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1 Introduction

In many economic and social situations agents cooperate exerting some level of effort in
order to obtain a common profit. The implication of each participant in the joint project
depends on the payoff agents expect to receive. The negotiation process determines the
level of effort and the allocation of the total gain.

1.1 Co-investment problems

General co-investment problems are situations where a set of agents pool their resources
to obtain a surplus. In these problems, the effort of an agent is represented by the cor-
responding resource contribution and the common profit is the surplus obtained. Exam-
ples of these situations are the joint investment in infrastructures by the operators in the
telecommunication sector (see Bourreau et al., 2012 and 2018), cooperation at the supply
chain level between firms (see Kogan and Tapiero, 2012), or the fast and recent devel-
opment in the last years of private equity PE funds that collect capital from investors
who act as limited partners (LPs). On the behalf of their LPs, PE funds select portfolio
companies (PCs) in which they invest capital and retain them with the aim of increas-
ing their value during a limited period, after which they exit. The literature on this topic
is reviewed in Tykvov (2018) and interesting aspects of the evolution of these funds are
referred in Khavul and Deeds (2016). In this paper we propose a theoretical model of
co-investment that is mainly address, but not only, to financial applications. We analyze
cooperative investment situations where a group of agents, each of them endowed with
a certain amount of capital, has the opportunity to jointly invest them in order to obtain
higher rewards. Specifically, we assume the returns are given by a function that exhibits
increasing average returns and facilitates the stability of cooperation.

However, this cooperation gives rise the question of how allocate profits among the
agents. One way of providing agents with incentives to cooperate is to guarantee that the
payoff that each of them will receive, will be larger than the individual gain each partici-
pant might obtain acting alone. However, this might not be enough to convince agents to
fully cooperate since sub-coalitions of agents could also evaluate whether the aggregate
payoff received by their members compensate the joint effort exerted by them. Thus, a
necessary condition for a sub-coalition to fully cooperate is to propose to its members an
allocation that guarantees a joint payoff larger than the profit the sub-coalition can obtain
by itself. In the economic literature (see Telser, 1994), and specifically in the field of co-
operative game theory, the above argument requires the allocation to be in the core of the
problem. This is a stability principle. Another reasonable principle is the following: any
eventual increase in the effort exerted by each individual of a group of agents should be re-
warded with a strictly higher payoff. This is an incentive principle based on the economic
criterion that no agent will accept any redistribution of wealth that worsens his initial
position. With the aim of characterizing allocation rules, related incentive properties are
considered in Friedman (2004), for surplus sharing problems, and in Casajus et al. (2014),
applied to cooperative games. Friedman (2004) names the incentive property as demand
monotonicity. There are three main differences between this property and the concept
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used in our paper. First, the definition of demand monotonicity applies to single-valued
solutions (or rules), while in our model we use monotonicity to test and validate arbitrary
core allocations. Second, Friedmans concept of monotonicity considers the effects of an
input increase by only one agent(ceteris paribus). Finally, the payoff to this agent must
weakly increase, and not strictly increase as in our model. Casajus et al. (2014) intro-
duce the concept of weak-monotonicity to characterize the egalitarian Shapley value for
cooperative games. According to weak-monotonicity, a players payoff weakly increases
whenever her marginal contribution and the grand coalition worth weakly increase. If we
interpret our model as a cooperative g ame, weak-monotonicity refers to the case when
only one agent increases her input contribution.

The aim of our paper is to overlap the two principles to test the fairness and robustness
of core allocations in a specific model of cooperation;the co-investment problems. Co-
investment problems were introduced as a cooperative game in Izquierdo and Rafels (1996
and 2001). In these papers it is proved the non -emptiness of the core and its coincidence
with some different bargaining sets. Some economic extensions of this economic model
were developed in Borm et al. (2001), De Waegenaere et al. (2005) and Gulick et al.
(2010).

In Borm et al. (2001) the authors introduced the dependence of the rate of return on a
deposit on, its term, the capital or both. Generically, they name these situations as deposit
games and, basically, they analyze whether a deposit game becomes balanced (i.e. with
a non-empty core). In our model we assume this fact since investing more to receive the
same worsens this agent.

The other two papers analyze profit allocations where investors can select differ-
ent investment projects to meet capital requirements for long term investment problems.
Furthermore, investors may reinvest intertemporal gains from existing projects into new
projects. Stable profit schemes are analyzed by using linear programming techniques.

1.2 An explanatory example

In this paper, we focus on a subset of the core of co-investment problems that we name
the acceptable core. Let us illustrate this concept through an example. Consider three in-
dividuals having respectively $1000, $1000 and $2000 to invest for this year. Suppose
one-year deposits earn 2% interest per year if the capital deposited is strictly smaller than
$3000 euros and 4% interest per year in other case. Investing their money separately, any
individual would obtain the 2% of interest; this way, both person 1 and 2 would get $20
and person 3 would get $40. Pooling all their savings, individuals can jointly obtain the
4% of interest resulting in a total reward of $160. From the individual point of view, any
allocation of the $160 should assign the first and second person a payoff larger than $20
euros and the third person a payoff larger than $40. However, the stability principle ex-
tends this requirement to two-person groups of individuals. For instance, if person 2 and
person 3 jointly invest their savings, they can get 4% and a potential joint gain of 120
euros. The same analysis applies to the group of agents 1 and 3 with a joint potential
gain of 120. However, the joint capital of the group formed by person 1 and 2 does not
reach the threshold of $3000 and thus the potential coalitional gain is just the sum of
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individual gains, $20+$20=$40. The core of the problem is formed by those allocations
that provide each one-person and each two-person groups a joint payoff larger than the
corresponding potential gains. There are many allocations that satisfy the stability or core
principle. For instance, if we give $30 to persons 1 and 2 and $100 to person 3, that is, if
we take the allocation (30,30,100) it is easy to check that stability or core conditions are
all satisfied. The question is whether this allocation (30,30,100) is compatible with other
related deposit problems where the interest structure is the same, but capital contributions
are different. Consider a different deposit problem, with same interest rate structure, but
now the capitals invested are $2000 by person 1, $1000 by person 2 and $2100 by person
3. In this new situation only persons 1 and 3 have increased their investment. It is easy to
check the total gain is $204 and the unique core allocation is (80,40,84) (see Proposition
1). Notice that in this case, in spite of having increased the capital contribution, the payoff
to person 3 must necessarily decrease if we want to preserve stability. The stability prin-
ciple and the incentive principle come into conflict. In this case we say that (30,30,100)
is not acceptable.

