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Abstract

and ETT biofilm thickness was compared between groups.

infection

Purpose: To compare the efficacy of systemic treatment with linezolid (LNZ) versus vancomycin (VAN) on methicillin-
resistant Staphylococcus aureus (MRSA) burden and eradication in endotracheal tube (ETT) biofilm and ETT cuff from
orotracheally intubated patients with MRSA respiratory infection.

Methods: Prospective observational clinical study was carried out at four European tertiary hospitals. Plasma
and endotracheal aspirate (ETA) levels of LNZ and VAN were determined 72 h after treatment initiation
through high-performance liquid chromatography or bioassay. LNZ or VAN concentration in the ETT biofilm
and MRSA burden and eradication was determined upon extubation. The minimum inhibitory concentration
(MIC) for LNZ and VAN was assessed by E-test strips (Biomerieux®). Scanning electron microscopy images were obtained,

Results: Twenty-five patients, 15 treated with LNZ and 10 with VAN, were included in the study. LNZ presented a
significantly higher concentration (ug/mL) than VAN in ETT biofilm (72.8 [1.3-127.1] vs 04 [04-1.3], p < 0.001), although
both drugs achieved therapeutic plasma levels 72 h after treatment initiation. Systemic treatment with LNZ achieved
lower ETT cuff MRSA burdens than systemic treatment with VAN. Indeed, LNZ increased the MRSA eradication rate in
ETT cuff compared with VAN (LNZ 75%, VAN 20%, p = 0.031).

Conclusions: In ICU patients with MRSA respiratory infection intubated for long periods, systemic treatment with LNZ
obtains a greater beneficial effect than VAN in limiting MRSA burden in ETT cuff.
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Introduction

In orotracheally intubated critically ill patients, bacteria
from the oropharyngeal or gastric microbiota can rapidly
colonize the lower respiratory airways passing over the
endotracheal tube cuff (ETT cuff) and colonizing the
inner ETT surface by forming biofilms [1, 2]. Thus, these
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patients are especially vulnerable to developing a respi-
ratory infection caused by a nosocomial pathogen such as
Staphylococcus aureus, in either its methicillin-sensitive
(MSSA) or methicillin-resistant (MRSA) form.

S. aureus has recently been identified as the second most
frequently isolated microorganism responsible for intensive
care unit (ICU)-acquired pneumonia, of which 29% of
cases are MRSA [3]. The current clinical guidelines for
hospital-acquired pneumonia (HAP) and ventilator-as-
sociated pneumonia (VAP) published by the Infectious Dis-
eases Society of America and the American Thoracic
Society (IDSA/ATS) recommend either intravenous vanco-
mycin (VAN) or linezolid (LNZ) as first-line treatment for
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MRSA ICU-acquired respiratory infection [4], while the
International ~ ERS/ESICM/ESCMID/ALAT  guidelines
prefer LNZ than VAN [5]. However, the microbiological
confirmation of MRSA cultures takes at least 48-72h, a
sufficient time-lapse for ETT biofilm formation.

ETT biofilm formation is currently considered one of
the multiple factors that can lead to VAP or its relapse [2].
While several preventive strategies have targeted ETT bio-
film eradication [6—9], none of them has achieved 100%
success. The silver-coated ETT and mucus shaver have
demonstrated improvements in reducing ETT biofilm in
randomized clinical trials but still present certain limita-
tions which may delay their implementation in clinical
practice [7, 8]. Although biofilms exhibit antimicrobial
tolerance [10], little is known about how antimicrobials
affect biofilm formation during endotracheal intubation.
In a previous study in pigs with MRSA pneumonia, we
found that those treated with LNZ achieved better phar-
macokinetic and pharmacodynamic indices in serum and
lung tissue [11], very high levels of LNZ within ETT
biofilm, and a lower ETT biofilm MRSA burden in com-
parison with untreated controls; however, similar rates
were not found in the VAN group [12, 13]. What is more,
in a study in piglets, Luna et al. found that LNZ was asso-
ciated with a lower pathology score, better survival, and a
trend towards better clearance of MRSA in comparison
with glycopeptides [14]. Since it is well known that find-
ings in pigs are not always reproducible in humans [15],
we designed a clinical observational study in ICU patients
to assess this issue.

