@r

✓
mr3@r

p�

m

◆
= 0 , (2.12)

where p� = g��p� = p�/r2. If we require that m and p� asymptote to finite values at

r ! 1, then we can integrate this equation to conclude that

p�

m
= ⌦ (2.13)

is a constant, equal to the angular velocity of the horizon. That is,

p� = mr2⌦ . (2.14)

Hence we have proven that the rotation velocity v� = ⌦ is a constant, which in sec. 1.3 we

had assumed. Thus we have given the large-D proof of the black hole rigidity theorem.

The remaining equation (2.9), in terms of R(r) = lnm(r), is indeed a particular case

of the master stationary equation (1.24), namely,

R00 +
R0

r
+

1

2
R02 +R+

⌦2r2

2
= 0 . (2.15)

2.2.2 Stationary membrane master equation

Consider a configuration that is stationary but not necessarily axisymmetric nor time-

independent, and take a purely rotational velocity field,

v� = ⌦ . (2.16)

In this case the master equation (1.24) for

R = R(r,�� ⌦t) (2.17)

takes the form

@2rR+
@rR
r

+
@2
�
R

r2
+

1

2

 
(@rR)2 +

(@�R)2

r2

!
+R+

⌦2r2

2
= 0 . (2.18)

In our subsequent analysis we will make extensive use of this equation and of (2.15), to

which (2.18) reduces for axisymmetric profiles.

The mass density is

m(r,�� ⌦t) = eR(r,��⌦t) (2.19)

and the pi are

pr = @rm, (2.20)

p� = @�m+ ⌦ r2m. (2.21)
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2.3 Axisymmetric black holes

In ref. [27] the numerical evolution of thin unstable black branes was found to stabilize

at very approximately gaussian profiles m(r) ⇠ e�r
2
/2. It was noticed in [24, 53] that

these reproduce well the features of a Schwarzschild black hole. This is the main intuition

that leads us to seek new solutions to the e↵ective equations (1.6), (1.7) that capture the

physical properties of localized black holes —even if, as we will see later, some of these

are not always stable themselves.

When looking for stationary axisymmetric configurations we only need to solve the

master equation (2.15). The rotation term ⇠ ⌦2r2 suggests that we try an ansatz where

R is quadratic in r. This yields easily the solution

R(r) = R0 �
r2

2(1 + a2)
, (2.22)

with

⌦ =
a

1 + a2
. (2.23)

The constant R0 can be chosen arbitrarily, but our specific choices in (2.15) require that

R0 = 2/(1 + a2), and then

R(r) =
2

1 + a2

✓
1� r2

4

◆
. (2.24)

The solution for the mass and area density has gaussian profile

m(r) = m0 exp

✓
� r2

2(1 + a2)

◆
, (2.25)

with m0 = eR0 , and

pr = @rm = �m0

r

1 + a2
exp

✓
� r2

2(1 + a2)

◆
, (2.26)

p� = mr2⌦ = m0

ar2

1 + a2
exp

✓
� r2

2(1 + a2)

◆
. (2.27)

The angular momentum per unit mass is

J

M
=

R
1

0
dr r p�(r)R

1

0
dr rm(r)

= 2a . (2.28)

This reproduces correctly the large-D value for MP black holes [56], once we take into

account that lengths on the membrane are rescaled by a factor of 1/
p
D. so the physical

value is actually J/(MD) = 2a/D.

Note that ⌦ 2 [0, 1/2]. The maximum ⌦ = 1/2 is achieved for a = 1. On the other

hand, the value ⌦! 0 is reached both when a ! 0 and when a ! 1. The former is the

static limit, whereas the latter is the ultraspinning limit where J/M ! 1. If we keep the

mass fixed and increase the spin, the brane profile m(r) flattens as it spreads over an area

/ a2, see fig. 2.2. The rotation parameter in terms of ⌦ is

a =
1±

p
1� 4⌦2

2⌦
, (2.29)

and the + sign gives the ultraspinning branch.
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Figure 2.2: Mass density profiles m(r) for black holes with J/M = 0 (left), J/M = 1 (middle),

J/M = 2 (right).

2.3.1 Traveling rotating black holes

The boost symmetry (1.14) can be used to generate solutions that travel at constant

speed ui. Changing to Cartesian coordinates (x1, x2), the traveling rotating black hole is

described by

m(t, x) = m0 exp

✓
�(xi � uit)(xi � uit)

2(1 + a2)

◆
, (2.30)

vi = ui +
a

1 + a2
"ij(x

j � ujt) . (2.31)

2.4 Relation to finite D black holes

Here we are going to show that these solutions can be recovered if we start with the known

Schwarzschild-Tangherlini and Myers-Perry black holes, and take their limit when D ! 1
in an appropriate manner. Thus, in the following we will refer to the solution (3.1), (2.25)

as the MP black hole. This derivation can also guide us how to relate the quantities in

the e↵ective theory to physical quantities. The corresponding quantities will be provided

in section 2.4.2.

2.4.1 Blobs as the limit of large D black holes

The Schwarzschild-Tangherlini and Myers-Perry black holes admit large-D limits s.t. they

can be taken as instances of the metric (1.2), (1.3) with arbitrary p. We will illustrate this

by casting them as gaussian bulges on strings and as bulges on 2-branes.

Gaussian string

Begin with the Schwarzschild-Tangherlini solution,

ds2 = �
✓
1� 1

r̂n

◆
dt̂2 +

dr̂2

1� r̂�n
+ r̂2d✓2 + r̂2 cos2 ✓d⌦n , (2.32)

where we have set the horizon radius to one. In analogy to our discussion in the in-

troduction, the sphere Sn+1 is built here as a fibration of spheres Sn over the interval

✓ 2 [�⇡/2,⇡/2], with the equator at ✓ = 0.
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In order to take the large-D limit, change (r̂, ✓) ! (⇢, z) as

⇢ = r̂ cos ✓ , z =
p
n r̂ sin ✓ , (2.33)

and let n ! 1 while keeping z finite. In this limit we are focusing on a small region

around

✓ = O
✓

1p
n

◆
. (2.34)

Introduce

R = ⇢n . (2.35)

Then, since

r̂2 = ⇢2 +
z2

n
, (2.36)

we have, at large n,

r̂n = R ez
2
/2 . (2.37)

We are viewing ⇢ (and R) as the coordinate orthogonal to the brane, and z as the

coordinate along the brane. Since the horizon is actually at constant r̂, this means that

we regard it as a brane that is bent along the z direction.

In these coordinates, and in the limit of large n, the solution (2.32) becomes

ds2 ' �Adt̂2 +
1

n2

dR2

AR2
+

1

n

 
1 +

1

n

z2e�z
2
/2

AR

!
dz2 + ⇢2d⌦n , (2.38)

with

A = 1� e�z
2
/2

R
. (2.39)

Change to the Eddington-Finkelstein time t,

t = t̂� 1

n
ln(AR) = t̂� 1

n
ln
⇣
R� e�z

2
/2

⌘
. (2.40)

The solution now takes the form of (1.2) with

m(z) = e�z
2
/2 , p(z) = z e�z

2
/2 . (2.41)

This limit had also been obtained (though in a di↵erent gauge) in [53].

Gaussian singly-rotating membrane

If we extend now the previous limit to involve two directions on the SD�2, we can incor-

porate the e↵ects of rotation on the plane of these directions.

Consider then the Myers-Perry black hole with a single spin in D = n+ 5 [57],

ds2 = �
✓
1� 1

r̂n⌃

◆
dt̂2 +

2a sin2 ✓

r̂n⌃
dt̂d�̂+

✓
r̂2 + a2 +

a2 sin2 ✓

r̂n⌃

◆
sin2 ✓ d�̂2

+
⌃

�
dr̂2 + ⌃d✓2 + r̂2 cos2 ✓d⌦n+1 (2.42)
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where

⌃ = r̂2 + a2 cos2 ✓ , � = r̂2 + a2 � 1

r̂n
, (2.43)

and ✓ 2 [0,⇡/2].

The horizon is at r̂ = rH , where �(rH) = 0. Then it satisfies

rH =

✓
1 +

a2

r2
H

◆�
1

n+2

. (2.44)

When n ! 1 we have

rH ! 1 , rnH ! 1

1 + a2
. (2.45)

Now change (r̂, ✓) ! (⇢, r), with

⇢ = r̂ cos ✓ , r =
p
n(r̂2 + a2) sin ✓ . (2.46)

It is useful to note that

⌃

✓
dr̂2

r̂2 + a2
+ d✓2

◆
+
�
r̂2 + a2

�
sin2 ✓ d�̂2+ r̂2 cos2 ✓d⌦n+1 = d⇢2+

dr2 + r2d�̂2

n
+⇢2d⌦n+1 .

(2.47)

⇢ is the coordinate orthogonal to the membrane. The membrane worldvolume is described

in polar coordinates in which r is the radius and �̂ the polar angle.

We introduce

R = (1 + a2)⇢n . (2.48)

Then

r̂n =
R

1 + a2
e

r
2

2(1+a2) . (2.49)

In the new coordinates, expanding in 1/n, the metric becomes

ds2 ' �Adt̂2 +
1

n

2a

1 + a2
r2e

�
r
2

2(1+a2)

R
dt̂ d�̂+

r2

n

0

@1 +
r2

n

a2

(1 + a2)2
e
�

r
2

2(1+a2)

R

1

A d�̂2

+
1

n2

dR2

AR2
+

1

n

0

@1 +
r2

n(1 + a2)2
e
�

r
2

2(1+a2)

AR

1

A dr2 + ⇢2d⌦n+1 , (2.50)

with

A = 1� e
�

r
2

2(1+a2)

R
. (2.51)

In order to go to Eddington-Finkelstein coordinates, change

t̂ = t+
1

n
ln(AR) , �̂ = �� 1

n

a

1 + a2
ln(AR) . (2.52)

The metric is now of the form of (1.2) with

m(r) = e
�

r
2

2(1+a2) ,

pr(r) = � r

1 + a2
e
�

r
2

2(1+a2) , (2.53)

p�(r) =
ar2

1 + a2
e
�

r
2

2(1+a2) .
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This is the same as we found in (2.25), (2.26), (2.27) (here with R0 = 0) by direct solution

of the large-D e↵ective membrane equations. Therefore the MP black hole is represented

as a gaussian blob on the membrane, whose width expands as a grows.

More generally one can show that a MP-solution can be cast as a Gaussian bulge on

a 2p-brane.

2.4.2 Physical quantities

A careful study of the matching of the solutions of the e↵ective theory (1.2) with (1.3)

to the geometry of an asymptotically flat black hole yields the physical mass, area, spin,

angular velocity and surface gravity of the configurations (denoted in boldface), in terms

of the e↵ective theory magnitudes defined in equations 1.16, as

M =
⌦n+3

16⇡G
rn+2

+

n+ 3

2⇡m0

M , (2.54)

A = ⌦n+3r
n+3

+

1

2⇡m0

M , (2.55)

J =
⌦n+3

16⇡G
rn+3

+

1

2⇡m0

J , (2.56)

⌦ =
1

r+
⌦ , (2.57)

 =
n

2r+
+

1

2r+
lnm0 . (2.58)

Here n = D � 5, and r+ is a length scale (necessary, since in the e↵ective theory all

quantities are dimensionless) that corresponds to the radius of the transverse sphere Sn+1,

with unit volume ⌦n+1, at the rotation axis. It can be eliminated in favor of  in the

expressions for the other physical quantities. A useful, equivalent form of (2.58) is

m0 =

✓
2r+
n

◆
n

. (2.59)

Observe that we have distinguished rn+2

+
in the mass from rn+3

+
in the area and spin,

even though they become the same as n ! 1; we do this in order to maintain the correct

dimensionality of these magnitudes. Other apparently subleading dependences at large n

have also been fixed through matching to known exact solutions—not a necessity but a

convenience. The first correction to the surface gravity (and temperature)—which, as we

mentioned earlier, is constant at leading large n order—can be consistently determined

from the geometry (1.2,1.3).

A convenient parameter to characterize the configurations is the spin per unit mass

J/M . The corresponding dimensionless physical magnitude is

J

M
=

D � 2

r+

J

M
, (2.60)

where the horizon radius r+ was invariantly defined above. This allows to translate in a

simple manner the parameter J/M of our colliding black hole simulations to the physical

magnitudes in a collision at finite D. Again, the factor D � 2, instead of simply D, is

chosen to better match known exact solutions, but it need not be accurate for generic

configurations.
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2.5 Rotating black bars

Remarkably, it is also possible to find explicitly a class of stationary but time-dependent,

non-axisymmetric exact solutions.

2.5.1 Solution

Assume again that R depends quadratically on r, but now allow an angle-dependent

stationary profile1

R = R0 � r2F (�� ⌦t) . (2.61)

Plugging this ansatz into (2.18), and setting for convenienceR0 = 1, we get an r-dependent

equation for F . If we consider it at r = 0 we get the equation

F 00 + 4F � 1 = 0 , (2.62)

which, up to an arbitrary initial value of the phase, is solved by

F =
1

4
+ C cos (2(�� ⌦t)) (2.63)

with constant C. Inserting this again in eq. (2.18), but considering r 6= 0, we find an

algebraic equation that is solved for

C = ±
p
1� 4⌦2

4
. (2.64)

The sign choice here can be absorbed by a phase shift, so the solution we finally obtain is

R(t, r,�) = 1� r2

4

⇣
1 +

p
1� 4⌦2 cos (2(�� ⌦t))

⌘
. (2.65)

The corresponding mass density is

m(t, r,�) = exp

✓
1� r2

4

⇣
1 +

p
1� 4⌦2 cos (2(�� ⌦t))

⌘◆
, (2.66)

and the pi are given by (2.20).

This mass profile (2.66) has a dipolar dependence on the angle, and thus can be

regarded as describing a ‘rotating bar’, which extends along the angular directions

� = ⌦t± ⇡

2
. (2.67)

It is also useful to present the solution in rotating Cartesian coordinates

x = x1 cos⌦t+ x2 sin⌦t = r cos(�� ⌦t) ,

y = x2 cos⌦t� x2 sin⌦t = r sin(�� ⌦t) , (2.68)

1Regularity at the rotation axis r = 0 requires that R0 be �-independent.
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Figure 2.3: Mass density profile m for the black bar with ⌦ = 0.3.

such that x and y are corotating directions transverse to the bar and along the bar,

respectively. If we introduce the length `k and width `? of the bar,

`2
k
=

2

1�
p
1� 4⌦2

,

`2
?

=
2

1 +
p
1� 4⌦2

, (2.69)

then the solution (3.14) reads

R(x, y) = 1� x2

2`2
?

� y2

2`2
k

. (2.70)

2.5.2 Physical properties

The spin per unit mass of this solution is2

J

M
=

1

⌦
. (2.71)

The angular velocity in (3.14) is restricted to 0  ⌦  1/2. When ⌦ = 1/2 we recover

a rotating MP black hole (2.22) with a = 1. Starting from this solution and decreasing ⌦

the profile (2.66) develops an increasingly longer and narrower shape (see fig. 2.3), with

longitudinal extent `k and transverse thickness `?. If we keep the mass fixed, the height

m0 of the bar decreases in proportion to ⌦. In the limit ⌦! 0 we have

`k ! 1 , `? ! 1 , (2.72)

and thus we recover an infinite, static black string.

At ⌦ = 1/2 we have a bifurcation into MP black holes and black bars, see fig. 2.4. In

2Henceforth we assume ⌦ � 0 without loss of generality.
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Figure 2.4: Phases of Myers-Perry black holes (blue line) and black bars (black line) in the plane

(J/M,⌦). The red dots indicate the presence of non-axisymmetric corotating zero modes for MP

black holes (2.88) and for black bars (2.143). The ones in the MP branch encircled by a black dot

indicate also axisymmetric zero modes (2.87). New families of solutions branch o↵ all these points

and are explored in 4.

both the MP black hole and the black bar the angular velocity decreases from that point

on, but for the same spin and mass, the bar rotates more slowly than the MP black hole.

That is, it has a larger moment of inertia. The solutions with the same mass also have the

same area, so we cannot predict on thermodynamic grounds which of the two solutions

is preferred for given M and J . This requires a computation to a higher order in the

1/D expansion. Nevertheless, since as we will see the MP black holes become unstable

for J/M > 2, and the black bars resemble black strings of finite length, we expect that

the black bar is dynamically stable after the bifurcation3 and also thermodynamically

preferred over the MP black hole.

When ⌦ is small the length of the bar is `k ⇠ 1/⌦ and we can easily see that J and

M behave like in a rigidly rotating solid,

J ⇠ M`2
k
⌦ . (2.73)

A similar relation has been known since long ago to also hold for the ultraspinning MP

black hole, with `k ⇠ a [58] and also for black rings.

2.5.3 Stationarity of black bars

It may seem surprising that a rotating black bar exists as a stationary configuration:

should it not be radiating gravitational waves?

The reason it does not is that in the large-D limit the gravitational radiation decouples

from the e↵ective membrane [22, 24, 59]. The decoupling actually holds to all perturbative

orders in the 1/D expansion.4 In other words, the decay rate of a black bar that is radiating

gravitational waves must be non-perturbatively small in 1/D.

3But only until the appearance of an instability of the black bar at J/M = 3/
p
2 ⇡ 2.12, see sec. 2.7.

4The rotating black bar would cease to be stationary, without still radiating, if the e↵ective theory at

higher perturbation orders in 1/D gave rise to dissipation from squared vorticity terms.
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We can easily estimate this rate. The bar has length ⇠ ⌦�1, and when it rotates it

emits waves with frequency ⌦. The radiating power is then

P ⇠ GM2⌦D�2 . (2.74)

Since ⌦ < 1, this implies that the decay rate

Ṁ

M
=

P

M
⇠ GM ⌦D�2 (2.75)

is small exponentially in D.

Bar deformations of rotating black holes in D = 6, 7 have been observed in full numer-

ical simulations in [54]. These black bars spin down to a stable configuration through the

emission of gravitational waves. The relaxation timescale in D = 6 is found to be ⇠ 100r0,

and in D = 7 even larger than this. So indeed the black bars are long-lived, in agreement

with our arguments.

2.6 Quasinormal modes and stability of MP black holes

Now we analyze the small, linearized perturbations of the previous solutions.

We begin by studying zero modes of the MP black holes, which leave the solution

stationary. Their computation is simpler than the generic non-zero frequency quasinormal

modes, and they are particularly important since they indicate the onset of instabilities

and new branches of stationary solutions. When we solve afterwards for the modes with

finite frequency, we will recover the zero modes as special cases.

2.6.1 Corotating zero modes

We perturb the rotating MP solution (3.1), while remaining in the stationary sector, by

making

R(r) =
2

1 + a2

✓
1� r2

4

◆
+ ✏ �R(r)eim�(��⌦t) , (2.76)

with

⌦ =
a

1 + a2
, (2.77)

and integer m�. When m� = 0 these are axisymmetric, time-independent perturbations,

and therefore are properly zero modes. When m� 6= 0 their frequency

! = m�⌦ (2.78)

is real and such that the perturbation corotates with the unperturbed black hole. Therefore

we also regard them as zero modes. We can still use eq. (2.18) to study them. Note that

corotating modes satisfying (2.78) are at the threshold for superradiance. Below we will

comment further on this point.

We adjust �R by an additive constant so as to maintain R0 fixed. Then we find the

equation

�R00 +

✓
1

r
� r

1 + a2

◆
�R0 +

 
1�

m2

�

r2

!
�R = 0 . (2.79)
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It can be shown that this is precisely the equation for spheroidal harmonics on SD�2,

in the limit n ! 1, when we focus on small polar angles ✓ ⇠ r/
p
n. The appearance

of this equation in this problem is a remarkable illustration of the extent to which the

black brane equations (1.6), (1.7), manage to capture the dynamics of localized black

holes. Even though eqns. (1.6) and (1.7) should seemingly only know about fluctuations

of planar black branes, they also describe accurately the vibrations of a spheroidal, large-D

MP black hole. This explains why in our subsequent analyses we will repeatedly encounter

this equation.

Eq. (2.79) has a regular singular point at r = 0 and an irregular point at r = 1, and

it can be transformed into a confluent hypergeometric equation. The solutions that are

regular at r = 0 and which avoid non-analytic behavior ⇠ er
2
at r ! 1 are expressed in

terms of associated Laguerre polynomials L
|m�|

k
(x), in the form

�R(r) = r|m�|L
|m�|

k

✓
r2

2(1 + a2)

◆
, (2.80)

with non-negative integer index

k =
a2 + 1� |m�|

2
. (2.81)

Then, MP black holes admit corotating zero mode perturbations only when the rotation

parameter has the critical value

a2c = |m�|+ 2k � 1 , k = 0, 1, 2, . . . (2.82)

The index k has the interpretation of a ‘radial overtone’ number, such that, for a given

value of m�, the number of oscillations along r increases with k. It is convenient to

introduce the angular momentum number `

` = 2k + |m�| (2.83)

for the spherical harmonics of SD�2 (see sec. 2.6.3), in terms of which the critical values

of the rotation are

a2c = `� 1 . (2.84)

These values are the same as found in [26]. The behavior of (3.25) at large r, R ⇠ r`, also

matches the dependence ⇠ ✓` at small ✓ of the mode solutions in [26].

We analyze now these solutions in more detail. Note that the solution for |m�| = 1

and k = 0 corresponds to a shift of the center of the Schwarzschild solution away from

r = 0, so it is pure gauge.

Axisymmetric, time-independent zero modes

These are obtained when m� = 0. In this case the solutions are Laguerre polynomials,

�R(r) = Lk

✓
r2

4k

◆
, (2.85)
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for k = 1, 2, . . .

When k = 1 and therefore a = 1, we have

�R(r) = 1� r2

4
, (2.86)

which does not yield any new solution: it is a perturbation that varies a, adding angular

momentum to the MP black hole while remaining in the same family of solutions. It has

been known for some time that these zero mode deformations of MP black holes exist at

the maximum of ⌦ in any D � 6 [60].

The modes for k = 2, 3, . . . , which appear at

a =
p
3,

p
5,

p
7, . . . , ⌦ =

p
3

4
,

p
5

6
,

p
6

7
, . . . (2.87)

are deformations that should lead to new branches of stationary axisymmetric ‘bumpy

black holes’ (in this context also called black ripples see chapter 4). These had been

first conjectured to exist in D � 6 in [58]. The zero modes were explicitly constructed

numerically in D = 6, 7, 8 in [60], and their non-linear extension in [61, 62].

Non-axisymmetric, corotating zero modes

When we consider |m�| > 0 there are zero modes for

a = 1,
p
2,

p
3, 2, . . . , ⌦ =

1

2
,

p
2

3
,

p
3

4
,
2

5
, . . . . (2.88)

Observe that when di↵erent values ofm� and k combine to give the same value of |m�|+2k,

then the same solution admits several zero modes.

The ‘fundamental’ modes with k = 0 have a simple radial profile,

�R(r) = r|m�| . (2.89)

Of these modes, the first non-trivial one, with |m�| = 2, corresponds to the black bar in

a perturbative expansion around a = 1, namely (taking a real perturbation)

R(r) = 1� r2

4
+ ✏ r2 cos(2�� t) . (2.90)

Higher values of |m�| signal new branches of solutions with higher multipole-bar deforma-

tions. Solutions with k > 0 involve additional, higher powers of r, so they have more radial

oscillations and can be regarded as ‘bumpy m�-bar modes’. We discuss the corresponding

non-linear solution in chapter 4, where they are dubbed as ’black flowers’ .

2.6.2 Quasinormal modes

In order to study the spectrum of QNMs at arbitrary finite frequency, we need to turn to

the full equations (2.8) (2.9), (2.10). We perturb around the MP black hole, taking

m = m̄(r) + ✏ e�i!t+im�� �m(r), (2.91)

pr = p̄r(r) + ✏ e�i!t+im�� �pr(r), (2.92)

p� = p̄�(r) + ✏ e�i!t+im�� �p�(r), (2.93)
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with the background m̄, p̄r, p̄� given by (2.25), (2.26), (2.27), and working to linear order

in ✏. By doing so, we obtain three coupled ODEs for the radial profiles. Quite remarkably,

the spectrum of QNM can be found analytically. To do so, we first find a decoupled sixth

order equation for �m, which can be easily obtained by taking linear combinations of the

fluctuation equations. This equation takes the form

L1L2L3�R(r) = 0 , (2.94)

where (up to irrelevant constant factors)

�R(r) =
�m(r)

m̄(r)
= exp

✓
r2

2(1 + a2)

◆
�m(r) , (2.95)

and Li are three second order, linear di↵erential operators of the form

Li =
d2

dr2
+

✓
1

r
� r

1 + a2

◆
d

dr
+

m� + 2ki
1 + a2

�
m2

�

r2
. (2.96)

Here we recognize again the confluent hypergeometric operators of sec. 2.6.3, whose eigen-

functions are spheroidal harmonics of the SD�2 at large D.

The constants ki are the three roots of the cubic equation

0 = k3 � �!
2
k2 +

�!
�
1� a2 + �!

�
+ 2

�
a2 � 3

�
� 3(a� i)2m�

12
k (2.97)

+

�
a2 + 6ia� �! � 3

� �
a4 � 6ia3 � 2(a� 3i)a�! � 9(a� i)2m� � 18ia+ �2! � 9

�

216
,

where we have introduced

�! = 3i
�
a2 + 1

�
! + a2 � 3iam� � 3m� + 3 . (2.98)

For any ki the operators (2.96) commute. Thus, the profiles correspond to the solutions

of Li�R = 0, for i = 1, 2, 3. Since the ki are all roots of the same polynomial, the three

equations are equivalent. The solutions that are regular at r = 0 and at infinity are given

by the associated Laguerre polynomials (3.25) with

k = 0, 1, 2, 3 . . . (2.99)

This imposes a quantization condition on the frequencies that appear in (2.97), which is

itself a cubic equation in !. In order to write it more manifestly as such, it is convenient

to use, instead of k, the angular momentum parameter ` of (2.83). Using it, (2.97) can be

rewritten as5

0 = !3 �
!2 (3(a|m�|� i`) + 4i)

a2 + 1

+
!
�
a2
�
3|m�|2 + `� 4

�
� 6ia|m�|(`� 1)� (`� 1)(3`� 4)

�

(a2 + 1)2

�
(a|m�|� i`)

�
a2
�
|m�|2 + `� 2

�
� 2ia|m�|(`� 1)� (`� 2)(`� 1)

�

(a2 + 1)3
. (2.100)

5This agrees with the result of [26], after correcting typos in their eq. (4.20).



2.6. QUASINORMAL MODES AND STABILITY OF MP BLACK HOLES 33

For a given solution of this equation, eqs. (3.25) and (2.95) yield the profile of �m(r)

as

�m = e
�

r
2

2(1+a2) r|m�|L
|m�|

k

✓
r2

2(1 + a2)

◆
. (2.101)

Using this in the linearized perturbation equations we can obtain �pr and �p�, which are

uniquely determined once regularity at infinity is imposed. They are finite polynomials but

their general expressions are cumbersome, so we do not give them explicitly. Nevertheless,

one can readily obtain the coe�cients of the polynomials in particular cases by inserting the

specific polynomial (2.101) in the linearized equations of motion and solving the resulting

algebraic equations for the coe�cients.

The solution to the cubic (2.100) for ! can be given explicitly for generic values of

` and m�, but it is rather unilluminating. Instead, we will discuss generic features of

axisymmetric and non-axisymmetric modes, and then consider certain special modes.

Axisymmetric modes: m� = 0

• k = 0, ` = 0. There are no non-trivial regular modes. Besides the trivial constant

mode with ! = 0 we find

! =
2

1 + a2
(i± a) , (2.102)

which appear to be unstable modes, but their profiles for p� approach a constant at

infinity, which results in unphysical infinite angular momentum.

• k � 1, ` = 2, 4, 6, . . . . All the solutions to (2.100) yield regular profiles of the form

�pr = e
�

r
2

2(1+a2) r
kX

i=0

�p(i)r r2i , (2.103)

�p� = e
�

r
2

2(1+a2) r2
kX

i=0

�p(i)
�
r2i . (2.104)

Non-axisymmetric modes: |m�| � 1

• k = 0, ` = |m�|. The frequencies of these fundamental quasinormal ‘bar-modes’

obtained from (2.100) are

!0 =
(|m�|+ 2)a� i(|m�|� 2)

1 + a2
, (2.105)

!± =

p
|m�|� 1

1 + a2

✓
a
q
|m�|� 1± 1� i

✓q
|m�|� 1⌥ a

◆◆
. (2.106)

Modes with ! = !0 have momenta which are regular for |m�| > 2, and they are

stable. For |m�| = 1, 2 they are singular, i.e., unphysical.

Modes with ! = !± are regular for |m�| � 1 and have profiles of the form

�pr = e
�

r
2

2(1+a2) r|m�|+1�p(1)r , (2.107)

�p� = e
�

r
2

2(1+a2) r|m�|+2�p(1)
�

. (2.108)
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The mode !+ with |m�| = 2 and a = 1 is the corotating black bar mode (2.90).

More generally, the modes !+ with |m�| � 2 and !+ = a =
p
|m�|� 1 are purely

real and correspond to the non-axisymmetric corotating zero-modes in (2.88).

• k � 1. All profiles are regular, with momenta of the form

�pr = e
�

r
2

2(1+a2) r|m�|�1

k+1X

i=0

�p(i)r r2i , (2.109)

�p� = e
�

r
2

2(1+a2) r|m�|

k+1X

i=0

�p(i)
�
r2i . (2.110)

When written in Cartesian coordinates these modes are manifestly regular at the

origin, even when |m�| = 1, for which the radial profiles behave as pr ⇠ 1, p� ⇠ r

near r = 0. The contribution from the angular part eim�� plays a crucial role for

regularity.

These modes can become unstable for su�ciently large values of a, as we discuss below.

Schwarzschild modes

When a = 0 the solutions to (2.100) are

!Sch
± = ±

p
`� 1� i(`� 1), !Sch

0 = �i(`� 2) . (2.111)

Modes with frequencies !Sch
± are physical (have finite total angular momentum) for

` > 1. This matches the earlier result of [22] for the quasinormal frequencies that are

scalars of SD�2 for the Schwarzschild solution at large D.

Modes with frequency !Sch
0

are regular only for ` > 2. They can be seen to have

constant �R, which identifies them as vector deformations of the SD�2. The calculation

of [22] gave the vector frequency as !0 = �i(`� 1). The di↵erence with (2.111) is simply

due to the fact that as shown in sec. 2.6.3 ` can be identified using the scalar spherical

harmonics, while for the vector harmonics ` is shifted by 1.

All the allowed modes in (2.111) are stable, in agreement with the proven mode stability

of the Schwarzschild-Tangherlini solution in all D [63].

Near-critical unstable modes

For

a = ac ⌘
p
`� 1 , ! = |m�|

a

1 + a2
, ` � 2 , (2.112)

we recover the corotating zero modes discussed in section 2.6.1. These modes have purely

real frequency, but they mark the appearance of unstable modes as a increases past each

critical value ac. We can verify this by moving slightly away from the critical points, by

setting

! = |m�|
ac

1 + a2c
+ �! , a = ac + �a . (2.113)
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Linearizing (2.100) in �! and �a we find that the frequency develops an imaginary part,

Im! = �a
ac

a2c(1 + a2c)
2 +m2

�

 
2m2

�

1 + a2c
+ a4c � 1

!
. (2.114)

Since ac � 1, we see that Im! > 0 whenever �a > 0, so the mode is unstable, while if

�a < 0 the mode has Im! < 0 and therefore is stable. Hence, as the rotation increases

crossing each of the critical values, a new unstable mode is added to the MP black hole.

Eq. (2.114) gives the growth rate of the bar-mode instability near the threshold (ac = 1

and m� = 2) as

Im! =
1

2
�a . (2.115)

Interestingly, this unstable growth rate of bar modes has been computed numerically in

D = 6, 7 in [54] and [23], who find (in units where r0 = 1)

Im! ⇠ C⌧�a (2.116)

with

C⌧ ⇠ 0.51 (D = 6) C⌧ ⇠ 0.54 (D = 7) [54] , (2.117)

C⌧ ⇠ 0.521 (D = 6, 7) [23] . (2.118)

The leading-order large-D result from (2.115),

C⌧ = 1/2 (2.119)

is in agreement with the numerical calculations to a few percent level. More generally

one can readily verify that the plots of quasinormal frequencies, both real and imaginary,

obtained from (2.100) as a function of a agree very well with the results presented in [23].

Bar modes and the CFS instability

The real part of the frequency of the bar mode near the critical point is

Re! = |m�|⌦� 1

4
�a |m�| , (2.120)

so we see that as the rotation increases, the stable mode before the critical rotation (with

�a < 0), rotates faster than the black hole, whereas the unstable mode (with �a > 0)

rotates more slowly than the black hole. The superradiant limit ! = |m�|⌦ corresponds

of course to exact corotation.

This behavior is strongly reminiscent of the Chandrasekhar-Friedman-Schutz (CFS)

instability in neutron stars [64, 65]: unstable modes are present only for perturbations

that rotate in the same sense that the star but more slowly than it. This is because when

the perturbation moves backwards relative to the star, but forwards relative to inertial

observers, it excites the emission of gravitational waves that remove positive angular mo-

mentum from the mode, driving the deformation even slower. In our set up the emission

of gravitational waves is suppressed, so the details of the instability mechanism are not

the same, but it seems plausible that the two phenomena are related.
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2.6.3 Spheroidal harmonics at large D

Here we analyze scalar spheroidal harmonics at large D and relate them to our study of

quasinormal perturbations of gaussian black-hole lumps in sec. 2.6. Initially we follow

appendix C of [26], but then we depart from it so as to highlight the di↵erences and

connections between their approach and ours.6

As in [26], we study the massless scalar field equation

2 = 0 (2.121)

in D = n+ 5 dimensions, written in spheroidal coordinates,

ds2 = �dt2 + (r̂2 + a2 cos2 ✓)

✓
dr̂2

r̂2 + a2
+ d✓2

◆

+(r̂2 + a2) sin2 ✓ d�2 + r̂2 cos2 ✓ d⌦n+1 (2.122)

(appropriate for embedding a rotating, MP-type, large-D membrane).

We separate variables as

 = e�i!teim�� (r̂)S(✓) , (2.123)

where, in order to avoid inessential details, we are assuming no dependence on the angles

of the sphere Sn+1. Introducing a separation constant ⇤, we obtain the equations7

 
1

r̂n+1

d

dr̂
(r̂2 + a2)r̂n+1

d

dr̂
+

m2

�
a2

r̂2 + a2
+ !2r̂2 � ⇤

!
 (r̂) = 0 (2.124)

and
 

d2

d✓2
+ (cot ✓ � (n+ 1) tan ✓)

d

d✓
�

m2

�

sin2 ✓
+ !2a2 cos2 ✓ + ⇤

!
S(✓) = 0 . (2.125)

When a = 0 we get the usual scalar spherical harmonics, with the separation constant

quantized as

⇤ = `(`+ n+ 2) , (2.126)

where ` is a non-negative integer. This result indicates that if we consider ` = O (1), then

we must have ⇤ = O (n). The authors of [26] argue that it is appropriate to extend this

behavior to a 6= 0 and set

⇤ = n`+O (1) . (2.127)

They then proceed to take the the limit n ! 1 in (2.125) while keeping ✓ = O (1). This

yields, to leading order,
dS(✓)

d✓
=

`

tan ✓
S(✓) , (2.128)

6Related aspects have been analyzed by K. Tanabe, to whom we are indebted for private communica-

tions.
7The di↵erences with [26] are a shift in the definition of ⇤ and a corrected typo in their radial equation,

both inconsequential to the rest of the analysis.
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which is solved by

S`(✓) = sin` ✓ . (2.129)

Crucially, note that in the limit from (2.125) to (2.128) the latter has become a first

order equation —so the condition of regularity at ✓ = ⇡/2, which leads to the quantization

of `, is mysteriously absent—, and its solutions S`(✓) have lost all the characteristic struc-

ture of the spherical harmonics with nodes in the angular direction. These two features

are intimately related, and point to the fact that when n is large, the angular structure of

the spherical harmonics is hidden within a small region ✓ = O (1/
p
n), which is invisible

when we consider ✓ = O (1).

In order to reveal this fine structure, we first rescale the angle in the by now familiar

manner (cf. (2.46)),

✓ =
rp

n(1 + a2)
, (2.130)

so that, when we now take n ! 1, (2.125) becomes

 
d2

dr2
+

✓
1

r
� r

1 + a2

◆
d

dr
+

`

1 + a2
�

m2

�

r2

!
S(r) = 0 . (2.131)

This is a second-order equation, exactly the kind of confluent hypergeometric equation

that we encounter when we study perturbations of the gaussian MP black holes in sec. 2.6.