1.3 Contributions and results

The acceptable core contains those core allocations that are consistent with both the sta-
bility and incentive principles: if some agents increase their contribution, it is possible to
reward these agents with an ext ra payoff without breaking the stability of the allocation.
Consequently, the originality of our approach is to discriminate between core allocations
using an incentive principle. So far, to the best of our knowledge, no such discrimination
has been used before. The main results of the paper are the following. We begin showing
that the proportional allocation is always an acceptable core allocation (see Proposition
3). However, Example 2 reveals that the acceptable core might contain multiple alloca-
tions and also illustrates that the core can be strictly larger than the acceptable core. After
this preliminary analysis, we deal with two interesting questions. First, given an arbitrary
co-investment problem, which is the set of all acceptable core allocations? Second, un-
der what conditions can we guarantee the coincidence of both the acceptable core and
the core? The first question is addressed by Theorem 1 and Proposition 2 of Section 3.
In Theorem 1 we characterize when a core allocation can sustain the incentive principle.
In addition, Proposition 2 studies the interesting situation where exactly only one agent
increases the input contribution. The answer to the second question about the coincidence
of the core and the acceptable core is addressed in Proposition 4 of Section 4. It states
that the convexity of the output function it is enough to guarantee that coincidence. The
interpretation of this result is that, as long as an allocation is in the core of a convex co-
investment problem, any increase in the in vestment level can be always encouraged. In
Section 5, Theorem 2, we analyze which are the properties that restrict the subset of ad-
missible allocations to contain just the proportional one. If we add to stability and to the
incentive principle, the property of core invariance (if two co-investment problems have
the same core, then admissible allocations are the same), then the unique possibility is to
pick out the proportional allocation.
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2 Preliminaries

Given N = {1,2, . . . ,n}, we denote1 by RN the n-dimensional space whose components
are indexed by N. Moreover, let RN

+ and RN
++, stands for the space of non-negative and

positive vectors in RN , respectively. Given a non-empty coalition S ⊆ N and a vector
x ∈ RN , we denote xS = ∑i∈S xi, being x∅ = 0. Furthermore, given two vectors x, y ∈ RN

we denote by x≤ y the case where xi ≤ yi, for all i ∈ N.
A co-investment problem is represented by a triplet (N, f ,ω) where N = {1,2, . . . ,n},

n ≥ 2, is the set of agents, ω = (ω1,ω2, . . . ,ωn) ∈ RN
++ is the vector of resource en-

dowments, where ωi is the amount of resource owned by agent i ∈ N, and the function
f : R+→ R+ represents the technology that transforms x units of input into f (x) units of
output, with the following assumptions:

(a) f (0) = 0 and f (ωN)> 0 ,

(b) for any 0 < z1 ≤ z2 then
f (z1)

z1
≤ f (z2)

z2
.

(1)

Condition (a) states that no output can be produced with no input contribution and that
some output is produced if all agents contribute. Condition (b) formalizes the classical
idea of increasing average returns. We emphasize that neither continuity nor convexity
are assumed in our model; in fact in some examples we will use step-wise functions with
discontinuities. As a consequence of (a) and (b) we have that f is a monotonic increasing
function, being strictly monotonic in the positive range. Indeed, if 0 < x1 < x2, then by
(1), f (x1)≤ x1

x2
f (x2)≤ f (x2); if f (x1)> 0, then it follows that f (x1)< f (x2).

The problem to solve is how to distribute the output f (ωN) among the members of
N. An allocation of f (ωN) is denoted by a vector x = (x1,x2, . . . ,xn) ∈ RN , where xi with
i∈N, is interpreted as the allocation of agent i∈N, satisfying xN = f (ωN). In this case we
say vector x satisfies efficiency. The core of a co-investment problem (N, f ,ω) is defined
as

C(N, f ,ω) := {x ∈ RN | xS ≥ f (ωS), for all S⊆ N, and xN = f (ωN)}.

It coincides with the classical definition of the core of a cooperative game. It is easy
to check from condition (1) that the proportional allocation with respect to the initial
endowments of input is always a core element, that is, P(N, f ,ω) = (Pi(N, f ,ω))i∈N ∈
C(N, f ,ω), where

Pi(N, f ,ω) := ωi ·
f (∑i∈N ωi)

∑i∈N ωi
, for all i ∈ N. (2)

At the proportional allocation, the return per unit contributed is constant and so dif-
ferent amounts of input receive the same average return. However, the core of a co-
investment problem is in general wider than the proportional allocation. Next proposition
reveals when this happens since it states a necessary and sufficient condition to reduce
the core into a singleton. Basically, the condition says that the average return of all n−1
person coalitions is the same as the average return for the grand coalition.

1 We identify any real value function x ∈ RN on N with the n-tuple x = (x1,x2, . . . ,xn) ∈ Rn of real
numbers. See Driessen (1988).
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Proposition 1 For any co-investment problem (N, f ,ω) the following statements are equiv-
alent.

(1) C(N, f ,ω) = {P(N, f ,ω)}.

(2)
f (ωN\{1})

ωN\{1}
=

f (ωN\{2})

ωN\{2}
= · · ·=

f (ωN\{n})

ωN\{n}
=

f (ωN)

ωN
.

Proof (1) → (2). For any agent i ∈ N we define the allocation xi =
(
xi

k

)
k∈N ∈ RN as

follows:
xi

i = f (ωN)− f (ωN\{i}), and

xi
k = ωk ·

f (ωN\{i})

ωN\{i}
, for all k ∈ N \{i}.

(3)

We claim that vector xi, for each i ∈ N, is a core allocation, xi ∈C(N, f ,ω). It is efficient

xi
N = f (ωN)− f (ωN\{i})+ωN\{i} ·

f (ωN\{i})

ωN\{i}
= f (ωN).

Moreover, let S⊆ N be an arbitrary coalition of N. If agent i 6∈ S then, by (1),

xi
S = ωS ·

f (ωN\{i})

ωN\{i}
≥ f (ωS).

If agent i ∈ S then

xi
S = f (ωN)− f (ωN\{i})+ωS\{i} ·

f (ωN\{i})

ωN\{i}

= f (ωN)− f (ωN\{i}) ·
ωN\{i}
ωN\{i}

+ωS\{i} ·
f (ωN\{i})

ωN\{i}

= ωN ·
f (ωN)

ωN
−ωN\S ·

f (ωN\{i})

ωN\{i}
≥ ωN ·

f (ωN)

ωN
−ωN\S ·

f (ωN)

ωN

= ωS ·
f (ωN)

ωN
≥ f (ωS),

where all the inequalities come from (1). As a consequence of the above claim we obtain
the implication we want to prove since, if C(N, f ,ω) = {P(N, f ,ω)}, then for any agent

i ∈ N, xi = P(N, f ,ω) or equivalently
f (ωN\{i})

ωN\{i}
=

f (ωN)

ωN
.

