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INTRODUCTION

Breast cancer is a biologically and clinically hetero-
geneous disease, and patients with similar clinical
stage have markedly different outcomes. Triple-
negative breast cancer (TNBC) is defined by the
lack of expression of estrogen receptor (ER), pro-
gesterone receptor, and human epidermal growth
factor receptor 2 (HER2).1,2 This subtype represents
15% to 20% of all breast cancers and is associated
with the worst outcome of all subtypes, with greater
tendency to distant recurrence in general and visceral
metastasis in particular, including brain metastasis.3,4

To date, chemotherapy remains the standard of care
for TNBC.5

Molecular stratification of TNBC will have treatment
implications.6 For example, approximately 40%of TNBC
patients have expression of programmed death-ligand 1
(PD-L1) protein in immune cells, and this biomarker
predicts survival benefit from anti-PD-L1 therapy in
combination with chemotherapy in the first-line meta-
static setting.7 In addition, approximately 10% of pa-
tients with TNBC harbor a germline BRCA1/2mutation,
which confers sensitivity to platinum and/or poly (ADP-
ribose) polymerase (PARP) inhibitors.2,8 PARP is in-
volved in the repair of DNA single-strand breaks via the
base excision pathway. PARP inhibitors such as olaparib
or talazoparib lead to an accumulation of double-strand
DNA breaks, resulting in the activation of homologous
recombination repair, which can compensate for the
lack of activity of the base excision pathway and repair
the DNA damage.9 However, patients with defects in the
homologous recombination DNA repair pathway cannot
repair DNA damages caused by PARP inhibitors, and
the tumor cell eventually dies (a term known as synthetic
lethality).

Here, we describe a heavily pretreated patient with
TNBC brain metastasis and a BRCA1 somatic muta-
tion with a remarkable and durable response to PARP
inhibitor therapy. To our knowledge, this is the first
case report to demonstrate disease response to PARP
inhibition in a TNBC without a germline BRCA1 or
BRCA2 mutation.

CASE SUMMARY

The patient is a 46-year-old woman diagnosed in
December 2015 with stage IIB (cT3cN1) moder-
ately differentiated invasive papillary carcinoma with
marked tumoral infiltrating lymphocytes10 (60%) and
the presence of vascular invasion. The tumor was ER-
positive, progesterone receptor-negative, and HER2-
negative with a Ki-67 of 80%. The patient received
neoadjuvant chemotherapy consisting of four cycles
of doxorubicin and cyclophosphamide followed by
paclitaxel once per week for 12 weeks. She had
a mastectomy and lymphadenectomy in June 2016.
Analysis of the surgical specimen revealed extensive
invasive residual disease (ypT2ypN1) with a TNBC
phenotype and abundant images of vascular in-
vasion. She then underwent adjuvant radiation to the
breast and started adjuvant endocrine therapy with
tamoxifen (clinical decision based on baseline ER
positivity).

In August 2017, a positron emission tomography
scan revealed multiple pathologic deposits in the
bone, lung, and mediastinum and a prepectoral le-
sion. Physical examination revealed a left prepectoral
subcutaneous nodule. Biopsy of the lesion confirmed
recurrence of the disease (GATA3 positivity) and
a TNBC phenotype with a Ki-67 of 70% and androgen
receptor–negative and tumor infiltrating lymphocytes
around 10% (Fig 1). PD-L1 immunohistochemistry
(DAKO clone 22C3) of immune cells and tumor cells
was 0%. At that point, a comprehensive gene panel of
94 genes and 284 single nucleotide polymorphisms
(Illumina TruSight Cancer) associated with cancer
predisposition was performed. The panel included
BRCA1, BRCA2, TP53, PALB2, and CHEK2 among
others. No germline mutation was detected.

The patient was treated with carboplatin and gemci-
tabine for six cycles, and she achieved a partial re-
sponse (Fig 2). In January 2018, she presented with
disease progression in the bone, and she received
palliative radiotherapy. Afterward, she began treat-
ment with capecitabine and vinorelbine. After four
cycles (12 weeks), the patient presented to the
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emergency department with progressively worsening
headache. A brain magnetic resonance imaging scan
showed multiple metastases, the largest being found in
the right frontal lobe with surrounding edema (Fig 3A).

