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Abstract 

One fundamental question concerning brain reward mechanisms is to determine how 

reward-related activity is influenced by the nature of rewards. Here, we review the 

neuroimaging literature and explicitly assess to what extent the representations of primary 

and secondary rewards overlap in the human brain. To achieve this goal, we performed an 

Activation Likelihood Estimation meta-analysis of 87 studies (1452 subjects) comparing the 

brain responses to monetary, erotic and food reward outcomes. Those three rewards 

robustly engaged a common brain network including the ventromedial prefrontal cortex, 

ventral striatum, amygdala, anterior insula and mediodorsal thalamus, although with some 

variations in the intensity and location of peak activity. Money-specific responses were 

further observed in the most anterior portion of the orbitofrontal cortex, supporting the idea 

that abstract secondary rewards are represented in evolutionary more recent brain regions. 

In contrast, food and erotic (i.e. primary) rewards were more strongly represented in the 

anterior insula, while erotic stimuli elicited particularly robust responses in the amygdala. 

Together, these results indicate that the computation of experienced reward value does not 

only recruit a core “reward system” but also reward type-dependent brain structures. 

 

 

Keywords: reward processing; meta-analysis; experienced value; reward outcome; 

monetary reward; food reward; erotic reward; fMRI; neuroimaging; ventral striatum; 

orbitofrontal cortex; anterior insula 
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1. Introduction 

Much of our daily life is driven by the prospect of rewards. A classical distinction 

concerns primary rewards -i.e. food, sex and shelter- and secondary rewards -such as 

money or power. In contrast to primary rewards which have an innate value and are essential 

for the maintenance of homeostasis and reproduction, secondary rewards are not directly 

related to survival and only gain value through learned association with lower-level rewards. 

A long-standing question is whether primary and secondary rewards are processed in 

common and/or distinct brain structures (Schultz, 2000). Due to their evolutionary 

differences, it is tempting to speculate that primary and secondary rewards may be 

represented in phylogenetically distinct brain regions (Knutson and Bossaerts, 2007), but the 

evidence remains scarce. In contrast, animal research provides empirical evidence for a 

centralized processing of reward in the brain, based on a wealth of studies showing that a 

core set of brain regions -including the ventral tegmental area, nucleus accumbens, 

amygdala and ventromedial prefrontal cortex- are sensitive to various types of rewards 

(Berridge, 2003; Hikosaka et al., 2008; Schultz, 2006). However, studies in animals use a 

very limited number of primary rewards (e.g. food and juice), which hinders the 

generalizability of the results to more abstract secondary rewards. Furthermore, investigation 

techniques such as electrophysiology and focal brain lesions used in animals typically focus 

on specific brain structures and do not offer a “full picture” at the brain system level. 

Neuroimaging appears as an ideal tool to overcome these limitations, since it allows to 

visualize cerebral activity throughout the whole brain, and can be easily used in humans in 

order to compare secondary versus primary rewards. 

Building on this opportunity, recent studies in decision neuroscience and 

neuroeconomics have investigated how the brain represents reward value while deciding 

between different goods. Such a choice is assumed to rely on the computation of a “decision 

value”, allowing the comparison of various reward prospects on a common scale. Several 

studies have demonstrated that this computation is performed in the ventromedial prefrontal 
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cortex (vmPFC) and ventral striatum regardless of the goods at stake, providing compelling 

evidence in favour of a “common reward currency” (Chib et al., 2009; Hare et al., 2008; 

Knutson et al., 2007; FitzGerald et al., 2009; Plassmann et al., 2007; see also Peters and 

Buchel, 2010 for a review). Yet, these neuroeconomic approaches focus on subjective value 

as inferred from choices, and only a handful of neuroimaging studies have made similar 

direct comparisons concerning the “experienced value” of rewards, computed at the time of 

outcome (Izuma et al., 2008; Rademacher et al., 2010; Sescousse et al., 2010; Smith et al., 

2010; Grabenhorst et al., 2010a). Moreover, although the ventral striatum and vmPFC tend 

to emerge as prime candidates for computing experienced values, the results of these 

studies are rather heterogeneous and general conclusions are difficult to draw. Alternatively, 

insights can be gleaned from reviews synthesizing the results of single reward studies. 

Several of them have been published in the past years, and concur on including the striatum, 

dopaminergic midbrain, amygdala and orbitofrontal cortex in a “common reward circuit”. 

However, most of these reviews are qualitative and hence suffer from some degree of 

subjectivity: only evidence supporting the involvement of the above regions is presented, and 

is not critically weighed against all the studies not reporting similar evidence (Haber and 

Knutson, 2010; O'Doherty, 2004; McClure et al., 2004b). Addressing this issue, a few 

quantitative meta-analyses published in recent years have provided a more objective 

overview of the human neuroimaging literature. However, those meta-analyses were either 

pooling different reward types together (Liu et al., 2011; Cauda et al., 2011; Kuhn and 

Gallinat, 2012) or focusing on a single reward type (e.g. monetary rewards: Knutson and 

Greer, 2008; erotic rewards: Kuhn and Gallinat, 2011; Stoleru et al., 2012).  

To deepen our understanding of the functional architecture of reward processing in 

the brain, it is crucial to evaluate the consistency and specificity of reward-related activations 

across different types of rewards. To achieve this goal, we propose to perform an activation 

likelihood estimation (ALE) meta-analysis of the neuroimaging literature on reward 

processing. This approach has several features which make it well-suited to address some of 

the previous concerns (Laird et al., 2005; Wager et al., 2009). First, ALE provides a 
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quantitative measure of cross-study consistency. In contrast to label-based reviews which 

start from anatomical labels and draw conclusions based on the clustering of these labels, 

ALE is a voxel-based approach which uses stereotaxic coordinates as input, performs 

analyses on their spatial distribution, and then only derives anatomical labels based on the 

resultant clusters. This confers high objectivity to this method, which is immune to risks of 

incongruent or erroneous labelling among the selected studies. Moreover, ALE produces 

statistically defensible conclusions, by using numerical estimates (ALE statistics) and 

significance thresholds to measure the degree of agreement between studies. Importantly, 

ALE is able to make comparisons between meta-analyses, similar to contrasts between 

conditions in individual studies. This feature can be used to investigate specificity, e.g. by 

subtracting activations related to different reward types. 

Besides providing a synthetic overview of the literature, the use of a quantitative 

meta-analytic approach also has practical benefits. For instance, many studies restrict their 

analyses to regions of interest (ROIs), based on the alleged role of these regions in reward 

processing. However, this kind of assumption concerning structure-function relationships 

should be ideally based on an objective meta-analysis. Moreover, for functionally defined 

brain regions such as the ventral striatum or medial OFC, current label-based reviews (e.g. 

Delgado, 2007; Haber and Knutson, 2010; Noonan et al., 2012) do not provide average 

stereotaxic coordinates from which to derive ROIs. As a consequence, a common practice 

for anatomically constrained analyses is to build ROIs based on the coordinates extracted 

from a particular study, which by definition is not representative of the literature. A 

quantitative meta-analysis would bring a simple solution to these issues.  

To investigate the consistency and specificity of reward-related responses in the 

brain, we compared three types of reward outcomes: monetary gains, pleasant foods and 

visual erotic stimuli. These rewards were chosen because they are widely used by humans 

and are also the most studied in the neuroimaging literature, therefore ensuring a sufficient 

number of activation foci to conduct our meta-analyses. We first assessed the consistency of 

brain activations elicited by each reward independently, and we then investigated the 
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consistency and specificity of these meta-analytic results across the three selected rewards 

by performing conjunction and contrast analyses. Specific details regarding study selection 

and analytic procedures are provided below. 

 

 

2. Methods 

2.1. Selection of studies 

 We conducted three independent searches in PubMed in order to identify fMRI and 

Positron Emission Tomography (PET) studies dealing with the processing of monetary, erotic 

and food reward outcomes. Each search used a combination of key words referring to the 

type of reward (i.e. [(”money” OR “monetary” OR “financial”) AND (“reward”)]; [(“food” OR 

“taste” OR “juice”) AND (“reward” OR “pleasant”)]; [(“erotic” OR “sexual”) AND (“stimuli”)]) 

and to the investigation technique (i.e. [“fMRI” OR “PET” OR “neuroimaging”]). These 

searches retrieved 242, 138 and 66 studies, respectively (July 2010). The lists of references 

cited in these studies were also scrutinized and relevant studies incorporated to our pool. 

One unpublished study from our laboratory, manipulating food and erotic rewards, was 

further added (Domenech and Dreher, 2008). Each article was then carefully read by at least 

two of the authors to make sure that it fulfilled the following selection criteria:  

1) Only studies reporting whole-brain results were included. Indeed, in order to provide an 

objective view of reward processing in the brain, it is important to make sure that all 

cerebral regions have an equal chance of being represented, by specifically excluding 

studies reporting partial (and inherently biased) results. In particular, we excluded 

studies entirely based on ROI analyses, studies without a full-brain coverage, and PET 

studies using selective radiotracers other than H2
15O. 

