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Abstract 

 

Robot-assisted surgical systems are becoming increasingly common in medical procedures as they embrace many 

of the benefits of minimally invasive surgery including less trauma, recovery time and financial costs associated to 

the treatment after surgery. These robotic systems allow the surgeons to navigate within confined spaces where 

an operator’s human hand would normally be greatly limited. This dexterity is further strengthened through motion 

scaling, which translates large motions by the operator into diminutive actions of the robotic end effector. An 

example of this is the Da Vinci System which is coupled to the EndoWrist end effector tool.  
 

Nevertheless, these systems also have some drawbacks such as the high cost of the surgery itself and the lack of 

tactile or haptic feedback. This means that as the surgeon is performing the procedures outside the patient’s body, 

he/she can not feel the resistance of the human tissue’s when cutting. Therefore, one can risk damaging healthy 

tissues if force is not controlled or, when sewing, one can exert an exaggerated force and break the thread.  
 

In this project, a new system is created based on the UR5 robot (Universal Robots) and an EndoWrist needle to 

mimic the behaviour of the Da Vinci System and implement some improvements regarding the manoeuvrability 

and haptic feedback performance.   



 

  

Index 

List of figures .......................................................................................................................................................... 6 

List of tables ........................................................................................................................................................... 7 

1. Introduction .................................................................................................................................................. 8 

1.1. Objectives ............................................................................................................................................. 8 

1.2. Scope and span .................................................................................................................................... 9 

1.3. Methodology ....................................................................................................................................... 10 

2. Background ................................................................................................................................................ 11 

2.1. State of the art of robotic arm assisted surgery ................................................................................... 11 

2.2. Da Vinci Surgical System research ..................................................................................................... 12 

2.3. Maneuverability performance .............................................................................................................. 15 

2.4. State of the situation and future development ..................................................................................... 15 

3. Market analysis .......................................................................................................................................... 17 

3.1. Historical evolution of the market ........................................................................................................ 17 

3.2. Current situation of the market ............................................................................................................ 17 

3.3. Future perspective of the market ........................................................................................................ 19 

4. Regulatory and legal issues ..................................................................................................................... 20 

4.1. Hardware ............................................................................................................................................ 20 

4.2. Software .............................................................................................................................................. 20 

5. Concept of engineering ............................................................................................................................. 21 

5.1. Hardware solutions ............................................................................................................................. 21 

5.1.1. Robotic arms .................................................................................................................................. 21 
5.1.2. Servomotors ................................................................................................................................... 24 
5.1.3. IMU sensors ................................................................................................................................... 24 
5.1.4. Evaluation boards ........................................................................................................................... 25 

5.1.5. Haptic feedback user interface ....................................................................................................... 26 
5.1.6. Vibration motors and buzzers ......................................................................................................... 26 
5.1.7. Push buttons ................................................................................................................................... 27 

5.2. Software solutions ............................................................................................................................ 28 
5.2.1. Programming Software ................................................................................................................... 28 
5.2.2. Designing Software ........................................................................................................................ 28 

5.3. Proposed solution ............................................................................................................................... 29 

6. Detailed Engineering ................................................................................................................................. 31 

6.1. Hardware ............................................................................................................................................ 31 

6.2. Software .............................................................................................................................................. 35 

7. Experimental validation ............................................................................................................................ 39 



 

  

7.1. Assembly of the servomotors and the EndoWrist tool ......................................................................... 39 

7.2. Final setup with the UR5 robot ............................................................................................................ 39 

8. Technical feasibility................................................................................................................................... 41 

8.1. SWOT analysis ................................................................................................................................... 41 

9. Execution schedule ................................................................................................................................... 43 

9.1. Work Breakdown Structure (WBS) ...................................................................................................... 43 
9.1.1. Dictionaries and duration of activities ............................................................................................. 43 

9.2. GANTT chart ....................................................................................................................................... 45 

10. Economic viability ................................................................................................................................. 47 

11. Discussion and conclusions ................................................................................................................ 49 

11.1. Achieved objectives and results .......................................................................................................... 49 

11.2. Future opportunities ............................................................................................................................ 50 

12. Bibliography .......................................................................................................................................... 51 

13. Appendixes ............................................................................................................................................ 54 

13.1. Appendix 1: Transmission of the RPY angles from the pen to the servomotors (Arduino IDE) ........... 54 

13.2. Appendix 2: Transmission of the RPY angles from the pen to the servomotors (RoboDK) ................. 56 

13.3. Appendix 3: Acquisition and visualization of the RPY angles from the haptic pen (Arduino IDE) ....... 59 

13.4. Appendix 4: Acquisition and visualization of the RPY angles from the haptic pen (RoboDK) ............. 61 

13.5. Appendix 5: Transmission of the RPY angles from the PC to the servomotors (Arduino IDE) ............ 64 

13.6. Appendix 6: Transmission of the RPY angles from the PC to the servomotors (RoboDK) .................. 67 

13.7. Appendix 7: Transmission of the RPY angles from the PC to the servomotors -sliders (RoboDK) .... 69 

13.8. Appendix 8: Advancement of the TCP after pressing the pushbutton (Arduino IDE) .......................... 71 

13.9. Appendix 9: Advancement of the TCP after pressing the pushbutton (RoboDK) ................................ 74 

13.10. Appendix 10: Opening of the needle jaws after pressing the pushbutton (Arduino IDE) ................. 78 

 



 

 

List of figures 

Figure 1. Zeus System components. Zeus Robot Arms in the left and the console in the right. ........................... 11 

Figure 2. Da Vinci S set up components. In order: Surgeon’s Console, the Surgical Cart and the Vision System.

 ............................................................................................................................................................................. 13 

Figure 3. The Da Vinci Single-Site platform [10]. .................................................................................................. 14 

Figure 4. NAVIO Surgical System handheld robot representation. Real time anatomic characterization in the right 

interfaces. ............................................................................................................................................................. 18 

Figure 5. UR5 robot from Universal ...................................................................................................................... 21 

Figure 6. UR6 robots in a hospital lab carrying out automatized tasks. ................................................................ 22 

Figure 7. Modus V, from Synaptive Medical, coupled to a robot arm from Universal Robots. .............................. 22 

Figure 8. Mover4 arm robot. ................................................................................................................................. 22 

Figure 9. Sawyer robot from Rethink Robotics. .................................................................................................... 23 

Figure 10. Servomotor prototypes under study A) Dynamixel AX-12A B) Longruner ky66. .................................. 24 

Figure 11. Phantom Omni haptic device. ............................................................................................................. 26 

Figure 12. Schematic diagram of the main modules composing the system. ....................................................... 30 

Figure 13. EndoWrist end effector needle ............................................................................................................ 31 

Figure 14. Working setup. .................................................................................................................................... 31 

Figure 15. Illustration of how roll, pitch and yaw are measured in the human hand. ............................................ 31 

Figure 16. (Left) References of the disks. (Right) RPY movements of the tool. Photographs taken by Arturo 

Yscadar. ............................................................................................................................................................... 32 

Figure 17. Motion of the needle driver. A. Roll. B. Pitch. C. Yaw. ......................................................................... 32 

Figure 18. Example of the needle driver opening. ................................................................................................ 33 

Figure 19. Overview of the entire circuit. Picture taken by the author. ................................................................. 33 

Figure 20. Electrical circuit of A. Servomotor. B. Pushbutton. .............................................................................. 34 

Figure 21. Electrical design of the PCB with Kicad. .............................................................................................. 34 

Figure 22. Design of the haptic pen with the ESP32 and the PCB inside. ............................................................ 34 

Figure 23. Part of the Arduino code showing the transmission of the motion to the servomotors. ....................... 35 

Figure 24. Diagram of the RPY angles on the haptic pen and the IMU. ............................................................... 36 

Figure 25. Workflow of software A. Acquisition and visualization of the RPY angles of the pen haptic. ............... 36 

Figure 26. RoboDK program showing the TKinter interface of RPY acquisition and representation. ................... 36 

Figure 27. Introduction of the RPY angles in the RoboDK interface A. from the terminal B. Through a slider (Tkinter)

 ............................................................................................................................................................................. 37 

Figure 28. RoboDK representation after a 45-degree rotation of each servomotor. ............................................. 37 

Figure 29. RoboDK representation of the advancement in X-axis. ....................................................................... 38 

Figure 30. Arduino code describing the opening of the needle when pushbutton is pressed. .............................. 38 

Figure 31. Mechanical solution to gear the servomotors with the EndoWrist disks. ............................................. 39 

Figure 32.  Plastic piece supporting the EndoWrist, servomotors and a camera. ................................................. 39 

Figure 33. Pictures of the final setup with the UR5 robot...................................................................................... 40 

Figure 34. Work Breakdown Structure of the project ............................................................................................ 43 

Figure 35. GANTT diagram .................................................................................................................................. 46 

 

  

file:///C:/Users/julia/Documents/EBM/4t%20curs/TFG%20Julia/Avantprojecte/TFG_Final.docx%23_Toc74508409
file:///C:/Users/julia/Documents/EBM/4t%20curs/TFG%20Julia/Avantprojecte/TFG_Final.docx%23_Toc74508411
file:///C:/Users/julia/Documents/EBM/4t%20curs/TFG%20Julia/Avantprojecte/TFG_Final.docx%23_Toc74508412
file:///C:/Users/julia/Documents/EBM/4t%20curs/TFG%20Julia/Avantprojecte/TFG_Final.docx%23_Toc74508413
file:///C:/Users/julia/Documents/EBM/4t%20curs/TFG%20Julia/Avantprojecte/TFG_Final.docx%23_Toc74508415
file:///C:/Users/julia/Documents/EBM/4t%20curs/TFG%20Julia/Avantprojecte/TFG_Final.docx%23_Toc74508417
file:///C:/Users/julia/Documents/EBM/4t%20curs/TFG%20Julia/Avantprojecte/TFG_Final.docx%23_Toc74508419
file:///C:/Users/julia/Documents/EBM/4t%20curs/TFG%20Julia/Avantprojecte/TFG_Final.docx%23_Toc74508420
file:///C:/Users/julia/Documents/EBM/4t%20curs/TFG%20Julia/Avantprojecte/TFG_Final.docx%23_Toc74508420
file:///C:/Users/julia/Documents/EBM/4t%20curs/TFG%20Julia/Avantprojecte/TFG_Final.docx%23_Toc74508427
file:///C:/Users/julia/Documents/EBM/4t%20curs/TFG%20Julia/Avantprojecte/TFG_Final.docx%23_Toc74508431
file:///C:/Users/julia/Documents/EBM/4t%20curs/TFG%20Julia/Avantprojecte/TFG_Final.docx%23_Toc74508431
file:///C:/Users/julia/Documents/EBM/4t%20curs/TFG%20Julia/Avantprojecte/TFG_Final.docx%23_Toc74508436


 

 

List of tables  

Table 1. Prices list of 2018. This budget includes the robot arm mover and a complete set of accessories [28]. 23 

Table 2. Description and comparison of each servomotor features. ..................................................................... 24 

Table 3. Description and comparison of the Inertial Measurement Units. The axis of motion depends on the 

components of the IMU, for example, the 9-axis IMU has a 3-axis gyroscope, 3-axis accelerometer, 3-axis 

magnetometer. ..................................................................................................................................................... 25 

Table 4.Description and comparison of the evaluation boards. ............................................................................ 25 

Table 5. Buzzer comparison. ................................................................................................................................ 26 

Table 6. Vibration motor comparison. ................................................................................................................... 27 

Table 7. Push buttons comparison. The SparkFun buttons data was found in the commercial announcements, 

although no datasheets were found. .................................................................................................................... 27 

Table 8. Comparison between software environments ......................................................................................... 28 

Table 9. Comparison between designing software’s ............................................................................................ 28 

Table 10. Proposed solution of hardware and software........................................................................................ 30 

Table 11. Descriptions of the tasks of the Final Degree Project. .......................................................................... 45 

Table 12. Project tasks with the corresponding duration and timings ................................................................... 46 

Table 13. Estimation of the cost of the project. ..................................................................................................... 48 

 

  



 

8  

1. Introduction  

 

1.1. Objectives 

 

Robot-assisted surgery is a minimally invasive surgical technique that supposed a revolution in the medicine’s 

field. However, its great complexity requires constant development of methods which improve and facilitate the 

procedures carried out during interventions. In the last years, the improvement of maneuverability and haptic 

feedback has become quite significant in the advancement of this instrumentation. 

 

The world-leader surgical robot system is the Da Vinci System (Surgical Intuitive, Inc.). This modern 

groundbreaking technology enables a robotic arm to precisely translate the movements performed by a surgeon 

through three main elements: a Surgeon’s Console, a Surgical Cart and a Vision System [1]. This project is focused 

on translating the movements from the Surgeon’s Console to the end-effectors with maximum precision and with 

no delay.  

 

The first objective of this project is to analyze the maneuverability performance of minimally invasive surgical 

robots, specifically the one implemented in the Da Vinci system: the EndoWrist end effector tool. This performance 

involves the speed at which the movement is transmitted from the motors to the end effector (the tweezers), the 

precision with which the robotic arm tries to mimic the surgeon’s maneuvers, the stability of the movement and the 

tremor filtering. This study is made to comprehend the functioning of the Da Vinci System in order to be able to 

reproduce the maneuverability performance in our lab, by means of the UR5 (Universal Robots) and a set of end-

effectors which will be designed by a Mechanical Engineer from Escola Universitària Salesiana de Sarrià (EUSS). 

Furthermore, this project is also carried out along with another Biomedical Engineering student in charge of 

analyzing the haptic feedback of the Da Vinci System.  

 

To accomplish the main goal, one has to get acquainted with the functioning of the surgical robotic systems 

regarding the hardware elements that make possible the reproduction of the movement as well as the software 

interface that reads and transmits the information. With this purpose, several hours have been spent in the 

laboratory of the Faculty of Physics during the development of this Final Degree Project. However, due to the 

COVID-19 pandemic and the specific and controlled usage of the Da Vinci robot, students were not allowed to 

enter the clinical facilities. Therefore, one could not see the system in-person and properly analyze its properties 

and performance in-vivo.  

 

An in-deep study of the different software frameworks or robotics middleware such as the RoboDK, Arduino or 

Robotic Operating System (ROS) will be examined. Furthermore, different robotic arms will be examined, specially 

UR5 (Universal Robots) which is the one available in the facilities. At the end, one will assess which is the most 

suitable configuration (of both software and hardware components) that allows a better performance in terms of 

maneuverability. 

 

The final purpose of this project is to design a haptic pen tool (which will be fabricated by 3D printing) capable of 

mimicking the surgeon movements. This pen will be designed with some extra capabilities to improve both the 

maneuverability and the haptic feedback. In one hand, a pair of push buttons will be installed to manipulate the 

needle and the end effector tool’s advancement. On the other hand, a buzzer and a vibration motor will be coupled 
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to the pen to provide the surgeon with a sensorial perception that an excessive force is being exerted. Taking all 

this into account, one will evaluate the capabilities of UR5 robot attached to the EndoWrist by a designed 3D 

printed piece and compare it to the motion capabilities accomplished by current surgical robots such as Da Vinci 

Robotic System. Finally, an economic study on the cost of the instrumentation needed will have to be fulfilled.  

 

To sum up, the following list exemplifies the different aims this project aspires to accomplish:  

 

- Familiarizing with the minimally invasive surgery robots. 

- Learning about the performance and interface necessary for this purpose: Robotic Operating System 

(ROS), Arduino IDE and RoboDK. 

- Comparative study of the capabilities among different surgical robots currently used in the market

- An exhaustive analysis of the hardware components and software environments that can be implemented 

in these technologies.   

- Development of the programming code with Arduino and RoboDK that transmits the RPY angles from the 

computer to the servomotors (end effector tool) and vice versa.  

- Development of the programming code with Arduino and RoboDK that controls the push buttons: 

advancement of the EndoWrist in the direction of motion and tweezer’s opening and closing.  

- Mechanically assembly of the arm and the end-effector with the 3D printed pieces from EUSS.  

- Final validation and evaluation of its performance in the laboratory. If conditions are met, recording of the 

interlocking of the servomotors with the EndoWrist gears and overall performance of the system.  

 

1.2. Scope and span 

 

The extent of this project includes the accomplishment of all the previously described objectives. Nevertheless, as 

a Final Degree Project there are considerable restrictions in time, space, cost and knowledge of the author that 

should be considered.   

