
Treball final de grau

GRAU DEMATEMÀTIQUES
GRAU D’ENGINYERIA INFORMÀTICA

Facultat de Matemàtiques i Informàtica
Universitat de Barcelona

PROOF VERIFICATION IN
ALGEBRAIC TOPOLOGY

Autor: Xavier Ripoll Echeveste

Director: Dr. Carles Casacuberta
Realitzat a: Departament de

Matemàtiques i Informàtica

Barcelona, 21 de juny de 2020

Abstract
Homotopy type theory is a relatively new field which results from the surprising blend of
algebraic topology (homotopy) and type theory (type), that tries to serve as a theoretical base
for theorem-proving software. This setting is particularly suitable for synthetic homotopy
theory.

In this work, we describe how the programming language Agda can be used for proof verifi-
cation, by examining the construction of the fundamental group of the circle 𝕊1. Then, trying
to obtain the fundamental group of the real projective plane ℝP2, we end up exploring a new
construction of ℝP2 as a higher inductive type.

Resum
La teoria homotòpica de tipus és un camp relativament nou que resulta de la sorprenent
combinació de topologia algebraica (homotopia) i teoria de tipus (tipus), que intenta servir
comuna base teòrica per a software per demostrar teoremes. Aquest context és particularment
adient per a la teoria d’homotopia sintètica.

En aquest treball, expliquem de quina manera es pot utilitzar el llenguatge de programació
Agda per a verificar demostracions, examinant la construcció del grup fonamental de la cir-
cumferència 𝕊1. Després, intentant obtenir el grup fonamental del pla projectiu real ℝP2,
n’acabem explorant una nova construcció com a tipus inductiu d’ordre superior.

2010 Mathematics Subject Classification. 03B35, 03B70, 18G55

i

Contents

Introduction 1

1 Preliminaries 5
1.1 Homotopy Theory . 5
1.2 Homotopy Type Theory . 6

1.2.1 Types and terms . 6
1.2.2 Function types . 7
1.2.3 Product types . 8
1.2.4 Coproduct types . 8
1.2.5 Identity types . 8
1.2.6 Inductive types . 9
1.2.7 Univalence . 11

1.3 The Curry-Howard Correspondence . 11

2 Agda 14
2.1 Setup . 14

2.1.1 Using Docker . 14
2.1.2 Local installation . 15

2.2 The Language . 16
2.2.1 Modules . 17
2.2.2 Function types . 17
2.2.3 Universe types . 19
2.2.4 Record types . 19
2.2.5 Data types . 20
2.2.6 Built-ins . 20
2.2.7 --without-K . 21

2.3 Homotopy Type Theory in Agda . 22
2.3.1 An example . 22
2.3.2 Higher inductive types . 25

3 The Circle 27
3.1 Truncation . 27
3.2 Covering Spaces . 28
3.3 The Fundamental Group of the Circle . 29

ii

4 The Real Projective Plane 33
4.1 Classical Construction . 33
4.2 Pushouts . 34
4.3 Constructions Using Pushouts . 38
4.4 Construction as a Higher Inductive Type . 41

Conclusions 44

References 46

iii

Introduction

Computer science was born as a tool by mathematicians for mathematicians, with the goal of
aiding in repetitive calculations. The field has diversified a lot since its inception, but the idea
of helping in mathematical research still lies in its heart. The ambition of computer scientists
andmathematicians has kept growing, up to the question posed today: can computers help us
prove theorems? Homotopy type theory is a field that can potentially help with this problem.

In a few words, type theory is a foundation of mathematics, alternative to set theory or cat-
egory theory. In set theory, one way to build the natural numbers is through the recursive
definition 0 ∶= ∅, 𝑛′ ∶= 𝑛 ∪ {𝑛}. This yields a functional representation of the Peano natu-
rals, but it also produces valid expressions like 0 ∈ 1, which are often unwanted, as they mix
the nature of the sets with the “pure” idea of the numbers. Of course, this does not really
suppose any trouble to the working mathematician, as it is pretty easy to just “forget” about
the particular implementation of the natural numbers and think of them as objects on their
own rather than sets. This issue is only relevant when working on certain formal systems, in
particular when one wants to do computational mathematics. In that case, it is important for
the computer to be explicitly aware of what sets represent natural numbers and what sets do
not.

The problem becomes unsolvable when dealing with more complex objects. For example,
viewing functions as sets of ordered pairs makes them not generally representable in a finite
setting. Even though one can define a function by just stating its action on any element of
the domain (for example, 𝑓 (𝑥) ∶= 𝑥 + 1), the underlying set that represents the function can
easily be infinite.

Type theory tries to tackle this problem by taking a more semantic view on mathematical
objects. It operates with terms that have assigned types. In the case of the natural numbers,
for example, instead of building them out of more elementary atoms, we just state them as
what we want them to be: a type with an initial term and a way to build a new term for each
existing one. Similarly, functions become simple computation rules instead of literally being
made out of all the possible mappings they entail.

This philosophy—the idea that mathematical structures should be finitely describable—is
known as constructivism, and is the quintessence ofMartin-Löf’s type theory. Although type
theories precedeMartin-Löf’s by some decades, the one he published, known as intuitionistic
type theory, is the first one to implement predicative logic, which is vital for producingmean-
ingful mathematics. The notion of constructivism not only applies to objects such as algebraic
structures, but also to predicates about these. In a set-theoretic setting, constructing the set

1

of all even natural numbers and the statement that such set is the set of all even numbers are
two completely different things.

The first would be something like {𝑛 ∈ ℕ ∶ 2 ∣ 𝑛}. This is just a set of numbers that, by
definition, are all the even natural numbers. We can name this set 𝐸, then forget about how
it was defined, and we would lose the notion that it is the set of even naturals. In fact, by
writing {0, 2, 4, 6, 8, ...} we could describe that same set without using the notion of evenness.

The second could be expressed as ∀𝑛 ∈ ℕ, 𝑛 ∈ 𝐸 ⟺ 2 ∣ 𝑛. This assertion is expressed
using predicative logic, it is not an object in the same sense as 𝐸.

In type theory, we record the properties we care about of objects in the objects themselves.
For example, the “set” of even naturals would be realized as a type consisting of ordered
pairs, where the first component is any even number, and the second one is the proof that it
is even. This way, not only we obtain the object itself (all the even natural numbers), we also
encode the definition of the object with it. As a result of this technique, and the existence of
certain native constructions (such as the dependent types introduced by Martin-Löf), intu-
itionistic type theory does not need of predicative or even propositional logic. It just needs
a formal language that allows us to introduce some syntactical rules and create new types
when needed.

How is a type theory actually used in a computer setting?

Computers can only understand the machine language, which is just a series of instructions
that the processing unit is capable of executing. In order for humans to write complex
programs, compilers were created, programs capable of translating a higher level language
(e.g. C) into machine language. A compiler is not simple. The translation process actually
consists of a series of different steps.

Traditionally, the way computer programs could aid in mathematics was pretty straightfor-
ward: one writes a program in, say, C, and then compiles the code into an executable. Then,
the executable is run, yielding the desired results, for example making difficult numerical
calculations.

But writing computer programs is no easy task, and is very error-prone. Modern compilers
are equipped with tons of utilities that help minimize mistakes on the side of the human
programmer. One of such tools is the type system.

