1	Adaptation of <i>Drosophila subobscura</i> chromosomal inversions to
2	climatic variables: The Balkan natural population of Avala
3	Goran Zivanovic ¹ , Concepció Arenas ² , and Francesc Mestres ³
4	
5	¹ Department of Genetics, Institute for Biological Research "Sinisa Stankovic" -
6	National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
7	
8	² Departament de Genètica, Microbiologia i Estadística, Secció d'Estadística, Universitat
9	de Barcelona, Barcelona, Spain.
10	
11	³ Departament de Genètica, Microbiologia i Estadística, Secció de Genètica Biomèdica,
12	Evolutiva i Desenvolupament - IRBio (Institut de Recerca per la Biodiversitat),
13	Universitat de Barcelona, Barcelona, Spain.
14	
15	Corresponding author:
16	Francesc Mestres (fmestres@ub.edu) ORCID NUMBER: FM 0000-0002-9073-4862
17	Departament de Genètica, Microbiologia i Estadística. Secció Genètica Biomèdica,
18	Evolució i Desenvolupament.
19	Facultat de Biologia. Universitat de Barcelona
20	Av. Diagonal, 643
21	08028 – Barcelona (Spain)

22 Abstract.

23 The adaptive value of chromosomal inversions continues raising relevant questions in evolutionary biology. In many species of the *Drosophila* genus, different inversions 24 have been recognized to be related to thermal adaptation, but it is necessary to 25 26 determine to which specific climatic variables the inversions are adaptive. With this 27 aim, the behavior of thermal adapted inversions of Drosophila subobscura regarding climatic variables was studied in the natural population of Avala (Serbia) during the 28 29 2014-2017 period. The results obtained were compared with those previously reported in the Font Groga (Barcelona, Spain) population, which presents different climatic and 30 31 environmental conditions. In both populations, it was observed that most thermal 32 adapted inversions were significantly associated with the first, second or both principal components, which were related with maximum, minimum and mean temperatures. 33 Moreover, a significant increase over years (2004-2017) for the minimum temperature 34 was detected. In parallel, a significant variation over time in Avala was only observed 35 for the frequencies of 'warm' and 'non-thermal' adapted inversions of the U 36 37 chromosome. However, stability in the chromosomal inversion polymorphism was 38 observed for the 2014-2017 period which might result from the temporal span of the study and / or selective process acting on the population. 39

40

41 Key words *Drosophila* · chromosomal inversions · adaptation · temperature · selection

42 Introduction

Chromosomal inversions were detected one century ago by Sturtevant (1921), 43 and Dobzhansky observed that their genetic content presented adaptive properties (for a 44 revision see Lewontin et al. 1981). The presence of inversions is a karyotypic 45 46 characteristic of a large number of species across the animal kingdom, and this 47 structural chromosomal change is a key element in evolutionary processes such as adaptation to diverse environmental conditions or speciation (Sperlich and Pfriem 1986; 48 49 Hoffmann et al. 2004; Feuk et al. 2005; Ayala and Coluzzi 2005; Hoffmann and Rieseberg 2008; McAllister et al. 2008; Kirkpatrick 2010; Nie et al. 2012; Fuller et al. 50 51 2018; Kapun and Flatt 2019). One of the best studied cases is the adaptive potential of chromosomal inversion polymorphism of Drosophila subobscura. For European 52 researchers, this species is somehow the equivalent of D. pseudoobscura for North 53 54 American evolutionary scientists. Nevertheless, D. subobscura has the advantage that presents inversions in all chromosomes of its karyotype with the exception of the dot 55 (for a revision see Kunze-Mühl and Sperlich 1955; Krimbas 1992, 1993). Interestingly 56 in the Palearctic populations of this species, it was detected that the frequencies of 57 inversions (or their combinations, the so-called arrangements) presented clines 58 59 correlated with latitude (Krimbas and Loukas 1980; Krimbas 1992, 1993). Although different explanations were possible, the discovery of latitudinal cline variation of 60 chromosomal inversion frequencies in the North and South American colonizing 61 62 populations of *D. subobscura* which exhibit the same sign than that found in the Old World, strongly supported the adaptive role of inversions (Prevosti et al. 1988, 1989; 63 Ayala et al. 1989). To elucidate the adaptive meaning of D. subobscura inversions in 64 65 Palearctic populations, Menozzi and Krimbas (1992) analyzed their possible relationship with many environmental variables. It must be remembered that D. 66

subobscura, as a species, can only survive and reproduce under certain climatic 67 68 conditions. This fact was clearly demonstrated by noting the distribution of D. subobscura in the Palearctic region and in those colonized areas of America (North and 69 South). In these three zones, a parallel and gradual variation of climatic conditions 70 71 (western maritime, Mediterranean and semiarid/arid) can be observed (The Times 1972; Prevosti et al. 1988, 1989). Even in a particular location and in the same season, the 72 73 proportion over years of D. subobscura with regard to other species of the Drosophila genus depends on the weather conditions (Argemí et al. 1999, 2003; Galludo et al. 74 2020). 75

76 Changes in the inversion chromosomal polymorphism over time in natural 77 populations of this species regarding global warming have been extensively studied (Orengo and Prevosti 1996; Rodriguez-Trelles and Rodriguez 1998; Solé et al. 2002; 78 79 Balanyà et al. 2004, 2006, 2009; Rego et al. 2010; Dolgova et al. 2010: Zivanovic et al. 2012, 2015; Orengo et al. 2016). From early studies, inversions were classified as 80 'cold', 'warm' or 'non-thermal' adapted (Menozzi and Krimbas 1992; Rodriguez-81 Trelles et al. 1996; Rego et al. 2010; Zivanovic et al. 2016). However, the adaptive 82 83 response of particular inversions in face of different climatic variables deserves to be 84 better analyzed. Recently, a detailed study was carried out in the Font Groga 85 (Barcelona) populations, where the relation of different inversions with regard to climatic variables (mean, maximum and minimum temperatures, humidity and rainfall) 86 87 was analyzed (Galludo et al. 2018). The most relevant result of that research was that 'cold' inversions (Ast, Jst and Est) increased in frequency when Tmax (maximum 88 89 temperature) and Tmin (minimum temperature) decreased, whereas the 'warm' inversions (E_{1+2+9} , O_{3+4+1} and O_{3+4+8}), augmented in frequency with an increase in Tmax 90 91 and Tmin. Furthermore, inversions seem to adapt not only to temperature, but also to

humidity (Hm) and rainfall (Rf). For these reasons, it would be evolutionary relevant to
compare the behavior of thermal adapted inversions in another different population of *D. subobscura* with regard to climatic conditions, season, different habitat and historic
factors (another refugium of last glaciations).