2) Because the ALE approach is based on activation foci, only studies reporting spatial 

coordinates in a standardized stereotaxic space were included. Talairach coordinates 

were transformed to MNI space using the Lancaster transform implemented in the 
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GingerALE software (see below). In case of doubt about the coordinate system used, 

ambiguity was resolved by writing to the authors. 

3) Since brain activity in reward-related regions is known to be sensitive to age (Dreher et 

al., 2008b), as well as to various types of pharmacological manipulations (Nestler, 

2005), we only included results obtained in healthy, drug-free, adult subjects. Moreover, 

we excluded studies with a particularly low sensitivity, i.e. based on fewer than six 

subjects. 

4) Regardless of the protocol used, included studies had to involve the delivery of a 

pleasant stimulus. Moreover, the results had to unambiguously reflect reward 

processing at the time of outcome, i.e. they had to be based on contrasts such as 

“reward > control condition”, “reward > omission of reward”, “reward > punishment” or 

“correlation with reward intensity”. In particular, studies focusing on reward anticipation 

or the computation of decision values were excluded, as well as contrasts investigating 

specific questions such as prediction errors, sexual preference or sensory-specific 

satiation. Food reward studies systematically involved the delivery of real food/juice in 

the mouth, while all erotic reward studies involved the presentation of pictures or 

movies featuring sexually explicit content. All these studies further reported behavioural 

ratings (assessing pleasantness, arousal or motivation) showing that the stimuli used 

were indeed rewarding to the participants.  

5) In case of multiple studies based on the same dataset, only one of them was included. 

Moreover, only one contrast per study was selected. Almost all included foci survived a 

statistical threshold corrected for multiple comparisons or an uncorrected p-value 

threshold of p<0.001 (see Tables 1, 2 and 3 for details).  

 

Following the implementation of these criteria, there remained 33 experiments (394 foci / 

565 subjects) on monetary rewards, 26 experiments (469 foci / 443 subjects) on erotic 

rewards and 28 experiments (318 foci / 444 subjects) on food rewards (Tables 1, 2 and 3).  
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2.2. Data analysis 

Analyses were performed using the revised ALE method as implemented in the latest 

version of the GingerALE software (version 2.2, http://brainmap.org/ale), (Turkeltaub et al., 

2002; Eickhoff et al., 2009). While the original implementation of the ALE method used a 

fixed-effects procedure testing for a clustering between foci (Laird et al., 2005), it was 

recently modified so as to offer a random-effects approach assessing clustering between 

experiments (Eickhoff et al., 2009; Eickhoff et al., 2012).  

The ALE method starts by modelling each activation focus reported for a given 

experiment as the centre of a 3D Gaussian probability distribution. The width of this 

distribution, reflecting spatial uncertainty, is derived from an empirical model and weighted by 

the sample size of each experiment (Eickhoff et al., 2009). Then, a modelled activation (MA) 

map is computed for each experiment by combining the probability distributions of all foci. 

The union of these MA maps across experiments yields voxel-wise ALE scores, describing 

the convergence of results at each particular location of the brain. This convergence between 

experiments is then compared to a random convergence (i.e. noise) in order to make spatial 

inferences. Specifically, experimental ALE scores are compared to an analytically derived 

null-distribution reflecting a random spatial association between experiments (Eickhoff et al., 

2012). Importantly, this procedure is akin to a random-effects analysis. The statistical 

significance of the resulting p-values is determined using a false discovery rate (FDR) 

corrected threshold, which is applied to the ALE map along with a minimum cluster size.  

This procedure was first employed to perform three independent meta-analyses aimed to 

identify the brain regions consistently activated by monetary, food and erotic rewards. We 

employed an FDR-corrected threshold of p<0.01 and a minimum cluster size of 600 mm3.  

We then performed contrast meta-analyses between these rewards. First, the ALE 

maps corresponding to two rewards were subtracted on a voxel-by-voxel basis. Then, the 

studies associated with these two rewards were pooled together and randomly divided into 

two groups of the same size as the two original sets of studies reflecting the contrast  ALE 
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analysis. ALE scores for these two randomly assembled groups were calculated and the 

difference between these ALE scores was recorded for each voxel. This procedure was then 

repeated for 5000 permutations of randomly assembled studies, yielding a null-distribution of 

ALE score differences in each voxel. Random-effects inference was achieved by comparing 

this null-distribution voxel-by-voxel with the experimental ALE score differences. Based on 

this approach, we compared monetary versus erotic rewards, monetary versus food rewards, 

and erotic versus food rewards. We employed an FDR-corrected threshold of p<0.05, along 

with a minimum cluster size of 600 mm3 (a less stringent p-value was used because contrast 

analyses are more conservative). This resulted in six contrast maps, which were further 

binarized and combined to identify “reward type-specific” regions. “Money-specific” regions 

were defined as those stemming from the conjunction of money>erotic and money>food 

maps, “erotic-specific” regions were defined as those stemming from the conjunction of 

erotic>money and erotic>food maps, and “food-specific” regions were defined as those 

stemming from the conjunction of food>erotic and food>money maps. In addition, “primary 

reward-specific” regions were defined as those stemming from the conjunction of 

erotic>money and food>money maps. 

Anatomical localization of functional clusters was performed with the Talairach 

Daemon application (Lancaster et al., 2000) and a probabilistic atlas (Hammers et al., 2003). 

For visualization purposes, statistical output maps were overlaid on the Colin brain provided 

with GingerALE, using the Mango software (www.ric.uthscsa.edu/mango). 

 

 

 

3. Results 

 The first goal of this study was to identify a “common reward circuit” as defined by the 

regions of overlap between monetary, food and erotic reward outcomes. The results of the 

meta-analyses conducted separately for each reward are illustrated in Figure 1, as well as 

the resulting overlaps. They show that a set of brain regions was consistently recruited by all 

http://www.ric.uthscsa.edu/mango�
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three rewards, although with varying levels of significance and spatial extent. These regions 

included the bilateral striatum, mostly in its ventral part, the bilateral anterior insula/frontal 

operculum, the mediodorsal thalamus, the bilateral amygdala and the ventromedial prefrontal 

cortex (vmPFC) extending into the pregenual anterior cingulate cortex (pgACC). Fully 

detailed results are reported in Supplementary Tables 1, 2 and 3. 

Moreover, we performed statistical comparisons between studies, in order to identify 

brain regions responding more robustly to one reward relative to the other two (Fig. 2). The 

results showed that the bilateral ventral striatum and the right anterior OFC were more likely 

to be activated by monetary compared to food and erotic rewards. In contrast, the dorsal 

anterior insula and the somatosensory cortex appeared more likely to be activated by food 

compared to monetary and erotic rewards. Finally, the bilateral amygdala, the ventral anterior 

insula and the extrastriate body area were more robustly activated by erotic than by 

monetary and food rewards. The only brain area more reliably activated by primary (i.e. 

erotic and food) compared to secondary (i.e. monetary) rewards was located in the middle 

insula. 

Perhaps surprisingly at first sight, one may note that among ”reward type-specific” 

regions, defined as those more reliably activated by one reward compared to the other two, 

some of them were also part of the “common reward circuit”. This result simply illustrates the 

fact that, despite being recruited by several rewards, some regions were still more reliably 

activated by one of them in particular. Moreover, in order to ensure that our results were not 

biased by potential false positives resulting from the most liberal statistical thresholds used in 

some studies, we ran the above analyses again only including the most conservative studies 

(i.e. those in which the statistical threshold was explicitly corrected for multiple comparisons 

or was the combination of an uncorrected voxel-level threshold and a cluster-extent 

threshold; see Tables 1, 2 and 3). All the results presented in Figure 1 survived this more 

stringent procedure, confirming the robustness of our findings.  
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4. Discussion 

 This meta-analysis provides a synthetic and objective overview of reward processing 

in the human brain, as provided by the paradigmatic examples of monetary, food and erotic 

rewards. As expected, the results confirmed the existence of a core set of brain regions 

processing reward outcomes in an indiscriminate fashion, in line with the idea of a 

centralized “reward circuit”. In addition, comparative analyses between rewards revealed that 

some regions were more specifically recruited by one type of reward compared to the others.  

Below we discuss those results in the light of current views on the putative functional role of 

these regions, and offer some tentative explanations to account for the observed differences 

between rewards. The discussion is organized by cerebral region, so that the reader can 

easily navigate from one sub-section to another. 