A type system furnishes each variable and function in a program with a type (integers, float-
ing point numbers, booleans, etc.), maybe automatically through analysis of the code, or
maybe by hand by the programmer themself. This way it is harder for the human to mistak-
enly assign a wrong value to a variable. When the compiler validates that all variables match
their corresponding type, we say that it is type checking the program.

Type systems have grown in complexity, allowing things like function types, product types,
parametrized types (types that admit other types as parameters), etc. The last big addition
to type systems was dependent types. These are types that depend on the values of other
types. It turns out that this rather innocent-looking improvement is strong enough to allow
type systems to implement an intuitionistic type theory.

By abusing types in this manner, a way was found to write mathematical proofs through the

2

type system. When doing this, we do not care about the rest of the compilation, or even the
resulting executable: we only care about whether the program type-checks or not. Given
sufficiently complex types, the mere fact that an element of such a type exists is a proof of a
mathematical fact by itself.

Now that we have a picture of what an (intuitionistic) type theory is, what is homotopy type
theory? First, we must introduce homotopy theory.

Homotopy theory is a branch of algebraic topologywhich dealswith howpaths in topological
spaces can be deformed into one another. When paths starting and ending at a given base
point are “loosened” keeping only the endpoints fixed, together with an adequate notion of
composition, we obtain a natural group, called the fundamental group of the space (together
with the base point). When the base point is disregarded, the group becomes a groupoid.
One can then interpret the deformation of one path into another as a 2-path, or homotopy, or
a path in the space of paths. This idea can be applied recursively, considering homotopies
between homotopies, and so on. It can be easily seen how this builds up to an infinite tower
of path spaces. When ignoring stronger topological structure and just looking at the paths,
each topological space can be assigned what we call a homotopy type.

Homotopy type theory is a kind of intensional type theory, this is to say, there is a differen-
tiation between propositional and definitional equalities. Intensionality is a double-edged
sword. The good side is that propositional equality is always given by a type, which contains
the information on how the two terms are related. This means that a statement of the style
𝑥 = 𝑦 also contains the proof (in fact, all the proofs) that 𝑥 equals 𝑦, in some sense. On the
other hand, intensionality gives rise to a family of types which are very hard to study, the
identity types, those representing equality statements. In fact, it turns out that identity types
actually become a model for the higher path structures that appear in topological spaces, if
we take equalities and think of them as paths joining the two equal things.

So, we have the word type in three different settings:

• As constructions used by logicians in type theory as a foundation of mathematics.
• As a method used by computer scientists in type systems in order to reduce bugs.
• As an invariant used by topologists to study and classify spaces (the homotopy type).

Homotopy type theory is what happens when these three concepts are interpreted as one.

Although homotopy type theory can be used as a basis for all of mathematics, it is particu-
larly good for studying homotopy theory as it offers a synthetic setting for a subject that has
traditionally been studied analytically, and, furthermore, allows it to be computerized so that
the proofs can be checked automatically.

The idea of dependent types, which is necessary for this reasoning system to be possible, is
fairly recent, and has not yet been implemented to many existing programming languages,
mainly due to its great technical complexity. For the last three decades, a few research-
oriented programming languages with dependent types have been popping up. One of them
isAgda, a programming languagedeveloped by the universities ofChalmers andGothenburg
(Sweden) with the idea of exploiting dependent types in mind. A mathematician writes a
program that constructs an element of a certain type, a type representing the statement to
prove through the Curry-Howard correspondence. The Agda type checker then validates

3

the types, effectively verifying that the proof is correct. Even though Agda is, in principle,
more oriented to general programming than other proof assistants (e.g. Coq), its lightweight
syntax and good integration of higher equality types make it very suitable for the formaliza-
tion of homotopy type theory.

Learning constructive mathematics is not easy. After explaining the basic concepts of type
theory, we began our journey by examining the first non-trivial proof one encounters in alge-
braic topology, namely that of the fundamental group of the circle 𝕊1. This alone led us to
study the rich concept of covering spaces. The theoretical study of this proof was accompa-
nied by the practical implementation of an Agda program that implements it.

Afterwards, wewanted to try our luck with amore complicated case: the fundamental group
of the real projective plane ℝP2. While we were observing the problem, we realized that
a potentially easier construction of ℝP2 could perhaps be made as an alternative to those
found in publications. In particular, our approach tries to remove all accessory constructions
and leave only the minimal components that would give a type the homotopical structure
of ℝP2. The implications are that we have to work with second order inductive types, the
difficulties of which we expose along the way. Albeit we accomplish the task of obtaining the
fundamental group, we have difficulties proving that the construction is indeed a projective
space, although we make substantial advances towards it.

Both parts of this thesis display the elegance of translating concepts from set-theoretic topol-
ogy to homotopy type theory, where many times the definitions better represent the ideas
behind them. Not only does homotopy type theory help us translate the theorems for the
computer to verify, but it also succinctly encapsulates the essence of paths in a way that al-
lows us to tell what topological constructions are homotopical and which are not.

4

Chapter 1

Preliminaries

1.1 Homotopy Theory
We begin by giving a brief introduction to homotopy theory.

Definition 1.1.1. In a topological space 𝑋, a path from 𝑥 ∈ 𝑋 to 𝑦 ∈ 𝑋 is defined as a contin-
uous map 𝑓 ∶ [0, 1] → 𝑋 such that 𝑓 (0) = 𝑥 and 𝑓 (1) = 𝑦.

Often, we want to consider the composition of paths 𝑓 (connecting 𝑥 to 𝑦) and 𝑔 (connecting
𝑦 to 𝑧). This would be a path that walks over 𝑓 in [0, 1

2] and walks over 𝑔 in [1
2 , 1], denoted

by 𝑓 � 𝑔. Then, we would expect to be able to define extended compositions like 𝑓 � 𝑔 � ℎ � ⋯.
Unfortunately, path composition is not associative due to parametrization issues: in (𝑓 � 𝑔) � ℎ,
𝑓 and 𝑔 are each “completed” in the subset of the domain [0, 1

2], whereas ℎ has the other half
of the domain for itself. Reciprocally, in 𝑓 � (𝑔 � ℎ), 𝑓 has as much of the domain as 𝑔 and ℎ
together.

Away to allowassociativity is byweakening our notion of path equality. For thiswe introduce
the following notion:

Definition 1.1.2. Suppose two paths 𝑓0 and 𝑓1 with the same endpoints. A homotopy between
𝑓0 and 𝑓1 is a function 𝐻 ∶ [0, 1] × [0, 1] → 𝑋 such that 𝐻(0, 𝑡) = 𝑥, 𝐻(1, 𝑡) = 𝑦, 𝐻(𝑡, 0) = 𝑓0(𝑡),
𝐻(𝑡, 1) = 𝑓1(𝑡) for any 𝑡 ∈ [0, 1]. We say that 𝑓0 and 𝑓1 are homotopic (or equal up to a
homotopy, or that they have the same homotopy class), if there exists a homotopy 𝐻 between
them, and we write 𝐻 ∶ 𝑓0 ⇒ 𝑓1.