(2)→ (1). It is known that for any arbitrary core element x ∈C(N, f ,ω) the payoff to any
agent i ∈ N, xi, is bounded above by its corresponding marginal contribution 2, i.e.

2 The marginal contribution of an agent i∈N measures the effect on the total output of adding agent i, i.e.
f (ωN)− f (ωN\{i}). It is easy to check that for any core element x ∈C(N, f ,ω), the payoff xi of any agent
i ∈ N cannot exceed its marginal contribution; otherwise xi > f (ωN)− f (ωN\{i}) and thus f (ωN)− xi =
xN− xi = xN\{i} < f (ωN\{i}), but this would contradict x to be a core element.
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xi ≤ f (ωN)− f (ωN\{i}) = ωi ·
f (ωN)

ωN
,

where the last equality follows from hypothesis (2) of the proposition. Hence, by effi-
ciency of any core allocation, we reach x = P(N, f ,ω). ut

In the proof of this result we have shown that vector xi defined in (3) is in the core of
the problem, for any arbitrary agent i ∈ N. This shows that the marginal contribution of
any agent i ∈ N, f (ωN)− f (ωN\{i}), is always attainable as a payoff to this agent in the
core of any co-investment problem.

3 Acceptable core allocations

As we have commented in the introduction, we are interested in a subset of the core of the
co-investment problem (N, f ,ω). This subset includes all core allocations that meet the
following incentive test: if some agents increase their initial investment, their expectations
of receiving a higher payoff can be supported by the existence of a new core element that
guarantees this larger payoff. Next proposition shows that any core allocation satisfies this
requirement if just one agent increases the input contribution.

Proposition 2 Let (N, f ,ω) and (N, f ,ω ′) be two co-investment problems such that, for
some i∗ ∈ N, ω ′i∗ > ωi∗ and ω ′j = ω j, for all j ∈ N \ {i∗}. Then, for any core allocation
x ∈C(N, f ,ω) there exists x′ ∈C(N, f ,ω ′) such that x′i∗ > xi∗ .

Proof Since x ∈ C(N, f ,ω) it holds xi∗ ≤ f (ωN)− f (ωN\{i∗}). Taking this fact into ac-
count, take x′ as:

x′i∗ = f (ω ′N)− f (ω ′N\{i∗})

x′i = ω
′
i ·

f (ω ′N\{i∗})

ω ′N\{i∗}
for i 6= i∗.

(4)

Recall that we have already argued in the proof of Proposition 1 that xi∗ is a core
allocation, that is x′ = xi∗ ∈C(N, f ,ω ′). Being x′N = f (ω ′N) and, since ω ′N > ωN > 0 and
thus f (ω ′N)> f (ωN), it is straightforward that

x′i∗ = f (ω ′N)− f (ω ′N\{i∗})

> f (ωN)− f (ωN\{i∗})≥ xi∗,

where we have used the fact that ωN\{i∗} = ω ′N\{i∗}. And we end the proof. ut

Unfortunately, Proposition 2 cannot be generalized to the case where two or more
agents increase their initial contribution. Next example shows that, if two agents increase
their contribution at the same time, not every initial core allocation can be adapted to the
new problem, that is, both players cannot benefit simultaneously from increasing their
initial contribution.
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Example 1 Let ω = (1,2,3) be the vector of initial endowments for a three-agent co-
investment problem where f (x) = x, for 0≤ x < 5, and f (x) = 1.5 ·x, for 5≤ x. The allo-
cation x = (1,5,3) is in the core of the problem, C(N, f ,ω). Let us suppose that players 1
and 2 increase their initial contribution by 1 unit, that is ω ′ = (1+1,2+1,3) = (2,3,3).
Notice that for any core element x′ ∈C(N, f ,ω ′) it holds x′2 ≤ f (ω ′N)− f (ω ′{1,3}) = 4.5.
Therefore, it is not possible to find a core element x′ ∈C(N, f ,ω ′) such that x′1 > x1 and
x′2 > x2 = 5.

The above example shows that the core vector x = (1,5,3) is not acceptable since
agent 2 has received an excessive amount at the initial distribution: it is not possible to
increase his payoff without breaking the stability of the allocation. The next definition
formally states when an allocation is acceptable given ω ′.

Definition 1 Given a co-investment problem (N, f ,ω) and a vector ω ′ ∈RN , with ω ′≥ω ,
we say that a core allocation x ∈ C(N, f ,ω) is acceptable with respect to ω ′ if there is
x′ ∈ C(N, f ,ω ′) such that x′i > xi for all i ∈ N with ω ′i > ωi. We denote the set of all
acceptable core allocations with respect to ω ′, ω ′ ≥ ω , by Aω ′(N, f ,ω).

Notice that if ω ′ = ω the acceptable core coincides with the core. Furthermore, as we
have already pointed out in the introduction, next proposition shows that the proportional
allocation satisfies the interesting property of being always acceptable.

Proposition 3 For any co-investment problem (N, f ,ω), the proportional distribution
P(N, f ,ω) is acceptable with respect to any ω ′ ∈ RN , ω ′ ≥ ω .

Proof Recall P(N, f ,ω) ∈ C(N, f ,ω). Let us assume ω ′ ≥ ω , ω ′ 6= ω , since the case

ω ′ = ω is trivial. As ω ′(N) > ω(N) > 0 we have
f (ω ′N)

ω ′N
≥ f (ωN)

ωN
> 0. Now take x′ =

P(N, f ,ω ′) ∈C(N, f ,ω ′). Hence,

x′i =
f (ω ′N)

ω ′N
·ω ′i >

f (ωN)

ωN
·ωi = Pi(N, f ,ω),

for all i ∈ N such that ω ′i > ωi. And we are done. ut

Next theorem gives an algebraic description of the acceptable core set with respect to
ω ′, ω ′ ≥ ω . This characterization is useful and allows to develop interesting properties
and numerical examples. For instance, we will use it in Example 2 to check that the
acceptable core might be a proper subset of the core.

Theorem 1 Let (N, f ,ω) be a co-investment problem and ω ′ ∈ RN an input vector such
that ω ′ ≥ ω . The acceptable core of (N, f ,ω) with respect to ω ′, Aω ′(N, f ,ω), is de-
scribed by the core elements x ∈C(N, f ,ω) satisfying the strict inequalities

xR < f (ω ′N)− f (ω ′N\R), (5)

for all nonempty R⊆ S∗ = {i ∈ N | ω ′i > ωi}, R 6= S∗.
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Proof If ω ′ = ω , then S∗ =∅ and the result holds trivially. From now on, let us suppose
ω ′ 6= ω and thus S∗ 6= ∅. First of all, for any acceptable core element x ∈ Aω ′(N, f ,ω)
there is x′ ∈C(N, f ,ω ′) such that x′i > xi, for all i ∈ S∗. Hence, for all nonempty R ⊆ S∗,
R 6= S∗, we have

xR < x′R ≤ f (ω ′N)− f (ω ′N\R),

where the last inequality follows since x′ ∈C(N, f ,ω ′). Therefore, x satisfies the inequal-
ities given in the statement of the theorem.