96 The present research is articulated in two objectives regarding the thermal adapted chromosomal inversions of D. subobscura. The first objective is the main and 97 98 aims to deepen the knowledge of the relationship between particular chromosomal 99 inversions and some climatic variables. For this purpose, the chromosomal 100 polymorphism of the Balkan D. subobscura population of Mount Avala (Serbia) was 101 analyzed during four consecutive years. This population was previously studied 102 (Zivanovic and Mestres 2010; Zivanovic et al. 2014a, 2015, 2016) and could be very 103 useful because it shows a different chromosomal polymorphism composition of that 104 from Front Groga (Galludo et al. 2018; Zivanovic et al. 2016). Furthermore, both 105 populations seem to differ regarding the climate and vegetation. Finally, the Iberian 106 Peninsula and the Balkans are considered biodiversity refugia during the Pleistocene glaciations adding historical processes in their differentiation (Taberlet et al. 1998; 107 108 Hewitt 2000; Tzedakis 2004; Provan and Bennett 2008; Wielstra and Arntzen 2020). 109 Thus, Avala and Font Groga D. subobscura populations would be differentiated due to 110 different historic and adaptive process. For these reasons, to compare both populations regarding the effects of climatic variables on the inversion frequencies could improve 111 112 the knowledge of the role of chromosomal inversions on adaptation. To achieve this aim, our research was organized as follows: first, the possible differences in 113 114 chromosomal inversions composition and abundance between Avala and Font Groga 115 were analyzed. Also, a comparison between both populations with regard to some 116 climatic variables was carried out. Third, a qualitative contrast between the vegetation

of these two localities was made. Once detected the possible differentiation between both populations, a complete analysis to elucidate the effect of some climatic variables on different inversions in Avala population was computed. The results were compared with those from Font Groga. This comparison should allow to obtain more information on a relevant question: will the chromosomal inversions (those that are the same and those that are not) in different biological and physical conditions react in a similar adaptive way with respect to variations in some climatic variables?

The other objective is secondary, but related to first one, taking the advantage 124 125 that Avala population was previously studied several years ago (Zivanovic and Mestres 126 2010; Zivanovic et al. 2015). It seeks to answer the following question: will thermally adapted inversions increase in frequency as our planet's global warming augments, or is 127 there a maximum threshold for these frequencies? For this purpose, the chromosomal 128 129 inversion data from the last year of the present research (2017) was compared with those available from Avala recorded in 2004 and 2011 (Zivanovic and Mestres 2010; 130 Zivanovic et al. 2015) to analyze the changes over time in 'cold', 'warm' or 'non-131 thermal' adapted inversion frequencies. In parallel, the behavior of some climatic 132 133 variables in Avala for the period 2004-2017 was analyzed to explore the potential global 134 warming effect.

135

136 Materials and Methods

137 D. subobscura collections and preparation of chromosomes

Flies were collected from Mount Avala population (Serbia, 44°41′25″N
20°30′51″E), located at 18 km south of Belgrade. They were sampled from a forest with
polydominant communities of *Fagetum submontanum mixtum* that is approximately

450 m a.s.l. Collections were obtained strictly in the same place in 2014 (from the 10th
to the 22nd of June), 2015 (from the 1th to the 14th of July), 2016 (from the 10th to the
18th of June) and 2017 (from the 9th to the 19th of June). In all samples, flies were netted
from 4 p.m. to 8 p.m. using 40 fermenting apple baits.

Wild males and sons of wild females were crossed in individual vials with virgin 145 146 females from the Kussnacht reference strain. Sample sizes are presented in Table 1. 147 This was homokaryotypic for the standard arrangements in all five chromosomes (A, E, J, U and O). To obtain the chromosomal preparations third instar larvae from the F_1 148 were dissected and polytene chromosomes were stained and squashed in aceto-orcein 149 150 solution. To properly identify the inversions, the chromosomal maps of Kunze-Mühl and Müller (1958) and Krimbas (1992, 1993) were used. To achieve the karyotypes 151 152 with a probability higher than 0.99, at least eight larvae were analyzed from the progeny 153 of each cross. All crosses were carried out at 18°C, 60% relative humidity and 12h/12h light/dark cycle. Finally, chromosomal inversions were classified as 'C' (cold adapted), 154 'W' (warm adapted) and 'N' (non-thermal adapted) following the criterions of Menozzi 155 156 and Krimbas (1992), Rego et al. (2010) and Zivanovic et al. (2016).

For the aim of comparison, the Font Groga (Barcelona, 41°25′54″N 2°07′20″E)
population is situated on the foothills of the Tibidabo mountain (on the edge of
Barcelona city at 415 m a.s.l.). Flies were collected in a forest of pines (*Pinus pinea*)
and ilexes (*Quercus ilex*) with Mediterranean brushwood, during the autumn of five
consecutive years (2011-2015) (Galludo et al. 2018).

162

163 Climatic data and statistical analyses

164 The Serbian Republic Hydrometeorological Service provided the meteorological165 data from Avala (mean, maximum and minimum temperatures; dawn, noon, dusk and

166 mean humidity; rainfall). Temperature, humidity and rainfall were measured in

167 centigrade degrees, percentage and millimeters of precipitation, respectively.

All statistical computations were carried out using the *basic* and *vegan* packages 168 of R language (R Development Core Team 2014). To compare the chromosomal 169 composition between different years and departure of the observed frequencies of 170 171 chromosomal karyotypes from expectations, Fisher's exact test was used (statistically 172 significant P < 0.05). The corresponding P values were obtained using a bootstrap procedure (100,000 runs). In all cases of multiple comparisons, the FDR correction 173 174 (Benjamini and Hochberg 1995) was applied, and it was reported as significant for P <175 0.05. The index of free recombination (IFR) was computed according to Carson (1955). Using all D. subobscura chromosomes (A, E, J, U and O), a comparison between the 176 177 annual samples from Avala (2014-2017) and Font Groga (2011-2015) populations was 178 carried out as follows. With this set of populations using the Bhattacharyya distance (Bhattacharyya 1946), a Principal Coordinate Analysis was performed according to 179 180 Balanyà et al. (2006) and Mestres et al. (2009). Moreover, a cluster was computed with the same data using the GEVA-Ward procedure, because it is considered excellent for 181 182 chromosomal inversion data (Irigoien et al. 2010; Zivanovic et al. 2016). To measure 183 how faithfully the cluster preserved the pairwise distances between the original data, the 184 Pearson cophenetic correlation was computed.

To compare the climatic variables (mean, maximum and minimum temperatures; dawn, noon, dusk and mean humidity; rainfall) between Avala and Font Groga during the same period of years (2014-2017) and using the values from May (the month before trapping the flies) a Mann-Whitney *U* test was computed. Furthermore, a Ward cluster was computed.

190	The relationship between chromosomal inversions and climatic variables (mean,
191	maximum and minimum temperatures, mean humidity and rainfall) was computed only
192	for those inversions observed in all Avala samples. For this reason, the infrequent
193	inversions J_{3+4} , U_1 , U_{1+2+3} , O_7 , O_{22} , O_{3+4+2} , O_{3+4+7} and O_{3+4+17} were excluded of the
194	analysis. Moreover, we gathered together the meteorological information for March,
195	April and May during the studied period (2014-2017), because we assumed that the
196	climate of these previous months before collecting the D. subobscura individuals could
197	considerably influence the chromosomal composition of the samples. The mean of the
198	values obtained for the climatic variables during these three months was used in the
199	calculations (Supplementary Table S1). Using the climatic variables, a Principal
200	Component Analysis (PCA) was carried out. In this way, the principal components
201	synthesize the information provided by the climatic variables. For each chromosome
202	and inversion, we considered a Poisson regression model taking as regressors these
203	principal components. For the individual significance of each component, the FDR
204	correction (Benjamini and Hochberg 1995) was applied and it was reported as
205	significant for $P < 0.05$. Moreover, we assessed the ratio of variation in abundance for
206	the chromosomal inversions when all climatic variables were kept constant and only
207	one variable was either increased or decreased in only one unit.