Now, it is true that, given composable paths 𝑓 , 𝑔, and ℎ, there exists a homotopy (𝑓 � 𝑔) � ℎ ⇒
𝑓 � (𝑔 � ℎ).

A homotopy 𝐻 ∶ 𝑓 ⇒ 𝑔 can be seen as a “path” between 𝑓 and 𝑔. In fact, 𝐻 is nothing else than
a path between 𝑓 and 𝑔 in the space of paths from 𝑥 to 𝑦 equipped with the compact-open
topology. This gives us an insight of what higher homotopies could be: paths in higher path
spaces. Alternatively, an 𝑛-path can be regarded as a map [0, 1]𝑛 → 𝑋 which agrees with the
homotopies “below” itself.

Another way of visualizing higher path spaces is categorically. We start by thinking of all

5

points in 𝑋 as objects in a category, and all of the paths as morphisms. This is not a category,
as path composition is only associative up to homotopy. If we instead take homotopy classes
as morphisms, then composition is indeed associative. Not only that, but all paths can be
reversed, in such a way that they are invertible up to homotopy. When all morphisms are in-
vertible (such as in this case), the category is known as a groupoid. But, if we take homotopy
classes, we are losing important topological information. To preserve the higher homotopical
structure, we need higher morphisms. We can build a new category from each pair of objects,
consisting of all the paths between them, and whose morphisms are the homotopies between
such paths. If we repeat this at higher levels indefinitely, we obtain a “castle” of groupoids,
which is called an ∞-groupoid.

The idea of paths and higher paths will be used all throughout this work.

1.2 Homotopy Type Theory
A very brief introduction to type theory is given in this chapter. Unfortunately, not every
concept is explained as detailed as it is desirable. The recommended reference material is the
Homotopy Type Theory book (The Univalent Foundations Program 2013).

1.2.1 Types and terms
In type theory, every term has a unique assigned type. Note two important differences with
respect to set theory:

1. A termmust belong to, at least, one type. In type theory it makes no sense to talk about
a typeless term, and we cannot do much with it if we do not know its type. All the
equations and computations involving a term expect it to have an assigned type.

2. A term must belong to, at most, one type. That is to say, terms cannot belong to two or
more types at the same time. Note that, in particular, an analogous notion to that of a
subset is not possible–at least not without some intermediate structure.

We write

𝑎 ∶ 𝐴

to express that the term 𝑎has type𝐴. Thewords element and pointwill be used interchangeably
with term.

Types themselves are regarded as terms of a special type 𝒰 , called the “universe type”. For
example, when we say “𝐴 is a type”, this is the same as denoting 𝐴 ∶ 𝒰 .

There are two main ways to obtain types:

1. To create them from scratch, via inductive types. We will see this option in sec. 1.2.6.

2. To create them from previously existing types, via type constructors.

6

Type constructors allow to build new types from existing ones. We can think of them as func-
tions whose codomain is 𝒰 . To specify a new type constructor, one has to give the following
rules for it:

• Formation rules. Preconditions to be met by the types used to build the constructed
type.

• Introduction rules or constructors. Ways to build new terms. These are functions (pos-
sibly nullary) whose return type is the constructed type.

• Elimination rules or eliminators. Ways to use terms. These are functions that have, at
least, one argument of the constructed type. Eliminators can often be non-dependent
(called recursion principles or recursors) or dependent (called induction principles).

• Computation rules. They explain how the eliminators act on the constructors.

1.2.2 Function types
The function types are special in that their elements cannot be defined from simpler type-
theoretic terms. From the function type constructor we will deduce most other constructors.
This comes from the fact that type theories are often instances of typed lambda calculi, i.e. we
are furnishing functions with types, rather than adding functions to types.

• Formation rule. Given any two types 𝐴 and 𝐵, the (non-dependent) function type from
𝐴 to 𝐵, denoted 𝐴 → 𝐵, contains all the functions 𝑓 ∶ 𝐴 → 𝐵 that assign to each term
𝑎 ∶ 𝐴 an element in 𝐵, 𝑓 (𝑎).

• Introduction rules. There are a few ways to define functions. One is direct definition:
𝑓 (𝑥) ∶≡ Φ, where Φ is a formula that contains 𝑥 as an unbound variable. Equivalently,
we can use 𝜆-abstraction: we denote by 𝜆(𝑥 ∶ 𝐴).Φ the function that takes an argument
of type 𝐴 and replaces all occurrences of 𝑥 in Φ with it. So, we can also define 𝑓 ∶≡ 𝜆(𝑥 ∶
𝐴).Φ.

• Elimination rule. The obvious eliminator is application: given a function 𝑓 ∶ 𝐴 → 𝐵 and
a term 𝑎 ∶ 𝐴, we can think of 𝑓 (𝑎) ∶ 𝐵 as applying 𝑎 to 𝑓 to produce a term of 𝐵.

• Computation rule. The computation rule for functions tells us that 𝑎 ∶ 𝐴 applied to
𝜆(𝑥 ∶ 𝐴).Φ is Φ with all occurences of 𝑥 replaced with 𝑎. Observe that this goes a
step further than the elimination rule, as we are describing the function in terms of its
construction (as a 𝜆-abstraction in this case).

The types of functionswith codomain 𝒰 (𝐴 → 𝒰) are called type families or dependent types.
Think carefully about what this means. Ordinary functions give us a value in a type for each
value given. On the other hand, dependent types give us a whole type, for each value given.

Given a type family 𝐵 ∶ 𝐴 → 𝒰 , the dependent function type (also known as Π-type)
∏(𝑥∶𝐴) 𝐵(𝑥) comprises the functions whose codomain is a type family depending on the
input value, i.e., given 𝑓 ∶ ∏(𝑥∶𝐴) 𝐵(𝑥) and 𝑎 ∶ 𝐴, then 𝑓 (𝑎) ∶ 𝐵(𝑎). The rules for the dependent
types are analogous to those of the non-dependent types.

If we want to build a function with two arguments, its type would be 𝑓 ∶ 𝐴 → 𝐵 → 𝐶. This

7

means that, when applied to a value 𝑎 ∶ 𝐴, 𝑓 returns a value 𝑓 (𝑎) ∶ 𝐵 → 𝐶. Then, we can apply
a value 𝑏 ∶ 𝐵, to obtain 𝑓 (𝑎)(𝑏) ∶ 𝐶. Although it is also possible to define multiple parameters
via Cartesian products, just like in set theory, that is not the most natural way to do it in type
theory. When a function is presented in this way, we say it is curried. We often write 𝑓 (𝑎, 𝑏)
to mean 𝑓 (𝑎)(𝑏), for convenience.

1.2.3 Product types
As with function types, we have a both a non-dependent and a dependent version.

• Formation rule. Types 𝐴 and 𝐵 can form a type 𝐴 × 𝐵 called the (non-dependent) prod-
uct type of𝐴 and𝐵. If we have types𝐴 and𝐵 ∶ 𝐴 → 𝒰 , then∑(𝑥∶𝐴) 𝐵(𝑥) is the dependent
product of 𝐴 and 𝐵. In the dependent case, 𝑏 has to belong to the type 𝐵(𝑎).

• Introduction rule. Given 𝑎 ∶ 𝐴 and 𝑏 ∶ 𝐵, we obtain (𝑎, 𝑏) ∶ 𝐴 × 𝐵.