Requiring regularity at both r = 0 and r ! 1, its solutions are given in terms of associated

Laguerre polynomials,

S(r) = r|m�|L
|m�|

k

✓
r2

2(1 + a2)

◆
, (2.132)

where the non-negative integer index k specifies the quantization condition on ` through

the relation (2.83).

Now the eigenfunctions (2.132) have the expected k nodes away from r = 0. Moreover,

since the L
|m�|

k
are polynomials of k-th order, then at large values of r we have

S(r) ⇠ r` , (2.133)

which correctly matches the behavior of (2.129) at small ✓.

We conclude that our approach to localized black holes based on the e↵ective black

brane equations is able to accurately capture the detailed structure of linear perturbations

of a black hole, and in particular its quasinormal modes —not only the frequency spectrum,

but also their waveforms. It can be smoothly continued into the approach of [26] at larger

angles ✓ = O (1), by asymptotic matching over a common region where 1 ⌧ r ⌧
p
n, i.e.,

1/
p
n ⌧ ✓ ⌧ 1.

2.7 Corotating perturbations of black bars

Black bars approach black strings as ⌦! 0, so it is natural to expect that at su�ciently

small ⌦ they develop instabilities similar to the Gregory-Laflamme instability of black
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strings. This argument, however, does not determine at what values of ⌦ the instabilities

set in. This requires a perturbative analysis of finite black bars with non-zero ⌦.

The generic linearized perturbations of black bars with 0 < ⌦ < 1/2 are rather more

complicated than those of either the black strings or the MP black holes. Nevertheless,

using (2.18) we have been able to explicitly obtain corotating, zero mode perturbations.

These appear at discrete values of ⌦, and approach the GL zero modes of a black string as

⌦! 0. As with the MP black holes, we expect that these zero modes mark the addition

of new unstable modes, as well as indicate new branches of stationary, ‘bumpy black bar’

solutions.

Using the Cartesian coordinates of (3.15), the equation for corotating linear perturba-

tions �R is

r2�R�
 

x

`2
?

@x +
y

`2
k

@y

!
�R+ �R = 0 . (2.134)

We look for factorized solutions

�R = fx(x)fy(y) . (2.135)

These must satisfy
✓
@2x �

x

`2
?

@x + 1

◆
fx = ny

`
2
k
fx , (2.136)

 
@2y �

y

`2
k

@y

!
fy = �ny

`
2
k
fy , (2.137)

where, for later convenience, we have written the separation constant as ny

`
2
k
.

These equations are again of confluent hypergeometric type. If we demand regular,

algebraically-bounded behavior at the irregular point at infinity, the solutions are Hermite

polynomials

fx(x) = Hnx

✓
xp
2`?

◆
, fy(y) = Hny

 
yp
2`k

!
, (2.138)

where nx is another constant given in terms of ny and ⌦ by

nx = `2
?
�
`2
?

`2
k

ny . (2.139)

The solutions are finite polynomials only if nx and ny take non-negative integer values.

Therefore, co-rotating zero modes exist for a discrete set of values of ⌦ determined by

solving (2.139). This gives

⌦ =

p
1� nx

p
ny � 1

|ny � nx|
(2.140)

(recall we only consider ⌦ � 0).

When ⌦ = 0, which is a static, infinite black string and is obtained for either nx = 1

or ny = 1, we do not obtain anything new. The perturbation with nx = 1 is simply a

translation of the black string in the orthogonal direction x, while ny = 1 are sinusoidal

deformations along y corresponding to the GL zero modes of a black string.
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Figure 2.5: Mass density profile m(x, y) = exp(R+ ✏ �R) for black bars perturbed by zero modes.

From left to right: perturbations with ny = 4, 5, 200.

There is only one mode that is not constant along the orthogonal direction x, i.e.,

with nx 6= 0, namely, nx = 2 and ny = 0. However, this is the bar-mode along x of the

⌦ = 1/2 MP black hole (i.e., (2.90)), so again we do not get any new physical solution.

The remaining modes all have nx = 0 and thus are uniform along x. They have

⌦ =

p
ny � 1

ny

, `2
k
= ny , `2

?
=

ny

ny � 1
, (2.141)

and

�R = Hny

 
yp
2ny

!
. (2.142)

For ny = 2 this is again a bar-mode of the ⌦ = 1/2 MP black hole, so we disregard it.

However, for

ny = 3, 4, 5, . . . , ⌦ =

p
2

3
,

p
3

4
,
2

5
. . . (2.143)

we find genuinely new zero modes, which extend all the way down to ⌦ = 0 as ny ! 1.

Remarkably, these are the same values (2.88) of ⌦ for which the MP black holes admit zero

modes (the one at ⌦ = 1/2 gives the black bar itself), even if the spins of the corresponding

solutions are di↵erent (see fig. 2.4).

These perturbations create bumps along the length of the black bars, as shown in

figure 2.5. The first non-trivial mode, with

ny = 3 , ⌦ =

p
2

3
⇡ 0.47 , (2.144)

has the profile

�R = �
✓
2

3

◆
3/2

y
�
9� y2

�
, (2.145)

which is odd in y. We are not representing it in fig. 2.5 since its skewed gaussian shape is

not very illustrative. The next mode, with

ny = 4 , ⌦ =

p
3

4
⇡ 0.43 , (2.146)

has the profile

�R = 12� 6y2 +
y4

4
, (2.147)
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and is shown in fig. 2.5 (left).

When continued into the non-linear regime, both the even and the odd modes give rise

to branches of bumpy black bars. However, the even modes can be added or subtracted

from the initial black bar, creating a dip or a rise at its center. These two possibilities

will lead to two di↵erent branches of bumpy black bars, analogous to what happens for

bumpy black holes [61, 62]. In contrast, the odd modes will give only one branch of skewed

bumpy black bars. See also the complete non-linear analysis in chapter 4.

Modes with high ny, i.e., ⌦ ⌧ 1, give a perturbation of the mass density that is

asymptotically of the form

�m(x, y) = eRbar(x,y)Hny

 
yp
2ny

!
! e

1�
x
2

2 �
y
2

4ny cos
⇣
y � ny⇡

2

⌘
. (2.148)

Therefore, very long black bars have zero modes that, away from the edges of the bar,

where |y| ⌧ `k =
p
ny, approach the sinusoidal oscillations of the GL modes of a black

string, as we anticipated. We see that the modes with even ny converge to cos y, whereas

the modes with odd ny converge to sin y. In this limit, odd and even modes are equivalent

as they are simply shifted in y by ⇡/2. However, for non-zero values of ⌦ the even and

odd modes are physically distinct from each other.

The linear stability of black bars requires the investigation of non-corotating pertur-

bations, which we have not done, but we can expect that unstable modes are added after

each new zero mode appears. Given the similarities to the GL phenomenon, we find it

natural to conjecture that black bars in the limit D ! 1 are linearly stable when they

are short enough, more precisely when

p
2

3
< ⌦ <

1

2
, (2.149)

and then only in this rather narrow range. Then, as ⌦ decreases below each of the critical

rotation values (2.143), the black bar will successively acquire new unstable modes. See

also chapter 6 for additional discussion on this.



Chapter 3

Charged rotating black holes

3.1 Overview

Rotation and charge often have similar e↵ects on a black hole, both of them opposing the

gravitational field attraction. The Kerr-Newman solution indeed shows that, for a given

mass, the black hole reduces its size as either charge or rotation are added [66].

In higher dimension D � 5 one expects that these behaviors not only persist but

become more varied, since the gravitational e↵ects of rotation and charge have di↵erent

fall-o↵ with distance. It is natural to anticipate a rich spectrum of black hole physics as

charge and rotation are increased, extending what is already known when only rotation

is present [10]. However, the investigation of this problem has been hampered by the

striking fact that, long after Tangherlini extended the Reissner-Nordström solution to any

D � 5 [67], and Myers and Perry did likewise for the Kerr solution [57], the only charged

and rotating black hole solution of the Einstein-Maxwell equations known exactly in any

D � 4 remains the Kerr-Newman solution1.

Although approximate solutions have been obtained through a variety of methods2,

large regions in parameter space remain poorly explored where unusual features of black

holes may be revealed. We find particularly appealing the discovery in [75] of near-

extremal charged black holes in all D � 6 which have arbitrarily small spin but are

nevertheless very far from the extremal Reissner-Nordström black hole. Their horizons

are not approximately round but are instead highly pancaked along the rotation plane,

even though their angular momentum and angular velocity are small. In the extremal

limit they approach a static, singular disk of charged dust. Little else is known about

these black holes. The methods of [75] only yield access to certain limits of parameter

space and do not allow, e.g., to connect between the Reissner-Nordström solution and

these pancaked near-extremal black holes. Interestingly, although the latter are arbitrarily

close to extremality, they were conjectured in [75] to be dynamically unstable due to an

1Here we only consider asymptotically flat black hole solutions of the pure Einstein-Maxwell theory,

without any Chern-Simons terms nor additional scalar fields.
2These include: perturbatively small charge [68, 69, 70, 71] or slow rotation [72, 73, 74, 44]; charged

rotating black holes with two widely separate horizon length scales [75, 76, 77]; charged black holes in large

odd D [78] or at large D with either small charge or rotation [55, 79].
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undamped quasinormal mode. Unfortunately, the quasinormal spectra of black holes with

both charge and rotation are almost unknown3.

In this chapter we show that many of these limitations can be overcome through the

use of the large-D e↵ective theory of black holes [47, 56, 22, 24, 31, 25, 29], and more

specifically its recent e�cient implementation in [12]. As we will see, these methods allow

to analytically investigate black hole phases with arbitrary values of the charge and of the

angular momentum (in a single plane), as well as to obtain their quasinormal spectrum at

low frequencies, ! = O
�
D0

�
. Rotations in any finite number of planes are straightforward

to add, but we will not pursue this here.

We expect that our results are not only qualitatively but also quantitatively good in

any D � 6. This is a reasonable prospect given the remarkable accuracy that the large-D

methods have obtained for the features, including instability onsets and unstable growth

rates, of neutral rotating black holes in this range of dimensions [12, 26]. In contrast,

rotating black holes in D = 5 typically exhibit qualitative di↵erences compared to D = 4

and D � 6; it would not be surprising if the non-perturbative corrections to the 1/D

expansion became large in D = 5.

The approach started in [12] for the investigation of black holes succeeds by focusing

on the region of the horizon where, when D is large, most of the physics of the black hole

concentrates: a small cap of polar-angular extent �✓ = O
⇣
1/

p
D
⌘
around the rotation

axis. Here the horizon is well approximated by a gaussian bulge on a black membrane.

That is, we study lumps on a black brane that share the main properties of a localized

black hole. The study of this bulge accurately reproduces properties of the black hole such

as its shape, area, mass, and angular momentum. Moreover, its linear perturbations can be

solved to obtain the waveforms and frequencies of the least-damped quasinormal modes. In

addition, this approach has revealed the existence of ‘black bar’ configurations: elongated,

bar-shaped rotating black holes whose emission of gravitational radiation vanishes to all

perturbative orders in 1/D and therefore evolve very slowly at finite but large D.

We will see that the methods of [12] readily extend to black holes with charge in

addition to rotation —surprisingly easily, given the di�culties in doing so at any finite

D. Although technically the extension is straightforward, the resulting parameter space

becomes richer with the inclusion of charge. In particular, we will be able to interpo-

late between the static, spherical Reissner-Nordström black hole, and the near-extremally

charged, small-spin pancaked black holes of [75]. Along the way, we will identify the

quasinormal modes that trigger the instability of the latter. We will also construct a new

family of charged black bars, which remain stationary since their radiation into photons

and gravitons is exponentially suppressed in the 1/D expansion.

Figure 3.1 summarizes our main findings concerning the space of solutions of charged

rotating black holes. We refer to the axisymmetric charged rotating solutions as “the large-

D limit of the higher-dimensional Kerr-Newman black hole”. This is justified since these

solutions correctly reproduce the limit D ! 1 of the Reissner-Nordström-Tangherlini

3All the studies that we know of use the large D expansion: [44, 79] for small charge or rotation, and

[78] for black holes with all rotations turned on in odd D.
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𝑄/𝑀

𝐽/𝑀

“plump” KN bh
stable

“pancaked” KN bh
unstable

Black bars
stable unstable

Figure 3.1: Phases of the charged rotating black holes constructed to leading order in the 1/D

expansion. We label them by their angular momentum J and charge Q for fixed mass M . The

charge is bounded above, Q  M/
p
2, but the upper, extremal limit lies outside the strict range of

validity of our construction. Kerr-Newman-like (KN) black holes exist for all J/M . The black line

J/M = 2
�
1� 2(Q/M)2

�1/4
separates the region (blue) where they are stable and round-shaped

(“plump”), from the region (red, light and dark) where they are unstable and pancake-shaped

(eq. (3.29)). Charged black bars exist in the red regions (sec. 3.3.1), but are stable (and only to lead-

ing order in 1/D) only in the light-red area with outer boundary J/M = (3/
p
2)
�
1� 2(Q/M)2

�1/4

(eq. (3.31)). In the upper-left corner there exist near-extremal black holes with arbitrarily small

spin (sec. 3.2.3): below the black line they are close to the Reissner-Nordström solution, approxi-

mately spherical and stable; above the black line they are unstable and highly pancaked.

black hole when J = 0, and of the Myers-Perry black hole when Q = 0.

This chapter is structured as follows sec. 3.2 we construct and study the solutions

that correspond to the limit D ! 1 of the Kerr-Newman black hole. Sec. 3.3 describes

charged black bars. Sec. 3.4 computes the quasinormal modes and stability properties of

the solutions of the previous sections.

3.2 Charged rotating black holes: Kerr-Newman at D ! 1

The solutions of (1.48) for stationary axially symmetric charged lumps on a 2-brane that we

construct in this section correspond to the large-D limit of the elusive higher-dimensional

generalization of the Kerr-Newman black hole.
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3.2.1 Solution

We employ polar coordinates (r,�) on the 2-brane. Ref. [12] found the neutral solution

that describes the Myers-Perry rotating black hole, with area-radius profile

R(r) =
2

1 + a2

✓
1� r2

4

◆
, (3.1)

and angular velocity

v� = ⌦ =
a

1 + a2
. (3.2)

When we fix the overall scale, e.g., by fixing the mass, this is a one-parameter family of

solutions with the rotation parameter a varying in [0,1). We restrict to non-negative

angular velocities without loss of generality. Observe that ⌦ varies between 0 and 1/2,

the latter maximum being reached when a = 1.

Applying the procedure described at the end of the previous section we obtain a charged

rotating solution, with

R(r) =
2

1 + a2q

✓
1� r2

4

◆
. (3.3)

The constant aq is not the rotation parameter anymore, but can be regarded as character-

izing the spread of the gaussian for m(r) = exp (R(r)). Now we have a family of solutions

with two parameters, aq and q, whose range is

0  aq < 1 , 0  q <
1p
2
. (3.4)

The angular velocity is determined by (1.47) as

⌦ =
�
1� 2q2

�1/4 aq
1 + a2q

, (3.5)

and the angular momentum, charge and horizon entropy for a given mass are

J = 2aq
�
1� 2q2

�1/4
M , (3.6)

Q = qM , (3.7)

S = 2⇡
⇣
1 +

p
1� 2q2

⌘
M . (3.8)

In addition, the temperature and electric potential are4

T =

p
1� 2q2

2⇡
⇣
1 +

p
1� 2q2

⌘ , (3.9)

and

� =
2q

1 +
p
1� 2q2

. (3.10)

4The dimensionally correct area is actually not proportional to M but to M1+1/(n+2), and ⌦ and T are

proportional to M�1/(n+2), but we neglect these di↵erences in the limit n ! 1. Moreover, at large D the

actual physical values of J/M and AH/M are 1/D times those in (3.6) and (3.8), and T is D times (3.9);

here they have all been rescaled to render them finite [31]. Finally, we use units where 16⇡G = 1.
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These satisfy

M = TS + �Q . (3.11)

Observe that the rotation term ⌦J does not appear in this relation: at large D it only

enters at next to leading order [56] since the velocities and momenta along the e↵ective

membrane are O
⇣
1/

p
D
⌘
. Since (3.7)–(3.10) are fixed by the properties of the charged

membrane and therefore are common to all stationary solutions of the e↵ective equations,

in order to distinguish di↵erent phases we need to consider their rotational properties.

It can be shown that the solution with aq = 0, ⌦ = 0 corresponds to the large-D limit

of the static Reissner-Nordström black hole. See appendix of [13] for this.

3.2.2 Uniqueness

An immediate consequence of our construction is the uniqueness of the solutions: given J

and Q for fixed mass M , the parameters aq and q are uniquely determined and therefore

so is the solution too.

This result is perhaps not unexpected, but given the previous lack of knowledge about

these black holes when neither J nor Q are infinitesimally small, it was not obviously

foreordained. The uniqueness only holds, though, within the Kerr-Newman class: it will

be violated by the charged black bars of the next section (but only at D ! 1) and by

other classes of charged black holes, such as charged black rings and bumpy black holes

(in all D � 6).

3.2.3 E↵ects of charge and rotation

Let us now use (3.7) to rewrite (3.6) as

aq =
J

2M

1
✓
1� 2

⇣
Q

M

⌘
2
◆

1/4
. (3.12)

This equation serves to illustrate the e↵ect that angular momentum and charge have on

the shape of a black hole of a given mass. Increasing the spin J results in a proportionately

larger spread of the black hole aq, as is already familiar for rotating black holes in any

D � 6 [58]. If we then add charge, we see that the rotational spreading is enhanced.

This e↵ect, which, again, we expect to happen in every D � 6, is naturally attributed to

electrostatic repulsion: intuitively, the horizon becomes less gravitationally tight.

We can also see in (3.8) how the charge reduces the horizon area for a given black hole

mass, which is a generic phenomenon in all D � 4. Observe, however, that the presence

of rotation does not change the horizon area. As discussed above, this is a leading large-

D e↵ect, which can be explicitly observed for Myers-Perry black holes. Relatedly, note

that the extremal limit (which, as we said, strictly lies outside the scope of our analysis)

depends only on Q/M but not on J/M . This is in contrast to the properties of the

four-dimensional Kerr-Newman solution, but on the other hand is in consonance with the

absence of an extremal rotating limit for singly-spinning black holes in D � 6.
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Consider now solutions with fixed charge-to-mass ratio q. Eq. (3.5) implies that the

maximum rotation velocity in this case is

⌦max =
1

2

�
1� 2q2

�1/4
. (3.13)

For any other value of the rotation, ⌦ in (3.5) is a two-valued function of aq, so there

are two possible black holes with the same charge and angular velocity: a ‘plump’ one

with aq < 1 and a corresponding ‘pancaked’ one with aq > 1. In particular, close to the

extremal charge limit, for any given small angular velocity we can find two distinct black

hole solutions: an almost round one with aq ⌧ 1, which is very close to the extremal

Reissner-Nordström black hole, and a highly pancaked one with aq � 1. Note, however,

that these two black holes have very di↵erent spins, since the angular momentum J for

fixed charge grows monotonically as the gaussian profile broadens with increasing aq.

Eq. (3.12) shows that it is possible to have highly pancaked black holes (with large aq)

whose angular momentum is small if the charge is su�ciently close (but still not equal)

to the maximum value, namely 1/
p
2 � q ⌧ 2

p
2/a4q . The existence of these black holes

with near-extremal charge and small spin whose horizons are pancaked along the rotation

plane was first identified in [75] in any dimension D � 6. Their extremal limit corresponds

to singular solutions of disks of extremal charged dust. In contrast to the method used

in [75], which only works in the highly-pancaked limit (charged or not), our construction

allows to cover the entire phase space of charges (above extremality) and rotations, and

thus interpolate continuouly between plump and pancaked solutions.

3.3 Charged rotating black bars

We can similarly apply the procedure described in sec. 1.4.1 to the neutral black bar

solution of [12], and thereby generate charged rotating black bars, with area-radius profile

R(t, r,�) = 1� r2

4

 
1 +

s
1� 4⌦2

p
1� 2q2

cos (2(�� ⌦t))
!

. (3.14)

If we employ corotating coordinates

xt = r cos(�� ⌦t) , yt = r sin(�� ⌦t) , (3.15)

then the solution (3.14) reads

R(xt, yt) = 1� x2t
2`2

?

� y2t
2`2

k

, (3.16)

where the lengths parallel to the bar and transverse to it are

`2
k
=

2

1�
r
1� 4⌦2p

1�2q2

,

`2
?

=
2

1 +
r
1� 4⌦2p

1�2q2

. (3.17)
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The e↵ect of adding charge to a bar of a given mass and angular velocity is to reduce its

length `k and increase its thickness `?.

3.3.1 Physical properties and non-uniqueness

For these solutions the angular momentum is

J =

p
1� 2q2

⌦
M , (3.18)

while the charge, entropy, temperature and potential are given by the same expressions as

(3.7)–(3.10).

The angular velocity ⌦ varies between 0 and a maximum ⌦max which is the same as in

(3.13). Therefore the angular momentum of the black bars is bounded below, satisfying

J

M
� 2

 
1� 2

✓
Q

M

◆
2
!

1/4

. (3.19)

This is the region marked in red in fig. 3.1.

Unlike the solutions of the previous section, there is only one black bar for given ⌦ and

Q/M . The limit ⌦ ! 0 yields an infinite, static charged black string. As in the neutral

case, long charged bars behave like rigidly rotating solids with J ⇠ M`2
k
⌦.

When ⌦ = ⌦max the solution becomes axisymmetric, with `k = `?; actually, we

recover the same maximally-rotating charged black hole of sec. 3.2 with aq = 1. Thus this

solution sits at a bifurcation point in solution space—actually it is a line of bifurcation

points, parametrized by q. We will see later that this family is indeed marked by the

appearance of a zero mode at the threshold of a bar-mode instability of the axisymmetric

charged black holes.

For M , Q and J that satisfy (3.19) we can always find a Kerr-Newman black hole and

a black bar with the same values of these conserved charges. In this range, therefore, black

hole uniqueness does not hold. These solutions also have the same entropy (to leading

order at large D), but even if they are thermodynamically equally preferred, they can

di↵er in their dynamical stability. Indeed, we will see that near the saturation of the

bound (3.19) the Kerr-Newman black hole is linearly unstable while the black bar is (most

likely) stable.

3.3.2 Radiation from charged black bars

In any finite number of dimensions, a charged rotating black bar will radiate both elec-

tromagnetic and gravitational waves. It is easy to estimate that the radiating power into

each channel is

P em ⇠ GQ2`2
k
⌦D , (3.20)

P gr ⇠ GM2`4
k
⌦D+2 , (3.21)

where, note, we are measuring the charge in geometric units, hence the factor G in P em.
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Since we always have ⌦  1/2, this radiation at large D is exponentially small, ⇠ e�D,

and thus invisible in the perturbative 1/D expansion. This is why in our approach we can

find black bars as stationary solutions: their decay time is exponentially long in D.

For a long black bar, with

`2
k
⇠
p

1� 2q2

⌦2
(3.22)

the ratio of radiation into each channel is

P em

P gr
⇠
✓
Q

M

◆
2 1p

1� 2(Q/M)2
. (3.23)

There are two di↵erent factors here that, as charge is added to the bar, enhance the

power into electromagnetic radiation relative to gravitational radiation. The overall factor

(Q/M)2 accounts for the larger amount of charge that the bar carries. The second factor

in (3.23) is due to the electromagnetic-dipolar vs. gravitational-quadrupolar nature of the

emission of radiation: as we mentioned above, for a given mass and rotation velocity the

bar gets shorter and fatter as charge is added, which reduces the quadrupole moment by

a larger factor than the dipole moment.

3.4 Quasinormal modes

3.4.1 Co-rotating zero modes

We begin by studying co-rotating zero-mode perturbations, which keep the solution sta-

tionary. In this case we can directly adapt the results obtained in [12] for the neutral

case. Note that stationarity of the charged perturbations implies that there is no charge

di↵usion mode.

Kerr-Newman black hole

By a direct map from the neutral case, we obtain the co-rotating, zero-mode perturbations

in the form

R(r) =
2

1 + a2q

✓
1� r2

4

◆
+ ✏ �R(r)eim�(��⌦t) , (3.24)

where

�R(r) = r|m�|L
|m�|

k

✓
r2

2(1 + a2q)

◆
. (3.25)

These modes only exist if the width parameter aq takes the values

a2q,c = `� 1 , (3.26)

with

` = 2k + |m�| , k = 0, 1, 2, . . . , |m�| = 0, 1, 2, . . . (3.27)

which in turn implies via (3.5) a quantization condition for the angular velocities at which

zero modes appear

⌦ =

p
`� 1

`

�
1� 2q2

�1/4
, (3.28)
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(only ` � 2 is meaningful) and also for the angular momenta

J

M
= 2

p
`� 1

 
1� 2

✓
Q

M

◆
2
!

1/4

. (3.29)

Observe that the appearance of these modes—which, we will see, mark the thresholds of

instabilities—depends on the width of the profile, aq, and not on the charge and rotation

separately. In particular this implies that the addition of charge reduces the range where

a solution of given rotation is stable. Equivalently, a mode of given k and |m�| will appear
at lower rotation the larger its charge is. Again, these are manifestations of the repulsive

e↵ect of charge.

The axisymmetric modes with m� = 0 are expected to lead to branches of ‘bumpy

charged black holes’. The fundamental non-axisymmetric modes, with k = 0 and ` =

|m�| � 2 are multipole-bar-mode deformations5; when ` = |m�| = 2 we recover the

linearization of the charged black bar (3.14) solution near the maximal angular velocity

(3.13). Indeed (3.29) for ` = 2 correctly reproduces the bound on the existence of black

bars.

Black Bars

The same analysis applies for charged black bars, which have zero modes for

⌦

(1� 2q2)1/4
=

p
2

3
,

p
3

4
,
2

5
. . . (3.30)

or equivalently, for

J

M
=

n+ 1p
n

 
1� 2

✓
Q

M

◆
2
!

1/4

, n = 2 , 3 , 4 . . . (3.31)

(the value n = 1 corresponds again to the bifurcation with KN black holes). As before,

adding charge makes the zero modes appear at slower rotation.

These zero modes, like those found in [12], create ripples along the bar which, in the

limit ⌦! 0 where `k ! 1, become Gregory-Laflamme modes of a black string. Although

we have not managed to solve for non-zero modes of black bars, we expect that they

are unstable for ⌦ <
p
2

3

�
1� 2q2

�
1/4

, i.e., for J/M > (3/
p
2)
�
1� 2(Q/M)2

�
1/4

. This is

indicated in fig. 3.1.

5The mode with k = 0 and |m�| = 1 is gauge.
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3.4.2 Quasinormal modes of the D ! 1 Kerr-Newman black hole

We now turn to the study of the quasinormal modes of the full time-dependent equations

(1.35)-(1.39). We consider linear perturbations of the form

m = m̄(r) + e�i!t+m�� �m(r) , (3.32)

pr = p̄r(r) + e�i!t+m�� �pr(r) , (3.33)

p� = p̄�(r) + e�i!t+m�� �p�(r) , (3.34)

q = q̄(r) + e�i!t+m�� q �q(r) , (3.35)

where m̄, p̄r, p̄�, q̄ correspond to the charged, rotating black hole background in sec. 3.2,

concretely,

m̄(r) = m0 exp

✓
2

1 + a2q

✓
1� r2

4

◆◆
, (3.36)

and

p̄r(r) = @rm̄, p̄�(r) = ⌦m̄r2, q̄(r) = qm̄ , (3.37)

with ⌦ the angular velocity in (3.5) and m0 an arbitrary constant.

Charge di↵usion perturbations

It is easy to show that the e↵ects due to charge di↵usion decouple from the dynamics. In

order to see this, we introduce the variable

�Q(r) ⌘ 1

m̄(r)
(�q(r)� �m(r)). (3.38)

Combining the mass and charge continuity equations, we can easily derive the following

decoupled equation for �Q

�Q00 +

✓
1

r
� r

1 + a2q

◆
�Q0 +

 
i(! �m�⌦)�

m2

�

r2

!
�Q = 0, (3.39)

This the same confluent hypergeometric equation that was found in [12] as governing the

spheroidal harmonics at small polar angles. Its regular solutions can be written as

�Q = r|m�|L
|m�|

k�1

✓
r2

2(1 + a2q)

◆
(3.40)

where k � 1 is an integer related to ! as

! = |m�|⌦� i
2(k � 1) + |m�|

1 + a2q
. (3.41)

Solutions with k = 1, m� = 0 are pure gauge. As mentioned before, there are no co-

rotating charge di↵usion modes.

The remaining equations are a set of three, coupled, second order ODEs, in which

�Q and �Q0 appear as sources. Once a solution for �Q has been inserted, we can solve

for the remaining profiles. The easiest way to reconstruct the profiles is to write down



3.4. QUASINORMAL MODES 51

an appropriate ansatz which reduces the ODEs to algebraic equations for some constant

coe�cients. For the axisymmetric case m� = 0, we find

�a = e
�

r
2

2(1+a
2
q)

kX

i=0

�a(i)r2i , (3.42)

�pr = e
�

r
2

2(1+a
2
q) r

kX

i=0

�p(i)r r2i , (3.43)

�p� = e
�

r
2

2(1+a
2
q) r2

kX

i=0

�p(i)
�
r2i . (3.44)

For non-axisymmetric modes |m�| � 1, the profiles are given by

�a = e
�

r
2

2(1+a
2
q) r|m�|

kX

i=0

�a(i)r2i , (3.45)

�pr = e
�

r
2

2(1+a
2
q) r|m�|�1

k+1X

i=0

�p(i)r r2i , (3.46)

�p� = e
�

r
2

2(1+a
2
q) r|m�|

k+1X

i=0

�p(i)
�
r2i . (3.47)

Gravitational perturbations

Since charge di↵usion perturbations decouple henceforth we consistently set �q = �m in

order to study perturbations in the mass density and the velocity, which describe the truly

gravitational degrees of freedom. Their structure closely resembles the neutral fluctuations

discussed in [12]. In particular, they can also be fully decoupled by means of a sixth order

operator which factorizes in terms of confluent hypergeometric operators. More concretely,

we can derive a sixth order equation for �m of the form

L1L2L3�R(r) = 0 , (3.48)

where

�R(r) =
�m(r)

m̄(r)
, (3.49)

and the Li are three commuting di↵erential operators of the same confluent hypergeometric

type as in [12],

Li =
d2

dr2
+

✓
1

r
� r

1 + a2q

◆
d

dr
+

 
2ki +m�

1 + a2q
�

m2

�

r2

!
. (3.50)

The constants ki are solutions of the cubic equation

!3 +
i!2

2(1 + a2q)
P2 +

!

2(1 + a2q)
2
P1 +

i

2(1 + a2q)
3
P0 = 0 (3.51)
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where

P2 = (�2 + 1)(3`� 4) + 6iaq�m� (3.52)

P1 = 2a2q�
2
�
`+ 3m2

�
� 4

�
� 6iaq�(�

2 + 1)(`� 1)m� ,

� (`� 1)
�
(�2(�2 + 4) + 1)`� 2(�2 + 1)2

�
, (3.53)

P0 = a2q�
2(�2 + 1)

�
(2� 3`)m2

�
� (`� 2)`

�
� 2ia3q�

3m�

�
`+m2

�
� 2

�

�2(�2 + 1)(`� 2)(`� 1)`+ iaq�(`� 1)
�
�4(`� 2) + 4�2`+ `� 2

�
m� , (3.54)

with ` as in (3.27) and we abbreviate

� = (1� 2q2)1/4 . (3.55)

Note that this equation is a cubic in ! and also in ` (or k). Since the operators Li commute,

all solutions of this cubic are equivalent and can be analized separately. Moreover, solving

the radial equations we learn that k must be non-negative integers. Thus, (3.51) becomes

a quantization condition for the frequencies, in such a way that, for a given value of k and

m�, and the black hole parameters, (3.51) determines three possible frequencies associated

to them.6

Eq. (3.51) reproduces our previous result in [12] in the neutral case � = 1. Moreover,

in the static limit aq = 0 with nonzero charge we can solve to find

! = � i

2
(`� 2)(�2 + 1), (3.56)

! = � i

2
(`� 1)(�2 + 1)± 1

2

⇥
(`� 1)[(�2 + 1)2 � `(�2 � 1)2]

⇤1/2
. (3.57)

These frequencies match the results obtained in [78, 29] (provided we account for the

di↵erent definitions of ` for vectors and scalars), which used a di↵erent approach for the

perturbations of static charged black holes at D ! 1. These modes are all stable, but

they illustrate a continuing theme in our analysis: the addition of charge reduces the

stability of the solution, in this case by decreasing the damping rate of the perturbation.

The analysis of the solutions to the quantization condition (3.51) and the reconstruc-

tion of the full profiles proceeds in close parallel to [12]. In the remainder of this section

we record such expressions and highlight the presence of some unstable modes.

Axisymmetric modes: m� = 0

There are no regular solutions for ` = 0. For ` = 2, 4, 6, . . ., all solutions are regular and

have profiles given by

�pr = e
�

r
2

2(1+a
2
q) r

kX

i=0

�p(i)r r2i , (3.58)

�p� = e
�

r
2

2(1+a
2
q) r2

kX

i=0

�p(i)
�
r2i . (3.59)

6If we keep the degree of freedom �q in the analysis, we can derive an eighth-order equation factorized

into operators of the form (3.50), with a quartic equation for ! which factorizes into (3.51) and a linear

piece equal to (3.41).
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Non-axisymmetric modes: |m�| � 1

• For k = 0, ` = |m�| we find

!0 =
aq�(|m�|+ 4)� i(�2 + 1)(|m�|� 2)

2(1 + a2q)
, (3.60)

!± =
(|m�|� 1)[2aq� � i(�2 + 1)]

2(1 + a2q)
(3.61)

± i

2(1 + a2q)

n
(|m�|� 1)(�2 � 1)2|m�|+

�
2aq� � i(�2 + 1)

�2o1/2

. (3.62)

Modes with frequency !0 are regular for |m�| > 2, so they are stable. Modes with

! = !± are regular if |m�| � 1. All these solutions have profiles of the form

�pr = e
�

r
2

2(1+a
2
q) r|m�|+1�p(1)r , (3.63)

�p� = e
�

r
2

2(1+a
2
q) r|m�|+2�p(1)

�
. (3.64)

• For k � 1, all solutions are regular and have profiles given by

�pr = e
�

r
2

2(1+a
2
q) r|m�|�1

k+1X

i=0

�p(i)r r2i , (3.65)

�p� = e
�

r
2

2(1+a
2
q) r|m�|

k+1X

i=0

�p(i)
�
r2i . (3.66)

Near-critical unstable modes

The zero modes that signal the onset of the instability, already found in (3.26), occur

at

aq = aq,c ⌘
p
`� 1, ! = !c = |m�|⌦ . (3.67)

In order to examine the solutions near this point, we perform a perturbative analysis

letting

aq = aq,c + �aq, ! = !c + �! . (3.68)

We find

Re �! = �aq
4�3|m�|

�
�4(�2 � 1)2 � (�2 + 1)2`2 + 4(�2 � 1)2`

�

`
⇣
(`� 1) ((�2 + 1)2`� 2(�2 � 1)2)2 + 4�2(�2 + 1)2|m�|2

⌘ , (3.69)

Im �! = �aq
2�2(�2 + 1)

p
`� 1

�
(`� 2)`

�
(�2 + 1)2`� 2(�2 � 1)2

�
+ 8�2|m�|2

 

`
⇣
(`� 1) ((�2 + 1)2`� 2(�2 � 1)2)2 + 4�2(�2 + 1)2|m�|2

⌘ .

(3.70)

The imaginary part of the perturbed frequency is manifestly positive for �aq > 0,

which shows that there are unstable modes for aq > aq,c. For |m�| = 0, the real

part of the frequency vanishes, so these modes are static. On the other hand, for
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|m�| > 0 these modes have a non-zero real part so they correspond to bar modes.

Moreover, we see that for |m�| > 0 , Re �! < 0: the unstable modes rotate in the

same sense but more slowly than the black hole.

As the charge increases and � decreases from 1 to zero, the value of Im �!/|�aq|
decreases monotonically towards zero. This implies that in the stable side, where

�aq < 0, the damping rate decreases with increasing charge: this is the same e↵ect

as mentioned after (3.57). On the other hand, it also implies that the instability

for �aq > 0 develops more slowly when charge is present; the same behavior was

observed for charged black branes in [31].