 

4.1. Ventral striatum 

4.1.1. Modality-independent activations 

The striatum, essentially in its ventral part, was found to be consistently activated by 

monetary, food and erotic outcomes in our meta-analysis. Many other rewards were found to 

elicit similar responses in the striatum, including beautiful faces (Aharon et al., 2001; Kampe 

et al., 2001), desirable objects (Erk et al., 2002), pleasant music (Menon and Levitin, 2005; 

Blood and Zatorre, 2001) or reputation and social hierarchy (Izuma et al., 2008; Zink et al., 

2008). Importantly, recent studies using large-scale reverse inferences have suggested that 

the ventral striatum has a relatively specific role in reward processing, as compared to other 

cognitive processes (Cauda et al., 2011; Yarkoni et al., 2011).   

Anatomically, the striatum is at the crossroads of several cortico-basal ganglia loops 

involved in limbic, associative and sensorimotor functions (Haber and Knutson, 2010). The 

ventral part, centred on the nucleus accumbens, is part of the limbic loop and receives many 

projections from the OFC, ACC, amygdala and midbrain. It is hence in an ideal place to 
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integrate cognitive, motor and affective information and influence goal-directed behaviour 

independently of reward modality (Haber and Knutson, 2010; Delgado, 2007). Nonetheless, 

the precise computational function of the ventral striatum is the subject of a lively debate, 

which indirectly reflects the long-standing argument over the role of mesolimbic dopamine in 

reward processing (Berridge, 2007; Berridge and Robinson, 2003). A wealth of studies has 

shown that ventral striatal activity correlates with the intensity of received rewards, 

supporting a role in hedonic value representation (Smith et al., 2010; Izuma et al., 2008; 

Blood and Zatorre, 2001). However, reward value is intrinsically correlated with prediction 

error, a learning signal which measures the difference between received and expected 

rewards, and is used to update future predictions (Niv and Schoenbaum, 2008). Many fMRI 

studies have found brain responses consistent with such a reward prediction error in the 

ventral striatum (O'Doherty et al., 2004; Bray and O'Doherty, 2007; D'Ardenne et al., 2008). 

Besides, two studies that have explicitly tried to disentangle reward value from prediction 

error have reported a better correlation with the latter (Hare et al., 2008; Rohe et al., 2012). 

Interestingly, the ventral striatum has also been involved in the computation of aversive 

prediction errors (Delgado et al., 2008), and a recent study manipulating both rewards and 

punishments has proposed a more general account in terms of salient prediction error 

coding, regardless of reinforcer type or valence (Météreau and Dreher, 2012). Taken 

together, these studies suggest that the ventral striatal responses observed in our meta-

analysis might reflect prediction error rather than reward value computation. This ambiguity 

in the interpretation illustrates the importance of distinguishing learning versus hedonic 

processes at the brain level, and points to the need for more sophisticated fMRI protocols 

able to separate them. 

 

4.1.2. Modality-dependent activations 

Our results indicate that monetary rewards activate the ventral striatum more reliably 

than do erotic and food rewards. However, we believe that this is unlikely to be related to the 

very nature of monetary rewards. Instead, we think that the present result stems from at least 
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two important differences in how monetary and non-monetary rewards are usually delivered. 

First, the protocols used in monetary studies often involve learning of probabilistic stimulus-

reward associations, whereas most erotic and food studies use passive stimulation tasks 

with fully predictable rewards (see Table 1). Hence, following the hypothesis expressed in 

the previous paragraph, a possibility is that the differential activation observed in the ventral 

striatum results from a difference in prediction error computation. Supporting this idea, 

several studies show that erotic and food rewards elicit higher ventral striatal activity when 

they are unexpected compared to when they are expected (Sescousse et al., 2010; McClure 

et al., 2003; D'Ardenne et al., 2008; Veldhuizen et al., 2011). Another typical feature of 

monetary studies is the contingency between reward outcomes and motor action: in over 

85% of the studies included in our meta-analysis, the delivery of monetary rewards was 

dependent on the participants’ performance or decision, whereas such contingency was 

observed in very few (i.e. less than 10%) of the food and erotic studies. Importantly, this form 

of instrumental conditioning was shown to elicit more robust striatal activations than passive 

reward delivery, supposedly by increasing the salience of pleasant outcomes (Zink et al., 

2004; Tricomi et al., 2004; Elliott et al., 2004). This suggests that the differential activity 

presently observed in the ventral striatum might simply reflect a difference in terms of motor 

demands between monetary and non-monetary studies. Supporting this view, a previous 

study comparing monetary gains with erotic pictures delivered in the exact same context (i.e. 

involving identical motor demands) found virtually identical striatal activations in response to 

these two rewards (Sescousse et al., 2010). 

Our results did not confirm a previous hypothesis suggesting that primary rewards 

such as juice might recruit more lateral portions of the striatum (i.e. the putamen) compared 

to secondary rewards such as money (Delgado, 2007). In contrast, we found that food- and 

erotic-related activations tended to cluster in the medial portion of the striatum and were less 

extended than money-related activations (see Fig. 1). This could be the sign of a 

territorialisation of reward processing in the striatum, and is in agreement with primate data 
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showing enhanced sexual behaviour following local microinjection of a GABA receptor 

antagonist specifically in the medial part of the ventral striatum (Worbe et al., 2009). 

 

4.2. Ventromedial prefrontal / orbitofrontal cortex 

 The orbitofrontal cortex is a vast and heterogeneous region, which can be broadly 

divided into three main sections based on anatomical and cytoarchitectonic considerations: a 

posterior OFC region, an anterior OFC region and a vmPFC region (Haber and Knutson, 

2010). Our meta-analysis revealed different patterns of activation in these regions depending 

on reward type. 

 

4.2.1. Modality-independent activations in the vmPFC 

In concert with the ventral striatum, the vmPFC responded to all three tested rewards. 

Strongly connected to limbic regions including the amygdala, ventral striatum and 

hippocampus, this region is considered to play a central role in reward valuation. During 

reward anticipation, the vmPFC has been shown to be sensitive to various generic properties 

of rewards such as magnitude, probability or delay (Haber and Knutson, 2010). It has also 

found to be crucial in comparing the “goal values” of different rewards during decision-

making (Rangel and Hare, 2010; Hare et al., 2009; Padoa-Schioppa and Assad, 2008). The 

present meta-analysis confirms that the vmPFC is equally important for the computation of 

experienced reward values. In fact, many studies using primary rewards have shown that 

brain activity in this region correlates with ratings of pleasantness, as confirmed in two recent 

meta-analyses (Peters and Buchel, 2010; Kuhn and Gallinat, 2012). Studies using monetary 

rewards have further demonstrated that vmPFC activity tracks the value of financial payoffs 

(O'Doherty et al., 2001a; Knutson et al., 2003). Importantly, the vmPFC seems to be 

sensitive to the subjective value of rewards rather than to their mere intensity. For instance, 

vmPFC activity decreases with satiety (O'Doherty et al., 2000; Small et al., 2001) and 

increases with personal preferences based on brand or price (Plassmann et al., 2008; 
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McClure et al., 2004a). This indicates that the vmPFC is able to integrate value across 

different stimulus dimensions and different stimuli. One might further note that the activations 

observed in our meta-analysis spread over the pregenual ACC, which has strong 

connections with both the ventral striatum and medial OFC, and has been shown to be 

involved in reward and emotion processing in two other meta-analyses (Beckmann et al., 

2009; Fujiwara et al., 2009). 

 

4.2.2. Modality-dependent activations in the lateral OFC  

Our results further revealed money-specific activations in the right anterior OFC. This 

finding supports the view that secondary (i.e. evolutionary recent) rewards such as money 

might recruit more anterior OFC regions than primary (i.e. evolutionary ancient) rewards such 

as food and sex (Kringelbach and Rolls, 2004; Sescousse et al., 2010). Such a dissociation 

is in line with the cytoarchitectonic properties of the OFC, showing that the anterior part, 

characterized by a granular cell layer, is phylogenetically more recent than the posterior part 

consisting in agranular and dysgranular cortices (Ongür and Price, 2000; Wise, 2008). A 

similar antero-posterior gradient has also been revealed using a functional parcellation of the 

OFC based on resting-state connectivity patterns with other brain regions (Kahnt et al., 

2012).  Furthermore, this hypothesis can be integrated in a broader perspective on frontal 

lobe organization, suggesting a trend in complexity and abstraction along a posterior-anterior 

axis with the frontopolar cortex at the apex (Badre and D'Esposito, 2009). For instance the 

rostro-caudal axis of the lateral prefrontal cortex (dlPFC) was shown to support a control 

hierarchy whereby posterior-to-anterior lateral PFC mediates progressively abstract, higher-

order cognitive control (Dreher et al., 2008a; Koechlin et al., 2003). Along the same lines, 

patients with lesions in the anterior OFC have been reported to be specifically impaired in 

making decisions entailing abstract, i.e. distant, consequences, and not in making decisions 

leading to concrete, i.e. immediate, consequences, further supporting the idea of a postero-

anterior trend in the representation of abstractness in the OFC (Bechara and Damasio, 

2005).  
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In accordance with the above hypothesis and previous results from our group 

(Sescousse et al., 2010), one would have expected primary rewards (i.e. food and erotic 

stimuli) to specifically recruit the posterior portion of the OFC in comparison to monetary 

rewards. Unfortunately we were not able to fully substantiate this claim, as the lateral 

posterior OFC was seemingly recruited by all three rewards in our meta-analysis (see 

Supplementary Materials - Fig. S1). Note however that erotic and food rewards did elicit 

activity in the lateral posterior OFC as expected. This is consistent with a recent report 

showing that aesthetic appraisal across diverse sensory modalities primarily recruits the OFC 

in its posterior part (Brown et al., 2011). Note also that the localization of reward-related 

activity in the lateral portion of the OFC challenges the hypothesis of a medio-lateral 

dissociation between rewards and punishments in the OFC (Noonan et al., 2012; O'Doherty, 

2007). 