To see the other inclusion, let x ∈C(N, f ,ω) be a core element. Notice that

xS∗ ≤ f (ωN)− f (ωN\S∗) = f (ωN)− f (ω ′N\S∗)< f (ω ′N)− f (ω ′N\S∗). (6)

Then, define vector z ∈ RN as follows:

zi = xi +
ε

|S∗|
if i ∈ S∗

zi = xi if i ∈ N \S∗,
(7)

where 0 < ε < min{ min
∅6=R⊆S∗

{ f (ω ′N)− f (ω ′N\R)− xR}, f (ω ′N)− f (ωN)}. Notice ε is well

defined by (5), (6) and the hypothesis of the theorem.
We claim vector z satisfies: (i) for all nonempty R ⊆ S∗, zR < f (ω ′N)− f (ω ′N\R) and

(ii) zN < f (ω ′N). For proving (i) notice that for all R⊆ S∗, R 6=∅, we have

zR = xR +
ε|R|
|S∗|
≤ xR + ε < xR + f (ω ′N)− f (ω ′N\R)− xR = f (ω ′N)− f (ω ′N\R).

For proving (ii) notice that

zN = xN + ε < xN + f (ω ′N)− f (ωN) = f (ω ′N). (8)

Next we define the set3

DS∗ =



∅ 6= R = {i1, . . . , ir} ⊆ S∗ : ∃θ = (i1, . . . , ir) ∈Θ R such that

zi1 ≥
f (ω ′N)

ω ′N
·ω ′i1,

zi2 ≥ max
Q⊆{i1}

{
f (ω ′(N\{i1})∪Q)− zQ

ω ′N\{i1}

}
·ω ′i2 ,

...

zir ≥ max
Q⊆{i1,...,ir−1}

{
f (ω ′(N\{i1,...,ir−1})∪Q)− zQ

ω ′N\{i1,...,ir−1}

}
·ω ′ir .


The next claim states that for any coalition R in DS∗ , there are increasing average

adjusted returns outside R. The proof can be found in the Appendix.
3 Given R⊆ N, we denote by Θ R the set of all permutations of the elements of R.
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Claim.- For any R∈DS∗ and for any pair of coalitions S1 and S2 such that ∅ 6= S1 ⊆ S2 ⊆
N \R and any Q⊆ R we have

f (ω ′S1∪Q)− zQ

ω ′S1

≤
f (ω ′S2∪Q)− zQ

ω ′S2

. (9)

We use this claim to finish the proof of the theorem. We consider two cases:

Case 1.- DS∗ =∅. In this case, just by definition of DS∗ , it follows that f (ω ′N)
ω ′N
·ω ′i > zi, for

all i ∈ S∗, since otherwise at least the coalition {i} is in DS∗ , for some i ∈ S∗. Now taking
x′ = P(N, f ,ω ′) we have x′ ∈C(N, f ,ω ′) and x′i =

f (ω ′N)
ω ′N
·ω ′i > zi ≥ xi, for all i ∈ S∗ which

shows vector x is in the acceptable core with respect to ω ′.

Case 2.- DS∗ 6= ∅. Let R∗ be a maximal coalition with respect to the inclusion in DS∗ .
Denote R∗ = {i1, . . . , ir∗} where θ ∗ = (i1, . . . ir∗) is the permutation of the set R∗ that
fulfills all the inequalities of DS∗ . We first check that R∗ 6= N. To see it, if R∗ = N, then
R∗ = {i1, i2, . . . , in} and, by definition of DS∗ , we would have

zin ≥ max
Q⊆N\{in}

{
f (ω ′(N\{i1,...,in−1})∪Q)− zQ

ω ′N\{i1,...,in−1}

}
·ω ′in

= max
Q⊆N\{in}

{
f (ω ′{in}∪Q)− zQ

ω ′{in}

}
·ω ′in ≥ f (ω ′N)− zN\{in},

which implies zN ≥ f (ω ′N) and contradicts (8). Thus, we conclude R∗⊆ S∗ and R∗ 6=∅,N.

Now define the vector x′ ∈ RN as follows:

x′i = zi, for all i ∈ R∗

x′i =
max
Q⊆R∗
{ f (ω ′(N\R∗)∪Q)− zQ}

ω ′N\R∗
·ω ′i , for all i ∈ N \R∗.

To complete the proof we must show that x′i > xi for all i∈ S∗ and that x′ ∈C(N, f ,ω ′).
The strict inequalities follow since, by definition of vector x′, we have

x′i = zi = xi +
ε

|S∗|
> xi, for any i ∈ R∗ and

x′i = max
Q⊆R∗

{
f (ω ′(N\R∗)∪Q)− zQ

ω ′N\R∗

}
·ω ′i > zi = xi +

ε

|S∗|
> xi, for any i ∈ S∗ \R∗,

where the first strict inequality in the last expression comes from the maximality of coali-
tion R∗ in the set (DS∗,⊆).

For proving x′ ∈C(N, f ,ω ′), let us first check that vector x′ is efficient for (N, f ,ω ′),
that is, x′(N) = f (ω ′N). Indeed,
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x′N = zR∗+
max
Q⊆R∗
{ f (ω ′(N\R∗)∪Q)− zQ}

ω
′
N\R∗

·ω ′N\R∗ = zR∗+ f (ω ′N)− zR∗ = f (ω ′N),

where the second equality holds since, for any Q⊆ R∗, Q 6= R∗, we have

f (ω ′N)− f (ω ′(N\R∗)∪Q) = f (ω ′N)− f (ω ′N\(R∗\Q)) > xR∗\Q + ε ≥ xR∗\Q + |R
∗\Q|
|S∗| · ε = zR∗\Q

= zR∗− zQ,

which implies that

f (ω ′N)− zR∗ > f (ω ′(N\R∗)∪Q)− zQ, for any Q⊆ R∗, Q 6= R∗.

To prove the core inequalities of the vector x′, we must check that

x′T ≥ f (ω ′T ) for all T ⊆ N, T 6=∅,N.

To this aim recall R∗ = {i1, . . . , ir∗} and θ ∗ = (i1, . . . , ir∗). Then, two subcases are con-
sidered:

Case 2.a.- Coalition T satisfies T ⊆ R∗ = {i1, . . . , ir∗}. If T = {i1}, then since R∗ ∈ DS∗ ,
we have

x′i1 = zi1 ≥
f (ω ′N)

ω ′N
·ω ′i1 ≥

f (ω ′i1)
ω ′i1

·ω ′i1 = f (ω ′i1).

