
1

A Synthetic Penalized Logitboost to model
Mortgage Lending with Imbalanced Data

Jessica Pesantez-Narvaez, Montserrat Guillen and Manuela Alcañiz*

Department of Econometrics, Riskcenter-IREA, Universitat de Barcelona, 08034 Barcelona, Spain;
jessica.pesantez@ub.edu, 0000-0003-3161-7807 (J.P.-N.); mguillen@ub.edu, 0000-0002-2644-6268 (M.G.)
*Corresponding author: malcaniz@ub.edu, 0000-0002-5028-1926 (M.A.) Tel.: +34-934-021-9831

Abstract

Most classical econometric methods and tree boosting based algorithms tend to increase the
prediction error with binary imbalanced data. We propose a Synthetic Penalized Logitboost
based on weighting corrections. The procedure (i) improves the prediction performance under
the phenomenon in question, (ii) allows interpretability since coefficients can get stabilized in
the recursive procedure, and (iii) reduces the risk of overfitting. We consider a mortgage lending
case study using publicly available data to illustrate our method. Results show that errors are
smaller in many extreme prediction scores, outperforming a number of existing methods. Our
interpretations are consistent with results obtained using a classic econometric model.

Keywords: Imbalanced, boosting, interpretation, prediction, binary.

JEL Classification

C01, C02, C13, C60.

1. Introduction

Predicting binary decision problems is important in empirical economics. For instance,
identifying whether an applicant will default in future or be turned down under the Home
Mortgage Disclosure Act2 (HMDA) contributes to the study of financial inclusion policy. In
fact, the notion of having events versus non-events (a binary response) can be the result of a
latent and unobserved random variable that triggers an event when it is high enough, so that
extreme values then turn into event responses.

Class-imbalanced data are relevant primarily in the context of supervised machine learning
involving two (dichotomous) or more classes. Imbalanced means that the number of
observations is not the same for each class of a categorical variable, in other words, one class is
represented by a large number of observations while the other is represented by only a few
(Japkowicz and Stephen, 2002).

In the context of mortgage lending, for example, Munnell et al. (1996) have dealt with an
imbalanced class problem. They found that black and Hispanic applicants were more likely than
whites to be denied mortgage loans. Thus, the class corresponding to the applicants who were
denied was much smaller than the applicants who were approved. The minority class (denied

1 The authors confirm that this paper has not been submitted elsewhere.
2 HMDA is a disclosure law that provides publicly available information on the US mortgage market
where applicants’ characteristics are registered in order to identify possible patterns of discriminatory
lending. The 94th United States Congress found that some financial institutions tend to decline qualified
applicants without sufficient rationale.

2

mortgage lending) could be coded as one, while the majority class (approved for mortgage
lending) could be coded as zero.

There is evidence that the prediction accuracy of this type of events seems to remain
problematic. King and Zeng (2001) note that classical econometric methods can underestimate
the probability of occurrence in the minority class, while Krawczyk (2016) finds that machine-
learning methods tend to exhibit a bias towards the majority class.

There is a vast literature devoted to proposing techniques to handle the class imbalance
problem. Barandela et al. (2003), Kotsiantis et al. (2006), Longadge et al. (2013), and Lin et al.
(2017) summarize four types of techniques:

(i) data preprocessing (balancing the data by oversampling, which increases the
number of observations in the minority class, or by undersampling, which reduces
observations in the majority class) using an algorithm approach (creating or
modifying algorithms with the threshold and one-class learning methods),

(ii) cost-sensitive solutions (minimizing the costs of misclassification),
(iii) feature selection (finding the optimal combination of covariates that gives the best

classification), and
(iv) resampling techniques incorporated in classifier ensembles such as boosting or

bagging, which have given risen to proposals such as Synthetic Minority
Oversampling (SMOTE) (Chawla et al., 2002), RUSBoost (Seiffert et al., 2009),
UnderBagging (UB) (Barandela et al., 2003), and OverBagging (Wang and Yao,
2009).

In our view, however, the modelling and interpretability of imbalanced class phenomena in a
joint process without overfitting data remains a subject beyond the scope of machine learning.
We propose a Synthetic Penalized Logitboost that aims to decrease the mean square error in the
highest and lowest prediction scores of the probability of minority class occurrence, by
introducing a weighting mechanism that recalibrates a Logitboost to reduce the risk of
overfitting. The Synthetic Penalized Logitboost improves the detection of extremes in the data if
the purpose is to look for unusual patterns rather than for average cases. For this purpose, we
borrow the specification of the model put forward by Munnell et al. (1996) to predict mortgage
loan denial with a logistic regression.

The paper is divided into five sections after the introduction. Section 2 describes the theoretical
framework that motivates the paper. Section 3 describes the methodology in detail, specifically
logistic regression (econometric model for binary prediction), Logitboost, Gradient Tree Boost
(boosting-based machine learning for binary prediction) and the proposed algorithm. Section 4
describes the data set used in an illustrative example. Section 5 sets out the results and
predictive performance measured by the root-mean-square error and includes the model’s
interpretation. Finally, Section 6 contains the conclusions.

2. A Closer Look at the Theoretical Framework

Considering a supervised statistical learning framework, let us start from a data set of n
observations with a quantitative target variable (dependent variable) 𝑌𝑌𝑖𝑖, i=1,..,n that has some
relationship with a set of P predictor variables denoted as 𝑋𝑋𝑖𝑖𝑖𝑖, p=1,...P (also known as
covariates). This can be written as:

 𝑌𝑌𝑖𝑖 = 𝐹𝐹 �𝑋𝑋𝑖𝑖𝑖𝑖� + 𝜖𝜖𝑖𝑖 , (1)

3

where F is a deterministic function of the 𝑋𝑋𝑖𝑖𝑖𝑖, and 𝜖𝜖𝑖𝑖 is the error or disturbance term that
captures the influence of omitted factors, is independent of 𝑋𝑋𝑖𝑖𝑖𝑖 and has zero mean.

In econometrics, parametric models, such as linear or generalized linear models, and non-
parametric models, such as spline regressions or generalized additive models, adopt their
corresponding regression form. So, in simple models, instead of estimating the corresponding P-
dimensional function F(𝑋𝑋𝑖𝑖𝑖𝑖), it is necessary only to obtain the P+1 coefficient estimates β𝑝𝑝 of
the linear predictor 𝛽𝛽𝑜𝑜 + 𝛽𝛽1𝑋𝑋𝑖𝑖1 + 𝛽𝛽1𝑋𝑋𝑖𝑖2 + ⋯+ 𝛽𝛽𝑝𝑝𝑋𝑋𝑖𝑖𝑖𝑖.

Machine learning also uses alternative F in the form of classification and decision trees
(Breiman et al., 1984), radial basis functions (Gomez-Verdejo et al., 2005), and random Markov
fields (Dietterich et al., 2008), among others. The function F is known as a base learner in the
machine learning literature.

Function F can be used to make inferences or predictions, or both. Even though econometric
models are aimed at explanatory or predictive modelling, or both, non-econometric models are
mainly used for prediction purposes (classification or regression problems),3 because their F
functions are not able to provide coefficient estimates that are directly interpretable as marginal
effects.

When F is used for prediction purposes, given that (1) has an error term that averages zero, a
predicted target variable 𝑌𝑌�𝑖𝑖, for 𝐹𝐹� that estimates the observed F, can be written as follows:

 𝑌𝑌�𝑖𝑖 = 𝐹𝐹��𝑋𝑋𝑖𝑖𝑖𝑖�. (2)

In this setting, James et al. (2013) identify two types of errors: reducible and irreducible. When
the expected value or average of the squared difference between the observed 𝑌𝑌𝑖𝑖 and predicted
𝑌𝑌�𝑖𝑖 is taken, we obtain:

 E(𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖)2 = E �𝐹𝐹�𝑋𝑋𝑖𝑖𝑖𝑖� + 𝜖𝜖𝑖𝑖 − 𝐹𝐹��𝑋𝑋𝑖𝑖𝑖𝑖��
2 , (3)

which gives as a result:

 E(𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖)2 = �𝐹𝐹�𝑋𝑋𝑖𝑖𝑖𝑖� − 𝐹𝐹��𝑋𝑋𝑖𝑖𝑖𝑖��
2 + Var(𝜀𝜀𝑖𝑖) , (4)

where the reducible error is �𝐹𝐹�𝑋𝑋𝑖𝑖𝑖𝑖� − 𝐹𝐹��𝑋𝑋𝑖𝑖𝑖𝑖��
2, and the irreducible error is 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖) (variance

of the error term). In fact, machine learning with non-econometric models aims to minimize the
reducible error, which is equivalent to minimizing the distance between 𝑌𝑌𝑖𝑖 and 𝑌𝑌�𝑖𝑖. This distance
is known as the loss function, and will be denoted as φ(𝑌𝑌𝑖𝑖 , 𝑌𝑌�𝑖𝑖).

Note that 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖) cannot be reduced because these models only have a deterministic part that
excessively learns from a given data set, in other words, they remove the only stochastic term.
Consequently, highly accurate predictive machine learning algorithms such as certain tree-based
or boosting-based techniques may result in overfitting, which means that the fitted models do
not perform well on other databases. This is known as non-reproducibility. This result has also
been verified by Pesantez-Narvaez et al. (2019).