 

4.3. Amygdala 

4.3.1. Modality-independent activations 

 The amygdala receives projections from a number of cortical regions, but is most 

strongly connected to the ventral striatum and OFC (Haber and Knutson, 2010; Murray, 

2007). Our meta-analysis showed that, in concert with these two regions, the amygdala 

responded to all rewards regardless of their type. 

These results shed light on the debate opposing valence and salience coding in the 

amygdala. Early studies in humans and animals were mostly in favor of the valence 

hypothesis, suggesting that the amygdala is specialized in the processing of negative 

emotions such as fear or anger (LeDoux, 2000; Calder et al., 2001), or aversive stimuli such 

as unpleasant odors or monetary losses (Zald, 2003; Yacubian et al., 2006). Yet, the results 

from the present meta-analysis provide strong evidence that the amygdala is equally 

sensitive to rewarding stimuli, as confirmed by a wealth of animal studies (Sugase-Miyamoto 

and Richmond, 2005; Tye and Janak, 2007; Bermudez et al., 2012). This suggests that the 

amygdala might be better regarded as coding the salience, and not the valence, of affectively 
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laden stimuli, consistent with the recent proposal of a salient prediction error computation in 

this region (Météreau and Dreher, 2012). Interestingly, several fMRI studies have 

manipulated both these dimensions while comparing positive and negative reinforcers of 

varying intensity in humans. In line with the salience hypothesis, they have shown that 

amygdala activity is linked to the level of arousal induced by these reinforcers, regardless of 

their valence (Small et al., 2003; Anderson and Sobel, 2003). Note however that the 

amygdala is a heterogeneous structure whose various nuclei are hardly distinguishable with 

fMRI, and that positive versus negative valence might still be encoded by distinct neuronal 

populations or distinct sub-regions (Prevost et al., 2011; Paton et al., 2006). 

Despite the consistent response of the amygdala to rewarding stimuli, it is 

nevertheless unclear whether these responses reflect reward processing per se or 

assignment of emotional value. Based on seemingly overlapping brain mechanisms, emotion 

and reward have often been closely related and described together in a model where 

emotions are a by-product of reinforcement (Rolls, 2000). However, this view has been 

challenged by animal studies demonstrating that amygdala lesions may reduce emotional 

reactions without disturbing reward processing (Murray, 2007). As a consequence, it was 

proposed that, rather than a direct role in reward processing, the amygdala was in charge of 

providing an “affective tag” to stimuli. This is in line with several findings linking amygdala 

activity with skin conductance responses (SCR), thought to reflect autonomic responses 

(Bechara et al., 1999; Petrovic et al., 2008a). This emotional tagging would further participate 

in the updating of current reward value and the flexible adaptation of behavior, as illustrated 

by the decrease in amygdala activity following reinforcer devaluation (Baxter and Murray, 

2002; Gottfried et al., 2003). Therefore, the activity observed in the amygdala in response to 

money, food and erotic pictures in the present meta-analysis is more likely to reflect the 

emotional impact of these stimuli rather than their intrinsic reward value. 

 

4.3.2. Modality-dependent activations 
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Our meta-analysis also revealed that the amygdala, and possibly its centro-medial 

nucleus, was more reliably activated by erotic than by monetary and food rewards. This 

observation supports a role of the amygdala in the emotional appraisal of affectively laden 

reinforcers such as erotic pictures, known to elicit particularly strong affective and visceral 

reactions (Lang et al., 1993). In line with this interpretation, two recent studies showed 

enhanced amygdala activation in response to smiley faces and erotic pictures compared to 

monetary gains (Rademacher et al., 2010; Sescousse et al., 2010). The present result may 

also stem from the fact that, in contrast to monetary and food outcomes often delivered in a 

repetitive fashion in reward experiments, erotic stimuli are more salient and offer more 

variety, therefore limiting habituation effects commonly observed in the amygdala (Breiter et 

al., 1996). Moreover, one should note that most neuroimaging studies manipulating erotic 

rewards were conducted in men, who show significantly higher amygdala responses than 

women when presented with visual sexual stimuli (Hamann et al., 2004). Overall, our results 

are mostly compatible with an emotional account of amygdala function. 

 

4.4. Anterior insula 

4.4.1. Modality-independent activations 

Our meta-analysis showed that the anterior insula bordering the frontal operculum 

was consistently activated by monetary, food and erotic rewards. Surprisingly, this structure 

has been relatively overlooked in the reward literature, and most often associated with 

aversive events such as monetary losses (Knutson and Bossaerts, 2007; Knutson and 

Greer, 2008; Petrovic et al., 2008b). We discuss below what might be its function in the 

processing of appetitive reward outcomes. 

Whereas the posterior insula receives its main inputs from associative cortical 

regions, the anterior insula is mostly connected to limbic regions such as the vmPFC, 

amygdala and ventral striatum, and is essentially innervated by dopaminergic neurons. This 

situation enables the anterior insula to integrate autonomic and visceral information with 

emotional and motivational processes, in line with its proposed role in interoception (Naqvi 
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and Bechara, 2009). Interoception consists in the neural mapping of bodily states which are 

meaningful for the maintenance of homeostasis, such as pain, thirst or autonomic arousal 

(Craig, 2002). These bodily states arise as a consequence of external emotional stimulation, 

but do not reach consciousness before they are mapped at the insular level. This mapping 

then leads to an explicit emotional feeling, after being integrated with the events originally 

eliciting those bodily states (Bechara and Damasio, 2005; Critchley, 2005). Importantly, the 

classic view of the anterior insula as a purely visceral sensory cortex was recently extended. 

Indeed, a number of neuroimaging studies have shown that it is involved in the 

representation of a wide variety of subjective feelings, and not just those arising from bodily 

states, as well as in many other cognitive processes such as attention, time perception or 

perceptual decision-making (Craig, 2009). Based on such evidence, the role of the anterior 

insula was reframed and associated more broadly with awareness. This generic account of 

anterior insula function is compatible with the bilateral activation observed across monetary, 

erotic and food outcomes, and suggests a role in the subjective affective experience of 

rewards. Moreover, the recruitment of the anterior insula by monetary rewards confirms that 

this region does not deal exclusively with bodily states relevant for homeostasis, but more 

generally with positive feelings elicited by pleasant outcomes.  

Another function assigned to the anterior insula is the processing of risk and 

uncertainty (Knutson and Bossaerts, 2007; Craig, 2009; Singer et al., 2009). A wealth of 

fMRI studies using monetary (Huettel et al., 2006) and non-monetary stimuli (Huettel et al., 

2005; Grinband et al., 2006) have demonstrated increased anterior insula activity when faced 

with risk or risky decisions. The consistency of this finding for risky monetary rewards was 

established in a recent meta-analysis, which further suggested that insular engagement 

might be even stronger when potential losses are involved (Mohr et al., 2010). Along the 

same lines, it has been proposed that the anterior insula computes a risk prediction and a 

“risk prediction error”, and thus participates in risk learning (Preuschoff et al., 2008). This 

bears similarity to the concept of an “interoceptive prediction error”, signaling mismatch 

between actual and anticipated bodily arousal, and suggested to play a role in anxiety 
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(Paulus and Stein, 2006). It is further consistent with the idea that the anterior insula tracks 

the salience of outcomes, regardless of their valence (Rutledge et al., 2010) Thus, in the 

context of reward processing, the anterior insula might be in charge of tracking both 

expected and experienced risk, a mechanism that would participate more broadly in 

emotional appraisal. 

