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Oncogenic Features in Histologically Normal Mucosa:
Novel Insights Into Field Effect From a Mega-Analysis
of Colorectal Transcriptomes
Christopher H. Dampier, MD1,2, Matthew Devall, PhD2,3, Lucas T. Jennelle, PhD2,3, Virginia Díez-Obrero, BS4–7, Sarah J. Plummer, BS2,3,
Victor Moreno, MD, PhD5–8 and Graham Casey, PhD2,3

INTRODUCTION: Colorectal cancer is a common malignancy that can be cured when detected early, but recurrence

among survivors is a persistent risk. A field effect of cancer in the colon has been reported and could

have implications for surveillance, but studies to date have been limited. A joint analysis of pooled

transcriptomic data from all available bulk RNA-sequencing data sets of healthy, histologically normal

tumor-adjacent, and tumor tissues was performed to provide an unbiased assessment of field effect.

METHODS: A novel bulk RNA-sequencing data set from biopsies of nondiseased colon from screening colonoscopy

along with published data sets from the Genomic Data Commons and Sequence Read Archive were

considered for inclusion.Analyseswere limited to sampleswithaquantified readdepthof at least10million

reads. Transcript abundance was estimated with Salmon, and downstream analysis was performed in R.

RESULTS: A total of 1,139 samples were analyzed in 3 cohorts. The primary cohort consisted of 834 independent

samples from8 independentdata sets, including462healthy,61 tumor-adjacent, and311 tumor samples.

Tumor-adjacent gene expression was found to represent an intermediate state between healthy and tumor

expression. Among differentially expressed genes in tumor-adjacent samples, 1,143 were expressed in

patterns similar to tumor samples, and these genes were enriched for cancer-associated pathways.

DISCUSSION: Novel insights into the field effect in colorectal cancer were generated in this mega-analysis of the

colorectal transcriptome. Oncogenic features that might help explain metachronous lesions in cancer

survivors and could be used for surveillance and risk stratification were identified.

SUPPLEMENTARY MATERIAL accompanies this paper at http://links.lww.com/CTG/A315; http://links.lww.com/CTG/A316; http://links.lww.com/CTG/A317
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INTRODUCTION
Colorectal cancer (CRC) is a common and often lethal malignancy
with a significant impact on public health in the United States and
worldwide. Because of early detection and effective treatment of
local disease, CRC can sometimes be cured. However, epidemio-
logical studies have demonstrated a higher risk of new disease in
survivors with CRC compared with age-matched general pop-
ulations (1–3). Tomanage that risk, theUSMultisocietyTaskForce
recommends surveillance colonoscopy at regular intervals after
resection (4). Whether interval tumors represent missed syn-
chronous, incompletely resected primary or true metachronous
cancers is often uncertain, but many likely represent second

primary tumors (2,5). At a molecular level, the field effect model
can help explain new cancers in survivors with CRC.

The field effect hypothesis posits that cancer susceptibility
results from a range of exposures that include carcinogenic agents
and local host–tumor interactions. Somatic mutations or epige-
netic alterations in physically proximate progenitor cells engen-
der patches of molecularly aberrant epithelium from which
multifocal cancers subsequently emerge (6–8). Evidence for field
effect has been found in histologically normal-appearing colonic
mucosa adjacent to tumors in surgical specimens (9–13). How-
ever, studies of field effect in CRC have been limited by sample
size, tissue suitability, and assay availability.
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Transcriptome profiling is a useful measurement for in-
vestigation of tissue biology because it provides a comprehen-
sive assessment of molecular consequences downstream of
genetic and epigenetic differences across phenotypes. RNA se-
quencing (RNA-seq) is the preferred assay for transcriptome
profiling and is now affordable at population scale. In vivo adult
colorectal epithelial cells and their niche in the settings of health
and primary cancer are the biological units of interest for
evaluation of the field effect. Bulk RNA-seq of tissue from bi-
opsies or surgical specimens with an epithelial component
collected from subjects with and without cancer should, there-
fore, provide the most accurate representation of field effects.
However, inclusion of healthy mucosal samples from subjects
without disease is rare in studies of CRC, and tumor-adjacent
samples are also relatively limited.

Multiple groups have recently harmonized colorectal RNA-seq
data sets from The Cancer Genome Atlas (TCGA) (14) and the
Genotype-Tissue Expression Project (GTEx) (15), allowing large-
scale comparisons among healthy mucosa, histologically normal
tumor-adjacent mucosa, and tumor tissue (13,16). However,
tumor-adjacent samples account for only 10% of TCGA samples,
and half of GTEx samples have no mucosal component (17). Two
recent meta-analyses of CRC transcriptomes demonstrated that
applying consistent methods across heterogeneous data sets can
permit investigators to leverage increased sample sizes to discover
robust and biologically meaningful signals in measurements with
substantial underlying variability (18,19).