• Elimination rules. If we have a function 𝑓 ∶ 𝐴 → 𝐵 → 𝐶, then this rule gives us another
function 𝑔 ∶ (𝐴 × 𝐵) → 𝐶. The dependent eliminator is akin to this one, but with 𝑓 a
dependent function.

• Computation rule. The eliminator tells us there exists a function 𝑔 ∶ (𝐴 × 𝐵) → 𝐶.
The computation rule tells us how this function acts on the elements created by the
introduction rules, namely pairs (𝑎, 𝑏). Imagine we have 𝑎 ∶ 𝐴, 𝑏 ∶ 𝐵, and 𝑔 ∶ 𝐴 → 𝐵 → 𝐶.
This rule defines 𝑓 ((𝑎, 𝑏)) as 𝑔(𝑎)(𝑏).

1.2.4 Coproduct types
The coproduct is the analogue of the disjoint union in set theory. It does not have a dependent
version.

• Formation rule. As with product types, we take types 𝐴 and 𝐵 to obtain their coproduct
type 𝐴 + 𝐵.

• Introduction rule. There are two ways to introduce elements of 𝐴 + 𝐵. One is, given a
term 𝑎 ∶ 𝐴, we have a term inl(𝑎) ∶ 𝐴 + 𝐵. The other, given 𝑏 ∶ 𝐵, we have inr(𝑏) ∶ 𝐴 + 𝐵.

• Elimination rule. The non-dependent eliminator is very simple: for any type 𝐶, and
given functions 𝑓 ∶ 𝐴 → 𝐶, 𝑔 ∶ 𝐵 → 𝐶, there is a function ℎ ∶ (𝐴 + 𝐵) → 𝐶.

• Computation rule. As with product types, this just tells us how to apply the eliminator
on the constructor. In this case, the function ℎ given above behaves like this:

ℎ(inl(𝑎)) = 𝑓 (𝑎)
ℎ(inr(𝑏)) = 𝑔(𝑏)

1.2.5 Identity types
In intensional type theories, such as homotopy type theory, two terms can be definitionally
equal (also known as judgmentally equal) or they can be propositionally equal. Two terms
are definitionally equal onlywhenwe impose so, and, in such case, they are fully interchange-
able by one another. We denote that 𝑎 and 𝑏 are definitionally equal by writing 𝑎 ≡ 𝑏. We

8

sometimes write 𝑎 ∶≡ 𝑏 to emphasize that 𝑎 is being defined. The claim that two terms are
definitionally equal cannot be disputed, it is not a proposition. This is used mainly when
defining new terms and types, or for notation purposes.

On the other hand, two (not necessarily equal in the previous sense) terms of the same type
can be compared for propositional equality. This means that, given two terms 𝑎 and 𝑏 of a
type 𝐴, it makes sense to ask whether they are equal or not. As we will see, propositions are
implemented through types in homotopy type theory, so we reserve the notation 𝑎 = 𝑏 for
the type of equalities between 𝑎 and 𝑏, or, in the homotopical sense, the type of paths between
𝑎 and 𝑏. We call this an identity type or path type.

The identity type is what mainly differentiates homotopy type theory from other kinds of
type theory. Given a type 𝐴 ∶ 𝒰 , there exists a (possibly empty) type 𝑎 =𝐴 𝑏 of identifications
between 𝑎 ∶ 𝐴 and 𝑏 ∶ 𝐴. We often omit 𝐴 when it is clear and just write 𝑎 = 𝑏. The idea is that
every term in 𝑎 =𝐴 𝑏 is a proof that 𝑎 is equal to 𝑏. This type is not always trivial: two elements
in a type can be equal in many different ways. In fact, the complexity of identity types is what
makes homotopy type theory interesting and what gives rise to the homotopical structure.

Path types are also type constructors. They are a bit different from the other seen so far in
that they do not only require types, but also elements of such type. We can think of the type
constructor (− =− −) as a function of type ∏(𝐴∶𝒰) 𝐴 → 𝐴 → 𝒰 . Now, as a type constructor,
we should also give the rules on how it behaves.

The introduction rule tells us that, given a term of a type, it is equal to itself. In other words,
for any 𝐴 ∶ 𝒰 and 𝑎 ∶ 𝐴, we have refl𝑎 ∶ 𝑎 = 𝑎. The fact that this is the only introduction rule
does not mean that there are not other paths.

The elimination rule for path types is one of the most important reasoning tools in homotopy
type theory. Often described in its dependent form, hence called path induction, it allows us
to build functions and prove statements about all paths in a path type, by just proving them
on a few paths of the type. Suppose we have a type family 𝐶 that assigns a type to every
possible path in a type 𝐴 (i.e. 𝐶 ∶ ∏(𝑥,𝑦∶𝐴)(𝑥 =𝐴 𝑦) → 𝒰). We want to build a dependent
function 𝑓 that, for each path 𝑝 ∶ 𝑥 = 𝑦, gives us a value of 𝐶(𝑥, 𝑦, 𝑝). The induction principle
for path types states that, in order to obtain 𝑓 , it is only necessary to define it on the paths refl.
Then, the computation rule says that the 𝑓 that we obtain in fact respects the values we have
given at each refl.

1.2.6 Inductive types
An inductive type, in its purest form, is given by introducing a series of constructors. The idea
is that an inductive type is “freely generated” by its constructors. The simplest inductive type
has no constructors:

0 ∶ 𝒰

This is known as the empty type.

9

The type with a single constructor is known as the unit type:

1 ∶ 𝒰
⋆ ∶ 1

Finally, we define the type of booleans:

2 ∶ 𝒰
02, 12 ∶ 2

Inductive types accept other kinds of constructors, not just elements. For example, the natu-
rals can be defined as such:

0 ∶ ℕ
succ ∶ ℕ → ℕ

What this is telling us is that every element of the type ℕ can be built as either 0, or as succ
applied to another element of ℕ. Thus, the possible naturals are 0, succ(0), succ(succ(0)), etc.

Inductive types are regular enough that we can mechanically deduce what their elimination
principles look like. In simple terms, to define a function out of an inductive type, we provide
the image for each constructor.

For example, to build a functionwith domainℕ, wemust provide a value for 0, and a function
that for every 𝑛 ∶ ℕ gives us a value for succ(𝑛). In the case of the naturals, this matches the
traditional notion of recursion. Similarly, if we do this with a dependent function, we obtain
the induction on the naturals. Elementarily, when given a family of types 𝑃 ∶ ℕ → 𝒰 , if we
provide an element of 𝑃(0), and for every 𝑛 ∶ ℕ we provide a function 𝑃(𝑛) → 𝑃(succ(𝑛)),
then we effectively prove 𝑃 for all naturals.

Inductive types are an idea that already appears in older type theories. Homotopy type the-
ory presents a whole new class of inductive types, known as higher inductive types. These
allow constructors whose codomain is not only the type being described, but also path types
on that.

The most iconic example is the circle, 𝕊1, which is made up by a single point and a loop from
the point to itself.

base ∶ 𝕊1

loop ∶ base = base

Or, taking higher paths, we can build higher dimensional spheres:

base ∶ 𝕊2

surf ∶ reflbase = reflbase

10

1.2.7 Univalence
In type theory there is no notion of “subtype”. Hence, it can be hard to work with inclusions.
To ease this work, we introduce a series of notions related to the idea of “equivalent types”.