Many loss functions have been proposed to develop machine learning algorithms with greater
predictive accuracy. They must be convex and differentiable. This paper will focus on the
exponential loss function that is used in a Logitboost:

3 If 𝑌𝑌𝑖𝑖 is qualitative, we have with a classification problem, whereas if 𝑌𝑌𝑖𝑖 is quantitative, we have a
regression problem. The latter must not be confused with a linear regression model. The machine learning
and econometrics literatures have some discrepancies in terminology.

4

φ(𝑌𝑌𝑖𝑖 , 𝑌𝑌�𝑖𝑖) = 𝑒𝑒𝑌𝑌𝑖𝑖𝑌𝑌�𝑖𝑖. (5)

In order to increase the predictive capacity, therefore, it makes sense to consider a simple
econometric method like a base learner in a boosting-based algorithm. Firstly, the irreducible
error may be effectively reduced by readjusting the base learner to improve the model fit.
Secondly, the reducible error can also be computed. The statistical intuition behind choosing a
primitive econometric model is that the newest iterations of boosting-based algorithms correct
the prediction error by considering the previous iterations. This can be done more efficiently if
the base learner is a weak4 one, because there is more variability to learn in weak base learners
than in strong ones that already have good predictive performance and no or almost no
variability.

3. Description of Methodology

Three groups of boosting-based algorithms are considered: the classical econometric model,
gradient boosting for classification and Logitboost-based algorithms. The first group consists of
logistic regression. The second group consists of the original gradient boosting algorithm and
gradient boosting tree. The third group consists of the original Logitboost and the proposed
Synthetic Penalized Logitboost.

Note that 𝐹𝐹�𝑋𝑋𝑖𝑖𝑖𝑖 ;𝑢𝑢� is the base learner mentioned earlier. It is a function of covariates 𝑋𝑋𝑖𝑖𝑖𝑖 and
the parameters5 represented by u.

In the data set that will be used in Section 4, there are n individuals and P covariates. The target
variable 𝑌𝑌𝑖𝑖 is now an observed binary response variable that takes two values coded as 1 for the
minority class (denied mortgage loan) and 0 for the majority class (approved for mortgage
loan). Let D be the number of iterations of the boosting procedure, with d=1,…,D.

3.1 Logistic Regression

Let us assume that in the data set of n individuals and P covariates, the target variable 𝑌𝑌𝑖𝑖 is now
an observed binary response variable that takes two values coded as 1 for the rare class and 0 for
the majority class. A logistic regression is a classical econometric tool that is used to model and
predict binary dependent variables explained by quantitative or qualitative covariates. It is a
specific case of a generalized linear model when the link is the logit function and is given as:

 log 𝑃𝑃(𝑌𝑌𝑖𝑖=1)
1−𝑃𝑃(𝑌𝑌𝑖𝑖=1)

= 𝛽𝛽𝑜𝑜 + ∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝛽𝛽𝑝𝑝𝑃𝑃
𝑝𝑝=1 , (10)

where 𝛽𝛽𝑜𝑜, 𝛽𝛽1, …, 𝛽𝛽𝑝𝑝 are the model parameters, and 𝑃𝑃(𝑌𝑌𝑖𝑖 = 1) is the probability that 𝑌𝑌𝑖𝑖 equals 1
conditional on the covariates. By a simple algebraic manipulation, 𝑃𝑃(𝑌𝑌𝑖𝑖 = 1) is:

𝑃𝑃(𝑌𝑌𝑖𝑖 = 1) = 𝐸𝐸(𝑌𝑌𝑖𝑖) = 𝑒𝑒(𝛽𝛽𝛽𝛽+∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝛽𝛽𝑝𝑝)𝑃𝑃
𝑝𝑝=1

1+𝑒𝑒(𝛽𝛽𝛽𝛽+∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝛽𝛽𝑝𝑝)𝑃𝑃
𝑝𝑝=1

. (11)

A logistic regression can be estimated by maximum likelihood method (for further details, see
for example McCullagh and Nelder, 1989).

4 Schapire and Freund (2013) define a weak learner as a particular case of base learner whose predictive
performance is slightly better than chance, and typically far from zero.
5 For example, if 𝐹𝐹�𝑋𝑋𝑖𝑖𝑖𝑖 ;𝑢𝑢� is a regression model, u represents the coefficient estimates β, whereas if
𝐹𝐹�𝑋𝑋𝑖𝑖𝑖𝑖 ;𝑢𝑢� is a classification and regression tree (CART), then u represents branches of the tree (splitting
rules).

5

3.2 Gradient Boosting

The idea behind the Gradient Boosting proposed by Friedman (2001) is to compute a sum of
optimized functions through an iterative process. The optimized functions are the result of a
minimization of a loss function φ.

Let us assume that in the data set of n individuals and P covariates, the target variable 𝑌𝑌𝑖𝑖 is now
continuous. The gradient boosting procedure starts with an initial guess of prediction 𝑌𝑌�𝑖𝑖

0. It then
consists of minimizing a loss function through an argmin between the observed 𝑌𝑌�𝑖𝑖 and an
arbitrary constant ρ.

𝑌𝑌�𝑖𝑖
0 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜌𝜌 ∑ φ(𝑌𝑌𝑖𝑖 ,𝜌𝜌)𝑛𝑛

𝑖𝑖=1 . (12)

Begin Algorithm:

For d=1 to D do:

Let 𝑟̃𝑟𝑖𝑖𝑑𝑑 be the vector of the pseudo-residual which is the negative gradient of φ(𝑌𝑌𝑖𝑖 ,𝑌𝑌�𝑖𝑖
𝑑𝑑) at

iteration d.

𝑟̃𝑟𝑖𝑖𝑑𝑑 = 𝜕𝜕 φ(𝑌𝑌𝑖𝑖 ,𝑌𝑌�𝑖𝑖
𝑑𝑑)

𝜕𝜕 𝑌𝑌�𝑖𝑖
𝑑𝑑 | 𝑌𝑌𝑖𝑖 = 𝑌𝑌�𝑖𝑖

𝑑𝑑−1
 . (13)

Then the squared error between the pseudo-residual and F(X,u) is minimized. This results in an
updated 𝑢𝑢𝑑𝑑:

 𝑢𝑢𝑑𝑑 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢,𝛽𝛽 ∑ �𝑟̃𝑟𝑖𝑖𝑑𝑑 − 𝛽𝛽 𝐹𝐹�𝑋𝑋𝑖𝑖𝑖𝑖 ;𝑢𝑢𝑑𝑑��
2

.𝑛𝑛
𝑖𝑖=1 (14)

Let γ be the result of a minimized loss function between the observed 𝑌𝑌𝑖𝑖 and 𝑌𝑌�𝑖𝑖
𝑑𝑑 +

γ 𝐹𝐹�𝑋𝑋𝑖𝑖𝑖𝑖 ;𝑢𝑢𝑑𝑑�. Note that 𝑌𝑌�𝑖𝑖
𝑑𝑑 is the prediction from the given covariates 𝑋𝑋𝑖𝑖𝑖𝑖 and the updated

parameters u at iteration d.

 γ𝑑𝑑 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎γ ∑ φ �𝑌𝑌𝑖𝑖,𝑌𝑌�𝑖𝑖
𝑑𝑑 + γ𝐹𝐹�𝑋𝑋𝑖𝑖𝑖𝑖 ;𝑢𝑢𝑑𝑑��𝑛𝑛

𝑖𝑖=1 . (15)

The final prediction at iteration D is the sum of the previous prediction 𝑌𝑌�𝑖𝑖
𝑑𝑑−1 and γ𝑌𝑌�𝑖𝑖

𝑑𝑑 .

 𝑌𝑌�𝑖𝑖
𝑑𝑑 = 𝑌𝑌�𝑖𝑖

𝑑𝑑−1 + γ 𝐹𝐹�𝑋𝑋𝑖𝑖𝑖𝑖 ;𝑢𝑢𝑑𝑑�. (16)

End For
End Algorithm

3.3 Gradient L2 TreeBoost (Two-Class Logistic Boost)

Let us assume that in the data set of n individuals and P covariates, the target variable 𝑌𝑌𝑖𝑖 is now
an observed binary response variable that takes two values coded as 1 for the rare class and 0 for
the majority class. The L2 TreeBoost proposed by Friedman (2001) differs from the Original
Gradient Boost in:

• Initial prediction 𝑌𝑌�𝑖𝑖
0

• Loss function: Logistic loss function
• Base learner: Decision tree

The first estimation is calculated as follows:

6

 𝑌𝑌�𝑖𝑖
0 = 1

2
𝑙𝑙𝑙𝑙𝑙𝑙 1+ 𝑌𝑌�

1− 𝑌𝑌�
 , (17)

where 𝑌𝑌� is the mean of the dependent variable.