In fig. 3.1 we have only indicated the onset of the instability that appears at slowest

rotation, namely the mode k = 0, ` = |m�| = 2. This perturbation is unstable for all

Kerr-Newman black holes with aq > 1. As J increases past the thresholds (3.29) and

(3.31), further unstable modes appear in the red region of the diagram.



Chapter 4

Black ripples and black flowers

4.1 Overview

Black hole solutions in higher dimensional gravity show a far richer behavior than their

counterparts in four spacetime dimensions. In higher dimensions, the rotation plays a

significant role to fertilize a variety of new solutions. Since in D > 5, the (Newtonian)

gravitational potential ⇠ GM

rD�3 falls o↵ more rapidly than the centrifugal barrier ⇠ J
2

M2r2
,

the horizon can be deformed to an extended shape at large angular momentum, and hence

becomes vulnerable to a Gregory-Laflamme type instability [32, 46]. This allows a family of

non-uniform stationary solutions to branch o↵ from the zero modes of the instabilities [10].

Di↵erent to the blackfold approach, the large D limit is naturally endowed with a

separation of scales between gradients along and orthogonal to the horizon: the gradient

orthogonal to the horizon becomes large compared to gradients along the horizon in the

limit of large D as a result of the steepening of the gravitational potential. This enables

us to formulate an e↵ective theory without the requirement that the gradients along the

horizon have to be infinitesimal, which makes the large D expansion a powerful tool to

study the non-uniform ’bumpy’ phases of black holes.

In this chapter, we explore the phase space of compact stationary solutions with a

single spin in the large D limit, specifically, we focus on the (non-)axisymmetric deformed

families branching o↵ from the Myers-Perry family. The instability of ultra-spinning MP

black holes and the existence of nearby ‘rippled’ solution was first conjectured in [58] and

later, after the proof of existence of the zero modes and the instability [60, 80, 81, 82, 83],

the rippled solutions were constructed numerically and identified as solutions that connect

to black rings and black Saturns [84, 62, 61, 85].

Because of the strong suppression of gravitational radiation at large D [15], the e↵ec-

tive large D description also admits stationary non-axisymmetric branches such as black

bars [12] and other multipolar solutions. Here we apply the blob approximation devel-

oped in [12, 13], where localized black hole solutions such as the Myers-Perry black hole

are identified as stationary lumps (“blobs”) on a membrane which share the same horizon

topology as the black brane solution but nevertheless encode most of the physics pertaining

to the localized solution.
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Figure 4.1 shows the full phase space plot of solutions we obtain. The solutions corre-

spond to Myers-Perry solutions and their axissymmetric ‘bumpy’ deformations leading to

black rings and black Saturns. We are also including stationary solutions without axisym-

metry, which only can remain stationary at largeD since gravitational radiation decouples.

These solutions have been shown to play an important role in dynamical evolutions of the

ultra-spinning instability [14, 15, 86, 54, 87]. The first solution of this kind, a dipolar solu-

tion “black bar” was found analytically in [12]. Here we study its stationary deformations

and also find its multipolar generalizations “black flowers”. To illustrate features of the

found solutions, we show plots of the mass density of four examples in figure 4.2.1

XX
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XX

XX

XX
XX

0 2 4 6 8 10 12 14
J /M0.0

0.1

0.2
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0.4

0.5
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Ω

Myers-Perry

X Axisymmetric

Bar

Dumbbels

Multipoles

Figure 4.1: Phase space plot of the first appearing branches of solutions with a single angular

momentum (per unit mass) J /M and angular velocity ⌦. In the ultra-spinning regime J /M > 2

the MP-BH develops instabilities and the corresponding zero modes appear at places marked with

dots or crosses. For the analytically known black bar, we also study its non-uniform deformations

(’dumbbells’), whose branches are shown in di↵erent shadings of a color to make them more

distinguishable.

We observe that most of bumpy deformations remain tangential to their ’parent’-

branch until the deformation becomes comparable to the original solution and new blobs

start to form. At some point, these blobs barely have any overlap and the branches enter

a new asymptotic behavior for small ⌦ becoming completely separated. Some very short

branches stick out non-tangentially above the parent-branch.

The chapter is structured as follows: In section 4.2, we construct perturbatively (in-

cluding non-leading order results) and numerically stationary ‘bumpy’ deformations of

the MP black hole that lead to (multiple) black rings and Saturns. In section 4.3 and

4.4, we construct stationary non-axisymmetric solutions from multipolar deformations of

MP black holes and those of black bars. Section 4.5 discusses e↵ects of adding charge to

1The flower branches are hard to to construct far away from their branching points, so figure 4.1 shows

them only partially.
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Figure 4.2: Four examples of bumpy solutions: Upper Left: Ring-like ripple. Upper Right: Saturn-

like ripple Lower Left: Black flower with a quadrupolar deformation. Lower Right: Dumbbell.

Plots show the mass density m. Coloring was chosen to highlight the important details of the

solution, strictly speaking all solutions share the same horizon topology.

obtain charged (but non-extremal) solutions. Section 4.6 provides details of the numerical

methods we employed, while finally 4.7 summarizes all the results giving some more detail

than this overview.

4.2 Axisymmetric sector: Black Ripples

First, we consider the axisymmetric deformation of the Myers-Perry, which leads to an

infinite number of ’bumpy’ solutions, which we are going to refer to as black ripples.

4.2.1 Zero mode deformations

The MP-solution (3.1) allows axisymmetric co-rotating zero mode deformations according

to2

R(r) = RMP(r) + �R(r). (4.1)

Plugging this into eq. (2.18), we obtain

�R00(r) +
1

r

1 + a2 � r2

1 + a2
�R0(r) + �R(r) = �1

2
�R0(r)2. (4.2)

2For brevity of presentation we restrict to the case of zero charge for now and drop the subscript q. We

will discuss the e↵ects of non-zero charge in section 4.5.
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Introducing a new radial variable z via

z :=
r2

2(1 + a2)
, (4.3)

the deformation equation becomes a Laguerre equation with a quadratic source term

L(a2+1)/2 [�R] := z�R00(z) + (1� z)�R0(z) +
a2 + 1

2
�R(z) = �z

2
�R0(z)2 , (4.4)

where we introduced the Laguerre operator L. We note that, in terms of the new variable,

the MP-solution is now written as

RMP(z) =
2

a2 + 1
� z. (4.5)

Perturbations of this solution should be normalizable in the sense of eq. (4.33), which

means for the perturbed profile m = exp(RMP + �R)

Z
1

0

dr rm(r) ⇠
Z

1

0

dze�z exp (�R(z)) < 1, , (4.6)

which is accomplished if the perturbation grows as a polynomial at each order, not showing

exponential growth ⇠ ez or any divergences.

At leading order, the regular and normalizable perturbations are given by Laguerre

polynomials,

�R(z) = "LN (z) +O
�
"2
�
, (4.7)

only if a2 + 1 = 2N , for integer N . Which was first derived in [12], where a di↵erent

notation is used, i.e.,N is called k instead. Please note, that this notation was also

adapted in the other chapters of this thesis.

Non-trivial solutions have N � 2. N has the interpretation of a ’radial overtone’ num-

ber, i.e., it counts the number of oscillations along r. Since these zero modes correspond

to ’bumpy black holes’ [58, 62, 61], N can also be interpreted as the number of bumps in

the cross-section of the corresponding solution.

4.2.2 Nonlinear perturbations

In the following, we study how to include higher order perturbations for these zero-modes

obtaining better control over the phase space of stationary solutions and also to support

the later numerical analysis.

The general perturbative soution to eq. (4.4) is written as

�R(z) =
1X

k=0

"k+1fk(z). (4.8)

and for a leading order solution with a2 + 1 = 2N , (N = 2, 3, 4, . . . ), the deformation

equation (4.4) becomes

LN [fk(z)] = Sk(z) (4.9)
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at each perturbation order k. As usual, the source term Sk(z) is expressed by the solution

up to (k � 1)-th order.

A similar higher order perturbation analysis has been performed in [53, 11] for per-

turbations (non-uniformities) of black strings. It was found there, that the length of the

black string has to be renormalized to avoid secular terms that would break the periodic

boundary condition. Here, for spinning localized solutions, it turns out that we have to

renormalize the angular velocity ⌦ or the corresponding spin parameter a which changes

the blob size, to avoid secular behavior that would break the normalization condition (4.6).

Resonance and secular perturbation

Secular behavior in perturbation theory is typically encountered when the dependence of

some physical parameter on the perturbation parameter " is ignored. A common example

for this is the slightly anharmonic oscillator

ẍ(t) + !0
2x(t) = �"x(t)3, (4.10)

Note that if we assume x ⌧ 1 the lowest order e↵ect of the anharmonic term "x3 is to

modify the frequency: !0 ! !0 + "!1. The appropriate ansatz accordingly should be

x(t) = sin((!0 + "!1)t), but naive perturbation theory x(t) = x0(t) + "x1(t) leads to the

solution

x0(t) = sin(!0t) , (4.11)

x1(t) = t · sin(!0t) + . . . , (4.12)

where the first correction grows unboundedly invalidating the perturbative ansatz and

violating conservation of energy. Note here that the secular term (4.12) results from

a resonance phenomenon between the zeroth order solution (4.11) acting as a resonant

source for the first order correction.

For our perturbative problem (4.9), a similar resonant behavior occurs. Assuming

Sk(z) can be decomposed into a linear combination of Laguerre polynomials LM (z), we

have to distinguish two cases in

LNf(z) = LM (z). (4.13)

For M 6= N , the solution remains regular and normalizable,

f(z) =
LM (z)

N �M
. (4.14)

However, for M = N , which we are going to call the resonant case, the solution is

f(z) = �LN (z) log z �
N�1X

I=0

2

N � I
LI(z) +B (N, 0, z) (4.15)

with B an integration constant and  (N, 0, z) a Laguerre function of the second kind.

Since (N, 0, z) has both a logarithmic divergence at z = 0 and exponential growth for z !
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1, the solution can never be regular and normalizable at the same time. This corresponds

to secular behavior because the resonant term can be eliminated by a infinitesimal shift

of a in eq. (4.4) since,

@↵L↵(z)|↵=N
=  (N, 0, z) + LN (z) log z + (polynomial of z). (4.16)

Recurrence formula

The perturbative solution can be obtained systematically by removing resonant terms in

the sources order by order, which leads to an algebraic recurrence relation. For this, we

assume both �R(z) and a are expanded in ",

�R(z) =
1X

k=0

"kfk(z), a2 + 1 = 2N

 
1 +

1X

k=1

"kµk

!
, (4.17)

where we set

f0(z) = LN (z). (4.18)

Plugging this into eq. (4.4) and expanding in ", we obtain the perturbation equation for

each order in ",

LNfk(z) = �1

2

k�1X

`=0

zf 0

`
(z)f 0

k�1�`
(z)�N

kX

`=1

µ`fk�`(z) =: Sk(z). (4.19)

Assuming that f`(z) are polynomials for ` < k, the source term also becomes a polynomial,

and hence should be decomposed to the linear combination of the Laguerre polynomials,

Sk(z) :=
MX

K=0

CKLK(z)�NµkLN (z), (4.20)

where M is a finite positive integer. After eliminating LN (z) from the source by using µk,

fk(z) can be expressed as a polynomial as well. And we can decompose the solution at

each order into a finite linear combination of Laguerre polynomials

fk(z) =
X

I

Ck,ILI(z) . (4.21)

The coe�cients of the resonant term Ck,N correspond to the reparametrizations of ", and

hence can be set to 0.

So the problem reduces to determining the coe�cients Ck,I and µk at each order.

Substituting eq. (4.21) into the source term (4.19), we obtain

Sk(z) = LN

2

4�
X

M 6=N

0

@
X

I,J

k�1X

i=0

Ci,ICk�1�i,J

I + J �M

4(N �M)
XM

I,J

1

ALM (z)

�
X

M 6=N

k�1X

i=1

NµiCk�i,M

N �M
LM (z)

3

5

�

2

4Nµk +
1

4

X

I,J

k�1X

i=0

(I + J �N)Ci,ICk�1�i,JXN

I,J +
k�1X

i=1

NµiCk�i,N

3

5LN (z), (4.22)
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where XK

I,J
comes from the decomposition of the product of Laguerre polynomials [88],

LI(z)LJ(z) =
I+JX

K=|I�J |

XK

I,JLK(z), (4.23)

which is written as

XK

I,J =
(�2)I+J�KK!

(K � I)!(K � J)!(I + J �K)!
3F 2

 
K + 1, 1

2
(K � I � J), 1

2
(K � I � J + 1)

K � I + 1,K � J + 1
; 1

!
.

(4.24)

The last line in eq. (4.22) is proportional to the resonant term, and hence should be

removed by setting

µk = � 1

4N

X

I,J

k�1X

i=0

(I + J �N)Ci,ICk�1�i,JXN

I,J �
k�1X

i=1

µiCk�i,N . (4.25a)

For non-resonant terms, the k-th order coe�cients are determined by

Ck,M 6=N = �
X

I,J

k�1X

i=0

Ci,ICk�1�i,J

I + J �M

4(N �M)
XM

I,J �
k�1X

i=1

NµiCk�i,M

N �M
. (4.25b)

The coe�cient of LN (z) is set to zero Ck,N = 0 for k � 1. With these recurrence equations,

the perturbation equation can be solved algebraically.

Perturbation solution

To solve the recurrence equation (4.25), we first set

C0,M = �N,M . (4.26)

Then, we have the solution for k = 1

µ1 = �1

4
XN

N,N , C1,M 6=N = � 2N �M

4(N �M)
XM

N,N . (4.27)

Repeating the calculation, we get the result at k = 2,

µ2 =
X

I 6=N

(2N � I)I

8N(N � I)
X I

N,NXN

I,N , (4.28)

and

C2,M 6=N =
X

I 6=N

(I +N �M)(2N � I)

8(N �M)(N � I)
XM

N,IX I

N,N � N(2N �M)

16(N �M)2
XN

N,NXM

N,N . (4.29)

Especially, the leading order shift in a is given by

µ1 = �1

4
XN

N,N = �(�2)N�2
3F 2

"
N + 1,�N

2
,�N�1

2

1, 1
; 1

#
. (4.30)

Here we note that µ1 alternates in sign with N . For the first values of N , we obtain

µ1

��
N=2,3,4,5

= �5

2
, 14 , �173

2
, 563. (4.31)

The leading order shift can also be related to the Franel numbers and one can show that

the amplitude of µ grows very rapidly with N ,

µ1 ⇠ (�1)N+1
23N

N
. (4.32)



62 CHAPTER 4. BLACK RIPPLES AND BLACK FLOWERS

Phase diagram

Given the perturbative solution we can calculate the physical quantities M, J and the

value at the origin R0 = R(0) (which is used as an initial condition in the numerical

analysis) perturbatively as follows. We recall that the physical quantities in the e↵ective

theory are calculated according to3

M =

Z
2⇡

0

d�

Z
1

0

dr rm(r,�) , (4.33)

J =

Z
2⇡

0

d�

Z
1

0

dr r p�(r,�)

=

Z
2⇡

0

d�

Z
1

0

dr⌦ r3m(r,�) . (4.34)

Angular velocity and center thickness By definition, the angular velocity has the

expansion

⌦ =
a

1 + a2
=

p
2N � 1

2N

✓
1� N � 1

2N � 1
µ1"+O

�
"2
�◆

. (4.35)

The center thickness is given by

R0 =
2

1 + a2
+ "+O

�
"2
�
=

1

N

�
1 + (N � µ1)"+O

�
"2
��

. (4.36)

Which gives the gradient on the branching point is given by

@" log⌦

@" logR0

����
"=0

=
N � 1

2N � 1

µ1

µ1 �N
. (4.37)

Since µ grows much faster than N , the gradient rapidly approaches to that of the Myers-

Perry branch for the larger value of N . For the first few values of N , we obtain

@" log⌦

@" logR0

��
N=2,3,4,5

=
5

27
,

28

55
,

519

1267
,

1126

2511
. (4.38)

At higher order, the center thickness is given by

R0 =
a

1 + a2
+
X

k=0

"k+1

 
X

I

Ck,I

!
(4.39)

where Ck,I is the coe�cients of the Laguerre expansion at each order in eq. (4.21). To

compare with the numerical result (figure 4.3), we calculated the formula for (R0,⌦)-space

up to "2,

⌦ =

p
2N � 1

2N

�
1 + !1"̄+ !2"̄

2
�
, (4.40)

where

"̄ := NR0 � 1. (4.41)

3Note that the quantities M, J correspond to the quantities M, J in previous chapters.
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!1 coincides with eq. (4.37). Here we do not show the explicit formula for !2, since it no

longer reduces to the simple form. The coe�cients for several branches are

!1

��
N=2,3,4,5

=
5

27
,
28

55
,
519

1267
,
1126

2511
, (4.42)

!2

��
N=2,3,4,5

=
118

729
, �172629

66550
,
82075592

290557309
, �1528095425

4691010024
. (4.43)

Mass and angular momentum Provided that the perturbation is normalizable, the

mass (4.33) and angular momentum (4.34) are easily obtained by

M = MMP

Z
1

0

e�z exp (�R(z)) dz, (4.44)

J = 2aM� 2aMMP

Z
1

0

e�zL1(z) exp (�R(z)) dz, (4.45)

where MMP is the mass of the Myers-Perry of the same a and z = L0(z)� L1(z) is used.

Since these integrations take the form of the inner product of the Laguerre polynomi-

als, it is convenient to use the expansion of the perturbative solution into the Laguerre

polynomials,

�R(z) =
1X

k=0

X

M

"k+1Ck,MLM (z), (4.46)

where C0,M = �M,N for the N -branch and M runs over some finite at each perturbative

order k. Up to O
�
"2
�
, one can expand as

exp (�R(z)) = 1 + "LN (z)� "2
X

M 6=N

MXM

N,N

4(N �M)
LM (z) , (4.47)

where we made use of the second order solution (4.27). Putting this into eqs. (4.44) and

(4.45), we obtain

J
M = 2a

"
1�

X 1

N,N

4(N � 1)
"2
#
, (4.48)

in which a also should be expanded according to (4.17). We see that the ratio of angular

momentum to mass only di↵ers by O
�
"2
�
from the Myers-Perry branch.

4.2.3 Numerical construction

To construct fully non-linear solutions we have to solve numerically the axisymmetric

version of the soap bubble equation (2.18)

R00 +
R0

r
+

1

2
R02 +R+

⌦2r2

2
= 0 , (4.49)

which is a second order nonlinear di↵erential equation for R(r). Since r is a radial coor-

dinate, any physical solution of eq. (4.49) must satisfy the regularity condition R0(0) = 0.

This leaves the parameter R0 ⌘ R(0) as the initial condition that is needed to integrate

the di↵erential equation outwards radially. However, not all values of R0 will result in

physical solutions. In general, as a consequence of the nonlinearity of eq. (4.49), R(r) will
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become singular at a finite value of r = rs and only a discrete set of initial conditions

will allow for solutions that that extend to r ! 1. To find these branches our numerical

procedure consists in maximizing the value rs where the singularity appears. Solutions

appear as singularities/ peaks of rs as a function of the initial conditions. See sec. 4.6 for

a more detailed description of the numerical method.

For fixed ⌦ 2 [0, 1/2], the two branches (stable and unstable) of the MP black hole

(3.1) correspond to two such solutions. In terms of the parameter a, the MP solutions

describe an ellipse in the (R0,⌦) plane as

R0 =
2

1 + a2
, ⌦ =

a

1 + a2
. (4.50)

Apart from the MP black hole solutions, we find that multiple branches of bumpy

solutions extend from every axisymmetric zero-mode. They can be represented in (R0,⌦)

plane as curves that extend from the Myers-Perry ellipse, as shown in figure 4.3.
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Ω

Figure 4.3: Branches of axisymmetric deformations (blue) of MP black hole (black) on the (R0,⌦)

plane. Branches moving towards negative R0 connect to black rings. And have a decreasing mass

density at the origin. While the branches moving towards positive R0 connect to black Saturns

and R0 approaches a value of the stable MP black hole. The right plot is a close-up showing

good agreement with the analytic expansions (orange). The right plot also shows the very short

(�)-branches.

We observe that the bumpy branches fall in two distinct categories. Those branches

that arise from even N zero modes, as defined in eq. (4.7), tend to R0 ! �1 as ⌦ ! 0

(asymptotically like R0 / � 1

⌦2 ). This is equivalent to a rapidly decreasing mass density

at the rotation axis as one moves along the branch. These bumpy branches connect the

MP-branch to families of N � 1 concentric black rings. In figure 4.4, the mass density

profiles m = eR are shown. On the other hand, for the zero modes with odd values of N ,

we have R0 ! 2, which means that the mass density at the center will closely approach

that of a stable MP black hole. These branches will resemble black Saturns with N � 2

rings, as shown in figure 4.5.

As discussed in [61, 62], every axisymmetric branch extends in both directions from

the zero mode. This corresponds to the fact that linear perturbations of the Myers-Perry

black hole can be added with either a positive or a negative amplitude. According to the
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convention in [62], branches adding the amplitude of the sign (�1)N+1 on the axis are

called (+)-branches, which deform the MP-black hole towards the black rings or black

Saturns, and the opposites, (�)-branches, which develop a singularity on the equator of

the horizon. It is so far unclear if this (�)-branch connects to some singly spinning black

hole solution.

Agreeing with this, we find that the negative side of the branches extends only for a

very short interval, after which the allowed solutions cease to exist. This behavior is to

some extent expected, since our approach can not resolve singular or conical solutions in

phase space. Numerically the vanishing of a solution manifests itself as a vanishing pole

in rs. The (�)-branches are shown in the close-up plot of figure 4.3, as the very short

blue lines extending into the opposite site of the (+)-branches. From the perturbative

result (4.35), one can also see that all (�)-branches increase ⌦, and vice versa at the

linear level.
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Figure 4.4: Cross-sections of the mass density m for black ripples leading to black rings corre-

sponding to the zero modes N = 2, 4, at di↵erent values of ⌦. Close to the branching points

the solutions develop bumpy deformations whereas far away from it the solutions closely resemble

separated black rings. The (expected) pinching of the necks as we move away from the MP-branch

follows a behavior described already in [62]: For multiple rings the pinching starts at the interior

necks and later on the outer ones.

The angular momentum (per unit mass) is calculated numerically according to eq. (4.34).

The bumpy branches can then be represented on the usual (J /M,⌦) phase diagram, as

depicted in figure 4.6.

Figures 4.4, 4.5, 4.6 show that the bumpy branches for black rings and black Saturns

seem to extend to arbitrary angular momentum4 without encountering any conical singu-

larities. For a su�ciently high angular momentum, the deformation ends up as multiple

lumps/rings barely connected by exponentially thin necks. Figure 4.6 also shows this in a

4Saturn type solutions become harder to construct numerically, since the di↵erent Saturn-type solutions

pile up in initial condition space as can be seen in figure 4.3, but we see no evidence that the corresponding

poles in rs vanish.
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Figure 4.5: Cross-sections of the mass density m for black ripples leading to black Saturns corre-

sponding to the zero modes N = 3, 5 , at di↵erent values of ⌦.

change of behavior of the curves: All branches show three phases of qualitative behaviors:

In the first stage the branches are nearly tangential to the MP-branch. After that in an

intermediate stage new (ringlike) blobs start to form until they reach a new asymptotic

phase. In this final phase the blobs are practically separated and do barely deform fur-

ther but the distance between the blobs keeps increasing, the angular momentum behaves

asymptotically like J /M / 1/⌦.

For solutions with multiple ripples, we find that at low ⌦ the radii of ringlike blobs

follow two di↵erent behaviors. The innermost ring has an approximate radius growing

like ⌦�1, while the distance between the following outer rings increases slower than that

and we estimate it to be ⇠
p
| log⌦|. The ⌦�1-behavior agrees with the blackfold result

for multi-rings if the separations of the rings are much shorter than the ring radius [89].

These observations on the far extended branches lead us to the expectation that our

ring/Saturn-like bumpy solutions will be connected via a topology changing transition to

the single bumpy rings/Saturns, not directly to multi-rings or higher Saturns. This picture

is consistent with the numerical result in D = 6 bumpy Myers-Perrys [62].

4.3 Multipole deformations: Black Flowers

In the largeD limit, the soap bubble equation (2.18) also admits non-axisymmetric station-

ary solutions, because gravitational waves are completely decoupled as a non-perturbative

e↵ect in 1/D and solutions with time-dependent multipoles do not radiate.

4.3.1 Multipolar zero modes

We study again perturbations of the MP-black hole, but this time allow for angular de-

pendence of the perturbations

R(z,�) = RMP(z) + �R(z,�) . (4.51)
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Figure 4.6: Phase diagram for axisymmetric solutions, we show the 10 first appearing branches:

Ring-branches are shown in purple, and Saturn branches in light-blue. The Myers-Perry and black

bar solutions are also plotted by the black and red curves. We do not expect the Saturn branches

to terminate, but they become harder to construct for low ⌦.

Then, the deformation equation becomes

Lz,��R(z,�) = S(z,�), (4.52)

where we defined

Lz,� := z@2z + (1� z)@z +
1

4z
@2
�
+

a2 + 1

2
, (4.53)

S(z,�) := �1

2
z(@z�R(z,�))2 � 1

8z
(@��R(z,�))2. (4.54)

It is convenient to expand the angular dependence as a Fourier series

�R(z,�) =
1X

k=0

z
k

2 f (k)(z) cos k�, (4.55)

where each radial function is expanded in ",

f (k)(z) =
1X

p=0

"p+1f (k)

p (z). (4.56)

With the Fourier decomposition, the linear part reduces to the generalized Laguerre equa-

tion

Lz,��R(z,�) =
1X

k=0

z
k

2L(k)

(a2+1�k)/2
f (k)(z) cos(k�), (4.57)

which admits normalizable solutions for k = m when

a2 + 1�m = 2N (N = 0, 1, 2, . . . ). (4.58)

We also decompose the source terms into Fourier modes

S(z,�) =
X

k=0

z
k

2S(k)(z) cos k�, (4.59)
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where

S(k)(z) = �1

4

1X

`=0

z`�1

⇣
`(`+ k)f (`)(z)f (`+k)(z) + (`+ k)zf (`)0(z)f (`+k)(z)

+`zf (`)(z)f (`+k)0(z) + 2z2f (`)0(z)f (`+k)0(z)
⌘

� 1

8

kX

`=0

⇣
(k � `)f (`)0(z)f (k�`)(z) + kf (`)(z)f (k�`)0(z) + 2zf (`)0(z)f (k�`)0(z)

⌘
. (4.60)

Here the last line exists only for k > 0.

4.3.2 Nonlinear perturbation

For higher order perturbations, we proceed in almost the same manner as for the ax-

isymmetric sector. The generalized Laguerre operators L(m)

N
also show resonant behavior

if they are sourced by the corresponding resonant term L(m)

N
(z), provided N is a non-

negative integer. Therefore, for the solution to be regular and normalizable, the resonant

term has to be removed from the source for every mode by renormalizing the angular

velocity as

a2 + 1 =
⇣
N +

m

2

⌘
0

@1 +
1X

p=1

µp"
p

1

A . (4.61)

A new phenomenon we observe, is that some modes can not independently excited at

linear order, otherwise the renormalization of the angular velocity becomes impossible.

To show this, let us assume to the contrary that we start at linear order only with the

zero mode corresponding to a2 + 1�m = 2N ,

f (m)

0
(z) = L(m)

N
(z). (4.62)

Then, this mode acts as a source for the neighboring perturbations f (0)

1
and f (2m)

1
at

next-to-leading order,

L(0)

N+m/2
f (0)

1
(z) = S(0)(z) , (4.63)

L(2m)

N�m/2
f (2m)

1
(z) = S(2m)(z) . (4.64)

If m is a even, eqs. (4.63) and (4.64) will contain resonant sources.5 However, since

we did not include the corresponding linear order term at leading order, the parameter

renormalization cannot absorb the resonant terms. This implies that we are forced to

include also the neighboring overtone modes at leading order

f (0)

0
(z) = ↵0L

(0)

N+m/2
, f (m)

0
(z) = ↵1L

(m)

N
(z), f (2m)

0
(z) = ↵2L

(2m)

N�m/2
(z). (4.65)

Repeating the same argument for the new linear solution, one might be concerned that now

we need an infinite tower of overtone modes to regularize the secular behavior. However,

if N � (i� 1)m/2 < 0 for the i-th overtone, the equation

L(im)

N�(i�1)m/2
f (im)

1
(z) = S(im)(z) (4.66)

5For odd m, the neighboring modes would have half integer parameters, so resonant behavior only can

appear starting at third order.
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ceases to produce secular behavior as long as the source term is a polynomial. Therefore,

given m and N , the linear order solution should be a linear combination of its overtone

modes whose overtone number does not exceed 2N/m+ 1.6

Recurrence formula

Using the expansion of the spin parameter (4.61) we can derive a recurrence formula for

all orders in perturbation theory. Eq. (4.52) can be rewritten as

L(k)

N+(m�k)/2
f (k)(z) = S̄(k)(z) , (4.67)

where

S̄(k)(z) = S(k)(z)�
⇣
N +

m

2

⌘ 1X

p=1

µp"
pf (k)(z) , (4.68)

and S(k)(z) given through eq. (4.60). Under the perturbative expansion (4.56), we also

expand the source term by

S̄(k)(z) =
1X

p=1

"pS̄(k)

p (z). (4.69)

Using an inductive argument, the regular normalizable perturbations are shown to be

polynomials to all orders of the perturbation. Therefore, we expand the radial functions

at each order by the associated Laguerre polynomials,

f (k)

p (z) =
X

I

C(k)

p,I
L(k)

I
(z). (4.70)

As discussed in the previous section, the linear order solution should include all the over-

tone modes with N � im/2 > 0,

C(0)

0,N+m/2
:= ↵0, C(m)

0,N
:= ↵1, C(2m)

0,N�m/2
:= ↵2, . . . , C(⌘m)

0,N�(⌘�1)m/2
:= ↵⌘, (4.71)

where ⌘ := b2N/mc + 1. If m is odd, the even overtones are turned o↵. Using the

reparametrization of ", we set

C(m)

p,N
= 0 (if p > 0). (4.72)

Substituting this expansion into eq. (4.68) , the source term can be decomposed into a

resonant part and a normalizable part

S̄(k)

p (z) = T (k)

p L(k)

N+(m�k)/2
(z) + L(k)

N+(m�k)/2

⇥
(polynomial of z)

⇤
(4.73)

where T (k)

p = 0 gives the normalization condition7. To extract the resonant term from

the source, the following decomposition formula of the product of the associated Laguerre

polynomials is used

z
i+j�k

2 L(i)

I
(z)L(j)

J
(z) =

X

K=0

Y(i,j,k)

I,J,K
L(k)

K
(z), (4.74)

6This limit is the same in the case of odd m, taking into account that only odd overtone modes are

involved.
7If N + (m� k)/2 is not a non-negative integer, T (k)

p becomes trivially zero.
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where the coe�cients are written by the integral of the triple product of the associated

Laguerre polynomials

Y(i,j,k)

I,J,K
=

K!

(K + k)!
I(i,j,k)

I,J,K
(4.75)

with

I(i,j,k)

I,J,K
:=

Z
1

0

dze�zz
i+j+k

2 L(i)

I
(z)L(j)

J
(z)L(k)

K
(z). (4.76)

This integration can be expressed through Lauricella’s generalized hypergeometric func-

tions [90].8

Since the LO-perturbation only contains the fundamental mode m and its overtones,

also at NLO only m and its overtones are excited. To eliminate the resonant part in (4.73),

we require for i = 0, . . . , ⌘ (again, only odd i if m is odd)

⇣
N +

m

2

⌘ pX

q=1

µqC(im)

p�q,N+(1�i)m/2

= �1

4

1X

j=0

p�1X

q=0

X

I,J

C(jm)

q,I
C((i+j)m)

p�1�q,J
(I + J �N + (i+ 2j � 1)m/2)Y(jm,(i+j)m,im)

I,J,N+(1�i)m/2

� 1

8

iX

j=0

p�1X

q=0

X

I,J

C(jm)

q,I
C((i�j)m)

p�1�q,J
(I + J �N + (i� 1)m/2)Y(jm,(i�j)m,im)

I,J,N+(1�i)m/2
, (4.77)

where the last line only exists for i > 0. Other than the resonant terms, we also obtain

the coe�cients

C(im)

p,K
= �

p�1X

q=1

N +m/2

N + (1� i)m/2�K
µqC(im)

p�q,K

�
1X

j=0

p�1X

q=0

X

I,J

C(jm)

q,I
C((i+j)m)

p�1�q,J

I + J + jm�K

4(N + (1� i)m/2�K)
Y(jm,(i+j)m,im)

I,J,K

�
iX

j=0

p�1X

q=0

X

I,J

C(jm)

q,I
C((i�j)m)

p�1�q,J

I + J �K

8(N + (1� i)m/2�K)
Y(jm,(i�j)m,im)

I,J,K
. (4.78a)

Again, we do not have the last line for i = 0.

Comparison to the numerical results

For later comparison with the numerical result, we derive an expression for the center

value of each angular Fourier mode. As in the axisymmetric sector, the center thickness

is defined by

R0 =
2

1 + a2
+

1X

i=0

"i+1
X

I

C(0)

i,I
, (4.79a)

and for the multipoles, we define9

Rk =
1X

i=0

"i+1
X

I

(I + k)!C(k)

i,I

(2(1 + a2))k/2I!k!
. (4.79b)

8An English reference is found, for example, in [91].
9Which will serve as initial conditions in the numerical setup (4.120).
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Even multipoles

The analysis for di↵erent fundamental modes (N,m) di↵ers in important aspects, so we

are going to distinguish several cases in the following. Let us begin with the case m even.

As opposed to the axisymmetric modes, the normalization condition (4.77) already gives

the coupled equation that determines the linear coe�cients and the parameter renormal-

ization,

µ1↵0 = �1

4

⌘X

j=0

A0,j↵
2

j , (4.80a)

µ1↵i = �1

4

⌘�iX

j=0

Ai,j↵j↵i+j �
1

8

iX

j=0

Bi,j↵j↵i�j (i > 0), (4.80b)

where

Ai,j = Y(jm,(i+j)m,im)

N+(1�j)m/2,N+(1�i�j)m/2,N+(1�i)m/2
, (4.81)

Bi,j = Y(jm,(i�j)m,im)

N+(1�j)m/2,N+(1�i+j)m/2,N+(1�i)m/2
. (4.82)

The nonlinear eq. (4.80) is hard to solve in general and we will further distinguish di↵erent

cases.

Even multipoles with 2N < m Here the leading order solution consists of only two

modes

f (0)

0
(z) = ↵0L

(0)

N+m/2
(z), f (m)

0
(z) = ↵1L

(m)

N
(z) . (4.83)

The normalization condition (4.80) becomes

µ1↵0 = �I0
4
↵2

0 �
(N +m)!

4N !
I1↵2

1 , (4.84)

µ1↵1 = �1

2
I1 ↵0↵1 , (4.85)

where

I0 = XN+m/2

N+m/2,N+m/2
, I1 = Y(0,m,m)

N+m/2,N,N
. (4.86)

Setting ↵1 = 0 immediately reproduces the axisymmetric result (4.30). Therefore assum-

ing ↵1 6= 0, we obtain

µ1 = �1

2
I1↵0 , (4.87)

and

(2I1 � I0) ↵2

0 =
(N +m)!

N !
I1↵2

1. (4.88)

Which has real solutions only if
I0
I1

 2 . (4.89)

This leads to an upper bound for m (see figure 4.7). Since the sign of ↵1 does not matter,

we obtain

↵1/↵0 =

s
N !

(N +m)!

r
2� I0

I1
. (4.90)
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Figure 4.7: The maximum values of m in the 2N < m sector (blue circles), defined by the

constraint (4.89), and in the N < m  2N sector (red and red empty circles), defined by the

positivity of eq. (4.104). The blue dashed and red dotted curves denote m = 2N and m = N ,

respectively. Branches in each sector should be above each curve. The maximum values below

m = N (which can not be realized physically) are shown by red empty circles. Gray dots denote

possible branches below the maxima.

The only branches satisfying 2N < m and the constraint (4.89) are

(N,m) = (0, 2) : µ1 = 1, ↵1 =
1p
2

(black bar), (4.91a)

(N,m) = (0, 4) : µ1 = �3, ↵1 =
1

6
p
2
, (4.91b)

(N,m) = (1, 4) : µ1 = 20, ↵1 =
1

10
p
2
, (4.91c)

(N,m) = (1, 6) : µ1 = �175

2
, ↵1 =

1

210
p
5
, (4.91d)

(N,m) = (2, 6) : µ1 = 658, ↵1 =
1

168

r
19

47
, (4.91e)

where we set ↵0 = 1.