Finally, in the Avala population the possible global warming effect was measured using data for mean, maximum and minimum temperatures, humidity and rainfall recorded in the period 2004-2017 for the average of months of March, April and May, because they were the months before the *D. subobscura* collections. For each climatic variable, a temporal series was computed. Differences between frequencies of 'cold', 'warm' and 'non-thermal' adapted inversions for the samples of 2004, 2011 and the period 2014-2017, were studied using the Fisher exact test, as previously explained. The thermal adaptation of the whole karyotype was measured using the *CTI* index(Arenas et al. 2018).

217

218 **Results**

219 Climate and vegetation comparisons between Avala and Font Groga

220 Regarding the kind of climate, both populations differ: Avala is classified as 221 western maritime, whereas Font Groga is Mediterranean (The Times 1972; Prevosti et 222 al. 1988). This translates in different kind of natural landscapes: Avala belonging to a forests and grasslands of temperate continental regions and Font Groga to a typical 223 224 Mediterranean one. These features and historic factors during the Pleistocene 225 conditioned the vegetation of both localities. In the case of Avala, it is composed of 226 submontanum beech wood where *Fagus moesiaca* is the dominant tree together with 227 three other linden species (Tilia argentea, Tilia cordata, Tilia platyphylos) and 228 brushwood plants (Rubus hirtus, Pulmonaria officinalis, Asperula odorata, Carex 229 silvatica, Lamium galeobdolon and others). In the Font Groga site, the vegetation is mainly composed of pines (Pinus pinea) and ilexes (Quercus ilex) with brushwood 230 231 (Arbutus unedo, Ruscus aculeatus, Erica arborea, Hedera helix, Rubus ulmifolius, Smilax aspera, Laurus nobilis and others). Using the U Mann-Whitney test and 232 233 applying the FDR correction, differences were not detected in the climatic variables 234 when compared Avala and Font Groga populations for the period 2014-2017 (Tmax, P = 0.6650, adjusted P = 0.8817; Tmin, P = 0.7715, adjusted P = 0.8817; Tmean, P = 1.0, 235 adjusted P = 1.0; Rainfall, P = 0.0304, adjusted P = 0.1215; Dawn Hum, P = 0.0294, 236 adjusted P = 0.1215; Noon Hum, P = 0.0591, adjusted P = 0.1575; Dusk Hum, P =237 0.1939, adjusted P = 0.3879; Mean Hum, P = 0.4705, adjusted P = 0.7528). However, 238

considering the *P* values without FDR correction a certain trend of differentiation was 239 240 observed for rainfall and two measures of humidity (dawn and noon). Finally, the 241 cluster analysis generated three groups: one containing only the Avala sample of 2014, 242 another with the remaining collections from Avala, and the last group with all Font Groga samples (Supplementary Fig. S1). The cophenetic correlation coefficient was 243 244 0.954, indicating that the tree is a trustworthy reproduction from the distances used. For 245 the studied climatic variables, the cluster result seems to support a certain differentiation 246 between these two localities.

247

248 The chromosomal inversion polymorphism of Avala population

249 Focusing in the chromosomal polymorphism, the frequencies for each inversion 250 for the years 2014-2017 in Avala population are presented in Table 1. It is worth noting 251 that the J_{3+4} inversion, generally associated with arid climates (Krimbas 1992, 1993), 252 was detected in Avala for the first time in 2015. Likely, infrequent inversions U_1 , O_7 253 and O₂₂ are a product of very rare recombination events. The U₁₊₂₊₃ inversion was not 254 reported in Avala until 2017 and its frequency was negligible. It is usually found in 255 Southern Italy, Israel and Iran (Krimbas 1992). The O₃₊₄₊₂ and O₃₊₄₊₁₇ were observed for 256 the first time in Avala in 2011, both at very low frequencies. The first one is found at 257 low frequencies in different populations of the Palearctic region (Krimbas 1992; 258 Galludo et al. 2018; Madrenas et al. 2020), but in high frequencies in American 259 colonizing populations (Prevosti et al. 1988; Balanyà et al. 2003). The second is distributed in the Iberian Peninsula at very low frequency (Solé et al. 2002; Mestres et 260 261 al. 1998; Galludo et al. 2018). The distribution of karyotypes in the samples of Avala population is presented in Table 2. There were no deviations from the Hardy-Weinberg 262 equilibrium for any chromosome in any of the years analyzed (Supplementary Table 263

264	S2). Regarding the <i>IFR</i> values, they are very similar in the 2014-2017 samples,
265	indicating an equivalent amount of chromosomal polymorphism. The values estimated
266	correspond to those of populations located in the central area of D. subobscura
267	population (Krimbas 1992).
268	
269	Comparison between the chromosomal polymorphisms of Avala and Font Groga
270	Qualitative differences can be observed between the chromosomal
271	polymorphisms of Avala and Font Groga regarding the type and abundance of
272	inversions. The multivariate analyses (Principal Coordinate Analysis and cluster)
273	demonstrated the existence of a differentiation (Fig. 1). In the PCoA, first, second and
274	third axes explained 67.75%, 20.52% and 5.44%, respectively. The samples from both
275	populations are clearly separated in the graphical representation (Fig. 1a). A similar
276	result can be observed in the cluster analysis (Fig. 1b), where two groups are defined,
277	one for the Avala samples and the other for those from the Font Groga. The cophenetic
278	correlation coefficient was 0.902, which is interpreted as that the tree accurately
279	describes the genetic distances between the samples used.
280	
281	Relations between inversions and climatic variables
282	The first three principal components (PC1, PC2 and PC3) obtained using the
283	climatic variables account for 57.52%, 38.49% and 3.99% of the variance, respectively.
284	Thus, using the three components we conserve the 100% of the explained variability
285	and no information is lost. PC1 is mainly related with temperature (Tmean, Tmax and
286	Tmin) and a certain effect of Rf is also observed; PC2 is dependent on Hm, Rf and
287	Tmin; and finally, the effects of all variables are almost negligible for PC3 (Table 3).
288	The individual significance of PC1, PC2 and PC3 for the inversions is presented in

Table 4. The A_{st}, J_1 , U_{1+2} , E_{1+2+9} , O_{3+4} inversions were significant for both, PC1 and 289 290 PC2, being all classified as 'warm' with the exception of Ast ('cold'). One the other 291 hand, the A₂, E_{st} and $E_{1+2+9+12}$ inversions, considered respectively as 'warm', 'cold' and 292 'warm', were significant for both, PC1 and PC3. Significance only for PC1 was detected for the O_{3+4+22} inversion, being considered as 'non-thermal'. The U_{1+2+6} , U_{1+8+2} 293 and Ost inversions were significant only for PC2, being considered as 'non-thermal', 294 295 'warm' and 'cold', respectively. Thus, at least one principal component is significant for most thermal adapted inversions with the only exception of A₁, J_{st}, U_{st}, O_{3+4+1} and O_{3+4+8} 296 297 inversions. When all variables were kept constant, but only one variable of interest 298 changed by 1 unit, the ratios of variation in quantity of inversions for each chromosome 299 is presented in Table 5. In general, the studied environmental variables produced small 300 changes in the abundance of inversions. The $E_{1+2+9+12}$ inversion ('warm') presented and 301 increase with temperatures and a decrease with rainfall, whereas the O_{3+4+6} ('non-302 thermal') presented only an increase with temperatures.