In this study, previously successful methods were extended to
harmonize all publicly available data sets of colorectal bulk RNA-
seq and unpublished RNA-seq of healthy colon tissue collected
during screening colonoscopy in a pooled analysis of the tran-
scriptomic field effect in CRC. The molecular features that distin-
guishnormal tissue adjacent to tumors fromhealthy tissues despite
similar histologic appearances were shown. Some of the molecular
differences characteristic of tumor-adjacent tissue were oncogenic,
providing a possible molecular basis for the increased incidence of
metachronous tumors in survivors with CRC and potential targets
for posttreatment surveillance. To the authors’ knowledge, this is
the largest RNA-seq-based study of the field effect in CRC to date.
The pooled data set will be provided as an R (20) package on
Bioconductor (21).

METHODS
Samples

Bulk RNA-seq samples from the University of Barcelona and the
University of Virginia (BarcUVa-Seq) were derived from healthy
mucosal biopsies obtained during screening colonoscopies from
subjects without known predisposition to colorectal neoplasm at
the Catalan Institute for Oncology. All samples sequenced as of
January 21, 2019, were screened for inclusion. Samples frompublic
data sets were identified by systematic searches of the Genomic
Data Commons (22) and SequenceReadArchive (23), the 2 largest
public genomics repositories (Figure 1). All bulkRNA-seq data sets
of human colorectal tissue available as of January 21, 2019, were

Figure 1.Workflow diagram. Pathway outline of mega-analysis. Cohorts A and B were independent and composed of paired-end libraries. Cohort C was
independent of cohorts A and B and composed of single-end libraries. The Study Design subsection of theMethods section includes a description of the 3
independent cohorts. BarcUVA-Seq, University of Barcelona and University of Virginia RNA sequencing project; BART, binding analysis for regulation of
transcription; GDC, Genomic Data Commons; HLT, healthy; NAT, normal-adjacent-to-tumor; SRA, Sequence Read Archive; SVA, Surrogate Variable
Analysis; TCGA, The Cancer Genome Atlas; TUM, tumor.

Clinical and Translational Gastroenterology VOLUME 11 | JULY 2020 www.clintranslgastro.com

C
O
LO

N
Dampier et al.2

http://www.clintranslgastro.com


Table 1. Samples and demographics for study cohorts

A. Paired-end samples selected for inclusion (cohorts A and B)

Source Data set name

No. of samples

Source totalHLT NAT TUM Total

BarcUVa-Seq BarcUVa 260 — — 260 260

GDC TCGA-COAD — 39 232 271

GDC TCGA-READ — 9 87 96 367

SRA GTEx 202 — — 202

SRA HebeiMU — 10 10 20

SRA KoreaAMC — 18 18 36

SRA KoreaPNU — 5 5 10

SRA Mayo — 13 16 29 297

Total 462 94 368 924

B. Cohort A (primary analysis)

Source

Data set

name

No. of samples Sex (% women) Age (mean, SD)

HLT NAT TUM Total HLT NATa TUMa HLT NATa TUMa

BarcUVa-Seq BarcUVa 260 — — 260 62.7 — — 59.6, 6.5 — —

GDC TCGA-COAD — 36 209 245 — 52.8 44.9 — 71.7, 13.2 65.3, 12.9

GDC TCGA-READ — 8 81 89 — 87.5 46.3 — 67.0, 17.6 63.1, 12.0

SRA GTEx 202 — — 202 41.6 — — 48.7, 12.5 — —

SRA HebeiMU — 4 5 9 — 75.0 60.0 — NR NR

SRA KoreaAMC — 8 6 14 — NR NR — NR NR

SRA KoreaPNU — 1 2 3 — 0.0 100.0 — 62, — 73.0, 4.2

SRA Mayo — 4 8 12 — 50.0 37.5 — 65.3, 15.6 66.0, 18.2

Total 462 61 311 834 53.5 58.5 45.7 54.8, 11.0 70.2, 14.0 64.8, 12.8

C. Cohort B (model validation)

Source

Data set

name

No. of samples Sex (% women) Age (mean, SD)