 

 

 

4.4.2. Modality-dependent activations 

Finally, although our results unambiguously support a role of the anterior insula in the 

processing of both primary and secondary rewards, they suggest a stronger involvement in 

the processing of primary rewards. Indeed, we found that the middle insula was more reliably 

activated by both erotic and food rewards as compared to money, while the ventral and 

dorsal parts of the anterior insula were more specifically recruited by erotic and food rewards, 

respectively. This is in agreement with a recent meta-analysis showing that aesthetic 

appraisal across various sensory modalities (i.e. primary rewards) produces very robust 

activations in the anterior insula (Brown et al., 2011). This could reflect the higher autonomic 

arousal induced by primary rewards: in line with their prominent role in homeostasis and 

survival, erotic and food rewards are known to generate acute changes in bodily states and 

autonomic arousal, as evidenced by changes in heart beat, skin conductance, sexual drive or 

satiety levels. Such changes are in turn often correlated with activity in the anterior insula, 

shown to be critically involved in autonomic conditioning (Critchley et al., 2002; Kuhn and 

Gallinat, 2011). The apparent segregation between erotic-specific and food-specific 

activations along a ventro-dorsal axis is difficult to interpret at this stage. Based on the role of 

the ventral insula in emotional appraisal and its frequent coactivation with the amygdala 

(Deen et al., 2010; Mutschler et al., 2009), the present result might reflect the particularly 

strong emotional impact of erotic rewards. The activation observed in the anterior insula for 

food rewards is consistent with the location of the primary gustatory cortex (Naqvi and 
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Bechara, 2009). This is further consistent with the food-specific activation observed in the 

somatosensory cortex and adjacent middle insula, known to be involved in the processing of 

the physical properties of food and the mapping of bodily states (Bechara and Damasio, 

2005). Therefore, it is possible that those food-specific activations reflect the sensory 

properties of food rewards, rather than their specificity as a primary reward. 

 

 

 

4.5. Mediodorsal thalamus 

Our meta-analysis revealed that the mediodorsal thalamus, a structure which is rarely 

discussed in the reward literature, was consistently activated by monetary, erotic and food 

rewards. This brain region is an important relay between the basal ganglia and the prefrontal 

cortex: it receives inputs from the ventral striatum via the ventral pallidum, and projects in 

turn to various regions of the prefrontal cortex, especially the ventromedial part, which 

projects back to the ventral striatum (Haber and Knutson, 2010; Ongür and Price, 2000; 

Garcia-Cabezas et al., 2007). Embedded within this striatal–thalamo–cortical loop, the 

mediodorsal thalamus is thought to bridge basic reward signals with higher cognitive 

processes such as motivation and goal-directed behaviour (Elliott et al., 2000; Galvan et al., 

2005).  

The role of the mediodorsal thalamus in reward prediction is supported by a wealth of 

studies in both animals and humans. In rats, thalamic neurons were found to fire in 

anticipation of pleasant food rewards (Komura et al., 2001), while lesions in the mediodorsal 

thalamus were found to impair instrumental conditioning (Corbit et al., 2003). In humans, 

reward predictive cues were found to elicit robust thalamic activity, often increasing with 

reward probability (Galvan et al., 2005; Roiser et al., 2010). A meta-analysis further revealed 

that this activity was stronger than the one observed at the time of reward outcome (Knutson 
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and Greer, 2008). These anticipatory responses have generally been interpreted as 

reflecting increased attention towards motivationally salient stimuli. 

Importantly, the present results demonstrate that the mediodorsal thalamus also plays 

an important role in processing the experienced value of rewards. Interestingly, activity in the 

thalamus was found to scale with reward intensity in a number of studies manipulating 

monetary gains (Martin-Soelch et al., 2003; Elliott et al., 2000), erotic stimuli (Redouté et al., 

2000) or pleasant music (Blood and Zatorre, 2001). These results can be interpreted within 

the previous framework, i.e. as reflecting increased arousal, but could alternatively be seen 

as reflecting reward value coding. However, if the mediodorsal thalamus reflected reward 

value, we should expect positive reinforcement to produce much higher thalamic activity than 

negative reinforcement. This does not seem to be the case in our meta-analysis: out of the 

nine monetary studies using contrasts between gains and losses, only one reported activity 

in the thalamus (Cox et al., 2005). This is consistent with a meta-analysis showing that 

anticipation of reward versus punishment does not elicit differential activation in the thalamus 

(Knutson and Greer, 2008). Hence, although more research is needed to confirm this 

hypothesis, it is possible that the currently observed mediodorsal thalamus activity reflects 

the general arousal induced by behaviorally salient rewards. This is in line with a recent 

study in which monetary rewards, found to be motivationally more salient than social rewards 

(as objectivised by faster reaction times), also elicited higher thalamic activation 

(Rademacher et al., 2010). It is also consistent with a study investigating sexual orientation, 

and showing that despite similar attractiveness judgments, faces of the preferred sex elicited 

higher activity in the mediodorsal thalamus than less salient faces of the non-preferred sex 

(Kranz and Ishai, 2006).  

 

4.6. The hypothalamus and extrastriate body area 
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 Finally, our meta-analysis revealed that the hypothalamus and extrastriate body area, 

two brain regions not usually associated with reward processing, were robustly and 

specifically activated by erotic rewards.  

 The hypothalamus is part of the limbic system and plays a general role in homeostatic 

control and autonomic responses, essentially by means of its neuroendocrine function. In 

particular, it is known to be important for feeding behaviour, and its activity was shown to be 

modulated by food cues as well as by hunger and satiety feelings (Grabenhorst et al., 2010b; 

Hikosaka et al., 2008). However, this role seems to be distinct from the coding of food 

hedonics, as illustrated by the absence of hypothalamic response to pleasant foods in our 

meta-analysis. In contrast, the hypothalamus appeared to be particularly sensitive to the 

presentation of visual erotic stimuli, consistent with the rich animal and human literature 

demonstrating the pivotal role of this region in sexual behaviour (Karama et al., 2002; Walter 

et al., 2008). Several neuroimaging studies have found a correlation of hypothalamic activity 

with subjective sexual arousal, as well as with physiological arousal responses in men, such 

as erection (Arnow et al., 2002; Karama et al., 2002; Redouté et al., 2000). Overall these 

results confirm the central role of the hypothalamus in human sexual motivation, although 

this role might be more likely related to the regulation of autonomic responses than to the 

appraisal process through which erotic stimuli are evaluated as sexual incentives (Redouté 

et al., 2000). 

 Erotic stimuli also elicited large activations in the extrastriate body area, a higher 

order visual area of the lateral occipitotemporal cortex, known to selectively respond to 

images of the human body or parts of it (Downing et al., 2001). This result is consistent with 

the nature of erotic stimuli typically representing naked bodies. Moreover, several studies 

found that these activations appeared to be independent of the gender of the bodies 

displayed and the individuals’ sexual preference (Paul et al., 2008; Ponseti et al., 2006). This 

suggests that the extrastriate body area is mainly sensitive to the visual features of erotic 

stimuli, rather than to their rewarding properties.  
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4.7. Limitations and strengths  

The present meta-analysis is not free of limitations, demanding to treat the results 

with some caution. First, our ALE approach ignored information such as peak statistical 

values or spatial extent of functional clusters reported in individual studies. Yet, it would be 

desirable to weigh included studies depending on these criteria, as they often reflect the 

underlying quality of the imaging results (Yarkoni et al., 2010). Note however, that this ideal 

procedure is difficult to implement and seldom used in practice, because of the need to 

possess full datasets processed in a homogeneous fashion.  

An additional limitation might come from the heterogeneity of the tasks used in the 

reward literature and included in our meta-analysis. First, variations in reward delivery may 

act as a confounding effect. As mentioned previously, monetary studies often involve 

probabilistic or performance-dependent rewards, whereas food and erotic rewards are 

usually delivered in a passive and predictable way. Moreover, a number of food and erotic 

studies used block designs, whereas most monetary studies used event-related designs. 

These methodological discrepancies may confound effects related to reward type with effects 

related to how rewards are delivered. Note however that the difference in block versus event-

related designs does not seem to impact reward-related activations, at least for erotic stimuli 

(Buhler et al., 2008). Furthermore, within each reward category, we combined foci resulting 

from a wide variety of protocols and contrasts. As a consequence, we might have pooled 

rather heterogeneous results: for instance, a contrast between gains and losses in a 

guessing task is likely to produce different activations from a contrast between gains and 

non-gains in a classical conditioning task. This has the advantage of revealing the most 

robust and replicable effects across paradigms, but the disadvantage of limiting our ability to 

ascribe specific brain regions to discrete reward processes. 