Definition 1.2.1. Two functions 𝑓 , 𝑔 ∶ 𝐴 → 𝐵 are homotopic when they are point-to-point
equal, i.e. ∏(𝑥∶𝐴) 𝑓 (𝑥) = 𝑔(𝑥). We write this type as 𝑓 ∼ 𝑔, and call its elements homotopies.

Definition 1.2.2. Two types 𝐴 and 𝐵 are equivalentwhen there exist functions 𝑓 ∶ 𝐴 → 𝐵 and
𝑔 ∶ 𝐵 → 𝐴 such that 𝑔 ∘ 𝑓 ∼ id𝐴 and 𝑓 ∘ 𝑔 ∼ id𝐵. We call 𝑓 and 𝑔 equivalences and say that they
are mutually quasi-inverses. We write 𝐴 ≃ 𝐵 for the type of equivalences between 𝐴 and 𝐵.
Formally, this type is:

∑
𝑓 ∶𝐴→𝐵

⎡⎢
⎣

⎛⎜⎜
⎝

∑
𝑔∶𝐵→𝐴

𝑓 ∘ 𝑔 ∼ id𝐵
⎞⎟⎟
⎠

× ⎛⎜
⎝

∑
ℎ∶𝐵→𝐴

ℎ ∘ 𝑓 ∼ id𝐴
⎞⎟
⎠

⎤⎥
⎦

One of the new concepts that homotopy type theory brought was that of univalence. Essen-
tially, univalence is a way of easing the problem of identifying types.

Lemma 1.2.3 (Transport). Given a type family 𝑃 ∶ 𝐴 → 𝒰 and a path 𝑝 ∶ 𝑥 = 𝑦 of elements 𝑥, 𝑦 ∶ 𝐴,
there is a function 𝑝∗ ∶ 𝑃(𝑥) → 𝑃(𝑦).

Proof. It is enough to do path induction on the equality type 𝑥 = 𝑦. Thismeanswe can assume
𝑦 ≡ 𝑥 and 𝑝 ≡ refl𝑥, and hence 𝑃(𝑥) = 𝑃(𝑦). Thus, we can take 𝑝∗ to be the identity function
of 𝑃(𝑥).

When we need to make explicit the family over which we transport the path, we can write
transport𝑃(𝑝, 𝑥) for 𝑝∗(𝑥).

Lemma 1.2.4. Given types 𝐴 and 𝐵, there is a function idtoeqv ∶ (𝐴 = 𝐵) → (𝐴 ≃ 𝐵).

Proof. Observe how id𝒰 ∶ 𝒰 → 𝒰 is a type family. Thuswe can apply the transport lemma. We
want to assign idtoeqv(𝑝) = 𝑝∗. For this, wemust prove that each 𝑝∗ is an equivalence. By path
induction, we can suppose 𝑝 is refl𝐴, and then 𝑝∗ is id𝐴, which is trivially an equivalence.

Axiom 1.2.5 (Univalence). idtoeqv is an equivalence.

The inverse function of idtoeqv is known as ua for “univalence axiom”. It basically states
that, whenever two types are equivalent, we can treat them as equal. This axiom is due to
Voevodsky and plays a very important role in homotopy type theory. Whereas there exist
theorems that allow us to exchange two propositionally equal terms in expressions, there is
no analogue for equivalent types, thus the axiom is introduced to fill this gap.

1.3 The Curry-Howard Correspondence
As we have hinted at, homotopy type theory, as a foundation for mathematics, is very apt
for computation. This is due to the Curry-Howard correspondence. The Curry-Howard
correspondence is the Rosetta stone between concepts in first order logic and type theory.

11

Each construction in classical logic has an analogue in type theory, usually as a type or type
constructor. This means that the objects carrying the statements and proofs, are of the same
nature as those that contain the things talked about. The best way to understand this is to
take a look at the most relevant examples:

First order logic Type theory
A statement A type
A theorem An inhabited type
A proof An element of a type

All other principles can be deduced from these. Some types can be regarded as statements.
When that is the case, whether they are inhabited or not is equivalent to whether they are
true or false as a statement. That is why type theory is regarded as constructivist: when we
prove a theorem, what we do is build an element of a type. We consider each term of a type
to be a different proof of it. We often call these elements witnesses, so we can reserve the
word proof for the process of building one. Let us see how to build statements out of types:

First order logic Type theory
𝐴 ∧ 𝐵 𝐴 × 𝐵
𝐴 ∨ 𝐵 𝐴 + 𝐵
𝐴 ⇒ 𝐵 𝐴 → 𝐵
¬𝐴 𝐴 → 0

The explanations for these equivalences are very intuitive.

𝐴 ∧ 𝐵 (representing 𝐴 and 𝐵) is represented by the Cartesian product type 𝐴 × 𝐵. Having a
proof of 𝐴 ∧ 𝐵 amounts to having a proof of 𝐴 and having a proof of 𝐵, or, under the type-
theoretic interpretation, having an element of 𝐴 and an element of 𝐵. But, we have those two
if and only if we have an element (𝑎, 𝑏) ∶ 𝐴 × 𝐵.

Similarly, having a proof of 𝐴 ∨ 𝐵 is the same as having either a proof of 𝐴 or a proof of 𝐵.
Which is the same as having an element of 𝐴 + 𝐵, that we know must have the form inl(𝑎),
with 𝑎 ∶ 𝐴, or inr(𝑏) with 𝑏 ∶ 𝐵.

Perhaps the most surprising one is the implication. An implication 𝐴 ⇒ 𝐵 is true whenever a
proof for 𝐴 yields a proof for 𝐵. This is exactly what a function does: given an element of 𝐴,
we obtain an element of 𝐵.

And from that, we build the negation. Although we must beware of reductio ad absurdum in
type theory, because in general it does not work, this construction comes from the idea that
something is false whenever it implies a contradiction. In this case, if we have a function
𝐴 → 0, then 𝐴 cannot be inhabited, as there is no point in 0 to take the points of 𝐴.

Nonetheless, it is often more comfortable for humans to describe proofs in the classical style,
exposing a chain of arguments.

12

We have seen the key elements of propositional logic; now we need to construct quantifiers:

First order logic Type theory
For some 𝑎 in 𝐴, 𝑃(𝑎). ∑(𝑎∶𝐴) 𝑃(𝑎)
For all 𝑎 in 𝐴, 𝑃(𝑎). ∏(𝑎∶𝐴) 𝑃(𝑎)

This is the key reason for which we need dependent functions and pairs, and the reason (as
wewill see later) that the introduction of dependent types in programming languages was so
important for type theory. Dependent types are the analogues of the universal and existential
quantifiers, and so give us the full power of first order logic.

Let us unpack this. For the existential, we provide dependent pairs. Each pair contains an
element of 𝐴 together with the proof of the statement 𝑃 we claim about 𝑎. Observe that, once
again, the corresponding type contains all possible proofs of 𝑃(𝑎). Conversely, if 𝑏 ∶ 𝐴 does
not satisfy proposition 𝑃, then there does not exist any pair with 𝑏 as the first component.
From this point of view, ∑(𝑎∶𝐴) 𝑃(𝑎) is not only the claim that there exists an 𝑎 such that 𝑃(𝑎),
but it is also the type-theoretic analogue of the subset {𝑎 ∈ 𝐴 ∶ 𝑃(𝑎)}.