 

With regards to the time limitation, as this project is less than a year length, it will mostly be based on the research 

study of the different solutions and the premature designs of the prototype. If favorable conditions of time and 

economic viability were met, its further development with finest materials would be executed in the future.  

 

As the Da Vinci device is enormously high priced, one cannot risk damaging it with an unfortunate software or 

hardware modifications. Therefore, all the tests are made with EndoWrist tools in abeyance which are available in 

the Physics laboratory. Besides, one has not enough technical knowledge to manipulate the actual machine so 

the checking of the most suitable solutions and programs will have to be performed through simulations.  

 

Although the uncertainty of the COVID-19 pandemic prevented the author from visiting the hospital, which 

supposed an important drawback or, at least, implied a slowdown in the progress of the project; one could benefit 

of all the facilities and resources provided by the Electronics and Biomedical Engineering Department of University 

of Barcelona’s Physics’ Faculty.  
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1.3. Methodology  

 

With the objectives, scope and span clarified, the background will be introduced with information regarding to the 

state of the art of robot-assisted surgery specially the Da Vinci system performance. Next, we will analyze the 

market of surgical robots in order to familiarize with this field and with the technical features that characterize them. 

Then, the regulatory and legal issues will be approached.  

 

Considering all the background information and the challenges that the prototype should overcome, one will study 

different robotic arms that could fulfil the final goals of this project. Once a solution is chosen, one will proceed to 

examine its strengths, weaknesses, opportunities and threats (SWOT analysis). Finally, the execution schedule 

will be described in order to have a proper planning on the project that optimized the time and effort of the people 

involved. The general budget required to carry out the project will be detailed at the end.  

 

As can be seen in the Work Breakdown Structure (WBS), the methodology of the project is divided in four parts: 

an educational stage, a hardware and software stage, an experimental stage, and the final discussion stage. Each 

block has slightly different methodologies from the theoretical research of information regarding the robots, the 

learning of programming techniques through programming tutorials, the assembly of the mechanical components 

or the writing of the memory in the final part.   

 

The practical part of the project will be carried out in the Electronic and Biomedical Engineering Department of the 

faculty of physics, where different approaches of the maneuverability and haptic technology will be analyzed, the 

UR5 robot performance will be tested, the 3D printed designs will be unified with the electronical circuits and after 

all, we will better understand its strengths and limitations. All materials needed for the project, belong to the 

laboratory of the faculty.  
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2. Background 

 

2.1. State of the art of robotic arm assisted surgery 

 

A procedure is considered to be surgical when it involves cutting a patient’s tissues or closing a previously 

sustained wound. With the passage of time, many revolutions have occurred in this field such as the introduction 

of anesthesia in the 19th century, the first successful organ transplantations during the 20th century or the arrival of 

robotic surgery at the end of the 20th century as well. Although nowadays robotics is widely and routinely used, its 

entrance in the field of medicine has been slow and progressive.    

 

Robotic surgery, or robot-assisted surgery, is a still emerging technology that allows minimally invasive procedures. 

This generates a great interest among health professionals because it means, fundamentally, shorter 

hospitalization and faster recovery of the patients [2]. On top of that, there is a reduced risk of infection, less blood 

loss and less scarring.  

 

Authors often differ in the definition of the first robotic prototype as the way we know it. Nevertheless, for most of 

them, it is considered to be the PUMA (Programmable Universal Machine for Assembly) 560 robotic system, which 

was employed at 1985 in a neurosurgical biopsy. This served as a starting point for many companies and 

universities to develop robotic systems such as PROBOT, specialized in transurethral resection of the prostate; 

ROBODOC for hip replacement surgeries, the robotic arm AESOP (Automated Endoscopic System for Optimal 

Positioning) controlled by voice commands to manipulate the endoscopic camera and so on. Later modifications 

led to the development of two recognized and rival systems: Da Vinci and the Zeus System, which are similar in 

their capabilities but different in their approach to robotic surgery [3]. 

 

The Zeus (Computer Motion, Inc., Goleta, Ca) is a three-armed platform that makes use of the AESOP camera: 

one arm holds the voice-controlled camera and the other two (controlled by the surgeon) are used to hold the 

surgical instruments. It has two separate hubs: the patient side where the procedure is done and the surgeon side 

controlling the first. It received the FDA approval for limited used in 2001 [4]. In the Zeus System (see Figure 1), 

both the monitor and handles are ergonomically positioned to maximize dexterity and allow complete visualization. 

The system allows the articulation of the end-effector through 7 degrees of freedom (DOF). [5] 
 

 
Figure 1. Zeus System components. Zeus Robot Arms in the left and the console in the right.  

There are three main types of robotic systems currently in use in the surgical field: active, semi-active and master-
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slave systems:  

- Active systems: the robot essentially works autonomously, or undertakes pre-programmed tasks, under 

the supervision of the surgeon. These systems are able to recognize the changes in the environment and 

organize its duties accordingly. An example of an active system is the ROBODOC.  

- Semi-active systems: the robot’s total autonomy is combined with a surgeon-driven element. Neuromate 

is an image-guided robotic system used in stereotactic surgery [6] 

- Master-slave systems lack of any pre-programmed or autonomous element. They allow the surgeon to 

directly telemanipulate the robot from a remotely placed command center. In this situation, the surgeon’s 

hand movements are transmitted to the surgical end-effector instruments. Zeus and Da Vinci were the 

forerunners in the master-slave category.  

 

Master-slave systems are also known as passive robots since it is the doctor who provides the motion inputs. The 

control of the system is achieved by using these inputs in its control algorithm during surgery. One of its most 

outstanding advantages is that it scales the motion received from the master system to increase the sensitivity of 

the slave system. In addition, it can have six or more DOF so the surgeon can enter inputs not only from his/her 

hands but also from fingers and elbow. Hence, flexibility increases. One of the most difficult challenge is to keep 

the hands steady during the entire surgical procedure. This problem can be improved by filtering the tremor with 

the master system and, although the surgeon’s hand can shake, the robot remains steady inside the patient’s 

cavities.  

More about the advantages, as well as limitations, of these surgical robots will be addressed in the state of the 

situation section. 

 

2.2. Da Vinci Surgical System research  
 

The Da Vinci system is a sophisticated robotic platform designed to expand the surgeon’s capabilities in minimally 

invasive option for major surgery. The first prototype was introduced in 2000 by Intuitive Surgical and it was 

approved by the FDA at the same year. During these two decades, medical institutions have been evaluating the 

clinical and economic benefits of the robot – there are now more than 21.000 reviewed published articles that 

support the safety, efficacy, and benefits of Da Vinci surgical systems. In fact, the single port Da Vinci platform is 

now in use in more than 40 centers [7].  

 

The complexity of this kind of technology, both electrically and mechanically, requires an environment far from the 

traditional operating room (OR). As a matter of fact, all the personnel present in the OR (nurses, technicians, or 

surgeons) must be trained to manage the equipment. This way, problems that emerge during the surgery can be 

easily identified and solved by any member of the team.  

 

From its introduction in the market, there has been many generations of this surgical system: the Standard Da 

Vinci (which was introduced at 2000 although its commercialization stopped seven years later) only had three 

robotic arms, whereas S model (introduced at 2006), Si model (2011), Xi model (presented in April of 2014), X 

model (approved on April of 2017) and Single Port (2018) all have four arms.  

 

Da Vinci Systems allow the introduction of miniaturized wristed instruments and a high-definition 3D camera. The 

system cannot be programmed nor can make decisions on its own, it requires that every surgical maneuver is 
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performed with direct input from the surgeon. Even though every generation adds further improvements, all four-

armed systems basically consist on [1]:  
 

- Surgeon’s Console: from this element the surgeon can manipulate the arms of the robot. The individual 

grabs two handles which position and orientation trigger highly sensitive motor sensors that transfer the 

information to the end-effector tool. In addition, some models incorporate foot pedals to control 

electrocautery, camera focus and instrument/camera arm clutches.  
 

- Surgical Cart provides 3 degrees of freedom (pitch, yaw, insertion). Attached to the robot arm is the 

surgical instrument, the tip of which is a mechanical cable-driven wrist (EndoWrist) which adds 4 more 

degrees of freedom (internal pitch, internal yaw, rotation, and grip).  
 

Intuitive Surgical patented EndoWrist instruments which are designed to provide natural dexterity through 

several accessories such as scissors, graspers, needle holders, monopolar cautery instruments, clip 

appliers, scalpers, etc. All these tools provide the total 7 DOF, 90º of articulation, intuitive motion, fingertip 

control, motion scaling and tremor reduction. The wrist-like movement, responsiveness and robotic control 

afforded by the Da Vinci and its exclusive EndoWrist instruments provide surgeons fluid ambidexterity and 

unparalleled precision.  
 

The patient cart rolls on wheels and is moved and positioned over the patient. The robotic arms are 

designed like the human arm with a shoulder, an elbow and a wrist. The patient cart is connected through 

wires to the surgeon’s console but before positioning the cart, It must be covered by an additional sterile 

coat to prevent coming into contact with non-sterile objects.  
 

- A Vision System controls the whole network that resides in the surgeon’s console. It is an image 

processing computer that generates a 3-dimensional image with depth of field. The 3D camera is attached 

to the 4th robotic arm, which magnifies the surgical site. The vision cart consists on a left eye camera 

control unit, a right eye camera control unit, a light source, video synchronizer and focus controller, 

assistant monitors…  
 

We must consider that in the operating room there is the surgeon working from the computer console and the 

surgical team supervising the robot at the patient’s bedside. In the following image (Figure 2), we can observe all 

the elements of the Da Vinci from left to the right in the order one has just explained: 

 

 
Figure 2. Da Vinci S set up components. In order: Surgeon’s Console, the Surgical Cart and the Vision System. 
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In this Final Degree Project, one will focus on the fourth generation of the Da Vinci Systems since it is the one 

Hospital Clinic adopted. The Da Vinci X surgical robot was designed to be more affordable while still providing 

most of the abilities of the principal model. It is something in between the earlier Si model and the Da Vinci Xi. The 

Da Vinci Si is able to roll in on a side cart, letting surgeons perform procedures more precisely with its array of 

mechanical arms. On the other hand, the Da Vinci Xi not only upgraded those arms with better movement, reach 

and dexterity, but moved them from a side cart to an overhead arrangement.  

 

From that vantage point, Intuitive Surgical arguments the robot has better access to more parts of the body. The 

key of the price reduction lies on the fact that Da Vinci X takes the improved arms and instruments of the Xi model, 

into a cart like the Si. This modification which eases the finance of the robot, sacrifices the ability to perform 

procedures in several parts of the body at the same time. However, it differs from the Si in the voice and laser 

guidance systems or the lightweight endoscope.   
 

The Da Vinci SP (Single Port) is described by Intuitive as a single arm that delivers three multi-jointed instruments 

and a fully wristed 3DHD camera for visibility and control in narrow surgical spaces. This novel set includes four 

cannulas (two curved and two straight) and an insufflation valve, which inflates the abdominal cavity with CO2. 

The curved cannulas allow the controlled instruments to be positioned to achieve triangulation of the target 

anatomy (which is accomplished by crossing curved cannulas midway through the access port). Alternatively, one 

of the straight cannulas accommodates the endoscope whereas the other one serves as a bedside-assistant port. 

The second part of the platform is a set of semirigid, non-wristed instruments with standard Da Vinci instrument 

tips [8]. In the next illustration (Figure 3), the configuration of the multichannel access port can be exhaustively 

examined:  

 
Figure 3. The Da Vinci Single-Site platform [10]. 

Currently urological procedures like prostatectomies, cystectomies and nephrectomies are performed with the Da 

Vinci. Therefore, one can affirm that urology has become a cutting-edge specialty in robotic surgery department. 

Moreover, the independently control of the camera meant a great improvement in this area since the urological 

cavities are extremely narrow.  
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2.3. Maneuverability performance  
 

Robot-assisted surgery has several advantages as well as limitations. Regarding the shortcomings associated, 

one has already explained that it has low accessibility due to the high price of the installation and maintenance 

(reason why the cost-effectiveness of these devices is frequently questioned), the large space the robot occupies 

or the previous training of the surgeon and assistant personnel [9]. But there are more technical difficulties resisting 

the fully acceptance of the Da Vinci System. As one can imagine, the setup of the entire platform prolongs the time 

of operation, its large dimensions compromise the access to the surgical site, the lack of tactile/haptic feedback 

sensation creates mistrust among the users, the need to undock and re-dock for patient positioning and so on. 

Besides, the robot is a mechanical device that can malfunction any time.   

 

However, the aim of this project is to attack another aspect of the device: its dexterity, haptic feedback and 

maneuverability performance. In surgical terms, maneuverability is defined as the ease of making error-free 

movements in all possible surgically intended planes, directions, and degrees of motion. This can be quantitively 

measured by the index of maneuverability [10], which examines how close the actual responses are from the ideal 

one.  

 

In previous sections, one has exposed the different classes of surgical robots (active, semi-active and passive). 

This classification can be understood as well based on the robot’s design, maneuverability, and degree of 

autonomy [11]:  

 

- Passive systems: the robotic arms are unactuated and lack of any autonomy. They possess the lowest 

degree of maneuverability. 
   

- Semi-active systems: the power supply is cut-off during critically demanding tasks so as to limit their 

motion in certain restricted or delicate anatomical spaces within the patient. These manipulators are still 

limited by their lack of maneuverability and in terms of total number of DOF.  
 

- Active systems: all joints are actuated and intrinsically capable of performing one or more parts of planned 

or assigned tasks. The manipulator is capable of bending along its entire length as mimicking biology. 

Thus, it possesses maximum degree of maneuverability with a much larger number of degrees of freedom.  

 

Before robotics, there were conventional video endoscopic techniques that, although being revolutionary, were 

hampered by limited instrument maneuverability and 2D visualization. These shortcomings took away the wrist-

like motion of the human hand and the depth perception of human eyes. Years later these capabilities were 

returned to the professionals with the introduction of surgical robots, concretely by virtue of wrist-like instrument 

maneuverability and 3D visualization. Likewise, robotic arms fitted with EndoWrist instruments offer seven degrees 

of freedom and allow an extended range of mobility, which enables a high degree of delicate maneuverability even 

within confined spaces. 

 

2.4. State of the situation and future development 
 

It is an undeniable fact that robotic surgery offers many benefits compared to open or traditional surgery. Some of 

them have already been mentioned but in this section, one will explore them in more detail.  

 

The major benefits for the patient include a shorter hospitalization, a clear reduction in the pain and discomfort 
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after the procedure, faster recovery time and return to normal activities, smaller incisions resulting in a reduced 

risk of infection, minimal scarring and reduced blood loss and transfusions.  

 

But not only does the robot improve the patient’s experience but also the surgeon’s performance. Among the 

advantages that the robot provides the surgeon there is greater visualization, enhanced dexterity, and more 

precision. It allows the surgeon to operate in very tight spaces in the body that would otherwise only be accessible 

through open (long incision) surgery. The surgeon is provided with better accuracy, flexibility and control thanks to 

the possibility of programming the device to aid in the positioning and manipulation of the instruments.  

 

Nevertheless, we must not forget that robotic surgery is a relatively new technology that keeps improving and 

evolving. It is analogous to the first computers, enormous and slow, and current phones which are tremendously 

fast and portable. In the same way, a similar cost and technology curve is expected for robotics in general [12]. Is 

just a matter of time that smaller machines, decision-making algorithms, augmented reality vision systems, better 

optics and sensory feedback emerge and shakes up traditional medicine again? Surgeons will have to incorporate 

robotics into their training, so that they can take advantage of this future opportunity.  
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3. Market analysis 
 

Robotics is the branch of engineering and science that deals with the design, manufacturing and use of mechanical 

virtual robots. In the last decades, it has been proved that this multidisciplinary field can be applied to the healthcare 

sector. The progress in robotics is re-shaping almost all fields of human activity by overcoming limitations in 

surgery, rehabilitation, assistance or facility management. In this section, one will provide a brief overview on the 

evolution of surgical robots in the market.  

 

3.1. Historical evolution of the market  

 

As one has exposed in the state of the art, many advances and models of robotic systems have led to the current 

situation. One of the key aspects in the development, progress and commercial success of the technology is the 

regulatory approval of the system. For example, it took ISS (Integrated Surgical Systems, Sacramento, CA, USA) 

6 years to gain the FDA approval of ROBODOC because it was difficult to prove its clinical benefits. Showing that 

the longevity of implants implanted with ROBODOC increased naturally, implied a long timeframe needed to 

assess the veracity of the claim. A shortened summary on the chronology of R+D (Research and Development) 

surgical robots is shown below [13]: 

 

- 1992: ROBODOC has the first surgical robot with FDA approval. 