HLT NAT TUM Total HLT NATa TUMa HLT NATa TUMa

GDC TCGA-COAD — 3 3 6 — 50.0 50.0 — 62.2, 13.4 62.2, 13.4

GDC TCGA-READ — 1 1 2 — 0.0 0.0 — 50.0, — 50.0, —

SRA HebeiMU — 1 1 2 — 0.0 0.0 — NR NR

SRA KoreaAMC — 4 4 8 — NR NR — NR NR

SRA KoreaPNU — 2 2 4 — 50.0 50.0 — 74.0, 1.2 74.0, 1.2

SRA Mayo — 4 4 8 — 50.0 50.0 — 70.3, 9.7 70.3, 9.7

Total — 15 15 30 — 36.4 36.4 — 66.6, 11.6 66.6, 11.6

D. Cohort C (biologic validation)

Source

Data set

name

No. of samples Sex (% women) Age (mean, SD)

HLT NAT TUM Total HLT NATa TUMa HLT NATa TUMa

GDC TCGA-COAD — — 135 135 — — 46.7 — — 69.1,

12.0

GDC TCGA-READ — — 60 60 — — 41.7 — — 67.7,

10.0

SRA MtSinai — 47 — 47 — 61.7 — — 65.4,

13.3

—

SRA CityOfHope — 2 8 10 — NR NR — NR NR

SRA Singapore — 5 2 7 — NR NR — NR NR
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screened for inclusion. Detailed protocols for RNA extraction and
sequencing for the BarcUVa-Seq study and full search parameters
for systematic review of public data sets are provided in the Sup-
plementaryMethods (see SupplementaryDigital Content 1, http://
links.lww.com/CTG/A315).

A total of 5,233 samples from 167 data sets were screened (see
Table ST1A, Supplementary Digital Content 2, http://links.lww.
com/CTG/A316). Most samples were derived from cell lines and
were, therefore, ineligible for inclusion. A total of 1,424 samples
from 14 data sets (see Tables ST1B and ST1C, Supplementary
Digital Content 2, http://links.lww.com/CTG/A316) were eligible
for pooled analysis after screening basedoncriteria described in the
Supplementary Methods (see Supplementary Digital Content 1,
http://links.lww.com/CTG/A315).

Study design

After implementation of a common bioinformatics pipeline as
described in the Supplementary Methods (see Supplementary
Digital Content 1, http://links.lww.com/CTG/A315), samples with
at least 10million quantified reads (24)were selected (Figures 1 and
2a). For duplicated samples, the one with highest total quasi-
mapped reads was selected. A total of 1,199 samples across 14 data
sets were retained. Paired-end samples accounted for 924 samples
across 8 data sets (Table 1, A), and single-end samples accounted
for 275 samples and 6 additional data sets (Table 1, D). Dimension
reduction analysis demonstrated that batch effects due to library
format could not be adequatelymodeledwith latent factor analysis,
so single-end samples were analyzed separately (see Supplemen-
tary Methods, Supplementary Digital Content 1, http://links.lww.
com/CTG/A315). A primary analysis cohort, cohort A, a meth-
odological validation cohort, cohort B, and a biological validation
cohort, cohort C, were created from the retained samples (Table 1
and Figure 1). Details regarding allocation of samples to cohorts is
provided in the Supplementary Methods (see Supplementary
Digital Content 1, http://links.lww.com/CTG/A315).

Expression analysis

Differential gene expression (DGE) analysis across phenotypeswas
performed using DESeq2 (25) with phenotype (e.g., healthy, tu-
mor-adjacent, and tumor) and5 surrogate variables as estimatedby
SVA (26) to model gene expression in cohorts A and C. No other
covariates were included. The model for cohort B included a
blocking factor in addition to phenotype to specify within-subject

comparisons across samples of different phenotype; no surrogate
variables were used. Gene set enrichment analysis was performed
using fgsea (27) and the Molecular Signatures Database hallmark
gene sets (28). Prediction of key drivers of DGE was performed
using binding analysis for regulation of transcription (BART) (29).
Significance thresholds were set using Benjamini–Hochberg false
discovery rate adjustments with false discovery rate of 5%. Details
regarding the choice of tools and support for the choice of 5 sur-
rogate variables are presented in the Supplementary Methods (see
Supplementary Digital Content 1, http://links.lww.com/CTG/
A315 and Figures SF1 and SF2, Supplementary Digital Content 3,
http://links.lww.com/CTG/A317).