For the universal quantifier, we do not want to show some elements of 𝑎 ∶ 𝐴; we want a proof
of 𝑃(𝑎) for every 𝑎 ∶ 𝐴. This is what the dependent function does: for each 𝑎, it returns an
element of 𝑃(𝑎). Again, this does not only say that all 𝑎 satisfy 𝑃(𝑎), but also gives us the
proof itself for each 𝑎.

We introduce the final ingredient for our recipe: identity types.

First order logic Type theory
𝑎 = 𝑏 𝑎 = 𝑏

Now that we have been introduced to identity types in sec. 1.2.5, this table does not say any-
thing trivial. The proof that 𝑎 = 𝑏 is an element of the type 𝑎 = 𝑏, for any two 𝑎, 𝑏 ∶ 𝐴. In fact,
without this last translation, we would not be able to do much at all, because a large amount
of mathematical statements can be reduced to saying that two things are the same.

As an example, if we have 𝑝 ∶ 𝑎 = 𝑏, and 𝑞 ∶ 𝑏 = 𝑐, then we can construct an element 𝑝 �𝑞 ∶ 𝑎 = 𝑐.
This matches the idea of transitivity of equality.

This is also the point where homotopy type theory diverges from other (more extensional)
type theories. Intensionality means that the type 𝑎 = 𝑏 is not “boolean”, i.e. it can have differ-
ent, non-equal proofs. As it only seemed to add complexity, this property was traditionally
discarded through the introduction of an axiom known as axiom K. Axiom K essentially im-
poses what we call uniqueness of identity proofs, or in other words, that all path types are
mere propositions, either inhabited by a single path or empty. This kills the higher homotopi-
cal structure, rendering type theory more approachable from a certain computational point
of view, but making elements less faithful to the proof they represent. The recent study of
path types shows that preserving them results in a good foundation of homotopy theory.

13

Chapter 2

Agda

In this chapter we introduce the Agda programming language and our main work with it.
An explanation of the main features of the language is given. More in-depth resources can
be found at the official documentation.1

2.1 Setup
In order to be able to type check and compile Agda files, the Agda compiler should be set up.
Optionally, Agda offers what is known as the Emacs mode, which is an Emacs extension that
makes Agda into an interactive proof assistant. We will not worry about the Emacs extension
in this work, but rather just on being able to compile Agda files via terminal.

2.1.1 Using Docker
Installing Agda itself is not extremely difficult, even for users unfamiliar with Haskell (in
which Agda is written) or compilation processes in general. For our particular purposes,
though, there is an important blocking issue. As our intention is to develop proofs in homo-
topy type theory, it is appropriate to try and work with the HoTT-Agda library developed by
the Univalent Foundations Program researchers Brunerie et al. (n.d.). Unfortunately, the li-
brary has not been updated toworkwith the latest version of the Agda compiler. If onewants
to be able to develop on this library and, simultaneously, try newer features of the Agda com-
piler, they have to manage two (or more) parallel versions of Agda. This is not very practical,
as different versions of Agda require different versions of the Haskell compiler and its de-
pendencies, and Agda needs configuration files which can differ depending on the particular
libraries one wants to use. Besides, one must then be careful not to update the Agda installa-
tion until the libraries’ maintainers have adapted the code for the latest version. Users who
have worked with global package managers (e.g. Python, Cabal, tlmgr, and most operating
system package managers) know how big of a hassle this can be.

With this in mind, a system has been developed to “encapsulate” each Agda and its depen-
1https://agda.readthedocs.io/

14

https://agda.readthedocs.io/

dencies in a per-project basis. The system uses Docker images developed by Ting-gian Lua2,
which instead of installing Agda on the host computer, run it inside a virtualized environ-
ment so the user can switch between different versions easily. On top of that, a script has
been implemented to manage libraries.

The sources and instructions for using such development can be found in the attachments.

2.1.2 Local installation
If the reader still wants to install Agda on their computer, there are a few ways to do so.

The official project does not offer the precompiled binaries, but there are some platforms that
distribute them. For UNIX-like systems, one can look in their preferred package manager.
For Windows, a precompiled installer for the latest version exists at http://homepage.div
ms.uiowa.edu/~astump/agda/. Nonetheless, these may be outdated and sometimes have
setup issues.

A viable alternative is to compile Agda’s compiler from source. This is a resource-heavy task,
so it is advised to try only on more powerful computers. The official recommendation is to
install through Haskell’s Cabal, a toolchain for building and packaging Haskell programs.
Unfortunately, Cabal generally works with a global package index3, and so installing Agda’s
dependencies might conflict with already installed Haskell packages, if there were any.

In order to do so one just has to install directly using the Cabal command line interface4,
specifying the desired Agda version. For example, for version 2.5.3, one would use:

cabal install Agda-2.5.3

If that fails, it might be necessary to install the Alex and Happy packages (dependencies for
parsing Agda code) beforehand:

cabal install alex
cabal install happy

A preferable method might be Haskell’s Stack, which aims to solve a few issues that Cabal
presents, lack of isolation being one of them. For this, one has to download the required
version of Agda from the repository5. Then, inside the root folder, execute:

stack install --stack-yaml=<X>

Where <X> stands for any of the stack-*.yaml files in the root folder. Stack will com-
pile the binaries and copy them to ~/.local/bin (or the location shown by running
stack path --local-bin). This location should be added to the PATH environment
variable.

Then, one should be able to run Agda successfully:
2https://hub.docker.com/r/banacorn/agda/.
3It is possible to use a newer mode known as sandboxes. This posed technical issues with older Agda versions

and so was not taken as the main route, but the reader is encouraged to consider the option.
4https://agda.readthedocs.io/en/v2.6.1/getting-started/installation.html.
5https://github.com/agda/agda/releases.

15

http://homepage.divms.uiowa.edu/~astump/agda/
http://homepage.divms.uiowa.edu/~astump/agda/
https://hub.docker.com/r/banacorn/agda/
https://agda.readthedocs.io/en/v2.6.1/getting-started/installation.html
https://github.com/agda/agda/releases

agda --version

When installing via Stack, it is possible that Emacsmodedoes notworkdue to relative location
issues.6

Finally, independently of whether Cabal or Stack was used, the dependencies need to be set
up. For each necessary library, the following steps have to be taken:

1. Download the library to some location where it can stay. Most Agda libraries are avail-
able on GitHub. It is very important to download a release of the library that is docu-
mented to work with the Agda version installed, otherwise things will fail.

2. Copy the absolute location of the *.agda-lib file inside the library to the libraries file.
This file should be placed in ~/.agda, or in %appdata%\Agda in the case ofWindows, and
should contain one file location per line.

3. Write the library name, which can be found inside the *.agda-lib file seen before,
inside the defaults file. The defaults file should be placed in the same location as
libraries and also admits one library name by line. Setting the defaults file is not
strictly necessary, as one can use the --library flag when running Agda to achieve the
same result.