- 1994: AESOP 3000 is FDA approved for laparoscopic surgery. 

- 1998: Dr. Friedrich Wilhelm developed an endoscopic camera. 

- 2000: Da Vinci System is FDA approved. 

- 2001: ZEUS robotic was FDA approved. 

- 2002: SOCRATES developed for remote telesurgery. 

- 2003: Merge of Da Vinci System and ZEUS. 

- 2007: SENSEI is FDA approved. 

- 2008: Mirosurge is developed in Germany. 

- 2010: SOFIE a robot with force feedback. 

 

As any other technology sphere, surgical robots are constantly being renewed. For this reason, some of these 

systems have become outdated or displaced by improved versions of new emerging companies. However, 

Intuitive’ success and dominance of the market, and first to market position, is leaving less space for competitors 

as the number of procedures addressed by Da Vinci increases. 
 

3.2. Current situation of the market 
 

Nowadays, many devices are out in the market with different surgical purposes. In this section, one will expose 

the current top surgical robots from different world leading companies in the health-tech sector.  

 

The most outstanding system is Da Vinci (S, Si, X, Xi, and SP) by Intuitive Surgical, the main powerhouse within 

robotic surgical systems. Among its specialties, there is urology, laparoscopy, gynecology, thoracoscopy general 

surgery and cardiac surgery. However, taking into consideration all the opportunities this system offers, the capital 

and operating costs must be taken into account too [14]. The Da Vinci surgical system ranges in price from $0.5 

to $2.5 million, depending on the model, configuration, and geographic location. To the basic cost of the device, 
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we must add the instrumental accessories ($200.000), the disposables and consumables per procedure ($2.500), 

the annual maintenance after first year warranty ($175.000) and the training of surgeons ($6.000 each), although 

the training of the first four surgeons is included in the purchase price of the robot. So the millions of dollars needed 

to afford the robotic system is not negligible and will be taken into account in the SWOT Analysis afterwards.  

 

Another robot is the Senhance Surgical System, a digital laparoscopic platform from Transenterix. The system 

consists of a multi-port robotic system that attempts to address the perceived weaknesses of Da Vinci offering 

similar surgeon control while providing 3D-HD vision, haptic feedback and surgeon camera control via eye 

movements [15]. It is based on a console platform consisting of a remote-control unit, manipulator arms and a 

connection node. Unlike Da Vinci recent generations, Senhance System comprises three arms. Besides, it uses 

reusable re-sterilizable instruments with “unlimited” uses, which has a positive impact on its cost in comparison 

with the competition. [16] 

 

NAVIO Surgical System from Smith & Nephew directly targets the orthopedic market, which is not covered by 

Intuitive Surgical Systems. As opposed to the already seen systems, this is a handheld robot (see Figure 4) that 

facilitates real-time characterization of bone and cartilage and allows accurate bone removal. This instrumentation 

is widely used in total or partial knee arthroplasties [17].  

 

 

Figure 4. NAVIO Surgical System handheld robot representation. Real time anatomic characterization in the right interfaces. 

Mazor X from Medtronic is a stealth robotic guidance system for spinal surgery. The power of the platform is the 

preoperative planning suite with 3D analytics and virtual tools that enables a predictable procedure with defined 

trajectories, preselected implants and no anatomical surprises. The software guides the surgical arm into position, 

translating the Surgical Plan to precision trajectory guidance thanks to the 6 DOF of the surgical arm [18]. Mazor 

X is indicated for precise positioning of spinal implants during general spinal and brain surgery; therefore it is 

neurosurgery oriented.  

 

In a different surgical branch, there is the Monarch system or ARES (Auris Robotic Endoscopy System) which is 

specialized in bronchoscopy diagnosis and therapy such as lung cancer. It has a remote control similar to a 

videogame that allows physicians to navigate the flexible endoscope to the periphery of the lung [19]. The Monarch 

platform (the first FDA cancer-approved robot on the market) belonged to Auris Health Inc until Johnson & Johnson 

acquired the company in 2019, asserting its position in the steadily growing field of surgical robotics.  

 

Medrobotics S-L developed Flex Robotic System, based on a flexible steerable scope that surgeons use to 

navigate around anatomical sites with an integrated 3D-HD vision system. Once it is in place, the scope can 
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become rigid to provide a stable platform through which flexible instruments can be deployed to perform 

procedures in a way that is not possible with line-of-sight approaches [20].  Initially approved for limited applications 

in otolaryngology, the system has received FDA approval for marketing in general surgery, gynecology and 

thoracic procedures. The differentiation value that this device offers is that it is carried out through natural body 

orifices, therefore it is even more minimally invasive.  

 

Many other robots from different companies in this sector have been developed to overcome limitations of 

traditional surgery or other devices already in the market. For example, the Bitrack system was developed to be 

an alternative to the current laparoscopic surgical robot Da Vinci (in terms of efficiency and accessibility). It 

incorporates a flexible, modular and open robotic platform that improves the effectiveness of today’s robotic 

surgery and makes it accessible to more hospitals around the world. It combines manual and robotic surgery, what 

is call Hybrid Minimally Invasive Surgery (HMIS) [21]. The new robot has already been technically validated in 

experimental models, used by surgeons from the Mayo Clinic (United States) and some Barcelona university 

hospitals: Clinic, Vall d’Hebron and Germans Trias. The project is being led by Rob Surgical, a spin-off created by 

IBEC and UPC in 2012.   
 

3.3. Future perspective of the market 

 

Attending the actual demands and growth of this field, it is clear that robotic surgery is here to stay. Intuitive Surgical 

dominates the industry despite its high initial and recurrent costs. This growth has prompted competitors to enter 

the field with new products that address some of the perceived weaknesses of the current offerings at lower costs. 
  

We can identify three evolutionary processes that would lead to another revolutionary breakthrough. The first is 

the level of invasiveness of the procedure. Many companies are pushing themselves to minimize the impact and 

trauma of the surrounding tissue, reducing the risk of infection, enhancing a quicker recovery and reducing even 

more the hospitalization period. The problem is that to fulfill this goal, some other problems arise such as the need 

of smaller tools with fewer DOFs or more limited manipulability.  

 

The second trend is associated to improve the visualization capabilities. Endoscopic cameras along with imaging 

modalities provide a view and representation of the anatomical structures. However, the physiology and function 

of the anatomy (neural activity, cardiac arrythmia, etc.) cannot be represented yet. Including this in the robotic 

system would be a significant improvement for many surgical branches. 

 

Finally, the third line of research is related to the automation and control over the execution of the surgery by 

the surgeon. This field can be attacked from two points of view: by improving the interface between the surgeon 

and the operating room or by enhancing the interface between the surgeon and the surgical site. The first approach 

refers to the possibility of making an entire OR fully automated so that there is no need of human presence, which 

it seems to be far from accomplishment.   
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4. Regulatory and legal issues 

 

There are currently a large number of surgical robotic systems on the market, ranging from the Da Vinci Surgical 

System (used for a wide spectrum of surgical interventions, including urology and gynecology procedures), to 

Smith & Nephew’s NAVIO Surgical System (used for orthopedic surgery).  

 

Surgical robots can fit both in the product model or can be classified as a medical device. But, what about the 

software required to operate the robot? Is it a component of the product or is the software itself a medical device? 

The manufacturer of the robot will be the responsible for deciding whether the robot is a medical device and, if so, 

the classification of that device, which depends on the level of risk associated, the intended purpose, how long is 

intended to be used and if it is invasive.  

 

Considering that this project is focused on robots as a medical tool for direct medical treatments, in the following 

sections one will describe the actual regulations of medical devices, which comprehend a wide range of technical 

requirements to be able to commercialize the product. In case a robot fulfils these standards, it will be able to 

obtain the FDA clearance (Food and Drug Administration of the United States of America) and/or the European 

Union certification (CE) to be commercialized in the respective continents.  

 

4.1. Hardware 

 

The International Organization for Standardization (ISO) is in charge of dictating the rules that regulate the market 

with the aim of normalizing it. Among the different areas that regulates, there is the medical field, in which it 

pretends to ensure the quality and safety of medical products. Some of the regulations already stablished are: 
 

- ISO 13485:2018 was designed to manage the quality of sanitary products, therefore it is related to Quality 

Management Systems. It specifies all the requirements about the design, the production, the installation 

and the service of this equipment [22]. This is a harmonized standard; hence it is recognized by the 

European Union and it must be complied in Spain.  
 

- ISO 10993:2018 document specifies the general principles governing the biological evaluation of medical 

devices within a risk management process. It assesses the biological safety of those devices that are 

expected to have direct or indirect contact with the patient’s body or to the user’s body (for the protection 

of the medical staff: gloves, masks…).  

 

Other regulatory standards of the medical device industry include the ISO 14971 (risk management), EU Medical 

Device Regulation (MDCG) and FDA regulations.  

 

4.2. Software 
 

The international standard IEC 62304 – medical device software – is a standard which specifies the life cycle 

requirements for the development of software within medical devices (when the software itself is a medical device 

or the software is an embedded or integral part of the final prototype). This functional safety standard covers the 

design and maintenance of software and provides a set of processes, activities and tasks to ensure safety. It is 

also harmonized by the EU and the US. 
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5. Concept of engineering 
 

For this draft, one will study different solutions regarding several hardware and software systems. Regarding the 

hardware solutions, one will analyze three robotic arms that could reproduce Da Vinci’s maneuverability behavior 

with an EndoWrist needle, coupled to the robot with a 3D printed piece designed by the team. Besides the robot, 

other components must be studied for the final prototype such as the servomotors, the IMU sensor, an evaluation 

board (EVB) and so on.  Finally, one will examine the different software options in order to choose the most suitable 

environment to create the programming code.  

 

5.1. Hardware solutions 
 

5.1.1. Robotic arms 
 

A “cobot” or collaborative robot is intended for direct human robot interaction within a shared space or where 

humans and robots are in close proximity. These robots are characterized by lightweight construction materials, 

rounded edges and an inherent limitation of speed, force, sensors and/or software to ensure a safe behavior. 

Collaborative robots are generally dedicated to performing repetitive manual jobs so that it automatizes the 

process. Unlike industrial robots, cobots are designed to work (even interact) with people and can be easily 

programmed thanks to an intuitive interface. A cobot could be an interesting option to work in a hospital 

environment due to its safety parameters and its preparation to work around people. Therefore, although one is 

seeking for a robot to be applied in the surgical field, one should mention that the automobile industry is the one 

leader in the use of cobots.  

 

In the following section, with the aim of selecting the most suitable robotic arm for our project, different collaborative 

robotic structures will be taken under study as well as some non-collaborative like Mover4. A considerable number 

of factors should be taken into consideration in order to properly select the best option. Not only referring to the 

economic viability, but also to the technical aspects of each solution. 
 
 

5.1.1.1. UR5 robot arm 

 

The UR5 from Universal Robots (UR) is a lightweight, aluminum robot with 

versatile a single arm. It possesses 6 degrees of freedom (six independent 

rotational joints), without a torso or an enclosing cage to keep it safely from 

humans [23], as can be seen in Figure 5. This robot complies point 5.10.5 of 

the standard EN ISO 10218-1:2006, which means that the robot may operate 

as a collaborative robot. It is not required to have safety guards between 

humans and the robot, which makes it possible to use the robot for medical 

applications. 
 

The robot provides a range of challenging grasping and reaching tasks. As 

one has said before, it has inherent limitations to ensure safety. This built-in 

safety mechanism includes stopping when the robot joint torque deviates from 

the expected torque, a protective stop is also generated if joint velocity 

exceeds 3.2 rad/s or if the external force exceeds 150 N and, finally, it has an emergency stop button.   

Figure 5. UR5 robot from Universal 
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The robot is lightweight (18 kg), compared to other industrial robots with similar features. For example, the ABB 

robot IRB 1200 weights 52 kg. Because it is lightweight, an impact with the robot would be less serious than for 

larger robots. The robot is connected to a computer, running the control algorithm using a direct Ethernet 

connection and a proprietary communication protocol.  

                
As for the role of UR5 in the healthcare field, one of the major challenges this industry faces are inefficiency and 

being subject to high human error in non-automated environments. Hence, automatization of ITs (such as UR5 

arm) can solve problems related to E- prescriptions, automated billing, electronic medical records and appointment 

reminders, advanced scheduling, clinic management, insurance claim automation and inventory management. In 

the next image (Figure 6), we can see two UR5 robots optimizing the handling and sorting of blood samples for 

analysis at the Copenhagen University Hospital in Gentofte [24] 
 

 
Figure 6. UR6 robots in a hospital lab carrying out automatized tasks. 

 

Another recent medical application would be robotic medical assistants 

monitoring patient’s vital statistics and alerting nurses when there is a need 

for human presence. The robot automatically enters information into the 

patient electronic health record. In the next image (Figure 8), we observe 

the Modus V (developed by Synaptive Medical in Canada). It is used in 

robot-assisted neurosurgery with the most powerful optics available in the 

market with the aim of visualizing the patient anatomy and allow the 

surgeons to perform minimally invasive procedures with more precision. 

The solution incorporates a robot arm from Universal Robots. [25] 

 

5.1.1.2. Mover4 robot arm 

 

Mover4 is a robot arm from Commonplace Robotics (CPR) that 

allows to replay automation scenarios close to reality and can be 

used as a motion platform. With four degrees of freedom (4-axis 

robot), it can move free in space and turn the hand. Moreover, thanks 

to its middle size frame, this system can reach 550 mm of operating 

height and a payload of 500g. [26] 
 

At the end of the arm, one can attach different tools to the flange. 

Therefore, it would be compatible to assembly our designed 3D 

piece, coupled to the EndoWrist TCP and carry out the project. In 

Figure 7. Modus V, from Synaptive Medical, 
coupled to a robot arm from Universal Robots. 

Figure 8. Mover4 arm robot. 
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addition, this product comes with its own software (as UR5). The control and programming environment allow to 

control the position of the robot in real time, to interact with it and to learn how to program it. Its 3D user interface 

is very intuitive and can communicate the data gathered to other programming environments such as LabVIEW or 

ROS, which are some of the software solutions that will be studied later on.  

  

This company also offers two more models: the Mover5 and the Mover6. In addition to the Mover4, the Mover5 is 

able to rotate the gripper since it has 5 degrees of freedom. This allows to grip and release parts in the correct 

orientation. With the gripper, this prototype has a reach of 550 mm and a payload of 400g. In the other hand, 

Mover6 robot arm allows to move the gripper with payload in all 6 dimensions. The robot has a reach of 600 mm 

including the gripper and a payload of 400g. [27] 

 

Taking all this into consideration, this project will only consider the Mover4 robot arm (among the options presented 

by CPR). The reason underneath is that its features are good enough for our project’s framework and it is the 

prototype with lowest prize (which makes it truly competitive against UR5 robot), as we can see in Table 1.  

 

Robotic arm Price (€) 

Mover4 3.135 

Mover5 3.553 

Mover6 4.714 
 

Table 1. Prices list of 2018. This budget includes the robot arm mover and a complete set of accessories [28]. 

5.1.1.3. Sawyer robot arm 
 

Sawyer is an industrial collaborative robot designed by Rethink Robotics. It is a flexible, easy to use, high-

performing lighweight robot, which was developed specifically to take over precision tasks. It is controlled by its 

specially engineered software and operating system: Intera.   

 

Sawyer BLACK Edition is an update of the robot which contributes to a quieter 

work environment and makes the cobot with a friendly face, as can be 

observed in Figure 9. The robot has 7 degrees of freedom, a payload of 4 kg 

and a range of 1.260 mm. Sawyer allows force sensing since it has sensitive 

torque sensors embedded into every joint. Hence, it allows constant force 

control that is used as a feedback in verification tasks. [29] 

 

The ClickSmart gripper technology allows the robot to be deployed faster and 

easier in more tasks without time consuming customization. It can be trained 

by simply demonstrating the procedure moving its arm. It comes with an 

embedded Cognex Vision System in its arm that enables the Robot 

Positioning System (RPS) to provide for a dynamic reorientation and easy 

redeployment of the robot. The robot can maneuver in tight spaces much like a human arm. [30] 
 

Finally, one must add that as a cobot, Sawyer is inherently safe and designed to work alongside people. Therefore, 

it is certified that meets ISO 10218-1:2011, like UR5 robot. Finally, it has an estimated cost of $ 34.900 USD. 