RESULTS

Tumor-adjacent tissue represents an intermediate phenotype

To explore the relationship between global gene expression and
phenotype in cohort A, unsupervised learning with t-distributed
stochastic neighbor embedding was performed. Scatterplots of the
t-distributed stochastic neighbor embedding vectors were gener-
ated, and clustering by phenotype was observed (Figure 2b).
Normal-adjacent-to-tumor (NAT) samples tended to cluster apart
from healthy (HLT) and tumor (TUM) samples, as demonstrated
previously by Aran et al. (13). However, contrary to the analysis by
Aran et al., which included GTEx sigmoid samples without epi-
thelium in the healthy group, a single dominant cluster of HLT
samples was found in the pooled data set of this study. To compare
the 2 studies quantitatively, scatterplots of log2 fold change per
gene shared across the study by Aran et al. and this study were
generated. In the TUM vs NAT comparisons, which usedmany of
the sameTCGA samples, the 2 analyses were very similar (Pearson
correlation r5 0.93,P, 2.20E-16) (Figure 2c). In theNATvsHLT
comparisons, for which this study replaced the GTEx sigmoid
cohort in the study by Aran et al. with BarcUVa-Seq samples, the
analyses were less consistent (Pearson correlation r 5 0.48, P ,
2.20E-16) (Figure 2c). The lower correlation coefficient of theNAT
vs HLT comparisons underscores the importance of the BarcUVa-
Seq cohort.Despite themodest difference inHLT samples, both the
analysis of the study byAran and this study provided evidence for a
field effect in the colon that leaves NAT tissue in a molecularly
intermediate state between healthy andmalignant. Consistentwith
histologic appearance, NAT samples tended to have a closer re-
lationship to HLT samples than to TUM samples by sample-
to-sample distance, but clustering demonstrated the resemblance

Table 1. (continued)

D. Cohort C (biologic validation)

Source

Data set

name

No. of samples Sex (% women) Age (mean, SD)

HLT NAT TUM Total HLT NATa TUMa HLT NATa TUMa

SRA Utah 10 — — 10 40.0 — — 54.8, 7.3 — —

SRA ZhejiangU — 2 2 4 — 0.0 0.0 — 58.5,

30.4

53.5, 2.1

SRA TexasAM 2 — — 2 50.0 — — 38.5, 7.8 —

Total 12 56 207 275 41.7 59.2 44.7 52.1, 9.5 65.1, 13.8 68.5, 11.4

BarcUVA-Seq, University of Barcelona and University of Virginia RNA sequencing project; GDC, Genomic Data Commons; HLT, healthy; NAT, normal-adjacent-to-tumor;
NR, not reported; SRA, Sequence Read Archive; TCGA, The Cancer Genome Atlas; TUM, tumor.
aMissing data on subset of samples.
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of NAT samples to both HLT and TUM samples (Figure 2d). To
investigate the intermediate state of NAT samples, DGE analysis
was performed across phenotypes in cohort A.

A total of 1,701 genes were differentially expressed betweenHLT
and NAT samples, 2,929 between NAT and TUM samples, and
5,974 between HLT and TUM samples (Figure 3a; see Tables
ST2–ST4, Supplementary Digital Content 2, http://links.lww.com/

CTG/A316). These results reinforced the relativemolecular position
of NAT samples between the extremes of healthy and pathologically
dysregulated expression. Cohort A was further interrogated with
gene set enrichment analysis using hallmark gene sets (Figure 3b; see
Table ST5, Supplementary Digital Content 2, http://links.lww.com/
CTG/A316). The MYC- and E2F-target gene sets had the 2 highest
normalized enrichment scores (NESs) in both theTUMvsNATand

Figure 2. Exploration of data sets. (a) Box plots representing library quality across data sets, where TCGA-COAD and TCGA-READ samples are grouped
together. Each ring is a single sample. Library preparation with poly-A tail selection resulted in higher quasi-mapping rates. (b) Scatterplots of tSNE1 and
tSNE2of VST-transformed counts before andafter batch adjustmentwith coloring by data set andphenotype to highlight likely drivers of observedclustering
in cohort A. Eachpoint is a sample. (c) Scatterplot of LFC for all shared genes across the study byAran et al. and this study in the TUMvsNATandNATvsHLT
sample comparisons; Pearson correlations shown in top left. (d) Hierarchical clustering dendrogram and heatmap of pairwise Euclidean distance between
all samples in cohort A. Distances calculated on batch-adjusted counts. HLT, healthy; LFC, log2 fold change; NAT, normal-adjacent-to-tumor; TCGA, The
Cancer Genome Atlas; tSNE, tdistributed stochastic neighbor embedding; TUM, tumor; VST, variance stabilizing transformation.
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TUMvsHLT comparisons (P-adj5 2.20E-03 for both sets in TUM
vsNAT;P-adj5 5.66E-04 for both sets inTUMvsHLT). This result
indicated that genes regulated by MYC and E2F tended to be more
highly expressed in TUM samples. Surprisingly, MYC targets were
also overrepresented in the NAT vs HLT comparison (second
highest NES, P-adj 5 1.89E-03), indicating higher expression in
NAT samples as well.