The right hand side in eq. (4.89) monotonically grows in N , and for N � 3, the

bound (4.89) finally starts to exclude all of m > 2N . We will see that a similar bound

appears also in the sector N < m  2N for N � 3. This upper bound does not mean

the absence of the higher multipole deformation, but rather implies such deformation

should be coupled with the lower companions even in the linear order. For example,

(N,m) = (0, 6) can be coupled with (N,m) = (2, 2) (together with (3, 0) and (1, 4)),

which is in 2

3
N < m  N sector.

Lastly, we evaluate the center values and angular velocity in eq. (4.79) up to O ("),

R0 =
2

1 + a2
+ ↵0" =

1

N +m/2
(1� (µ1 � (N +m/2)↵0)") , (4.92)

and

Rm =
(N +m)!↵1

(4n+ 2m)m/2N !m!
". (4.93)
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By defining "̄ := (N +m/2)R0 � 1 we obtain

⌦ =

p
2N +m� 1

2N +m
(1 + !1"̄) , Rm = r1"̄. (4.94)

with the expansion coe�cients

(N,m) = (0, 4) : !1 =
1

5
, r1 =

1

1920
p
2
, (4.95a)

(N,m) = (1, 4) : !1 =
8

17
, r1 = � 1

4896
p
2
, (4.95b)

(N,m) = (1, 6) : !1 =
25

61
, r1 =

1

11243520
p
5
, (4.95c)

(N,m) = (2, 6) : !1 =
2632

5877
, r1 = � 1

31344000

r
19

47
. (4.95d)

Some of these results are compared with the numerical analysis in figure 4.8.

Even multipoles with N < m  2N Here three modes have to be excited at leading

order

f (0)

0
(z) = ↵0L

(0)

N+m/2
(z), f (m)

0
(z) = ↵1L

(m)

N
(z), f (2m)

0
(z) = ↵2L

(2m)

N�m/2
(z). (4.96)

The normalization condition (4.80) leads to a quadratic constraint for the relative ampli-

tudes

µ1↵0 = �1

4
I0↵2

0 �
1

4
I 0

1↵
2

1 �
1

4
I 0

2↵
2

2, (4.97a)

µ1↵1 = �1

2
I1↵0↵1 �

1

4
I3↵2↵1, (4.97b)

µ1↵2 = �1

2
I2↵0↵2 �

1

8
I 0

3↵
2

1, (4.97c)

where the coe�cients are given by

I0 = XN+m/2

N+m/2,N+m/2
, I1 = Y(0,m,m)

N+m/2,N,N
, (4.98)

I2 = Y(2m,2m,0)

N�m/2,N�m/2,N+m/2
, I3 = Y(m,2m,m)

N,N�m/2,N
, (4.99)

and

I 0

1 =
(N +m)!

N !
I1, I 0

2 =
(N + 3m/2)!

(N �m/2)!
I2, I 0

3 =
(N �m/2)!

(N + 3m/2)!

(N +m)!

N !
I3. (4.100)

Setting ↵1 = 0 immediately reproduces the previous analysis in which m is replaced by

2m. Therefore, we consider ↵1 6= 0 and (4.97b) reduces to

µ1 = �1

2
I1↵0 �

1

4
I3↵2. (4.101)

Substituting this to the rest of eq. (4.97), we obtain two quadratic equations

(2I1 � I0)↵2

0 + I3↵2↵0 � I 0

2↵
2

2 = I 0

1↵
2

1, (4.102)

4(I1 � I2)↵0↵2 + 2I3↵2

2 = I 0

3↵
2

1. (4.103)
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I1 and I2 (and accordingly I 0

1
and I 0

2
) have to have the same sign for fixed N and m.

Thus eq. (4.102) and eq. (4.103) describe an ellipse and a hyperbola in the (↵1/↵0,↵2/↵0)

plane. The curves always have two (or no) intersections, which are shown to be identical

by a constant shift in the angular coordinate � ! � + ⇡/m. Therefore, we have at most

one branch for each (N,m) with N < m  2N .

The radii of the ellipse from eq. (4.102) are proportional to

2� I0
I1

+
I2

3

4I0I 0

2

. (4.104)

The positivity of this value is the necessary condition for the existence of the branch,

which gives the upper bound for m (figure 4.7). Since the last term in eq. (4.104) decays

very quickly in N , the upper bound coincides with that from eq. (4.89) for N � 3. And for

N > 11 the upper and the lower bound can not be satisfied at the same time. Accordingly

this sector only contains a finite finite number of branches, like the m > 2N sector.

We show the result for the lower branches

(N,m) = (1, 2) : µ1 = �4.48, ↵1 = 0.382, ↵2 = 0.00243 , (4.105a)

(N,m) = (2, 4) : µ1 = �132.5, ↵1 = 0.0439, ↵2 = �3.84⇥ 10�8 , (4.105b)

(N,m) = (3, 4) : µ1 = 903.0, ↵1 = 0.0299, ↵2 = �1.20⇥ 10�9 , (4.105c)

(N,m) = (3, 6) : µ1 = �4851.0, ↵1 = 0.00268, ↵2 = �2.87⇥ 10�13 , (4.105d)

where we set ↵0 = 1. One can observe that the amplitude of the overtone mode will be

strongly suppressed for larger N and m. The gradient of the angular velocity and the

center values (4.94) are also evaluated for the same branches as

(N,m) = (1, 2) : !1 = 0.230, r1 = 0.0221, r2 = �4.89⇥ 10�7 , (4.106a)

(N,m) = (2, 4) : !1 = 0.416, r1 = 0.0000189, r2 = �2.56⇥ 10�18 , (4.106b)

(N,m) = (3, 4) : !1 = 0.447, r1 = �2.92⇥ 10�6, r2 = 2.49⇥ 10�20 , (4.106c)

(N,m) = (3, 6) : !1 = 0.454, r1 = 3.36⇥ 10�9, r2 = �4.64⇥ 10�32 , (4.106d)

where we also evaluated the amplitude of the overtone r2 defined via

R2m =
(N +m/2)!↵2

(4n+ 2m)m(N �m/2)!(2m)!
" =: r2"̄ . (4.107)

Odd multipoles with 2N < m

For odd m the leading order modes do not produce secular behavior at second order, but

starting from third order it will also appear in this case. Here the LO-solution consists of

a single mode,

f (m)

0
(z) = L(m)

N
(z). (4.108)

At second order the even m modes have to be excited

C(0)

1,K
= � 2N +m�K

4(N +m/2�K)
Y(m,m,0)

N,N,K
, (4.109)

C(2m)

1,K
= � 2N �K

8(N �m/2�K)
Y(m,m,2m)

N,N,K
, (4.110)
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without any renormalization,

µ1 = 0. (4.111)

Iterating eq. (4.78) reveals that there are only even m modes for every odd order in ",

and vice versa. Which results in µk = 0 for odd k. At third order, the normalization

condition (4.77) becomes

µ2 = �
X

K


C(0)

1,K

K

2N +m
Y(0,m,m)

K,N,N
+ C(2m)

1,K

K +m

2(2N +m)
Y(2m,m,m)

K,N,N

�

=
N !

(N +m)!

"
2N+mX

K=0

K(2N +m�K)

4(2N +m)(N +m/2�K)

⇣
I(0,m,m)

K,N,N

⌘
2

+
2NX

K=0

(K +m)(2N �K)

16(2N +m)(N �m/2�K)

K!

(K + 2m)!

⇣
I(2m,m,m)

K,N,N

⌘
2

#
.

(4.112)

Di↵erent from the even cases, the normalization condition for the simplest odd multipoles

does not lead to a bound for m. For the lower sector m  2N , we will have multiple

overtones at linear order, which leads to coupled equations at third order as in the even

modes. This may bound m as in the even modes.

In contrast to the case of m even, ⌦ and R0 only have even powers of " appearing in

their expansion

⌦ =

p
2N +m� 1

2N +m

✓
1� N +m/2� 1

2N +m� 1
µ2"

2

◆
, (4.113)

R0 =
1

N +m/2

"
1 + "2

 
(N +m/2)

2N+mX

K=0

C(0)

1,K
� µ2

!#
, (4.114)

while Rm is odd in ",

Rm =
(N +m)!

(4N + 2m)m/2N !m!
". (4.115)

This means that odd branches go out from the Myers-Perry branch only in one direction.10

The leading order corrections can be written as

⌦ =

p
2N +m� 1

2N +m

�
1 + !2"

2
�
, R0 =

1

N +m/2

�
1 + ⇢0"

2
�
, Rm = ⇢m". (4.116)

And the first few branches satisfy,

(N,m) = (0, 3) : µ2 = 0, !2 = 0, ⇢0 = 36, ⇢m =
1

6
p
6
, (4.117a)

(N,m) = (0, 5) : µ2 = 0, !2 = 0, ⇢0 = �6400, ⇢m =
1

100
p
10

, (4.117b)

(N,m) = (1, 3) : µ2 = �6592, !2 = 2472, ⇢0 = 4352, ⇢m =
1

5

r
2

5
. (4.117c)

10Changing the sign of " in Rm is equivalent to the constant rotation � ! �+⇡/m, and hence does not

lead to another branch.
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Figure 4.8: Beginning of the branches for (N,m) = (0, 4), (1, 4) and (1, 6) on the (R0,⌦) plane.

For N = 0 branches, eq. (4.112) gives µ2 = 0 for any odd m,

⌦|
N=0

=

p
m� 1

m

�
1 +O

�
"4
��

. (4.118)

For N > 0, for example, we have

d ln⌦

d lnR0

����
(N,m)=(1,3)

=
309

544
. (4.119)

4.3.3 Numerical construction

To obtain the fully non-linear multipole solutions numerically, we use a Fourier decompo-

sition corresponding to overtones of a fundamental mode m

Rm(r,�) =
1X

n=0

R(nm)(r) rnm cos(nm�) . (4.120)

Plugging this into the stationary master equation (2.18), we obtain a countable set of

coupled equations for the fundamental Fourier mode R(m)(r) and its overtones R(n·m)(r)

(n = 2, 3, . . . ). From the perturbative analysis, we know that close to the MP-branch

higher overtones will only be weakly excited. So we truncate the Fourier series for some

nmax to obtain a finite dimensional problem. The resulting coupled ODEs can be now

solved using the shooting method described in section 4.6, where now the space of initial

conditions is spanned by the amplitudes of the Fourier modes R(nm)(r) close to the origin,

which we will denote as R0,Rm,R2m, . . . ,Rnmaxm.

In figure 4.8, we show examples of branches extracted numerically with only the fun-

damental Fourier mode, i.e.,nmax = 1, and compare them to the perturbative result. We

checked that the truncation nmax = 1 is consistent for the beginning of the branch we

show by comparing the results to a higher truncation with nmax = 2 and finding good

agreement of the results. To extend the branches further overtones should be included.

The inclusion of overtones however makes our numerical procedure much less e�cient

(see section 4.6.3 for details), s.t. at this point we do not find conclusive results for odd

multipole branches and even multipole branches corresponding to the opposite sign of the

perturbation.
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Figure 4.9: Mass profiles for branches with (N,m) = (0, 4) (left) and (N,m) = (1, 6) (right).
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Figure 4.10: Dashed lines: Branches for (N,m) = (0, 4), (1, 4) and (1, 6) in the (J /M,⌦) plane.

Solid lines: Branches of axisymmetric solutions. It can be observed that black flower curves take

a similar path to the ripple branches originating from the same zero modes.

In figure 4.9, we show representative plots of mass densities for some of the branches.

The profiles for even multipoles show a behavior that can be related to the perturbative

result that modes of di↵erent N and m couple to each other: The black flower branches

show mass profiles, which when averaged over the angular direction resemble the corre-

sponding axisymmetric branch that starts at the same branching point, which results in

a similar (J /M,⌦)-curve see figure 4.10.

4.4 Deformed black bars: Dumbbells and Spindles

As already studied in the previous section the large D e↵ective equations allow for sta-

tionary solutions without axisymmetry around the rotation axis, the first (and so far only)

analytically known solution is the dipolar black bar [12]. Like the other multipolar solu-

tions, the black bar plays an important role in the decay of the ultra-spinning instability

of MP-black holes [14, 15, 87]. At high enough angular momentum the bar gets very

elongated and develops a Gregory-Laflamme type instability. In this section, we are going

to study the zero mode configurations corresponding to this instability.
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The black bar is best studied in Cartesian coordinates in the co-rotating frame

x = r cos(�� ⌦t), y = r sin(�� ⌦t), (4.121)

where it can be written as

Rbar(x, y) = 1� x2

2`2
?

� y2

2`2
k

(4.122)

where

`2
?
=

2

1 +
p
1� 4⌦2

, `2
k
=

2

1�
p
1� 4⌦2

. (4.123)

Note that for small ⌦ the bar becomes very elongated and in the limit ⌦! 0 the solution

connects to a non-rotating black string along the y-direction.

4.4.1 Co-rotating zero modes

We deform the bar perturbatively via R = Rbar(x, y) + �R(x, y), where the deformation

�R(x, y) satisfies

"
@2x �

x

`2
?

@x + @2y �
y

`2
k

@y + 1

#
�R = �1

2
((@x�R)2 + (@y�R)2) (4.124)

At linear order, the regular solutions are given by Hermite polynomials

�R(x, y) = "Hnx

✓
xp
2`?

◆
Hny

 
yp
2`k

!
+O

�
"2
�
, (4.125)

where nx, ny are non-negative integers with

nx

`2
?

+
ny

`2
k

= 1. (4.126)

Together with the constraint `�2

?
+ `�2

k
= 1, the regular and non-trivial perturbations are

available only for

nx = 0, ny = `2
k
� 2. (4.127)

4.4.2 Nonlinear perturbations

Considering the linear result, we can assume only y-dependence even in the non-linear

regime. Then, by rescaling

z =
yp
2`k

, (4.128)

the deformation equation reduces to

H
`
2
k
�R(z) = �1

2
�R0(z)2, (4.129)

where HN is the Hermite operator defined by

HN :=
d2

dz2
� 2z

d

dz
+ 2N. (4.130)
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Given the value of `k, ⌦ and `? is written by

⌦ =

q
`2
k
� 1

`2
k

, `? =
`kq
`2
k
� 1

=
1

`k⌦
. (4.131)

The corrections beyond the linear order can be derived in the same manner as the bumpy

deformation of the Myers-Perry. First, we expand the deformation function by "

�R(z) =
1X

k=0

"k+1fk(z). (4.132)

If we consider a branch bifurcating from the zero mode `2
k
= N on the black bar branch,

one can set

f0(z) = HN (z). (4.133)

The length of the bar `k for the deformed branch should be expanded by ",

`2
k
= N

 
1 +

1X

k=1

µk"
k

!
, (4.134)

where the running coe�cient µk is determined so that fk(z) remains to be normalizable

at each order. Expanding eq. (4.130) by ", we obtain

HNfk(z) = �1

2

k�1X

i=0

f 0

i(z)f
0

k�1�i
(z)� 2N

k�1X

i=0

µk�ifi(z) =: Sk(z). (4.135)

Similar to the bumpy solutions, the higher order corrections can be solved algebraically.

Assuming fk(z) is a polynomial, each order solution can be expanded by the Hermite

polynomials,

fk(z) =
X

M=0

Ck,MHM (z), (4.136)

where the linear order solution is supposed to be C0,M = �M,N . Substituting this, the

source term of each order becomes

Sk(z) = �1

2

k�1X

i=0

X

I,J

Ci,ICk�1�i,JH
0

I(z)H
0

J(z)� 2N
k�1X

i=0

X

I

µk�iCi,IHI(z). (4.137)

Using the properties of the Hermite polynomials, the source term can be decomposed to

the resonant and non-resonant terms,

Sk(z) = HN

2

4�1

4

X

K 6=N

X

I,J

k�1X

i=0

Ci,ICk�1�i,J

I + J �K

N �K
QK

I,JHK(z)�
X

K 6=N

k�1X

i=1

Nµk�iCi,K
N �K

HK(z)

3

5

�

2

41

2

X

I,J

k�1X

i=0

(I + J �N)Ci,ICk�1�i,JQN

I,J + 2N
k�1X

i=0

µk�iCi,N

3

5HN (z) ,

(4.138)
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where QK

I,J
is defined by HI(z)HJ(z) =

P
I+J

K=|I�J |
QK

I,J
HK(z). Using C0,M = �M,N , the

regularizing condition is given by

µk = �
X

I,J

k�1X

i=0

I + J �N

4N
Ci,ICk�1�i,JQN

I,J �
k�1X

i=1

µk�iCi,N , (4.139a)

and the non-resonant coe�cients,

Ck,M 6=N = �1

4

X

I,J

k�1X

i=0

Ci,ICk�1�i,J

I + J �M

N �M
QM

I,J �
k�1X

i=1

Nµk�iCi,M
N �M

. (4.139b)

For the resonant term, we simply set

Ck,N = 0 (k > 0). (4.140)

Using induction one can show for odd branches that fk(z) has only odd (even) power for

the even (odd) order, and µk vanishes for every odd order. Similarly, for even N , it can

be shown that at each order only even powers appear.

Perturbative solution

By solving the recurrence equation with C0,M = �M,N , one can obtain the solution to

arbitrary order. The result for O
�
"2
�
is

µ1 = �1

4
QN

N,N , C1,M 6=N = � 2N �M

4(N �M)
QM

N,N , (4.141)

and for O
�
"3
�
,

µ2 =
1

8

X

I

I(2N � I)

N(N �M)
QI

N,NQN

N,I , (4.142)

C2,M 6=N =
1

8

X

I 6=N

(N + I �M)(2N � I)

(N �M)(N � I)
QM

I,NQI

N,N � N(2N �M)

16(N �M)2
QN

N,NQM

N,N , (4.143)

where QN

N,N
= 0 for the odd N , giving µ1 = 0 for the odd dumbbells.

Physical quantities

Once, given the deformation �R(z) as

�R(z) =
1X

i=0

X

I

"i+1Ci,IHI(z), (4.144)

the physical quantities are calculated using properties of the Hermite polynomials.
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Value at the origin Here we evaluate the center values R0 = R(0) and R̄0 = R0(0),

which are also used as the boundary condition for the numerical analysis. Due to the mirror

symmetry in the even case, R̄0 only exists for the odd branches. The center thickness R0

of the deformed bar is given by

R0 = 1 +
1X

i=0

X

I

"i+1Ci,IHI(0), (4.145)

where

HM (0) =

(
(�2)M/2(M � 1)!! (M : even)

0 (M : odd)
. (4.146)

For the odd branch, only odd Hermite polynomials appear at every odd order in ", so R0

becomes the function of "2. Using H 0

I
(0) = �HI+1(0), R̄0 is similarly evaluated to

R̄0 = �
1X

i=0

X

I

"i+1Ci,IHI+1(0). (4.147)

With eq. (4.141), we obtain

R0 = 1 + "HN (0)� "2
X

I 6=N

4N � I

2(N � I)
QI

N,NHI(0) +O
�
"3
�
, (4.148)

R̄0 = �"HN+1(0) +O
�
"3
�
, (4.149)

where R̄0 does not have O
�
"2
�
term, because QI

N,N
vanishes for odd I. For comparison

with the numerical analysis (figure 4.11), we obtain,

⌦ =

p
N � 1

N

�
1 + !1"̄+ !2"̄

2
�
, R̄0 = ⇢̄0"̄ (4.150)

where

"̄ :=

(
R0 � 1 (even)p
|R0 � 1| (odd)

(4.151)

For odd branches with N = 2n+ 3, R0 is given by R0 = 1+ (�1)n"̄2. The even branches

have

!1|N=4,6,8,10
= 2, �16, 129, �896 (4.152)

!2|N=4,6,8,10
= 52, 8088,

4178816

5
,

529505120

7
, (4.153)

and the odd branches have !1 = 0 and

!2|N=3,5,7,9
=

12

19
,

19200

1969
,

5480160

53939
,

23886707712

24551641
, (4.154)

⇢̄0|N=3,5,7,9
= �2

r
3

19
, 6

r
5

1969
, �10

r
7

53939
,

210p
24551641

. (4.155)

This shows that one always need to spin up the black hole for the transition to an odd

branch.
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Mass and angular momentum The mass (4.33) and angular momentum (4.34) can

be calculated by

M = Mbar

Z
1

�1

dzp
⇡
e�z

2
exp(�R(z)), (4.156)

and

J =
M
⌦

+ 4Mbar`
2

k
⌦

Z
1

�1

dz

8
p
⇡
e�z

2
H2(z) exp(�R(z)), (4.157)

whereMbar = 2⇡e/⌦ is the mass of the bar solution for the given ⌦. Due to the orthogonal

property of the Hermite polynomials, the integrals in M and J pick up H0(z) and H2(z)

components in exp(�R(z)), respectively.

Using the result in the previous section, the ratio of the angular momentum to the

mass is given by
J
M =

1

⌦

✓
1� 2(N � 1)

N(N � 2)
Q2

N,N"
2 +O

�
"3
�◆

, (4.158)

where we note that ⌦ should also varies in ". For the odd branch, both J /M and ⌦

become a function of "2.

4.4.3 Numerical construction

In order to find fully nonlinear deformations of the black bar, we begin by considering

equation (1.48) with the ansatz

R(x, y) = � x2

2`2
?

+R(y) , (4.159)

where we imply that R(y) ⌘ R(0, y), and `2
?

is defined by eq. (4.123). With this

substitution, we are left with

R00 +
1

2
R02 +R+

⌦2y2

2
= `�2

?
. (4.160)

Since y is no longer a radial coordinate, the condition R0(0) = 0 is no longer required.

We can define R0(0) ⌘ R̄0 instead. Allowed solutions must extend regularly both to

y ! �1 and y ! 1 simultaneously. If we start the integration from y = 0, the initial

conditions are given by R0 ⌘ R(0) and R̄0 ⌘ R0(0), which have to be tuned in order to

get allowed solutions.

The branches arising from even N zero modes have a y ! �y symmetry, so R̄0 = 0.

These bars only require R0 to be tuned, so they can be found in the same way as the

axisymmetric solutions. Nonzero values of R̄0 give rise to the branches originating in

odd N zero modes. This requires a slightly more involved numerical algorithm, which is

described in sec. 4.6.

In figure 4.11, the first branches of deformed black bars are shown in the (R0,⌦) plane.

In this case, there is a strong qualitative di↵erence between even and odd N . Odd branches

extend only in one direction. This is to be expected, since in this case, reversing the sign

of linear perturbations is equivalent to the gauge change �! �+ ⇡. Surprisingly, for odd
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Figure 4.11: Branches of black bar deformations on the (R0,⌦) plane. The right plot is a close-

up showing good agreement with the analytic expansions (orange) and also zooms in on the short

branches. Di↵erent tones of green are being used for di↵erent branches for the sake of clarity.

N branches, ⌦ increases as we move away from the zero modes, and these branches are

also very short.

Even N branches result in the bar breaking apart in N/2 separated blobs. In (R0,⌦)

plane, they behave in a way that is qualitatively similar to the axisymmetric case, and can

therefore be classified in two types. If N is a multiple of 4, R0 ! 0 and the mass density

approaches zero at the origin. If N is even but not a multiple of 4, then one of the blobs

stays at the origin, with R0 ! 2. The profiles of the first two symmetric bars (N = 4, 6)

are depicted in figure 4.12.

Similar to the axisymmetric branches, even N branches can be extended far away

from the black bar to the arbitrarily small ⌦, in which the mass profile approaches to the

multiple blobs located in the almost equal interval. Again, we observe these intervals grow

very slowly at the same logarithmic rate as that of ring-like blobs in the axisymmetric

branches. Therefore, one can expect these branches finally would pinch o↵ to the array of

binary black holes.

The angular momentum per unit mass is calculated using eqs. (4.33) and (4.34)

J
M =

R
dx dy p�R
dx dym

, (4.161)

with

m(x, y) = exp

✓
R(y)� x2

2`2
?

◆
, (4.162)

p�(x, y) =


(x2 + y2)⌦+

xy

`2
?

+ xR0(y)

�
m(x, y) (4.163)

The phase diagram for the deformed bars is shown in figure 4.13.
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Figure 4.12: Deformed black bars corresponding to N = 4, 6 (dumbbells) for di↵erent values of

⌦. The deformation only shows y-dependence and the dumbbells remain Gaussian in x-direction.
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Figure 4.13: The 10 first dumbbell branches, we also plot the branching points of the odd bar

perturbations marked by points that only give rise to short ‘spindle’ branches.The Myers-Perry

solutions are represented by the thick black curve, and the (non-deformed) black bars by the thick

red curve. Di↵erent tones of green are being used for di↵erent branches for the sake of clarity.

4.5 E↵ects of adding charge

Following the approach of [13] and as already described in section 1.4.1 we can easily

construct the (non-extremal) charged solution corresponding to every uncharged solution.

According to eq. (1.47) for a given charge parameter q = Q

M
and given ⌦, the charged

solution has the profile of an uncharged solution with rotation parameter

⌦q =
⌦

(1� 2q2)1/4
. (4.164)

The (J /M,⌦) phase diagrams for |Q| > 0 are thus the same diagrams as in the

uncharged case with a rescaling of the ⌦-axis by the factor
�
1� 2q2

�
�1/4

. Accordingly

the bumpy branches will appear at the same J /M but at a lower ⌦. As shown in the
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previous sections lower values of ⌦ correspond to more elongated/ further separated blobs,

i.e., adding charge to the black holes leads to stronger deformations. This intuitively can

be understood as charge repulsion deforming the horizon.

4.6 Numerical methods

4.6.1 Axisymmetric sector

Stationary axisymmetric black holes are regular solutions of eq. (4.49) that extend from 0

to r ! 1. Due to singular point at r = 1 from the rotation term it is particularly di�cult

to use of spectral and relaxation methods. For this reason, the approach used in this paper

is essentially a shooting method. By regularity at the origin the ODE can be generally

integrated radially outwards with the initial conditions R(0) = R0 and R0(0) = 0. The

numerical solution will generally become singular at some finite r = rs. In figure 4.14, the

values of rs are shown as a function of the initial condition parameter R0, interestingly the

appearance of singularities is (semi-) continuous in the space of initial conditions which

makes it possible to look for singularities/ peaks where the solution extends to infinity.

These peaks correspond to (approximate) locations of the allowed solutions.

-3 -2 -1 1 2 3
R0

5

10

15

20

rs

Figure 4.14: Values of rs (radius where the solution becomes singular) for ⌦ = 0.3. The solutions

that have to be free of such singularities and extend to infinity appear as sharp peaks, which we

marked here with red dots.

When a branch ends, as for the negative amplitude modes, the peak that represents

it becomes a local maximum, with no divergence whatsoever. This requires us to define a

criterion for a local maximum to be considered a proper peak, or a vanishing peak. The

criterion that has been taken for a peak to be valid is

4.6.2 Black bar deformations

Deformations with even values of N are found in a way which is completely analogous to

the axisymmetric case.
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Odd deformations of bars are described by solutions of eq. (4.160) that have a nonzero

value of R̄0 = R0(0). This increases the complexity of the problem, since it now requires to

tune bothR0 and R̄0 in order to get a solution that extends to infinity both for the negative

and positive sides of the y axis. This complication can be partially circumvented by

noticing that, for the deformed black bars, the change y ! �y is equivalent to R̄0 ! �R̄0.

This means that, if (⌦,R0, R̄0) gives an allowed solution, then so does (⌦,R0,�R̄0). This

fact allows the right values of R0 to be found by requiring the peaks in rs(⌦,R0, R̄0) to

be located at opposite values of R̄0. This is done by the secant root-finding method in a

few iterations. Again, vanishing peaks and fake blobs are discarded in a similar way as in

the axisymmetric case.

4.6.3 Multipole deformations

By using the ansatz (4.120) truncated at some Fourier mode cos(nmaxm�), we obtain a set

of nmax + 1 coupled equations for the functions R(nm)(r). These equations, by imposing

the regularity condition R(nm)
0
(0) = 0 8n, can be solved by specifying the values of the

radial functions at the origin. The problem reduces then to finding peaks in the singular

radius rs(⌦,R0,Rm,R2m, . . . ,Rnmaxm).

Identifying peaks on a function with more than one variable is in general not an easy

task, especially if there is no straightforward way of reducing the problem to one variable

(as in the case of odd deformations of the black bar). For this reason, here we restrict

ourselves to the fundamental Fourier mode, i.e.,we maximize rs(⌦,R0,Rm). We use the

Mathematica function NMaximize to identify the peak by incrementing ⌦ in small steps,

and constraining the search in a small region around the result of the previous step.

Even with this method, the values of the R0,Rm still are a↵ected by small fluctua-

tions (which are likely due to numerical error) around the branch. We correct this by

subsampling the data points.

4.7 Summary of results

In this chapter we have demonstrated that the hydro-elastic equations [31] contain a whole

new class of ‘rippled’ stationary solutions, besides the already known black branes, their

non-uniform deformations [11] and the non-deformed spinning localized black holes [12].

We have constructed solutions that branch o↵ from the singly spinning Myers-Perry

solution directly or indirectly via the black bar branch, which has been already identified

in [12]. We found both axisymmetric and non-axisymmetric solutions, and only the for-

mer ones can remain stationary at finite D, since non-axisymmetric solutions will radiate

gravitational waves. However, with increasing number of dimension the emission of grav-

itational waves becomes weaker, which will allow the non-axisymmetric solutions to be

long-lived.

The axisymmetric solutions described in this paper, we have identified as ring-like

and Saturn-like bumpy black holes, or black ripples in short. They bifurcate from the
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axisymmetric zero modes of Myers-Perry in the ultra-spinning regime. As in the numerical

studies in finite dimensions [61, 62], we found that all branches extend in two directions:

either with a positive or a negative amplitude of the deformation. The direction that

increases the angular velocity leads to a very short branch, the other direction extends

indefinitely at large D. This suggests that the former directions lead to singular solutions,

as observed in previous numerical constructions [61, 62].

Multipolar deformations can not be stationary in a fixed number of dimensions, but

are indicative of ultraspinning instabilities of the Myers-Perry black hole. In high enough

dimension they correspond to long-lived transient objects. We generically call them black

flowers, the simplest case among them is the black bar and it has an analytic solution.

The black bar also has an infinite number of co-rotating zero modes, from which

deformed branches develop: the dumbbells and the spindles. We classify the deformed

bars by the parity of their zero mode as odd and even. Similarly to the ripples, the even

branches go out in two directions. In the spin-down direction, the deformation grows a

dumbbell-like profile with a distinct number of blobs for each branch, and hence we call

them dumbbells. In the opposite direction, we could find only very short branches which

we call spindles. Odd branches turned out very short as well. Odd branches and spindles

correspond to solutions with increased angular velocity. One might expect that both the

spindles and the odd branches end up forming a singularity.

It is very suggestive that the spindle branches correspond to the solutions that develop

sharp pointy endings, as observed dynamically in [87, 15]. These sharp endings of the

deformed bar would be possibly a↵ected by the Gregory-Laflamme instability, presenting

a large number of zero modes close to the end of the short branch. The sharpened tips

could, in principle, pinch o↵ producing detached small black holes.

This process of a black hole developing long arms that end up pinching o↵ has in-

deed been observed in [87, 15], not only for the spindles but also for higher multipole

deformations. We find it likely that these dynamical solutions would correspond to the

short branches described above, i.e., those resulting from exciting the zero modes in the

direction with increasing ⌦. This would apply both to the spindle solutions and to multi-

polar deformations leading to multiple arms. This conjecture is supported by the fact that

short branches go in the direction of decreasing J /M, which should be favored in finite

D simulations since gravitational radiation tends to decrease the angular momentum to

mass ratio of the evolving object.

The method used to identify axisymmetric solutions should be exhaustive, and thus we

do not expect the ripple branches to have their own secondary axisymmetric zero modes.

We expect, on the other hand, that the axisymmetric solutions will become unstable to

multipolar deformations. An indication of a ring-like ripple breaking apart into four black

holes via an m = 4 deformation was already found at large D in [15]. Interestingly,

black rings share the same kind of instabilities and subsequent pinch-o↵s [92, 93, 94, 95].

Such instabilities would begin at zero modes along the branches of ripples. This fact

leaves open the possibility of the ‘long’ multipolar branches actually merging with the

ripple branches at these zero modes. No conclusive results have been obtained about this
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intriguing possibility so far.

We have found no evidence that the long multipolar branches have bifurcations. This

possibility could be analyzed in future work, possibly with an improved numerical setup.

The dumbbell branches end as an array of separated black holes and thus seem unlikely

to have further zero modes.

In the formalism employed here, the e↵ect of the charge is simply incorporated in

the e↵ective angular velocity ⌦q = ⌦/(1 � 2q2)1/4 as in [13]. Therefore, with a given

value of charge and ⌦, the corresponding charged solution is immediately obtained from

the uncharged one. Due to the factor
�
1� 2q2

�
�1/4

, the charged deformed branches will

appear for the same J /M but for a lower ⌦, which corresponds to more elongated/further

separated blobs. This can be interpreted as the e↵ect of the charge repulsion. Since all

the analysis is written in terms of ⌦q, one can take the extremal limit q2 ! 1/2 of

all branches, keeping ⌦q finite, resulting in a smooth limit, that leads to rather strange

deformed ‘extremal’ branches, both with and without rotation. The proper large D limit

of extremal horizons is however yet unclear, and a more careful analysis seems appropriate.

Fate of far extended branches All ‘long’ branches (corresponding to bulging defor-

mations) extend far away from the original bifurcating points in the phase space, where

they develop broad thin regions. Currently, very little is known about how to interpret

these nearly zero thickness regions in the large D e↵ective theory. In the case of spherical

black holes the thickness falls o↵ towards infinity as a Gaussian profile, which might be

interpreted as the round tip of the black hole. Therefore, if the deformation develops a

thin neck between blobs, and its size grows infinitely large, one can expect such defor-

mation to end up as a pinch o↵ of the horizon at finite D. This would correspond to a

topology-changing transition.

We found that the ripple branches develop such long thin necks connecting Gaussian-

shaped ring blobs (with a central blob in the case of Saturns) at their final stages of

deformation. Particularly, we observed that the separation process involves two distinct

length scales. From the numerical solutions, we could easily estimate that the radii of

ring blobs grow like ⌦�1 as ⌦! 0. The same behavior has been derived in the blackfold

approach [84, 89], which might imply that the blackfold approximation becomes already

accurate in the pinch o↵ phase, due to the localization of gravity at large D. Another

scaling is that of the intervals between ring blobs, which are estimated as ⇠
p
| log⌦|. Due

to the hierarchy in these two scales, we expect the first pinch o↵ to occur always on the axis,

indicating a first topology change to a bumpy black ring/Saturn, before transitioning to

the multi-rings/Saturns, as observed in the (+)3-branch of D = 6 bumpy black holes [62].

Dumbbell branches also extend far away from the black bar to arbitrarily small ⌦,

where the mass profile approaches that of multiple evenly spaced blobs. As opposed to

the ripples, dumbbells show only a single scaling, which has the same logarithmic growth

as the intervals between the ring blobs in the case of ripples. Therefore, one can expect

that these branches would finally pinch o↵ to multiple black holes11.

11Or one might say ’rotating black hole array’.
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Finite D e↵ects The blob coordinate is supposed to be identified as the small patch of

the
p
D-amplified entire coordinate.12 Therefore, the blob approximation will break down

if the length of the thin neck reaches ⇠
p
D, when the 1/D corrections are included. This

breakdown will give some information on the transition in phase space. For example, the

pinch o↵ from the ripples to black rings or Saturns will take place at ⌦ ⇠ 1/
p
D. Actually,

black rings are already constructed by using the large D e↵ective theory approach in the

same scaling [28, 78]. This implies that one can use the e↵ective theory result as the global

setup to solve the local topology-change. For other logarithmic scalings ⇠
p
| log⌦|, the

break down will occur at much smaller spin ⌦ ⇠ e�D. In the black string analysis, a

similar type of breakdown is already seen after including 1/D corrections [11]. The black

hole entropy is another important quantity to evaluate the stability of the solutions. Since

the mass and entropy become degenerate at D ! 1, we would need to know the next-

to-leading order terms in 1/D expansion to calculate the entropy di↵erence for a given

mass.

Blob-Blob interactions For the ripples and dumbbells, we observed a universal scaling

of the blob distance as
p
| log⌦| at ⌦ ! 0, implying an e↵ective interaction between the

blobs (or ring-like blobs). This indicates the possibility to reconstruct the large D e↵ective

theory as a particle-like (or soliton-like) e↵ective description of blobs weakly interacting

via very thin necks. This possibility will be pursued elsewhere.