303

304 Changes over time of the Avala chromosomal polymorphism

The climatic variables studied during 2004-2017 presented annual variations (Supplementary Fig. 2). Although all temperatures increased over time, only Tmin was significant (P = 0.037, with a slope of 0.092). Large fluctuations were observed for humidity with a trend to decrease over time, although it was not significant. Finally, the rainfall showed the expected erratic distribution.

All comparisons between different years and chromosomes (A, J, U, E and O), but considering 'cold', 'warm' and 'non-thermal' adapted inversions are presented in Supplementary Table S3. It is worth to remember that there are not 'non-thermal' adapted inversions for the A chromosome. Significant values were observed only for the

'warm' and 'non-thermal' adapted inversions of the U chromosome when comparing 314 315 the years 2004 with 2011 and 2004 with 2017. The variations of 'cold', 'warm' and 316 'non-thermal' adapted inversions over time are shown in Figure 2. The 'cold' inversions presented a certain pattern of variation in different directions depending on the 317 318 chromosome during the interval 2014-2016, to return to levels similar to those of 2004 (Fig. 2a). Regarding the 'warm' inversions, their behavior is such as that of the 'cold' 319 320 inversions, with the clear exception of those from the U chromosome, which frequency was increasing from 2004 to 2011 and then seemed to suffer only small fluctuations 321 322 (Fig. 2b). Finally, the changes of the 'non-thermal' inversion over time were 323 insignificant, with the exception of those from the U chromosome showing the opposite 324 behavior of the 'warm' inversions for the same chromosome (Fig. 2c). In summary, it 325 seemed that the increase of U chromosome 'warm' inversions would be at the expense 326 of the 'non-thermal' for the same chromosome. The CTI values for Avala in 2014, 2015, 2016 and 2017 were 0.383, 0.262, 327 328 0.302 and 0.371, respectively. In general, these values are rather similar, but a little bit 329 lower, that those reported in the same population in 2004 (0.374) and 2011 (0.426)

330 (Arenas et al. 2018). All possible statistical comparisons between these *CTI* values were

computed and no evidence of significance was observed (Supplementary Table S4).

332

333 Discussion

There is still a gap between the information provided by the molecular studies of inversions and their phenotypes regarding the adaptation to environmental conditions. The *in situ* hybridization and genomics studies have been able to identify many structural genes located inside chromosomal inversions of the *Drosophila* genus (for instance, Clark et al. 2007; Laayouni et al. 2007; Guillén and Ruiz 2012; Fabian et al.

2012; Orengo et al. 2017; Reis et al. 2018; Karageorgiou et al. 2019; 2020).

340 Furthermore, molecular studies have allowed understanding the recombination and 341 linkage disequilibrium for genes located inside and outside of inversions (for example, 342 Schaeffer et al. 2003; Laayouni et al. 2003; Schaeffer and Anderson 2005; Pegueroles et al. 2010, 2013, 2016; Stevison et al. 2011; Smukowski et al. 2015). However, we have 343 not completely identified all genetic elements (structural genes or regulatory sequences) 344 345 located inside inversions or outside but close to them. Neither and even more difficult, we have not properly understood their possible interactions at functional level. Due to 346 347 all these shortcomings in our knowledge and also from an evolutionary point of view, it 348 is still fundamental to study the chromosomal inversions as whole genetic units 349 although the understanding of their molecular content is still incomplete (Pennisi 2017). Although Font Groga and Avala are populations located in the central area of the 350 351 D. subobscura distribution (Krimbas 1992, 1993), they differ regarding historic, climatic and biotic factors. For this reason, their inversion chromosomal polymorphisms 352 353 are distinct in term of composition and frequencies. This species presents a high 354 capacity of dispersion (Begon 1976; Serra et al. 1987; Ayala et al. 1989) and gene flow 355 (Araúz et al. 2009; Mestres et al. 2009; Pegueroles et al. 2013) that would tend to unify 356 the chromosomal composition between populations. Thus, given the particular

357 environmental conditions of each population, natural selection would likely have a great

effect on adaptive inversions generating the differentiation. However, exactly the same

thermal adapted inversions ('cold adapted': A_{st}, A₁, J_{st}, U_{st}, E_{st} and O_{st}; 'warm adapted':

360 $A_2, J_1, U_{\underline{1+2}}, U_{\underline{1+8+2}}, E_{\underline{1+2+9}}, E_{\underline{1+2+9+12}}, O_{\underline{3+4}}, O_{\underline{3+4+1}} and O_{\underline{3+4+8}})$ were present in both

populations, Font Groga (Galludo et al. 2018) and Avala. In the latter, most of them (9

out of 15, after the FDR correction) were significant with PC1, PC2 or both, being these

363 principal components related mainly with temperature. These results differed from that

from Font Groga (Galludo et al. 2018), where 14 out of 15 inversion were significant, 364 365 but it is worth noting that the principal components in that population were not 366 equivalent to those from Avala. For instance, the PC1 from Font Groga depended strongly of temperatures, but also of humidity and rainfall. Furthermore, in Avala 367 population, the relation of each inversion with the variation of one unit for a particular 368 environmental variable while maintaining constant the others, indicated that most 369 370 inversions (with the exceptions of the $E_{1+2+9+12}$ and O_{3+4+6} inversions) do not change 371 appreciably. This result could be a consequence of annual fluctuations of climatic 372 variables in Avala during the period 2014-2017, as no clear directional change was 373 present for any of the studied variables, no changes were detected for the thermal adapted inversions. 374

However, it was relevant to study the change of chromosomal inversions over 375 time in Avala population (2004-2017). From a qualitative point of view, several 376 377 inversions considered warm and arid were detected recently for the first time and in low frequencies in Avala (J_{3+4} in 2015 and U_{1+2+3} 2017). It could be explained by a tendency 378 379 towards decreased humidity in that region, and those inversions could have arrived from 380 the Eastern Mediterranean region. Instead, the quantitative study of inversion chromosomal frequencies produced the main results. Thus, for all polymorphic 381 382 chromosomes of D. subobscura, the 'cold' adapted inversions remained rather constant 383 for the period 2004-2017. In a global warming scenario, a decrease in these frequencies would be expected. A quite similar result was observed for the 'warm' inversions with a 384 385 notable exception, the U chromosome, showed a significant increase from 2004 to 2011 386 samples mainly due to the increase in frequency of U_{1+2} inversion (Zivanovic et al. 2015). This inversion was most abundant in the Caucasus and Iran regions (Krimbas 387 388 1993). However, from 2011 no significant variation in frequency has been observed for

³⁸⁹ 'warm' inversions. The paradox was that the increase of U 'warm' inversions was at the ³⁹⁰ expense of 'non-thermal' adapted inversion, not at the 'cold' adapted as it could be ³⁹¹ expected. For these reasons, the 'non-thermal' adapted inversions remained quite stable ³⁹² over time with the exception of the U chromosome, with a remarkable decrease in the ³⁹³ U_{1+2+6} frequency from 2004-2011.