Figure 9. Sawyer robot from Rethink 
Robotics. 
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5.1.2. Servomotors 
 

A servomotor (or servo motor) is a linear or rotatory actuator that allows for precise control of linear and/or angular 

position, acceleration and velocity. It uses a normal electric motor and combines it with a sensor in order to define 

its position, which is called position feedback. Servos are controlled by sending an electrical pulse of variable 

width, or pulse width modulation (PWM), though the control wire. The PWM sent to the motor determines position 

of the shaft and based on the duration of the pulse sent via the control wire; the rotor will turn to the desired rotation. 
 

For this project, two models were studied: Dynamixel AX-12A actuators (Figure 10-A) and Longruner ky66 (Figure 

10-B). Some of the features that will be evaluated in these mechanical actuators are the operating voltage, the 

stall torque (the torque whose output rotational speed is zero), the rotation speed, the rotation angle and the angle 

resolution (which will define the accuracy of the system) among other parameters.  
 

                                  
Figure 10. Servomotor prototypes under study A) Dynamixel AX-12A B) Longruner ky66. 

In the following table, some of these characteristics will be examined and compared in order to determine which 

one is the most suitable option for our final prototype:  
 

Servomotor 
Operating 

voltage 

Stall torque 

(N·m) 
Weight (g) 

Rotation 

range (º) 

Angle 

resolution (º) 

Load 

feedback 

Dynamixel AX-

12A [30] 
9 – 12 (V) 1.5 54.6 0 – 300 0.29 Yes 

Longruner ky66 

[31] 
4 – 7.2 (V) 0.2  9 0 - 180 - Yes 

 

Table 2. Description and comparison of each servomotor features. 

5.1.3. IMU sensors 
 

An Inertial Measurement Unit (IMU) is an electronic device composed by several accelerometers, gyroscopes and 

magnetometers that can report the specific gravity and angular rate of the object at which it is attached. Moreover, 

it measures the angular rate, acceleration, linear velocity and the magnetic field surrounding the object (to know 

its orientation). For this project’s purpose, different IMUs have been studied. In the next table (Table 3), a 

comparison of the of the most important features of these component can be observed. Although IMUs have 

several parameters of interest, in this case, one will only consider the power supply of the sensor, axis of motion 

and size (since it must fit inside the haptic pen). All of them are compatible with Arduino IDE.  
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IMU Power supply Axis motion Size Model 

MPU 9250 2.4 – 3.6 (V) 9-axis 3 x 3 x 1 mm 

 

MPU 6050 2.4 – 3.6 (V) 6-axis 4 x 4 x 0.9 mm 

 

BMI 055 2.4 – 3.6 (V) 6-axis 3 x 4.5 x 0.95 mm 

 
 

Table 3. Description and comparison of the Inertial Measurement Units. The axis of motion depends on the components of the IMU, for 

example, the 9-axis IMU has a 3-axis gyroscope, 3-axis accelerometer, 3-axis magnetometer. 

5.1.4. Evaluation boards 
 

To integrate and communicate the electronic part with the motorized instrument, one needs a microcontroller. This 

control hardware processes the information coming from the PC. In the next table, different Evaluation Boards will 

be examined depending on its cost, its power supply, its availability in the laboratory and the user experience using 

each board. All hardware’s are compatible with Arduino IDE.  

 

IMU Input Voltage Experience Cost Model 

Arduino UNO 

[32] 
3.3, 5, 7-12 (V) No 19,55 € 

 

Arduino 

MEGA [33] 
3.3, 5, 7-12 (V) No 43,83 € 

 

STM32 

Nucleo-64 

[34] 

3.3, 5, 7-12 (V) Yes 13,46 € 

 
Table 4.Description and comparison of the evaluation boards.  
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5.1.5. Haptic feedback user interface 

In the previous Final Degree Project, a Phantom Omni (Figure 11) was used 

for haptic control of the robot and is connected to the control computer as 

well. This device has 3 active DOF and 3 passive DOF [35]. In total, the cost 

of the cobot is approximately 35.000$ although as it is already in the Faculty 

of Physics, its cost should be disregarded if it was considered as a final option 

[36].  

 

Although there are other haptic controllers in the market that one could study 

in this section, as this Final Degree Project is in collaboration with a 

Mechanical Engineering student, the idea is to design a haptic pen of our own that will be later on fabricated 

through 3D printing.  

 

This would imply a reduction in the cost of the device although the materials and accuracy of the device would be 

reduced and the time needed to construct it, would be much higher. In addition, this self-designed pen would have 

some extra implementations such as a vibration motor, a buzzer and two push buttons for different purposes aimed 

to improve the haptic feedback and manoeuvrability of the system.  

 

5.1.6. Vibration motors and buzzers 

 

One of the limitations of the Da Vinci system is the lack of tactile perception when performing any surgical 

procedure. Therefore, a buzzer is installed in the pen so that it emits a sound once the surgeon overpasses a 

determined force one has stablished as a threshold. In the Table 5, different models are compared depending the 

frequency of the emitted sound, its intensity, its price and size (since it must be small enough to fit inside the pen). 

All of these buzzers can work with Arduino IDE. 

 

Buzzer Sound output Frequency Cost Size (mm) Model 

Buzzer RS PRO 

[37] 
95 dB 2.9Hz – 3.9kHz 2,78 € 14 x 6.7 

 

MCKPT-G1340-

3917 
80 dB 

4kHz square 

wave 
1,09 € 12.7 x 6.8 

 

VMA319 [38] - 1.5 a 2.5 kHz 2,21 € 25 x 15 x 10 

 
 

Table 5. Buzzer comparison. 

To test other methods of haptic feedback, a buzzer is also installed in the pen to emit a vibration once the force 

exerted by the user super passes the predefined threshold. In this case, the response must be controlled since an 

exaggerated vibration could affect the precision of the surgeon’s movement and cause more damage than benefit 

Figure 11. Phantom Omni haptic device. 
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to the surgery. In the next table, we can observe the comparison between different buzzers and its main features.  

 

V. Motor Voltage Cost Size Model 

Seeed Studio 

Grove [39] 
5 V 2,54 € 24 x 20 mm 

 

Parallax 

28821 [40] 
2.7 – 3.3 V 4,36 € 

1 (diam) x 0.27 

(thickness) cm 

 

SparkFun 

ROB-08449 
3 V 2,20 € 10 mm (diameter) 

 
 

Table 6. Vibration motor comparison. 

5.1.7. Push buttons 

As commented before, another feature added to the haptic pen are the push buttons. One will have to choose two 

push buttons for two different purposes: advancement of the needle and opening/closing of the tweezers. For this 

purpose, one does not need very specific or expensive components, just a simple button that communicates to 

the computer and/or the tool, when the button of the pen has been pressed so that the corresponding action is 

performed. In the next table, a comparison of several buttons can be observed:  

 

Button Intensity Cost Company Model 

 COM-00097 50 mA 0,36 € SparkFun Electronics 

 

COM-10302 - 4,77 € SparkFun Electronics 

 

B3F-1022 [41] 50 mA 0, 28 € Omron Electronics 

 
 

Table 7. Push buttons comparison. The SparkFun buttons data was found in the commercial announcements, although no datasheets 

were found.  

 



 

28  

5.2. Software solutions 

For the moment, one has only discussed and analyzed the hardware components of the project, but the software 

environment is important as well. In this section one will examine different software programs that are compatible 

with Arduino IDE, since this is the main SW one will use to communicate the robot with the computer and vice 

versa.  

 

On the other hand, other software’s are needed to design the pieces that will be printed (such as the haptic pen 

and the piece needed to couple the EndoWrist to the UR5 robot) in the EUSS. Although this part of the project 

belongs to Meiling, one has to consider this as part of the solution and budget of the total project.  

5.2.1. Programming Software 

In the table below, a comparison between the software environments that one has examined during the educational 

stage and studied during the Biomedical Engineering degree, can be observed: 

 

Software Cost Experience Arduino IDE 

LabVIEW 433€ /year 2 years Yes 

ROS Open source 1 year Yes 

RoboDK Open Source 6 months Yes 

MATLAB 800€ /year 3 years Yes 

Python Open source 3 years Yes 

 

Table 8. Comparison between software environments 

5.2.2. Designing Software  
 

Once we started collaborating with Meiling and the EUSS University and decided we wanted to design and created 

out own 3D pieces, one had to come up with different 3D designing software’s capable of building three-

dimensional structures that could be later printed. In the table below, one can see a description and comparison 

of the main characteristics of some 3D designing software’s: 
  

Software Cost (€) Operating systems 3D modeling 

SolidWorks 6.600 – 10.950 Windows Yes 

FreeCAD Open source 
GNU/Linux, macOS, 

Unix, Windows 
Yes 

RhinoCeros Open source Windows, macOS Yes 

 

Table 9. Comparison between designing software’s 

Although it is not going to be compared and contrasted with other software’s, one had to mention the Kicad 
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developer which has been used to design the electronic circuit of the PCB.  

 

5.3. Proposed solution 
 

In the previous section, several possible alternatives for the many hardware components and software 

environments have been presented and briefly compared. Now, the chosen prototype will be exposed as well as 

and the arguments supporting this decision. One has taken into consideration the fact that as this project will be 

carried out in the University and economically financed with its resources, the selection of the proper hardware 

(and eventually, the software component too) cannot result to be very expensive.  

 

Due to this reasoning, the proposed robotic arm should be the CPR robot, since it has the lowest price, and 

Sawyer’s should be disregarded because of its high cost. However, the Electronics Department from the University 

of Barcelona has already acquired UR5 robot. Therefore, due to its already accomplished accessibility, one has 

no other option than to choose UR5 as the final solution. Choosing any other alternative would mean an extra 

expenditure since UR5 is being purchased anyway.  
 

Furthermore, UR5 is the alternative with more experience in the surgical field. This argument is not determinant 

but provides confidence since we are not taking the risk of acquiring a robot that perhaps is not as efficient in the 

healthcare environment such as in industrial procedures. This way we will build upon firm and already explored 

ground. Another reason justifying this decision is the fact that one has already taken experience with this robot 

during the practical sessions of “Robotics and Control of Biomedical Systems” assignment.  

 

Regarding the programming environment, UR5 robot arm provides a specially engineered software which is very 

easy to use. In addition, one trained before using it in vivo, through the Universal Robots Academy’s online 

modules that provide core programming skills available to cobot users regardless of their robotics experience or 

backgrounds. These online formations include webinars, video tutorials, online training and in-class training. Once 

the online formation is concluded, one can get a certification (diploma) that verifies its knowledge about the 

functioning of several Universal Robot’s devices. Besides the own interface of the robot, one can add or modify 

movements with external software environments such as RoboDK or ROS programs. This is very helpful since 

one has been training with this software in other stages of the project. 

 

As for the smaller hardware components, most of them have imperceptible differences when it comes to power 

supplies, intensities, bandwidths, etc. Therefore, one accepted all the material and components that the teacher 

provided prioritizing its availability in the facilities. After having considered the advantages and disadvantages of 

the software’s proposed, a brief summary on the chosen components and software’s can be seen in the next table: 

 

COMPONENT MODEL 

Evaluation Board STM32 Nucleo-64 

Push Button COM-00097 

Buzzer VMA319 

Vibration Motor Seeed Studio Grove-Vibration Motor 

Programming software ROS, RoboDK, Arduino IDE 

Designing Software SolidWorks 
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IMU MPU 9250 

Servomotor Longruner ky66 

Haptic feedback user interface Designed with 3D software’s 
 

Table 10. Proposed solution of hardware and software 

As there are a lot of components and modules to bear in mind, one has built an easy schematic to facilitate the 

overview of the project. As can be seen in the next picture (see Figure 12), al modules are controlled by the 

computer via Arduino IDE and RoboDK. Although, when working with UR5 robot, the interface needed is ROS 

instead.  

 
From this central core, one can access to the actuator module: the UR5 robot and end effector tool (the EndoWrist) 

which will have the four servomotors attached to perform the desired movements (based on the RPY angles). 

Besides, the user interacts with the system with the 3D printed haptic pen (which will be seen in the Detailed 

Engineering) and contains the sensors needed required for force sensing and maniobrabilty goals. This means 

that the IMU, buzzer, vibration motor and push buttons must be fitted inside and connected to the STM board. In 

future studies or, in Meiling Chen’s project, one can see a wireless connection to an Evaluation Board such as 

ESP32, which is a considerable improvement.  
 

  

 
 

Figure 12. Schematic diagram of the main modules composing the system. 
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6. Detailed Engineering 
 

This is the main section of the project in which one will exhaustively explain the development of the final prototype 

in the laboratory with the chosen hardware components and software environments that have been already 

discussed in the Concept Engineering. In addition, one will also show in further detail the development of the 

Arduino and RoboDK codes so that the reader can better understand the goals and functioning of the final 

prototype (regarding, mostly, the manoeuvrability improvements). Nevertheless, all the developed codes can be 

found in the annexes at the end of this document.  

 

6.1. Hardware 
 

To facilitate the understanding of the entire system, 

one will explain the develop of each component 

separately. First, an introduction to the inner working 

of the EndoWrist motors will be done since it is crucial 

for the programming code development and 

understanding. The tool one will be using is Intuitive 

470006 Da Vinci XI Surgical Large Needle Driver, 

which can be seen in Figure 13.  
 

One of the goals of the project is to create a programming code (with Arduino and RoboDK) that accurately sends 

the motion reproduced by the user with the haptic pen (which contains the IMU sensor, the vibration motor, the 

buzzer and two push buttons attached) to four servomotors that are geared to the EndoWrist system. Therefore, 

the needle will move as well. In Figure 14, a schematic diagram of this flow can be observed.  
 

 
Figure 14. Working setup. 

 

 Although the transmission of the motion 

seems apparently simple, this mechanical 

module requires to be explained in detail since 

each movement of the joints (roll, pitch and 

yaw) that tries to mimic the human hand, is a 

result of a specific combination of rotations of 

the EndoWrist motors, which have to be 

triggered by the servomotors (controlled by 

the Arduino IDE). 

Figure 15. Illustration of how roll, pitch and yaw are measured in the human 
hand. 

Figure 13. EndoWrist end effector needle 
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For this purpose, one will use a set of pictures of the 

previous’ project’s author: Arturo Yscadar, who made a 

diagram of the joint motions associated to each motor 

and its rotation. In the Figure 16, one can see that the 

EndoWrist case has 5 motors although we are just going 

to use 4 of them to perform the tree RPY movements: roll 

(R), pitch (P) and yaw (Y); and grasping, which can be 

done by moving one jaw or the other.  

 

For the roll motion, only one disk needs to rotate (disk 

1). This movement represents the rotation of the 

forearm/hand, also called pronation and supination of 

the hand extremity (see Figure 15). As we can see in the 

Figure 17, the rotations of the needle have the opposite 

direction than the one of the disk, for example: in the roll image one can see that the clockwise rotation of disk one 

creates a counter-clockwise rotation of the needle driver.  

 

The pitch movement is a little bit more complex since it requires the motion of the disks two, three and four (see 

Figure 17-B). This motion represents the wrist flexion and, if we take a look at Figure 17-B, to rotate towards us 

the combination of rotations required is a counter-clockwise rotation of disk 4, a clockwise rotation of disk 3 and a 

counter-clockwise rotation of disk 2.  

 

Regarding the yaw movement, which represents the lateral tilting of the human hand, only the lower disks are 

involved. Each one performs a rotation in the opposite direction: disk 2 needs to rotate clockwise while the disk 3 

rotates counterclockwise the same amount of degrees. In the illustration below, all RPY movements can be 

observed, as well as the rotations involved: 

 

 

Figure 17. Motion of the needle driver. A. Roll. B. Pitch. C. Yaw. 

Finally, for the opening and closing of the jaws one just needs to maintain one of the lower disks fixed and rotate 

the other between 90 and 100 degrees. With this, just one jaw would move so the tweezer would open. This 

movement is important when sewing during a surgical intervention since it is how the thread is subjected. 

  

Figure 16. (Left) References of the disks. (Right) RPY movements 
of the tool. Photographs taken by Arturo Yscadar. 
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Figure 18. Example of the needle driver opening. 