If everything has been done correctly, one should be able to check the installation of Agda:

agda --version

Running Agda is very simple. One executes agda followed by the name of the *.agda file.
The default action of Agda when given a file is to type check it, if we want to compile it into
an executable binary, we must also pass a --compile flag. This is because, in general, when
using Agda for mathematics, the interesting part is usually just the type checking, due to the
Curry-Howard correspondence.

If the values defined in the file are correctly typed, Agda will either display no output or just
display a message stating that it is checking the file. Either way, if there are no errors dis-
played, this means that the file type-checks correctly and, therefore, that the proof it contains
is correct.

Agda admits other flags, such as --without-K, that will later be explained in detail.

The most important thing to have in mind is that, in order for Agda to properly recognize the
modules we define, it must be run from the “root” directory of our project. For instance, if we
define a file this/is/a/Test.agda with a root module this.is.a.Test, then Agda must be
executed from the directory that contains this (e.g. agda this/is/a/Test.agda), otherwise
it will fail to find the file. Modules are explained in further detail in sec. 2.2.1.

2.2 The Language
Agda is a purely functional programming language. A more common programming
paradigm is imperative, in which the programmer writes instructions for the computer to

6See the following issue: https://github.com/commercialhaskell/stack/issues/848.

16

https://github.com/commercialhaskell/stack/issues/848

execute in order, modifying the state of a program (e.g. changing the value of variables).
In contrast, a functional language does not hold any state, hence there are no varibles
with mutable values, only constants. Instead of changing the values along the way, the
programmer instead tries to build a constant the value of which is obtained through chains
of function applications.

2.2.1 Modules
Code in Agda is compartmentalized in modules, which can be nested (moduleA.moduleB).
This is useful in order not to pollute the global namespace with lots of definitions.

Every Agda programmust declare a module named after the file that contains it, for example
a file Test.agda should expose a module:

module Test where

-- Contents of the module go here

If we are working on a project with multiple files, then the root module of each file has to
respect the folder structure respect to some folder that we want Agda to consider the “root”:

-- File this/is/a/Test.agda
module this.is.a.Test where

To use other modules in our project, we just import them:

import some.other.things

Wecan choose to import only part of the definitions in themodule (import A using (a1; a2; a3)),
import all but a few (import A hiding (a4; a5; a6)) or import with a different name
(import A renaming (a1 to a)).

It is often useful to be able to re-export the definitions in amodule, as if they had been defined
locally. For example:

module A where
a = ?

-- We can use A.a
b = A.a

open A

-- Now we can directly use the definitions of A
c = a

2.2.2 Function types
Agda incorporates very few basic constructs. The two most important ones are type assign-
ment and definition.

17

We write

a : A

to express that there is a constant a of type A.

We write

a = b

To define a as having value b. This makes Agda’s = operator equivalent to homotopy type
theory’s ∶≡, rather confusingly. In the homotopy type theory library (Brunerie et al. n.d.),
== is used for identity types, and we follow this convention, although outside of that ≡ is
generally used.

Agda incorporates dependent function types. A non-dependent function between types A
and B is written like so:

f : A → B

If B is actually a type family on A (B : A → Type), then we can write:

f : (a : A) → (B a)

Function definition can be done through 𝜆-abstraction:

suc : Nat → Nat
suc = λ n → (n + 1)

But often it is done through case analysis, which corresponds to applying the principle of
type induction of the domain type.

factorial : Nat → Nat
factorial 0 = 1
factorial (suc n) = (suc n) * (factorial n)

Agda provides many syntactic facilities for functions. For example, we can write
(a : A) → (b : B) as (a : A) (b : B), and (a : A) → (b : A) as (a b : B). If we
trust Agda can infer the type of an argument, we can write (a : _) or ∀ a instead.

Functions admit optional arguments, which the type checker has to be able to deduce. The
most common use case is when a type that follows already implies the argument, such as in
the case of dependent types:

f : {a : A} → (b : B a) → (C b)
{- No need to provide a as it was marked as {optional} and we can deduce it
from the type of b -}
f b = ?

Finally, we can present functions as infix operators by using _ as a placeholder for the argu-
ments:

+ : Nat → Nat → Nat
0 + 0 = 0
0 + (suc n) = suc n

18

(suc n) + 0 = suc n
(suc n) + (suc m) = suc (suc (n + m))

Notice that Agda admits recursive definitions as long as they can be reduced down to an
initial step, as the compiler incorporates a termination checker that ensures we do not write
infinite recursions.

2.2.3 Universe types
Agda provides a type Set of types. The name is a little misleading, as, from a homotopy type
theory point of view it represents the universe of small types, rather than the universe of sets
(what we call 0-types). For this reason, in the homotopy type theory library this is renamed
to Type.

Type is actually shorthand for Type lzero, which represents the first type in a hier-
archy of universes indexed by a type Level. This exists to avoid Russell’s paradox
(which makes Type : Type impossible). Instead, Agda defines a chain of universes:
Type lzero : Type (lsuc lzero), etc. While this is not relevant for the math behind the
proofs we will develop, it is very much present in the actual code, especially in the form of
universe polymorphism, which allows us to parametrize the universe level. For example, if
we wanted to write an identity function that applies to all types, we would have to do it like
so:

id : {n : Level} → {A : Type n} → A → A
id x = x

This is saying: “id is a function that, for any universe level, and for any type in that level, is
the identity function”.

2.2.4 Record types
Besides function types and universes, Agda has a native structure called record. In broad
terms, it generalizes the dependent pair type to be indexed by names. As a trivial example,
tuples can be seen as an instance of a record type:

record Pair (A B : Type) : Type where
field
fst : A
snd : B

Now, we can instantiate a pair like so:

p : Pair Nat Nat
p = record { fst = 0; snd = 1 }

By providing a constructor directive, we can define a custom notation for the introduction
rule of that type:

record Pair (A B : Type) : Type where
constructor _,_
field

19

fst : A
snd : B

p : Pair Nat Nat
p = 0 , 1

2.2.5 Data types
Finally, Agda offers the data syntax that plays the role of inductive types.

data Nat : Type where
zero : Nat
suc : Nat → Nat

Data types also admit parameters themselves:

data List (A : Type) : Type where
[] : List A
∷ : List A → List A

When a given parameter can have different values for each constructor, wemove it to the right
side of the : and call it an index. In the following example, (A : Type) is a parameter but
Nat is an index:

data Vector (A : Type) : Nat → Type where
[] : Vector A 0
∷ : {n : Nat} → A → Vector A n → Vector A (suc n)

2.2.6 Built-ins
In some instances, Agda offers special treatment for some types, type constructors, and func-
tions. We explain the most common ones.

The definition of natural numbers as seen above (i.e. an inductive type with two construc-
tors) is not really efficient from the machine’s point of view. To harness the potential of the
computer but still be able to treat the naturals as an inductive type, Agda offers a Nat built-in
type. In order to use it we just have to import it:

open import Agda.Builtin.Nat

This adds the type Nat with constructors zero and suc to the current scope, as well as some
operators like + and - which are also optimized.