It would seem that the chromosomal inversion frequencies of *D. subobscura* 394 from Avala have reached a plateau of stability. This result could be an artifact due to the 395 396 few years studied, and because inversion polymorphism data were not available for each 397 one of the 13 years the involved in the analysis. Perhaps longer periods of time (about 398 20 to 30 years) would be necessary to detect notable changes in inversion frequencies, as was carried out in several previous researches with this species (Orengo and Prevosti 399 1996; Solé et al. 2002; Balanyà et al. 2004, 2006; Orengo et al. 2016; Zivanovic et al. 400 2019). However, in intermediate periods of time (about 15 years), changes in this 401 402 polymorphism were detected and in the direction expected by global warming (Rodriguez-Trelles and Rodriguez 1998; Zivanovic and Mestres 2011; Zivanovic et al. 403 404 2014b). Other hypotheses are possible, for instance the occurrence of episodes of 405 intense cold or heat waves in any of the years in which the study is framed (Schar and 406 Jendritzky 2004; Founda and Giannakopoulos 2009; Barriopedro et al. 2011; Stefanon 407 et al. 2012). It was observed that D. subobscura inversion polymorphism was able to 408 respond to these changes (Rodríguez-Trelles et al. 2013). However, these climatic 409 episodes could generate particular results that could be wrongly interpreted from the 410 perspective of climate change. This distortion due to particular climatic conditions 411 could also be mitigated if the studied period is large enough.

412 On the topic of inversion frequencies variation according to global warming,413 there are still relevant questions to answer: is there a limit to the frequency increase of

warm adapted inversions in a population? If there is a threshold, are D. subobscura 414 415 populations close to it? Previous researches would indicate that the accumulation of 416 'warm' adapted inversions is additive, with interactions representing a secondary role, if 417 any (Zivanovic et al 2016; Arenas et al. 2018). The thermal adaptation QTL mapping in 418 D. melanogaster would support this observation (Morgan and Mackay 2006; Norry et 419 al. 2008; Borda et al. 2018). Usually, all characters on which directional selection acts 420 have a limit, because other fitness-related characters are adversely affected (for a revision see Lynch and Walsh 1998; Sgrò and Hoffmann 2004). For D. subobscura, the 421 422 'warm' adapted inversions could contain genes or have genes in linkage disequilibrium 423 located near them, which would be dragged by the directional thermal selection generating serious alterations of fitness. Moreover, it is worth to remember the complex 424 425 organization of chromosomal inversions in this species. From a historic point of view 426 and due to its large number of heterozygotes for inversions collected in natural 427 populations it was considered that D. subobscura could carry systems of balanced 428 lethals (Krimbas 1992, 1993 for a complete revision). Although inversions with 429 heterotic effect carrying lethal genes have been described in this species (Mestres et al. 430 2001), it was generally observed that the frequency of homozygotes and heterozygotes 431 for inversions fits panmictic expectations. Moreover, some arrangements constituted by 432 non-overlapped inversions located far away in the same chromosome were not broken 433 by recombination, likely due to linkage disequilibrium (Sperlich and Feuerbach 1969; 434 Sperlich and Feuerbach-Mravlag 1974; Mestres et al. 1998). If one of the inversions in the arrangement contained the thermal adapted genes, all inversions constituting this 435 436 arrangement would be selected together. This selection would have consequences over other fitness traits, and for this reason trade-offs would likely be necessary. Fitness 437

438 trade-offs involving inversions have been recently described in *D. melanogaster*439 (Durmaz et al. 2018).

Is there any evidence indicating that any *D. subobscura* population has already 440 reached a 'warm' adapted inversions accumulation threshold? In a recent study in the D. 441 442 subobscura isolated Atlantic population of Madeira (Madrenas et al. 2020), the frequencies of thermal adapted inversions and the CTI remained quite stable over time, 443 although there was a clear indication of global warming in the island (significant 444 445 increase of Tmin, Tmax and Tmean). The frequencies of the 'cold' adapted inversions A_{st} (0.228) and E_{st} (0.257) were not negligible, indicating that they could contain genes 446 447 adaptive to other prominent environmental conditions for the species survival or the inversion system of the species does not allow to continue with the directional selection. 448 Avala is not an isolated population and could change also due to gene flow, receiving 449 climatic adapted inversions. In this sense, it will be interesting to follow up the 450 451 evolution in frequency of J_{3+4} , U_{1+2+3} and O_{3+4+2} inversions, considered adaptive to warm and dry conditions. Moreover, the CTI values estimated in this study (0.330 in 452 453 average) are not particularly high, and in this sense the composition of 'warm' adapted 454 inversions could increase, because the maximum value (0.958) was from the Italian 455 population of Etna (Arenas et al. 2018). Probably, the stability detected in Avala could 456 be a transient situation and longer periods of time should be studied in the future. 457 Furthermore, the inversion composition of Avala must be adaptive, not only regarding 458 the thermal variables, but also to other environmental conditions. In conclusion, it would seem that depending on the environmental conditions, each D. subobscura 459 460 population could accumulate until a certain maximum amount of thermal adapted inversions without altering other fitness components. Thus, the threshold for thermal 461

462 adapted inversions accumulation would probably be different in each population463 depending on the particular environmental conditions of its ecosystem.

Finally, it is worth noting that natural ecosystems are complex in structure. The 464 465 climatic variables as temperatures, humidity and rainfall act changing the communities 466 and *D. subobscura* is an element of them. To study the direct effect of these variables on the chromosomal inversion polymorphism is possibly a reduction and simplification 467 of the biological problem. Probably, inversions contain genes that could confer adaptive 468 469 advantage in front a combination of conditions, both physical and biological present in the ecosystems (Galludo et al. 2018; Kapun and Flatt 2019). The interactions of genes 470 471 located in the chromosomal structure of *D. subobscura* karyotype would be responsible for adaptations to a wide range of situations that take place in the ecosystems. All these 472 topics deserve future studies because the adaptive value of inversions to different 473 climatic conditions has been described in many species (Hoffmann et al. 2004; Ananina 474 475 et al. 2004; Etges and Levitan 2008; Takahashi and Takano-Shimizu 2011; van Heerwaarden et al. 2012; Ayala et al. 2014; Berg et al. 2017, Kapun and Flatt 2019). 476

477

478 Acknowledgements

We dedicate this research to the memory of Prof. George W. Gilchrist (1954–
2020), an excellent evolutionary scientist and friend. This study was financially
supported by grants from the Ministry of Education, Science and Technological
Development of the Republic of Serbia (grant number 451-03-9/2021-14/200007), the
Ministerio de Economía y Competitividad, Spain (CTM2017-88080 AEI/FEDER, UE)
and the Generalitat de Catalunya, Spain (2017SGR 1120 and 2017SGR 622). The
authors declare that they have no conflict of interest.