Our study aimed to determine the effect of systemic
treatment with LNZ vs VAN on ETT biofilm from ICU
patients with respiratory MRSA infection, including LNZ
and VAN concentration measurements within plasma and
endotracheal aspirate (ETA) 72 h after treatment initiation
and within ETT biofilm upon extubation.

Materials and methods

Patients

The study was conducted at the medical and surgical
ICUs of four university hospitals in southern Europe,
three in Spain and one in Italy. The following hospitals
enrolled patients: Hospital Clinic, Barcelona, Spain
(including the following ICUs: Respiratory, Medical,
Surgical, Cardiovascular and Hepatic), Hospital del
Mar (Critical Care Dept), also in Barcelona, Spain,
Hospital Universitario Central de Asturias, in Oviedo,
Spain (Intensive Medicine Service), and the Fondazione
IRCCS Ca Granda, Ospedale Maggiore Policlinico, in
Milan, Italy (Adult Intensive Care).

Data were prospectively collected from September
2013 to December 2016. The investigators made daily
rounds in all ICUs. Patients were included consecutively,
and only the first episode was analyzed. All patients were
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over 18 and had respiratory infection due to S. aureus
(confirmed microbiologically) with >48 h of orotracheal
intubation and >48h of treatment with either LNZ or
VAN. Patients with severe immunosuppression (neutro-
penia after chemotherapy or hematopoietic stem cell
transplantation, drug-induced immunosuppression in
solid—organ transplant or cytotoxic therapy, and HIV
infection-related disorders) were not registered.

The study was carried out in compliance with the
Declaration of Helsinki (current version, Fortaleza, Brazil,
October 2013) and was conducted in accordance with the
requirements of the 2007 Spanish Biomedical Research
Act. The study was approved by the institution’s Internal
Review Board (registry number 2012/7927). Written
informed consent was obtained from patients or their
next of kin.

Definitions

The clinical suspicion of pneumonia was based on clinical
criteria. We considered VAP in patients with previous
invasive mechanical ventilation for 48 h or more. Patients
were classified as VAP or non-ventilator ICU-acquired
pneumonia (i.e., cases that do not meet the VAP criteria)
[16]. Early-onset VAP was defined as occurring within the
first 4 days of invasive mechanical ventilation. The respi-
ratory infection was considered ventilator-associated tra-
cheobronchitis when at least two of the aforementioned
criteria for pneumonia were found in the absence of radio-
graphic signs of new pneumonia [17]. Severe community-
acquired pneumonia (SCAP) was defined according to the
2007 IDSA/ATS guidelines [18] and as previously defined
[19]. All SCAP patients included required invasive
mechanical ventilation.

Microbiology and antimicrobial treatment

The microbiological evaluation has been extensively ad-
dressed in previous reports [20]. Microbial identification
and susceptibility testing were performed by standard
methods [21, 22].

The initial empiric antimicrobial treatment was admin-
istered according to local adaptations of international
guidelines [5] and subsequently revised according to the
microbiology results.

Data collection and severity assessment

All relevant data were collected at admission and at the
onset of pneumonia from the medical records and bedside
flow charts, including clinical, laboratory, radiological, and
microbiological information. Patients were followed until
the end of mechanical ventilation.

The severity assessment included the APACHE-II [23]
and the Sequential Organ Failure Assessment (SOFA)
[24] score on ICU admission at microbial diagnosis and
at orotracheal extubation.
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Endotracheal tube preparation and microbiology analysis
All ETTs from the patients included were collected and
stored at —80°C until analysis. All ETTs were number
coded so that the investigators would be blind to treat-
ment group allocation during the analysis. For the first
time, we also included the microbiological culture of the
ETT cuff. The ETT cuff was dissected and microbiologic-
ally processed before rinsing the outer surface and slicing
the ETT, following our methodology published elsewhere
[12]. Both ETT cuff and ETT were sonicated before
microbiological cultures. Bacterial growth was quantified
and reported as logarithmic scale of colony-forming units
per milliliter (log;o CFU/mL). Susceptibility to oxacillin, li-
nezolid, and vancomycin was assessed for all S. aureus
strains isolated from ETT through E-test strips (Biomer-
ieux, France) using ATCC25923 strain as standard labora-
tory testing control strain, following the manufacturer’s
recommendations.