To validate the modeling of batch effects in cohort A, repeated-
measures tests were performed on the matched pairs in cohort B.
Overall concordance of log2 fold change and test statistics was high
between the 2 cohorts (Pearson r 5 0.88, P , 2.20E-16 and r 5
0.84, P , 2.20E-16, respectively) (Figure 3c), and consistency of
DGEresults (Figure 3d,e) supported themodel of batch effects used
for cohort A.

Figure 3. Transcriptome-wide comparison across phenotypes. (a) Scatterplots (i.e., MA plots) depicting LFC vs gene expression across phenotypes in
cohort A; red demonstrates DGE at FDR 5%. Number of differentially expressed genes shown in top right and bottom right. (b) Bar plots of GSEA results for
overrepresentation of hallmark gene sets in DGE results across phenotypes in cohort A; red demonstrates enrichment at FDR 5%. Only hallmark sets with
absolute NES.1.3 are shown. Genes were preranked by test statistics from their respective comparisons. (c) Scatterplot of LFC for all shared genes across
cohorts A andB in the TUMvsNATsample comparisons; Pearson correlation shown in top left. (d) MAplot depicting LFC vs gene expression for the TUMvs
NATsample comparison in cohort B; red demonstrates DGE at FDR 5%. (e) Venn diagram demonstrating intersection of DGE lists from the TUM vs NAT
sample comparisons in cohorts A and B. DGE, differential gene expression; FDR, false discovery rate; GSEA, gene set enrichment analysis; LFC, log2 fold
change; NAT, normal-adjacent-to-tumor; NES, normalized enrichment score; TUM, tumor.
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A molecular description of the field effect in CRC

Next, 4 patterns of gene expression inNAT samples relative to the
other phenotypes were identified to better characterize DGE in
NAT samples. Hierarchical clustering of all samples based on
expression levels of genes in each pattern was performed to test

the robustness of pattern classification. Pattern definitions and
clustering strategies are described in the SupplementaryMethods
(see Supplementary Digital Content 1, http://links.lww.com/
CTG/A315). Gene sets corresponding to HLT-NAT-TUM gra-
dient (61 genes), TUM associated (1,082 genes), NAT specific

Figure 4. Patterns in gene-level variation. (a) Box plots of batch-adjusted counts for arbitrarily selected genes representative of each of 8 DGE subpatterns
aggregated into the following 4 expression patterns: gradient, TUM associated, NATspecific, and HLTassociated. (b) Hierarchical clustering dendrograms
and heatmaps of gene expression for all samples from cohort A. Clustering based on expression levels of all or top 500 genes from each pattern set,
whichever is smaller. Heatmap gene expression levels based on batch-adjusted counts. Genes in each pattern set ordered by adjustedP value fromNAT vs
HLTsample comparisons. (c) Bar plot of GSEA results for overrepresentation of hallmark gene sets among gradient and TUM-associated genes using test
statistics from NAT vs HLT sample comparisons for ranking; red demonstrates enrichment at FDR 5%. Only hallmark sets with absolute NES .1.5 are
shown. (d) Box plots of batch-adjusted counts for EGR1 andGREM1, 2 potential drivers of tumorigenesis among field effect genes fromcohort Avalidated in
cohort C. DGE, differential gene expression; FDR, false discovery rate; GSEA, gene set enrichment analysis; HLT, healthy; NAT, normal-adjacent-to-tumor;
NES, normalized enrichment score; TUM, tumor.
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Table 2. Genes of interest identified in cohort A and validated in cohort C

Ensembl Entrez Symbol baseMean_A log2FoldChange_A padj_A rank_A baseMean_C log2FoldChange_C affyU219_confirm (12)