Begin Algorithm:

For d=1 to D do: 𝑟̃𝑟𝑖𝑖𝑑𝑑 = 2 𝑌𝑌𝑖𝑖

1+exp (2𝑌𝑌𝑖𝑖𝑌𝑌�𝑖𝑖
𝑑𝑑−1)

 (18)

The base learner 𝐹𝐹�𝑋𝑋𝑖𝑖𝑖𝑖 ;𝑢𝑢,𝑅𝑅� equals ∑ 𝑢𝑢𝑗𝑗 1(𝑋𝑋𝑖𝑖𝑖𝑖𝜖𝜖
𝐽𝐽
𝑗𝑗=1 𝑅𝑅𝑗𝑗) with J terminal nodes known as

leaves, and 𝑅𝑅𝑗𝑗 regions or classification rules, j=1,…, J. Parameters u correspond to the score of
each leaf, which is the proportion of cases classified into 𝑌𝑌𝑖𝑖 given covariates 𝑋𝑋𝑖𝑖𝑖𝑖. The tree-based
algorithms are theoretically more efficient than linear or generalized linear methods in capturing
non-linearities. The idea is that tree-based algorithms use information gain (measured by Gini
impurity or entropy) to split a node. This helps to order the decision nodes associated with each
covariate 𝑋𝑋𝑖𝑖𝑖𝑖, so that the decision node with the highest information gain will split first, and so
on until the one with lowest information gain. The information gain builds the 𝑅𝑅𝑗𝑗 classification
rules that map each observation i onto the correct leaf j by minimizing the entropy or Gini
impurity of each node, so that the observations contained in the node are the most homogeneous
(see further details in Hastie et al., 2009).

Now 𝑅𝑅𝑗𝑗𝑗𝑗 is computed by mapping all observations onto leaf j of tree (j=1,…,J) at iteration d,
considering 𝑟̃𝑟𝑖𝑖 as the target variable and covariates 𝑋𝑋𝑖𝑖𝑖𝑖 as follows:

 𝑅𝑅𝑗𝑗𝑗𝑗 = j- leaf scores (𝑟̃𝑟𝑖𝑖 , 𝑋𝑋1𝑛𝑛). (19)

Therefore γ𝑗𝑗𝑑𝑑 is calculated for each leaf by minimizing a logistic loss function between the

observed 𝑌𝑌𝑖𝑖, and 𝑌𝑌�𝑖𝑖
𝑑𝑑−1 + γ𝑑𝑑.

 γ𝑗𝑗𝑑𝑑= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎γ ∑ log �1 + exp �−2𝑌𝑌𝑖𝑖 �𝑌𝑌�𝑖𝑖
𝑑𝑑−1 + γ𝑑𝑑 ���𝑛𝑛

𝑋𝑋𝑖𝑖 𝜖𝜖 𝑅𝑅𝑗𝑗𝑗𝑗 . (20)

However, since there is no closed form for the previous equation, an approximation of γ𝑗𝑗𝑑𝑑 is
obtained through the Newton-Raphson method as follows:

γ𝑗𝑗𝑑𝑑= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎γ
∑ 𝑟̃𝑟𝑖𝑖𝑋𝑋𝑖𝑖 𝜖𝜖 𝑅𝑅𝑗𝑗𝑗𝑗

∑ |𝑟̃𝑟𝑖𝑖 (2− |𝑟̃𝑟𝑖𝑖|)|𝑋𝑋𝑖𝑖 𝜖𝜖 𝑅𝑅𝑗𝑗𝑗𝑗
. (21)

And the final prediction 𝑌𝑌�𝑖𝑖
𝑑𝑑 is computed as:

 𝑌𝑌�𝑖𝑖
𝑑𝑑 = 𝑌𝑌�𝑖𝑖

𝑑𝑑−1 + ∑ γ𝑗𝑗𝑑𝑑
𝐽𝐽
𝑗𝑗=1 1(𝑋𝑋𝑖𝑖 𝜖𝜖 𝑅𝑅𝑗𝑗𝑗𝑗). (22)

End For
End Algorithm

Since tree-based algorithms generally overfit, decision tree pruning is considered in order to
build a smaller tree with fewer J terminal nodes that lead to smaller variance by retaining the
most relevant information and removing the least relevant (see further details in Hastie et al.,
2009). For simplicity, Gradient L2 TreeBoost will be referred to as Gradient Tree Boost from
here on.

7

3.4 Logitboost

The previous gradient boosting algorithms require the minimization of a loss function φ(𝑌𝑌𝑖𝑖 , 𝑌𝑌�𝑖𝑖).
However, Friedman et al. (2000) have managed to approximate a logistic function as an additive
logistic regression known as “Logitboost”.

Let us assume that in the data set of n individuals and P covariates, the target variable 𝑌𝑌𝑖𝑖 is now
an observed binary response variable that takes two values coded as 1 for the rare class and 0 for
the majority class.

The Logitboost has some initial conditions:

• Initial prediction 𝑌𝑌�𝑖𝑖
0 = 0.

• Let 𝑝𝑝(𝑋𝑋𝑖𝑖) be the probability estimates 𝑝𝑝0(𝑋𝑋𝑖𝑖) = 1
2
.

Begin Algorithm:

For d = 1 to D do:

This algorithm initializes by computing the working response 𝑧𝑧𝑖𝑖.

 𝑧𝑧𝑖𝑖𝑑𝑑 = 𝑌𝑌𝑖𝑖𝑑𝑑−1 −𝑝𝑝(𝑋𝑋𝑖𝑖)𝑑𝑑−1

𝑝𝑝(𝑋𝑋𝑖𝑖)𝑑𝑑−1(1−𝑝𝑝(𝑋𝑋𝑖𝑖)𝑑𝑑−1)
. (23)

In this case the 𝛘𝛘𝟐𝟐 is a quadratic approximation of the log-likelihood with which a logistic
regression can be estimated, as explained in Section 3.2. According to Friedman et al. (2000),
the 𝛘𝛘𝟐𝟐 can be a gentle alternative when the exponential loss function is used. Therefore, the
working response 𝑧𝑧𝑖𝑖 is an analogous expression to the pseudo-residuals 𝑟̃𝑟𝑖𝑖.

Again, the exponential loss function written in (5) is:

φ(𝑌𝑌𝑖𝑖 , 𝑌𝑌�𝑖𝑖) = 𝑒𝑒𝑌𝑌𝑖𝑖𝑌𝑌�𝑖𝑖.

 𝑒𝑒𝑌𝑌𝑖𝑖𝑌𝑌�𝑖𝑖 = |𝑌𝑌𝑖𝑖−𝑝𝑝(𝑋𝑋𝑖𝑖)|
�𝑝𝑝(𝑋𝑋𝑖𝑖)(1−𝑝𝑝(𝑋𝑋𝑖𝑖))

, (24)

where 𝑌𝑌�𝑖𝑖 is obtained as follows:

 𝑌𝑌�𝑖𝑖
𝑑𝑑 = 1

2
𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝑋𝑋𝑖𝑖)𝑑𝑑−1

(1−𝑝𝑝(𝑋𝑋𝑖𝑖)𝑑𝑑−1)
. (25)

A vector of weights 𝑤𝑤𝑖𝑖 is computed as follows:

 𝑤𝑤𝑖𝑖𝑑𝑑 = 𝑝𝑝(𝑋𝑋𝑖𝑖)𝑑𝑑−1 (1− 𝑝𝑝(𝑋𝑋𝑖𝑖)𝑑𝑑−1). (26)

A base learner F(𝑋𝑋𝑖𝑖 ,𝑢𝑢) must be trained by fitting a weighted least squares regression as
explained in Section 3.1, with a vector of weights 𝑤𝑤𝑖𝑖 and a target variable 𝑧𝑧𝑖𝑖. Note that even
though a binary target variable is set for this boosting, this F admits continuous target variables.
The reason is that the working response 𝑧𝑧𝑖𝑖 transforms the binary variable 𝑌𝑌𝑖𝑖 into a continuous
one, so that two classes are still found in the first iteration. However, from the second iteration
onwards, observations of 𝑧𝑧𝑖𝑖 start to change during the boosting, so that at the end several values
of 𝑧𝑧𝑖𝑖 are found.

 𝛽𝛽𝑑𝑑 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝛽𝛽 ∑ 𝑤𝑤𝑖𝑖 �𝑧𝑧𝑖𝑖𝑑𝑑 − �𝛽𝛽𝑜𝑜 + ∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝛽𝛽𝑝𝑝𝑃𝑃
𝑝𝑝=1 ��

2 𝑛𝑛
𝑖𝑖=1 . (27)

𝑌𝑌�𝑖𝑖
𝑑𝑑 has to be updated as follows:

8

 𝑌𝑌�𝑖𝑖
𝑑𝑑 = 𝑌𝑌�𝑖𝑖

𝑑𝑑−1 + 1
2
 𝐹𝐹�𝑋𝑋𝑖𝑖𝑖𝑖 ;𝑢𝑢𝑑𝑑�. (28)

Parameters 𝑢𝑢𝑑𝑑 are the coefficient estimates 𝛽𝛽 obtained in the linear regression.