If T ⊆ R∗, T 6= {i1}, let it be the latest agent in T with respect to the permutation
θ ∗ = (i1, i2, . . . , ir∗) of coalition R∗ = {i1, i2, . . . , ir∗}. In other words it is the unique agent
of T satisfying T \{it} ⊆ {i1, . . . , it−1}. Then, we have

x′it = zit ≥
max

Q⊆{i1,...,it−1}

{
f (ω ′(N\{i1,...,it−1})∪Q)− zQ

}
ω ′N\{i1,...,it−1}

·ω ′it

≥
max

Q⊆{i1,...,it−1}

{
f (ω ′{it}∪Q)− zQ

}
ω ′{it}

·ω ′it

≥ f (ω ′{it}∪(T\{it}))− zT\{it} = f (ω ′T )− zT\{it},

and thus we obtain the inequality x′T ≥ f (ω ′T ). In the above argument, the first inequal-
ity comes from the definition of DS∗ , and the second one follows by (9) applied to R =
{i1, i2, . . . , it−1} ∈ DS∗ , S1 = {it} and S2 = N \ {i1, . . . , it−1}. Finally, the last inequality
comes from taking Q = T \{it}.
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Case 2.b.- Coalition T satisfies T ∩ (N \R∗) 6=∅. In this case, we have

x′T = x′T∩(N\R∗)+ x′T∩R∗

=
max
Q⊆R∗

{
f (ω ′(N\R∗)∪Q)− zQ

}
ω ′N\R∗

·ω ′T∩(N\R∗)+ zT∩R∗

≥
max
Q⊆R∗

{
f (ω ′(T∩(N\R∗))∪Q)− zQ

}
ω ′T∩(N\R∗)

·ω ′T∩(N\R∗)+ zT∩R∗

≥ f (ω ′(T∩(N\R∗))∪(T∩R∗))− zT∩R∗+ zT∩R∗ = f (ω ′T ),

where the first inequality comes from (9) taking R = R∗, S1 = T ∩ (N \ R∗) 6= ∅ and
S2 = N \R∗ and the second inequality taking Q = T ∩R∗. And the proof of the theorem
concludes ut

Let us remark that Proposition 2 is in fact a special case of Theorem 1, when |S∗|= 1;
for this case no strict inequality needs to be checked and hence, the result of the theorem
is unconditional. Nevertheless, the proof of Proposition 2 contributes with a direct and
explicit core allocation that improves the payoff to the single agent that increases his
contribution.

The above characterization offers a new inside to understand the trade off between
core stability and incentive monotonicity. It states a positive and useful tool to check
whether an allocation is acceptable in the context of co-investment problems. For instance,
coming back to Example 1, it is easy to check that the acceptable core is described by the
set

Aω ′(N, f ,ω) = {x ∈C(N, f ,ω) | x1 < 3 and x2 < 4.5}.

In Figure 1 we represent this set, illustrating how the core is reduced. The core is the
convex region determine by the points A, B, C and D ( ). The acceptable core with
respect to ω ′ = (2,3,3) is the convex subset determined by the subset A, B, C and E
( ). Notice that the segment CE is not included in the acceptable core since the strict
inequality x2 < 4.5 applies; on the other way around, this example also shows how some
of the constraints that determine the acceptable core do not apply (in the example, the
inequality x1 < 3).

4 The acceptable core

In the previous section we have characterized when a specific core allocation is acceptable
with respect to some given input vector ω ′, ω ′ ≥ ω . Now, we want to analyze the core
allocations that are acceptable no matter the increase in the input contribution.

Definition 2 The acceptable core of a co-investment problem (N, f ,ω) is the set

A(N, f ,ω) =
⋂

ω ′≥ω

Aω ′(N, f ,ω).



13

x
1 =

1

x 2
=

2

x3 = 3

x
1 =

1.5x
1 =

3

(1,2,6)
x3 = 6

(4,2,3) (1,5,3)(1.5,4.5,3)

(1.5,2,5.5)

A

B

C D

E (1,4.5,3.5)

C(N, f ,ω)
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Fig. 1 The acceptable core Aω ′(N, f ,ω) of Example 1 represented in the efficiency plane x1 +
x2 + x3 = 9.

This is, a core allocation is acceptable if it is acceptable with respect to any ω ′, ω ′ ≥ ω .
Let us point out that the acceptable core of a co-investment problem is, by definition, a
subset of its core. Moreover, we have already stated in Proposition 3 that the proportional
allocation is always acceptable; thus, the acceptable core is nonempty since it contains at
least this allocation. Summarizing these preliminaries

P(N, f ,ω) ∈ A(N, f ,ω)⊆C(N, f ,ω). (10)

The following example shows that the acceptable core might include several alloca-
tions, not only the proportional allocation, but it might be strictly smaller than the core.

Example 2 Let N = {1,2,3} and ω = (100,200,300) be the vector of initial endowments
of the agents. The co-investment function is:

f (x) =


1% · x 0≤ x≤ 300,
2% · x 300 < x≤ 400,
3% · x 400 < x≤ 600,
4% · x 600 < x.

The output of coalitions are:

f (ω1) = 1, f (ω1 +ω2) = 3,
f (ω2) = 2, f (ω1 +ω3) = 8, f (ω1 +ω2 +ω3) = 18.
f (ω3) = 3, f (ω2 +ω3) = 15,
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The core of this game can be described as

C(N, f ,ω) =

{
(x1,x2,x3) ∈ R3

∣∣∣∣x1 + x2 + x3 = 18, 1≤ x1 ≤ 3,
2≤ x2 ≤ 10 and 3≤ x3 ≤ 15

}
,

and the proportional allocation is P(N, f ,ω) = (3,6,9). It is interesting to point out that
the proportional allocation assigns to the first agent the maximum payoff within the core
of the game; graphically, see Figure 2, the proportional allocation ( ) is located on the left
border of the core ( ) where agent 1 receives the largest possible reward within the core.

Now we claim that the acceptable core is given by

A(N, f ,ω) = {x ∈C(N, f ,ω) | x1 ≤ 4,x2 ≤ 8 and x3 ≤ 12} .

To see this, let (x1,x2,x3) ∈ C(N, f ,ω) be a core allocation such that x1 ≤ 4, x2 ≤ 8
and x3 ≤ 12 and take ω ′ ∈ RN

++, ω ′ ≥ ω = (100,200,300) and ω ′ 6= ω . We can describe
ω ′ = (100+ ε1,200+ ε2,300+ ε3) where ε1,ε2,ε3 ≥ 0 and ε1 + ε2 + ε3 > 0.