The origin of this logarithmic dependence, though very naively, might be understood as

a force balance between the centrifugal force and the attraction between the blobs at large

D. Assuming a black hole of radius rH and an orbiting particle, the gravitational force is

approximated as (rH/r)D and the centrifugal force as ⌦2r. The equilibrium is accomplished

by r/rH ⇠ 1 � 2D�1 log⌦. Therefore, the particle orbit exists very close to the horizon

⇠ | log⌦|/D. This introduces the | log⌦| scaling in the near horizon region. Curiously, if

we assume two adjacent black holes with the same mass, the equilibrium condition would

be modified to r/rH ⇠ 2 � 2D�1 log(eD/2⌦) with eD/2⌦ = O (1) or | log⌦| ⇠ D. This

coincides with the value at which the neck length between blobs reaches
p
| log⌦| ⇠

p
D

and the blob approximation breaks down.

Towards the topology change The topology-changing transition at large D is de-

scribed by the conifold metric which solves the Ricci flow equation [96]. Especially, the

black string/black hole transition is completely solved by the King-Rosenau (KR) solu-

tion for the 2D Ricci flow. Some of the topology-changing transitions (Saturn-like ripples,

dumbbells) can be reduced to the 2D Ricci flow problem in the co-rotating frame, since

the transition occurs in a very narrow region. Hence, they should also be solved by the KR

solution, due to the rigidity in 2D compact ancient flow [97]. For the transition between

ring-like ripples and black rings, we need a better understanding of the 3D Ricci flow.

Here we should note that, in the case of the black string/black hole transition, one

just has to give the global configuration (such as the black hole (blob) radius and the

12This is only an estimate from the Myers-Perry solution, in which the exact coordinate match is known.
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compactification scale) as boundary conditions for the conifold metric, without considering

the force balance condition. Now, for example, if we consider the transition between a

dumbbell and binary black hole, we also have the rotation ⌦, which will not appear in the

large D conifold analysis after switching to the co-rotating frame. To relate ⌦ with the

mass and separation, one needs to find the proper force balance condition at large D, as

roughly estimated in the previous paragraph.

In the current formalism, we could only follow the (�)-ripple branches for a very short

range. These (�)-branches are shown to develop a single-sided conical horizon on the

equator when they approach the end of their branch [62]. Therefore, it should also be

possible to study the ending phase of (�)-branches using the large D conifold metric and

Ricci flow methods. Di↵erent from the usual pinch o↵ problem, one may have to find the

non-compact Ricci flow solution, in which only one side is the horizon.



Chapter 5

Black hole collisions and

instabilities

5.1 Overview

The cosmic censorship (CC) conjecture [98] roughly asserts that, if one starts with physical

or ’good’ initial conditions GR never produces any observable singularities. Nowadays it

is distinguished between the strong cosmic censorship conjecture and the weak cosmic

censorship conjecture.

Strong CC is concerned with the predictivity of GR and asserts that in generic cir-

cumstances GR will not produce any Cauchy horizons, i.e., that there are situations in

GR where an observer could pass into a part of spacetime that is not predicted by GR

starting from a complete Cauchy slice. In most cases the discussion focuses on the charged

or rotating black holes, which have (when unperturbed) Cauchy horizons in their interior,

which when crossed would allow an observer to receive signals from the timelike singularity

present in the analytical extension of the solution. As such strong CC is often just taken

in a looser sense as a hypothesis about the interior of black holes.

On the contrary weak CC asserts that in GR singularities do not form outside an

horizon. So if they appear, they have to be unobservable to an observer who is often taken

to be in asymptotically flat region outside of the black hole. We will be mostly concerned

with this formulation of CC in this chapter.

It is expected that if classical GR predicts a singularity to form, in an actual physical

situation previous to the formation of the singularity e↵ects of quantum gravity would grow

so large that the classical description ceases to apply. In this sense CC is the assertion

that no low energy configuration evolves into a quantum gravity regime (in a classical time

scale1).

By now there is some evidence that CC is violated: In 4 spacetime dimensions Chop-

tuik found the (fine-tuned) example of critical scalar collapse [99]. In higher dimensions

transitions between di↵erent black hole solutions provide a prominent candidate for viola-

1Otherwise the formation and subsequent evaporation of a blackhole could be taken as a counterexample.

It is however important that the evaporation process is not governed by classical GR only.
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tions of weak CC [51, 85]. In these examples higher dimensional black holes with instable,

elongated horizons evolve towards stable spherical black holes. These evolutions resembles

the breakup of fluid jets or bigger drops into smaller drops.

In this chapter we are going to present our claim [14, 15], that CC is violated in

black hole collisions in higher dimensions. The basic process can be easily understood

as follows and is depicted in figure 5.1: In dimensions D � 6 black holes can form an

elongated horizon after a collision if the total angular momentum is high enough. These

states resemble black bars [54, 12] or black dumbbells [16]. These are elongated rotating

black holes which can exist as stationary objects when D ! 1, and which are expected

to be long-lived (quasi-stationary) at large but finite D, since the gravitational emission

from the rotating bar is suppressed like ⇠ D�D. Because these black holes have elongated

horizons they are susceptible to Greggory-Laflamme type instabilities [32, 51] akin to the

instabilities of Myers-Perry black holes first conjectured in [58].

Figure 5.1: Two spinning black holes collide and form a rotating black bar, which then breaks up

into two outgoing black holes di↵erent than the initial ones (the figures are high-contrast density

plots of the mass density obtained from the numerical simulation of a collision in the large-D

e↵ective theory).

Here we will show that black bars do form in black holes collisions when D � 6, and

are dynamically unstable in a manner qualitatively and even quantitatively similar to the

Gregory-Laflamme (GL) instability of a black string [32, 51]. This is the mechanism that

drives the system to the violation of CC in the black hole collision.

As we will discuss below, the presence of an intermediate quasi-stationary bar is clean-

est when the total angular momentum in the merger is dominated by the initial intrinsic

spin of the black holes, rather than the orbital angular momentum in the collision. In

that case, the intermediate state can be closely matched to a stationary rotating black bar

during several rotation cycles. In contrast, in collisions where the orbital angular momen-
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tum dominates (through sizable impact parameter or collision velocities), the intermediate

state resembles less closely a stationary bar, and more a dumbbell, which pinches down

more quickly than a black bar. We may think of the dumbbell as a bar at a later stage

of pinching, so we regard all these collisions and decays as proceeding within the same

qualitative dynamics.

Our evolutions are performed in the limit D ! 1 where gravitational radiation is

completely absent. One may wonder whether at finite D the radiative spin-down of the bar

can avert the development of the GL-like instability. To investigate this, we estimate the

radiation rate using the quadrupole formula in D dimensions (the emission rate of energy

was obtained in [100], while the emission rate of angular momentum is presented here for

the first time). We find that the radiation is suppressed not only by high dimensionality;

also the spin-down rate is small for long black bars with high spin, since their rotation

velocity is slow. As a consequence, it must be possible to violate CC in a collision of

two black holes if large enough total angular momentum is achieved in the intermediate,

merged phase, to form a long enough black bar. In the terminology of [58], these results

mean that at high spins ‘death by fragmentation’ can occur more quickly than ‘death

by radiation’. However, we have not managed to get reliable estimates for the minimum

dimension in which such long, high-spin bars can form in a black hole collision. This

is due to the current uncertainties in the values of the capture impact parameter and,

more importantly, of the initial emission of radiation in the collision. Therefore, while CC

violation is certainly possible in collisions at large enough D, our estimates do not allow

to be equally sure about the outcome at relatively low D (e.g.,D = 6 or 7).

In addition, we present results for the non-linear evolution of instabilities of ultraspin-

ning black holes. These exhibit remarkably rich structures, see e.g., figure 5.2, which are

strikingly similar to the shapes recently observed in numerical simulations in D = 6, 7 in

[87]. As mentioned in that article, the dynamics of these configurations is expected to

lead to novel violations of CC.

Figure 5.2: Late-time horizon shape of unstable ultraspinning Myers-Perry black holes when

perturbed with a tripolar and a quadrupolar mode, and then evolved with the large-D e↵ective

theory. Further evolution of the black hole suggests that the arms pinch, violating CC through

‘death by fragmentation’ [58]. The quadrupolar ‘star’ and its evolution to singular pinches has

been recently observed in numerical simulations in D = 6, 7 in [87].
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The outline of this chapter is the following. Section 5.2 contains a detailed description

of the ideas, methods, and results in our simulations of black hole collisions, including a

final discussion of the violation of CC. In section 5.3 we perform non-linear evolutions of

the ultraspinning instabilities of MP black holes, which appear to lead to novel violations

of CC. In section 5.4 we study the GL-like instabilities of black bars. Our numerical

results are in agreement with a model that approximates the black bar as a segment of

black string. To estimate how much angular momentum and mass is lost to gravitational

radiation, we compute in 5.5 the quadrupolar angular momentum emission rate and prove

that, for bodies rigidly rotating with angular velocity ⌦, the emission rates of energy E

and angular momentum J satisfy
dE

dt
= ⌦

dJ
dt

(5.1)

in all D.2 Section 5.6 then estimates the radiative spin-down of black bars at finite D,

and compares its timescale with that of the GL-like instability that drives the evolution

towards CC violation. We find that the spin-down of su�ciently long bars is very ine�cient

in all dimensions where they exist (D � 6, and possibly D = 5), and also for shorter bars

in large enough D (D & 8 or possibly lower).

5.2 Collision, merger, and break up

Our main tool are the e↵ective equations for the dynamics of neutral, asymptotically

flat black p-branes in the large D limit as presented in chapter 1. It is worth pausing

to note what the e↵ective equations (1.6), (1.7) achieve for solving the fully non-linear,

time-dependent evolution in a black hole merger and other similarly complex phenomena.

The problem is straightforward: we can specify initial data corresponding to black holes

(i.e., blobs) moving towards each other with by giving them a Galilean boost, and simply

follow the time evolution by numerically solving (1.6), (1.7). Since the equations are first

order in time, we only need to supply the field configuration (m, pi)|t=0 in an initial time

slice. There are no constraint equations to solve or keep track of, nor gauge issues: the

analysis that led to the e↵ective equations disposed of them already. We can directly

read o↵ the gauge-invariant, physical quantities of interest from the outcome of the time

integration. Perhaps even more importantly, the e↵ective dimensionality of the problem

has been reduced by one, since the dependence on the radial variable ⇢ away from the

horizon has been explicitly integrated in the e↵ective theory. Then, our simulations in the

2 + 1 dimensions of the e↵ective theory correspond to 3 + 1 evolutions in the complete

spacetime (plus the n+ 1 = D � 4 dimensions of the “passive” Sn+1).

Interestingly, the e↵ective equations are almost linear, with all the non-linearities con-

fined to the last term in (1.7). That is, this term alone is responsible for the interaction

between the two colliding black holes: without it, they would pass through each other

undisturbed. Both (1.6) and (1.7) resemble di↵usion equations,3 and they produce very

2This result was quoted, without derivation, in [58].
3So the system evolves irreversibly even though the total entropy remains constant.
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stable numerical evolution. Since there is no gravitational radiation at D ! 1, no wave

extraction is required (nor possible!) and the asymptotic behavior needs no special con-

sideration. We simply impose periodic boundary conditions in a square domain in the

spatial directions.

With all these simplifications, black hole collisions can be numerically simulated in not

more than a few minutes in a conventional computer.

5.2.1 Black brane as ‘regulator’

An unavoidable feature of our e↵ective theory of black holes is the presence of a black

brane horizon at all points. The Gaussian profiles (2.25) and (2.66) extend all the way

to infinity on the brane, and so the black holes are never completely localized—indeed,

the presence of a non-vanishing mass and area density everywhere is a requisite for the

validity of the e↵ective theory.

Notice, though, that the mass density asymptotes to zero at infinity with exponential

fall-o↵, so the infinite brane background is not a problem for the computation of extensive

physical magnitudes of black holes (their total mass, area and spin), which never diverge.

The Gaussian localization on the horizon is indeed a very basic feature of the large D limit

of spherical (or ellipsoidal) black holes [12]. Observe also that, even if infinitely extended

black branes of constant mass density are GL-unstable, this instability does not a✏ict

the Gaussian blobs; actually, the blobs naturally appear as stable end states of the GL

instability. We may say that the exponential fall-o↵ leaves too little mass density at large

distances to clump into smaller blobs.

Nevertheless, the ever- and omni-present horizon introduces peculiarities in configura-

tions with more than one black hole. In an initial configuration with two blobs, the brane

continuously connects them, and we cannot unambiguously say where one black hole ends

and the other begins—at least not without introducing an arbitrary cuto↵, e.g.,where the

mass density becomes 10�2 of the peak density. And we cannot exactly determine either

the moment when two black holes merge, since they are always part of one and the same

continuous horizon.

More relevant to our purposes, the black brane horizon in (1.2) is always regular and

there never appears a singularity in it. Then, strictly speaking, within this approach we

can never observe a violation of CC—an important point that we will return to in section

5.2.4. In our simulations, as we will see, two blobs approach and merge into a single

one, which then splits into two di↵erent blobs that fly away from each other. But at

all moments the horizon is smooth and continuous; we cannot ascribe a splitting instant

without introducing an arbitrary cuto↵ at low mass densities on the brane.4

4A Gaussian blob can be matched to the pole region of a stationary black hole [12], and the initial config-

uration in the e↵ective black brane theory with two blobs would correspond to the transient, dumbbell-like

black hole formed when two separate black holes touch and quickly merge in a timescale ⇠ 1/D. The

results of [96] (although in stationary configurations) suggest that the ‘neck’ where this merger starts (or

where the eventual break up occurs) a↵ects only non-perturbatively in 1/D the physics in the pole region

that is captured by the black brane e↵ective theory. A more precise characterization of the separation
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Given the smoothness of all the evolutions in the e↵ective theory, we may regard

the ‘black brane background’ as a kind of regulator in the system, which prevents the

appearance of curvature singularities, and which allows the black holes to separate after

a collision without the evolution ever breaking down. In this respect, the black brane

may look similar to the apparent horizon regulator introduced in numerical holographic

collisions in AdS [101]. A distinction between the two is that in our e↵ective theory the

mass density asymptotes to zero, while [101] introduce a small energy density everywhere.

A more significant di↵erence is that in [101], the regulator size can be parametrically

separated from other scales, and therefore it is in principle possible to continuously remove

it from the system, reducing its e↵ects in a controllable manner. This is not possible in our

set up. Therefore, although the ‘brane regulator’ does not impose any serious di�culty for

the initial and intermediate stages in our black hole collisions, it does imply an inability to

follow the evolution through to the putative horizon break up. This is a limitation inherent

to the use of the black brane e↵ective theory, and not merely a practical convenience for

numerical solution, as it is in [101] (and in our own handling of numerics, see section 4.6).

The position we take is that our simulations do show that certain horizons (in colli-

sions, and in the evolution of unstable black holes) develop instabilities that lead them

towards localized pinch-o↵s—the evidence we present for this is clean and clear. For the

further evolution of these horizons, we rely on what is known about the evolution of quali-

tatively related systems, in particular the development of black string instabilities. We will

avail ourselves of all the current information about these in order to construct a strong,

convincing case for the violation of CC. These conclusions should then be tested in future

dedicated numerical simulations of collisions and black hole instabilities at finite D.

Now we can proceed to the results of our numerical simulations.

5.2.2 Initial states

As stated above, in order to supply initial data for our simulations, we only need to specify

an initial configuration (m, pi)|t=0. In the case at hand, we consider the superposition of

two configurations of the form (2.30) centered at positions x1, x2, with initial velocities u1,

u2, mass parameters m0,1, m0,2 and rotational parameters a1, a2. Due to translational,

boost and scale invariance of the e↵ective equations, we can always set, say x1 = u1 =

0,m0,1 = 1, without loss of generality, which shows that the space of parameters has

dimension 7.

For numerical simplicity, we require our configurations to be reflection symmetric,

which guarantees that the intermediate state will form and evolve at the center of our

computational domain. We thus restrict ourselves to configurations of the form

m0,1 = m0,2 = m0, a1 = a = �a2 (5.2)

ux,1 = �ux,2 = u, uy,1 = uy,2 = 0, (5.3)

x1 = �x2 = �x0 y1 = �y2 = �b/2. (5.4)

between the two black holes would require going beyond the leading large-D theory.
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Here, � = ±1 controls whether the spins are aligned or anti-aligned. The parameter

x0 does not play any significant physical role, and it is chosen such that the Gaussian

profiles do not overlap significantly at t = 0. The initial states of our simulations are then

characterized by three physical parameters: the relative velocity u, the impact parameter b

and the intrinsic spin controlled by a. In [14] we focused on configurations within this class

with a = 0. We now expand our exploration of the space of parameters by considering

a � 0. We show examples of our initial conditions in figure 5.3.

Figure 5.3: Initial data for u = 1, b = 2.5, x0 = 3, and a = 0 (left) and a = 0.5, � = 1 (right).

Here we have chosen units m0 = 1.

5.2.3 Black hole collision

Having set up the initial conditions as described above, we follow the evolution of the

system by numerically solving (1.6), (1.7). We use a numerical procedure that we describe

briefly here.

Numerical Methods

We have used two independent codes, with equivalent results: one is written in the Julia

language [102] and the other one in Mathematica. The Julia code uses a two-dimensional

Fourier grid with FFT di↵erentiation in the spatial directions, and the Di↵erentialEqua-

tions.jl package [103] for time integration. The Mathematica code uses finite di↵erences

in the spatial directions and a fourth-order Runge-Kutta method in the time direction.

Collision tomography

Before describing our results, we discuss a convenient way to characterize our final and

intermediate state configurations. In this discussion, we will make heavy use of the sym-

metry assumptions described in section 5.2.2, so our methods are only valid for simulations

resulting from initial conditions within this class.

A necessary condition for a configuration to be at equilibrium is that the maxima of

m(t,x) and pi(t,x) are constant in time. We use this simple criterion as a first check of the

settling-down of a given time-evolving configuration. Moreover, in order to check whether
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a configuration evolves as a connected or disconnected object, we find it convenient to

check for the value of energy density at the origin morigin := m(t,0). In all our initial

states morigin is very close to zero, and this is clearly also the case for two black holes

flying apart from each other.

In order to gain extra information about the spatial distribution of the energy density,

we introduce the tensor of inertia5

Iij(t) =

Z
d2xm(t,x)xixj . (5.5)

We can obtain the principal axes of rotation and e↵ective lengths as eigenvectors and

eigenvalues �1  �2 of the inertia tensor. Going to this frame of reference allows us

to easily identify final states corresponding to MP black holes or bars by comparing the

one-dimensional profiles along the axes with Gaussians.

Final states

Let us now discuss the final states obtained in our collisions. First, note that when b is

su�ciently large, the black holes almost do not interact. This appropriately reflects the

fact that at large D the interaction between two massive objects decreases very quickly

with the distance.6 All the interesting cases thus lie in a region in parameter space where

0 < b < bcrit, with bcrit being a complicated function of a and u. While it may be

interesting to determine the shape of this function, we do not attempt it here. We will

assume below that we are always in the regime in which a non-trivial intermediate state

forms, i.e., in which a non-trivial interaction of the black holes takes place.

A very important finding of [14] is that, at least for a = 0 in our highly symmetric

configurations, the type of final state that we arrive at does not depend separately on u

and b, but only on J/M , the total angular momentum per unit mass of the system.

Although we have found that this result holds for a large fraction of the parameter

space, an extensive exploration reveals that, for su�ciently high initial speeds, there are

more exotic intermediate configurations in which additional lumps of energy emerge along

the line that connects the two drifting black holes. This indicates that the scattering of

black holes may not be only of the types

2 ! 1 ,

2 ! 2 ,

that were considered in [14], but more generally

2 ! N = 1, 2, 3, 4 . . . (5.6)

5This di↵ers from the conventional definition by a trace term, but it is equally good for our purposes.
6This is a little too glib. The range of the gravitational interaction between two separate black holes

is ⇠ 1/D (in units of the horizon radius), while the distances along the brane in the e↵ective theory are

much larger, ⇠ 1/
p
D. In the e↵ective theory the direct gravitational attraction does not play any role,

instead it captures well the elastic-type interaction between two black holes that have merged into a single

horizon—see footnote 4.
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Such scatterings may be of interest, but their casuistics seems fairly complex. Henceforth

we will assume that our initial speeds are small enough that the scattering is always 2 ! 1

or 2 ! 2.

For relatively small initial speeds—with our without initial intrinsic spins—, the avail-

able final states for a given value of J/M can be predicted simply from the stability

properties of the black holes and bars in the phase diagram in figure 2.4. More concretely,

for J/M < 2 the final states are MP black holes, while for 2 < J/M < (J/M)crit = 4/
p
3

the collisions form bars. This critical value of J/M corresponds to the first parity-even

marginal mode of the bars in (2.143): the dumbbell deformation of the bar. For J/M above

(J/M)crit, the intermediate state formed in the collision breaks up. As we elaborate later,

this is the signal of evolution towards a violation of CC.

We have checked that introducing spin a > 0 opens a new channel for violation of

CC. Most notably, we will show that the intermediate state of collisions of spinning black

holes can be quantitatively accurately approximated as almost stationary black bars. This

confirms that the mechanism responsible for their break up is the GL instability.

We have not made a detailed analysis of what is the precise final state after the horizon

break up, i.e.,what is the outgoing impact parameter and the spins and velocities of the

outgoing black holes, and how strongly these depend on initial state properties other than

the total J/M . But it is possible to extract some generic features. In particular, we expect

that the spin of the final black holes is smaller than that of the initial black holes, since

when the horizon breaks up, it does so from a fairly long black bar, and therefore the

outgoing impact parameter is larger than the initial one. Then, the final orbital angular

momentum is larger than the initial one, and so the intrinsic spin must be smaller. For

instance, this is visible in figure 5.1, where the initial black holes look larger than the final

ones, even though they necessarily have the same mass, but the size of the blobs, for a

given mass, is larger for larger spin. With larger initial impact parameter or velocities the

situation is less clear, and probably the initial and final spins are more comparable.

In Figure 5.4 we show the final states of simulations with parameters in the following

range:

• Varying Initial Velocity: u 2 [0.1, 1.7], b = 3, x0 = 3, a = 0

• Varying Impact Parameter: u = 1.7, b 2 [0, 3], x0 = 3, a = 0

• Varying Spins: u = 0.5, b = 0, x0 = 5, a 2 [0, 1.25],� = 1

Within this domain in parameter space, whether the collision is 2 ! 1 or 2 ! 2 can be

predicted from the sole knowledge of the initial value of the total J/M (which is conserved

along the evolution).

Intermediate black bars

As discussed above, the intermediate states of the collisions that yield CC violation have

the form of bar-like objects. This, combined with the fact that no stable bars are observed
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Figure 5.4: Final states of collisions for varying impact parameter, initial velocities and spins. The

dashed and continuous lines correspond to stationary MP black holes and black bars. The left plot

is superimposed on the phase diagram of figure 2.4. The right plot shows the (squared) longitudinal

and transverse axial lengths `2k and `2? described in (2.69) of the final states, and provides more

detailed evidence that the collision forms a rotating black bar. The values of `2k and `2? are obtained

by linear regression of logm with respect to r2 along the longitudinal and transverse directions,

respectively. We see that the initial value of J/M (conserved along the evolution) predicts the end

state. The vertical dash-dotted orange line shows the onset of the fundamental symmetric mode of

the black bar. We observe certain configurations lying beyond this line, but these are not stable:

their appearance is an artifact of running the simulation for a finite amount of time.

to form above the threshold predicted by the marginal mode computation, suggests that

the mechanism for the pinching o↵ is the GL instability present in the black bars. However,

there is a possible caveat: in the a = 0 simulations the intermediate states are highly

distorted elongated objects, which makes the comparison with actual bars rather indirect.

It turns out that this argument can be put on a quantitative basis in the case of initial

spinning black holes, as we now show in detail.

Let us consider for concreteness the case of a collision with a = 0.99, b = 1.2, u = 1.2.

The energy density of the black holes is such that m0 = 1. For these parameters, J/M =

2.69, so we expect the formation of a bar-like object which should then break apart since

we are in the region of unstable bars. This is indeed the case, as we show in Fig. 5.5,

where we depict the time evolution of the maximum of the mass density and its value at

the origin. We see that mmax = m(0,0) for a long part of the evolution, which corresponds

to the interval in which a metastable bar exists. At later times, mmax > m(0,0), indicating

that the break up has taken place.

We show the profiles of the energy and momentum at a time in which there is rigid

rotation in Fig. 5.6. To ease visualization, we only show these at the principal axes, as

defined by the inertia tensor (5.5). We compare these to the values of an analytic bar,

with ⌦ given by the initial data ⌦ = M/J ⇡ 0.37 and mmax extracted from the numerics.

We observe that there is excellent agreement between the configuration and that of an

analytic black bar.
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Figure 5.5: Time evolution of the maximum of the energy density mmax and its value at the

origin m(0,0). After a short period, these two values become equal, signaling rigid rotation. At late

times, their values begin to di↵er, as a consequence of the break up of the bar. We extract the

profiles at a time t ⇡ 22, shown in red, and plot them in Fig. 5.6 below.
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Figure 5.6: Values of the profiles at t ⇡ 22 along the principal axes, in blue and yellow. The

data points correspond to the numerical data, while the solid lines show the analityc profiles in

(2.66), (2.20). The value of ⌦ is obtained from our initial data, while mmax is extracted from the

numerics.

5.2.4 Violation of Cosmic Censorship and subsequent evolution

Singularity formation

We now have proven that the collision of two black holes at very large D, and with

high enough total angular momentum, forms an intermediate, elongated, bar-like horizon

that then pinches at its middle. However, as we discussed above, in the e↵ective theory at

D ! 1 the pinch never shrinks to zero size, since at any finite distance on the brane there

is always a non-zero thickness of the horizon. If 1/D corrections to the e↵ective theory

were included, their e↵ects would grow large as the pinch becomes thinner, rendering the

large-D expansion inappropriate as an approximation to finite values of D. In other words,

the large-D approach employed here does not by itself allow to reveal the formation of a

naked curvature singularity.

Nevertheless, as argued in [12] and further elaborated here, the instability of the inter-

mediate bar state is, at least at its onset, of the same kind as the GL instability of black

strings, even quantitatively (see section 5.4.2) . We can then draw upon the numerical

simulations at finite D of the non-linear evolution of the GL instability of black strings in

[51] (and of related higher-dimensional black holes in [85, 95]), which convincingly show-
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sthe formation of a naked singularity at a horizon pinch in a finite time. The only e↵ect

that we envisage as possibly preventing a similar evolution of the black bar is a spin-down

back to stability through gravitational radiation emission. This will be the subject of

detailed study in section 5.6, where we show that this emission is very strongly suppressed

for long bars, and also as D grows. Thus, the conclusion seems to us inescapable that at

large enough D the merger with an intermediate long bar will end up producing a naked

singularity.

The point may be raised that the numerical simulations in [51] were performed in

D = 5 (and other relatively low D in [85, 95]), while it is known that above a critical

dimension D⇤ ' 13.6, an unstable black string may evolve into a stable non-uniform black

string, instead of proceeding to a singular pinch [49, 11]. This, however, is not relevant

to our analysis, since it is a consequence of the confining e↵ect of the compact circle that

the black string lives in. In any finite D, if the circle is long enough—compared to the

thickness of the black string—the non-uniform strings are unstable and the evolution will

not stop at them but proceed to pinch o↵ [11]. In the case of a rotating black bar in

asymptotically flat space, there is no limit to the distance to which it can spread, and

thus there is nothing to stop its unstable evolution towards pinch-o↵. Furthermore, we

expect that the centrifugal repulsion will accelerate the pinching faster than in the case of

a black string. Indeed, it may well proceed quickly enough as to prevent the formation of

the small ‘droplets’ that were observed in [51].7

So we see no plausible alternative to the conclusion that, at high enough D, if the un-

stable bar forms, a pinch in the horizon will develop where the curvature grows arbitrarily

large in a finite time: a violation of CC.

Proposal for resolution: Neck evaporation

In our simulations, the ‘brane regulator’ allows us to follow the evolution of the pinching

bar and observe two blobs flying apart. However, as we argued, this regulator cannot be

removed in a parametrically controlled manner from the theory. As a consequence, this

part of our simulations of the system cannot be regarded as ‘proof’ of how the process

unfolds after the singular pinch-o↵. When General Relativity breaks down, the further

evolution requires new laws of physics, arguably a quantum theory of gravity.8 Here we

want to propose a plausible resolution of the singularity such that the input from quantum

gravity is minimal and a↵ects very little the subsequent evolution of the system.

The neck that forms in the horizon has very high curvature, and may be regarded as a

small, ‘Planck-size black hole’, with very high e↵ective temperature. It seems natural to

expect that such an object, without any conserved charges that could prevent its decay,

7A small central droplet at the rotation axis may appear, as we have observed in collisions with high

enough velocities.
8It may well happen that, if string theory is valid and the string coupling constant is small, General

Relativity is replaced by classical string theory that resolves the singularity before reaching the Planck scale.

The picture that we propose does not substantially change: the neck would evaporate at the Hagedorn

scale instead of the Planck scale.
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must indeed quantum-mechanically decay by emitting a few Planck-energy quanta, in a

few Planck times. That is, we propose that the neck evaporates in much the same manner

as the neck that forms in a fluid-jet evaporates (literally) and breaks the jet into a number

of droplets. This break-up is not described by classical hydrodynamics, but rather by

molecular dynamics; however, hydrodynamics quickly resumes control of droplet evolution

after the brief episode of evaporation. Similarly, classical General Relativity resumes after

the horizon breaks up, and controls how the two resulting black holes fly apart.

Note also that, although the evaporation of the neck is reminiscent of the expected

endpoint of Hawking evaporation, in the case of a black string the evolution towards the

Planck-size object is governed by classical dynamics and therefore is una↵ected by the

unitarity paradox.

If this picture is correct, then the evolution of the black hole collision and merger

will result in a horizon pinch, which then quickly evaporates through quantum-gravity

e↵ects (just a little ‘pixie dust’) and yields two outgoing black holes. The loss of classical

predictivity is very small: the horizon bifurcates with a variation of the horizon area

(increase or decrease) of only Planckian-size, and the uncertainty in the outgoing scattering

angle will be proportional to at most a power of (MPlanck/M), where M is the total mass

of the system. Hence, the indeterminacy is a parametrically very small number for any

macroscopic initial mass. Predictivity of the entire evolution using General Relativity will

be maintained to great accuracy. Except for the details of the break up, the picture we

have presented in figure 5.1 will then be essentially correct.

5.3 Non-linear evolution of ultraspinning black hole insta-

bilities

Our setup also allows the e�cient simulation of the non-linear evolution of instabilities,

such as those of ultra-spinning MP black holes [58]. We will not attempt a detailed

quantitative study, but rather a preliminary qualitative investigation of which intermediate

and end states appear in the evolutions.

The development of the instabilities is quite di↵erent depending on whether they are

triggered by axisymmetric or non-axisymmetric perturbations. In generic cases, the latter

will dominate the evolution of an unstable black hole (see figure 5.7). We find that

the unstable black hole sheds o↵ its ‘excess’ angular momentum (i.e., the spin above the

stability limit of MP black holes) by breaking o↵ smaller black holes. In the terminology

of [58], this is ‘death by fragmentation’, since ‘death by radiation’ is outlawed in D ! 1.

We expect (see section 5.6) that at large enough D and large enough spin this violent,

CC-violating chastisement of overspeeding black holes also prevails over the milder, CC-

preserving radiative correction to stable, lower spin states. As D increases, the value of

the spin for which the CC-violating evolution occurs becomes smaller.

As a first case of interest we study non-axisymmetric perturbations of an ultraspinning

black hole with a = 3 . For each multipole m� we consider the fundamental mode (with
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Figure 5.7: Growth rates W of unstable modes of MP black holes at D ! 1, as a function of

the spin per unit mass J/M of the black hole (as calculated in [26, 12]). Higher non-axisymmetric

modes (‘m�-poles’) become successively dominant as the spin grows, and generically overwhelm

the development of axisymmetric ‘ring’ deformations.

the least nodes in the polar direction r, i.e.,m� 6= 0 and k = 0 in [12], which first appear

as marginal modes at the values (2.88)). The first one is the dipole m� = 2 mode, with

similar dynamics as for the collision process, but in this example at a very large spin

J/M = 6. The dipolar perturbation leads to the formation of an elongated horizon that

resembles closely a stationary black bar. It then quickly decays into two smaller black

holes after a formation of a dip in its middle.

Figure 5.8: Intermediate states of the evolution of the MP black hole with a = 3, after perturba-

tions with m� = 2, 3, 4, 5 (from left to right). These are again high-contrast density plots, where

this time the minimal value that appears as black was chosen low enough to highlight the full

structure, i.e., these plots do not represent well that the relative mass density, which is higher in

all places where blobs form.

For perturbations with m� � 3, a novel set of intermediate states appear, which grow

‘arms’ as shown in figure 5.8. While growing longer and thinner during evolution, these

arms develop a GL-like instability on their own and pinch o↵, leaving behind a number

m� of small black holes that get slung away from the central MP black hole, which now

has a spin within the stability bounds.

Figure 5.9 shows snapshots of the evolution in the case of a perturbation with m� = 4.

These are strikingly similar to the images presented in [87] for the evolution of MP black
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holes at spins high enough to excite the unstable quadrupole mode (see their figure 6).

Figure 5.9: Snapshots of time evolution for the MP black hole with a = 3, perturbed by the

fundamental m� = 4 mode

Next we examine the first axisymmetric perturbation (which appears as a marginal

mode at a =
p
3 (2.87), i.e.,m� = 0 and k = 2 in [12]) for the same MP black hole with

a = 3 added with a positive amplitude. Figure 5.10 shows snapshots of the evolution.

We find that the instability leads to the formation of a black ring. This was observed in

the axisymmetric numerical evolutions in D = 6 of [85]. However, the axial symmetry

of these rings is expected to break down by non-axisymmetric GL-like instabilities along

the ring, and we do see this phenomenon: the black ring decays following a quadrupole

perturbation that is triggered by numerical noise. Again, this agrees with the instability of

thin black rings observed in [95]. Since our method allows us to evolve past the pinch-o↵

we can observe four spherical black holes flying apart as the end state of the process.

Figure 5.10: Snapshots of time evolution of a ring-like axisymmetric perturbation of the MP

black hole with a = 3. The eventual breakdown of axial symmetry is triggered by any generic

perturbation, such as numerical noise.

Lastly, we consider the possibility of adding the above marginal mode, m� = 0 and

k = 2, again for a MP black hole with a = 3, now added with an opposite (negative)

amplitude, i.e., a (�)-branch evolution. We observe, that instead of forming a dip in the

middle of the MP black hole, one or more ringlike objects are emitted that move rapidly

outwards and do not break up for the duration of our simulation.

5.4 Black bar instabilities

As for MP black holes, we can follow the non-linear evolution of the instabilities of black

bars.
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Figure 5.11: Snapshots of time evolution of a ‘negative’ ring-like axisymmetric perturbation of the

MP black hole (with rotation parameter a = 3). The initial perturbation has amplitude opposite

to the one in figure 5.10, i.e., a bulge at the center, instead of a pinch.

5.4.1 Spindles and Dumbbells

Fo reflection invariant initial conditions like in the symmetric collisions considered here, the

fundamental symmetric mode of black bars is of most relevance to us. It gives rise to two

branches of solutions in phase space, depending on the sign of the amplitude with which the

perturbation is added. Let us first consider the negative sign, which (by our conventions)

leads to a spindle-like deformation. Figure 5.12 shows snapshots of the evolution. These

spindles resemble horizon shapes observed in [87] in the numerical evolution of dipolar

MP instabilities in D = 6, 7. The formation of pointy tips is followed by the development

of arms, similar to the ones observed above for MP black holes. The arms subsequently

pinch o↵, sending away two small black holes.

Figure 5.12: Snapshots of time evolution of the fundamental ny = 4 mode added with negative

amplitude (i.e., creating a bulge in the middle, instead of a pinch).

Since the qualitative evolution of the fundamental symmetric mode has already been

described in earlier sections, here we will only estimate instability rates for this mode and

the total duration of break-up.