The Longruner servomotors are interlocked with the EndoWrist disks. Then, after an Arduino IDE command is 

sent, the servomotors rotate, the motion is mechanically transmitted to the disks and, finally, to the EndoWrist 

needle. These servomotors are connected to a Protoboard and the STM32 EVB, which is at the same time 

connected to the computed via USB. Now, one will present the electrical  circuitry of the project, which was based 

on the electrical connection of the hardware components to the protoboard and the evaluation board (see Figure 

19). In this image one can observe three servomotors (due to limitations in power supply of the evaluation board, 

one did not want to risk adding another servomotor without an external battery), two pushbuttons, an IMU sensor, 

resistances (1.6 Ω) and the STM32.  
 

 
Figure 19. Overview of the entire circuit. Picture taken by the author. 

Regarding the connectivity of the servomotors, they have three wires: a pulse width modulator (orange), Vcc of 5 

V (red wire) and GND (brown). Therefore, one connected the Vcc wire to power supply of 5V (white wire of the 

protboard is directly connected to the 5V of the STM32), the GND was connected to the evaluation board as well 

as to the resistance, and the PWM to the digital pins of the STM32. Finally, we add an Analog connection to the 

circuit (yellow wire).  

 

Moreover, in the Figure 20-B, one can observe the connections of a pushbutton, which is very simple. In the left 

part of the image, it is connected to GND while in the right part, it is connected to 3.3V through the red wire, a 

small resistance and a digital output (yellow and white wires) that will tell us whether the button has been pressed 

or not.  
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Figure 20. Electrical circuit of A. Servomotor. B. Pushbutton. 

As have been observed, many wires are required, which increased the noise of the signal and its complexity. This 

is why Meiling Chen end up designing a PCB board with Kicad software (Figure 21) that had all the hardware 

components integrated in it and, with this, the pen could be used wirelessly. In addition, with the implementation 

of the ESP32 board, no USB port is required. In the first diagram we can see the PCB is electrically designed and 

in Figure 22 we can observe how it can be inserted inside the pen.  
 

 
Figure 21. Electrical design of the PCB with Kicad. 

 
Figure 22. Design of the haptic pen with the ESP32 and the PCB inside. 
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With this prototype, no wires were needed and a reduction of space and therefore, of the size of the haptic pen, 

was accomplished.   

 

6.2. Software 
 

As one has already commented in the previous sections, Arduino IDE and RoboDK have been the two 

programming environments used to develop the code. In this part of the Detailed Engineering one will review the 

results obtained after the simulations and tests were executed.  

 

A. Transmission of the RPY angles from the pen haptic to the servomotors 

 

The term manoeuvrability arises from the transmission of the motion from the surgeons to the end effector tool. 

Therefore, good manoeuvrability should be instantaneous (no delay between the surgeon’s movement and the 

EndoWrist motion), precise, noise- and tremor-filtered.  

 

For all these reasons, to start the testing of the 

system, one created a program that transmitted 

the position and orientation (POSE) of the IMU 

sensor to a rotation of each servomotor as a 

result of the RPY angles. Concretely, the 

rotation around the X-axis (roll) is translated as 

the rotation of the second servomotor, the 

rotation around de Y-axis (pitch) represents the 

rotation of the third servomotor and finally, the Z-

axis rotation (yaw) is translated as the rotation of 

the first servo. In the next code, one can see that 

the movement in the servomotor is limited to 180 

degrees and that the command needed to rotate 

the motor is servoX.write().  

 

The final purpose of this program is that each 

servomotor is interlocked with the EndoWrist 

disks and transmit the motion. For example: the 

servomotor 2 must be geared to the first disk so 

that when it rotates, roll movement is performed.  

 
 

 

 

 

B. Acquisition and visualization of the RPY angles from the pen haptic  
 

The Inertial Measurement Unit (IMU) sensor moves along the x, y and z axis and, depending over which one of 

them we rotate, we’ll perform a roll, pitch or yaw movement (see Figure 24).  

 

Figure 23. Part of the Arduino code showing the transmission of the motion 
to the servomotors. 
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Figure 24. Diagram of the RPY angles on the haptic pen and the IMU. 

In this program, the goal is not only to move the motors but to visualize the RPY angles in our computer, concretely 

in a RoboDK graphic interface called TKinter. This flow is represented in Figure 25 for a better understanding of 

the process. Besides the write() function, one has to read the angles thanks to the Serial.read() 

Arduino command. In this code, the pushbuttons are included although its function is not implemented yet.  
 

 
Figure 25. Workflow of software A. Acquisition and visualization of the RPY angles of the pen haptic. 

As for the RoboDK, the TKinter interface is used to obtain the RPY angles orientation. First of all, a start page is 

opened and asks the user to push a button in order to obtain the angles and, once this is done, the right window 

appears and the roll, pitch and yaw values are constantly changing as long as the IMU sensor is moving too. As 

can be observed, both pushbuttons get a value of 1. This is because they are not being pressed, once they are, 

the value will change to 0.  

 
 

 

 

 

 

 

 

 

 

Figure 26. RoboDK program showing the TKinter interface of RPY acquisition and representation. 
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C. Transmission of the RPY angles from the computer to the servomotors 

 

In this part, one is focused on sending a specific angle from the RoboDK environment to the servomotor so that 

the EndoWrist moves precisely. This was done by writing the angles in the output terminal (as can be seen in 

Figure 27-A) or through a TKinter graphic interface that allowed to change the RPY angles progressively with a 

slider. 

 

 

 

 

 

 

 
 

 

Once the program is run, the servomotors rotate 45 degrees each one (in this example) and the UR5 graphic tool 

of the RoboDK interface does it too. This can be observed in the illustration below, in which the TCP_EndoWrist 

that represents the end effector, has rotated 45 degrees around each axis (x, y, z).  

 

 
 

Figure 28. RoboDK representation after a 45-degree rotation of each servomotor. 

 

D. Advancement of the TCP after pressing the pushbutton  
 

In previous section, one has mentioned the purpose of the pushbuttons. In this case, our goal is to move the end-

effector tool in the X-axis direction while the first button is being pressed (in other words, while its value is equal to 

zero). In the next picture (Figure 29) one can see how the robot was intended to go from the first frame 

TCP_EndoWrist to the second TCP_Moving which is constantly changing in function of the IMU sensor motion 

and orientation. As can be implied by looking at the picture, the program has not been fully perfectioned since only 

the frame was moving instead of the robot itself.  However, in future studies this can be easily fixed with some 

assistance and more time.  
 

Figure 27. Introduction of the RPY angles in the RoboDK interface A. from the terminal B. Through a slider (Tkinter) 
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Figure 29. RoboDK representation of the advancement in X-axis. 

E. Opening of the needle jaws after pressing the pushbutton 

 

Finally, this goal consists on opening the needle driver to subject the thread while suturing as long as the second 

pushbutton is pressed. An option could be to open both jaws at the same time but to simplify the code and be more 

efficient, one has chosen to only open one of the jaws while fixing the other one. This has been also seen in the 

Figure 18 and its corresponding description and disk rotation.  
 

In the next image (Figure 30), one can observe the programming code that fulfills this purpose. The buttons must 

be read as digital inputs in which “0” represents that the button is being pressed and “1” that it is not. Finally, with 

the servo.write()command, the servos rotate the desired amount of degrees. Then this motion is transmitted 

to the EndoWrist disks and the needle moves.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 30. Arduino code describing the opening of the needle when pushbutton is pressed. 
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7. Experimental validation  

 

7.1. Assembly of the servomotors and the EndoWrist tool 
 
The EndoWrist disks have a central hole and two cracks in each side of the circle (see Figure 31). This is helpful 

to interlock the disks with the motors and fixed them all, although this process is not as easy as it seems. By now, 

a program that automatically gears all the servos with each disk independently and autonomously, has not been 

developed yet. A more rudimentary method was implemented thanks to Meiling, who designed four plastic pieces 

with certain slope so that when the servos rotated, they involuntarily get fixed in the cracks. These 3D printed 

pieces can be seen in the right illustration.  

 

   
 

Figure 31. Mechanical solution to gear the servomotors with the EndoWrist disks. 

 

7.2. Final setup with the UR5 robot 
 
Once the servomotors can be coupled to the EndoWrist, the tool is 

placed inside a plastic structure (also fabricated by 3D printing and 

designed with SolidWorks) which allows us to attach the EndoWrist to 

the UR5 robot. This structure can be seen in the next image (Figure 

32) in blue, supporting the end-effector tool, with a white case 

encapsulating the servomotors.  

 

In addition, we can observe a camera on the top of the system, in 

charge of recording the action that is taking place near the TCP, just 

as the Da Vinci System has a high-definition 3D camera (or as 

happens in MIS where a trocar with an incorporated vision system is 

introduced inside the cavity). However, this camera can be better seen 

in the illustrationss below.  

 
 
 
 

Figure 32.  Plastic piece supporting the 
EndoWrist, servomotors and a camera. 
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Figure 33. Pictures of the final setup with the UR5 robot. 

As one can imagine, this prototype is not finished. Here we should connect the evaluation board with the STM32, 

and all the circuitry attached. The problem is that the position of the robot was so high, and one could not place 

the materials on the table.  

 

Moreover, another option could be to use the haptic pen which is wireless and works with the ESP32 board. 

Unfortunately, this setup will have to be prepared in the future prospects of the project.      
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8. Technical feasibility  

 

In this section, one has analyzed the corresponding strengths, weaknesses, opportunities and threats of the 

proposed solution. The SWOT analysis represent the positive and negative aspects coming both externally and 

internally from the project.  

 

In one hand, one has encountered for technical incompatibilities, errors, and other problems when mechanically 

building a prototype or programming the code with the different software. On the other hand, some limitations are 

related to the lack skills of the user as a student when creating these pieces and programs.   

 

Moreover, one has to take into account the global scenario in which this project has been developed (a global 

pandemic) and the limitations it raised. In the next table, one can see a brief summary on the main internal and 

external strategic factors of the project:   

 

8.1. SWOT analysis 

 

STRENGTHS 
 

• UR5 has a strong software development, very complete and easy to use. 
 

• Good systems integration capability since it can be used with other programming environments such as 
ROS and RoboDK. 

 

• Safety of the product is ensured thanks to several mechanisms that stop the device if certain conditions 
are met. 

 

• Certification of ISO standard ensuring its quality and safety. 
 

• Most economic option taking into account that the University was already acquiring the UR5 robot and the 
haptic pen is being designed by the team. 

 

WEAKNESSES 
 

• High budget: although being the most economical option, it is still expensive to develop since UR5 
supposed a high investment. 

 

• As it is not possible to manipulate the real Da Vinci system, all tests and performance must be performed 
in the designed robotic arm prototype. Therefore, the real functioning and impact of the maneuverability 
and haptic feedback when operating with the Da Vinci robot cannot be directly proved. 

 

• A lack of experience in robotics and robot assembly have led to approximate assumptions and 
comparisons based on information found on the internet. This might cause technical errors in further 
stages of the project. 

 

• Lots and strong healthcare regulations required for having the FDA or CE approved. 
 
 

OPPORTUNITIES 
 

• It can maintain and expand in the market with its online educational platform and personnel training. 
 

• Proximity of the project to Hospital Clinic, to do the internship and observe the setup and performance of 
the Da Vinci system, and to the Electronics and Biomedical Engineering Department, where the 
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mechanically assembly and evaluation will be carried out. 
 

• This project mainly intends mimic the nearly excellent maneuverability performance offered by the Da 
Vinci system in order to solve related problems in other robotic-assisted surgery systems. Other factors 
such as the haptic feedback, the tremor filtering, the accuracy, the degrees of freedom… could be also 
taken under study. 

 

• Personally, it has been an opportunity to learn about robots and electronics, since one had very limited 
knowledge about it before starting this project. 

 

THREATS 
 

• COVID-19 pandemic restrictions prevents us to do the internship in the surgical service of Urology 
Department at the Hospital Clinic, which would have been useful to gather information on the 
manoeuvrability and performance of the Da Vinci System. 

 

• Similar projects have been and are being carried out in order to commercialize their devices. Although 
the introduction of the prototype in the market is not among this project’s goals; the competitiveness of 
these groups, its resources and knowledge might leave our project out-of-step. 

 

• Medical devices are subjected to continuously changing regulations and legislations. 
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9. Execution schedule 

 

Many techniques are used to plan the project. First, we’ll analyze the WBS and the description of every activity 

and task included. Afterwards, one will elaborate the PERT diagram and the GANTT based on the breakdown of 

activities, its duration and precedence. 

 

9.1. Work Breakdown Structure (WBS) 

 

In this section, one is going to define all the activities required to develop this final degree project. To build the 

Work Breakdown Structure is very important in the project’s planning because it describes the phases and tasks 

as well as the responsible (in case of teamwork) and deadline of each one of them.  

 

In the following representation (Figure 11), we can see the simplified structure of this project’s WBS. In darker 

colors, we can see the major functional deliverables that correspond to the general phases of the project. Finally, 

in a brighter tone, there is the decomposition of these packages into a list of tasks or “to-dos” that produce specific 

units of work.  

 
Figure 34. Work Breakdown Structure of the project 

 

9.1.1. Dictionaries and duration of activities 

 

In the following table (Table 12), one will expose the WBS dictionary with the detailed information about the 

deliverables and tasks, explaining on what they consist on. One will assume that the duration of a stage 

corresponds to the sum of its corresponding tasks, which will be further taken into account in the development of 

the GANTT chart. The responsible of every activity is the author of the project.  
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Nº Name of the task Description 

1 Educational stage 

During the whole process of educational stage, it has 

been performed a bibliographic research in order to 

familiarize, characterize and broaden the knowledge 

related to robotic assisted interventions, current systems 

in the market, Da Vinci Surgical System, EndoWrist and 

UR5 systems. In addition, this stage includes the tutorials 

used to learn this programming techniques. 

1.1 
Familiarization with robotic 

systems 

A bibliographic research will be carried out on the world 

leading robotic systems such as Senhance, NAVIO, 

FLEX, etc. Its most important differentiating features will 

be analyzed as well as its presence in the market. 

1.2 
Learning programming 

techniques 

Different tutorials (based on videos or exercises) have 

been completed with the aim of learning its strengths and 

weaknesses and being able to assess which is the most 

suitable environment. In the case of ROS, one has 

completed a 10-hour tutorial 

1.3 Da Vinci Research 

Explanatory document explaining the features, 

limitations, and performance of Da Vinci surgical system 

and EndoWrist instrumentation both patented by Intuitive 

Surgical. This task corresponds to a bibliographic study 

of this system and it does not include the learning on the 

device during the sessions in the Service of Urology. 

2 Hardware stage 

Study of the possible robotic arms that could fulfil our 

goal of reproducing the Da Vinci System’s 

manoeuvrability. We’ll focus on the performance of UR5 

robot since it is the one that the University will acquire 

2.1 Robotic arm alternatives 

Bibliographic research on the different robotic arms that 

successfully works nowadays in the surgical field. Among 

them, one will study more in deep the technical features 

of UR5  due its availability in the lab. 

2.2 Research on components 

Bibliographic research on the different components such 

as the evaluation boards, the push buttons, the buzzers, 

vibration motors, etc. 

3 Software stage 

Analysis of the different software that can be used to 

program the movements and reading out the information 

(feedback). In addition, one will have to verify if the 

optimal software is fully compatible with the robotic 

environment, we want to apply it on. 
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3.1 Research on software 

This task consists on the search of information of the 

most used software and programming tools that are used 

in surgical robots. Examples of this are Arduino, 

LabVIEW, ROS, RoboDK, Universal Robots’ interface, 

etc. 

3.3 Verification 

Once the software has been chosen due to its features, 

learning curve, and reading velocity; one has to test in 

the lab if this software is also the most suitable one to 

work along with UR5 robot. 

4 Experimental stage 

Assembly of the different elements in order to build the 

prototype and evaluate it in terms of manoeuvrability and 

haptic feedback. In addition, one will be able to do an 

internship on the Hospital Clinic in relation to the Da Vinci 

System. 

4.1 Practicum 
200 h of practises in the Electronics and Biomedical 

Engineering Department of the Faculty of Physics. 

4.2 Final validation 

One must ensure a proper physical coupling to the 

robotic arm prototype. The eventual coupling in the lab 

and the evaluation of different movement transmission 

systems will be carried out. 