Since ω ′1 +ω ′2 +ω ′3 = 600+ ε , where ε = ε1 + ε2 + ε3 > 0, we have

f (ω ′N) = 0.04 ·ω ′N = 24+0.04ε.

Now take the proportional allocation with respect to ω ′, that is, P(N, f ,ω ′) = (4+
0.04ε1,8+0.04ε2,12+0.04ε3). As the allocation x = (x1,x2,x3) satisfies x1 ≤ 4, x2 ≤ 8
and x3 ≤ 12 it follows

x1 ≤ P1(N, f ,ω ′), x2 ≤ P2(N, f ,ω ′), x3 ≤ P3(N, f ,ω ′).

Moreover, for any i = 1,2,3, if εi > 0 we also have xi < Pi(N, f ,ω ′) and P(N, f ,ω ′) ∈
C(N, f ,ω ′) which implies (x1,x2,x3) ∈ A(N, f ,ω).

To justify the other inclusion, let x = (x1,x2,x3) ∈ A(N, f ,ω). Taking ω ′(ε) = (100+
ε,600,600), with ε > 0 and by Theorem 1, we know x1 < f (ω ′N)− f (ω ′N\{1}) = 52+
0.04ε − 48 = 4+ 4ε , for all ε > 0, or equivalently x1 ≤ 4. The other inequalities can be
reached by using ω ′′(ε) = (500,200+ ε,500) and ω ′′′(ε) = (400,400,300+ ε), ε > 0,
respectively.

In Figure 2 you can check that the acceptable core is larger than the proportional
allocation, but strictly smaller than the core. Indeed, the acceptable core of this numerical
example is the convex hull of the extreme points A=(3,3,12), B=(1,5,12), C=(1,8,9)
and D = (3,8,7).

Since the acceptable core is included in the core, let us describe a sufficient condition
for the coincidence of both sets. As the next proposition states, the condition is based on
assuming the function f to be convex4. It is interesting to remark that, when the function
f is convex, the output of the different coalitions ( f (ωS))S⊆N can be interpreted as a
convex cooperative game (Shapley, 1971), although the converse is not true as Example 1
illustrates.

4 Moulin (1990) introduces in the analysis the convexity of the production function.
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Fig. 2 The acceptable core of Example 2 in the efficiency plane x1 + x2 + x3 = 18 .

Proposition 4 Let (N, f ,ω) be a co-investment problem and let f be a convex function.
Then,

A(N, f ,ω) =C(N, f ,ω).

Proof Since f is a convex function it holds that5, for all 0 < x < y and z > 0,

f (y)− f (x)≤ f (y+ z)− f (x+ z). (11)

Now, let (N, f ,ω) be a co-investment problem and take a coalition S∗ ⊆ N, S∗ 6= ∅. Let
us consider ω ′ ∈ RN such that ω ′i > ωi for all i ∈ S∗ and ω ′i = ωi, for all i ∈ N \S∗.

We must first prove that inequalities (5) in Theorem 1 hold, for any x ∈ C(N, f ,ω).
To this aim consider an arbitrary coalition ∅ 6= R ⊆ S∗, R 6= S∗ and let us suppose to the
contrary xR ≥ f (ω ′N)− f (ω ′N\R). Then,

xR ≥ f (ω ′N)− f (ω ′N\R)

≥ f (ω ′N− (ω ′S∗\R−ωS∗\R))− f (ω ′N\R− (ω ′S∗\R−ωS∗\R))

= f (ω ′N− (ω ′S∗\R−ωS∗\R))− f (ωN\R)

> f (ωN)− f (ωN\R)≥ xN− xN\R = xR,

where the second inequality comes from (11) taking y = ω ′N − [ω ′S∗\R−ωS∗\R] > x =

ω ′N\R− [ω ′S∗\R−ωS∗\R] > 0 and z = ω ′S∗\R−ωS∗\R > 0. Moreover, the strict inequality
holds since ω ′N − (ω ′S∗\R−ωS∗\R) > ωN and f (ωN) > 0, and the last inequality, since

5 see Klement et al. (2011), for example.
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x ∈ C(N, f ,ω). Hence, we reach a contradiction. We conclude xR < f (ω ′N)− f (ω ′N\R),
for all non-empty coalitions R⊆ S∗, R 6= S∗. ut

The previous result shows a particular situation where the acceptable core is as large
as possible and coincides with the core. On the other side, next proposition states a suf-
ficient condition for the acceptable core to just contain the proportional distribution. The
condition requires that the average return remains constant beyond ωN .

Proposition 5 Let (N, f ,ω) be a co-investment problem where the function f is average
stationary at ωN , i.e. f (x)

x = f (ωN)
ωN

, for all x≥ ωN . Then,

A(N, f ,ω) = {P(N, f ,ω)}.

Proof Let x∈ A(N, f ,ω). For any agent i∈N we take ω i = (ω i
k)k∈N ∈RN as ω i

i = ωi+ε ,
where ε > 0, and ω i

k = ωk +ωN , for all k ∈ N, k 6= i. By Theorem 1 we obtain

xi < f (ω i
N)− f (ω i

N\{i}) = (n ·ωN + ε) · f (ωN)
ωN
−
(
(n−1) ·ωN +∑k 6=i ωK

)
· f (ωN)

ωN

= (ωi + ε) · f (ωN)
ωN

,

where we have used that f is average stationary at ωN . Being ε > 0 arbitrary, we obtain
xi ≤ ωi · f (ωN)

ωN
, for all i ∈ N, or equivalently, x = P(N, f ,ω). ut

The above proposition shows that the acceptable core of Example 1 reduces to the
proportional distribution P(N, f ,ω) = (1.5,3,4.5); see Figure 1 for a graphical location.

5 The proportional allocation: a characterization result.

The proportional allocation is always acceptable (see Proposition 3). However, the accept-
able core might include many other allocations. In this section we look at set-solutions that
assigns to any co-investment problem a subset of the acceptable core and we characterize
when this subset just contains the proportional allocation.

Let us denote by α a set-solution that assigns to any co-investment problem (N, f ,ω)
a nonempty subset of allocations of the problem (N, f ,ω); this is

α(N, f ,ω)⊆ {x ∈ RN | xN = f (ωN)}.
We propose the following three properties6 for α .

Core selection. For any co-investment problem (N, f ,ω), α(N, f ,ω)⊆C(N, f ,ω).

Core invariance. For any pair of co-investment problems (N, f ,ω) and (N, f ′,ω) we
require

{C(N, f ,ω) =C(N, f ′,ω)}⇒ {α(N, f ,ω) = α(N, f ′,ω)}.

Incentive monotonicity. Let ω ′,ω ∈RN such that ω ′≥ω . Then, for any x∈α(N, f ,ω),
there exists x′ ∈ α(N, f ,ω ′) such that x′i > xi, for all i ∈ N with ω ′i > ωi.