The patient consented to participate in a research project in
which tumor profiling at the DNA and RNA level was per-
formed with results discussed at a molecular tumor board.
The prepectoral lesion was used for all the molecular ana-
lyses. At the DNA level, a FoundationOne test was per-
formed. The results revealed somatic mutations in BRCA1
(S1253fs*10 9435_9436delGT) and TP53 (S37fs*6*), a low
tumor mutational burden (four mutations per megabase),
and a stable microsatellite status. At the RNA level, an
nCounter-based Breast Cancer 360 panel was performed.11

This assay includes 752 breast cancer–related genes and 23
signatures, the tumor inflammation signature,12 the PAM50
subtype predictor,13 and the TNBCtype classifications14,15

(Fig 4). Results revealed a PAM50 basal-like subtype with
the following features: high expression of BRCA-ness and
DNA scar signatures, high expression of proliferation-
related genes, low expression of androgen receptor-
and estrogen-regulated genes, low expression of CD8
T cells and PD-L1, high expression of immunosuppres-
sive genes or signatures such as transforming growth
factor-β and regulatory T-cell signatures, and a TNBCtype
mesenchymal subtype.

On the basis of these results, off-label use of olaparib
300 mg twice per day was indicated. Consideration

was given to introducing corticosteroids or delivering
whole-brain radiotherapy (WBRT), but after discussion
with the patient, a clinical decision was made to start
olaparib under close observation and without the addition
of either radiotherapy or corticosteroids. After 2 weeks of
treatment, neurologic symptoms improved, and a restag-
ing magnetic resonance imaging scan at week 8 dem-
onstrated a significant reduction in the size of the brain
lesions and disappearance of associated cerebral edema
(Fig 3B). Computed tomography and bone scans dem-
onstrated stable disease. No evidence of disease pro-
gression has been observed after 4 months.

DISCUSSION

Patients harboring germline BRCA1/2 mutations are ideal
candidates for PARP inhibition. BRCA proteins play
a critical role in the homologous recombination DNA repair
pathway.16 In the presence of a BRCA germline mutation,
one allele is affected, and the occurrence of a genetic
alteration in the other allele (eg, through methylation or loss
of heterozygosity) leads to a nonfunctional BRCA and the
appearance of breast cancer, among other cancers.9 To
date, two phase III clinical trials have shown that PARP
inhibition with olaparib17 or talazoparib18 is superior to
standard chemotherapy in terms of progression-free sur-
vival in HER2-negative advanced breast cancer harboring
a BRCA germline mutation. Olaparib and talazoparib are
now approved by the US Food and Drug Administration in

A B C D

E F G H

FIG 1. Morphologic and immunohistochemical features. (A) The tumor (hematoxylin and eosin stain) was composed of neoplastic infiltrative nests
with scattered stromal tumor-infiltrating lymphocytes with many images of (B) lymphovascular invasion (CD31). The neoplastic cells were negative
for (C) estrogen receptor, (D) progesterone receptor, and (E) androgen receptor. (F) Human epidermal growth factor receptor 2 (HER2) studied by
fluorescence in situ hybridization showed a normal pattern without gene amplification. (G) The tumor had a high proliferation index (Ki-67), and
(H) programmed death-ligand 1 (PD-L1) was negative in both the neoplasm and the stromal cells.
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patients with germline BRCA1/2-mutated advanced breast
cancer. PARP inhibitors have also been shown to have
significant activity in patients with metastatic prostate19 or
ovarian20 cancer who harbor germline mutations in