Finally, it could be argued that the differential activation patterns presently observed 

between rewards are confounded by differences in reward intensity. Disentangling these two 

hypotheses is intrinsically difficult within a meta-analysis. Indeed, in contrast to single studies 

in which the matching of different conditions is under the control of the experimenter, such 
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matching cannot be easily achieved when comparing different groups of studies. However, it 

should be noted that since this is a coordinate-based meta-analysis, we are not comparing 

the amplitude of brain activity between conditions (as would be done by contrasting Betas 

within a regular GLM analysis), but the spatial consistency of reported peaks of activity 

between groups of studies (regardless of peak t-values). Yet, this consistency is not 

influenced by the intensity of the reward stimuli, but rather by their ability to elicit reliable and 

detectable activity in the brain. 

Finally, one might be surprised not to observe midbrain activity emerging from our 

meta-analysis. In fact, all three rewards did elicit activity in the midbrain, but the location of 

functional clusters was not overlapping between rewards and was not entirely consistent with 

the dopaminergic portion of the midbrain (see Supplementary Materials - Fig. S2). This 

variability likely results from the high susceptibility of fMRI signals in the midbrain to noise 

and artifacts, due to local field inhomogeneity, motion and partial volume effects (Haber and 

Knutson, 2010; D'Ardenne et al., 2008). This loss of reliability of fMRI signals in deeper brain 

structures warrants a word of caution in interpreting the present results as a truly whole-brain 

picture of reward-related activity, and calls in turn for adapted data acquisition protocols for 

those regions in the future (Krebs et al., 2011; D'Ardenne et al., 2008). 

Despite these limitations, the present work has several important strengths. To the 

best of our knowledge, this is the first study to systematically compare the neuroanatomical 

substrates of multiple rewards in order to distinguish common from specialized reward-

related regions. Moreover, these comparisons were performed in a fully objective manner, 

since we used a voxel-based meta-analytic approach combined with whole-brain results 

only. In particular, by excluding ROI-based studies from our meta-analysis, we avoided the 

confirmation bias inherent to the ROI approach, and were able to reveal the most consistent 

findings in the absence of any a priori assumptions. In fact, we had to exclude a surprisingly 

high number of ROI-based studies, which is somehow paradoxical considering the only 

recent availability of objective reference (such as the present meta-analysis) for these 

studies in the literature. Perhaps as a consequence, our findings showed that regions such 
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as the thalamus and anterior insula were more robustly activated by reward outcomes than 

previously thought. Finally, we used a quantitative, random-effect, approach based on the 

estimated convergence of results across studies. This provides valuable information in terms 

of average peak location and spatial extent of reward-related brain regions, which should 

prove useful for future ROI-based studies. 

 

4.8. Conclusions 

 This meta-analysis first reveals that there is ample support in the neuroimaging 

literature for a “common reward circuit” in the brain (Fig. 3). Although this finding was to be 

expected, our results offer an objective and quantitative demonstration. Within this circuit, the 

vmPFC appears to be directly responsible for computing the experienced value of rewards 

on a common scale. Strongly connected to the vmPFC, the ventral striatum is thought to 

primarily reflect prediction error and to contribute to learning and motivation, although its 

pattern of activation is also compatible with the computation of experienced value. 

Interestingly, both the vmPFC and ventral striatum have been involved in the valuation phase 

of a number of decision-making paradigms involving primary and secondary rewards (Kable 

et al., 2007; Prévost et al., 2010). Further meta-analyses are needed to investigate whether 

the computation of experienced value and decision value also engages distinct brain 

structures. As for the amygdala, even though its involvement in reward learning is still a 

matter of debate, considerable evidence shows that it plays a major role in assigning 

emotional value to rewards. Less often included in the canonical definition of the reward 

circuit, the anterior insula emerged as a key region in our meta-analysis. Its role in reward 

processing is likely related to the conscious awareness of emotions triggered by rewards, or 

to risk and salience monitoring. The mediodorsal thalamus, strongly activated by all rewards, 

is thought to play a role in the increased arousal induced by rewards. Importantly, in all these 

regions except the thalamus, our analyses revealed variations in peaks or levels of activity 

depending on reward type. These discrepancies are presumably attributable to intrinsic 
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differences between rewards or between the contexts in which these rewards were delivered. 

Note that these discrepancies might be informative and help elucidate the functional roles of 

specific brain regions in reward processing. For instance, the stronger activation observed in 

the ventral striatum for monetary rewards can be related to the frequent delivery of these 

rewards in a learning context, and therefore tends to support a role for this brain region in 

prediction error computation. 

Complementing this common reward circuit, our meta-analysis revealed specialized 

reward areas in the brain. The recruitment of specific regions, including the somatosensory 

cortex (food-specific), extrastriate body area and hypothalamus (erotic-specific), is likely 

driven by sensory or autonomic properties of the rewards under scrutiny. In addition, the 

anterior OFC was specifically recruited by monetary rewards, a result that we interpret in the 

broader perspective of a dissociation between primary and secondary rewards in the 

postero-anterior axis of the OFC (Sescousse et al., 2010). 

The question of one versus multiple reward circuits in the brain is complex and 

requires future development. First, it will be instructive to extend the present work in the 

future, when enough data has been accumulated to run meta-analyses on other types of 

rewards, such as beautiful faces, pleasant odors or positive social feedback. Addressing 

previously stated methodological limitations will be another challenge. Image-based meta-

analyses, which make use of crucial information such as activation magnitude and spatial 

extent of clusters, but require access to the original data, seem like a promising avenue 

(Salimi-Khorshidi et al., 2009; Poldrack, 2008). The present meta-analysis was focused on 

the identification of reward-related regions, and studied how the engagement of these 

regions varies with reward type. Alternatively, it would be informative to investigate how the 

engagement of these regions varies with task characteristics. As previously mentioned, brain 

response patterns are likely to fluctuate with the mode of reward delivery, depending on the 

requirement of a motor response (e.g. passive versus active reward), the involvement of 

learning (e.g. strategic versus guessing reward task), or the degree of expectation (e.g. 

probabilistic versus certain rewards). Comparative meta-analyses of reward studies based 
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on these criteria would provide valuable insight into the functional roles of reward-related 

regions, and help in turn to build a cognitive ontology of reward processing (Poldrack, 2008; 

Yarkoni et al., 2010).  
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Figure captions 
 
 
Fig. 1. “Common reward circuit” as defined by the overlap of ALE maps produced by 
monetary, food and erotic reward studies. The ALE maps in the three leftmost columns 

show the brain regions consistently and commonly activated by monetary, erotic and food 

reward outcomes. The colour scale indicates the magnitude of ALE values, i.e. the degree of 

consistency across studies. The maps on the right illustrate the overlap of activation clusters 

across rewards (green = monetary rewards, red = erotic rewards, blue = food rewards). The 

ALE maps are overlaid on the Colin brain provided with GingerALE (p<0.01 FDR whole-brain 

corrected and cluster size > 600 mm3). 

 

Fig. 2. Brain regions more reliably activated by one reward compared to the other two 
(i.e. “reward type-specific”). These regions result from contrasts between the different 

meta-analyses: “money-specific” regions (green) result from the conjunction of money>erotic 

and money>food maps, “erotic-specific” regions (red) result from the conjunction of 

erotic>money and erotic>food maps, and “food-specific” regions (blue) result from the 

conjunction of food>money and food>erotic maps. “Primary reward-specific” regions (purple) 

result from the conjunction of erotic>money and food>money maps. The ALE maps are 

overlaid on the Colin brain provided with GingerALE (p<0.05 FDR whole-brain corrected and 

cluster size > 600 mm3; except for the primary reward-specific activation in the left insula: 

p<0.05 FDR whole-brain corrected and cluster size = 350 mm3). 