References

488	Ananina G, Peixoto AA, Bitner-Mathé BC, Souza WN, da Silva LB, Valente VLS,
489	Klaczko LB (2004) Chromosomal inversion polymorphism in Drosophila
490	mediopunctata: seasonal, altitudinal, and latitudinal variation. Genet. Mol. Biol.
491	27:61–69
492	Araúz PA, Mestres F, Pegueroles C, Arenas C, Tzannidakis G, Krimbas CB, Serra L
493	(2009) Tracking the origin of the American colonization by Drosophila
494	subobscura: comparison between Eastern and Western Mediterranean
495	populations. J. Zool. Syst. Evol. Research 47:25–34
496	Arenas C, Zivanovic G, Mestres F (2018) Chromosomal Thermal Index: a
497	comprehensive way to integrate the thermal adaptation of Drosophila
498	subobscura whole karyotype. Genome 61:73–78
499	Argemí M, Monclús M, Mestres F, Serra L (1999) Comparative analysis of a
500	community of Drosophilids (Drosophilidae; Diptera) sampled in two periods
501	widely separated in time. J. Zool. Syst. Evol. Research 37:203–210
502	Argemí M, Mestres F, Prevosti A, Serra L (2003) Microevolutionary dynamics of a
503	community of Drosophilids. J. Zool. Syst. Evol. Research 41:57-63
504	Ayala D, Ullastres A, González J (2014) Adaptation through chromosomal inversions in
505	Anopheles. Front. Genet. 5:129
506	Ayala FJ, Coluzzi M (2005) Chromosome speciation: Humans, Drosophila, and
507	mosquitoes. Proc. Natl. Acad. Sci. U.S.A. 102:6535-6542

508	Ayala FJ, Serra L, Prevosti A (1989) A grand experiment in evolution: The Drosophila
509	subobscura colonization of the Americas. Genome 31:246–255
510	Balanyà J, Serra L, Gilchrist GW, Huey RB, Pascual M, Mestres F, Solé A (2003)
511	Evolutionary pace of chromosomal polymorphism in colonizing populations of
512	Drosophila subobscura: an evolutionary time series. Evolution 57:1837–1845
513	Balanyà J, Solé E, Oller JM, Sperlich D, Serra L (2004) Long-term changes in the
514	chromosomal inversion polymorphism of Drosophila subobscura. II. European
515	populations. J. Zool. Syst. Evol. Res. 42:191-201
516	Balanyà J, Oller JM, Huey RB, Gilchrist GW, Serra L (2006) Global genetic change
517	tracks global climate warming in Drosophila subobscura. Science 313:1773-
518	1775
519	Balanyà J, Huey RB, Gilchrist GW, Serra L (2009) The chromosomal polymorphism of
520	Drosophila subobscura: a microevolutionary weapon to monitor global change.
521	Heredity 103:364–367
522	Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R (2011) The hot
523	summer of 2010: Redrawing the temperature record map of Europe. Science
524	332:220–224
525	Begon M (1976) Dispersal, density and microdistribution in Drosophila subobscura
526	Collin. J. Anim. Ecol. 45:441–456
527	Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and
528	powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57:289-
529	300

530	Berg PR, Star B, Pampoulie C, Bradbury IR, Bentzen P, Hutchings JA, Jentoft S,
531	Jakobsen KS (2017) Trans-oceanic genomic divergence of Atlantic cod ecotypes
532	is associated with large inversions. Heredity 119:418-428
533	Bhattacharyya A (1946) On a measure of divergence between two multinomial
534	populations. Sankhya 7:401–406
535	Borda MA, Sambucetti PD, Gomez FH, Norry FM (2018) Genetic variation for egg-to-
536	adult survival in Drosophila melanogaster in a set of recombinant inbred lines
537	reared under heat stress in a natural thermal environment. Entomol. Exp. Appl.
538	166:863-872
539	Carson HL (1955) The genetic characteristics of marginal populations of Drosophila.
540	Cold Spring Harbor Symp. Quant. Biol. 20:276–287.
541	Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markov TA, et al. (2007)
542	Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–
543	218
544	Dolgova O, Rego C, Calabria G, Balanyà J, Pascual M, Rezende EL, Santos M (2010)
545	Genetic constraints for thermal coadaptation in Drosophila subobscura. BMC
546	Evol. Biol. 10:363
547	Durmaz E, Benson C, Kapun M, Schmidt P, Flatt T (2018) An inversion supergene in
548	Drosophila underpins latitudinal clines in survival traits. J. Evol. Biol. 31:1354–
549	1364
550	Etges WJ, Levitan M (2008) Variable evolutionary response to regional climate change
551	in a polymorphic species. Biol. J. Linnean Soc. 95:702-718

552	Fabian DK, Kapun M, Nolte V, Kofler R, Schmidt PS, Schlötterer C, et al. (2012)
553	Genome-wide patterns of latitudinal differentiation among populations of
554	Drosophila melanogaster from North America. Mol. Ecol. 21:4748–4769
555	Feuk L, MacDonald JR, Tang T, Carson AR, Li M, Rao G, Khaja R, Sherer SW (2005)
556	Discovery of human inversion polymorphisms by comparative analysis of
557	human and chimpanzee DNA sequence assemblies. PLoS Genet. 1:e56
558	Founda D, Giannakopoulos C (2009) The exceptionally hot summer of 2007 in Athens,
559	Greece - A typical summer in the future climate? Global and Planetary
560	Change. 67:227–236
561	Fuller ZL, Leonard CJ, Young RE, Schaeffer SW, Phadnis N (2018) Ancestral
562	polymorphisms explain the role of chromosomal inversions in speciation. PloS
563	Genet. 14:e1007526
564	Galludo M, Canals J, Pineda-Cirera L, Esteve C, Rosselló M, Balanyà J, Arenas, C,
565	Mestres F (2018) Climatic adaptation of chromosomal inversions in Drosophila
566	subobscura. Genetica 146:433–441
567	Galludo M, Canals J, Pineda-Cirera L, Esteve C, Rosselló M, Madrenas R, Balanyà J,
568	Arenas C, Mestres F (2020) Annual climatic effects on the autumnal drosophild
569	fauna composition at the font Groga site (Tibidado, Barcelona). North-West. J.
570	Zool. 16: 15–20
571	Guillén Y, Ruiz A (2012) Gene alterations at Drosophila inversion breakpoints
572	provide prima facie evidence for natural selection as an explanation for rapid
573	chromosomal evolution. BMC Genomics 13:53
574	Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

575	Hoffmann AA, Sgrò CM, Weeks AR (2004) Chromosomal inversion polymorphism
576	and adaptation. Trends Ecol. Evol. 19:482–488
577	Hoffmann AA, Rieseberg LH (2008) Revisiting the impact of inversions in evolution:
578	from population genetic markers to drivers of adaptive shifts and speciation?
579	Annu. Rev. Ecol. Evol. Syst. 39:21–42
580	Irigoien I, Arenas C, Fernández E, Mestres F (2010) GEVA: geometric variability-
581	based approaches for identifying patterns in data. Comput. Stat. 25:241–255
582	Kapun M, Flatt T (2019) The adaptive significance of chromosomal inversion
583	polymorphisms in Drosophila melanogaster. Mol. Ecol. 28: 1263–1282
584	Karageorgiou C, Gámez-Visairas V, Tarrío R, Rodríguez-Trelles F (2019) Long-read
585	based assembly and synteny analysis of a reference Drosophila subobscura
586	genome reveals signatures of structural evolution driven by inversions
587	recombination-suppression effects. BMC Genomics 20:223
588	Karageorgiou C, Tarrío R, Rodríguez-Trelles F (2020) The cyclically seasonal
589	Drosophila subobscura inversion O7 originated from fragile genomic sites and
590	relocated immunity and metabolic genes. Frontiers in Genetics 11:565836
591	Kirkpatrick M (2010) How and why chromosome inversions evolve. PLoS Biol. 8:
592	e1000501.
593	Krimbas CB (1992) The inversion polymorphism of Drosophila subobscura. In:
594	Krimbas CB, Powell JR (eds) Drosophila inversion polymorphism. CRC Press
595	Inc., Boca Raton, FL, pp 127–220