Determination of MLST from Sanger data and phylogenetic
analyses

The Sanger sequences were used to obtain the allelic
profile of seven S. aureus housekeeping genes (arcC, aroE,
glpE, gmk, pta, tpi, yqiL). The genes were concatenated by
the MLST .net database. The MLST results were compared
to references in NCBI and the S. aureus MLST database in
order to assign sequence type (ST). The MLST results were
compared against the MLST database (https://pubmlst.org/
saureus/) using comparative eBURST V3 software employ-
ing the BURST algorithm [25]. Accessory gene regulator
(agr) type I, IL, IIL, IV, or V was confirmed by conventional
polymerase chain reaction (PCR) using previously described
primers and reaction conditions [26].

Antibiotic concentration in biological matrixes

LNZ or VAN concentrations in biological matrixes (i.e.,
plasma, ETA, and ETT biofilm) were determined using
high-performance liquid chromatography (HPLC) as pre-
viously described [11]. To release antibiotics from ETA
and biofilm and to perform the HPLC, we applied our
methodology previously described elsewhere [12]. The
lower limit of detection of HPLC was 2.5ug mL™" for
both antibiotics. When the sample was below detection
limit (BDL), the value assigned was 1.25 pg/mL.

A bioassay was alternatively performed for the detection
of vancomycin, as previously reported [12]. Bacillus subtillis
(ATCC 6633) in Mueller-Hinton Agar was used for the
analysis. The lower limit of detection of the vancomycin
bioassay was 0.70 ug mL™'. When the sample was BDL, the
value assigned was 0.35 pg/mL.

Scanning electron microscopy
Biofilm was imaged and thickness measured via scanning
electron microscopy (SEM) [12]. Briefly, a 1-cm-long
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hemisection of the ETT distal dependent parts were fixed,
dehydrated in graded alcohol series, dried using a polaron
critical point drying apparatus, and mounted on commer-
cial SEM stubs (Ted Pella, Inc. Spain). To avoid charge
artifacts, the section was sputter-coated with a gold thin
layer (sc 510, Fisons Instrument, East Sussex, UK) and
carefully silver painted. Samples were imaged via a scan-
ning electron microscope (JEOL JSM 7001F FEG, Japan),
and micrographs were recorded on a personal computer.
We measured minimal, maximal, and mean biofilm thick-
ness using dedicated software (ImageJ], Wayne Rasband,
NIH, USA).

Statistical analysis

Categorical variables were reported as number (%), while
continuous variables were reported as mean SD or median
(interquartile range, IQR), if the distribution was normal
or non-normal respectively. Continuous variables between
groups were compared using the one-way analysis of
variance (ANOVA) or the Kruskal-Wallis test as appro-
priate. Post hoc pairwise comparisons were carried out via
Tukey’s honestly significant difference (HSD) test. Paired
samples were compared with the paired ¢-test or non-
parametric Wilcoxon signed-rank test when appro-
priate. Spearman’s correlation analyses were performed to
determine associations between continuous variables. A
two-sided p value <0.05 was considered statistically
significant. Data were processed with IBM SPSS Statistic
for Windows, version 22.0 (IBM Corporation, Armonk,
NY, USA).

Results

Subjects

From October 2013 to December 2016, 34 orotracheally
intubated patients with microbiologically confirmed
S. aureus respiratory infection were consecutively
screened for this study, with 20 receiving LNZ and 14
VAN for more than 48 h. Twenty-five of them (15 in the
LNZ group and 10 in the VAN group) had MRSA respira-
tory infection and were included in the analysis (Fig. 1).
No significant differences were found between groups in
terms of baseline clinical characteristics on ICU admission
(Table 1). Nor were any differences found at microbial
diagnosis with regard to type of respiratory infection (pre-
dominantly ventilator-associated pneumonia, VAP), type
of sample (predominantly BAS), MRSA load, radiological
diagnosis (predominantly bilateral pneumonia), or severity
according to APACHE II and SOFA scores (Table 2).