Then the probabilities have to be updated:

𝑝𝑝(𝑋𝑋𝑖𝑖)𝑑𝑑 =
exp�𝑌𝑌�𝑖𝑖

𝑑𝑑�

exp�𝑌𝑌�𝑖𝑖
𝑑𝑑�+ exp�−𝑌𝑌�𝑖𝑖

𝑑𝑑�
. (29)

End For
End Algorithm

3.5 Synthetic Penalized Logitboost

The proposed Synthetic Penalized Logitboost incorporates slight changes to the original
Logitboost and introduces a new alternative weighting mechanism 𝑤𝑤𝑖𝑖. This methodological
proposal was particularly motivated by Pesantez-Narvaez and Guillen (2020a, 2020b). They
managed to propose weighting corrections in parametric models to improve their predictive
performance for binary dependent variables.

We keep the two initial conditions for 𝑌𝑌�𝑖𝑖
0 and 𝑝𝑝0(𝑋𝑋𝑖𝑖):

• Initial prediction: 𝑌𝑌�𝑖𝑖
0 = 0.

• Let 𝑝𝑝(𝑋𝑋𝑖𝑖) be the probability estimates 𝑝𝑝0(𝑋𝑋𝑖𝑖) = 1
2
.

Begin Algorithm:

For d = 1 to D do:

This algorithm initializes by computing the working response 𝑧𝑧𝑖𝑖.

𝑧𝑧𝑖𝑖𝑑𝑑 = 𝑌𝑌𝑖𝑖𝑑𝑑−1 −𝑝𝑝(𝑋𝑋𝑖𝑖)𝑑𝑑−1

𝑝𝑝(𝑋𝑋𝑖𝑖)𝑑𝑑−1�1−𝑝𝑝(𝑋𝑋𝑖𝑖)𝑑𝑑−1�+𝛿𝛿
. (30)

where 𝛿𝛿 is a very small number (close to zero), e.g. 0.0001, so we avoid division by zero.

𝑌𝑌�𝑖𝑖 is obtained as follows:

𝑌𝑌�𝑖𝑖
𝑑𝑑 = 1

2
𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝑋𝑋𝑖𝑖)𝑑𝑑−1

(1−𝑝𝑝(𝑋𝑋𝑖𝑖)𝑑𝑑−1)
. (31)

A vector of weights 𝑤𝑤𝑖𝑖 is computed as follows:

𝑤𝑤𝑖𝑖𝑑𝑑 = �
𝑝𝑝(𝑋𝑋𝑖𝑖)𝑑𝑑−1 (1− 𝑝𝑝(𝑋𝑋𝑖𝑖)𝑑𝑑−1) + 𝑌𝑌� �𝑌𝑌𝑖𝑖 − 𝑝𝑝(𝑋𝑋𝑖𝑖)𝑑𝑑−1� 𝑖𝑖𝑖𝑖 |𝑌𝑌𝑖𝑖 − 𝑝𝑝(𝑋𝑋𝑖𝑖)| < 𝑌𝑌�
𝑝𝑝(𝑋𝑋𝑖𝑖)𝑑𝑑−1 (1− 𝑝𝑝(𝑋𝑋𝑖𝑖)𝑑𝑑−1) 𝑖𝑖𝑖𝑖 |𝑌𝑌𝑖𝑖 − 𝑝𝑝(𝑋𝑋𝑖𝑖)| ≥ 𝑌𝑌�

 � (32)

This weighting mechanism aims to penalize by giving less weight to observations whose
distance between the observed 𝑌𝑌𝑖𝑖 and the probability estimates 𝑝𝑝(𝑋𝑋𝑖𝑖) is greater than the mean of
the dependent variable. In other words, we penalize observations which are more likely to be
misclassified. This weighting mechanism leads to stabilization after very few iterations of the
boosting procedure.

Weights must be normalized by dividing by the sum of the vector of weights:

𝑤𝑤𝑖𝑖𝑑𝑑 = 𝑤𝑤𝑖𝑖
𝑑𝑑

∑ 𝑤𝑤𝑖𝑖𝑑𝑑
𝑛𝑛
𝑖𝑖=1

. (33)

9

𝐹𝐹�𝑋𝑋𝑖𝑖𝑖𝑖 ;𝑢𝑢� has to be trained as weighted least squares with weights 𝑤𝑤𝑖𝑖:

 𝛽𝛽𝑑𝑑 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝛽𝛽 ∑ 𝑤𝑤𝑖𝑖 �𝑧𝑧𝑖𝑖𝑑𝑑 − �𝛽𝛽𝑜𝑜 + ∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝛽𝛽𝑝𝑝𝑃𝑃
𝑝𝑝=1 ��

2 𝑛𝑛
𝑖𝑖=1 . (34)

𝑌𝑌�𝑖𝑖
𝑑𝑑 has to be computed as follows:

 𝑌𝑌�𝑖𝑖
𝑑𝑑 = 𝑌𝑌�𝑖𝑖

𝑑𝑑−1 + 1
2
𝐹𝐹�𝑋𝑋𝑖𝑖𝑖𝑖 ;𝑢𝑢𝑑𝑑�. (35)

And we must update the probabilities:

𝑝𝑝(𝑋𝑋𝑖𝑖)𝑑𝑑 = min � 1

1+exp �−2𝑌𝑌�𝑖𝑖
𝑑𝑑−1�

+ 𝛿𝛿 , 1� . (36)

The final 𝑝𝑝(𝑋𝑋𝑖𝑖) is related to the log-odds through (35).

𝑝𝑝𝑑𝑑(𝑌𝑌𝑖𝑖 = 1|𝑋𝑋) = 1

1+exp �−2𝑌𝑌�𝑖𝑖
𝑑𝑑−1�

. (37)

𝑝𝑝𝑑𝑑(𝑌𝑌𝑖𝑖 = 0|𝑋𝑋) = 1

1+exp �2𝑌𝑌�𝑖𝑖
𝑑𝑑−1�

. (38)

End For
End Algorithm

4. Illustrative Data and Descriptive Statistics

Table 1. Description of the Home Mortgage Disclosure Act (HDMA) cross-section data set.

Variables Description
Dir debt payment to total income ratio.
Hir housing expenses to income ratio.
Lvr ratio of size of loan to assessed value of property.

Css consumer credit score from 1, as the best score, to 6 as the lowest
score.

Mcs mortgage credit score from 1, as the best score, to 4 as the lowest
score.

Uria 1989 Massachusetts unemployment rate in the applicant’s industry.
Pbcr whether the applicant has a public bad credit record.
Dmi whether the applicant was denied mortgage insurance.
Self whether the applicant is self-employed.

Single whether the applicant is single.
Condominium whether the applicant lives in a condominium.

Black whether the applicant is black.

Y which was coded as 1 when the mortgage application was denied,
and 0 otherwise.

In order to illustrate the proposed methodology, we use a publicly available Home Mortgage
Disclosure Act (HDMA) cross-section data set, which was collected by the U.S. Government
through a survey designed to gather additional information on minority group applicants. The
intention was to uncover whether discrimination based on the applicants’ race occurs in
mortgage lending. The sample has 2381 applicants who were chosen by a simple random

10

sample in Boston, Massachusetts (United States) in 1997-1998.6 There is an equal number of
denials among white and minority applicants in order to provide sufficient power to validate any
discrimination. The HDMA database is also available in the Ecdat package in R. We drop the
last observation due to missingness; no imputation technique was necessary.

Table 1 describes the variables in the Home Mortgage Disclosure Act (HDMA) cross-section
data set.

Table 2. Descriptive statistics for the HDMA data set (1997-1998). Mean of continuous
covariates in the denied group, in the approved group and in the total. Counts and row

proportions are shown for dichotomous covariates.

Variables
Denied Mortgage

Application
(𝒀𝒀𝒊𝒊 = 1)

Approved
Mortgage

Application
(𝒀𝒀𝒊𝒊 = 0)

Total

Dir 0.389 0.323 0.331
Hir 0.290 0.251 0.255
Lvr 0.816 0.727 0.738
Css 3.302 1.955 2.116
Mcs 1.881 1.699 1.721
Uria 4.014 3.742 3.774

Pbcr
No 209 (9.48%) 1996 (90.52%) 2205
Yes 76 (43.43%) 99.0 (56.57%) 175

Dmi
No 241 (10.33%) 2091 (89.67%) 2332
Yes 44 (91.67%) 4 (8.33%) 48

Self
No 239 (11.36%) 1864 (88.64%) 2103
Yes 46 (16.61%) 231 (83.39%) 277

Single
No 144 (9.97%) 1300 (90.03%) 1444
Yes 141 (15.06%) 795 (84.94%) 936

Condominium
No 189 (11.16%) 1505 (88.84%) 1694
Yes 96 (13.99%) 590 (86.01%) 686

Black
No 189 (9.26%) 1852 (90.74%) 2041
Yes 96 (28.32%) 243 (71.68%) 339

Total 285 (11.97%) 2095 (88.03%) 2380
Source: Authors’ own calculations based on HDMA data (1997-1998). The variables refer to the debt payment to total income ratio
(Dir); housing expenses to income ratio (Hir); ratio of size of loan to assessed value of property (Lvr); consumer credit score from 1,
as the best score, to 6 as the lowest score (Css); mortgage credit score from 1, as the best score, to 4 as the lowest score (Mcs);
whether the applicant has a public bad credit record (Pbcr); whether the applicant was denied mortgage insurance (Dmi); whether
the applicant is self-employed (Self); whether the applicant is single (Single); 1989 Massachusetts unemployment rate in the
applicant’s industry (Uria); whether the applicant lives in a condominium (Condominium); whether the applicant is black (Black);
and finally, the mortgage application (Y), which was coded as 1 when the mortgage application was denied, and 0 otherwise.