5.4.2 Black bar decay rates

We expect the unstable modes of the black bars to behave as

��A = eWt��̂A(r,�� ⌦t) , (5.7)
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where �A = m, pr, p�, and W is the purely real instability rate. It is possible to estimate

W close to the onset of the zero modes that appear when ⌦ = ⌦ny
, (2.143), by comparing

to the analytic solution for the GL growth rate for a black string of length L and radius

r0 = 1 at large D [56],

Ws =
2⇡

L

✓
1� 2⇡

L

◆
. (5.8)

Close to the marginal mode at L0 = 2⇡, this behaves as

Ws ⇡
L

2⇡
� 1 . (5.9)

Since the length of a black bar is inversely proportional to its angular velocity, (2.72),

we relate the relative deviation from the zero modes of the black bar and the string as

L

L0

⇡
⌦ny

⌦
. (5.10)

This leads to the estimate

W ⇡
⌦ny

⌦
� 1 =

1

⌦

p
ny � 1

ny

� 1 =
J

M

p
ny � 1

ny

� 1 . (5.11)

This estimate turns out to be in remarkable agreement with the growth rate of the

fundamental symmetric mode ny = 4, as measured from numerical solutions. We extract

it from the quantity

�0 ⌘ |morigin(t)�morigin(t = 0)| (5.12)

i.e., the deviation of the central mass density from its initial value. In figure 5.13, �0 is

plotted as a function of time for several values of J/M .

Figure 5.13: Deformation of the black bars at their center, as a function of time, for several values

of J/M . Perturbations of all unstable bars (J/M > 4/
p
3) present a phase of exponential growth

given by the linear growth rate W of the dominant mode. The zero mode with ny = 4 is recovered

as the growth rate vanishes at the threshold of the instability, W (J/M = 4/
p
3) = 0. Also, for

very long bars, W (J/M ! 1) ! 1/4, recovering the dominant growth rate of a black string.
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By numerically evaluating the growth rate of the �0(t) curves in their phase of expo-

nential growth (in our case, when �0 ⇡ 10�2), we can obtain an estimate for the instability

rate W of the fundamental mode. This is depicted in figure 5.14, where it is manifest that

the black-string-like relation (5.11) is satisfied with remarkable accuracy for values of J/M

close to the threshold value for the ny = 4 mode. At large values of J/M , W asymptotes

to the infinite black string value of 1/4 as expected.

Figure 5.14: Growth rate W of the dominant unstable mode of the black bars as a function of

J/M . The rates are computed by linear regression of the curves in Figure 5.13 at a value of the

deformation of 10�2. The blue dashed line is the black string approximation to a black bar.

We conclude that, at least at its onset, the instability of black bars is of the same

qualitative and quantitative nature as the GL instability of black strings. This lends

further support to the overall picture we presented here.

5.5 Gravitational radiation in D dimensions

We intend to estimate the energy and angular momentum radiated into gravitational

waves by a rotating black bar using the quadrupole formula in D dimensions. For this

purpose, we begin in sec. 5.5.1 by modelling a black bar as a rigidly rotating ellipsoid. In

sec. 5.5.2 we apply to this model the result of [100] for the energy radiation rate. The

general formula for angular momentum radiation was not derived in that reference, so

we obtain it anew in sec. 5.5.3. Then, in sec. 5.5.4 we use it to prove that the radiation

rates of energy and angular momentum for uniform, rigidly rotating objects (such as the

rotating ellipsoidal bar) are related in a simple manner, eq. (5.77).

5.5.1 Black bar as a rotating ellipsoid in D dimensions

We model the black bar by a D� 1-dimensional spheroid with long axis `k, short axis `?,

and radius r+ for the remaining round sphere factor SD�3. This is a rigid body described



5.5. GRAVITATIONAL RADIATION IN D DIMENSIONS 109

in co-rotating coordinates y1(t), y2(t), as

B =

(
yi 2 RD�1

�����
y2
1

`2
||

+
y2
2

`2
?

+
1

r2
+

D�1X

i=3

y2i  1

)
, (5.13)

where y1(t), y2(t) are related to the inertial coordinates as in (3.15).

Given a mass distribution T 00(t, x), we introduce the tensor

M ij =

Z

B
dD�1xT 00(t, x)xixj , (5.14)

from which we subtract the trace to obtain the quadrupole moment tensor

Qij = M ij � 1

D � 1
�ijMkk . (5.15)

In order to compute (5.14) we shall use the integrals,

Z
d⌦D�2 ninj =

⌦D�2

D � 1
�ij , (5.16)

Z
d⌦D�2 ninjnlnm =

⌦D�2

D2 � 1
(�ij�lm + �il�jm + �im�jl) , (5.17)

where ni = xi/|x| is the unit vector, and ⌦D�2 is the volume of SD�2,

⌦D�2 =
2⇡(D�1)/2

�[(D � 1)/2]
. (5.18)

Then, assuming a constant mass density ⇢ for the black bar,

M11 =

Z

B
dD�1y T 00(0, y)

�
y1 cos(⌦t)� y2 sin(⌦t)

�2

= `||`
3

?
⇢
rD�3

+

D + 1

⌦D�2

D � 1

 ✓
`||
`?

◆2

cos2(⌦t) + sin2(⌦t)

!
,

M22 =

Z

B
dD�1y T 00(0, y)
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y1 sin(⌦t) + y2 cos(⌦t)

�2

= `||`
3
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⇢
rD�3
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`||
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!
, (5.19)

M12 =

Z

B
dD�1y T 00(0, y)

�
y1 cos(⌦t)� y2 sin(⌦t)

� �
y1 sin(⌦t) + y2 cos(⌦t)

�
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3

?
⇢
rD�3

+
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⌦D�2
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  ✓
`||
`?
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� 1

!
sin(⌦t) cos(⌦t)

!
. (5.20)

Note that these are the only components that can be time-dependent for our setup.

The mass of the bar is9

M =

Z
dD�1xT 00(t, x) =

Z

B
dyD�1⇢ = `||`?⇢

rD�3

+

D � 1
⌦D�2 . (5.21)

9In order to unclutter the notation, in this section we denote the physical mass and angular velocity by

M and ⌦, instead of M and ⌦ as in the main text.
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So we have

M11 =
M`2

?

D + 1

 ✓
`||
`?

◆2

cos2(⌦t) + sin2(⌦t)

!
, (5.22)

M22 =
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!
, (5.23)

M12 =
M`2

?

D + 1
,

  ✓
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sin(⌦t) cos(⌦t)

!
. (5.24)

Noting that the trace M ii is time-independent, we can obtain

(@t)
pQij = (@t)

pM ij . (5.25)

5.5.2 Radiative power of a black bar

Ref. [100] obtained the radiative power of a slowly moving distribution of matter in D

dimensions, characterized by the tensor Mij (5.14), as

dE

dt
=

22�DG(D � 3)D

⇡
D�5
2 �

⇥
D�1

2

⇤
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2

t
Mij(t)@

D+2
2

t
Mij(t)�

����@
D+2
2

t
Mii(t)

����
2
#
.

(5.26)

The last term does not contribute for a rotating ellipsoidal bar since we have shown in

appendix 5.5.1 that in this case the trace Mii is time-independent. Inserting the results

for the tensor components we obtain (5.67).

5.5.3 Angular momentum radiated by slowly moving objects in D di-

mensions

Ref. [100] did not compute the quadrupolar radiation rate of angular momentum in D

dimensions, so we derive it here from the start.

The angular momentum is given by

J ij =
1

16⇡G

Z
dD�1x

h
��[ik�j]lḣTT

ab
xk@lhTT

ab
+ 2�[ik�

j]
lh

TT

ak
ḣTT

al

i
, (5.27)

with hTT

ab
the gravitational perturbation in transverse traceless gauge. The first summand

corresponds to an angular part and the second to the spin part of the spin 2 perturbation.

Since we can interpret the integrand of equation (5.27) as the averaged angular momentum

density hjiji, this implies that the rate of radiated momentum is

dJ ij

dt
=

1

16⇡G

Z
dD�2⌦ rD�2

h
��[ik�j]lhTT

ab
xk@lhTT

ab
+ 2�[ik�

j]
lh

TT

ak
ḣTT

al

i
. (5.28)

Define h̄µ⌫ via h̄µ⌫ = hµ⌫ � 1

2
h⌘µ⌫ . In Lorenz gauge @µh̄µ⌫ = 0 it satisfies

⇤h̄µ⌫ = �16⇡GTµ⌫ . (5.29)
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Then we have the solution [100]

h̄µ⌫(t,x) = �16⇡G

Z
dt0

Z
dD�1

x
0Tµ⌫

�
t0,x0

�
G
�
t� t0,x� x

0
�
+ homogeneous solutions ,

(5.30)

where we are interested in the retarded Green’s function

Gret(t,x) =
1

4⇡


� @

2⇡r@r

�
(D�4)/2


�(t� r)

r

�
, (5.31)

as long as D is even. It is convenient to introduce the transverse traceless projector

constructed via Pij(k̂) = �ij � kikj ,

⇤ij,kl(k̂) = PikPjl �
1

D � 2
PijPkl . (5.32)

Explicitly,

⇤ij,lm(k̂) =�il�jm � k̂j k̂m�il � k̂ik̂l�jm +
1

D � 2

⇣
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⌘

+
D � 3

D � 2
k̂ik̂j k̂lk̂m . (5.33)

With this, we can extract the transverse traceless (TT) part of hkl in harmonic gauge

hTT

ij = ⇤ij,klhkl = ⇤ij,klh̄kl , (5.34)

so outside the source we can put the field in TT-gauge

hTT

ij (t,x) = 4G⇤ij,kl(n̂)
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(5.35)

We consider only the part of Green’s function with the weakest fall-o↵ since we are inter-

ested in an expansion in the wave-zone, which gives

hTT

ij (t,x) = �8⇡G⇤ij,kl(n̂)
1
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Now we expand using the small extent d of the source, defining r = |x|, n̂ = x
r

��x� x
0
�� = r � x

0 · n̂+O

✓
d2

r

◆
, (5.37)

which gives

hTT

ij (t,x) = �8⇡G⇤ij,kl(n̂)
1

(2⇡r)(D�2)/2
@

D�4
2

t

Z
dD�1

x
0Tkl

�
t� r � x

0 · n̂,x0
��

. (5.38)

The next approximation is the Newtonian approximation for slow internal velocities of the

source: For this consider the Fourier transform of the stress-energy tensor

Tkl

✓
t� r

c
+

x
0 · n̂
c

,x0

◆
=

Z
dDk

(2⇡)D
T̃kl(!,k)e
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·n̂/c)+ik·x0

, (5.39)
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which we can expand in !d

e�i!(t�r+x0
·n̂) = e�i!(t�r)
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which corresponds to the expansion in x
0 · n̂ ,
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Define the momenta of the stress-energy tensor

Sij(t) =

Z
dD�1xT ij(t,x) , (5.42)

Sij,k(t) =
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dD�1xT ij(t,x)xk , (5.43)
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With this, eq. (5.38) becomes
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(5.45)

which we can approximate as

hTT

ij (!,x) ' 8⇡G⇤ij,kl(n̂)
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Now using conservation of the stress-energy tensor and using (5.14) we can show that

Sij =
1

2
M̈ ij . (5.47)

We can write equation (5.46), using (5.47), (5.15), and the properties of the ⇤-tensor
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or equivalently, in position space,
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Now consider the orbital part of equation (5.28) and use (5.49)
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When calculating @lQTT
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After some algebra we obtain
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which can be calculated using (5.33) and (5.16) . These integrals are everything we need

since the term containing a product of 4 ni vanishes due to antisymmetrization. With this

we obtain
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The calculation of the spin part gives
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dt
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Using the identity

⇤al,mn⇤ak,cd = Pln⇤mk,cd �
1

D � 2
Pmn⇤kl,cd , (5.55)

and antisymmetry we find
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Adding both contributions we obtain the final result
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5.5.4 Radiation rates of energy and angular momentum for rigidly ro-

tating objects

A body rotating rigidly in the (1, 2)-plane with an angular velocity ⌦, such as the rotating

ellipsoidal bar of section 5.5.1, is described by a mass distribution that will appear static
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in its inertial frame defined by (3.15). To simplify calculations it will be convenient to

introduce polar coordinates (r̃, �̃) for the rotation plane of the inertial frame. These are

related to the static coordinates xi according to

x1 = y1 cos(⌦t)� y2 sin(⌦t) = r̃ cos(�̃+ ⌦t) ,

x2 = y1 sin(⌦t) + y2 cos(⌦t) = r̃ sin(�̃+ ⌦t) . (5.58)

In these coordinates we calculate the momenta of its mass distribution

M11 =

Z
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2
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2
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⌘

= fM11 cos(2⌦t)� fM22 sin(2⌦t) + const. , (5.59)
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M12 =
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r̃2 cos(�̃+ ⌦t) sin(�̃+ ⌦t)
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= fM11 sin(2⌦t) + fM22 cos(2⌦t) + const. , (5.61)

where we defined

fM11 =
1

2

Z
dD�1y T 00(0, y)y1y1 ,

fM22 =
1

2

Z
dD�1y T 00(0, y)y2y2 , (5.62)

as the momenta of the mass distribution in the co-rotating frame.

With this we can evaluate the tensor structures appearing in eq. (5.26), (5.57). Noting

again that the trace does not show time dependence we calculate
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and
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t
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(2⌦)D
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(fM11)2 + (fM22)2

⌘
. (5.64)

Inserting these into eq. (5.26) and (5.57), and comparing the results, we obtain (5.77).

5.6 Spin-down from gravitational radiation

A rotating black bar has a varying quadrupole mass moment and will necessarily emit

gravitational radiation in any finite D. This radiation will carry away both energy and

angular momentum, so the ratio J/M will change over time, possibly decreasing quickly

enough that the bar enters a regime of lower J/M where it is stable. If this were the case,

instead of proceeding to pinch-o↵, the bar would spin itself down through gravitational
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radiation to a stable MP black hole, thus thwarting the evolution towards CC-violation.

Already in [56] generic arguments were given that at very large D the emission of radiation

is very strongly suppressed; here we attempt to be much more precise about the e↵ect.

Ref. [54], and more recently [87], have followed numerically the evolution of the

transient black bars that form from the ultraspinning instability of MP black holes in

D = 6, 7, 8. Both references find that the black bars return back to MP black holes after

radiating their excess spin. Indeed, ref. [87] reports huge emissions of the initial mass

(31%) and angular momentum (50%) into gravitational waves in D = 6.

These results may seem to go against—or at least not provide support for—our claim

that black bars become GL-unstable. The simplest interpretation is that in the relatively

low dimensions considered in [54, 87] the emission is not suppressed enough to let the

GL instability grow, but in higher dimensions the latter should dominate. While our

arguments make this almost certainly true, we also believe that a stronger case can be

made, since we can argue that down to D = 6, long black bars with large enough spin, if

they form, radiate too slowly to prevent the development of the GL instability towards a

naked singularity.

At first this sounds bizarre: shouldn’t a long bar with large angular momentum radiate

more copiously than one that is shorter and has smaller spin? This reasoning misses the

property, seen in (2.71) and (2.72), that black bars with large J/M , although very long,

rotate very slowly, and this is enough to suppress their wave emission. As we shall show

below, the characteristic time for radiative spin-down of a bar of length `k and angular

velocity ⌦ is (in units of mass)

⌧rad ⇠ 1

`4
k
⌦D+2

. (5.65)

So, although lengthening the bar accelerates the radiative spin-down, reducing the angular

velocity suppresses it—and with a stronger power. For a black bar it is the latter e↵ect

that dominates, since `k ' 1/⌦, so

⌧rad ⇠ 1

⌦D�2
. (5.66)

Hence we expect that slowly rotating, long black bars in any D � 6 are almost stable to

gravitational wave emission. Since they are also GL-unstable, and (as we show below) the

growth rate of this instability depends weakly on D, we conclude that long black bars die

by fragmentation and not by radiation.10 However, since shorter bars have been observed

to die by radiation in D = 6, 7, 8, there must be a critical value of the spin per unit

mass which separates the two behaviors. This critical value (which currently we cannot

compute) will decrease as D grows.

Then, the question of whether cosmic censorship is violated in a black hole collision

in a given dimension D hinges on whether high-spin, supercritical long black bars can

10Ref. [87] observes lower wave emission at higher spins in four-armed configurations (figure 5.9), but

attributes the e↵ect to the smaller mass in the arms, rather than to slower angular velocity. In view of our

arguments, the radiative spin down of the black bars observed in [54, 87] is the consequence of having too

low an initial spin.
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form in the merger. To this end, the total spin that can be achieved in the collision is

enhanced by having intrinsic spin in the initial MP black holes. This helps, but is limited

if we require that these black holes are stable. On the other hand, the initial orbital

angular momentum can be increased by enlarging the impact parameter and by increasing

the collision velocity. The former is limited by the maximum value for capture. The

latter is only limited by the speed of light, but the initial state radiation can grow large

as ultrarrelativistic speeds are approached and may lead to considerable loss of angular

momentum. Recall that at large D this radiation is emitted very quickly, in a short burst

of duration ⇠ 1/D, and high frequency ! ⇠ D/r+.

While we have tried to estimate these e↵ects with all the presently available evidence

(including [104, 105, 106, 107, 108, 109]), we have not been able to reach a definite con-

clusion for how high a spin can the intermediate state reach in a collision in D = 6, 7. It

seems plausible, though, that in all dimensions D & 8 collisions can be achieved with high

enough total angular momentum such that the intermediate deformed horizon triggers a

GL-instability more quickly than radiation spins it down, in accord with the picture that

the large-D e↵ective theory has given us.11 The determination of the actual lower value

of D where this is possible will have to await for dedicated numerical simulations in full

General Relativity.

5.6.1 Radiative spin-down

Let us now present our estimates of gravitational wave emission from black bars at finite

D.

We shall model the gravitational wave emission and spin-down of a black bar by

assimilating it to a rotating ellipsoid (see section 5.5) which radiates according to the

D-dimensional quadrupole formula. The quadrupolar energy radiation rate in arbitrary

(even) D was obtained in [100]. The emission of energy E reduces the mass of the radiat-

ing system M according to dE = �dM. Then (see section 5.5), for the ellipsoidal bar the

relative mass loss rate is

Ṁ

M
= � 8(D � 3)D

⇡
D�5
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⇥
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2
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2
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�
�
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�2
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⌦D�4
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⌦
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� `2

?

⌘
2

. (5.67)

Here ⌦ is the physical (dimensionful) rotation velocity of the bar. The radiation rate is

proportional to G and thus depends on the choice of units. We find convenient to bundle

GM in the term 8GM/⌦D�4, which is typically proportional (with a coe�cient that is

weakly dependent on D, i.e., not exponential nor factorial) to the characteristic horizon

11We are not invoking decay through four-armed horizons: although at high spins these may grow more

quickly than dipole deformations, the structure of the collision strongly favors the development of dipolar

bar-like horizons. Nevertheless, four-armed configurations dominate the ultraspinning instability of MP

black holes at high spins [87]. Also, we do not expect spindle bars to drive the evolution: dumbbell bars

appear more natural in a collision, and indeed they are the ones we observe in our simulations.
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radius of the black hole to the power D� 3. When making comparisons, we will keep this

quantity fixed.12

We have also split the numerical D-dependent factor in (5.67) into two terms. The

first one is a rational function that depends weakly on D, while the second one yields a

factorially suppressed radiation rate at large D,

Ṁ

M
/ �D�D . (5.68)

The remaining terms in (5.67) refer to physical properties of the black bar, namely, its

rotation velocity and its shape. They are not independent: for a black bar, in the limit of

D ! 1 where it exists as a stationary object, we have

⇣
`2
k
� `2

?

⌘
2

=
1� 4 (r+⌦)2

⌦4
(5.69)

(this follows from (2.69) after restoring units, with r+ the horizon radius of the SD�4 at

the rotation axis). Then

Ṁ
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When the bar is long, `k � `?, r+, we find

Ṁ

M
/ �`4

k
⌦

D+2 (5.71)

/ �⌦
D�2 . (5.72)

These results are the basis for the estimate (5.65), which is valid in any D, and for (5.66),

which applies to black bars insofar as (5.69) approximately holds.

In order to obtain the emission rate for a black bar of a given mass and angular velocity,

we need r+ in terms of these parameters. Using the leading large-D expression for black

bars,

M =
⌦D�4

8G

rD�4

+

⌦
, (5.73)

we get

r+⌦ =

✓
8GM

⌦D�4

◆ 1
D�4

⌦
D�3
D�4 . (5.74)

Notice that at large D and for fixed mass, this is linear in ⌦.

Let us now analyze the dependence on ⌦ in (5.70). It vanishes when r+⌦ = 1/2, which

is the bifurcation point with MP black holes; this solution is axisymmetric so it does not

radiate. It also vanishes when ⌦ ! 0, which is when the bar becomes infinitely long and

static. It is maximized at a value of ⌦ slightly below the bifurcation point,

r+⌦max =
1

2

⇣
1� c

D

⌘
, (5.75)

12For reference, recall that ⌦D�4 = D�3
2⇡ ⌦D�2 = 2⇡(D�3)/2/�

�
D�3
2

�
.
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where c is a D-independent positive number, which we cannot accurately determine with-

out further knowledge of black bars beyond the leading large-D limit.

The maximum radiation rate for a bar of mass M is then
 
Ṁ

M

!

max
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2DD

1

�
�
D�1

2

�2

✓
⌦D�4
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◆ 1
D�3

(1 +O (lnD/D)) . (5.76)

We have not expanded the � functions here since their D-dependence even at sublead-

ing orders seems robust enough. In any case it is clear that they dominate the large-D

behavior.

The radiation rate of angular momentum J into gravitational waves in arbitrary (even)

D has not been calculated in previous literature. In section 5.5.3 we derive the general

quadrupole formula for it. If we then apply it to an object rigidly rotating with angular

velocity ⌦ we find the simple relation

Ė = ⌦J̇ , (5.77)

in any dimension D. The spin of the radiating object diminishes as J̇ = �J̇ , and we find

Ṁ = ⌦ J̇ . (5.78)

Our derivation has been made for a rigid, slowly rotating, material solid, but let us apply

it to a black hole, and assume that the evolution is slow enough as to proceed along

quasistationary configurations. Then the first law of black holes implies that



8⇡
ȦH = Ṁ�⌦J̇ = 0 , (5.79)

namely, the radiation emission is such that entropy production (area increase) is strictly

minimized. We stress that this result is independent ofD, and relies only on the application

of the quadrupole emission formula.

For black bars, to leading order at D ! 1, the mass, spin, and angular velocity are

related by (2.71). In physical magnitudes, using (2.57) and (2.60), this is

J =
M

(D � 2)⌦
, (5.80)

so (5.78) gives us
J̇

J
= D

Ṁ
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✓
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◆◆
. (5.81)

We see that the relative loss of spin is D times faster than the relative loss of mass, so

radiation emission does lead the bar towards smaller values of the spin per unit mass.

We define the characteristic spin-down time as the inverse decay rate of the dimen-

sionless spin per unit mass,

⌧�1

rad
= �

✓
J

M
D�2
D�3

◆
�1 d

dt

✓
J

M
D�2
D�3

◆
(5.82)
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Ṁ

M
. (5.83)



5.6. SPIN-DOWN FROM GRAVITATIONAL RADIATION 119

For black bars and when D is large, (5.81) applies, so

⌧�1

rad
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✓
1

D

◆◆
. (5.84)

Plugging in (5.76) we obtain our estimate for the fastest radiative spin-down time

⌧rad =
2D
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�
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2
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The number c is a stand-in for O (1) uncertainties from di↵erent sources—not only (5.75),

but also, e.g.,O (1) corrections to the exponent in 2D. These are more important than

other uncertainties in our estimates, e.g., from properties of black bars at finite D such as

(5.69) and (5.73), which enter only as subleading corrections in 1/D.

5.6.2 Break-up time for the GL-instability

We estimate the growth rate of the GL instability of the black bar using the results for

a black string in D dimensions obtained in the blackfold approach [110]. This seems to

be a very reasonable approximation, given the excellent agreement that we have found in

section 5.4 for the unstable growth rates of black bars and black strings. The growth time

is

⌧�1

inst
=

kp
D � 3

✓
1� D � 2

(D � 4)
p
D � 3

krs

◆
, (5.86)

where k is the wavenumber of the perturbation and rs the radius of the black string. This

result is valid for all D in an expansion for small krs. It does not estimate very well the

threshold k (where ⌧ ! 1) at low D, but it is close at all D to the known values for the

minimum of ⌧inst, where the instability is fastest. Since (5.86) is a parabolic profile, the

minimum of ⌧inst is at the midpoint

kinstrs =
(D � 4)

p
D � 3

2(D � 2)
, (5.87)

which gives

⌧inst = 4
D � 2

D � 4
rs . (5.88)

Observe crucially that this does not grow with D, in fact its dependence on D is very weak.

It is written in units of rs, but the latter has also a weak dependence on D in units of

8GM/⌦D�4. Indeed, let us translate to mass units. The length of the string that fits this

fastest unstable mode is

Linst =
2⇡

kinst
(5.89)

and the mass of the black string of this length is
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(D � 3)⌦D�3
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we find that, for the fastest unstable black string,
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Plugging this into (5.88), we get the GL growth rate for a given mass. When 8GM/⌦D�4

is fixed, this rate does depend weakly on D,

⌧inst = 4
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◆ 1
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lnD

D

◆◆
. (5.93)

One possible weak link in this estimate is the identification of the instability time ⌧inst

with the perturbative result for the growth of the GL instability of a black string. In

numerical simulations of the latter, the linear instability starts only after transients that

may last for a few ⌧inst, and the time to develop a very large pinch can be significantly

larger than ⌧inst, possibly even two orders of magnitude larger. Although this would seem

to increase the actual value of ⌧inst, on the other hand, as we mentioned earlier, we can

expect that the instability of the intermediate black bar formed in a collision proceeds more

quickly than the black string instability, mostly because the centrifugal repulsion and the

absence of a ‘box’ (the compact Kaluza-Klein direction of the string) will accelerate the

development of the instability and push the dumbbell blobs apart. Although we refrain

from attempting to estimate these e↵ects, in our simulations at infinite D we do see that

the black bars formed in a collision pinch-o↵ more quickly than black strings.

5.6.3 Comparing the time scales

We now have the fastest radiative spin-down time (5.85) and GL-instability time (5.93),

both for a given mass in units of (8GM/⌦D�4)
1

D�3 . The main finding is almost self-

explanatory:

⌧inst = O (1) ⌧ ⌧rad = O
�
DD

�
. (5.94)

So, for large enough D, the radiative spin-down will be so slow as to be negligible. The

overall prefactor in (5.85) is in fact larger than the factor 4 in (5.93) for all D � 6 unless

c > 9. Of course these numbers cannot be fully trusted since, e.g., the exponent in 2D may

easily be, say, 2D�3, which would make the radiative time faster than the unstable time

in D ⇡ 6 with only moderate values of c. However, even in this case, having ⌧inst > ⌧rad
in D & 8 would require seemingly unnaturally large values c & 30, due to the factorial

suppression terms.

In conclusion, our estimates suggest that the gravitational emission spin-down will

be ine�cient to quench the pinch-down instability whenever D is larger than ⇡ 8, and

possibly, but much more uncertainly, even down to D = 6, the lowest dimension where we

expect black bars (or similar elongated horizons) to form.



Chapter 6

Entropy production in fission and

fusion

6.1 Overview

The area theorem, or second law of black holes, has pervasive implications in all of black

hole physics. It puts absolute bounds on gravitational wave emission in collisions (Hawk-

ing’s original motivation in [111]) and limits other classical black hole evolutions, but also,

through the identification of horizon area as entropy [112], it gives an entry into quantum

gravity, holography, and applications of the latter to strongly coupled systems.

Investigating the growth of black hole entropy should throw interesting light into com-

plex dynamical black hole processes. How does the second law constrain the possible final

states? Are there phenomena where it can provide more than bounds on allowed outcomes,

for instance, indicating their likelihood, according to how much entropy they generate?

Since the area of the event horizon can be computed outside stationary equilibrium, one

may even study the mechanisms that drive its growth at di↵erent stages.

Unfortunately, computing this entropy during a highly dynamical process, such as a

black hole merger, is in general very complicated and requires sophisticated numerical

calculations. In this article we resort to an approach that simplifies enormously the task:

the e↵ective theory of black holes in the limit of a large number of dimensions, D ! 1
[56, 21], developed in [24, 25, 27, 29]. We use the equations of [27, 31] for the study of

asymptotically flat black holes, their stability, and collisions between them [12, 14, 15].

We examine in detail the production of entropy—its total increase, but also its gener-

ation localized in time and in space on the horizon—in processes where an unstable black

hole (a black string [32, 51] or an ultraspinning black hole [57, 58]) decays and fissions,

and in collisions where two black holes fuse into a single horizon. If the total angular

momentum in the collision is not too large, the fusion ends on a stable rotating black

hole. However, as shown in [14, 15], when D is large and if the total angular momentum

is also large enough, the merger does not end in the fusion, but proceeds to fission: the

intermediate merged horizon is unstable, pinches at a neck—in a mild violation of cosmic

censorship [15, 113]—and arguably breaks up into two (or possibly more) black holes that
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then fly apart. The phenomenon, up until the formation of the singular pinch, has been

verified to occur in D = 6, 7 through numerical analysis in [114]. The importance of the

intermediate phase in the evolution of the system was noticed in the earlier studies [14, 15],

but here we will go significantly further in revealing how it controls the outcome.

Before we present our main results, we shall discuss general issues related to area

growth, its identification with entropy, and its computation in the large D e↵ective theory.

Black hole entropy and its growth. In General Relativity the horizon area increases

through two e↵ects: the addition of new generators to the horizon (at caustics or crossover

points, on spacelike crease sets), and the expansion of pencils of existing generators. In this

article, the methods and approximations that we employ allow to study the latter, i.e., how

the area expands smoothly. The e↵ective theory of large D black brane dynamics provides

explicit entropy production formulas for viscous dissipation on the horizon [31, 40, 59, 115],

which we apply to the evolution of unstable asymptotically flat black holes, and to the

fusion and fission in black hole collisions. The addition of generators through caustics is

actually suppressed when D is large1. We expect that, at finite D, the entropy growth

through this addition in the merger of two black holes is important only during the first

instants of the fusion, and much less so during the relaxation. In fission, the break-up

of the horizon across a naked but mild singularity involves a region of very small horizon

area2 and therefore loses only a few generators in any dimension, and even fewer as D

grows large. This process is controlled by quantum gravity, but we have argued elsewhere

that the e↵ects upon the classical evolution should be negligibly small [113].

The notions of entropy and entropy current that we use are associated to the area of the

event horizon, and in this respect they are closely related to the ones in the Fluid/Gravity

correspondence in [117, 118]. Indeed, we expect that the discussion in that context carries

over to the large D formulation: it is possible that other currents with non-negative

divergence can be constructed. A related concern is whether one should identify the

entropy with the area of the apparent horizon, as there are general arguments in favor of

this [119], and it has been possible to identify corresponding currents in Fluid/Gravity

[120]. While it would be interesting to further investigate this in the large D e↵ective

theory, we will not be concerned with it here. The divergence of the entropy current that

we use is as expected for a physical fluid (from viscous dissipation of shear and expansion

of the fluid), so at the very least our results will not be unreasonable. Moreover, we expect

that the growth properties of di↵erent entropy notions will be very similar. Within the

large D e↵ective theory, the system evolves smoothly and continuously and so we expect

the entropy to do that too. With these methods one does not capture the less smooth

features (e.g., caustics) of the event horizon in the first stages of the merger, and large

discontinuous jumps in the area of the apparent horizon are not expected; these should be

suppressed when D � 1. So, despite the ambiguities in the definition of out-of-equilibrium

entropy, we expect that our conclusions remain qualitatively valid for other viable notions

1This can be seen, for instance, in extreme-mass-ratio mergers with the methods of [116].
2A Planckian area, which vanishes in the classical limit.
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of it.

The other main aspect of finite D physics that is not captured by our methods is

the production of gravitational waves, which implies that in our calculations the total

energy and angular momentum of the black holes are conserved, making it easier for us

to characterize the evolutions. Again, we expect that this radiation is stronger during the

initial instants when the black holes first come together. Radiation e↵ects should quickly

become less relevant as the number of dimensions grows [100, 56, 59, 15].

The upshot is that we expect that the patterns of entropy production that we find are

broadly applicable in D � 6, and possibly even qualitatively valid for fusion in D = 4. We

will return to this last point near the end.

Main conclusions. All the collisions we study are symmetric, i.e., between black holes

of equal mass and spin.3 This is mostly for simplicity; our methods allow to collide black

holes with generic parameters.

Our analysis shows that:

• Black hole fusion generates comparatively much more entropy, and at faster rates,

than black hole fission.

• Unstable black strings decay with a simple pattern of entropy production which is

reproduced in other fission processes.

• Merger collisions of two black holes have a critical value of the total angular mo-

mentum per unit total mass4 ✓
J

M

◆

c

⇡ 2.66 (6.1)

that divides low J/M collisions 2 ! 1 that end in fusion, from higher J/M collisions

2 ! 1 ! N � 2 that evolve to fission. The bound holds except for ‘grazing’ mergers

with large initial impact parameters.

• 2 ! 1 ! 2 collisions are dominated by the formation of intermediate, long-lived,

quasi-stationary, bar-like entropic attractors (fig. 6.1):

– The intermediate quasi-thermalization largely erases the memory of the initial

state, so the final outgoing states are almost independent of the initial param-

eters, other than the total conserved J/M .

– This attractor e↵ect is stronger the closer J/M is to the critical value (6.1).

– The attractor can be approximately (but not exactly) predicted by maximizing

the entropy generation among possible outgoing black holes.

3In 2 ! 1 ! 2 collisions, the two outgoing black holes will both have the same mass and spin, but the

initial and final spins will in general be di↵erent. Mass conservation to leading order in 1/D implies that

the final masses are the same as the initial ones.
4These J and M are defined in the e↵ective theory; the corresponding physical quantities are given in

sec 2.4.2.
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Figure 6.1: Entropic attractor in black hole collisions 2 ! 1 ! 2. Left : red dots represent

initial states, connected by an arrow line to the corresponding final states (green) after dynamical

evolution. The initial and final pairs of black holes are characterized by their rotation (spin)

parameter a and their linear velocity u (ingoing or outgoing). The (conserved) total angular

momentum per unit mass in these collisions is fixed to J/M = 2.8. We see that, independently

of the initial states, the final states cluster on (a, u) ⇡ (0.3, 0.6). This is due to the formation of

an intermediate, long-lived, quasi-thermalized phase. The contour colors correspond to the (NLO)

entropy S1 of the configuration. Entropy would be maximized at the lower-left corner, but this

would correspond to infinite impact parameter b, which is unphysical since b is constrained by the

geometric size of the collision. The thin purple strip is the region where b takes on geometrically-

allowed values for final states. Right : entropy along the central value of the purple strip. The

attractor is close to the maximum possible final entropy; larger values of a (smaller values of u)

would be entropically disfavoured, while in the opposite direction the entropy gain would be very

small.

• Entropy is produced through viscous dissipation of shear and expansion of the e↵ec-

tive velocity field. In fusion generically, and in fission always, both enter in almost

equal proportion. The formation of the intermediate bar phase can be dominated

by shearing depending on initial conditions.

The reason the attractor e↵ect is stronger when J/M is near criticality is that the

intermediate state is closer to a marginally stable solution. When J/M is higher, the

intermediate black hole is shorter-lived and its features are less precisely defined, so its

decay outcomes show larger spread. We emphasize that the attractor is a feature of 2 !
1 ! 2 collisions with intermediate fusion; this requires that the initial impact parameter

and initial velocities are not too large, otherwise the two black holes fly by each other.

Fusionless 2 ! 2 collisions are not included in fig. 6.1, and are little studied in this article.

Let us elaborate on the near-maximization of entropy in collisions 2 ! 1 ! 2. After

fixing an overall scale by setting the total mass to one, the outgoing black holes are char-
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acterized by their spin parameter a, outgoing velocity u, and outgoing impact parameter

b.5 We argue that these can be well predicted by considering three di↵erent constraints:

(i) Kinematic: the total final angular momentum must be the same as the initial one,

which imposes a relation between a, b and u.

(ii) Geometric: the outgoing impact parameter is limited by the geometrical size of the

collision. This yields a constraint between b and a.

(iii) Entropic: after imposing (i) and (ii), near-maximization of the final entropy gives a

good approximation to the final values of a, b, and u.

In fig. 6.1, (i) is included by considering states with given total J/M = 2.8, while (ii)

restricts final states to the lie along the purple band; the graph on the right then makes

(iii) apparent.

The most remarkable of these constraints is entropy maximization: it provides a simple

proxy for the complex dynamics that drives the system to its final state. We do not have

an answer to why it is not a perfect predictor—other than there is no reason that it

should be—but given our results it is natural to wonder how accurate it becomes as J/M

approaches from above the critical value (6.1).