Quantitative microbiology assessment of ETT and ETT cuff

We collected all 26 ETT from the patients included. For
one reintubated patient, we collected the second tube.
When this patient was reintubated, the BAS MRSA count
was 5 log;o CFU/mL, within the interquartile range of the
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Patients with suspected respiratory
infection and OTI
N= 49
Only S. aureus colonization
N=4
Patients with suspected S. aureus
respiratory infection, OTI and LNZ/VANCO
N=45
OTI <48h AND/OR LNZ/VANCO <48h |
N=8 ;
Patients with suspected S. aureus respiratory
infection, OTI>48h, and LNZ/VANCO >48h
N=37
Not confirmed . aureus réspiratory
infection
N=3
]
Patients with confirmed MSSA respiratory Patients with confirmed MRSA respiratory
infection, OTI>48h, and LNZ/VANCO>48h infection, OTI>48h, and LNZ/VANCO>48h
N=25
Patients with confirmed MSSA respiratory Patients with confirmed MRSA respiratory
infection, OTI>48h, and LNZ>48h infection, OTI>48h, and LNZ>48h
N=15
Patients with confirmed MSSA respiratory infection, Patients with confirmed MRSA respiratory
OTI>48h, and VANCO>48h infection, OTI>48h, and VANCO>48h
N=10
Fig. 1 Flow chart of screened, excluded, and included patients. OTI, orotracheal intubation
J
Table 1 Baseline clinical characteristics of the population
MRSA respiratory ICU infection (n = 25) Linezolid (n = 15) Vancomycin (n = 10) p value
Age (years) 63.4[57.0-69.7] 56.1[32.8-66.6] 0.13
Male sex 12 (80.0) 7 (70.0) 0.65
APACHE II' ICU admission 21.0[15.5-23.5] 18.0[13.3-22.0] 0.24
SOFA ICU admission 7.0[3.0-9.5] 7.5[4.8-12.3] 0.29
Coexisting illness/comorbidities
CLD 8(53.3) 2(222) 0.21
COPD 4 1
Bronchiectasis 1 0
Asthma 1 1
Lung cancer 3 0
Diabetes 4 (25.0) 0 013
Substance use behavior
Alcohol use disorder 5(33.3) 0 0.06
Current smoker 8 (53.3) 2 (20.0) 0.21
Previous systemic antibiotics 10 (66.7) 6 (60.0) 1.0
Previous colonization 6 (40.0) 6 (60.0) 043
Previous corticosteroids (inhaled) 2(133) 1 (10.0) 1.0

Data are presented as median and interquartile range [percentiles 25th-75th] or n (%). APACHE Il Acute Physiology and Chronic Health Evaluation, ICU intensive
care unit, SOFA Sequential Organ Failure Assessment, CLD chronic lung disease, COPD chronic obstructive pulmonary disease. One patient had both COPD and

lung cancer
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Table 2 Characteristics of patients at microbial diagnosis
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MRSA respiratory ICU infection (n = 25) Linezolid (15) Vancomycin (10) p value
Respiratory infection 0.76
Tracheobronchitis 2 2
HAP 2 2
VAP 8 5
Early onset VAP 4 4
Late onset VAP 4 1
Severe CAP 3 1
Type of sample 0.24
BAL 2 0
BAS 10 10
ETA 2 0
Pleural fluid 1 0
Microbial diagnostic
Log CFU/mL 6.0[4.0-6.0] 5.0[4.0-6.0] 040
Polymicrobial respiratory infection 7 3 0.69
Radiographic consolidation 034
None 2 0
Monolateral 2 3
Bilateral 11 7
Severity scores
APACHE Il ICU at microbial diagnosis 17.0[11.5-22.8] 17.5[6.5-22.3] 0.58
SOFA ICU at microbial diagnosis 8.0[1.8-10.0] 7.0[5.5-10.8] 0.55