Table 2 above shows the descriptive statistics for the HDMA data set. The last row reveals that
a substantial part of the sample has an approved mortgage application (88.03%). The mean
ratios corresponding to the debt to total income and housing expenses to income are slightly
higher for applicants whose mortgage application was denied, which means that their debt is
higher than it is for the other applicants. Additionally, the mean ratio of the size of loan to
assessed value of property is almost 9% higher for people with a denied mortgage application.

6 Even though these data are old, we believe that they are useful to show the implementation and testing
of the newly proposed model since the data set contains the required variables to replicate the model
proposed by Munnell et al. (1996).

11

The credit score and mortgage score of approved mortgage applicants are, respectively, 0.6
times and 0.88 better than the scores of denied applicants. Whereas 56.57% of applicants with a
bad public credit record were approved, 43.43% were denied. Moreover, 8.33% of applicants
who were denied mortgage insurance had an approved mortgage application, while 91.67%
were also denied their mortgage application. While 83.39% of self-employed applicants were
approved, 88.65% of applicants who were not self-employed were approved. Also, 84.94% of
single applicants were approved, while 15.06% were not. There is a slight percentage difference
between applicants who live in a condominium and had an approved mortgage application and
applicants who live in a condominium and had a denied mortgage application. Lastly, 71.68%
of black applicants were approved, while 90.74% of non-black applicants were approved.

5. Results and Discussion

This section contains two parts. The first part presents the results of the prediction performance
of the Synthetic Penalized Logitboost in comparison to the algorithms described in Section 3.
The results are shown below based on three calculations. The second part presents a proposal to
recover the interpretability of the Synthetic Penalized Logitboost model.

5.1 Prediction Performance

Table 3 presents the root-mean-square error7 (RMSE) of Logistic regression, Logitboost,
Gradient Tree Boost and the Synthetic Logitboost, tested for three scenarios: the entire sample
(all observations), the observations that correspond to 𝑌𝑌𝑖𝑖=1, and the observations that
correspond to 𝑌𝑌𝑖𝑖=0. The RMSE is suitable to measure the distance between the observed 𝑌𝑌𝑖𝑖 and
the predicted 𝑌𝑌�𝑖𝑖, so the predictive performance will not depend for example on the precision of
the threshold picked to build a confusion matrix.

The Gradient Boost (tree) is built with the model developer’s default hyperparameters from the
gbm package in R, which correspond to the number of trees (100), the maximum depth of
variable interactions (1), the minimum number of observations in the terminal nodes of the trees
(10), and shrinkage (0.1). The Gradient Boost (tree) GS-CV is built with 10-fold cross
validation and optimized hyperparameters through grid search, which correspond to the number
of trees (150), the maximum depth of variable interactions (2), the minimum number of
observations in the terminal nodes of the trees (10), and shrinkage (0.1) with the caret package
in R. Logistic, Logitboost, and Synthetic Penalized Logitboost are built according to the
definitions in Section 3, and they do not have hyperparameters.

In the first calculation, Logistic regression and Logitboost perform almost the same, confirming
numerically what was noted theoretically. Synthetic Penalized Logitboost has a smaller RMSE
in some of the lowest and highest accumulated predictions, even when it is compared with the
Gradient Tree Boosting models (with and without optimized hyperparameters).

When analysing the observations that correspond to denied applications (𝑌𝑌𝑖𝑖=1), both Gradient
Tree Boost models perform worse than Logistic and Logitboost for some high score predictions.
This confirms the fact that optimized Gradient Tree Boost methods risk failing to predict the
minority class (𝑌𝑌𝑖𝑖=1) even when their performance is better with the complete data set.
However, the Synthetic Penalized Logitboost performs better than Logistic and Logitboost in
the lowest accumulated predictions, and better than the Gradient Tree Boost GS-CV in the 1%
and 5% highest accumulated predictions.

7 The root-mean-square error is calculated as follows: �∑ (𝑌𝑌𝑖𝑖− 𝑌𝑌�𝑖𝑖)2

𝑛𝑛
𝑛𝑛
𝑖𝑖=1 .

12

Table 3. Root-Mean-Square Error of Logistic regression, Logitboost, Gradient Tree Boost and
the Synthetic Penalized Logitboost, tested for the entire sample, when 𝑌𝑌𝑖𝑖=1, and when 𝑌𝑌𝑖𝑖=0.

Three calculations are presented above. The first set of results is displayed in the top part of Table 3 (All Observed Y), where RMSE
is calculated for all observations in the sample. The second set of results is displayed in the middle of Table 3 (When Y=1) only for
observations that correspond to denied applications, whereas the third set of results is displayed in the bottom part of Table 3 (When
Y=0) only for observations that correspond to approved applications. All results are analysed by groups of scores. So, each RMSE
for 1%, 5%, 10%, 20%, 30% and 40% of the lowest accumulated prediction scores is shown on the left-hand side of the table under
“Lower Extreme”, and each RMSE for 1%, 5%, 10%, 20%, 30% and 40% of the highest accumulated prediction scores is shown on
the right-hand side of the table under “Upper Extreme”.

When analysing the observations that correspond to accepted applications (𝑌𝑌𝑖𝑖=0), Logitboost
differs considerably from Logistic in the highest predictions, where it performs much better,
while in the lowest scores, the results are very similar for both models. Now, Gradient Tree
Boost GS-CV performs better than the two classical methods, while Synthetic Penalized
Logitboost also generally performs better than the classical methods.

 RMSE (All Observed 𝒀𝒀𝒊𝒊)

Methods Lower Extreme Upper Extreme
0.01 0.05 0.10 0.20 0.30 0.40 0.01 0.05 0.10 0.20 0.30 0.40

Logistic 0.0067 0.2025 0.1696 0.1635 0.1614 0.1605 0.2739 0.4143 0.4510 0.4236 0.3884 0.3661
Logitboost 0.0064 0.2026 0.1697 0.1635 0.1614 0.1575 0.2739 0.4143 0.4511 0.4236 0.3884 0.3649
Gradient Tree
Boost 0.0266 0.0931 0.1566 0.1438 0.1439 0.1687

0.1975 0.4020 0.4595 0.4351 0.3905 0.3583

Gradient
Boost (tree)
GS - CV

0.0182 0.0195 0.1432 0.1362 0.1236 0.1468

0.1918 0.3391 0.4235 0.4083 0.3698 0.3426

Synthetic
Penalized
Logitboost

0.0094 0.1568 0.1568 0.1631 0.1610 0.1540

0.2711 0.4138 0.4569 0.4297 0.3890 0.3678

RMSE (When 𝒀𝒀𝒊𝒊= 1)

Methods Lower Extreme Upper Extreme
0.01 0.05 0.10 0.20 0.30 0.40 0.01 0.05 0.10 0.20 0.30 0.40

Logistic 0.9875 0.9802 0.9693 0.9527 0.9368 0.9173 0.0051 0.0110 0.0402 0.1475 0.2673 0.3625
Logitboost 0.9879 0.9808 0.9701 0.9536 0.9379 0.9185 0.0051 0.0108 0.0404 0.1474 0.2673 0.3626
Gradient Tree
Boost 0.9706 0.9663 0.9616 0.9503 0.9304 0.9063 0.0150 0.0413 0.0747 0.1661 0.2771 0.3605

Gradient
Boost (tree)
GS - CV

0.9779 0.9732 0.9671 0.9517 0.9273 0.8930

0.0112 0.0321 0.0498 0.0898 0.1613 0.2441

Synthetic
Penalized
Logitboost

0.9836 0.9775 0.9684 0.9540 0.9393 0.9210

0.0061 0.0147 0.0502 0.1526 0.2777 0.3770

RMSE (When 𝒀𝒀𝒊𝒊= 0)

Methods Lower Extreme Upper Extreme
0.01 0.05 0.10 0.20 0.30 0.40 0.01 0.05 0.10 0.20 0.30 0.40

Logistic 0.0064 0.0113 0.0151 0.0205 0.0251 0.0296 0.7233 0.4759 0.3694 0.2797 0.2352 0.2069
Logitboost 0.0061 0.0109 0.0146 0.0198 0.0244 0.0289 0.1210 0.0889 0.0739 0.0584 0.0490 0.0426
Gradient Tree
Boost 0.0266 0.0270 0.0285 0.0310 0.0331 0.0353 0.6737 0.4504 0.3521 0.2665 0.2240 0.1968

Gradient
Boost (tree)
GS - CV

0.0180 0.0194 0.0207 0.0231 0.0251 0.0272

0.7044 0.4596 0.3545 0.2651 0.2209 0.1935

Synthetic
Penalized
Logitboost

0.0092 0.0136 0.0168 0.0214 0.0252 0.0290

0.7055 0.4731 0.3676 0.2777 0.2334 0.2051

13

Table 4. Root-Mean-Square Error of Logistic regression, Logitboost, Gradient Tree Boost and
the Synthetic Penalized Logitboost for the training and testing HMDA data sets.