A. Field effect genes

ENSG00000131910 8431 NR0B2 56.173 2.581 6.14E-14 191 78.080 1.309 No

ENSG00000087494 5744 PTHLH 33.754 2.173 1.55E-11 280 32.909 3.985 No

ENSG00000122877 1959 EGR2 131.172 2.086 4.88E-10 360 134.102 2.730 Yes

ENSG00000069482 51083 GAL 168.084 2.534 1.64E-08 457 292.218 4.555 Yes

ENSG00000154096 7070 THY1 2095.896 1.727 5.24E-08 508 2,265.722 1.802 Yes

ENSG00000124107 6590 SLPI 980.828 1.876 5.83E-08 516 1,254.292 1.182 No

ENSG00000125740 2354 FOSB 1,107.974 2.522 9.31E-08 532 11,983.254 7.412 Yes

ENSG00000120738 1958 EGR1 6,001.417 2.172 3.94E-06 700 8,280.504 5.678 Yes

ENSG00000183036 5121 PCP4 151.956 2.800 5.03E-06 717 57.471 2.510 Yes

ENSG00000141753 3487 IGFBP4 9,989.762 1.382 8.44E-05 901 6,715.673 1.252 No

ENSG00000188910 2707 GJB3 445.888 1.768 1.03E-04 915 667.156 1.610 No

ENSG00000276886 26585 GREM1 2,203.729 1.905 7.34E-04 1,094 1,226.188 2.375 Yes

ENSG00000115009 6364 CCL20 962.276 1.868 9.05E-04 1,109 1,280.823 1.949 Yes

ENSG00000109321 374 AREG 1,620.290 1.638 2.09E-03 1,222 1,904.971 2.100 Yes

ENSG00000162772 467 ATF3 1,341.989 1.617 3.92E-03 1,303 1,786.593 2.938 No

ENSG00000113070 1839 HBEGF 711.115 1.508 4.23E-03 1,314 884.759 2.952 Yes

ENSG00000106483 6424 SFRP4 493.441 1.628 1.21E-02 1,469 440.095 2.581 No

ENSG00000143878 388 RHOB 7,914.154 1.379 1.57E-02 1,514 7,598.835 4.393 Yes

ENSG00000182492 633 BGN 3,976.824 1.499 3.57E-02 1,648 3,335.331 1.521 No

ENSG00000125398 6662 SOX9 1,483.255 1.816 4.68E-02 1,696 661.894 1.037 No

B. Novel TUM-associated genes

ENSG00000275131 100996724 LOC100996724 530.713 22.403 1.68E-202 209 101.384 21.559 NA

ENSG00000228300 55009 C19orf24 902.906 2.168 2.66E-125 570 1,259.788 1.551 NA

ENSG00000171159 79095 C9orf16 1,112.627 2.053 4.52E-124 580 1,660.790 2.143 NA

ENSG00000104979 28974 C19orf53 1,469.692 1.903 4.41E-119 621 1,864.643 1.721 NA

ENSG00000203872 206412 C6orf163 79.166 22.417 5.93E-117 645 19.362 21.621 NA

ENSG00000214135 220729 LOC220729 1,098.117 21.794 5.07E-106 754 409.982 21.629 NA

ENSG00000146540 84310 C7orf50 1,452.373 1.943 2.02E-103 788 1,615.394 1.981 NA

ENSG00000182307 65265 C8orf33 2,008.964 1.829 5.23E-66 1,395 2,294.042 1.453 NA

ENSG00000101220 54976 C20orf27 1,169.788 1.938 2.56E-60 1,523 1,374.851 2.543 NA

ENSG00000204387 50854 C6orf48 1,645.618 1.724 7.24E-60 1,539 1,680.028 2.180 NA
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(172 genes), and HLT-associated expression (2,001 genes) were
defined with over- and underexpression combined within each
category (Figure 4a). Clustering results confirmed the utility of
pattern-based categories (Figure 4b).

To identify biological processes that could be modulators of
malignant potential in NAT tissue, gradient and TUM-associated
genes were pooled and evaluated for hallmark gene set enrichment
and for predicted transcription factor regulation. Late-phase es-
trogen response (NES5 2.94, P-adj5 1.63E-02), increased KRAS
signaling (NES 5 2.30, P-adj 5 1.83E-02), epithelial to mesen-
chymal transition (NES 5 2.26, P-adj 5 1.83E-02), and TNF-a
signaling (NES5 2.08, P-adj5 2.92E-02) were the gene sets with
highest enrichment (Figure 4c; see Table ST6, Supplementary
Digital Content 2, http://links.lww.com/CTG/A316). Tripartite
motif-containing 28 (TRIM28) and SRY-box 2 (SOX2) were the
transcription factors with the highest probability of regulatory ef-
fect (Irwin-Hall P5 3.29E-05 and P5 5.74E-05, respectively) (see
Table ST7, Supplementary Digital Content 2, http://links.lww.
com/CTG/A316). Interestingly, TRIM28 and SOX2 were overex-
pressed in TUM samples (P-adj5 1.47E-28 and P-adj5 1.55E-17,
respectively) but not in NAT samples relative to HLT samples.

Given establishedmodulatory relationships between the gene sets
of highest enrichment and CRC (30–33) and between the predicted
transcription factors and CRC (34,35), a representative set of core
field effect genes with coherent expression and related biological
processes was sought. Genes contributing most to the enrichment
scores of the 4 gene sets with highest NES were selected for in-
dependent validation as field effect genes. Of the 33 unique genes
from the leading edges of the 4 sets, 20 were found to have the same
direction of relative expression between NAT and HLT samples in
cohortC, as observed incohortA(Table 2,A).The relative expression
of 9 of the 20 reached statistical significance at a transcriptome-wide
level in cohort C despite the small number of HLT samples in that
cohort. An additional 11 of the 33 had detectable but statistically
indeterminate expression in cohortC, as indicated by a test statistic of
zero.Only 2of the 33varied in the opposite direction in the validation
cohort, and neither was statistically significant.