 

Fig. 3. Overview of the brain regions involved in reward outcome processing as a 
function of reward type. (A) “Common reward circuit”, i.e. the brain responding to 

monetary, erotic and food rewards. The putative main functional role assigned to each region 

is mentioned in italics. Rewards eliciting a particularly robust activation in certain regions are 

mentioned in square brackets. (B) Reward type-specific regions, i.e. more reliably activated 

by one reward compared to the other two. The putative main functional role assigned to each 

region is mentioned in italics. Green: “money-specific” regions, Red: “erotic-specific” regions, 

Blue: “food-specific” regions, Fuchsia: “primary reward-specific”.  
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Tables 
 

Study Modality n Foci Task Contrast Statistical threshold 

(Abler et al., 2007) fMRI 8 9 Monetary Incentive Delay task (modified) Monetary gain > Omission p<0.001 voxel-level uncorr & k≥10 
(Bjork et al., 2004) fMRI 12 15 Monetary Incentive Delay task Monetary gain > Omission p<0.0001 | p<0.00001 voxel-level uncorr 
(Bjork et al., 2008) fMRI 23 2 Monetary Incentive Delay task Monetary gain > Omission p<0.001 voxel-level uncorr & p<0.05 cluster-level corr 
(Bjork et al., 2010) fMRI 24 6 Monetary Incentive Delay task Monetary gain > Omission p<0.05 voxel-level FDR corr 
(Camara et al., 2008) fMRI 17 18 Number guessing task Monetary gain > Baseline p<0.0001 voxel-level uncorr & p<0.05 cluster-level corr 
(Clark et al., 2009) fMRI 15 18 Slot machine gambling task Monetary gain > Omission p<0.05 voxel-level FWE corr 
(Cox et al., 2005) fMRI 22 28 Card guessing task Monetary gain > Loss p<0.05 voxel-level corr (permutation testing) 

(Elliott et al., 2000) fMRI 9 2 Card guessing task Positive correlation with cumulative 
reward level p<0.001 voxel-level uncorr | p<0.05 corr 

(Elliott et al., 2003) fMRI 12 11 Target detection task Monetary gain > Baseline p<0.001 voxel-level uncorr | p<0.05 corr 
(Elliott et al., 2004) fMRI 12 10 Target detection task Monetary gain > Non-gain p<0.001 voxel-level uncorr | p<0.05 corr 
(Ernst et al., 2005) fMRI 14 16 Wheel of fortune gambling task Monetary gain > Omission p<0.001 voxel-level uncorr 

(Fujiwara et al., 2009) fMRI 17 18 Card guessing task Positive correlation with gain > 
Positive correlation with loss p<0.001 | p<0.0001 voxel-level uncorr 

(Hardin et al., 2009) fMRI 18 7 Wheel of fortune gambling task (Gain > Gain omission) > (Loss 
omission > Loss) p<0.00001 voxel-level uncorr 

(Izuma et al., 2008) fMRI 19 23 Card guessing task High monetary gain > Non-gain p<0.005 voxel-level uncorr & p<0.05 cluster-level corr 
(Knutson et al., 2001) fMRI 9 6 Monetary Incentive Delay task Monetary gain > Omission p<0.0001 voxel-level uncorr 
(Knutson et al., 2003) fMRI 12 4 Monetary Incentive Delay task Monetary gain > Omission p<0.0001 voxel-level uncorr 
(Knutson et al., 2008) fMRI 12 15 Monetary Incentive Delay task Monetary gain > Omission p<0.0001 voxel-level uncorr & k≥4 
(Kunig et al., 2000) PET 13 9 Pattern recognition task Monetary gain > Omission p<0.001 voxel-level uncorr 
(Linke et al., 2010) fMRI 33 16 Reversal learning task Monetary gain > Loss p<0.05 voxel-level FDR corr 
(Martin et al., 2009) fMRI 20 2 Classical conditioning task Monetary gain > Omission p<0.003 voxel-level uncorr & p<0.05 cluster-level corr 
(Martin-Solch et al., 2001) PET 12 41 Pattern recognition task Monetary gain > Omission p<0.001 voxel-level uncorr 
(Météreau and Dreher, 2012) fMRI 20 13 Classical conditioning task Monetary gain > Omission p<0.01 voxel-level FDR corr &  k≥5 
(Nieuwenhuis et al., 2005) fMRI 14 10 Card guessing task Monetary gain > Loss p<0.0005 voxel-level uncorr & k≥60 
(O'Doherty et al., 2003) fMRI 10 7 Reversal learning task Monetary gain > Loss p<0.001 voxel-level uncorr 
(Petrovic et al., 2008b) fMRI 13 11 Wheel of fortune gambling task Monetary gain > Omission p<0.001 voxel-level uncorr | p<0.05 cluster-level corr 

(Ramnani et al., 2004) fMRI 6 6 Classical conditioning task Monetary gain (unexpected) > 
Omission (expected) p<0.001 voxel-level uncorr 

(Reuter et al., 2005) fMRI 12 4 Card guessing task Monetary gain > Loss p<0.001 voxel-level uncorr 
(Rogers et al., 2004) fMRI 14 11 Wheel of fortune type gambling task Monetary gain > Loss Z>2.3 voxel-level uncorr & p<0.05 cluster-level corr 
(Samanez-Larkin et al., 2010) fMRI 54 6 Behavioral Investment Allocation Strategy task Monetary gain > Loss p<0.0001 voxel-level uncorr & k≥8 
(Sescousse et al., 2010) fMRI 18 18 Monetary Incentive Delay task (modified) Monetary gain > Non-gain p<0.01 voxel-level FDR corr &  k≥15 
(Smith et al., 2010) fMRI 23 10 Passive viewing task Monetary gain > Loss Z>2.3 voxel-level uncorr & p<0.05 cluster-level corr 
(Van Leijenhorst et al., 2010) fMRI 15 3 Slot machine gambling task Monetary gain > Loss p<0.001 voxel-level uncorr 
(Vollm et al., 2007) fMRI 14 19 Target detection task Monetary gain > Non-gain p<0.001 voxel-level uncorr & k≥10 
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Table 1. Overview of the monetary reward studies included in our meta-analysis. For each study, the column “n” indicates the number of participants, 
the column “Foci” indicates the number of foci included in our meta-analysis, and the column “Task” provides a description of the type of paradigm used. In 
the column “Contrast”, “Omission” refers to a null outcome when a potential gain was expected, “Non-gain” refers to a null outcome when such a null 
outcome was expected, “Loss” refers to a monetary loss when either a gain or a loss was expected, and “Baseline” refers to any low-level condition such as 
a fixation cross. When multiple thresholds are reported for one study, “&” means that these thresholds were applied simultaneously to every foci, while “|” 
means that these thresholds were applied to different foci. 
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Study Modality n Foci Task Contrast Statistical threshold 

(Asensio et al., 2010) fMRI 26 15 Passive viewing during a letter discrimination task Erotic pictures > Neutral pictures p<0.05 voxel-level FWE corr & k≥20 
(Barros-Loscertales et al., 2010) fMRI 45 19 Passive viewing during a letter discrimination task Erotic pictures > Neutral pictures p<0.001 voxel-level uncorr & k≥20 
(Beauregard et al., 2001) fMRI 10 7 Passive viewing task Erotic films > Neutral films p<0.005 corr 
(Bocher et al., 2001) PET 10 8 Passive viewing task Erotic films > Baseline p<0.001 voxel-level uncorr & k≥50 
(Brunetti et al., 2008) fMRI 18 26 Passive viewing task Erotic films > Sport films p<0.001 voxel-level uncorr 
(Buhler et al., 2008) fMRI 10 14 Passive viewing task Erotic pictures > Neutral pictures p<0.05 voxel-level FDR corr &  k≥10 
(Domenech and Dreher, 2008) fMRI 14 25 Choice preference task Erotic pictures > Omission p<0.0001 voxel-level uncorr & k≥15 
(Ferretti et al., 2005) fMRI 10 17 Passive viewing task Erotic films > Sport films p<0.05 Bonferroni corr 
(Hamann et al., 2004) fMRI 14 9 Passive viewing task Erotic pictures > Neutral pictures p<0.001 voxel-level uncorr & k≥5 
(Hu et al., 2008) fMRI 10 28 Passive viewing task Erotic films > Baseline p<0.001 voxel-level uncorr & k≥10 
(Karama et al., 2002) fMRI 20 18 Passive viewing task Erotic films > Neutral films p<0.001 voxel-level uncorr | p<0.05 corr 
(Kim et al., 2006) fMRI 10 12 Passive viewing task Erotic films > Sport films p<0.001 voxel-level uncorr | p<0.05 corr 

(Moulier et al., 2006) fMRI 10 23 Passive viewing task (Nude > Dressed women) > (Nude > 
Dressed children) p<0.001 voxel-level uncorr | p<0.05 corr 

(Mouras et al., 2008) fMRI 8 18 Passive viewing task Erotic films > Humorous films p<0.05 corr 
(Paul et al., 2008) fMRI 12 13 Passive viewing task Erotic films > Neutral films p<0.001 voxel-level uncorr & k≥5 
(Ponseti et al., 2006) fMRI 53 13 Passive viewing task Erotic pictures > Neutral pictures p<0.01 voxel-level uncorr & p<0.05 cluster-level corr 
(Prévost et al., 2010) fMRI 16 26 Delay and effort discounting task Erotic pictures > Baseline p<0.0001 voxel-level uncorr & k≥15 
(Redouté et al., 2000) PET 9 14 Passive viewing task Erotic films > Neutral films p<0.001 voxel-level uncorr | p<0.05 corr 
(Sabatinelli et al., 2007) fMRI 22 18 Passive viewing task Erotic pictures > Neutral pictures p<0.001 voxel-level uncorr 
(Safron et al., 2007) fMRI 22 15 Passive viewing task Erotic pictures > Sport pictures p<0.001 voxel-level uncorr & p<0.05 cluster-level corr 
(Schiffer et al., 2008) fMRI 12 39 Passive viewing task Erotic pictures > Neutral pictures p<0.05 voxel-level FDR corr &  k≥10 
(Seo et al., 2010) fMRI 21 24 Passive viewing task Erotic pictures > Happy faces pictures Z>2.3 voxel-level uncorr & k≥10 
(Sescousse et al., 2010) fMRI 18 30 Erotic Incentive Delay task Erotic pictures > Neutral pictures p<0.01 voxel-level FDR corr &  k≥15 
(Stoleru et al., 1999) PET 8 4 Passive viewing task Erotic films > Neutral films p<0.001 voxel-level uncorr | p<0.05 corr 
(Sundaram et al., 2010) fMRI 14 19 Passive viewing task Erotic films > Baseline p<0.05 (unclear whether corrected or not) 
(Walter et al., 2008) fMRI 21 15 Passive viewing task Erotic pictures > Neutral pictures p<0.001 voxel-level uncorr & k≥10 