RMSE for Testing Data Set

Methods
Lower Extreme Upper Extreme

0.01 0.05 0.10 0.20 0.3 0.4 0.01 0.05 0.10 0.20 0.3 0.4
Logistic 0.0059 0.0091 0.0113 0.2582 0.2730 0.2579 0.1650 0.4374 0.4276 0.4239 0.3874 0.3645
Logitboost 0.0069 0.1812 0.1274 0.1279 0.1051 0.1275 0.0000 0.4006 0.4449 0.4051 0.3960 0.3602
Gradient Boost (tree) 0.4880 0.2312 0.1648 0.1647 0.1647 0.2150 0.0420 0.4361 0.4618 0.4563 0.4151 0.3702
Gradient Boost (tree)
GS - CV 0.0114 0.0135 0.1656 0.1841 0.1781 0.1838 0.0477 0.3956 0.4519 0.4179 0.3966 0.3659

Synthetic Penalized
Logitboost 0.0064 0.0078 0.1272 0.0906 0.1041 0.1270 0.0001 0.4354 0.4369 0.4149 0.4079 0.3750

RMSE for Training Data Set

Methods
Lower Extreme Upper Extreme

0.01 0.05 0.10 0.20 0.3 0.4 0.01 0.05 0.10 0.20 0.3 0.4
Logistic 0.0054 0.1982 0.1981 0.1975 0.1620 0.1412 0.3856 0.4017 0.4472 0.4136 0.3658 0.3444
Logitboost 0.0070 0.2033 0.2190 0.1943 0.1910 0.1851 0.2541 0.3964 0.4499 0.4245 0.3892 0.3645
Gradient Boost (tree) 0.2825 0.1798 0.1565 0.1680 0.1565 0.1790 0.0512 0.3711 0.4449 0.4274 0.3847 0.3698
Gradient Boost (tree)
GS - CV 0.0100 0.0124 0.0146 0.0183 0.0783 0.0953 0.0516 0.2964 0.4148 0.4082 0.3738 0.3451

Synthetic Penalized
Logitboost 0.0055 0.0084 0.0110 0.1213 0.1587 0.1618 0.0205 0.4362 0.4594 0.4364 0.3991 0.3792

The HMDA database was randomly split into training data (70%) and testing data (30%). Each RMSE for 1%, 5%, 10%, 20%, 30%
and 40% of the lowest accumulated prediction scores is shown on the left-hand side of the table under “Lower Extreme”, and each
RMSE for 1%, 5%, 10%, 20%, 30% and 40% of the highest accumulated prediction scores is shown on the right-hand side of the
table under “Upper Extreme”.

It can be concluded that Synthetic Penalized Logitboost makes slightly more accurate
predictions than the other algorithms in most observations for the scores in the upper and lower
extremes.

The second calculation in Table 4 shows the RMSE of the previously discussed methods split
into testing and training HMDA data sets. The Synthetic Penalized Logitboost performs quite
similarly in the training and testing data sets. This result might be explained by the fact that the
algorithm is built with an error term that allows for random variation in covariates when
modelling the target variable; and consequently, it avoids overfitting. A similar behaviour is
obtained with logistic regression, which is a parametric model. Gradient Tree Boost requires
hyperparameter optimization and cross-validation procedures to correct overfitting.

While correction methods to avoid overfitting are widely accepted in the machine learning
literature, it is risky in terms of interpretation to tune shrinkage parameters. As their values
increase, they deliberately shrink or disappear variables (nodes) with smaller entropy or Gini
impurity. However, empirical econometric analysis demands the measurement of the coefficient
estimates even when they are not significant in the model; otherwise the analyst may lose
control of their natural effect on the dependent variable.

The third calculation in Table 5 presents the predictive measures of the discussed methods. The
Synthetic Penalized Logitboost has more accuracy than Logistic and Logitboost and more
specificity than Gradient Boost (Tree) GS-CV in the testing data sets. In aggregate terms, the
Synthetic Penalized Logitboost has larger RMSE than alternative methods. Note that the error
correction through penalization is focused on observations which are far from the average
values, so the proposed method tends not to affect the predictive improvement of mean
observations.

14

Table 5. Predictive measures of Logistic regression, Logitboost, Gradient Tree Boost and the
Synthetic Penalized Logitboost for the testing and training HMDA data sets.

Testing Data Set

Predictive
Measures

Logistic
Regression Logitboost Gradient Boost

(Tree) GS - CV

Synthetic
Penalized
Logitboost

Recall 0.7000 0.7333 0.7333 0.6556
Specificity 0.7837 0.8269 0.8381 0.8446
Accuracy 0.7731 0.8151 0.8249 0.8207
Precision 0.3182 0.3793 0.3952 0.3782
F1 Score 0.4375 0.5000 0.5136 0.4797
RMSE 0.2774 0.2654 0.2669 0.3327

Training Data Set

Predictive
Measures

Logistic
Regression Logitboost Gradient Boost

(Tree) GS - CV

Synthetic
Penalized
Logitboost

Recall 0.7026 0.7026 0.7282 0.6872
Specificity 0.809 0.811 0.8525 0.7967
Accuracy 0.7965 0.7983 0.8379 0.7839
Precision 0.3278 0.3301 0.3955 0.3095
F1 Score 0.447 0.4492 0.5126 0.4268
RMSE 0.2757 0.2757 0.259 0.2780

The HMDA database was randomly split into training data (70%) and testing data (30%). The threshold used to convert the
continuous response into a binary response is the mean of the outcome variable. Recall measures the ratio of applicants who were
classified in the denied mortgage application group to those who were effectively denied. Specificity measures the ratio of
applicants who were classified in the denied group to those who were not denied. Accuracy measures the proportion of applicants
who are correctly classified. Precision is the ratio of correctly predicted denied applicants to the total predicted denied applicants.
The F1 Score is the weighted average of Precision and Recall.

We observe quite similar patterns of performance when the Synthetic Penalized Logitboost is
applied to data sets that have low frequencies, for example, in HDMA 2012 and 2017. The
results obtained for the testing and training data sets are very close to each other and do not
differ significantly. Moreover, the Synthetic Penalized Logitboost has lower RMSE than the
alternative methods in the 1% and/or 5% lower and upper extremes. Further details and
discussion of results obtained with HDMA 2012 and 2017 are presented in the Appendix.

Figure 1 shows the evolution of the RMSE within 100 iterations of the Synthetic Penalized
Logitboost. This algorithm gets the RMSE stable after many iterations. While there is no
theoretical guarantee that the proposed method will stabilize after some iterations, we obtained
similar behaviour when applying the Synthetic Penalized Logitboost to the HDMA 2012 and
2017 data sets. We propose trying alternative initial values if this does not happen.

The RMSE is smaller and more homogeneous for observations in the minority group (𝑌𝑌𝑖𝑖=1) in
the lowest predictions, while the RMSE is larger and more heterogenous for observations in the
majority group (𝑌𝑌𝑖𝑖=0) in the highest predictions. In aggregate terms, the lowest 1% and the
highest 1% of predicted scores (extreme values) have a much more accurate performance than
the other accumulated percentages of predictions.

15

Figure 1. RMSE data set across 100 iterations of the Synthetic Penalized
Logitboost for the HDMA data set.

5.2 Recovering the interpretability of the model

Machine learning algorithms are sometimes considered black boxes since their interpretability is
not straightforward. In contrast, the Synthetic Penalized Logitboost can be seen as a method that
recalibrates a least square regression in reweighted versions and penalizes incorrect predictions,
so its interpretability can be recovered. Let us note again in Figure 1 that when the RMSE
achieves stabilization in the boosting procedure (minimum variance), so too do the coefficient
estimates of the model. Therefore, if the coefficients are averaged, one might gain some
intuition about the sign and magnitude of the covariate effect on the response.

Table 6 shows the coefficient estimates obtained by a logistic regression and the Synthetic
Penalized Logitboost. The results obtained by the logistic regression are consistent with the
conclusions obtained by Munnell et al. (1996).
Moreover, the sign of the mean of the coefficient estimates of the Synthetic Penalized
Logitboost within iterations is almost the same before and after the stabilization. The signs and
the magnitude of the coefficients are consistent with the ones obtained by logistic regression.
Nonetheless, the magnitude seems to be expressed on another scale, which was expected since
the target variable used in the two methods is not the same.

Regarding the economic interpretation, Table 6 provides interesting results. Both the applicants
with a high debt payment to income ratio and the applicants with a high ratio of size of loan to
assessed value of property are more likely to receive a denied mortgage application. Moreover,
the applicants with the lowest consumer and mortgage credit scores are more likely to be
denied. Single applicants are more likely than non-single applicants to have a denied mortgage
application. A higher unemployment rate in the applicant’s industry is also more likely to result

16

in denial. Last but not least, black applicants are more likely than others to have a denied
mortgage application, even when controlling for all the ratios and factors included in the model.
The Synthetic Penalized Logitboost provides similar interpretations, as the mean coefficients
have almost the same sign8 as the logistic regression coefficients, even though they are not
directly comparable in size.