The principle of entropy maximization actually holds quite well in four-dimensional

black hole collisions: in the merger, the final entropy would be maximal (consistent with

conservation of energy and angular momentum) if no gravitational waves were emitted.

The fact that the radiated energy is typically only a few-percent fraction of the total energy

means that the final entropy is only a few percent o↵ the maximum. In the limit D ! 1,

the 2 ! 1 fusion trivially maximizes the entropy since radiation is absent. The fission of

an unstable black object, instead, has a range of possible outcomes. For instance, black

strings can split up into several blobs, and the final entropy is larger for fewer blobs. The

decay of ultraspinning black holes (MP, bars, and dumbbells) is more similar to the fission

stage in 2 ! 1 ! 2 collisions, but the evolution of the instability is sensitive to the specific

perturbation that triggers it. The process starts with an unstable system and looks more

contrived and less natural than a collision, so in our study we have focused mostly on the

latter. Note, however, that the decay of the critical, marginally stable solution at (6.1)

may illuminate the question of how closely can entropy be maximized. This deserves closer

examination.

Entropy generation and irreversibility in the leading order (LO) large D e↵ec-

tive theory Readers familiar with the large D e↵ective theory of black holes and branes

may be surprised that the entropy growth can be computed with its equations to leading

order in the 1/D expansion. This theory is known to exactly conserve the entropy of the

system: the LO entropy current is divergence-free, and entropy generation is suppressed

5There is one more outgoing parameter: the scattering angle. However, this is not a↵ected by conser-

vation laws nor by entropic considerations, and we shall have little to say about it.
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by a factor 1/D [27, 59]. A simple illustration of this property is the fusion of two equal

mass Schwarzschild black holes [34, 56], each with entropy

S(M) / M
D�2
D�3 , (6.2)

which merge into a single one, so that (since losses into radiation are suppressed non-

perturbatively in 1/D)

Sfinal

Sinitial

=
S(2M)

2S(M)
= 1 +

ln 2

D
+O

✓
1

D2

◆
, (6.3)

i.e., the entropy increase is / 1/D. This feature extends to all of the dynamics of black

branes at large D described by the LO e↵ective theories of [27, 59].

This seems to make it impossible to see entropy growth unless one employs the next-

to-leading order (NLO) theory. It also raises a puzzle: if the LO entropy does not grow,

how can we characterize the irreversibility of the evolution in the LO theory?

We will argue that there exists a quantity S1(t) in the LO theory such that the evolution

equations imply @tS1(t) � 0, and hence characterizes the irreversibility of this theory. This

S1 is actually the NLO (1/D suppressed) entropy density, but we might not (indeed, need

not) have known this, since S1 and its variations are all given by LO magnitudes.

The argument of (6.3) is still valid when the black holes rotate, since rotation e↵ects

in the entropy are suppresed by 1/D [27, 12]. However, it ceases to apply if the black

holes carry charge. Correspondingly, the e↵ective theory of large D charged black branes

[31, 13] allows entropy production, through charge di↵usion (resistive Joule heating), at

leading order in 1/D.6 The study of entropy production in charged collisions is much

simpler than in the neutral case, since it is largely dictated by conservation laws, but it is

still illustrative and confirms the conclusions above. We will discuss it after our analysis

of neutral collisions.

Outline. In section 6.2 we elucidate how entropy generation can be studied within the

context of the LO theory. In sec. 6.3 we discuss localized black hole solutions in this

e↵ective theory and how their stability properties influence the outcome of collisions.

In sec. 6.4 we perform numerical simulations of evolutions of instabilities and collisions.

We investigate in detail the generation of entropy, in time and in space, and use it to

characterize the di↵erent stages in the collision. The study in sec. 6.5 of the scattering of

black holes reveals the role as an attractor of the intermediate state which nearly maximizes

entropy production. Sec. 6.6 describes how entropy is produced through charge di↵usion

in collisions between charged black holes. We conclude in sec. 6.7.

6.2 Entropy production in the large D e↵ective theory

We begin with a discussion of the large D e↵ective theory of black branes, with a focus

on entropy and its generation. The extension of the results in this section to the large D

6However, entropy production in the theory of charged membranes in [29] is zero at LO.
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e↵ective theory of AdS black branes is straightforward (and can be found in the appendix

of [17]).

For asymptotically flat branes the entropy density and the temperature can be obtained

from the area density and surface gravity of the black brane. They are

s = 4⇡m, T =
1

4⇡
, (6.4)

and they satisfy the expected thermodynamic relations for the system,

m = Ts , dm = Tds . (6.5)

6.2.1 Irreversibility in the e↵ective theory

Let us now address in detail an elementary puzzle of this e↵ective theory that we alluded

to in the introduction. The e↵ective equations of motion at leading order (1.6), (1.7)

contain viscous dissipation, which is expected to render the evolution irreversible.7 This

is further confirmed by the spectrum of linearized perturbations, which has quasinormal

frequencies with imaginary parts. After all, these equations describe horizons, which are

dissipative systems par excellence, but for the moment let us forget black holes and regard

by itself the system that these e↵ective equations describe.

On very general grounds, we expect that dissipation in a thermodynamic system creates

entropy, reflecting the irreversibility of the evolution. However, in the theory described by

(1.6) and (1.7) the total entropy

S(t) =

Z
dpx s(t, x) (6.6)

remains constant in time, since (6.4) implies that it is exactly proportional to the total mass

and this is conserved by (1.6). So, if the entropy is not growing, what, then, characterizes

the irreversibility?

Remarkably, we can identify a quantity in this theory that is strictly non-decreasing

under time evolution. Define the density8

s1 = 4⇡

✓
�1

2
mviv

i � 1

2m
@im @im+m lnm

◆
. (6.7)

We will justify the choice presently, but for now note that using the field equations (1.6)

and (1.7) it follows that

@ts1 + @ij1
i = 8⇡m

�
@(ivj)

� ⇣
@(ivj)

⌘
, (6.8)

where

j1
i = s1v

i � 4⇡
�
vj⌧ ij + (@jm)(@jvi)

�
. (6.9)

7This is also apparent using the variable pi = mvi + @im, in which (1.6) and (1.7) take the form of

inhomogeneous heat equations [27].
8The factors 4⇡ that we carry over have their origin in T in (6.4).
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Since the right hand side of (6.8) is non-negative, we conclude that

S1(t) =

Z
dpx s1(t, x) (6.10)

is a non-decreasing function in time,

@tS1(t) � 0 . (6.11)

This characterizes the irreversibility of the evolution in the e↵ective theory.

Observe that the growth rate

@tS1(t) = 8⇡

Z
dpxm

�
@(ivj)

� ⇣
@(ivj)

⌘

=

Z
dpx

✓
2⌘

T
�ij�

ij +
⇣

T

�
@iv

i
�2
◆

(6.12)

is that of a hydrodynamic entropy generated by viscous heating, with contributions from

dissipation of shear

�ij = @(ivj) �
1

p
�ij @kv

k (6.13)

and dissipation of expansion @ivi. This is also a feature of the entropy in the Fluid/Gravity

correspondence [118, 115] (see [21] for further discussion in these contexts).

6.2.2 Entropy at next-to-leading order

The explanation for these properties of S1 is that it is actually the leading 1/D contribution

to the black brane entropy. Namely, the entropy density obtained from the event horizon

area of the black brane is, up to a total divergence (see section 6.2.3)

s(t, x) = 4⇡m̄(t, x)
⇣
1 +

cs
D

⌘
+

1

D
s1(t, x) , (6.14)

where m̄ is the energy density including NLO corrections, and cs is a constant (which we

determine in section 6.2.4) that accounts for the fact that, in order to simplify the form

of s1, we have subtracted a term / m without changing the right-hand side of (6.8). The

total entropy is

S(t) = 4⇡M
⇣
1 +

cs
D

⌘
+

1

D
S1(t) . (6.15)

Eq. (6.12) then gives the production rate of entropy to NLO in the 1/D expansion. The

point to notice is that, since the LO entropy is proportional to the energy, which is

constant to all orders, the time derivative of the entropy at NLO can be computed using

only quantities of the LO e↵ective theory. This is what allows us to identify within this

theory the quantities s1 and S1 which behave irreversibly.

Observe that we can write (6.14) as

s(t, x) = 4⇡

✓
m̄� 1

D

✓
1

2
mv2 +

1

2m
(@m)2 � cs

◆◆
1+1/D

, (6.16)

which we can understand as follows. The dependence of entropy on mass (6.2) for a

Schwarzschild black hole at finite D is S / M1+1/(D�3), which is like (6.14) at large D.
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The term �1

2
mv2 is a kinetic energy9. It appears here because, out of the total energy of

the black hole, only its rest (irreducible) mass contributes to entropy. Observe that this

motion could be linear, as in a boosted black hole, or circular, as in a rotating black hole:

both reduce the ‘heat’ fraction of the total energy. The last term in (6.16) is (likely) a

correction from curvature of the horizon due to the di↵erence between the radial position

measured by m and the actual area density.

The entropy density (6.7) simplifies for stationary solutions which rotate rigidly, such

that [31]

@tm+ vi@im = 0 , @tv
i = 0 , @(ivj) = 0 . (6.17)

In this case the e↵ective equations reduce to the ‘soap bubble equation’

1

2
mvivi +m lnm+ @i@

im� 1

2m
@im @im = cm , (6.18)

where c is an integration constant that corresponds to a choice of scale for the total mass.

We set it to zero, since in the end we will work with scale-invariant quantities where c

would disappear. Using this equation we obtain, after dropping a boundary term from a

total derivative,

S1(t) = �4⇡

Z
dpxmviv

i . (6.19)

For a solution that rotates along independent angles �a with velocities v�a = ⌦a, this

gives

TS1 = �⌦aJa , (6.20)

where T is the LO temperature (6.4). It is easy to verify that, when added to the LO

entropy, this reproduces the Smarr relation for black holes at NLO in 1/D.

6.2.3 Stress-energy and entropy in the e↵ective theory to 1/D

Let us assume the D = n+p+3 spacetime is written in Eddington-Finkelstein coordinates

ds2 = �Adt2 + 2utdtdr � 2CIdtdZ
I +HIJdZ

IdZJ . (6.21)

For the spatial metric, we assume a rescaling in the ‘active’ dimensions and spherical

symmetry in the ‘passive’ ones,

HIJdZ
IdZJ =

1

n
Gijdz

idzj + r2d⌦2

n+1, (6.22)

where Gij is the p-dimensional metric.

The metric is expanded in 1/n,

A =
X

k=0

A[k]

nk
, ut = 1 +

X

k=0

ut,[k]
nk+1

, Ci =
X

k=0

Ci,[k]

nk+1/2
, Gij = �ij +

X

k=0

Gij,[k]

nk+1
, (6.23)

9Physical velocities in the e↵ective theory are rescaled by a factor 1/
p
D [27], which explains why the

term is 1/D suppressed.
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where we introduce a radial coordinate R = rn. At leading order, we obtain

A[0] = 1� m

R
, Ci,[0] =

pi
R
, Gij,[0] =

pipj
mR

, ut,[0] = � pipi

2mR2
, (6.24)

where m = m(t, z) and pi = pi(t, z) are integration functions. To avoid ambiguity in the

definition of the integration functions at higher order, we fix m and pi by

A(R = m) = 0, Ci(R = m) =
pi
m
. (6.25)

Note that in general R = m di↵ers from the horizon position, which will be relevant below.

Quasi-local stress tensor

The quasi-local stress tensor is defined at the asymptotic boundary of the near-horizon

region,

Tµ⌫ = lim
r!1

⌦n+1rn+1

8⇡G
(K�µ⌫ �Kµ⌫) + (regulator) , (6.26)

where (�µ⌫ ,Kµ⌫) are the metric and extrinsic curvature on a surface at constant r. The

regulator terms are chosen to eliminate the divergent terms at r ! 1. The boundary

metric is given by

ds2 = �dt2 +
1

n
dzidzi . (6.27)

For convenience, we use the dimensionless tensor,

Tµ⌫ =
(n+ 1)⌦n+1

16⇡G
Tµ⌫ . (6.28)

The result up to NLO in the 1/n expansion is given by10

T tt = m� 1

n
(2 + lnm)@ip

i, (6.29)

T ti = pi � @im� 1

2nm2

⇥
2m(m+ @ip

i)(pi � @im) + 2pipj@jm� pjp
j@im+ 4mpj@

[jpi]

+
�
2m@j(p

ipj)� 2pipj@jm� 2m2@i@jp
j
�
lnm

⇤
, (6.30)

T ij = ↵�ij + �ij , (6.31)

where

↵ =

✓
1� 1

n

◆
(�m+ @tm+ @kp

k)

+
1

n


� 1

2m
@2(p2)� @kp

k

✓
1� 2p2

m2
+

3pk@km

m2

◆
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2) +
pk

m2
@`m@kp`

+
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✓
1 +

@2m

2m

◆
� @2

✓
p2

m

◆
lnm+ @kp

k lnm� @t(@kp
k lnm)

�
, (6.32)

10Here the indices of Tµ⌫ are raised with the boundary metric (6.27), while pi and @i with �ij .
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and

�ij =

✓
1� 1

n

◆⇣
�2@(ipj) +

pipj
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⌘

+
1
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⇣pipj
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. (6.33)

Here we have written p2 = pipi and @2 = @k@k.

Entropy density and entropy current

The position of the event horizon � = r � rh(t, ZI) = 0 is given by the null condition for

the normal vector d� = dr � @trhdt� @IrhdZJ ,

d�2 =
1

u2
t

⇥
A� 2ut@trh +HIJ(CI � ut@Jrh)(CJ � ut@Jrh)

⇤
= 0. (6.34)

In the dynamical case, this condition does not give the actual event horizon but rather the

local one. However, as in [118], this is useful to define the entropy current on the black

brane. Expanding up to NLO in 1/n we obtain

Rh = rn
h
= m� 1

n

✓
pipi
m

� 2pi@i lnm+
1

m
@im@

im� 2@tm

◆
. (6.35)

One can see that R = m also gives the event horizon for the static solution. With a rigid

rotation, however, we have Rh 6= m beyond LO. Using eq. (6.34), the geometry on the

horizon becomes

ds2
��
H
= hIJ(dZ

I � V Idt)(dZJ � V Jdt), (6.36)

where hIJ = HIJ |H and V I = hIJ(CJ � ut@Jrh|H). Following [118], the entropy (D� 2)-

form is defined from the area-form of this surface,

A =
1

4G

p
h(dZ1 � V 1dt) ^ · · · ^ (dZD�2 � V D�2dt), (6.37)

which determines the entropy current to be

A =
✏µ̄µ̄1...µ̄D�2

(D � 2)!
J̄ µ̄

s dX
µ̄1 ^ · · · ^ dX µ̄D�2 , (6.38)

where X µ̄ = (t, ZI). By comparison, one obtains

J̄ µ̄

s @µ̄ =
1

4G

⇣p
h@t +

p
hV I@I

⌘
. (6.39)

Recalling the spatial setup (6.22), the entropy current reduces to

J µ

s @µ =
⌦n+1r

n+1

h

4Gnp/2

⇣p
G@t +

p
GV i@i

⌘
, (6.40)
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where xµ = (t, zi) and Gij = Gij |H. The dimensionless version is

J µ

s =
⌦n+1

4Gnp/2
Jµ

s . (6.41)

For the black brane, the result up to NLO in 1/n expansion is

J t = m+
1

2nm
(2m2 lnm� p2 + 4pi@im� 2(@m)2 + 4m@tm) , (6.42)

J i = pi � @im+
1

2nm2

�
� p2pi + 4m(pj � @jm)(@ipj � @i@jm)� 4m2@t@

im

+ 2m2 lnm(pi � 2@im)
�
. (6.43)

We can use the LO equations (1.6) and (1.7) to find that in the e↵ective theory the

entropy density is

s = 4⇡J t

= 4⇡m̄+
4⇡

n

✓
(m+ @ip

i) lnm+ 2@2m� 1

2m
(p2 � 4pi@im+ 2@im@

im)

◆
, (6.44)

where we have defined the mass density to NLO from (6.29)

m̄ = m� 1

n
(2 + lnm) @ip

i . (6.45)

Using again the LO equations with

pi = mvi + @im, (6.46)

we can rewrite (6.44) as

s = 4⇡m̄+
4⇡

n

✓
�1

2
mviv

i � 1

2m
(@m)2 +m lnm

◆
+ total divergence . (6.47)

Dropping the total divergence term, which does not contribute to the integrated entropy,

we obtain (6.7) and (6.14).

6.2.4 Measuring the entropy

Scale invariant entropy

When we compare the entropy of di↵erent solutions—e.g., ingoing and outgoing black

holes—we will do it between configurations with the same total mass. For this purpose, if

S and M are the physical entropy and mass of the black hole in D dimensions, one works

with a mass-normalized, scale-invariant, dimensionless entropy of the form

S = C
S

M
D�2
D�3

. (6.48)

Here

C =

✓
(D � 2)⌦D�2

16⇡G

◆
1/(D�3) D � 2

4⇡
(6.49)

is a suitable convention to simplify later expressions; it could be set to one by adequately

choosing Newton’s constant G.
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Similarly, in the e↵ective theory we define a mass-normalized, scale-invariant entropy,

S1(t) =
S1(t)

4⇡M
� ln

M

2⇡e2
. (6.50)

Subtraction of the term lnM makes this quantity independent of the choice of mass scale,

in particular of the value of c in (6.18). We have also added a constant ln(2⇡e2) to simplify

later expressions. One can then verify (section 6.2.4) that the physical mass-normalized

entropy (6.48) is given in terms of the e↵ective theory one (6.50) by

S = 1 +
1

D
S1(t) +O

✓
1

D2

◆
. (6.51)

Relation to physical entropy

Using the relations of the conserved charges of the e↵ective field theory to the proper

physical quantities given in section 2.4.2 and defining an physical entropy according to

S =
A

16⇡G
, (6.52)

we obtain the mass-normalized, dimensionless entropy (6.48) as

S =
S

4⇡M

✓
1� 1

D
ln

M

2⇡m0

◆

= 1 +
1

D
(cs + ln 2⇡m0 + S1) , (6.53)

where in the last expression we have used (6.15) and (6.50).

In order to determine the constant cs we apply these formulas to the MP blob solution

(2.25) so that we recover the known results for the exact MP black hole solution. These

are

M =
⌦D�2

16⇡G
(D � 2)rD�3

m , (6.54)

S =
⌦D�2

4G
rD�3

m r+ , (6.55)

where the mass-radius rm and the horizon radius r+ are related by

r+
rm

=

✓
1 +

a2

r2
+

◆�1/(D�3)

' 1� 1

D
ln

✓
1 +

a2

r2
+

◆
. (6.56)

Then, for this black hole, the mass-normalized, dimensionless entropy defined in (6.48) is

S = 1� 1

D
ln(1 + a2) , (6.57)

where, henceforth, since we work with scale-invariant quantities, we can set r+ = 1.

For the MP blob solution (2.25), the e↵ective theory NLO entropy (6.10) is

S1

4⇡M
= � 2a2

1 + a2
, (6.58)

and then the mass-normalized one, S1 in (6.50), is given in (6.61). Plugging the latter

into (6.53) and setting

cs = 2� lnm0 , (6.59)

we recover correctly the physical value (6.57). Using this now in the general formula (6.53),

we obtain (6.51).
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6.3 General features of black hole collisions

In the following we restrict to black holes with rotation on a single plane, which will also

be the plane on which the black holes move and collide. Then, in the e↵ective theory

we study configurations with non-trivial dependence in only 2 + 1 dimensions, i.e., on a

2-brane. Accordingly we can use the formulation of the e↵ective theory also adapted in

previous chapters.

6.3.1 Entropy evaluated on blobs

Remember that the e↵ective field theory mass M depends on the choice of scale of nor-

malization m0 in (2.25). Accordingly more relevant are scale-invariant quantities, namely

the spin per unit mass
J

M
= 2a (6.60)

and the NLO mass-normalized entropy

S1 = � ln(1 + a2) . (6.61)

The fact that S1 becomes more negative with larger a is the familiar decrease of the black

hole entropy as the spin grows, in the large D limit.

Another exact solution describes rotating black bars,

m = exp

✓
1� x2c

4

⇣
1 +

p
1� 4⌦2

⌘
� y2c

4

⇣
1�

p
1� 4⌦2

⌘◆
, (6.62)

where xc, yc are corotating coordinates given by (3.15). And our scale normalization is

again consistent with c = 0 in (6.18). This solution has

M =
2⇡

⌦
, (6.63)

and
J

M
= ⌦�1 , S1 = ln⌦ . (6.64)

For ⌦ = 1/2 this branch of solutions joins the MP family.

Ref. [16] constructed numerically large classes of other stationary solutions. The most

relevant for us are rotating dumbbells. They can be regarded as black bars with a pinch

in their middle, see fig. 6.2.

6.3.2 Phase diagrams and the outcomes of collisions

Fig. 6.3 is a phase diagram that summarizes the main properties of these solutions, and

the implications for the possible initial and, more importantly, final states of a collision.

Depending on the value of J/M (distinguished by band-colouring in the figure) the stable

phases of stationary single blobs are:
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Figure 6.2: Profile along the long axis of the ‘critical’ dumbbell solution with J/M equal to (6.1).
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Figure 6.3: Phases of blobs and their stability as relevant to outcomes of mergers. Solid/dashed

lines are stable/unstable stationary blobs. Blue: Myers-Perry black holes, stable up to J/M =

2. Black: black bars, stable up to J/M = 4/
p
3 ⇡ 2.31. Red: black dumbbells, stable up to

J/M = (J/M)c ⇡ 2.66 (dumbbells along the dashed line are unstable binaries of blobs). The

background shading indicates the expected outcome of a merger for an initial value of J/M . No

stable stationary blobs exist for J/M > (J/M)c (yellow), so, if a merger occurs in this region, it

can only evolve to a multi-blob state. The numerical solutions for dumbbells are from [16]. The

same color coding is used in the next figures.

0  J/M < 2: MP black holes

2  J/M < 4
p
3
⇡ 2.31: Black bars

4
p
3
 J/M < (J/M)c: Black dumbbells

(J/M)c  J/M : No stable single black hole

where the numerically determined upper limit (J/M)c for the existence of stable phases

is (6.1).

Let us clarify an aspect of the stability of phases in this diagram that was not discussed

in [16]. In that article a second branch of dumbbells (lower in ⌦, shown dashed in fig. 6.3)

was found to exist, starting from J/M = 0 until it joins the first, upper branch at (J/M)c.

In this second branch, the dumbbells are more like slowly rotating black hole binaries,

consisting of two gaussian blobs joined by a thin, long tube between them. All these



136 CHAPTER 6. ENTROPY PRODUCTION IN FISSION AND FUSION

solutions have the same LO entropy, but the NLO entropy S1 (6.50) distinguishes between

them. In fig. 6.4 we show that lower-branch dumbbells have less entropy than the upper

branch. They are therefore thermodynamically unstable. Moreover, a Poincaré turning

point argument tells us they must have one more negative mode than the upper-branch,

and hence be dynamically unstable. This is indeed consistent with two other observations:

(i) in our numerical collisions, we never observe a lower-branch dumbbell forming (while

upper-branch dumbbells do form); (ii) stationary Keplerian binaries in D � 6 exist but

are unstable.

1.8 2.0 2.2 2.4 2.6 2.8 J /M

-1.0

-0.9

-0.8

-0.7

�1

Figure 6.4: Phase diagram depicting the entropy S1 of the di↵erent configurations close to the

first black bar zero-mode, as a function of angular momentum. For J/M > 2 the black bar (black)

is entropically favored over the MP black hole (blue). At the zero-mode J/M = 4/
p
3, a branch of

stable dumbbells (red) appears with Sinv slightly higher that that of unperturbed black bars. This

phase dominates entropically up to the turning point at (J/M)c ⇡ 2.66, where stable dumbbells

cease to exist, and the system typically evolves to a fission.

In contrast, upper-branch dumbbells resemble (segments of) stable non-uniform black

strings (fig. 6.2). Although other more non-uniform phases were found in [16], by generic

turning-point/bifurcation arguments they are expected to have more negative modes and

hence be dynamically unstable. Therefore, no other stable solutions are expected to exist

besides those shown in fig. 6.3.

Fig. 6.3 is then a major guide to predicting the outcome of a collision between two

blobs, based only on the total angular momentum J and total mass M of the system,

which are conserved. If J/M < 2.66, two blobs that merge can relax into a stable single

blob, namely the only one that is stable for the corresponding value of J/M . Bear in

mind that they will not necessarily do so, since the dynamical evolution may avoid that

endpoint.

If J/M > (J/M)c the final state must consist of more than a single blob. That is, if

there is fusion it will be followed by fission. If J/M is less than ⇡ 4, we observe that the

end state is always two outgoing black holes, i.e., 2 ! 1 ! 2. At higher J/M , a third,

smaller black hole can appear between them, the apparent reason being that at these

angular momenta there exists an unstable branch of three-bumped bars. End states with

more than two blobs are entropically disfavored but nevertheless are dynamically possible.
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Figure 6.5: Outcome of symmetric collisions of two black holes with initial spin, velocity, and im-

pact parameter (ain, uin, bin). The dots (joined by dashed lines) separate between initial conditions

that lead to 2 ! 1 fusion events (below the dots) and 2 ! 1 ! N cosmic-censorship-violating

fission events (above the dots). The colors distinguish between the stable phases available (same

color coding as in fig. 6.3). For small enough bin the system always settles down into the available

stable single blob, but for very large bin the dynamical evolution passes too far from the stable

phase and proceeds to fission.

In particular, in collisions at large J with large initial orbital angular momentum the

evolution can exhibit complicated patterns. Their investigation would take us beyond the

scope of this article.

6.3.3 2 ! 1 vs. 2 ! 1 ! N

In the next sections we will study collisions between two initial MP black holes, of equal

mass and equal initial spins, with initial rotation parameter ain within the stability range

of MP black holes 0  ain < 1.11 Their initial velocities will be ±uin and the impact

parameter bin. We select the collisions where there is fusion; the cases where the two black

holes scatter without ever merging may also be of interest but their physics is di↵erent

than we intend to explore here and we will barely discuss them12.

For some values of the initial parameters (ain, uin, bin) the system fissions. Figure 6.5

shows the numerically determined boundary (dots joined by dashed lines) between initial

conditions that lead to a 2 ! 1 collision, leaving a rotating central object, and initial

conditions that produce more than one outgoing object, usually two but possibly more.

As already noted in previous papers [14, 15], the boundary follows a curve of constant

J/M = (J/M)c, as long as the impact parameter is below some threshold (which depends

on ain). This means that for these values of bin the merger always settles down into the

unique stable solution that is available. However, if bin is large enough, this possible end

11We do not consider initial black bars and dumbbells. They are expected to exist at finite D � 6 but

not be completely stable, not even stationary, since they must radiate gravitational waves.
12Since the e↵ective theory describes a continuous horizon, the distinction is not perfectly clear-cut and

involves discretionary choices. However, the more ambiguous cases are only marginal to our analysis.
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state is avoided: the two colliding black holes form a horizon that is too elongated to find

its path to the stable blob. In these cases, the colliding black holes attract each other

deflecting their trajectories,13 and then they either fly apart or suddenly fall onto each

other to form a stable central object. It is suggestive that this 2 ! 2 scattering might be

understood as the formation of an unstable, long dumbbell (two gaussian blobs joined by

a long tube), which then either collapses or breaks apart.

6.3.4 Kinematics, entropy and geometry of the collisions

Let us now be more specific about the collisions we study. The two initial black holes are

MP blobs on a 2-brane like (2.30) that start in the (x, y) plane at

(x, y) =

✓
±1,±bin

2

◆
, (6.65)

with velocities

(vx, vy) = (⌥uin, 0) . (6.66)

The latter are achieved by applying a Galilean boost to each blob. The entropy of each

individual boosted black hole, normalized by its own mass, is

S1 = �1

2
u2 � ln(1 + a2) (6.67)

(see eq. (6.88)). The presence of the term / u2 is due to the fact, already mentioned, that

the kinetic energy must be subtracted from the total energy of the black hole, since only

the rest (irreducible) mass contributes to entropy. It is directly related to the fact that

the horizon area of a black hole does not change through Lorentz contraction [121], which

is also a property of entropy in the e↵ective theory, as proved in section 6.3.5.

The entropy of a system of two equal MP black holes, now normalized by their com-

bined mass M , is

S1 = �1

2
u2 � ln 2(1 + a2) . (6.68)

and, using (6.60), their total angular momentum is14

J

M
= 2a+

bu

2
. (6.69)

The conservation of mass-energy (which includes kinetic energy to NLO) and angular

momentum imposes restrictions on the possible outgoing final states, and on how much

entropy can be produced. The analysis can be made entirely within the large D e↵ective

theory, but since we are only considering initial and final states that are MP black holes, we

could also consider the properties of the known solutions exactly in D. That is, we could

work at finite D using physical magnitudes, expand in 1/D and translate into e↵ective

theory magnitudes. The two methods of calculation are easily seen to agree.15

13Despite the absence of stable Keplerian orbits in D � 5, we find that the two blobs can perform more

than one revolution around each other before either flying apart or merging. In this respect, these collisions

resemble four-dimensional ones more than one might have expected.
14Each black hole has spin 2(M/2)a and orbital angular momentum (M/2)u(b/2).
15Similar considerations were made in [58].
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2 ! 1: fusion. If the black holes fuse and then relax into a single, stable blob, this final

state can be read from fig. 6.3 as the unique stable solution with the value

J

M
= 2ain +

binuin
2

. (6.70)

If this end state is an MP black hole or a black bar, the final entropy will be

S(MP)

1
= � ln

 
1 +

1

4

✓
J

M

◆
2
!

2

, (6.71)

S(bar)

1
= � ln

✓
J

M

◆
. (6.72)

The total entropy production in the fusion will be the di↵erence between these and (6.68).

We do not have analytical expressions for the entropy of black dumbbells.

2 ! 1 ! 2: fusion ) fission. The final states of the 2 ! 1 ! 2 collision are always

two equal MP black holes16 with outgoing parameters 0  aout < 1 and

(x, y) = R(✓)

✓
±1,±bout

2

◆
, (6.73)

(vx, vy) = R(✓)(±uout, 0) , (6.74)

whereR(✓) is a rotation matrix with angle ✓. Conservation of mass and angular momentum

implies
J

M
= 2ain +

binuin
2

= 2aout +
boutuout

2
. (6.75)

The collision is characterized by seven parameters: (a, u, b)in/out plus the scattering

angle ✓. The latter is not a↵ected by conservation laws and it does not enter into entropic

arguments, so we will leave it aside in the following discussion.

Of the six parameters (a, u, b)in/out, only five are independent once (6.75) is imposed.

We can regard the three initial parameters as given, and then two outgoing parameters,

say, uout and aout, are unconstrained by conservation laws, that is they will be determined

by the dynamical evolution of the system.

The di↵erence in the entropy between the initial and final states is

�S1 =
u2
in
� u2out
2

+ ln
1 + a2

in

1 + a2
out

. (6.76)

The entropy of the final state will be larger if the outgoing velocities and spins are as

small as possible, since both a and u tend to reduce the entropy of a MP black hole with

fixed mass. However, they cannot be made arbitrarily small. The total angular momentum

must be conserved, and even though (6.75) seems to allow for two unconstrained outgoing

parameters, we cannot expect to have aout, uout ! 0. For any J 6= 0 this would require

that the outgoing impact parameter diverges, bout ! 1, which is unreasonable: if the

16In principle, these could also be stable bars and dumbbells. However, the spin of the outgoing states

that we observe is always below the range of their existence.
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two initial black holes do indeed collide and merge, the outgoing impact parameter will be

comparable to the size of an intermediate (unstable) state with the same J and M . From

the distance between the two peaks in the critical dumbbell, fig. 6.2, we can expect that

bout ⇡ 7 , (6.77)

and probably a little larger after the fission. This is indeed a good predictor for the actual

values we find below. Another well-motivated and better defined geometric estimate is

obtained by demanding that bout is approximately equal to twice the radius of the two

outgoing black holes. In the appendix of [17] we find that this gives

bout ⇡ 2
q
2(1 + a2

out
) ln ✏�1

b
. (6.78)

It depends on a small number (which can be thought of as the brane-cuto↵ described in

section 5.2.1) that we estimate to be ✏b ⇡ 10�3. If entropy is to be maximized, then b will

be close to this upper bound.

Eqs. (6.75) and (6.78) leave one unconstrained degree of freedom: an equation between

uout and aout. The last constraint that fixes them will be discussed in sec. 6.5.

6.3.5 Boost invariance of the entropy

The e↵ective theory is invariant under Galilean symmetry. Therefore a Galilean transfor-

mation acting on a blob solution m(t, x), vi(t, x) yields another solution

m0(t, x) = m(t, x�X(t)), v0i(t, x) = vi(t, x�X(t)) + ui (6.79)

where Xi(t) = uit+ bi. The mass and the linear and angular momenta transform as

M 0 = M, P 0

i = Pi +Mui J 0

ij = Jij + (biuj � bjui)M . (6.80)

The first two are actually the Lorentz transformation (setting for simplicity ui = (u, 0, . . . , 0))

0
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up to leading order in the large-D limit of non-relativistic velocities,

↵ = arctanh
up
D

=
up
D

+O
✓

1

D3/2

◆
. (6.82)

Although the masses remain invariant in the LO e↵ective theory, the Lorentz trans-

formation generates terms at NLO
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whose e↵ect we must take into account when computing the Lorentz transformation of

the entropy.

The NLO entropy (6.10) transforms as

S0

1 = 4⇡

Z

Rp

dpx

✓
�1

2
m0v02 � 1

2m0
(@m0)2 +m0 logm0

◆

= 4⇡

Z

Rp

dpx

✓
�1

2
mv2 � 1

2m
(@m)2 +m logm�mviu

i � 1

2
mu2

◆

= S1 � 4⇡

✓
uiPi +

1

2
u2M

◆
, (6.84)

which implies that the mass-normalized entropy (6.50) transforms as

S 0

1 = S1 �
1

2
u2 � uiPi

M
. (6.85)

We see that the NLO entropies are not boost invariant. However, it is straightforward to

verify that under (6.83) the total entropy

S = 4⇡M +
1

D
S1 = 4⇡M 0 +

1

D
S0

1 = S0 (6.86)

is invariant. The mass-normalized total entropy (6.51) is not, since the mass (energy) is

not boost invariant.

If the ‘unprimed’ frame is at rest, so that Pi = 0 and M is the rest mass, then

M 0 =
Mq
1� u2

D

= M +
1

D

Mu2

2
+O

✓
1

D2

◆
(6.87)

and

S 0

1 = S1 �
1

2
u2 . (6.88)

This directly yields (6.67) from (6.61).

6.4 Entropy production

With our methods we can easily track the entropy production, in space and in time, during

the evolution of three di↵erent kinds of phenomena:

• 1 ! N : decay and fission of unstable black holes

• 2 ! 1: fusion of two black holes

• 2 ! 1 ! 2: fusion of two black holes followed by fission

Understanding entropy production in the first two will give us insight into the third.

We evolve the equations numerically, using two di↵erent codes (the same as in [14, 15],

now using finite di↵erences instead of FFT di↵erentiation), until the system either settles

into a stable single blob, or breaks up into blobs that fly apart. By keeping track of m(t,x)

and vi(t,x) we can then compute all physical magnitudes.
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6.4.1 1 ! N : decay and fission of unstable black strings and black holes

Here we follow the non-linear evolution of the decay of an unstable, fissile blob. We have

chosen three important examples which most clearly exhibit the physics relevant for other

more complex evolutions, see fig. 6.6: the black string; an ultraspinning MP black hole

with a = 2 decaying through an intermediate black bar; and an MP black hole with

a = 3 decaying through an intermediate black ring. The latter evolutions are triggered

by choosing di↵erent inital perturbations, which excite di↵erent unstable modes of the

ultraspinning black hole.

Let us emphasize that our simulations of the decay of unstable black strings are not

expected to reproduce the details of the late-time evolution in the (much more expensive)

numerical evolutions in [51], nor of the related and more complex simulations in [95, 85, 87].

This has been discussed in detail in [11]. In particular, the large D e↵ective theory does

not reveal the cascading formation of small ‘satellites’. However, our concern here is with

how entropy is produced in this decay, and this appears to occur mostly in the intermediate

stages of the evolution. At late times, most of the mass and area reside in the large, black-

hole-like blobs, and little on the satellites and thin tubes inbetween them. Therefore, we

expect that our study accounts for the main contributions to entropy production.