6 These properties are adapted from Di Luca et al. (2013).
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Theorem 2 For any co-investment problem, (N, f ,ω) a set-solution α contains just the
proportional distribution, α(N, f ,ω) = {P(N, f ,ω)}, if and only if α satisfies core selec-
tion, core invariance and incentive monotonicity.

Proof Suppose α is a set-solution such that, for any co-investment problem α(N, f ,ω) =
{P(N, f ,ω)}. Since P(N, f ,ω) is always a core element, then α satisfies core selec-
tion. Moreover, if C(N, f ,ω) =C(N, f ′,ω), then f (ωN) = f ′(ωN) and thus α(N, f ,ω) =
α(N, f ′,ω). Finally, it satisfies incentive monotonicity, since Pi(N, f ,ω) < Pi(N, f ,ω ′),
for all i ∈ N with ω ′i > ωi.

Now, on the other hand, let us suppose a set-solution α satisfying all the three prop-
erties and take x ∈ α(N, f ,ω). Now, define the function f ′ as follows: f ′(x) = f (x), if

x ≤ ωN , and f ′(x) =
f (ωN)

ωN
· x, if x > ωN . By definition of the function f ′, we have

C(N, f ,ω) =C(N, f ′,ω) and thus, by core invariance, x ∈ α(N, f ′,ω) = α(N, f ,ω).
Next, select an arbitrary pair of different agents i and j and, given ε > 0, define

ω ′(ε)= (ω ′1(ε),ω
′
2(ε), . . . ,ω

′
n(ε))∈RN as ω ′i (ε)=ωi+ε , ω ′j(ε)=ω j+ωN and ω ′k(ε)=

ωk, otherwise. Since α satisfies incentive monotonicity and ω ′i (ε) > ωi, there exists x′ ∈
α(N, f ′,ω ′(ε)) such that x′i > xi. Furthermore, since α satisfies core selection we have
that x′ ∈ C(N, f ′,ω ′(ε)) and thus x′i is bounded above by the marginal contribution of
agent i, this is

xi < x′i ≤ f ′(ω ′N(ε))− f ′(ω ′N\{i}(ε)) =
f (ωN)

ωN
· (ωi + ε). (12)

Since xi <
f (ωN)

ωN
· (ωi+ε) should hold for any ε > 0 we get that xi ≤

f (ωN)

ωN
·ωi. As

agents i and j have been arbitrarily selected, we conclude that

xi ≤
f (ωN)

ωN
·ωi, for all i ∈ N. (13)

Finally, since x is an allocation for the problem (N, f ,ω) we conclude xi =
f (ωN)

ωN
·ωi,

for all i ∈ N and thus x = P(N, f ,ω). ut

Let us point out that the three properties are logically independent. The core , i.e.
α(N, f ,ω)=C(N, f ,ω) satisfies core selection, core invariance, but, as we have analyzed,
it is not incentive monotonic. The set solution that contains only the equal division alloca-

tion, α(N, f ,ω)=

{(
xi =

f (ωN)

|N|

)
i∈N

}
, satisfies core invariance, incentive montonicity,

but it is not a core selection. Finally, the solution defined as α(N, f ,ω) = C(N, f ,ω), if
f is a convex function, and α(N, f ,ω) = {P(N, f ,ω)}, if f is not convex, satisfies core
selection, incentive monotonicity, but it is not core invariant.

6 Conclusions

In this paper, we have described and analyzed co-investment problems and the compatibil-
ity between a stability principle and an incentive principle. The two principles collaborate
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to reinforce cooperation: the first one avoids breaking cooperation; the second one guar-
antees the effort of each agent is rewarded accordingly. The analysis carried out in the
paper focus on testing core allocations. A core allocation is validated if, in the eventual
situation where some arbitrary agents increase their contribution, there is another core
allocation that give those agents a larger payoff. There is another interesting aspect that is
not analyzed in this paper and refers to the study of the compatibility of the two principles
applied to allocation rules. That is, given a rule that assigns to each co-investment problem
a unique stable allocation, does this rule assign a larger payoff to some agents whenever
they increase their contribution? Does it exist at least one such a rule? The answer to this
last question is in the positive: the proportional rule with respect to the resources con-
tributed satisfies these requirements and it is one of the most used rules. However, the
proportional rule assigns the same payoff per unit contributed and do not discriminate
between agents with different contributions. It might be interesting to describe and char-
acterize other possible allocation rules. Another aspect not covered by the analysis is the
impact of the increase in the resource contribution made by some group of agents on the
rest agents. In some cases, if we want to preserve stability, the increase in the payoff to
some agents implies, with no option, the decrease in the payoff to other agents. This work
is left for further research.

Last but not least, it seems interesting to introduce our analysis in the field of group
buying problems or cooperative purchasing situations, see Anand and Aron (2003) or
Schaarsberg et al. (2013). Focusing on bundling order quantities to obtain discounts,
group buying problems are the counterpart of co-investment problems to analyze purchas-
ing problems with decreasing average costs. Finally, the notion of average monotonicity
which is the basis for co-investment problems has been analyzed and generalized in dif-
ferent areas of game theory as in Corcho and Ferreira (2003), Sagara and Vlach (2011),
Liu et al.(2013), Liu and Tian (2014) or Hong (2016).

In Corcho and Ferreira (2003), generalized externality games are introduced. Two in-
teresting economic situations fall inside this model: provision of public goods and joint
venture among firms. Despite not to be co-investment problems, generalized externality
games are average monotonic games and thus a parallel analysis similar to the one car-
ried out in this paper gets its own interest. Sagara and Vlach (2011) extend the notion
of average of monotonicity to cooperative games with a continuum of agents, reaching
the non-emptiness of its core and leave open the coincidence between the core and some
bargaining sets. In Liu et al. (2013) is proved that all the results for average monotonic
cooperative games are suitable to be replicate in the field of cooperative fuzzy games
including examples and models of financial applications. In Liu and Tian (2014) they ex-
hibit, for the first time, the model of NTU fuzzy game associated to a financial cooperative
problem. Finally, in Hong (2016) he introduces and develop the Average monotonic fuzzy
interval cooperative games. In many of these works a parallel analysis like the one made
in this paper could be applied.
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Appendix

Given a co-investment problem (N, f ,ω), ω ′ ∈ RN , ω ′ ≥ ω , ω ′ 6= ω and vector z defined
in (7) we have

Claim.- For any R ∈DS∗ and for any pair of coalitions S1 and S2 such that ∅ 6= S1 ⊆ S2 ⊆
N \R we have

f (ω ′S1∪Q)− zQ

ω ′S1

≤
f (ω ′S2∪Q)− zQ

ω ′S2

, for any Q⊆ R. (14)

Proof The proof will be argued by induction on the cardinality of the size of coalition R.
If |R|= 1, i.e. R = { j1} ∈DS∗ there are just two cases. If Q =∅ then (14) is

f (ω ′S1
)

ω ′S1

≤
f (ω ′S2

)

ω ′S2

and it follows just by (1). If Q = { j1} then (14) is

f (ω ′S1∪{ j1})− z j1

ω ′S1

≤
f (ω ′S2∪{ j1})− z j1

ω ′S2

.