Table 6. Coefficient Estimates for the Logistic Regression and the Synthetic Penalized
Logitboost in the HDMA data set.

Coefficient
Estimates

Logistic Regression Synthetic Penalized Logitboost

Lower
Bound Estimate Upper

Bound

Minimum Mean Maximum

Mean
(After

Stabilization)
Intercept * -8.2496 -7.1289 -6.0610 -3.0488 -0.0641 0.0027 -0.0037

Dir * 2.7441 4.7742 6.8259 -0.0196 0.0430 1.8492 0.0016
Hir -2.8311 -0.4221 2.0323 -0.4991 -0.0166 0.0036 -0.0043

Lvr * 0.8324 1.7980 2.7881 -0.0086 0.0122 0.4326 0.0009
Css * 0.2168 0.2948 0.3726 0.0000 0.0031 0.1243 0.0003
Mcs * 3.5380 4.5154 5.7623 -0.0008 0.0027 0.0751 0.0005
Pbcr -0.0334 0.2464 0.5243 -0.0153 0.0122 0.8070 0.0000

Dmi * 0.8239 1.2281 1.6259 -0.0066 0.0449 2.8376 0.0013
Self * 0.1972 0.6224 1.0305 -0.0003 0.0066 0.2217 0.0007

Single * 0.1015 0.4078 0.7141 -0.0009 0.0055 0.1524 0.0011
Uria * 0.0002 0.0687 0.1336 -0.0001 0.0007 0.0232 0.0001

Condominium -0.3677 -0.0320 0.2970 -0.0142 -0.0002 0.0053 0.0001
Black * 0.3707 0.7266 1.0753 -0.0002 0.0081 0.3526 0.0006

The logistic regression columns show the point estimates of the lower and upper bounds of a 95% confidence interval. The
XGBoost columns show the means of the coefficient estimates with a linear boosting of the D iterations. Similarly, the bounds are
presented with the minimum and maximum values in the iterations. The stabilization starts from the fourth iteration onwards. *
indicates that the coefficient is significant at the 90% confidence level in the logistic regression estimation. The calculations were
performed in R and scripts are available from the authors.

6. Conclusions

We borrowed the mortgage lending model specification put forward by Munnell et al. (1996) to
provide a real-life application in empirical economics using the proposed algorithm. We
conclude that weighting corrections in machine learning algorithms with an econometric base
learner can improve the predictive performance by decreasing the RMSE in several segments of
the predictions. The Synthetic Penalized Logitboost preserves a stochastic term and trains a
weighted linear regression as base learner in order to prevent overfitting. Hence, the algorithm
can be used to reproduce alternative data sets without losing power.

Although the improvement in predictive performance is not excessively high, we provide
evidence that it can lead to smaller RMSE than the Gradient Tree Boost (recognized for smartly
capturing non-linearities) for observations that belong to the minority class in imbalanced data
problems that tend to be underestimated by econometric methods and machine learning
algorithms in general.

Beyond that, empirical sciences face challenges with machine learning architecture when their
purpose is not only to make predictions using imbalanced data, but also to explain their causes

8 Note that the mean of the coefficient estimates of Pbcr and Condominium differ from the logistic
regression. However, the effect of Pbcr is similar to the findings of Munnell et al. (1996), and the effect
of Condominium should be analysed in depth since more types of living spaces (more and less expensive)
must be controlled for to verify payment guarantee.

17

in detail. On one hand, economists have used econometrics thus far to analyse the determinants
of a specific phenomenon, but some models tend to be simplified due to the rigidity of linear
specifications in most classical models. On the other hand, machine learning handles more
large-scale complex data accurately but cannot provide direct coefficient estimates to link the
corresponding effects of exogenous variables on the response outcome. The Synthetic Penalized
Logitboost has started to combine these two approaches by providing some statistical intuition
of its coefficient estimates since the base learner is a weighted least squares regression. As a
result, the model always stabilizes its coefficients, while also being able to deal with complex
structures and imbalanced phenomena.

Since the Synthetic Penalized Logitboost strongly penalizes observations whose probability
estimates deviate considerably from the observed target variable, we wonder whether the
predictive performance could be further improved in more imbalanced data sets or more
complex models than the one presented here. While the model specification in Munnell et al.
(1996) works with tailor-made survey data, our proposed model can also work with extensive
data obtained through web scraping or with device-collected data.

Acknowledgements: We would like to thank the Spanish Ministry of Economy, FEDER grant
ECO2016-76203-C2-2-P, Fundación BBVA, and ICREA Academia.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix

This section provides the results of the prediction performance of the Synthetic Penalized
Logitboost in comparison to the algorithms described in Section 3 for the HDMA 2012 and
HDMA 2017 datasets.

Table 7 shows the RMSE of Logistic regression, Logitboost, Gradient Tree Boost and Synthetic
Penalized Logitboost for the training and testing HDMA 2012 data sets. The Synthetic
Penalized Logitboost has a lower RMSE than the other methods, especially in the 1% and 5% of
lower and upper extremes. The second-best prediction performance for the lower extremes
corresponds to the results obtained by the Logistic and Logitboost with a prediction error equal
to zero, while second-best for the upper extremes corresponds to the Gradient Boost (tree) GS-
CV. Moreover, the Synthetic Penalized Logitboost has a similar performance in the testing and
training data sets.

Table 8 presents additional predictive measures of Logistic regression, Logitboost, Gradient
Tree Boost and the Synthetic Penalized Logitboost for the testing and training HDMA 2012
data sets. The Synthetic Penalized Logitboost has the highest recall with similar rates in the
training and testing data sets. The second highest recall corresponds to the Gradient Boost (tree)
GS – CV. Figure 2 shows RMSE across 100 iterations of the Synthetic Penalized Logitboost for
the HDMA 2012. Approximately the first 5 to 10 iterations have brusque changes, however
after iteration 30 approximately the RMSE gets stable.

Table 9 shows the RMSE of Logistic regression, Logitboost, Gradient Tree Boost and Synthetic
Penalized Logitboost for the training and testing HDMA 2017 data sets. All methods have a
prediction error equal to zero in the lower extreme, while the Penalized Logitboost and Logistic
regression have the smallest RMSE in the upper extremes. Additionally, Table 10 presents
alternative predictive measures for the mentioned methods. The Synthetic Penalized Logitboost
has again the highest recall, even when RMSE in aggregated terms is higher than others.
Finally, Figure 3 shows that the RMSE gests stable after iteration 40 approximately.

18

Table 7. Root-Mean-Square Error of Logistic regression, Logitboost, Gradient Tree Boost and
the Synthetic Penalized Logitboost for the training and testing HMDA 2012 data sets.

RMSE for Testing Data Set

Methods
Lower Extreme Upper Extreme

0.01 0.05 0.10 0.20 0.3 0.4 0.01 0.05 0.10 0.20 0.3 0.4
Logistic 0 0 0 0 0 0 0.4941 0.4890 0.4762 0.4632 0.4518 0.4414
Logitboost 0 0 0 0 0 0 0.4950 0.4896 0.4774 0.4634 0.4521 0.4407
Gradient Boost
(tree) 0.0008 0.0011 0.0025 0.0033 0.0038 0.0041 0.5081 0.4882 0.4772 0.4605 0.4494 0.4386

Gradient Boost
(tree) GS - CV 0.0461 0.0239 0.0172 0.0155 0.0126 0.0110 0.4788 0.4774 0.4713 0.4599 0.4510 0.4406

Synthetic
Penalized
Logitboost

0 0 0 0 0 0 0.4730 0.4619 0.4639 0.4553 0.4476 0.4429

RMSE for Training Data Set

Methods
Lower Extreme Upper Extreme

0.01 0.05 0.10 0.20 0.3 0.4 0.01 0.05 0.10 0.20 0.3 0.4
Logistic 0 0 0 0 0 0 0.4947 0.4886 0.4773 0.4639 0.4519 0.4403
Logitboost 0.0150 0.0067 0.0067 0.0058 0.0048 0.0041 0.4956 0.4892 0.4779 0.4639 0.4522 0.4407
Gradient Boost
(tree) 0.0010 0.0012 0.0029 0.0038 0.0043 0.0046 0.5040 0.4890 0.4774 0.4631 0.4511 0.4399

Gradient Boost
(tree) GS - CV 0.0377 0.0218 0.0167 0.0157 0.0129 0.0123 0.4779 0.4768 0.4716 0.4603 0.4513 0.4404

Synthetic
Penalized
Logitboost

0 0 0 0 0 0 0.5001 0.4853 0.4759 0.4629 0.4507 0.4413

The HMDA database was randomly split into training data (70%) and testing data (30%). Each RMSE for 1%, 5%, 10%, 20%, 30%
and 40% of the lowest accumulated prediction scores is shown on the left-hand side of the table under “Lower Extreme”, and each
RMSE for 1%, 5%, 10%, 20%, 30% and 40% of the highest accumulated prediction scores is shown on the right-hand side of the
table under “Upper Extreme”. The Gradient Boost (tree) GS – CV is built with 10-fold cross validation and optimized
hyperparameters through grid search.