Data are presented as median and interquartile range [percentiles 25th-75th] or n (%). ICU intensive care unit, HAP hospital-acquired pneumonia, VAP ventilator-
associated pneumonia, CAP community-acquired pneumonia, BAL bronchoalveolar lavage, BAS tracheobronchial aspirates, ETA endotracheal aspirates, APACHE Il
Acute Physiology and Chronic Health Evaluation, SOFA Sequential Organ Failure Assessment, MRSA methicillin-resistant S. aureus, CFU colony-forming units

overall MRSA count at microbial diagnosis in the LNZ
arm. There were fewer MRSA-positive ETT cuff cultures in
the LNZ than in the VAN group: 4/16 (25%) vs 8/10 (80%,
p=0.031) respectively. Similar results were found within
ETT, with positive MRSA samples in 8/16 (50%) vs 7/10
(70%), p = 0.511 in the LNZ and VAN groups respectively,
though the differences were not statistically significant. The
MRSA load (log;o CFU/mL) of the LNZ group in the ETT
cuff was also significantly lower than in the VAN group.
However, the MRSA load within the ETT was not signifi-
cantly lower in the LNZ group (Fig. 2).

No differences were found between LNZ and VAN
groups in terms of the presence and load of Gram-positive
agents other than S. aureus or in Gram-negative bacteria
including Enterobacteriaceae, either in ETT or in ETT
cuff. The LNZ group showed a higher presence and load
of fungi in ETT cuff than the VAN group, although the
difference was not statistically significant: 6 (38%) vs 0
(0%) p=0.053 and 1.15+1.71 vs 0.00 + 0.00 log;, CFU/
mL, p =0.028, respectively (Additional file 1: Figure SI).
LNZ or VAN treatment during intubation did not differ
between groups (Additional file 1: Figure S2).

Emergence of resistance with LNZ and VAN

All S. aureus were susceptible to LNZ or VAN in the
microbial diagnosis. Susceptibility to LNZ and VAN
remained stable in the S. aureus strains recruited from
the ETT and the ETT cuff.

LNZ and VAN concentrations in biological matrixes

At 72 h after treatment initiation, plasma concentrations
of LNZ and VAN were 9.00 [6.51-13.46] vs 22.04
[11.18-26.54] pg/mL, p =0.024 respectively, both figures
being above the recommended therapeutic levels (3 pg/
mL for LNZ and 15-20 ug/mL for VAN). However, in
ETA LNZ was highly concentrated, reaching 38.90 pg/mL
[10.22-81.70], while VAN was barely found, at only
2.96 pg/mL [1.86-4.21] (p = 0.145) (Fig. 3).

In the LNZ group, seven samples were excluded, three
due to absence of biofilm and four due to technical inter-
ferences. In the remaining 14 ETT biofilm samples, four
were BDL. In general, the overall LNZ concentration within
ETT reached high values (72.81 [1.25-127.05] pg/mL),
far higher than the median MIC of ETT S. aureus (1.50
[1.00-3.00] pg/mL). Nevertheless, VAN was hardly ever
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Fig. 2 ETT (a) and ETT cuff (b) MRSA load (log;o CFU/mL) in the vancomycin (VAN) and linezolid (LNZ) groups. Each dot represents the MRSA
load of each ETT and ETT cuff included into the treatment groups. Black central lines depict median value, while upper and lower gray lines
display the 25th and 75th percentiles. Median [IQR] ETT MRSA load was not inferior in the LNZ group (0.74 [0-4.26] vs 2.25 [0-3.21] log,o CFU/mL,
p=0.83), whereas ETT cuff load was significantly lower in the LNZ-treated patients compared with the VAN treatment group (0 [0-0.75] vs. 3.50
[0.52-5.48] log;o CFU/mL, p=0.008). ETT, endotracheal tube; MRSA, methicillin-resistant S. aureus; CFU, colony-forming units

found within ETT (0.35 [0.35-1.31] pg/mL, p <0.001), or
was found at levels very close to the MIC (0.75 [0.50—1.00]
pg/mL) (Fig. 3). Specifically, of 14 VAN-treated ETT
biofilm samples, nine were BDL. Moreover, within ETT
biofilm, LNZ was found 27.64 [1.25-43.69] median
folds above each respective S. aureus LNZ MIC, while
VAN was found only 0.70 [0.47-2.00] folds above the
VAN MIC, p =0.013.