5 Discussion stage 

Selection of the more appropriate software and hardware, 

evaluation of the suitability of the designed prototype and 

elaboration of the final degree document (memory of the 

project). 

5.1 Final prototype discussion 

A final study has been performed in order to discuss the 

obtained results and to be able to state a consistent 

conclusion (selecting the more appropriate configuration) 

coherent with the maneuverability and haptic feedback 

provided. 

5.2 Memory 
Finally, the memory has been elaborate following all the 

sections previously mentioned. 
 

Table 11. Descriptions of the tasks of the Final Degree Project. 

 

9.2. GANTT chart 

 

It has also been represented the same information (task and timing) but this time as a GANTT diagram, where it 

can be observed the task flow of the project (see Figure 35). To build this chart, a planning of the beginning and 

end of each activity is required. This information is attached in the next Table 12. It is worth mentioning that this 

time schedule does not consider the associated limitation of the OR availability and surgeon’s schedule.  
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Number Name 
Duration 

(days) 
Start End 

1.1. Familiarization with robotic systems 150 15-Feb-20 1-Jun-20 

1.2. Learning programming techniques 420 15-Feb-20 1-May-21 

1.3. Da Vinci Research 120 15-Feb-20 1-May-20 

2.1 Robotic arm alternatives 150 15-Feb-20 1-May-20 

2.2. Research on components 120 1-Mar-21 28-Jun-21 

3.1. Research on software 30 28-Mar-21 28-Apr-21 

3.2. Verification 90 1-Apr-21 2-Jun-21 

4.1. Practicum 150 2-Feb-21 10-Jun-21 

4.2. Final validation 90 1-Apr-20 14-Jun-21 

5.1. Final prototype discussion 60 1-May-21 14-Jun-21 

5.2. Memory 120 15-Mar-21 13-Jun-21 

Table 12. Project tasks with the corresponding duration and timings 

               
Figure 35. GANTT diagram 
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10. Economic viability  

 

In this section, one will consider the price of fungible products (such as the robot), the time invested as 

professionals and the software licenses required for the performance of the entire project. 

 

Although the project has implied the work of three students, one will only consider the working hours of the author 

supervised by a professor in charge of the project. It is considered that a student should have a salary of 

approximately 15 € / hour. Considering that a Final Degree Project should take, at least, 300 hours, the personal 

expenses (disregarding the professor since he has its own salary), would reach approximately 4.500€.   

 

With respect to the software used, one has trained with different programming environments such as LabVIEW 

(which license is financed by the UB), Arduino, RoboDK and ROS (which are all free). For the bibliographic 

research, one has read several articles which access has been allowed thanks to the PubMed License.  

 

Finally, one will take into account the costs that rise from the purchase of UR5 robot and the Hardware components. 

The breakdown of the project costs is shown in the next table (Table 13). Some prices which has been exposed 

in dollars (USD) are now converted into Euros (€) so that they can be added. 
 

Components Cost per unit Units required Total cost (€) 

SOFTWARE 

Arduino IDE Free 1 - 

RoboDK Free 1 - 

ROS Free 1 - 

PubMed License Financed by UB 1 - 

SolidWorks License Financed by UB 1 - 

HARDWARE 

UR5 robot 30.996 € 1 31.000 € 

EndoWrist TCP Recycled 1 - 

Computer 1.500 € 1 1.500 € 

STM32 Nucleo-64 13,46 € 1 13,46 € 

COM-00097 0,36 € 2 0,72 € 

VMA319 2,21 € 1 2,21 € 

Protoboard 8 € 1 8 € 

Seeed Studio Grove-

Vibration Motor 
2,54 € 1 2,54 € 

WORKING HOURS 
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Biomedical 

Engineering student 
15€ / hour 300 hours 4.500 € 

TOTAL  37.027 € 

Table 13. Estimation of the cost of the project. 

Afterall, the total price of the project would be of 37.027 €. However, one must mention that this estimation of the 

components might change eventually since the intention of the author is to use a base shield and battery supplies 

that provide more power. Moreover, it seems that Arduino Mega evaluation boards can provide better 

functionalities than STM32 boards, which would vary the total budget of the project as well. Hence, one estimates 

that this price will rise at the end of the project.  
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11. Discussion and conclusions 

 
In addition to the resulting simulations and whether the final prototype has been assembled or not during the time 

the team has been in the Biomedical Engineering Department, additional criteria has been taken into account to 

formulate the conclusions of this project at the end of the chapter. 

 

In this section, one will analyse the objectives that were mentioned at the beginning of the project to examine if 

they were accomplished or not and the reasons for each scenario. In the last section, some recommendations will 

be made for the future development of the project in terms of new materials and components as well as new 

approaches of the research.  

 

11.1. Achieved objectives and results  
 
During these months in the Electronics and Biomedical Engineering Department, one has get acquainted with 

many software environments, hardware and electronical components which were unknown at the beginning of this 

practicum. Therefore, one can solidly affirm that this experience has been very rewarding and educational since a 

lot of knowledge in electronics and robotics has been acquainted, as well as the current situation of the world 

leader companies in health-tech.  

 

The most relevant achievement of this project is the reproduction of a surgical robot such as the Da Vinci System  

in the laboratory facilities with UR5 robot. With the use of very simple hardware components (components used in 

the daily assignments of a Biomedical Engineering student), we have been able to create a system that reproduces 

the mobility of a haptic pen through electrical circuitry but also wirelessly, to the end effector tool (EndoWrist) 

attached to the robot. Moreover, a new design (different from the one of Intuitive Surgical) for the coupling structure 

between the robot and the tool was created which, once it is more tested, might allow a faster and easier change 

of instruments. 

 

In addition, different components have been added to improve the manoeuvrability performance such as the 

pushbuttons which have shown good results in the tests of advancement and opening of the needle. These 

applications have a lot of future in the sewing area since it is easier to press a button and that the EndoWrist moves 

ahead on its own, instead of the hand of the surgeon. Analogously, it is more comfortable to control the tweezers 

with a button rather than with the tips of our fingers.  

 

Although the studies on the haptic feedback and the torque have not been seen in this Final Degree Project, the 

buzzer and the vibration motor have successfully fulfilled its purpose of warning the surgeon when arriving to the 

force threshold. Nevertheless, one has to be careful with the vibration of the haptic pen since we cannot allow 

large movements of the pen that could damage the patient.  

 

An objective that one has not accomplished due to lack of time is the filtering of the tremor. The goal was to reduce 

the difference between an RPY angle (of the IMU sensor) and the previous one. Based on this, a large variation 

in the degrees between two consecutive angles could only mean a dangerous tremor of the hand or that the pen 

has fallen down. In any case, the angle should not variate any longer to maintain safety conditions for the patient.  

 

Moreover, the final assembly of all the components and the evaluation of its performance could not be 
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accomplished since the 3D printed pieces were completely finished late and some limitation regarding the power 

supply and the evaluation board were found. In addition, new material that could have fixed some of these 

limitations, arrived during the last weeks of the Final Degree Project but there was no time to implement these 

modifications in the project.  

 

However, alongside with Meiling and Maria, we tried to fulfil all the objectives as far as we could so that the next 

team that takes over the project can easily take on our work and solve these issues. In the next section, one will 

mention which are these materials that can be useful (and already available) for future studies.  

 
 

11.2. Future opportunities  
 
This project’s contribution is the continuation of an encouraging improvement for a research environment which is 

prepared for minimally invasive surgeries. Down below, some outstanding tasks focused to achieve a better 

performance of the current system are proposed: 

 

• The implementation of a wireless evaluation board such as ESP32 so that the pen has not to be connected 

to the computer.  
 

• To manufacture the instrument support in a rigid and resistant material such as metal. A better fixing 

capacity would avoid movements in the encapsulating system, which are translated into vibration at the 

end of the end-effector tool. If this was not possible, one could improve the 3D impression since the current 

prototypes easily break and shatters. 
 

• To include robust and easy method to calibrate the IMU sensor each time it is used.  Low-cost embedded 

IMU sensors are affected by systematic errors given by imprecise scaling factors and axes misalignements 

that decrease accuracy in the position and attitudes estimation. Therefore, some program or application 

should be developed to automatically calibrate the device so that the obtained data was more reliable and 

precise.  
 

• An interesting purpose for future projects would be to design a real prototype useful in clinical environment, 

since nowadays the UR5 is not the most competitive robot to be used in hospitals although it has very fine 

properties.  
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13. Appendixes 

 
13.1. Appendix 1: Transmission of the RPY angles from the pen to the servomotors 

(Arduino IDE) 
 
// digital pins 2 and 4 have pushbuttons attached  

int pushButtonA = 2; 

int pushButtonB = 4; 

 

#include "src/RoboticsUB.h" 

#include <Servo.h> 

 

IMU imu; 

Servo servo1; 

Servo servo2; 

Servo servo3; 

 

//int PIN_IMU_VCC = 4; 

//int PIN_IMU_INT = 5; 

 

float *rpw;           // Pointer to read RPW 

char instruction = 0; // For incoming serial data 

 

int Pin_R1 = A0;      // Analogic pin used by R1 (Servo1) 

int Pin_R2 = A1;      // Analogic pin used by R2 (Servo2) 

int Pin_R3 = A2;      // Analogic pin used by R3 (Servo3) 

 

float R1 = 1.6;       // Resistance value R1 

float R2 = 1.6;       // Resistance value R2 (Servo2) 

float R3 = 3.3;       // Resistance value R3 (Servo3) 

 

 

float motor_angle_X = 0;  // Motor angle 

float motor_angle_Y = 0; 

float motor_angle_Z = 0; 

 

void setup() 

{ 

 

  Serial.begin(115200); 

 

  imu.Install(); 

  servo1.attach(9); 

  servo2.attach(10); 

  servo3.attach(11); 

   

  pinMode(pushButtonA, INPUT); 

  pinMode(pushButtonB, INPUT); 

} 

 

void loop() 

{ 

 

  imu.ReadSensor(); 

  rpw = imu.GetRPY(); 

 

    // Angle range from 0 to 180 degrees 

  if (rpw[2] <= 180 && rpw[2] >= 0) 

  { 

    motor_angle_X = rpw[0]; 
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  } 

 

  servo2.write(motor_angle_X); 

  

  // Angle range from 0 to 180 degrees 

  if (rpw[1] <= 180 && rpw[1] >= 0) 

  { 

    motor_angle_Y = rpw[1]; 

  } 

 

  servo3.write(motor_angle_Y); 

 

  // Angle range from 0 to 180 degrees 

  if (rpw[2] <= 180 && rpw[2] >= 0) 

  { 

    motor_angle_Z = rpw[2]; 

  } 

 

  servo1.write(motor_angle_Z); 

   

  if (Serial.available() > 0) 

  { 

 

    // read the incoming byte: 

    instruction = Serial.read(); 

 

    switch (instruction) 

    { 

    case 'A': 

      Serial.print("RPW: "); 

      Serial.println(String(rpw[0], 4)); 

      Serial.println(String(rpw[1], 4)); 

      Serial.println(String(rpw[2], 4)); 

 

      break; 

 

    default: 

      break; 

    } 

 

    instruction = NULL; 

  } 

   

  ///////// BUTTON ///////////// 

  // read the input pin: 

  //int buttonStateA = digitalRead(pushButtonA); 

  //int buttonStateB = digitalRead(pushButtonB); 

  // print out the state of the button: 

  //Serial.println(buttonStateA); 

  //Serial.println(buttonStateB); 

  //delay(1); // delay in between reads for stability 

  //Serial.println(torque1); 

} 

 
 

  



 

56  

13.2. Appendix 2: Transmission of the RPY angles from the pen to the servomotors 
(RoboDK) 

 

import serial 

import time 

import math 

import TKinter as tk 

import numpy as np 

from robolink import * 

from RoboDK import * 

 

# Variables definition 

# TCP end-effector respect the Flange 

X=0 

Y=-60 

Z=320 

 

# Lets bring some time to the system to stablish the connetction 

time.sleep(2) 

 

# Establish a link with the simulator 

RDK = Robolink() 

 

# ------------------------------------------------------------------------------ 

# Simulator setup 

# ------------------------------------------------------------------------------ 

 

# Retrieve all items (object in the RoboDK tree) 

# Define the "robot" variable with our robot (UR5e) 

robot = RDK.Item ('UR5e') 

 

# Define the "tcp" variable with the TCP of EndoWrist needle 

tcp_tool = RDK.Item('TCP_EndoWrist') 

pose_tcp=tcp_tool.Pose() 

 

# Performs a quick check to validate items defined 

if robot.Valid(): 

    print('Robot selected: ' + robot.Name()) 

if tcp_tool.Valid(): 

    print('Tool selected: ' + tcp_tool.Name()) 

 

# Robot Flange with respect to UR5e base Frame 

print ('Robot POSE is: ' + repr(robot.Pose())) 

# Tool frame with respect to Robot Flange 

print ('Robot POSE is: ' + repr(robot.PoseTool())) 

# Tool frame with respect to Tool frame 

print ('TCP pose is: ' + repr(pose_tcp)) 

 

# ------------------------------------------------------------------------------ 

#  Establish the connection on a specific port 

arduino = serial.Serial("COM3", 115200, timeout=1) 

 

# PROVES SENSE ARDUINO 

 

condicio=0 

iteration=0 

 

def change_condition(): 

    global condicio 

    if condicio == True: 

        condicio = False         
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    else: 

        condicio = True 

 

# RPY page 

l1 = 0 

l2 = 0 

l3 = 0 

l4 = 0 

l5 = 0 

ChangeButton2 =  0 

page = 0 

ChangeButton = 0 

page2 = 0 

 

def RPY_page(): 

    global l1 

    global l2 

    global l3 

    global l4 

    global ChangeButton 

    global page2 

    global condicio 

    page2=tk.Tk() 

    page2.title("RPY angles and Torque") 

    title=tk.Label(page2, text="The output is: ").grid(row=1, column=1,padx=5, 

pady=5) 

    l1t = tk.Label(page2, text = "R (Roll)= ").grid(row=2, column=1,padx=5, 

pady=5) 

    l1  = tk.Label(page2, text = " ") 

    l1.grid(row=2, column=2,padx=5, pady=5) 

    l2t = tk.Label(page2, text = "P (Pitch)= ").grid(row=3, column=1,padx=5, 

pady=5) 

    l2  = tk.Label(page2, text = " ") 

    l2.grid(row=3, column=2,padx=5, pady=5) 

    l3t = tk.Label(page2, text = "Y (Yaw)= ").grid(row=4, column=1,padx=5, 

pady=5) 

    l3  = tk.Label(page2, text = " ") 

    l3.grid(row=4, column=2,padx=5, pady=5) 

    StartPage.quit() 

    condicio = True 

 

# Close window 

def close(): 

    StartPage.destroy() 

    quit(0) 

 

# Start Page configuration 

StartPage=tk.Tk() 

StartPage.title("Start Page") 

text=tk.Label(StartPage, text="Select the output's convention: ", height=5) 

text.pack() 

RPY_button=tk.Button(StartPage,text="RPY Orientation", fg="red", command = 

RPY_page) 

RPY_button.pack(side="left") 

StartPage.mainloop() 

imagen = PhotoImage(file="UR5e.gif") 

Label(StartPage, image=imagen, bd=30).pack() 

StartPage.protocol("WM_DELETE_WINDOW", close) # Delete the window when we close 

it, therefore it won't keep running 

 

try: 

    while True: 
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        if condicio==True: 

            # Requesting data to Ardino (command A) 

            arduino.write(b'A') 

 

            # RPY 

            roll_str = arduino.readline().strip() 

            pitch_str = arduino.readline().strip() 

            yaw_str = arduino.readline().strip() 

 

            # As we can not try it with Arduino, we define the RPY angles and 

torque 

            # roll_str = 1 

            # pitch_str = 2 

            # yaw_str = 3 

 

            # Convert variable values from string to float 

            roll = float(roll_str) 

            pitch = float(pitch_str) 

            yaw = float(yaw_str) 

            

            # Convert from degrees to radians R,P,Y angles 

            R = math.radians(roll) 

            P = math.radians(pitch) 

            W = math.radians(yaw) 

 