Table 8. Predictive measures of Logistic regression, Logitboost, Gradient Tree Boost and the
Synthetic Penalized Logitboost for the testing and training HMDA 2012 data sets.

Testing Data Set

Predictive
Measures

Logistic
Regression Logitboost Gradient Boost

(Tree) GS - CV

Synthetic
Penalized
Logitboost

Recall 0.9946 0.9954 0.9978 0.9981
Specificity 0.6552 0.6548 0.6532 0.6511
Accuracy 0.6939 0.6935 0.6923 0.6905
Precision 0.271 0.2698 0.2693 0.2682
F1 Score 0.4259 0.4245 0.4241 0.4228
RMSE 0.2851 0.2845 0.2842 0.2877

Training Data Set

Predictive
Measures

Logistic
Regression Logitboost Gradient Boost

(Tree) GS - CV

Synthetic
Penalized
Logitboost

Recall 0.9955 0.9963 0.998 0.9983
Specificity 0.6548 0.6541 0.653 0.651
Accuracy 0.6935 0.6928 0.692 0.6902
Precision 0.2694 0.2685 0.2682 0.2671
F1 Score 0.424 0.423 0.4228 0.4214
RMSE 0.2844 0.2841 0.2837 0.2875

The HMDA database was randomly split into training data (70%) and testing data (30%). The threshold used to convert the
continuous response into a binary response is the mean of the outcome variable.

19

Figure 2. RMSE across iterations of the Synthetic Penalized
Logitboost for the HDMA 2012.

Considering the results examined for HMDA, HMDA 2012 and HDMA 2017, the Synthetic
Penalized Logitboost increases the true positive rate when predicting a model, in particular in
the most extreme observations. And it can reach convergence after some iterations in the
boosting procedure.

Table 9. Root-Mean-Square Error of Logistic regression, Logitboost, Gradient Tree Boost and
the Synthetic Penalized Logitboost for the training and testing HMDA 2017 data sets.

RMSE for Testing Data Set

Methods
Lower Extreme Upper Extreme

0.01 0.05 0.10 0.20 0.3 0.4 0.01 0.05 0.10 0.20 0.3 0.4
Logistic 0 0 0 0 0 0 0.4266 0.4216 0.4061 0.3957 0.3910 0.3769
Logitboost 0 0 0 0 0 0 0.4282 0.4226 0.4108 0.3991 0.3922 0.3767
Gradient Boost (tree) 0 0 0 0 0 0 0.4514 0.4157 0.4074 0.3969 0.3854 0.3738
Gradient Boost (tree) GS - CV 0 0 0 0 0 0 0.4240 0.4193 0.4098 0.3989 0.3885 0.3768
Synthetic Penalized Logitboost 0 0 0 0 0 0 0.4266 0.4216 0.4061 0.3957 0.3910 0.3769

RMSE for Training Data Set

Methods
Lower Extreme Upper Extreme

0.01 0.05 0.10 0.20 0.3 0.4 0.01 0.05 0.10 0.20 0.3 0.4
Logistic 0 0 0 0 0 0 0.4435 0.4234 0.4115 0.3995 0.3925 0.3768
Logitboost 0 0 0 0 0 0 0.4427 0.4230 0.4115 0.3994 0.3926 0.3768
Gradient Boost (tree) 0 0 0 0 0 0 0.4797 0.4478 0.4234 0.4110 0.3970 0.3762
Gradient Boost (tree) GS - CV 0 0 0 0 0 0 0.4406 0.4227 0.4048 0.3934 0.3856 0.3770
Synthetic Penalized Logitboost 0 0 0 0 0 0 0.4435 0.4234 0.4115 0.3995 0.3925 0.3768

The HMDA database was randomly split into training data (70%) and testing data (30%). Each RMSE for 1%, 5%, 10%, 20%, 30%
and 40% of the lowest accumulated prediction scores is shown on the left-hand side of the table under “Lower Extreme”, and each
RMSE for 1%, 5%, 10%, 20%, 30% and 40% of the highest accumulated prediction scores is shown on the right-hand side of the
table under “Upper Extreme”. The Gradient Boost (tree) GS – CV is built with 10-fold cross validation and optimized
hyperparameters through grid search.

20

Table 10. Predictive measures of Logistic regression, Logitboost, Gradient Tree Boost and the
Synthetic Penalized Logitboost for the testing and training HMDA 2017 data sets.

Testing Data Set

Predictive
Measures

Logistic
Regression Logitboost Gradient Boost

(Tree) GS - CV

Synthetic
Penalized
Logitboost

Recall 0.9983 0.9983 0.9983 0.9981
Specificity 0.6604 0.6604 0.6604 0.6605
Accuracy 0.6839 0.6839 0.6839 0.6840
Precision 0.1805 0.1805 0.1805 0.1805
F1 Score 0.3057 0.3057 0.3057 0.3057
RMSE 0.2385 0.2385 0.2378 0.2387

Training Data Set

Predictive
Measures

Logistic
Regression Logitboost Gradient Boost

(Tree) GS - CV

Synthetic
Penalized
Logitboost

Recall 0.9983 0.9983 0.9983 0.9984
Specificity 0.6637 0.6637 0.6637 0.6637
Accuracy 0.6870 0.6870 0.687 0.687
Precision 0.1817 0.1817 0.1817 0.1817
F1 Score 0.9983 0.3074 0.3074 0.3074
RMSE 0.2382 0.2382 0.2374 0.2383

The HMDA database was randomly split into training data (70%) and testing data (30%). The threshold used to convert the
continuous response into a binary response is the mean of the outcome variable.

Figure 3. RMSE across iterations of the Synthetic Penalized
Logitboost for the HDMA 2017.

21

References

Barandela, R., Valdovinos, R. M., & Sánchez, J. S. (2003). New applications of ensembles of
classifiers. Pattern Analysis & Applications, 6(3), 245-256.

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees.
Wadsworth Int. Group, 37(15), 237-251.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321-357.

Dietterich, T. G., Domingos, P., Getoor, L., Muggleton, S., & Tadepalli, P. (2008). Structured
machine learning: The next ten years. Machine Learning, 73(1), 3.

Friedman, J. H., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical
view of boosting (with discussion and a rejoinder by the authors). Annals of Statistics,
28(2), 337-407.

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of
Statistics, 1189-1232.

Gomez-Verdejo, V., Arenas-Garcia, J., Ortega-Moral, M., & Figueiras-Vidal, A. R. (2005).
Designing RBF classifiers for weighted boosting. In Proceedings. 2005 IEEE International
Joint Conference on Neural Networks (Vol. 2, pp. 1057-1062). IEEE.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer Science & Business Media.

Japkowicz, N., & Stephen, S. (2002). The class imbalance problem: A systematic study.
Intelligent Data Analysis, 6(5):429–449.

King, G., & Zeng, L. (2001). Logistic regression in rare events data. Political Analysis, 9(2),
137-163.

Kotsiantis, S., Kanellopoulos, D., & Pintelas, P. (2006). Handling imbalanced datasets: A
review. GESTS International Transactions on Computer Science and Engineering, 30(1),
25-36.

Krawczyk, B. (2016). Learning from imbalanced data: Open challenges and future directions.
Progress in Artificial Intelligence, 5(4), 221-232.

Lin, W. C., Tsai, C. F., Hu, Y. H., & Jhang, J. S. (2017). Clustering-based undersampling in
class-imbalanced data. Information Sciences, 409, 17-26.

Longadge, R., Dongrre, S.S., & Malik, L. (2013). Class imbalance problem in data mining:
Review. International Journal of Computer Science and Network, 2(1): 83–87.

McCullagh, P., & Nelder, J. (1989). Generalized Linear Models. Chapman and Hall/CRC.
Munnell, A. H., Tootell, G. M., Browne, L. E., & McEneaney, J. (1996). Mortgage lending in

Boston: Interpreting HMDA data. The American Economic Review, 25-53.
Pesantez-Narvaez, J., Guillen, M., & Alcañiz, M. (2019). Predicting Motor Insurance Claims

Using Telematics Data—XGBoost versus Logistic Regression. Risks, 7(2), 70.
Pesantez-Narvaez, J., & Guillen, M. (2020a). Penalized logistic regression to improve predictive

capacity of rare events in surveys. Journal of Intelligent & Fuzzy Systems, (Preprint), 1-11.
Pesantez-Narvaez J., & Guillen M. (2020b). Weighted Logistic Regression to Improve

Predictive Performance in Insurance. Advances in Intelligent Systems and Computing, 894,
22-34

Schapire, R. E., & Freund, Y. (2013). Boosting: Foundations and algorithms. Kybernetes.
Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J., & Napolitano, A. (2009). RUSBoost: A hybrid

approach to alleviating class imbalance. IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, 40(1), 185-197.

Wang, S., & Yao, X. (2009). Diversity analysis on imbalanced data sets by using ensemble
models. In 2009 IEEE Symposium on Computational Intelligence and Data Mining (pp.
324-331). IEEE.