Clinical outcomes

Ventilatory parameters and gasometry were evaluated at
72 h in both groups (Additional file 1: Table S1). No sig-
nificant differences between groups were found in length
of mechanical intubation or ventilation between LNZ and

VAN 9.00[7.00-12.50] and 14.00[8.25-18.75], p =0.169,
or 17.50[9.00-29.25] and 25.00[16.25-40.00], p =0.170,
respectively (Additional file 1: Table S2).

Biofilm through SEM

Scanning electron microscopy images of ETT biofilm
from LNZ and VAN groups are shown in Fig. 4. Overall,
within the 15 MRSA-positive ETTs, minimal, maximum,
and mean thickness did not differ between LNZ and
VAN groups.

MLST and agr
Different types of ST and agr were identified. The ST22
(33%), ST217 (10%), and ST8 (10%) and agr I (81%), agr
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Fig. 3 Linezolid (LNZ) (a) and vancomycin (VAN) (b) concentration in plasma, ETA, and ETT biofilm. In plasma at ETA, LNZ and VAN levels are at
72 h after treatment initiation, in ETT biofilm at extubation. Each dot represents drug concentration of each sample included into the treatment
groups. Black central lines depict median value. LNZ median MIC (IQR) was 1.50 [0.88-3.00] pg/mL, while VAN median MIC was 0.75 [0.5-1] yg/mL. The
median LNZ and VAN MIC values of the MRSA isolates are indicated by the horizontal gray dashed line while the gray bands represent the 25th-75th
percentile ranges in each graph. Of note, LNZ presented high concentrations in ETA and ETT biofilm while VAN concentration fell drastically in ETA
and ETT biofilm, to non-therapeutic concentrations. a Plasma vs ETA, p=0.039; plasma vs ETT biofilm, p = 0.050. b Plasma vs ETA, p = 0.021; plasma vs
ETT biofilm, p <0.001. ETT, endotracheal tube; ETA, endotracheal aspirates; MRSA, methicillin-resistant Staphylococcus aureus; MIC, minimum
inhibitory concentration
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Fig. 4 Scanning electron microscopy images of the highest MRSA load ETT biofilm (10° log, CFU/mL) in both groups: vancomycin (VAN) (a, b)
and linezolid (LNZ) (c, d). Mature biofilms are visible in both groups at low and high magnification. ETT, endotracheal tube; MRSA, methicillin-
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III (14%), and agr II (5%) were the most frequent types
of MRSA isolated. Each of the other ST (1221, 954,
1535, 83, 403, 3060, 45, 87, 121) was found once (5%).

Discussion

Systemic treatment of MRSA respiratory infection with
LNZ in mechanically ventilated ICU patients resulted in
lower ETT biofilm and ETT cuff MRSA burdens than in
patients who received VAN. Indeed, MRSA eradication
was superior in ETT (50 vs 30%) and ETT cuff (75 vs
20%) in the LNZ than in the VAN group, although the
difference was statistically significant only with regard to
ETT cuff. Accordingly, the concentration of LNZ was
higher than VAN in ETA and also in ETT biofilm, even
though both drugs achieved therapeutic plasma levels at
72 h after treatment initiation.

This is the first report in the literature comparing the
effects of LNZ and VAN in ETT from mechanically
ventilated humans. Our findings indicate that LNZ is
more effective in ETT cuff than VAN, since MRSA pre-
sence and loads were significantly lower in the LNZ
group. Why is this important?

On the one hand, ETT cuff microfolds, formed in
contact with the tracheal wall, are considered a common
route of microbial access to the lower respiratory air-
ways [27]. For this reason, attempts have been made in

order to minimize ETT cuff aspiration of subglottic se-
cretions. Although these systems lose efficacy over time
[28-32], their efficacy can be complemented by systemic
antibiotics with ETT biofilm and cuff effect like LNZ,
but not VAN.