To ascertain whether age discrepancies across phenotypes bi-
ased the effect of phenotype on expression levels of the 20 validated
field effect genes, the correlation between age and expression for
each of the 20 genes was investigated as detailed in the Supple-
mentary Methods (see Supplementary Digital Content 1, http://
links.lww.com/CTG/A315). The effect of age did not seem to bias
the effect of phenotype (see Figures SF3 and SF4, Supplementary
Digital Content 3, http://links.lww.com/CTG/A317).

Amongvalidated genes, severalwere recognized as possible drivers
ofCRC, including amphiregulin (AREG), early growth response 1 and
2(EGR1andEGR2, respectively), gremlin-1 (GREM1), andSRY-box9
(SOX9). Confirmation of these potentially oncogenic expression pat-
terns in NAT samples was sought in another population-scale tran-
scriptomeprofiling study.Becauseof the inclusivenatureof thismega-
analysis, there were no additional RNA-seq data sets available for
comparison. However, of the 20 validated field effect genes, 11 had
been previously found to be differentially expressed across NAT and
HLT samples in the same direction in a microarray data set (Table 2,
A, “affyU219_confirm”) (12). The microarray study provided a sec-
ond level of independent biological validation and a technical vali-
dation with a different experimental assay.

A quantitative assessment of the association between field
effect and distance from tumor was not possible in this study
because of limited information regarding distance from tumor forT
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NAT samples, but a qualitative evaluationwas attempted andwas
inconclusive (see Supplementary Methods, Supplementary Dig-
ital Content 1, http://links.lww.com/CTG/A315).

Novel tumor-specific expression

Based on the observation that important biological pathways were
dysregulated in NAT samples in TUM-like patterns, the possibility

that some TUM-specific molecular features could be masked by
field effect was tested as described in the Supplementary Methods
(see Supplementary Digital Content 1, http://links.lww.com/CTG/
A315). The difference between DGE using NAT and HLT samples
as controls in comparisons against TUMsamples suggested that the
field effect could mask important TUM-specific metabolic features
(Figure 5a,b). Furthermore, a set of underannotated genes not

Figure 5. Healthy controls. (a) Scatterplot of transcriptome-wide LFC between TUM and control samples, where control samples are HLT (x axis) or NAT
samples (y axis). Colors indicate genes potentially masked (green), misleadingly highlighted (bluish-green), or unaffected (red) by field effect. (b) GSEA
results for the 3,856 genes differentially expressed specifically between TUM andHLTand not between TUMandNATsamples; darker colors demonstrate
enrichment at FDR 5% in both HLT specific and TUM vs NAT DGE results. Purple and red show discordant and concordant results, respectively. Only
hallmark sets with absolute NES.1.5 are shown. (c) Box plots of batch-adjusted counts for C9orf16, 1 of 23 novel TUM-specific genes discovered in this
mega-analysis. (d) Overall survival curves forC9orf16 high- and low-expression groups from previously published TCGAdata downloaded from theHuman
Protein Atlas. FDR, false discovery rate; GSEA, gene set enrichment analysis; HLT, healthy; LFC, log2 fold change; NAT, normal-adjacent-to-tumor; NES,
normalized enrichment score; TCGA, The Cancer Genome Atlas; TUM, tumor.
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previously known to be dysregulated in a TUM-specific patternwas
revealed after adjustment for field effect. This set included C9orf16,
which was previously shown to be prognostic in CRC (Figure 5c,d).
The previously reported prognostic value of C9orf16 was rede-
monstrated after adjusting for age and tumor stage (P5 2.78E-3) as
described in the Supplementary Methods (see Supplementary
DigitalContent 1, http://links.lww.com/CTG/A315andFigures SF7
and SF8, Supplementary Digital Content 3, http://links.lww.com/
CTG/A317), which the previous report did not show.

DISCUSSION
There is mounting evidence that histologically normal mucosa
adjacent to tumors is molecularly distinct from healthy mucosa in
the absence of cancer (6–13). The transcriptomic features of that
distinction are important for posttreatment surveillance and could
also be useful for screening, initial diagnosis, and therapy. In this
study, a comprehensive description of transcriptional features in
normal-appearinghealthy, normal-appearing tumor-adjacent, and
tumor colorectal tissue was obtained in a joint analysis of pooled
RNA-seq data sets combining a novel cohort with all human co-
lorectal samples available in the Genomic Data Commons and
Sequence Read Archive. Tumor-adjacent tissue was found to be
more similar to healthy tissue than to cancer tissue in global
transcriptional variation. However, tumor-adjacent tissue was
found to harbor some transcriptional features of cancer that might
be important modulators of malignancy. Furthermore, normal
colon mucosa from healthy controls was used to identify novel
TUM-specific gene expression.