            # Calculate the POSE matrix (UR) 

            pose_matrix_rpy = transl([X, Y, Z])*rotx(pi)*rotx(-R)*roty(-P)*rotz(-

W) 

            tcp_tool_pose = tcp_tool.setPoseTool(pose_matrix_rpy) 

            print("The POSE matrix with RPY: "+ repr(pose_matrix_rpy)) 

            l1.config(text = np.around(R, decimals = 2)) 

            l2.config(text = np.around(P, decimals = 2)) 

            l3.config(text = np.around(W, decimals = 2)) 

            page2.update() 

             

 

except KeyboardInterrupt: 

    print("Communication stopped.") 

    pass 

 

 

# ------------------------------------------------------------------------------ 

# Disconnect Arduino 

# ------------------------------------------------------------------------------ 

print("Disconnecting Arduino...") 

arduino.close() 
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13.3. Appendix 3: Acquisition and visualization of the RPY angles from the haptic pen 
(Arduino IDE) 

 
/****************************************************************************** 

Reading IMU Sensor 

******************************************************************************/ 

 

#include "src/RoboticsUB.h" 

#include <Servo.h> 

 

IMU imu; 

Servo servo1; 

Servo servo2; 

Servo servo3; 

 

int PIN_IMU_VCC = 4; 

int PIN_IMU_INT = 5; 

float *rpw;           // Pointer to read RPW 

float *q;             // Pointer to quaternion 

char instruction = 0; // For incoming serial data 

float torque = 0; 

 

int Pin_R1 = A0;      // Analogic pin used by R1 (Servo1) 

int Pin_R2 = A1;      // Analogic pin used by R2 (Servo2) 

int Pin_R3 = A2;      // Analogic pin used by R3 (Servo3) 

 

float R = 1.6;       // Resistance value R1 

 

const unsigned long period_milis = 200; //Time for torque output 

unsigned long current_milis = 0; 

unsigned long previous_milis = 0; 

 

float motor_angle_X = 0;  // Motor angle 

float motor_angle_Y = 0;  // Motor angle 

float motor_angle_Z = 0;  // Motor angle 

 

void setup() 

{ 

 

  Serial.begin(115200); 

  imu.Install(); 

   

  // Power the IMU from pin to reset 

  pinMode(PIN_IMU_VCC, OUTPUT); 

  digitalWrite(PIN_IMU_VCC, LOW); 

  delay(100); 

  digitalWrite(PIN_IMU_VCC, HIGH); 

  delay(100); 

   

  servo1.attach(9); 

  servo2.attach(10); // poso aquests perquè són PWM, com D9 

  servo3.attach(11); 

 

} 

 

void loop() 

{ 

  current_milis = millis(); 

  if (digitalRead(PIN_IMU_INT) == HIGH) { 

    imu.ReadSensor(); 

    rpw = imu.GetRPY(); 
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  } 

 

  // Angle range from 0 to 180 degrees 

  if (rpw[0] <= 180 && rpw[0] >= 0) 

  { 

    motor_angle_X = rpw[0]; 

  } 

 

  servo2.write(motor_angle_X); 

 

  // Angle range from 0 to 180 degrees 

  if (rpw[1] <= 180 && rpw[1] >= 0) 

  { 

    motor_angle_Y = rpw[1]; 

  } 

 

  servo3.write(motor_angle_Y); 

 

  // Angle range from 0 to 180 degrees 

  if (rpw[2] <= 180 && rpw[2] >= 0) 

  { 

    motor_angle_Z = rpw[2]; 

  } 

 

  servo1.write(motor_angle_Z); 

   

  if (Serial.available() > 0) 

  { 

 

    instruction = Serial.read(); 

 

    switch (instruction) 

    { 

    case 'A': 

      //Serial.print("RPW angles are:   "); 

      Serial.println(String(rpw[0], 2)); 

      Serial.println(String(rpw[1], 2)); 

      Serial.println(String(rpw[2], 2)); 

      delay(20); 

 

      break; 

 

    case 'B': 

     

      Serial.println(String(q[0], 4)); 

      Serial.println(String(q[1], 4)); 

      Serial.println(String(q[2], 4)); 

      Serial.println(String(q[3], 4)); 

      Serial.println(String(torque, 4)); 

       

      break; 

       

    default: 

      break; 

    } 

 

    instruction = NULL; 

     

    } 

  } 

  



 

61  

13.4. Appendix 4: Acquisition and visualization of the RPY angles from the haptic pen 
(RoboDK) 

 
import serial 

import time 

import math 

import TKinter as tk 

import numpy as np 

from robolink import * 

from RoboDK import * 

 

# Variables definition 

# TCP end-effector respect the Flange 

X=0 

Y=-60 

Z=320 

 

# Lets bring some time to the system to stablish the connetction 

time.sleep(2) 

 

# Establish a link with the simulator 

RDK = Robolink() 

 

# ------------------------------------------------------------------------------ 

# Simulator setup 

# ------------------------------------------------------------------------------ 

 

# Retrieve all items (object in the RoboDK tree) 

# Define the "robot" variable with our robot (UR5e) 

robot = RDK.Item ('UR5e') 

 

# Define the "tcp" variable with the TCP of EndoWrist needle 

tcp_tool = RDK.Item('TCP_EndoWrist') 

pose_tcp=tcp_tool.Pose() 

 

# Performs a quick check to validate items defined 

if robot.Valid(): 

    print('Robot selected: ' + robot.Name()) 

if tcp_tool.Valid(): 

    print('Tool selected: ' + tcp_tool.Name()) 

 

# Robot Flange with respect to UR5e base Frame 

print ('Robot POSE is: ' + repr(robot.Pose())) 

# Tool frame with respect to Robot Flange 

print ('Robot POSE is: ' + repr(robot.PoseTool())) 

# Tool frame with respect to Tool frame 

print ('TCP pose is: ' + repr(pose_tcp)) 

 

# ------------------------------------------------------------------------------ 

#  Establish the connection on a specific port 

arduino = serial.Serial("COM3", 115200, timeout=1) 

 

# PROVES SENSE ARDUINO 

 

condicio=0 

iteration=0 

 

def change_condition(): 

    global condicio 

    if condicio == True: 

        condicio = False         



 

62  

    else: 

        condicio = True 

 

# RPY page 

l1 = 0 

l2 = 0 

l3 = 0 

l4 = 0 

l5 = 0 

page = 0 

page2 = 0 

 

def RPY_page(): 

    global l1 

    global l2 

    global l3 

    global l4 

    global l5 

    global page2 

    global condicio 

    page2=tk.Tk() 

    page2.title("RPY angles") 

    title=tk.Label(page2, text="The output is: ").grid(row=1, column=1,padx=5, 

pady=5) 

    l1t = tk.Label(page2, text = "R (Roll) = ").grid(row=2, column=1,padx=5, 

pady=5) 

    l1  = tk.Label(page2, text = " ") 

    l1.grid(row=2, column=2,padx=5, pady=5) 

    l2t = tk.Label(page2, text = "P (Pitch) = ").grid(row=3, column=1,padx=5, 

pady=5) 

    l2  = tk.Label(page2, text = " ") 

    l2.grid(row=3, column=2,padx=5, pady=5) 

    l3t = tk.Label(page2, text = "Y (Yaw) = ").grid(row=4, column=1,padx=5, 

pady=5) 

    StartPage.quit() 

     

 

    condicio = True 

 

# Close window 

def close(): 

    StartPage.destroy() 

    quit(0) 

 

# Start Page configuration 

StartPage=tk.Tk() 

StartPage.title("Start Page") 

text=tk.Label(StartPage, text="Push the button to see the RPY angles: ", 

height=5) 

text.pack() 

RPY_button=tk.Button(StartPage,text="RPY Orientation", fg="red", command = 

RPY_page) 

RPY_button.pack(side="bottom") 

StartPage.mainloop() 

 

StartPage.protocol("WM_DELETE_WINDOW", close) # Delete the window when we close 

it, therefore it won't keep running 

 

try: 

    while True: 

 

        if condicio==True: 
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            # Requesting data to Ardino (command A) 

            arduino.write(b'A') 

 

            # RPY 

            roll_str = arduino.readline().strip() 

            pitch_str = arduino.readline().strip() 

            yaw_str = arduino.readline().strip() 

 

            # As we can not try it with Arduino, we define the RPY angles and 

torque 

             

            # Convert variable values from string to float 

            roll = float(roll_str) 

            pitch = float(pitch_str) 

            yaw = float(yaw_str) 

            

            # Convert from degrees to radians R,P,Y angles 

            R = math.radians(roll) 

            P = math.radians(pitch) 

            W = math.radians(yaw) 

 

            # Calculate the POSE matrix (UR) 

            pose_matrix_rpy = transl([X, Y, Z])*rotx(pi)*rotx(-R)*roty(-P)*rotz(-

W) 

            tcp_tool_pose = tcp_tool.setPoseTool(pose_matrix_rpy) 

            print("The POSE matrix with RPY: "+ repr(pose_matrix_rpy)) 

            l1.config(text = np.around(R, decimals = 2)) 

            l2.config(text = np.around(P, decimals = 2)) 

            l3.config(text = np.around(W, decimals = 2)) 

            page2.update() 

             

 

except KeyboardInterrupt: 

    print("Communication stopped.") 

    pass 

 

 

# ------------------------------------------------------------------------------ 

# Disconnect Arduino 

# ------------------------------------------------------------------------------ 

print("Disconnecting Arduino...") 

arduino.close() 
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13.5. Appendix 5: Transmission of the RPY angles from the PC to the servomotors 
(Arduino IDE) 

 
// Aquest codi controla la placa hardware de l'ur5e.  

// Rebrà la orientació i posició de la IMU (que es troba al pen) mitjançant wifi, 

i farà girar els servos  

// D'altra banda, llegirà el torque, que enviarà al haptic pen.  

 

#include "src/RoboticsUB.h" 

#include <Servo.h> 

 

Servo servo1; 

Servo servo2; 

Servo servo3; 

 

int Pin_R1 = A0;      // Analogic pin used by R1 (Servo1) 

int Pin_R2 = A1;      // Analogic pin used by R2 (Servo2) 

int Pin_R3 = A2;      // Analogic pin used by R3 (Servo3) 

 

float R = 1.6;       // Resistance value 

float torque1 = 0;     // Indicated as current (ampere) 

float torque_int1 = 0; 

float torque2 = 0;     // Indicated as current (ampere) 

float torque_int2 = 0; 

float torque3 = 0;     // Indicated as current (ampere) 

float torque_int3 = 0; 

 

const unsigned long period_milis = 200; //Time for torque output 

unsigned long current_milis1 = 0; 

unsigned long previous_milis1 = 0; 

 

unsigned long current_milis2 = 0; 

unsigned long previous_milis2 = 0; 

 

unsigned long current_milis3 = 0; 

unsigned long previous_milis3 = 0; 

 

//unsigned long current_milis4 = 0; 

//unsigned long previous_milis4 = 0; 

 

float motor_angle_X = 0;  // Motor angle 

float motor_angle_Y = 0;  // Motor angle 

float motor_angle_Z = 0;  // Motor angle 

 

bool condicio = HIGH; 

 

float rpw_1; // valor absolut, no incremental 

float rpw_2; 

float rpw_3; 

 

void setup() { 

  // put your setup code here, to run once: 

  Serial.begin(115200); 

  //Serial.setTimeout(1); 

  servo1.attach(9); 

  servo2.attach(10);  

  servo3.attach(11); 

} 

 

void loop() { 

  // put your main code here, to run repeatedly: 
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  if (condicio == HIGH){ 

 

    while (!Serial.available()); 

 

    rpw_1 = Serial.readString().toInt(); 

    rpw_2 = Serial.readString().toInt(); 

    rpw_3 = Serial.readString().toInt(); 

 

  } 

   

  current_milis1 = millis(); 

  current_milis2 = millis(); 

  current_milis3 = millis(); 

 

  if (rpw_1 <= 180 && rpw_1 >= 0){ 

    motor_angle_X = rpw_1; 

  } 

 

  servo1.write(motor_angle_X); 

   

  if (current_milis1-previous_milis1>=period_milis){ 

    torque1=torque_int1; 

    torque_int1=0; 

    previous_milis1=current_milis1; 

    } 

     

    else{ 

      torque_int1 += analogRead(Pin_R1) * (3.3 / 1023.0) / R; 

    } 

 

  if (rpw_2 <=180 && rpw_2 >= 0) 

  { 

    motor_angle_Y = rpw_2; 

  } 

  servo2.write(motor_angle_Y); 

 

 

  if (current_milis2-previous_milis2>=period_milis){ 

    torque2=torque_int2; 

    torque_int2=0; 

    previous_milis2=current_milis2; 

    } 

     

    else{ 

      torque_int2 += analogRead(Pin_R2) * (3.3 / 1023.0) / R; 

    } 

 

  if (rpw_3 <= 180 && rpw_3 >= 0) 

  { 

    motor_angle_Z = rpw_3; 

  } 

  servo3.write(motor_angle_Z); 

 

  if (current_milis3-previous_milis3>=period_milis){ 

    torque3=torque_int3; 

    torque_int3=0; 

    previous_milis3=current_milis3; 

    } 

       

    else{ 

      torque_int3 += analogRead(Pin_R3) * (3.3 / 1023.0) / R; 
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    } 

 

  if (Serial.available()>0){ 

    //Serial.print("The torque values are:   "); 

    Serial.println(String(torque1,2)); 

    Serial.println(String(torque2,2)); 

    Serial.println(String(torque3,2)); 

  } 

 

} 
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13.6. Appendix 6: Transmission of the RPY angles from the PC to the servomotors 
(RoboDK) 

 
 
""" 

******************************************************************************** 

TFG juls 

******************************************************************************** 

""" 

import serial 

import time 

import math 

import TKinter as tk 

import numpy as np 

from robolink import * 

from RoboDK import * 

 

# Variables definition 

# TCP end-effector respect the Flange 

X=0 

Y=-60 

Z=320 

 

 

# Lets bring some time to the system to stablish the connetction 

time.sleep(2) 

 

# Establish a link with the simulator 

RDK = Robolink() 

 

 

# ------------------------------------------------------------------------------ 

# Simulator setup 

# ------------------------------------------------------------------------------ 

 

# Retrieve all items (object in the RoboDK tree) 

# Define the "robot" variable with our robot (UR5e) 

robot = RDK.Item ('UR5e') 

 

# Define the "tcp" variable with the TCP of EndoWrist needle 

tcp_tool = RDK.Item('TCP_EndoWrist') 

pose_tcp=tcp_tool.Pose() 

 

# Performs a quick check to validate items defined 

if robot.Valid(): 

    print('Robot selected: ' + robot.Name()) 

if tcp_tool.Valid(): 

    print('Tool selected: ' + tcp_tool.Name()) 

 

# Robot Flange with respect to UR5e base Frame 

print ('Robot POSE is: ' + repr(robot.Pose())) 

# Tool frame with respect to Robot Flange 

print ('Robot POSE is: ' + repr(robot.PoseTool())) 

# Tool frame with respect to Tool frame 

print ('TCP pose is: ' + repr(pose_tcp)) 

 

# ------------------------------------------------------------------------------ 

#  Establish the connection on a specific port 

arduino = serial.Serial("COM3", 115200, timeout=1) 
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def write_read_R(rpw_1): 

    arduino.write(bytes(rpw_1, 'utf-8')) 

    time.sleep(0.05) 

    roll = arduino.readline() 

    return roll 

 

def write_read_P(rpw_2): 

    arduino.write(bytes(rpw_2, 'utf-8')) 

    time.sleep(0.05) 

    pitch = arduino.readline() 

    return pitch 

 

def write_read_Y(rpw_3): 

    arduino.write(bytes(rpw_3, 'utf-8')) 

    time.sleep(0.05) 

    yaw = arduino.readline() 

    return yaw 

 

while True: 

    roll_ = str(input("Enter a roll angle: ")) 

    pitch_ = str(input("Enter a pitch angle: ")) 

    yaw_ = str(input("Enter a yaw angle: ")) 

 

    roll_value = write_read_R(roll_) 

    pitch_value = write_read_P(pitch_) 

    yaw_value = write_read_Y(yaw_) 

 

    torque1 = arduino.readline().strip() 

    torque2 = arduino.readline().strip()     

    torque3 = arduino.readline().strip() 

 

    print(roll_value, pitch_value, yaw_value) 

    print() 

    print(torque1,torque2,torque3) 

 

    # Convert from degrees to radians R,P,Y angles 

    R = math.radians(int(roll_)) 

    P = math.radians(int(pitch_)) 

    W = math.radians(int(yaw_)) 