596	Krimbas CB (1993) Drosophila subobscura: Biology, genetics and inversion
597	polymorphism. Verlag Dr. Kovac, Hamburg, Germany
598	Krimbas CB, Loukas M (1980) The inversion polymorphism of Drosophila subobscura.
599	Evol. Biol. 12: 163–234
600	Kunze-Mühl E, Müller E (1958) Weitere Untersuchungen über die chromosomale
601	Struktur und die natürlichen Strukturtypen von Drosophila subobscura.
602	Chromosoma 9:559–570
603	Kunze-Mühl E, Sperlich D (1955) Inversionen und chromosomale Strukturtypen bei
604	Drosophila subobscura. Z. Indukt. Abstamm. Vererb. Lehre 87:65-84
605	Laayouni H, Hasson E, Santos M, Fontdevila A (2003) The evolutionary history of
606	Drosophila buzzatii. XXXV. Inversion polymorphism and nucleotide variability
607	in different regions of the second chromosome. Mol. Biol. Evol. 20:931-944
608	Laayouni H, García-Franco F, Chávez-Sandoval BE, Trotta V, Beltran S, Corominas
609	M, et al. (2007) Thermal evolution of gene expression profiles in Drosophila
610	subobscura. BMC Evol Biol 7:42
611	Lewontin RC, Moore JA, Provine WB, Wallace B (1981) Dobzhanky's Genetics of
612	Natural Populations I – XLIII. Columbia University Press, NY
613	Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer
614	Associates Inc. Sunderland (MA), USA
615	Madrenas R, Balanyà J, Arenas C, Khadem M, Mestres F (2020) Global warming and
616	chromosomal inversion adaptation in isolated islands: Drosophila subobscura
617	populations from Madeira. Entomol. Sci. 23:74–85

618	McAllister BF, Sheeley SL, Mena PA, Evans AL, Schlötterer C (2008) Clinal
619	distribution of a chromosomal rearrangement: a precursor to chromosomal
620	speciation? Evolution 62:1852–1865
621	Menozzi P, Krimbas CB (1992) The inversion polymorphism of D. subobscura
622	revisited: Synthetic maps of gene arrangement frequencies and their
623	interpretation. J. Evol. Biol. 5:625–641
624	Mestres F, Sanz J, Serra L (1998) Chromosomal structure and recombination between
625	inversions in Drosophila subobscura. Hereditas 128:105–113
626	Mestres F, Balanyà J, Arenas C Solé, E, Serra L (2001) Colonization of America by
627	Drosophila subobscura: Heterotic effect of chromosomal arrangements revealed
628	by the persistence of lethal genes. Proc. Natl. Acad. Sci. USA 98:9167-9170
629	Mestres F, Balanyà J, Pascual M, Arenas C, Gilchrist GW, Huey RB, Serra L (2009)
630	Evolution of Chilean colonizing populations of Drosophila subobscura: lethal
631	genes and chromosomal arrangements. Genetica 136:37-48.
632	Morgan TJ, Mackay TFC (2006) Quantitative trait loci for thermotolerance phenotypes
633	in Drosophila melanogaster. Heredity 96: 232–242
634	Nie W, Wang J, Su W, Wang D, Tanomtong A, Perelman PL, Graphodatsky AS, Yang
635	F (2012) Chromosomal rearrangements and karyotype evolution in carnivores
636	revealed by chromosome painting. Heredity 108:17–27
637	Norry FM, Scannapieco AC, Sambucetti P, Bertoli CI, Loeschcke V (2008) QTL for the
638	thermotolerance effect of heat hardening, knockdown resistance to heat and
639	chill-coma recovery in an intercontinental set of recombinant inbred lines of
640	Drosophila melanogaster. Mol. Ecol. 17:4570–4581

641	Orengo DJ, Prevosti A (1996) Temporal changes in chromosomal polymorphism of
642	Drosophila subobscura related to climatic changes. Evolution 50:1346–1350
643	Orengo DJ, Puerma E, Aguadé M (2016) Monitoring chromosomal polymorphism in
644	Drosophila subobscura over 40 years. Entomol. Sci. 19:215-221
645	Orengo DJ, Puerma E, Papaceit M, Segarra C, Aguadé M (2017) Dense gene physical
646	maps of the non-model species Drosophila subobscura. Chrom. Res. 25:145-
647	154
648	Pegueroles C, Araúz PA, Pascual M, Mestres F (2010) A recombination survey using
649	microsatellites: The O chromosome of Drosophila subobscura. Genetica
650	138:795-804
651	Pegueroles C, Aquadro CF, Mestres F, Pascual M (2013) Gene flow and gene flux
652	shape evolutionary patterns of variation in Drosophila subobscura. Heredity
653	110:520–529
654	Pegueroles C, Ferrés-Coy A, Martí-Solano M, Aquadro CF, Pascual M, Mestres F
655	(2016) Inversions and adaptation to the plant toxin ouabain shape DNA
656	sequence variation within and between chromosomal inversions of Drosophila
657	subobscura. Sci. Rep. 6:23754
658	Pennisi E (2017) 'Supergenes' drive evolution. Science 357:1083
659	Prevosti A, Ribo G, Serra L, Aguade M, Balaña J, Monclus M, Mestres F (1988)
660	Colonization of America by Drosophila subobscura: Experiment in natural
661	populations that supports the adaptive role of chromosomal-inversion
662	polymorphism. Proc. Natl. Acad. Sci. U.S.A. 85:5597–5600

663	Prevosti A, Serra L, Aguadé M, Ribó G, Mestres F, Balanya J, Monclús M (1989)
664	Colonization and establishment of the Palearctic species Drosophila subobscura
665	in North and South America. In: Fontdevila A (ed) Evolutionary biology of
666	transient unstable populations. Springer-Verlag, Berlin. pp 114–129
667	Provan J, Bennett KD (2008) Phylogeographic insights into cryptic glacial refugia.
668	Trends Ecol. Evol. 23:564-71
669	R Development Core Team (2014) R: a language and environment for statistical
670	computing, R Foundation for Statistical Computing. Vienna, Austria
671	Rego C, Balanyà J, Fragata I, Matos M, Rezende EL, Santos M (2010) Clinal patterns
672	of chromosomal inversion polymorphisms in Drosophila subobscura are partly
673	associated with thermal preferences and heat stress resistance. Evolution
674	64:385–397
675	Reis M, Vieira CP, Lata R, Posnien N, Vieira J (2018) Origin and consequences of
676	chromosomal inversions in the virilis group of Drosophila. Genome Biol. Evol.
677	10:3152–3166
678	Rodriguez-Trelles F, Rodriguez MA (1998) Rapid micro-evolution and loss of
679	chromosomal diversity in Drosophila in response to climate warming. Evol.
680	Ecol. 12:829–838
681	Rodríguez-Trelles F, Alvarez G, Zapata C (1996) Time-series analysis of seasonal
682	changes of the O inversion polymorphism of Drosophila subobscura. Genetics
683	142:179–187
684	Rodríguez-Trelles F, Tarrío R, Santos M (2013) Genome-wide evolutionary response to
685	a heat wave in Drosophila. Biol. Lett. 9:20130228.