This study is the largest to date to investigate transcriptome-
wide effects of CRC on adjacent, histologically normal mucosa
using RNA-seq. The results are the first to demonstrate the con-
sistent overexpression of 20 TUM-associated genes in histologi-
cally normal tissue sampled adjacent to tumors. Remarkably, genes
contributing to established oncogenic pathways, such as epidermal
growth factor receptor (EGFR) signaling (e.g.,AREG), early growth
response (e.g., EGR1 and EGR2), and stem cell maintenance and
differentiation (e.g., GREM1 and SOX9), were among the genes
dysregulated innormal-appearing tissue.AREG encodes a ligandof
EGFR, which activates signaling pathways that modulate cellular
proliferation and apoptosis. EGFR is the target of monoclonal
antibodies in the treatment of metastatic CRC, and AREG ex-
pressionmight be a useful biomarker for therapy response in select
populations (36). EGR1 and EGR2 are transcription factors in-
volved in regulation of differentiation and apoptosis. EGR1 was
shown to promote tumor cell growth in experimental models, and
higher expression levels in tumor were associated with decreased
disease-free survival in a CRC cohort (37).GREM1 encodes a BMP
antagonist ectopically and highly expressed in hereditary mixed
polyposis syndrome (38). In healthy tissue,GREM1 is expressed in
subepithelial myofibroblasts, and secretion of its protein contrib-
utes to maintenance of the stem cell niche at the crypt base by
permitting Wnt signaling. Overexpression of GREM1 in histo-
logically normal tissue would be expected to potentiate malignant
transformation. SOX9 is also involved in Wnt signaling and epi-
thelial homeostasis and has been shown to affect goblet cell lineage
and colonic morphology in mice (39). Dynamic monitoring of
expression levels of these genes in unresected tissue could add
prognostic information postoperatively.

This study is also thefirst to identify novel genes associatedwith
CRC that can be consistently masked by the field effect, including
23 genes that, to the authors’ knowledge, have not previously been

shown to vary in TUM samples compared with control samples.
Intriguingly, expression levels of 2 such genes, C9orf16 and
C7orf50, were previously associated with overall survival in CRC
and pancreatic cancer, respectively (40). Neither the function nor
the oncogenic role of either gene is known,making them attractive
targets for further characterization. Thus, this study not only
provided provocative insights into the molecular features of his-
tologically normal tissue adjacent to tumors but also revealed novel
genes dysregulated in CRC for future investigation.

These results are important, because they provide a set of
candidate genes that might be useful for determination of distal
margins for low-lying rectal cancers and for posttreatment sur-
veillance and they indicate a molecular basis for metachronous
lesions in ostensibly normal tissue. Furthermore, they demon-
strate that the use of matched tumor–normal pairs in the study of
CRC, which is common and has yielded biological insights (41),
is, nevertheless, influenced by field effect bias.

Limitations of this study included a potential for batch effects to
drive spurious results and insufficient information for quantitative
assessment of the spatiotemporal extent of the field effect in CRC.
The influence of batch effect was reduced in multiple ways, in-
cluding implementation of a common bioinformatics pipeline for
gene quantification, establishment of appropriate eligibility and
inclusion criteria, latent factor estimation with SVA, inclusion of
surrogate variables as covariates in primary regression models for
cohorts A andC (42), use of curated hallmark gene sets to interpret
results, and validation of methods and results in independent co-
horts. Determination of the spatiotemporal dimensions of field
effect in CRC requires new data and is an important goal of the
authors’ future work.
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Study Highlights

WHAT IS KNOWN

3 Metachronous colorectal cancer is a risk to colorectal cancer
survivors.

3 Colonoscopy is recommended for posttreatment surveillance.

WHAT IS NEW HERE

3 Adistinct transcriptomic profile characterizes tumor-adjacent
tissue despite normal histologic appearance.

3 Cancer-related gene expression that might help explain
metachronous lesions is present in tumor-adjacent tissue.

3 Adjustment for field effect can reveal novel tumor-specific
gene expression in transcriptome profiling studies.

TRANSLATIONAL IMPACT

3 Molecular assays could complement colonoscopy in the
setting of posttreatment surveillance.

3 Molecular assays could help define safe distal margin for low-
lying rectal cancer.
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