To check this last inequality, notice that

f (ω ′S1∪{ j1})− z j1

ω ′S1

=

f (ω ′S1∪{ j1})

ω ′S1∪{ j1}
·ω ′S1

+
f (ω ′S1∪{ j1})

ω ′S1∪{ j1}
·ω ′j1− z j1

ω
′
S1

=
f (ω ′S1∪{ j1})

ω ′S1∪{ j1}
+

f (ω ′S1∪{ j1})

ω ′S1∪{ j1}
·ω ′j1− z j1

ω
′
S1

≤
f (ω ′S2∪{ j1})

ω ′S2∪{ j1}
+

f (ω ′S2∪{ j1})

ω ′S2∪{ j1}
·ω ′j1− z j1

ω
′
S1

≤
f (ω ′S2∪{ j1})

ω ′S2∪{ j1}
+

f (ω ′S2∪{ j1})

ω ′S2∪{ j1}
·ω ′j1− z j1

ω
′
S2

=
f (ω ′S2∪{ j1})− z j1

ω ′S2

,

where the first inequality follows by (1) and the second one since, by definition of the set

DS∗ , we have z j1 ≥
f (ω ′N)

ω ′N
·ω ′j1 ≥

f (ω ′S2∪{ j1})

ω ′S2∪{ j1}
·ω ′j1 , and thus

f (ω ′S2∪{ j1})

ω ′S2∪{ j1}
·ω ′j1− z j1 ≤ 0.

Suppose now that for any R̃ ∈DS∗ such that 1≤ |R̃| ≤ k and all Q⊆ R̃ we have

f (ω ′
S̃1∪Q

)− zQ

ω ′
S̃1

≤
f (ω ′

S̃2∪Q
)− zQ

ω ′
S̃2

, (15)
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for all ∅ 6= S̃1 ⊆ S̃2 ⊆N \ R̃. Let R∈DS∗ , with |R|= k+1, that is R = { j1, j2, . . . , jk, jk+1}
where θ = ( j1, j2, . . . , jk, jk+1) is the ordering in which the inequalities required to be in
the set DS∗ are satisfied. Let us remark that the coalition R\{ jk+1} is also in DS∗ .

We have to prove (14) for all coalitions ∅ 6= S1 ⊆ S2 ⊆ N \R and coalition Q ⊆ R =
{ j1, j2, . . . , jk, jk+1}. To this aim consider two cases:

Case 1.- Coalition Q ⊆ R satisfies jk+1 6∈ Q. In this case (14) holds simply by applying
(15) to R̃ = R\{ jk+1} and taking S̃1 = S1 and S̃2 = S2.

Case 2.- Coalition Q⊆ R satisfies jk+1 ∈Q. Taking into account ∅ 6= S1 ⊆ S2 ⊆ N \R we
have,

f (ω ′S1∪Q)− zQ

ω ′S1

=

f (ω ′S1∪Q)− zQ\{ jk+1}

ω ′S1∪{ jk+1}
·ω ′S1

+
f (ω ′S1∪Q)− zQ\{ jk+1}

ω ′S1∪{ jk+1}
·ω ′jk+1

− z jk+1

ω
′
S1

=
f (ω ′S1∪Q)− zQ\{ jk+1}

ω ′S1∪{ jk+1}
+

f (ω ′S1∪Q)− zQ\{ jk+1}

ω ′S1∪{ jk+1}
·ω ′jk+1

− z jk+1

ω
′
S1

=
f (ω ′(S1∪{ jk+1})∪(Q\{ jk+1}))− zQ\{ jk+1}

ω ′S1∪{ jk+1}
+

f (ω ′(S1∪{ jk+1})∪(Q\{ jk+1}))− zQ\{ jk+1}

ω ′S1∪{ jk+1}
·ω ′jk+1

− z jk+1

ω
′
S1

≤
f (ω ′(S2∪{ jk+1})∪(Q\{ jk+1}))− zQ\{ jk+1}

ω ′S2∪{ jk+1}
+

f (ω ′(S2∪{ jk+1})∪(Q\{ jk+1}))− zQ\{ jk+1}

ω ′S2∪{ jk+1}
·ω ′jk+1

− z jk+1

ω
′
S1

≤
f (ω ′S2∪Q)− zQ\{ jk+1}

ω ′S2∪{ jk+1}
+

f (ω ′S2∪Q)− zQ\{ jk+1}

ω ′S2∪{ jk+1}
·ω ′jk+1

− z jk+1

ω
′
S2

=
f (ω ′S2∪Q)− zQ

ω ′S2

,

where the first inequality comes from (15) applied to R̃ = { j1, . . . , jk}, S̃1 = S1∪{ jk+1}
and S̃2 = S2∪{ jk+1} and the second inequality follows since it can be proved that

f (ω ′S2∪Q)− zQ\{ jk+1}

ω ′S2∪{ jk+1}
·ω ′jk+1

− z jk+1 ≤ 0.
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Indeed, being R = { j1, . . . , jk, jk+1} ∈DS∗ , this inequality follows since

z jk+1 ≥ max
Q̃⊆{ j1,..., jk}

{
f (ω ′

(N\{ j1,..., jk})∪Q̃
)− zQ̃

ω ′N\{ j1,..., jk}

}
·ω ′jk+1

≥
f (ω ′(N\{ j1,..., jk})∪(Q\{ jk+1}))− zQ\{ jk+1}

ω ′N\{ j1,..., jk}
·ω ′jk+1

≥
f (ω ′(S2∪{ jk+1})∪(Q\{ jk+1}))− zQ\{ jk+1}

ω ′S2∪{ jk+1}
·ω ′jk+1

,

≥
f (ω ′S2∪Q)− zQ\{ jk+1}

ω ′S2∪{ jk+1}
·ω ′jk+1

,

where the third inequality follows from (15) by taking R̃ = R \ { jk+1} = { j1, . . . , jk},
S̃1 = S2∪{ jk+1} and S̃2 = N \{ j1, . . . , jk}. Therefore, the claim is proved. ut
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23. Tykvová T (2018) Venture capital and private equity financing: an overview of recent literature
and an agenda for future research. J Bus Econ 88:325–362