 
Table 2. Overview of the erotic reward studies included in our meta-analysis. For each study, the column “n” indicates the number of participants, the 
column “Foci” indicates the number of foci included in our meta-analysis, and the column “Task” provides a description of the type of paradigm used. In the 
column “Contrast”, “Omission” refers to a null outcome when a potential erotic stimulus was expected, and “Baseline” refers to any low-level condition such 
as a fixation cross. When multiple thresholds are reported for one study, “&” means that these thresholds were applied simultaneously to every foci, while “|” 
means that these thresholds were applied to different foci. 
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Table 3. Overview of the food reward studies included in our meta-analysis. For each study, the column “n” indicates the number of participants, the 
column “Foci” indicates the number of foci included in our meta-analysis, and the column “Task” provides a description of the type of paradigm used. In the 
column “Contrast”, “Omission” refers to a null outcome when a potential food stimulus was expected, and “Baseline” refers to any low-level condition such as 
a fixation cross. * The study by Green and Murphy (2012) was split into two studies since results are reported separately for two distinct groups of healthy 
participants (diet soda drinkers and non-diet soda drinkers). When multiple thresholds are reported for one study, “&” means that these thresholds were 
applied simultaneously to every foci, while “|” means that these thresholds were applied to different foci. 

  

Study Modality n Foci Task Contrast Statistical threshold 

(Berns et al., 2001) fMRI 25 1 Passive delivery task Preferred > Nonpreferred (between juice and water) p<0.01 voxel-level uncorr & k=17 
(de Araujo et al., 2003) fMRI 11 8 Passive delivery task Sucrose > Tasteless drink p<0.001 | p<0.0001 voxel-level uncorr | p<0.05 corr 
(Del Parigi et al., 2002) PET 44 20 Passive delivery task Liquid meal formula > Water p<0.005 voxel-level uncorr 
(Domenech and Dreher, 2008) fMRI 14 16 Choice preference task Juice > Omission p<0.01 voxel-level FDR corr 
(Felsted et al., 2010) fMRI 40 13 Passive delivery task Milkshake > Tasteless drink p<0.05 voxel-level FDR corr 
(Francis et al., 1999) fMRI 6 8 Passive delivery task Glucose > Baseline p<0.005 corr 

(Grabenhorst et al., 2010b) fMRI 14 4 Passive delivery task Positive correlation with pleasantness of milkshake 
flavor p<0.001 voxel-level uncorr & k≥3 

(Green and Murphy, 2012) * fMRI 12 37 Passive delivery task Saccharin > Water p<0.001 voxel-level uncorr & p<0.05 cluster-level corr 
(Green and Murphy, 2012) * fMRI 12 20 Passive delivery task Saccharin > Water p<0.001 voxel-level uncorr & p<0.05 cluster-level corr 
(Haase et al., 2009) fMRI 18 36 Passive delivery task Sucrose > Water p<0.0005 voxel-level uncorr & p<0.05 cluster-level corr 
(Jacobson et al., 2010) fMRI 19 17 Passive delivery task Sucrose > Water p<0.015 voxel-level uncorr & p<0.05 cluster-level corr 
(Kringelbach et al., 2003) fMRI 9 5 Passive delivery task Liquid food > Tasteless drink p<0.05 corr 
(McCabe and Rolls, 2007) fMRI 12 5 Passive delivery task Umami food & vegetable odor > Tasteless drink p<0.001 voxel-level uncorr | p<0.05 voxel-level FWE corr 
(McCabe et al., 2011) fMRI 15 9 Passive delivery task Chocolate > Tasteless drink p<0.001 voxel-level uncorr & p<0.05 cluster-level corr 
(McClure et al., 2004a) fMRI 32 1 Classical conditioning task Positive correlation with preference for soda drinks p<0.05 voxel-level FDR corr 
(Météreau and Dreher, 2012) fMRI 20 20 Classical conditioning task Juice > Omission p<0.01 voxel-level FDR corr &  k≥10 
(O'Doherty et al., 2001b) fMRI 7 14 Passive delivery task Glucose > Tasteless drink p<0.01 voxel-level uncorr in a minimum of 6 of 7 subjects 
(O'Doherty et al., 2002) fMRI 8 2 Classical conditioning task Glucose > Tasteless drink p<0.001 voxel-level uncorr 
(Plassmann et al., 2008) fMRI 20 10 Passive delivery task Wine > Tasteless drink p<0.001 voxel-level uncorr & k≥5 
(Rolls and McCabe, 2007) fMRI 16 6 Passive delivery task Chocolate > Tasteless drink p<0.001 voxel-level uncorr | p<0.05 voxel-level FWE corr 

(Small et al., 2001) PET 9 18 Passive delivery task Positive correlation with pleasantness ratings for 
chocolate  p<0.001 voxel-level uncorr | p<0.025 voxel-level FWE corr 

(Small et al., 2003) fMRI 9 12 Passive delivery task Sucrose > Tasteless drink p<0.005 voxel-level uncorr | p<0.05 cluster-level corr 
(Small et al., 2008) fMRI 12 4 Passive delivery task Juice > Tasteless drink p<0.001 voxel-level uncorr 
(Uher et al., 2006) fMRI 8 3 Passive delivery task Milkshake > Tasteless drink p<0.001 cluster-level corr (permutation testing) 

(Wang et al., 2009) PET 10 5 Passive delivery task with/without 
cognitive inhibition Food > Baseline unclear (p<0.01 cluster-level corr?) 

(Zald et al., 1998) PET 10 3 Passive delivery task Chocolate > Water p<0.0005 voxel-level uncorr 
(Zald and Pardo, 2000) PET 23 20 Passive delivery task Water > Baseline p<0.0001 voxel-level uncorr 
(Zald et al., 2002) PET 9 1 Passive delivery task Sucrose > Water p<0.0005 voxel-level uncorr 
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Fig. 1. “Common reward circuit” as defined by the overlap of ALE maps produced by monetary, food and erotic reward studies. The ALE maps in 
the three leftmost columns show the brain regions consistently and commonly activated by monetary, erotic and food reward outcomes. The 
colour scale indicates the magnitude of ALE values, i.e. the degree of consistency across studies. The maps on the right illustrate the overlap of 
activation clusters across rewards (green = monetary rewards, red = erotic rewards, blue = food rewards). The ALE maps are overlaid on the 
Colin brain provided with GingerALE (p < 0.01 FDR whole-brain corrected and cluster size > 600 mm3). 
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Fig. 2. Brain regions more reliably activated by one reward compared to the other two (i.e. “reward type-specific”). These regions result from 
contrasts between the different meta-analyses: “money-specific” regions (green) result from the conjunction of money > erotic and money > food 
maps, “erotic-specific” regions (red) result from the conjunction of erotic > money and erotic > food maps, and “foodspecific” regions (blue) result 
from the conjunction of food > money and food > erotic maps. “Primary reward-specific” regions (purple) result from the conjunction of erotic > 
money and food > money maps. The ALE maps are overlaid on the Colin brain provided with GingerALE (p < 0.05 FDR whole-brain corrected 
and cluster size > 600 mm3; except for the primary reward-specific activation in the left insula: p < 0.05 FDR whole-brain corrected and cluster 
size = 350 mm3). 
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Fig. 3. Overview of the brain regions involved in reward outcome processing as a function of reward type. (A) “Common reward circuit”, i.e. the 
brain responding to monetary, erotic and food rewards. The putative main functional role assigned to each region is mentioned in italics. Rewards 
eliciting a particularly robust activation in certain regions are mentioned in square brackets. (B) Reward type-specific regions, i.e. more reliably 
activated by one reward compared to the other two. The putative main functional role assigned to each region is mentioned in italics. Green: 
“money-specific” regions, Red: “erotic-specific” regions, Blue: “food-specific” regions, Fuchsia: “primary reward-specific”. 