BRCA1/2. In addition, cases of response in other tumors
to PARP inhibitors have been reported in the context of
mutations in other homologous recombination genes such
as RAD51D or RAD51C.21-23
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FIG 2. Patient treatment timeline. ALND, axillary lymph node dissection; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; PR,
progesterone receptor; TNBC, triple-negative breast cancer; yp, pathologic staging after neoadjuvant therapy.
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FIG 3. Brain magnetic resonance im-
aging before and after olaparib mono-
therapy. (A) Images before olaparib
therapy show a cortical enhancing lesion
on gadolinum-enhanced T1-weighted
imaging in the inferior frontal gyrus
with perilesional edema visualized on
fluid-attenuated inversion recovery
(FLAIR) sequencing, as well as diffuse
dural enhancement in the right hemi-
sphere. (B) Images after 8 weeks of
treatment with olaparib show decreased
size of the brain lesions, edema, and
dural enhancement.
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Somatic mutations may also arise in genes involved in
homologous recombination. For example, somatic mu-
tations in BRCA1/2 occur in approximately 3% of all
sporadic breast cancers.24,25 At this point, it is not known
whether germline and somatic BRCA1/2 mutations are

biologically equivalent.16 What seems clear is that a subset
of patients with TNBC without a germline BRCA1/2
mutation have a genetic profile similar to those with
a germline BRCA mutation (so-called BRCA-ness).26 For
example, Davies and colleagues27 recently derived a
predictor, using whole-genome sequencing, of BRCA1/2
deficiency called Homologous Recombination De-
ficiency Detect (HRDetect), which is composed of six
mutational signatures. HRDetect identified 12.4% of
breast cancers as being BRCA1/2 deficient despite not
having a BRCA1/2 germline mutation. Early-phase
clinical trials of PARP inhibitors in metastatic TNBC
and germline BRCA1/2 wild-type HER2-negative breast
cancer with specific somatic genomic alterations such as
BRCA1/2 mutations are underway (eg, NCT02401347;
Phase II Talazoparib in BRCA1 + BRCA2 Wild-Type &
Triple-Neg/HER2-Negative Breast Cancer/Solid Tumors
and NCT03330847; To Assess Safety and Efficacy of
Agents Targeting DNA Damage Repair With Olaparib
Versus Olaparib Monotherapy).

The long-lasting response of breast cancer brain metastasis
to olaparib in the absence of any other treatment is worth
discussing. First, this suggests that olaparib, which had not
previously been thought to cross the blood-brain barrier,28

is able to get to the site of the tumor. Concordant with this,
other case reports with olaparib monotherapy have de-
scribed regression of brain metastasis.29,30 Second, ola-
parib, and other highly effective targeted systemic
therapies, allow the delay of WBRT.31-35 This is important
becauseWBRT can have a negative impact on quality of life
and long-term neurocognitive functioning.36 Thus, strate-
gies to avoid, delay, or abrogate the effects of WBRT using
systemic targeted therapies should be prioritized.

In summary, comprehensive genomic alteration testing
may provide novel clinical strategies for personalized
therapy in advanced TNBC with improvement in overall
survival and quality of life. More trials regarding molecular
targeted therapy are expected to be conducted in the fu-
ture, and at the same time, mechanisms regarding re-
sistance are expected to be explored and understood,
which will aid the development strategies to resensitize
tumor cells to PARP inhibitors and improve long-term
effectiveness.
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FIG 4. Gene expression summarized results after using theBreast Cancer
360 nCounter-based gene panel. Selected signature scores are shown
with the tumor inflammation signature (TIS) and PAM50 signatures at the
core; the other signature scores are shown as bars around the rim. Scores
range from 0 to 1 mapped to quantiles of the population with invasive
breast carcinoma in The Cancer Genome Atlas (TCGA). As an example,
a value of 0.5 matches the median expression in the TCGA. Color denotes
each signature’s biologic function. APM, antigen processing machinery;
AR, androgen receptor; BRCA-ness, BRCAness signature; CLDL-ness,
Claudin-Low subtype signature; Diffrn, differentiation; DNA scar, DNA scar
signature; ER, estrogen receptor; HER2-E, HER2-enriched; Inflm chmkn,
inflammatory chemokines; PD-1, programmed cell death protein 1; PD-
L1, programmeddeath-ligand1; PGR, progesterone receptor; TIGIT, T cell
immunoreceptor and Ig and ITIMS domains; Treg, regulatory T cell.
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