     

    # Calculate the POSE matrix (UR) 

    pose_matrix_rpy = transl([X, Y, Z])*rotx(pi)*rotx(-R)*roty(-P)*rotz(-W) 

    tcp_tool_pose = tcp_tool.setPoseTool(pose_matrix_rpy) 

    print("The POSE matrix with RPY: "+ repr(pose_matrix_rpy)) 

 

 

# ------------------------------------------------------------------------------ 

# Disconnect Arduino 

# ------------------------------------------------------------------------------ 

print("Disconnecting Arduino...") 

arduino.close() 
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13.7. Appendix 7: Transmission of the RPY angles from the PC to the servomotors -
sliders (RoboDK) 

 
import serial 

import time 

import math 

import TKinter as tk 

import numpy as np 

from robolink import * 

from RoboDK import * 

 

# Set up default parameters 

# Variables definition 

# TCP end-effector respect the Flang 

ROLL=90 

PITCH=90 

YAW=90 

 

 

# Main program 

def RunProgram(): 

    # Use default global variables 

    global ROLL 

    global PITCH 

    global YAW 

 

    ROLL=math.radians(entry_roll.get()) 

    PITCH=math.radians(entry_pitch.get()) 

    YAW=math.radians(entry_yaw.get()) 

     

    #Any interaction with RoboDK must be done through RDK: 

    RDK = Robolink() 

     

    # get the home target and the welding targets: 

    home = RDK.Item('Home') 

    target = RDK.Item('Target 1') 

 

    # get the robot as an item: 

    robot = RDK.Item('', ITEM_TYPE_ROBOT) 

 

    # get the pose of the reference target (4x4 matrix representing position and 

orientation): 

    poseref = target.Pose() 

 

    # move the robot to home, then to an approach position 

    robot.MoveJ(home) 

    robot.MoveJ(transl(0,0,APPROACH)*poseref) 

 

# Use TKinter to display GUI menus 

from TKinter import * 

 

# Generate the main window 

root = tk.Tk() 

root.title("Program settings") 

 

# Use variables linked to the global variables 

 

entry_roll = IntVar() 

entry_roll.set(ROLL) 

 

entry_pitch = IntVar() 
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entry_pitch.set(PITCH) 

 

entry_yaw = IntVar() 

entry_yaw.set(YAW) 

 

 

# Define a label and entry text for the different parameters 

Label(root, text="Roll (deg):").pack() 

entry_roll=Scale(root, from_=0, to=90, orient=HORIZONTAL).pack() 

#entry_roll.pack() 

Label(root, text="Pitch (deg):").pack() 

entry_roll=Scale(root, from_=0, to=90, orient=HORIZONTAL).pack() 

#entry_pitch.pack() 

Label(root, text="Yaw (deg):").pack() 

entry_yaw=Scale(root, from_=0, to=90, orient=HORIZONTAL).pack() 

#entry_yaw.pack() 

 

def Execute(): 

    # Run the main program once all the global variables have been set 

    RunProgram() 

 

Button(root, text='Simulate', command=Execute).pack() 

Label(root, text="").pack()  # Separador 

 

# Important to display the graphical user interface 

root.mainloop() 
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13.8. Appendix 8: Advancement of the TCP after pressing the pushbutton (Arduino IDE)  
 
#include "src/RoboticsUB.h" 

#include <Servo.h> 

 

IMU imu; 

Servo servo1; 

Servo servo2; 

Servo servo3; 

 

// digital pins 3 and 2 have pushbuttons attached  

const int pushButtonA = 2; 

const int pushButtonB = 3; 

 

int PIN_IMU_VCC = 4; 

int PIN_IMU_INT = 5; 

float *rpw;           // Pointer to read RPW 

float *q;             // Pointer to quaternion 

char instruction = 0; // For incoming serial data 

float torque = 0; 

 

int Pin_R1 = A0;      // Analogic pin used by R1 (Servo1) 

int Pin_R2 = A1;      // Analogic pin used by R2 (Servo2) 

int Pin_R3 = A2;      // Analogic pin used by R3 (Servo3) 

 

float R = 1.6;       // Resistance value R1 

 

const unsigned long period_milis = 200; //Time for torque output 

unsigned long current_milis = 0; 

unsigned long previous_milis = 0; 

 

float motor_angle_X = 0;  // Motor angle 

float motor_angle_Y = 0;  // Motor angle 

float motor_angle_Z = 0;  // Motor angle 

 

void setup() 

{ 

 

  Serial.begin(115200); 

  imu.Install(); 

   

  // Power the IMU from pin to reset 

  pinMode(PIN_IMU_VCC, OUTPUT); 

  digitalWrite(PIN_IMU_VCC, LOW); 

  delay(100); 

  digitalWrite(PIN_IMU_VCC, HIGH); 

  delay(100); 

   

  servo1.attach(9); 

  servo2.attach(10); // poso aquests perquè són PWM, com D9 

  servo3.attach(11); 

 

  pinMode(pushButtonA, INPUT); 

  pinMode(pushButtonB, INPUT); 

 

} 

 

void loop() 

{ 

  current_milis = millis(); 

  if (digitalRead(PIN_IMU_INT) == HIGH) { 
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    imu.ReadSensor(); 

    rpw = imu.GetRPY(); 

  } 

 

  // Angle range from 0 to 180 degrees 

  if (rpw[0] <= 180 && rpw[0] >= 0) 

  { 

    motor_angle_X = rpw[0]; 

  } 

 

  servo2.write(motor_angle_X); 

 

 

  // Angle range from 0 to 180 degrees 

  if (rpw[1] <= 180 && rpw[1] >= 0) 

  { 

    motor_angle_Y = rpw[1]; 

  } 

 

  servo3.write(motor_angle_Y); 

 

  // Angle range from 0 to 180 degrees 

  if (rpw[2] <= 180 && rpw[2] >= 0) 

  { 

    motor_angle_Z = rpw[2]; 

  } 

 

  servo1.write(motor_angle_Z); 

   

  int buttonStateA = digitalRead(pushButtonA); 

  int buttonStateB = digitalRead(pushButtonB);       

   

  if (Serial.available() > 0) 

  { 

 

    instruction = Serial.read(); 

 

    switch (instruction) 

    { 

    case 'A': 

      //Serial.print("RPW angles are:   "); 

      Serial.println(String(rpw[0], 4)); 

      Serial.println(String(rpw[1], 4)); 

      Serial.println(String(rpw[2], 4)); 

      Serial.println(String(buttonStateA, 4)); 

      Serial.println(String(buttonStateB, 4)); 

      delay(20); 

 

      break; 

 

    case 'B': 

     

      Serial.println(String(q[0], 4)); 

      Serial.println(String(q[1], 4)); 

      Serial.println(String(q[2], 4)); 

      Serial.println(String(q[3], 4)); 

      Serial.println(String(torque, 4)); 

       

      break; 

       

    default: 

      break; 
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    } 

 

    instruction = NULL; 

     

    } 

   

   

  ///////// BUTTON ///////////// 

  // read the input pin: 

  //int buttonStateA = digitalRead(pushButtonA); 

  //int buttonStateB = digitalRead(pushButtonB); 

  // print out the state of the button: 

  //Serial.print("Botón Inferior D2: "); 

  //Serial.println(buttonStateA); 

  //Serial.print("Botón Superior D3: "); 

  //Serial.println(buttonStateB); 

  //delay(20); // delay in between reads for stability  

  // 1: sense apretar 

  // 0: quan apretes 

} 
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13.9. Appendix 9: Advancement of the TCP after pressing the pushbutton (RoboDK)  
 
import serial 

import time 

import math 

import TKinter as tk 

import numpy as np 

from robolink import * 

from RoboDK import * 

 

# Variables definition 

# TCP end-effector respect the Flange 

X=0 

Y=-60 

Z=320 

 

# Lets bring some time to the system to stablish the connetction 

time.sleep(2) 

 

# Establish a link with the simulator 

RDK = Robolink() 

 

# ------------------------------------------------------------------------------ 

# Simulator setup 

# ------------------------------------------------------------------------------ 

 

# Retrieve all items (object in the RoboDK tree) 

# Define the "robot" variable with our robot (UR5e) 

robot = RDK.Item ('UR5e') 

 

# Define the "tcp" variable with the TCP of EndoWrist needle 

tcp_tool = RDK.Item('TCP_EndoWrist') 

pose_tcp=tcp_tool.Pose() 

 

# Performs a quick check to validate items defined 

if robot.Valid(): 

    print('Robot selected: ' + robot.Name()) 

if tcp_tool.Valid(): 

    print('Tool selected: ' + tcp_tool.Name()) 

 

# Robot Flange with respect to UR5e base Frame 

print ('Robot POSE is: ' + repr(robot.Pose())) 

# Tool frame with respect to Robot Flange 

print ('Robot POSE is: ' + repr(robot.PoseTool())) 

# Tool frame with respect to Tool frame 

print ('TCP pose is: ' + repr(pose_tcp)) 

 

# ------------------------------------------------------------------------------ 

#  Establish the connection on a specific port 

arduino = serial.Serial("COM3", 115200, timeout=1) 

 

# PROVES SENSE ARDUINO 

 

condicio=0 

iteration=0 

 

def change_condition(): 

    global condicio 

    if condicio == True: 

        condicio = False         

    else: 
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        condicio = True 

 

# RPY page 

l1 = 0 

l2 = 0 

l3 = 0 

l4 = 0 

l5 = 0 

page = 0 

page2 = 0 

 

def RPY_page(): 

    global l1 

    global l2 

    global l3 

    global l4 

    global l5 

    global page2 

    global condicio 

    page2=tk.Tk() 

    page2.title("RPY angles") 

    title=tk.Label(page2, text="The output is: ").grid(row=1, column=1,padx=5, 

pady=5) 

    l1t = tk.Label(page2, text = "R (Roll) = ").grid(row=2, column=1,padx=5, 

pady=5) 

    l1  = tk.Label(page2, text = " ") 

    l1.grid(row=2, column=2,padx=5, pady=5) 

    l2t = tk.Label(page2, text = "P (Pitch) = ").grid(row=3, column=1,padx=5, 

pady=5) 

    l2  = tk.Label(page2, text = " ") 

    l2.grid(row=3, column=2,padx=5, pady=5) 

    l3t = tk.Label(page2, text = "Y (Yaw) = ").grid(row=4, column=1,padx=5, 

pady=5) 

    l3  = tk.Label(page2, text = " ") 

    l3.grid(row=4, column=2,padx=5, pady=5) 

    l4t = tk.Label(page2, text = "Button 1 = ").grid(row=5, column=1,padx=5, 

pady=5) 

    l4  = tk.Label(page2, text = " ") 

    l4.grid(row=5, column=2,padx=5, pady=5) 

    l5t = tk.Label(page2, text = "Button 2 = ").grid(row=6, column=1,padx=5, 

pady=5) 

    l5  = tk.Label(page2, text = " ") 

    l5.grid(row=6, column=2,padx=5, pady=5) 

    StartPage.quit() 

     

 

    condicio = True 

 

# Close window 

def close(): 

    StartPage.destroy() 

    quit(0) 

 

# Start Page configuration 

StartPage=tk.Tk() 

StartPage.title("Start Page") 

text=tk.Label(StartPage, text="Push the button to see the RPY angles: ", 

height=5) 

text.pack() 

RPY_button=tk.Button(StartPage,text="RPY Orientation", fg="red", command = 

RPY_page) 

RPY_button.pack(side="bottom") 
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StartPage.mainloop() 

 

StartPage.protocol("WM_DELETE_WINDOW", close) # Delete the window when we close 

it, therefore it won't keep running 

 

try: 

    while True: 

 

        if condicio==True: 

            # Requesting data to Ardino (command A) 

            arduino.write(b'A') 

 

            # RPY 

            roll_str = arduino.readline().strip() 

            pitch_str = arduino.readline().strip() 

            yaw_str = arduino.readline().strip() 

            b1_str = arduino.readline().strip() 

            b2_str = arduino.readline().strip() 

 

            # As we can not try it with Arduino, we define the RPY angles and 

torque 

             

            # Convert variable values from string to float 

            roll = float(roll_str) 

            pitch = float(pitch_str) 

            yaw = float(yaw_str) 

            b1 = float(b1_str) 

            b2 = float(b2_str) 

            

            # Convert from degrees to radians R,P,Y angles 

            R = math.radians(roll) 

            P = math.radians(pitch) 

            W = math.radians(yaw) 

 

            # Calculate the POSE matrix (UR) 

            pose_matrix_rpy = transl([X, Y, Z])*rotx(pi)*rotx(-R)*roty(-P)*rotz(-

W) 

            tcp_tool_pose = tcp_tool.setPoseTool(pose_matrix_rpy) 

            print("The POSE matrix with RPY: "+ repr(pose_matrix_rpy)) 

            l1.config(text = np.around(R, decimals = 2)) 

            l2.config(text = np.around(P, decimals = 2)) 

            l3.config(text = np.around(W, decimals = 2)) 

            l4.config(text = np.around(b1, decimals = 2)) 

            l5.config(text = np.around(b2, decimals = 2)) 

            page2.update() 

             

         

            ## BUTTONS ------------------------------ 

 

            if b1 == 0: 

                # Define the motion of the TCP 

                RDK.AddFrame("TCP_Moving") 

                tcp_motion = RDK.Item('TCP_Moving') 

                 

 

                # Next position 

 

                tcp_motion_pose = tcp_motion*transl(10,0,0) # translation in x 

axis 

                next_pose.setPose(tcp_motion_pose) 

                next_tcp_pose=tcp_motion.Pose() 
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                print("POSE of the next POSE after the movement: 

"+repr(next_tcp_pose)) 

 

except KeyboardInterrupt: 

    print("Communication stopped.") 

    pass 

 

 

# ------------------------------------------------------------------------------ 

# Disconnect Arduino 

# ------------------------------------------------------------------------------ 

print("Disconnecting Arduino...") 

arduino.close() 
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13.10. Appendix 10: Opening of the needle jaws after pressing the pushbutton (Arduino 
IDE) 

 
/****************************************************************************** 

TFG  

******************************************************************************/ 

 

// digital pins 2 and 3 have pushbuttons attached  

int pushButtonA = 2; 

int pushButtonB = 4; 

 

#include "src/RoboticsUB.h" 

#include <Servo.h> 

 

 

// X-axis (roll) is translated as the rotation of the 2nd servomotor 

// Therfore, we need servos 1 and 3 

 

IMU imu; 

Servo servo1; 

Servo servo3; 

 

//int PIN_IMU_VCC = 4; 

//int PIN_IMU_INT = 5; 

 

float *rpw;           // Pointer to read RPW 

char instruction = 0; // For incoming serial data 

 

int Pin_R2 = A1;      // Analogic pin used by R2 (Servo2) 

int Pin_R3 = A2;      // Analogic pin used by R3 (Servo3) 

 

float R1 = 1.6;       // Resistance value R2 (Servo2) 

float R3 = 3.3;       // Resistance value R3 (Servo3) 

 

float motor_angle_X = 0;  // Motor angle 

float motor_angle_Y = 0; 

float motor_angle_Z = 0; 

 

void setup() 

{ 

 

  Serial.begin(115200); 

 

  imu.Install(); 

  servo1.attach(9); 

  servo3.attach(11); 

   

  pinMode(pushButtonA, INPUT); 

  pinMode(pushButtonB, INPUT); 

} 

 

void loop() 

{ 

 

  imu.ReadSensor(); 

  rpw = imu.GetRPY(); 

  int buttonStateA = digitalRead(pushButtonA); 

  int buttonStateB = digitalRead(pushButtonB); 

 

  if (buttonStateB = 0) 

  { 
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    // Open the jaw 90 degrees 

    motor_angle_Y = 90; // we open a needle 

    motor_angle_Z = 0; // but fix the other 

  } 

  servo3.write(motor_angle_Y); 

  servo1.write(motor_angle_Z); 

 

   

if (Serial.available() > 0) 

  { 

 

      Serial.print("Output data: "); 

      Serial.println(String(motor_angle_Y, 2)); 

      Serial.println(String(motor_angle_Z, 2)); 

      Serial.println(String(buttonStateB, 2));  

      delay(1); 

       

     // PROBLEMA? ARA ES MOUEN TOTS IGUAL.   

 

      break; 

 

    default: 

      break; 

    } 

 

  } 

   

} 

 
 
 
 
 
 
 