687	Schar C, Jendritzky G (2004) Hot news from summer 2003. Nature 432:559–560
688	Schaeffer SW, Goetting-Minesky MP, Kovacevic M, Peoples JR, Graybill JL, Miller
689	JM, et al. (2003) Evolutionary genomics of inversions in Drosophila
690	pseudoobscura: Evidence for epistasis. Proc. Natl. Acad. Sci. USA 100:8319-
691	8324
692	Schaeffer SW, Anderson WW (2005) Mechanisms of genetic exchange within the
693	chromosomal inversions of Drosophila pseudoobscura. Genetics 171:1729-
694	1739
695	Serra L, Pegueroles G, Mestres F (1987) Capacity of dispersal of a colonizing species:
696	Drosophila subobscura. Genetica 73:223–235
697	Sgrò CM, Hoffmann AA (2004) Genetic correlations, tradeoffs and environmental
698	variation. Heredity 93:241–248
699	Smukowski Heil CS, Ellison C, Dubin M, Noor MAF (2015) Recombining without
700	hotspots: A comprehensive evolutionary portrait of recombination in two closely
701	related species of <i>Drosophila</i> . Genome Biol. Evol. 7:2829–2842
702	Solé E, Balanyà J, Sperlich D, Serra L (2002) Long-term changes in the chromosomal
703	inversion polymorphism of Drosophila subobscura. I. Mediterranean
704	populations from Southwestern Europe. Evolution 56: 830-835
705	Sperlich D, Feuerbach H (1969) Austausch-Ungleichgewicht zwischen unabhängigen
706	Inversionen in naturlichen populationen von Drosophila subobscura. Theor.
707	Appl. Genet. 39:104–112

708	Sperlich D, Feuerbach-Mravlag H (1974) Epistatic gene interaction, crossing over, and
709	linked and unlinked inversions in Drosophila subobscura. Evolution 28:67–75
710	Sperlich D, Pfriem P (1986) Chromosomal polymorphism in natural and experimental
711	populations. In: Ashburner M, Carson HL, Thompson Jr. JN (eds) The Genetics
712	and Biology of Drosophila. Academic Press, London, vol. 3e, pp 257–309
713	Stefanon M, D'Andrea F, Drobinski P (2012) Heatwave classification over Europe and
714	the Mediterranean region. Environ. Res. Lett. 7:014023
715	Stevison LS, Hoehn KB, Noor MAF (2011) Effects of inversions on within-and
716	between species recombination and divergence. Genome Biol. Evol. 3:830-841
717	Sturtevant AH (1921) A case of rearrangement of genes in Drosophila. Proc. Natl.
718	Acad. Sci. U.S.A. 7:235–237
719	Taberlet P, Fumagalli L, Wust-Saucy AG., Cosson JF (1998) Comparative
720	phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7:
721	453–464
722	Takahashi A, Takano-Shimizu T (2011) Divergent enhancer haplotype of ebony on
723	inversion $In(3R)Payne$ associated with pigmentation variation in a tropical
724	population of <i>Drosophila melanogaster</i> . Mol. Ecol. 20: 4277–4287
725	The Times (1972) The Times Atlas of the World. Times Newspapers, 4 th ed., London,
726	U.K., pp XXVI–XXVII
727	Tzedakis PC (2004) The Balkans as Prime Glacial Refugial Territory of European
728	Temperate Trees. In: Griffiths HI, Kryštufek B, Reed JM (eds) Balkan
729	Biodiversity. Springer, Dordrecht, pp 49–68

730	van Heerwaarden B, Lee RFH, Wegener B, Weeks AR, Sgró CM (2012) Complex
731	patterns of local adaptation in heat tolerance in Drosophila simulans from
732	eastern Australia. J. Evol. Biol. 25:1765–1778
733	Wielstra B, Arntzen JW (2020) Extensive cytonuclear discordance in a crested newt
734	from the Balkan Peninsula glacial refugium. Biol. J. Linn. Soc. 130:578–585
735	Zivanovic G, Mestres F (2010) Viabilities of Drosophila subobscura homo- and
736	heterokaryotypes at optimal and stress temperatures. I. Analysis over several
737	years. Hereditas 147:70–81
738	Zivanovic G, Mestres F (2011) Changes in chromosomal polymorphism and global
739	warming: The case of Drosophila subobscura from Apatin (Serbia). Genet. and
740	Mol. Biol. 34:489–495
741	Zivanovic G, Arenas C, Mestres F (2012) Short- and long-term changes in
742	chromosomal inversion polymorphism and global warming: Drosophila
743	subobscura from the Balkans. Isr. J. Ecol. Evol. 58:289–311
744	Zivanovic G, Arenas C, Mestres F (2014a) Inbreeding and thermal adaptation in
745	Drosophila subobscura. Genome 57:481–488
746	Zivanovic G, Arenas C, Mestres F (2014b) Inversion polymorphism in two Serbian
747	natural populations of Drosophila subobscura: analysis of long-term changes.
748	Russ. J. Genet. 50:638–644
749	Zivanovic G, Arenas C, Mestres F (2015) Medium-term changes in Drosophila
750	subobscura chromosomal inversion polymorphism: a possible relation with
751	global warming? J. Genet. 94:343–346

752	Zivanovic G, Arenas C, Mestres F (2016) Individual inversions or their combinations:
753	which is the main selective target in a natural population of Drosophila
754	subobscura? J. Evol. Biol. 29:657–664
755	Zivanovic G, Arenas C, Mestres F (2019) Rate of change for the thermal adapted
756	inversions in Drosophila subobscura. Genetica 147:401-409
757	
758	
759	FIGURE LEGENDS
760	Fig. 1 Multivariate analysis of the chromosomal inversion polymorphism from Avala
761	and Font Groga populations of D. subobscura. (A) Principal Coordinate Analysis. On
762	the left are grouped the samples from Avala and on the right those from Font Groga. (B)
763	GEVA-Ward cluster analysis. The first partition generates two groups, one with the
764	Avala samples (left) and the other with those from Font Groga (right). The
765	nomenclature used is: A14 (Avala 2014), A15 (Avala 2015), A16 (Avala 2016), A17
766	(Avala 2017), FG11 (Font Groga 2011), FG12 (Font Groga 2012), FG13 (Font Groga
767	2013), FG14 (Font Groga 2014) and FG15 (Font Groga 2015).
768	Fig. 2 Variation in frequency (percentage) for the Avala chromosomal inversions
769	classified according to thermal adaptation in the years 2004, 2011, 2014, 2015, 2016
770	and 2017. (A) 'Cold' adapted inversions. (B) 'Warm' adapted inversions. (C). 'Non-
771	thermal' adapted inversions. The symbols stand for: black circle for A chromosome,
772	circle with a cross for J chromosome, white circle for U chromosome, inverted triangle
773	for E chromosome and diamond for O chromosome.
774	