The analysis of black string decay reveals generic aspects of entropy production in

fission. The pattern we see in fig. 6.6 (top) will be present in all subsequent fission

phenomena: a single peak in the entropy production rate, midway along the fission, with

dissipation equally shared into shear and expansion.

The two decays of the ultraspinning MP black hole in fig. 6.6 show qualitative similari-

ties between themselves: first, a long-lived but ultimately unstable configuration forms—a

black bar, or a black ring.17 Entropy is generated mostly through shear dissipation. In

fact, it is clear that a dominant shearing motion must be driving the evolution to a bar,

while the formation of the ring should also involve some compression. Both features are

visible in the entropy production curves. Afterwards, this intermediate state decays fol-

lowing the pattern of black string fission.

The second peak in entropy production appears to have universal features. This con-

firms that the physics of black string decay also controls the fission of the blob. Observe,

however, that in the MP decay the peak is a little higher—hence more irreversible—than in

the black string. This could be expected since the latter is a more symmetric configuration.

Finally, we see that the duration of the string break up is on the order of

(�t)fission ⇡ 20M . (6.89)

This will be a characteristic of other fissions.

17When D is not large enough this bar radiates away its excess spin fast enough to return to stability

[54].
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Figure 6.6: Entropy production, as a function of time and space, during the decay of: unstable

black string (top); ultraspinning MP black hole through intermediate black bar (middle); ultraspin-

ning MP black hole through intermediate black ring (bottom). The blue curves give the production

rate of the NLO entropy, @tS1 (integrated in space); the dashed red curves are the production rate

through dissipation of shear (and not of expansion), @tS(shear)
1 . The density plots show the time

derivative of the entropy density (colors in log scale). The thin black contours serve to guide the

eye to where the black hole blobs are, and correspond to m(x, y) = 0.001M . We can see that the

pattern of entropy production in the black string decay is reproduced in the second peak of the

decays of the MP black hole. The first peak is mostly due to shearing when the intermediate black

bar or black ring forms.

6.4.2 2 ! 1: fusion ) thermalization

In a 2 ! 1 collision the final state is completely determined by the conserved initial value

of J/M : the system settles into the only stable stationary black hole with that value: an
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Figure 6.7: Entropy production during a collision with fusion into a stable black bar. The first,

large fusion peak is followed by a smaller peak for the thermalization to the black bar. The height

of this second peak is comparable to that in fig. 6.6 (middle).

MP black hole, a black bar, or a black dumbbell.

In fig. 6.7 we present an illustrative example: a symmetric collision of two black holes

with (bin, uin, ain) = (2, 1.0, 0.6), so J/M = 2.2, resulting in the formation of a stable

black bar. The figure shows that when the two black holes first meet and fuse there is

a large production of entropy. There follows a phase in which the system equilibrates

(thermalizes) into the final stable black bar. This second phase is similar to the formation

of the (unstable) bar in the decay of the ultraspinning MP black hole in fig. 6.6 (middle),

with both peaks having similar height (⇡ 0.03, in mass-normalized entropy rate). The

duration of this phase in the decay of the MP black hole is much longer, since the system

there starts in stationary, but unstable, equilibrium, while the merged horizon is farther

from equilibrium.

The contributions to dissipation from shear and expansion vary at di↵erent stages in

the evolution. During the initial fusion phase, one or the other may dominate depending

on the initial parameters, but generically we observe both expansion (and compression)

and shearing motion of the blob, which contribute roughly equally to entropy production.

During the formation of the intermediate quasi-thermalized bar, the proportions of shear

and expansion can vary, depending on how much the preceding blob is already bar-like

or not. In the simulation shown in fig. 6.7, from t ⇡ 9 to 1 the blob has to undergo less

shearing to acquire the bar shape than in fig. 6.6 (middle) from t ⇡ 20 to 40. Presumably

this explains the lower presence of shear dissipation.

6.4.3 2 ! 1 ! 2: fusion ) quasi-thermalization ) fission

With large enough total angular momentum, the fusion results in a fissile intermediate

state.

Stages in the evolution. In fig. 6.8 we present the evolution of entropy production in

a collision with initial parameters (bin, uin, ain) = (3.4, 1.0, 0.8), so J/M = 3.3. It can be

interpreted by combining what we have learned so far:
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Figure 6.8: Entropy production during a collision with fusion followed by fission. The entire

process can be divided in three stages: t ⇡ 4 to 8, fusion; t ⇡ 9 to 14, quasi-thermalization into a

bar; t ⇡ 15 to 30, fission of the bar, similar to black string decay.

1. Fusion: t ⇡ 4 to 8. This is a strongly irreversible phase, very similar to the first

peak in 2 ! 1 fusion, fig. 6.7.

2. Quasi-thermalization: t ⇡ 9 to 14. The fused blob follows qualitatively the evolution

of unstable MP black holes in fig. 6.6 (middle): a quasi-thermalization phase with

the (faster) formation of a long-lived bar.

3. Fission: t ⇡ 15 to 30. The intermediate bar fissions into two outgoing black holes,

in a manner similar to fig. 6.6 (middle), ultimately patterned after the decay of black

strings, fig. 6.6 (top). It lasts for a time comparable to (6.89).

Observe that not only the qualitative features of the decay of the MP bhs are repro-

duced in the 2 ! 1 ! 2 collision: also the height of the peaks in the mass-normalized

entropy production rates, after the fusion peak in fig. 6.8, are quantitatively similar.

The proportions of viscous dissipation from shear and expansion also follow what we

have seen before.

6.5 Scattering of black holes and entropic attractors

We now turn to a more complete investigation of collisions, in particular those that result

in fission, and the role that the entropy increase plays in them. For this purpose we have

performed an extensive, although not exhaustive, study of symmetric collisions of black

holes for wide ranges of the initial parameters (ain, uin, bin).

In our simulations we verify that the final blobs can be identified with known stable

stationary blobs. In 2 ! 1 and 2 ! 1 ! 2 events, the final spin parameter, aout, is

extracted from the width of the gaussian blobs by linear regression of lnm as a function

of r2, where r is the distance to the center of the blob (see (2.25)). In fission, we extract

the parameters uout and bout of the outgoing blobs from the velocity field at their centers,

As we have seen, fusion into a single stable black hole is fully determined by the

conservation of mass and angular momentum. In our simulations we have been able to
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Figure 6.9: 2 ! 1 ! 2 collisions: in 100 simulations, the outgoing parameters (aout, uout, bout)

show little correlation with initial ingoing parameters (ain, uin, bin). This is a consequence of quasi-

thermalization in an intermediate stage in the collision. Outgoing parameters cluster in a relatively

narrow range, the more so the lower the total J/M , for which the intermediate phase lasts longer.

verify that the integration over space and time of the entropy density reproduces correctly

the exact predictions from sec. 6.3.4. This is a good check on the accuracy of our methods.

6.5.1 2 ! 1 ! 2: In & Out

In contrast to 2 ! 1 fusion, here there is a continuous two-dimensional range of out

states that are allowed by the conservation laws. In figs. 6.9 we present the results for

the outgoing parameters (aout, uout, bout) of 100 simulations with randomly chosen values

of the ingoing parameters (ain, uin, bin).18 We also present, as color shading, the value of

the the conserved J/M for each event. Since our sampling is not exhaustive, we have

not attempted to perform detailed statistical analyses, but nevertheless there are several

discernible patterns in these plots that are worth remarking on.

First, there is a clear clustering of the out parameters. It is stronger the lower J/M is,

with (uout, aout, bout) being essentially unique for the lowest J/M (slightly above (J/M)c =

2.66). The latter are the cases where an unstable but very long-lived intermediate state

18We discard events where the intermediate interaction is too weak to involve fusion. We implement

this by removing from our analysis events for which the initial impact parameter is large (bin > 7) and

the outgoing parameters change less than 5% relative to the initial ones. In these cases the spin a changes

very little, while u and b can change more, as expected if the process is one of direct (fusionless) 2 ! 2

scattering.
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forms in the collision. The dissipation that happens in this intermediate phase e↵ectively

erases the memory of the initial state parameters, other than the conserved J/M . As

J/M grows larger, the intermediate state is less long-lived and less precisely defined, and

the system retains more memory of the initial configuration (for instance, there is some

correlation between the values of ain and aout), resulting in more dispersion in the plots.

More generally, the plots show that the out parameters lie approximately in the fol-

lowing ranges:19

Spin:

aout ⇡ 0.3+0.2

�0.1
, (6.90)

with the upper bound being fairly robust.

Velocity:

uout ⇡ 0.6+0.4

�0.1
, (6.91)

with a strong bias towards the lower value, which is never below ⇡ 0.5.

Impact parameter:

bout ⇡ 8+2

�1
. (6.92)

The scant correlation of these results with the initial values other than the conserved

J/M is indicative of intermediate thermalization.

The clustering values might possibly be compared with those in the decay states of

unstable blobs in the yellow regions close to (J/M)c in fig. 6.3. An indication in this

direction is (6.77), but we have not attempted to go further since this requires additional

extensive numerical studies.

Regarding the scattering angle in the final states (6.73), (6.74), we have observed that ✓

can be robustly obtained from the numerical simulations. In particular, it is independent

of the scheme implementing a regulator at small m, and of the values of the regulator

as this is decreased. We expect, therefore, that in collisions at finite D this scattering

angle can also be obtained from the classical evolution before the naked singularity forms.

However, this angle does not play any role in our study in this paper.

6.5.2 Entropy increase

Recall that the initial and final states are characterized by the values of (a, u, b), one of

which can be traded for the value of J , which is common for the initial and final states

(we always set the total mass M = 1). We find convenient to eliminate b, so in fig. 6.10,

for a given value of J , we represent the initial and final states each one as a point (red and

green, respectively) in the plane (u, a). On this plane, we also show colour contours for

the value of the mass-normalized entropy S1. We exclude the region of ultraspins a > 1

since these MP black holes are unstable.

We already mentioned that the entropy cannot be fully maximized, since this happens

at (u, a, b) = (0, 0,1). The geometric constraint (6.78) (particularly good for low J/M)

selects a set of possible final states, which we mark as a purple band in the (u, a) plane.

19These central values and variances are indicative and should not be taken literally; the dispersion is

strongly correlated with J/M , and it is very low near the critical value.
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Figure 6.10: Total entropy growth in symmetric 2 ! 1 ! 2 collisions. Left : coloured-contour

plot for the total entropy of configurations with velocity and spin (u, a), with a given value of

J/M . Red and green dots indicate the initial and actual final states in the dynamical evolution.

The hashed part marks final states forbidden by the second law. The purple band are states with

impact parameter in the geometric range (6.78). We see that the actual final states lie very close

to (although not exactly at) the maximum entropy with b in this range. In particular, larger

values of aout and smaller of uout would be entropically very disfavoured. Right : evolution in time

of S1 along the simulation. The initial and final parameters are (top) (b, u, a)in = (3.4, 1.0, 0.8),

(b, u, a)out = (7.9, 0.65, 0.36) and (bottom) (b, u, a)in = (3.0, 2.0, 0.0), (b, u, a)out = (9.25, 0.5, 0.34).

In fig. 6.10 the entropy changes between initial and final states are shown in two

illustrative cases.20

The salient aspects of these plots are:

• Final states in the hashed region are excluded by the second law. High final velocities

are then excluded. In particular, if the initial black holes are spinless, then the

outgoing velocity cannot be higher than the ingoing one.

• The entropy increases significantly, an in particular it is close to being maximized

(but not fully maximized) among the possible outgoing states with geometrically-

20The top right curve for S1(t) is the integral of the blue curve in fig. 6.8.
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Figure 6.11: Entropic attractor in collisions 2 ! 1 ! 2 with J/M = 3.8. See fig. 6.1 for the

explanation. The attractor is less strong as J/M grows larger. Note that initial states to the left

of the purple band have large initial impact parameters and the black holes do not merge, so we

do not include them.

constrained impact parameter (6.78).21

In fig. 6.10 (right) we show the time evolution of the entropy. In the first one (top) the

total entropy change is approximately equally subdivided between the sharp production

at the beginning of the collision and the slower subsequent production rate. In the second

one (bottom), which starts with very high initial velocity, most of the entropy is quickly

produced in the initial stages.

6.5.3 Entropic attractors

We can now combine the analyses of sec. 6.5.1 and sec. 6.5.2 to obtain a global perspective

on the role of total entropy production in the evolution of the system.

In figs. 6.1 and 6.11 we show the results of sampling a large number of collisions

2 ! 1 ! 2 with two specific values of J/M : a low value close to (J/M)c in fig. 6.1, and

a quite higher one in fig. 6.11. The clustering of the final states seen in sec. 6.5.1 is even

more clearly visible here, and also the near-maximization of the entropy that we discovered

in sec. 6.5.2. The attractor that funnels the evolution is stronger the closer to the critical

value of the conserved J/M , but fig. 6.11 shows that it, and the near-maximization of the

entropy, are present even when J/M is quite far from criticality.

We conclude that the dynamical outcome of the collision can be approximately pre-

dicted, after imposing kinematic and geometric constraints, by near-maximization of en-

21All purple bands are centered at ✏b = 0.001, which we take as the fraction to which the mass has to

have fallen o↵ to be considered the ’end’ of the blob. The bands in figs. 6.1 and 6.10 (up) span the range

ln(✏b) = ln(0.001)± 0.5. In figs. 6.10 (down) and 6.11 the range is wider, ln(✏b) = ln(0.001)± 1.5.
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tropy generation. The maximization is not exact, but this principle is a powerful guide to

the end result of a complex dynamical process.

6.6 Charge di↵usion in black holes

Since the entropy of neutral black holes is proportional to their mass in the limit D ! 1,

it can only be generated at NLO in the 1/D expansion—although, as we have argued,

this production can be computed using the LO e↵ective theory. However, when charge is

present, the entropy of a black hole when D ! 1 is no longer proportional to the mass.

Instead of (6.2), we have

S(M,Q) /
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This is easily seen to imply that in the fusion between two black holes with di↵erent charge-

to-mass ratios, Q1/M1 6= Q2/M2 (including the charge sign), the charge redistribution that

occurs gives rise to entropy production, even when D ! 1. The mechanism that drives

it is not viscous dissipation, but Joule heating through charge di↵usion.

This gives us the opportunity to explore a di↵erent mechanism for entropy production,

and also provides a simpler set up where we can confirm the general picture that we have

developed in the previous sections. It will be easy, and interesting, to consider asymmetric

collisions, where the two initial black holes have di↵erent parameters, in particular di↵erent

charge-to-mass ratios.

6.6.1 Entropy generation in charged fusion and fission

Our discussion will be succint, and for more details we refer to [31] and [13]. The e↵ective

theory for a charged black brane has as its variables, besides the mass density and the

velocity, the charge density q(t,x). In terms of these, the entropy density is

s = 2⇡
⇣
m+

p
m2 � 2q2

⌘
. (6.94)

The chemical potential, conjugate to the charge, and the temperature are

µ =
2q

m+
p
m2 � 2q2

, T =
1

2⇡

p
m2 � 2q2

m+
p
m2 � 2q2

. (6.95)

The e↵ective equations then imply that

@ts+ @ij
i

s = q@i
⇣µ
T

⌘
@i
⇣µ
T

⌘
, (6.96)

where the expressions for the entropy current jis and the charge di↵usion coe�cient q can

be found in [31]. The term on the right generates entropy when there is a gradient of

µ

T
= 4⇡

q/mp
1� 2(q/m)2

, (6.97)



6.6. CHARGE DIFFUSION IN BLACK HOLES 151

that is, when q/m is not homogeneous so there can be charge di↵usion. Observe that,

unlike in the neutral case, the temperature need not be uniform: it is smaller where |q/m|
is larger.

The e↵ective equations admit exact solutions for charged blobs that are easy extensions

of the neutral ones, in particular charged rotating black holes and black bars [13]. The

former are the large D limit of the Kerr-Newman (KN) black hole.

The entropy of a KN black hole or black bar at large D is (cf. (6.93))

S = 2⇡M
⇣
1 +

p
1� 2q2

⌘
, (6.98)

where we introduce the charge-to-mass ratio of the black hole,

q =
Q

M
. (6.99)

Observe that, in this limit of D ! 1, the entropy is independent of the spin. The KN

black hole and the charged black bar di↵er in how the spin is related to the mass and

charge, but are entropically equivalent.

Consider now a configuration of two KN black holes, labelled 1 and 2, with masses

M1,2 and charges Q1,2. We want to study the total entropy of the system for fixed total

mass M = M1 +M2 = 1 and fixed total charge Q = Q1 +Q2. For the two remaining free

parameters in the system, we use �M and �q, such that

M1,2 =
1

2
±�M , (6.100)

q1,2 = Q�
✓
�M ⌥ 1

2

◆
�q , (6.101)

i.e.,

q1 � q2 = �q (6.102)

where

q1,2 =
Q1,2

M1,2

. (6.103)

The entropy of the two-black hole system is

S(2)
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We now ask what values of �M and �q maximize this entropy for fixed total Q and total

M = 1. The answer is that the maximum is reached for

�q = 0 (6.105)

for any value of �M , and this maximum is equal to

S(0)

2⇡
= 1 +

p
1� 2Q2 , (6.106)

which is the entropy of a single black hole or black bar with mass M = 1 and charge Q (so

q = Q). That is, a system of two black holes, with possibly di↵erent masses and charges
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but both of them having the same charge-to-mass ratio q, has the same entropy as a single

black hole or black bar with that same value of q; and a system of two black holes with

di↵erent charge-to-mass ratios has lower entropy than a single black hole or black bar of

the same total mass and charge.

The consequences of this for processes of black hole fusion and fission are then clear:

• Fission processes where an unstable black hole or black bar decays into two black

holes are isentropic (adiabatic), and the final black holes will have the same charge-

to-mass ratios q as the initial one.

• When two black holes with the same values of q (but possibly di↵erent masses and

charges) collide and merge, the subsequent process will necessarily be isentropic,

regardless of whether a long-lived intermediate state forms or not, and (if there is

fission) regardless of what the final outgoing black holes are.

• When two black holes with di↵erent values of q collide and merge, entropy is pro-

duced. If a stable black hole forms, then it will definitely have more entropy than

the initial states. The entropy production will be given by S(0) � S(2) above.

• If the final state consists of two outgoing black holes, then more entropy will be

produced the closer the intermediate state is to a single stationary black hole or

black bar (i.e., the longer-lived the intermediate state is, so there is time to di↵use

charge uniformly to maximize the entropy). In that case, entropy will reach a value

close to saturation during the intermediate phase, with little entropy production in

the subsequent fission stage.

• If there is no long-lived, almost stationary intermediate state, then entropy produc-

tion will be less than maximal, but we still expect that it will happen mostly during

the fusion process (where the charge-to-mass-ratios are more di↵erent) and less so

in the fission.

These features (to LO at large D) are similar to what we have found in the neutral

case (at NLO), but with stronger suppression of entropy generation in fission compared to

fusion. It is easy to run numerical simulations of collisions that confirm this picture, but

since conservation laws constrain much more the phenomena, they are less illustrative than

in the neutral case. Therefore we only show one example of the fusion of two oppositely

charged black holes, fig. 6.12. It is qualitatively similar to fig. 6.8, even in its duration.

6.7 Final comments

Our study has produced a consistent picture of the phenomena of fusion and fission of

black holes, including the entropy generation mechanisms at di↵erent stages. One of the

main results has been to highlight the attractor role that the intermediate, long-lived,

quasi-thermalized black bar phase plays in a 2 ! 1 ! 2 collision with fission, and how it

is connected to a principle of total entropy maximization.
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Figure 6.12: Entropy production during a charged collision with fusion into a stable black bar.

At LO in the e↵ective theory, entropy is generated through charge di↵usion only. The initial

parameters are q1 = �q2 = �0.6, a1 = a2 = 0.4, u1 = �u2 = 1, b = 2, with total mass M = 1.

It is surprising that entropy maximization is somehow driving the dynamics. The sys-

tem obeys time-irreversible equations that imply that, if at some moment in the evolution

entropy is generated, then there is no coming back. But, in principle, the dynamics does

not force the system, at least not in any manifest way, to evolve in a direction where en-

tropy grows—it only forbids it to decrease—and even less so that entropy should grow as

much as possible compatibly with conservation laws. The surprise that we find is that the

evolution does lead to an end state very close to maximum entropy among a continuum

of kinematically and geometrically allowed states. In statistical and quantum mechanics

systems evolve stochastically sampling nearby configurations—and then, final thermody-

namic equilibrium is achieved when entropy reaches a maximum. Here, however, we have

a completely deterministic classical system whose equations seem to drive it in a direction

that almost maximizes the rather non-obvious quantity S1. The time scale involved is

much shorter than, say, the scrambling time for a black hole (which, in the strict classical

limit, is an infinite time). And moreover, for all we can see, entropy is in general almost,

but not quite, maximized among possible final states. Indeed, by adjusting the initial

conditions (e.g., to make a black string break up into multiple static black holes, or collid-

ing black holes with very large J/M) the di↵erence to the maximum can be made larger.

Maximal entropy provides only an approximate criterion, but a remarkably accurate and

powerful one.

In addition, we have also produced a detailed temporal and spatial tomography of

entropy generation. Fusion, as might be expected, is highly irreversible. The production

of entropy during fusion is relatively featureless, characterized by an initial peak in the

production rate, where both shear and bulk viscosity contribute. If the system then settles

down to a (long-lived) bar, a second stage with smaller entropy production can appear.

Fission of unstable configurations follows the pattern of the decay of unstable black strings,

with a duration of the order of (6.89), and approximately equal amounts of dissipation of

shear and expansion.

Our results are expected to be most applicable for black hole evolution inD � 6, but we
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would like to elaborate more on their possible qualitative relevance in four dimensions. The

most important di↵erences between D = 4 and D � 6 refer to the dynamics of rotation22:

(i) quasi-stable Keplerian orbits (in General Relativity they are not fully stable due to

gravitational wave emission), which are important in the evolution towards a merger, are

possible in D = 4 but not in D � 6; (ii) the properties of rotating black holes di↵er

markedly in the two cases: in D = 4 their spin is bounded above, while in D � 6 it

is unbounded. Moreover, in D = 4 the Kerr black hole (and not, e.g., a black bar) will

always be the endpoint of fusion, without any instability that would lead to its fission. If

the total angular momentum in the system is above the Kerr bound for the final black

hole, then the excess will be shed o↵ into radiation, possibly involving an ‘orbital hang

up’ stage that delays the merger [122, 123]. In D � 6 instead, the upper bound on the

angular momentum is not absolute but dynamical and set by an instability, so the excess

angular momentum does not result in hang up but triggers fission.

We do not expect our studies of fission, nor of the relaxation to a stable black bar,

to have application to collisions between Kerr black holes. But when studying fusion into

a stable rotating MP black hole, the di↵erences we have mentioned are less important

than they may appear. The reason is that in D = 4 the final plunge before two black

holes merge occurs when their orbit becomes unstable. And when the spin of MP black

holes is below the ultraspinning bound, their properties are similar to the Kerr black

hole. It is interesting that in our simulations of collisions with relatively large impact

parameters, we have observed that, prior to coalescence, the black hole trajectories are

deflected into what looks like an approximately circular orbit (unstable dumbbells appear

to describe such configurations), until the two black holes finally plunge towards each

other. Qualitatively at least, this resembles the four-dimensional evolution.

So, as long as the angular momenta involved are moderate, the dynamics of black hole

collisions and mergers in D � 6 are qualitatively similar to D = 4, and our study of how

entropy is produced (with the caveats that concern gravitational wave emission) should

provide at least a guide to what to expect in that case.

22The case D = 5 is in some respects closer to D = 4 and in others to D � 6. We will not refer to its

peculiarities here.
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Summary

The large D expansion of general relativity in recent years has proven to be a very useful

tool for understanding the dynamics of higher dimensional black holes. The limit of a large

number of dimensions e↵ectively localizes the dynamics of higher dimensional black objects

on a thin membrane situated at the black hole horizon. The dynamics of black objects

then can be rephrased as a set of conservation equations of stress-energy (and potentially

further charges the black hole carries). In the dynamical regime, i.e., for solutions with

time dependence the equations take the form of hydrodynamic type equations, resembling

the other e↵ective theories for black holes, like the fluid gravity correspondence or the

blackfold approach. The large D e↵ective theory however also contains relevant di↵erences

to theses other e↵ective theories. Maybe most importantly the theory simplifies in the

static/ stationary limit to the so-called soap bubble equation which states that the mean

curvature (times a red-shift factor) has to be a constant along the horizon. In this sense the

large D limit also captures an elastic behavior of black holes and allows for non-uniform

equilibrium solutions that usually cannot be described in the fluid-gravity picture.

In this thesis we have presented a new aspect pertaining to the e↵ective field theory

of large D general relativity. We have demonstrated that the theory initially developed

to capture the physics of asymptotically flat branes also contains a new family of lo-

calized solutions that can be identified with higher dimensional black holes such as the

Schwarzschild-Thangerlini or the Myers-Perry black holes in the limit of a large number

of spacetime dimensions. Using this technique we have explored several new aspects of

these black hole solutions. In this final chapter we are going to provide a short summary

of all the results contained in this thesis.

Black holes and black bars as blobs on a membrane We show that the e↵ective

large D equations for the asymptotically flat brane also contain an analytic solution that

is a gaussian blob (with the same topology as the flat membrane), and it very closely

resembles the very non-uniform black strings that can appear as end states of the Greggory

Laflamme instability in higher dimensions. These blobs can be given a Galilean boost, so

that they travel along the membrane, additionally these solutions can be spun up such that

they correspond to rotating black hole solutions. We demonstrate that these blobs capture
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the main properties of Schwarzschild and Myers-Perry black holes at large D. It can be

shown that the blob actually corresponds to a magnification of the geometry near the cap

(north-pole) of the black hole. We calculate their (slow) quasi-normal spectrum, which

captures the stability of Schwarzschild black holes and also the instability of ultraspinning

Myers-Perry black holes.

Additionally we find novel class of rotating black bar solutions, that appear as station-

ary objects in the e↵ective theory since they can not radiate gravitational waves. This is

because from the perspective of the e↵ective theory emission of gravitational waves is a

non-perturbative e↵ect in 1/D. At finite D this solution can still be a long-lived object due

to the suppression of gravitational wave emission in a large number of spacetime dimen-

sions. The slower the rotation ⌦ of the bar the more elongated its horizon becomes, s.t. in

the limit of ⌦! 0 they connect to the static string. This suggests that these solutions are

subject to Gregory-Laflamme type instabilities in which the bar develops inhomogeneities

along its elongated direction. And indeed we can describe zero mode deformations of the

black bar that signal the onset of such an instability.

Charged rotating black holes We describe a method that allows to construct (Maxwell)

charged solutions form every non-charged solution that the large D theory contains. Us-

ing this method we construct charged and rotating black holes in the Einstein-Maxwell

theory. It can be seen that rotating black holes that carry charge typically are less stable

than uncharged solutions which can be attributed to charge repulsion of the charge on the

horizon. This e↵ect can expand the ultraspinning regime of black holes to the very low

angular momentum as long as the charge of the black hole is large enough.

Black ripples and black flowers We explore the solutions that branch of from the

(ultra-spinning) Myers-Perry (MP) black hole and the non-linear extensions of the zero-

modes of the analytically known black bar. We do so by going to higher order in pertur-

bation theory and by constructing the solutions numerically. The axisymmetric solutions

branching o↵ from the MP-branch correspond to ’bumpy’ black holes that connect the MP-

branch to multiple (concentric) black rings and black Saturns. These solutions strongly

resemble ripples on a fluid surface and for low rotation become nearly gaussian lumps.

The non-axisymmetric solutions branching o↵ the MP-branch are similar to the black bar

and only stationary in the limit of D ! 1.

Further we also construct the non-linear extensions to the zero modes of the bar that

give rise to dumbbell and spindle like solutions.

Black hole collisions and instabilities We study the evolution of higher dimensional

black hole collisions by solving numerically the e↵ective equations of motion. We demon-

strate that in these collisions it is possible to form black holes with elongated horizons

such as black bars and dumbbells. At high enough angular momentum the black bars

and dumbbells can be so elongated that they are susceptible to a Greggory-Laflamme

type instability, that leads to the a pinch o↵ of the horizon towards a naked singularity.
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Accordingly this demonstrates a novel example of a violation of weak cosmic censorship

in the quintessential process of general relativity: the collision of black holes.

Furthermore we study the evolution and decay of ultraspinning MP black holes, and

observe remarkably rich structure in the intermediate states of the decay.

Entropy production in fission and fusion We study how entropy production and

irreversibility appear in the large D e↵ective theory. With this tool we study how black

hole entropy is generated in several highly dynamical processes, such as the fusion of

black holes and the fission of unstable solutions into multiple black holes. We find the

black hole fusion is highly irreversible, while fission which follows the decay of unstable

black strings generates much less entropy. Additionally we describe how in processes that

contain fusion and fission the intermediate state is quasi-thermalized. This intermediate

state erases much of the memory of the initial state and acts as an attractor that leads to

a small subset of the possible parameters in the outgoing parameter space. We show that

in most processes entropy tends to be maximized and how it can be taken as a guide for

predicting the final states.
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Chapter 8

Resumen en Castellano

En los últimos años la expansión de la teoŕıa de relatividad general en el ĺımite de un gran

número D de dimensiones ha demostrado ser una herramienta muy útil para compren-

der la dinámica de los agujeros negros de dimensiones superiores. El ĺımite de un gran

número de dimensiones localiza de forma efective la dinámica de los objetos negros en

una fina membrana situada en el horizonte del agujero negro. La dinámica de los objetos

negros puede entonces reformularse como un conjunto de ecuaciones de conservación de

la enerǵıa y del momento (y potencialmente otras cargas que el agujero negro lleve). En

el régimen dinámico, las ecuaciones toman la forma de ecuaciones de tipo hidrodinámico,

parecidas a otras teoŕıas efectivas para los agujeros negros, como la correspondencia de

’fluid-gravity’ o el enfoque de los ’blackfolds’. Sin embargo, la teoŕıa efectiva del ĺımite

de gran D también contiene diferencias relevantes respecto a estas otras teoŕıas efectivas.

Tal vez lo más importante es que la teoŕıa se simplifica en el ĺımite estático/estacionario

a una ecuación llamada ’soap bubble equation’ (referiéndose a las pompas de jabón) que

establece que la curvatura media (multiplicadaz por un factor de corrimiento al rojo) tiene

que ser una constante en todo el horizonte. En este sentido, el ĺımite de gran D también

captura un comportamiento elástico de los agujeros negros y permite soluciones de equi-

librio no uniformes que normalmente no pueden ser descritas en la correspondencia de

’fluid-gravity’.

En esta tesis hemos presentado un nuevo aspecto perteneciente a la teoŕıa efectiva

de la relatividad general en el ĺımite de un gran número de dimensiones. Hemos de-

mostrado que la teoŕıa desarrollada inicialmente para capturar la f́ısica de las branas

asintóticamente planas también contiene una nueva familia de soluciones localizadas que

pueden ser identificadas con agujeros negros de dimensiones más altas como los agujeros

negros de Schwarzschild-Thangerlini o de Myers-Perry en el ĺımite de D ! 1. Usando

esta técnica hemos explorado varios aspectos nuevos de dichos agujeros negros. En este

caṕıtulo final vamos a proporcionar un breve resumen de todos los resultados contenidos

en esta tesis.

Los agujeros negros y las barras negras como un blob en una membrana

Mostramos que las ecuaciones efectivas del limı́te de granD para las branas asintóticamente
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planas también contienen una solución anaĺıtica que es un blob gaussiano (con la misma

topoloǵıa que la membrana plana), y se asemeja mucho a las cuerdas negras muy no uni-

formes que pueden aparecer como estados finales de la inestabilidad de Gregory Laflamme

en dimensiones más altas. Estos blobs pueden viajar a lo largo de la membrana, y se

les puede dar rotación de tal manera que correspondan a soluciones de agujeros negros

giratorios. Demostramos que estos blobs capturan las principales propiedades de los agu-

jeros negros de Schwarzschild y Myers-Perry en el limı́te de dimensiones muy altas. Se

puede demostrar que dichos blobs corresponden a una ampliación de la geometŕıa cerca

del polo norte del agujero negro. Calculamos su espectro cuasinormal lento, que capta

la estabilidad de los agujeros negros de Schwarzschild y también la inestabilidad de los

agujeros negros de Myers-Perry.

Además encontramos una nueva clase de soluciones de barras negras giratorias, que

aparecen como objetos estacionarios en la teoŕıa efectiva ya que no pueden radiar ondas

gravitacionales. Esto se debe a que desde la perspectiva de la teoŕıa efectiva la emisión

de ondas gravitacionales es un efecto no perturbativo en 1/D. En el caso de D finito esta

solución puede ser todav́ıa un objeto de larga vida debido a la supresión de la emisión de

ondas gravitatorias en un gran número de dimensiones del espacio tiempo. Cuanto más

lenta es la rotación ⌦ de la barra más alargado se vuelve su horizonte, de tal manera que

en el ĺımite de ⌦! 0 se transforman en la cuerda estática. Esto sugiere que estos agujeros

negros están sujetos a inestabilidades de tipo Gregory-Laflamme en las que la barra desar-

rolla inhomogeneidades a lo largo de su dirección alargada. Y de hecho podemos describir

deformaciones de modo cero de la barra negra que señalan el inicio de tal inestabilidad.

Los agujeros negros giratorios cargados Describimos un método que permite con-

struir soluciones cargadas a partir de cada solución no cargada. Usando este método

construimos agujeros negros cargados y giratorios en la teoŕıa de Einstein-Maxwell. Se

puede ver que los agujeros negros giratorios que llevan carga son t́ıpicamente menos esta-

bles que las soluciones no cargadas, lo que puede atribuirse a la repulsión de la carga en

el horizonte. Este efecto puede extender el régimen de ultraspinning hasta un momento

angular muy bajo, siempre que la carga del agujero negro sea lo suficientemente grande.

Agujeros negros ondulados y flores negras Exploramos las soluciones que se derivan

del agujero negro de Myers-Perry (MP) y las extensiones no lineales de los modos cero de

la barra negra. Lo hacemos yendo a un orden más alto en la teoŕıa de perturbaciones y

construyendo las soluciones numéricamente. Las soluciones axisimétricas que se ramifican

de la rama MP corresponden a agujeros negros ’bumpy’ (abultados) que conectan la rama

MP con múltiples anillos negros (concéntricos) y Saturnos negros. Estas soluciones se

asemejan fuertemente a las ondulaciones de una superficie fluida y para una baja rotación

se convierten casi en blobs gaussianos. Las soluciones no axisimétricas que se ramifican

de la rama MP son similares a la barra negra y sólo estacionarias en el ĺımite de D ! 1.

Además, también construimos las extensiones no lineales de los modos cero de la barra

que dan lugar a agujeros negros de formas perecidas a mancuernas o husos.
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Colisiones de agujeros negros e inestabilidades Estudiamos la evolución de las

colisiones de agujeros negros en dimensiones superiores usando las ecuaciones efectivas.

Demostramos que en estas colisiones es posible formar agujeros negros con horizontes

alargados como barras negras o con forma de mancuernas. Con un momento angular

lo suficientemente alto, las barras negras pueden ser tan alargadas que son susceptibles

a una inestabilidad tipo Greggory-Laflamme, que lleva a una rotura del horizonte y a

una singularidad desnuda. Por consiguiente, esto demuestra un ejemplo novedoso de una

violación de la hipótesis de ’cosmic censorship’ (censura cósmica).

Además estudiamos la evolución y el decaimiento de los agujeros negros MP ultra-

spinning, y observamos una estructura notablemente rica en los estados intermedios del

decaimiento.

Producción de entroṕıa en fisión y fusión Estudiamos cómo la producción de en-

troṕıa y la irreversibilidad aparecen en la teoŕıa de la gran D. Con esta herramienta

estudiamos cómo se genera la entroṕıa de los agujeros negros en varios procesos altamente

dinámicos, como la fusión de los agujeros negros y la fisión de soluciones inestables en

múltiples agujeros negros. Encontramos que la fusión de los agujeros negros es altamente

irreversible, mientras que la fisión que sigue al decaimiento de las cuerdas negras inestables

genera mucha menos entroṕıa. Además, describimos cómo en los procesos que contienen

fusión y fisión el estado intermedio está casi termalizado. Este estado intermedio borra

gran parte de la memoria del estado inicial y actúa como un atractor que conduce los

posibles parámetros a un pequeño subconjunto de parámetros de salida. Mostramos que

en la mayoŕıa de los procesos la entroṕıa tiende a maximizarse y cómo puede tomarse

como gúıa para predecir los estados finales.
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