On the other hand, we demonstrated the superiority of
LNZ over VAN in ETA and ETT biofilm drug concen-
tration. The efficacy of LNZ penetrating into respiratory
secretions is emphasized by the therapeutic levels
achieved by both drugs in plasma compared with their
concentrations in ETA 72 h after the first drug adminis-
tration, in which LNZ remained several folds above the
MIC but VAN levels remained subtherapeutic in most of
the samples. Notably, the concentrations of LNZ and
VAN in ETA (72 h) are indicative of their concentration
in ETT biofilm after extubation. Nevertheless, the use-
fulness of ETA (72h) for predicting other drug con-
centrations in ETT biofilm after extubation needs to be
investigated further.

Although biofilms exhibit intrinsic tolerance to anti-
biotics [10, 33], in the ETT, the presence of antibiotics and
the development of the biofilm are concomitant. This
increases the ability of systemic LNZ treatment to limit
biofilm development, as its ETT MRSA eradication rate is
67% higher than that of VAN. However, in critically ill
patients, the distribution of LNZ within the ETT, mainly
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driven by respiratory secretions, is not homogeneous;
therefore, its efficacy for eradicating MRSA is not always
guaranteed.

All the ETT MRSA were susceptible to LNZ and
VAN MIC after long periods of intubation. This
clearly highlights that the emergence of resistant
strains associated with biofilms is less likely in intubated
patients, a finding that is at odds with previous findings in
other respiratory diseases [34]. All VAN MIC but two
were below 1.5 pg/mL, a threshold MIC that has been
previously associated with lower clinical response, higher
relapse [35], and increased mortality.

In contrast, we did not find differences in biofilm
thickness between LNZ and VAN groups. This may be
due to differences between secretion production and
microbiota in pigs and in human patients. Thus, the
proposal that thickness might be a good indicator of treat-
ment efficacy in a highly controlled experiment [12, 13]
may not apply to human patients, where the underlying
conditions and other concomitant issues may influence
the biofilm and secretions accumulated within the ETT, in
addition to length of stay and treatment efficacy.

The results of our study corroborate those of many
previous randomized clinical trials. The Zephyr study
[36] observed higher rates of clinical cure in nosocomial
S. aureus pneumonia (both MRSA and MSSA) when
comparing LNZ to VAN. Surprisingly, the IDSA/ATS
guidelines still place VAN and LNZ at the same level [4],
even though there are enough clinical and animal data
to change this recommendation in favor of LNZ [5]. Our
study is also in line with a previous study published by
our group in a pig model of MRSA pneumonia in
animals ventilated for 72 h. However, findings in animals
require replication in humans.

The strengths of our study are the following: (1) this is
the first comparison of linezolid and vancomycin in ETT
biofilms obtained from humans on long-term mecha-
nical ventilation and (2) ETT (including cuff) biofilms
and bacterial burden are studied in depth.

A few potential limitations of this study deserve further
clarification. This was not a randomized study, and so
there is no possibility of comparing the outcomes. In
addition, the fact that we had to recruit patients from
different hospitals increased the heterogeneity of the
ST types involved. Nevertheless, we did not find any
differences in patients’ characteristics or in the length
of orotracheal intubation between VAN and LNZ
groups, and so the heterogeneity of the MRSA ST
collected emphasizes the validity of our results and pro-
vides realistic epidemiologic data. Secondly, the use of
VAN is becoming less and less frequent in Europe, and
for this reason, the number of ETT within this group of
study was lower than in the LNZ group. Ultimately,
these patients received concomitant antimicrobials that
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may have combined effects with vancomycin or linezolid.
However, concomitant antimicrobials were homogeneously
distributed between the two treatment groups.

The main clinical implication of our results is that
LNZ, which acts effectively in ETT biofilms and culffs,
performs much better than VAN in MRSA eradication
and may be important in preventing relapses in MRSA
VAP pneumonia.

Conclusions

In conclusion, systemic treatment with linezolid exerts a
greater beneficial effect than vancomycin, reducing the
MRSA burden within ETT cuff in ICU patients with
MRSA respiratory infection who are intubated for long
periods. This additional benefit of linezolid should be
taken into account when choosing the antibiotics to
treat MRSA VAP.
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