To offer the utmost flexibility, we can also mimic these built-ins ourselves and then tell the
compiler we want it to use the efficient internal representation:

data Nat : Type where
zero : Nat
suc : Nat → Nat

{-# BUILTIN NATURAL Nat #-}

20

This also allowsus to type natural numberswith digits (e.g. 3 instead of suc (suc (suc zero)))
and have the compiler translate them to the corresponding value automatically.

Another case that appears in most programs is the equality type. It is defined in the
Agda.Builtin.Equality module as follows:

data _==_ {a} {A : Type a} (x : A) : A → Type a where
refl : x == x

Observe how it is defined like we would define an inductive type with a single constructor
refl. Although equality types are a primitive concept in homotopy type theory, their intro-
duction and elimination rules already suggest that they behave like inductive types. Thismay
help the reader get comfortable with the way path induction works.

With the tools seen so far, we can already show how programming in Agda is not as straight-
forward as transcribing a homotopy type theory proof from the paper to the screen. For
example, pair types can be defined in two different ways. One, as record types:

record Σ {a b} (A : Type a) (B : A → Type b) : Type (a ⊔ b) where
constructor _,_
field
fst : A
snd : B fst

Another, as data types:

data Σ {a b} (A : Type a) (B : A → Type b) : Type (a ⊔ b) where
, : (x : A) → (B x) → Σ A B

These two work almost identically for many purposes, but each have their own advantages.
Agda will not recognize them as equal, though, so translating proofs using one to proofs
using the other might sometimes be necessary.

2.2.7 --without-K

When run via terminal, we can pass various options to the Agda type checker. Some of these
are related to the code itself, so it is more fitting to include them with the sources. A way to
do this is by adding a special kind of comment which sets the desired options:

{-# OPTIONS [options...] #-}

For us, the most important option is --without-K:

{-# OPTIONS --without-K #-}

By default, Agda allows formulating axiom K:

K : {A : Type} {a : A} (P : a == a → Type) → P refl → (loop : a == a) → P loop
K P p refl = p

Roughly, axiom K states that, in order to prove some property for all paths, it is enough to
prove it for refl, which implies uniqueness of identity proofs (UIP), or, in other words, that
all identity types are either trivial or empty. Although due to path induction this is true for

21

many types in homotopy type theory (0-types, for example), in general it is not. In order to
prevent ourselves from accidentally writing something that implies UIP, we should use the
--without-K flag. This way, formulating K or any equivalent statement will make our code
not pass the type check.

2.3 Homotopy Type Theory in Agda
2.3.1 An example
Let us treat a simple hands on example: the commutativity of addition of natural numbers.
The full source code of this proof is available in the attachments.

First, as a preamble, wedeactivate uniqueness of identity proofs using {-# OPTIONS --without-K #-}
and construct a few basic definitions regarding equality.

We begin the actual content by defining the naturals and their addition operation:

-- Natural numbers
data ℕ : Type lzero where
zero : ℕ
succ : ℕ → ℕ

-- Addition of naturals
+ : ℕ → ℕ → ℕ
zero + m = m
(succ n) + m = succ (n + m)

The definition of the natural numbers as an inductive type has already been seen. For the
addition, we take the classical recursive definition.

These two definitions might seem simple enough, but their translation into type theory actu-
ally requires quite some of the theory explained so far. The data type is actually an inductive
type, which means that it naturally has an elimination principle. This elimination principle is
implicitly used in the definition of _+_, as it is a function that “eliminates” natural numbers
(even if it does so into other natural numbers). The appearance of the eliminator is patent in
the fact that we use case analysis (also known as pattern matching) on each constructor: one
entry for zero and one for succ. Case analysis could be further used on the second argument,
but this definition does not require it.

Now, we proceed to prove a lemma:

-- Proof that 0 is right identity of addition
add-right-id : (n : ℕ) → (n + zero) == n
add-right-id zero = idp
add-right-id (succ n) =

(succ n) + zero
=⟨ idp ⟩

succ (n + zero)
=⟨ ap (succ) (add-right-id n) ⟩

22

succ n
=∎

A few things to note here.

First of all, we remember that theorems (or lemmas) take the shape of types, whereas proofs
are their inhabitants. We can identify every part in the example above. The statement of the
lemma is the type of add-right-id, namely (n : ℕ) → (n + zero) == n. This is the type of
functions that take a natural number n, and return an equality between n + zero and n. The
proof will be the function add-right-id that we are defining.

Once againweuse the eliminator throughpatternmatching. In the case of zero, we onlywrite
refl. This means that we trust Agda to apply the addition to the two terms (zero + zero).
By the definition of _+_, any addition with zero as a left-hand side term, is reduced (defi-
nitionally) to the right-hand side. Hence, we obtain zero, which is equal to itself through
refl. So, effectively, when building the proof, we are saying “zero + zero is the same thing
as zero, and the proof is the path refl”.

The second part might look more daunting, but is not much more difficult. Some of the
imports at the top of the file define a syntax that allows us to define proofs given by the
concatenation of multiple paths by writing them out in a readable way.

Suppose we have paths p : a == b, q : b == c, and r : c == d. Instead of just writing the
concatenation of the paths p ∙ q ∙ r, the homotopy type theory library (and other libraries
too) gives us a way to write it out as:

a =⟨ p ⟩ b =⟨ q ⟩ c =⟨ r ⟩ d =∎

This is actually the same as p ∙ q ∙ r, but resemblesmuchmorewhatwe have inmindwhen
writing the proof, and so is the generally preferred style.

Back to the proof, we first state that (succ n) + zero is the same thing as succ (n + zero).
We do not provide any path as proof, as they are definitionally equal (in particular, by the
definition of _+_ when the first operator uses succ).

The second step is more interesting. We use ap to take a path of type (n + zero) == n, apply
succ to both sides of the equality, and obtain a newpath of type succ (n + zero) == succ n.
Observe that the path of type (n + zero) == n chosen is add-right-id itself. One might
fear that the recursive call gets stuck for ever. But, since we invoke add-right-id n from the
case of add-right-id (succ n), we are going “down” the stack of succs, and so it will end
up reducing to the base case add-right-id zero. In contrast to some other programming
languages, Agda is capable of knowing whether a recursive call will end or not, so we must
not worry about infinite recursion.

We are now ready to prove the main theorem:

-- Proof of the commutativity of addition
add-comm : (n m : ℕ) → (n + m) == (m + n)

Similarly to the lemma, this proof is a dependent function. It takes any two natural numbers,
n and m, and returns a path joining n + m and m + n. This proof is longer than that of the
lemma, mainly because now we have to pattern match on two variables instead of one.

23

add-comm zero zero = idp

The case for zero + zero is trivial.

add-comm (succ n) zero =
(succ n) + zero
=⟨ add-right-id (succ n) ⟩

succ n
=⟨ idp ⟩

zero + (succ n)
=∎

This case does not introduce any new tools either. We start off by applying the lemma. Then,
succ n is equal to zero + (succ n) by definition of _+_.

add-comm zero (succ m) =
zero + (succ m)
=⟨ idp ⟩

succ m
=⟨ ! (add-right-id (succ m)) ⟩

(succ m) + zero
=∎

Herewe do the same, but in the opposite order. In consequence, we have to “reverse” the path
of type (succ m) + zero == succ m to obtain one of type succ m == (succ m) + zero via
!, which is known as the path reversal operator 𝑝 ↦ 𝑝−1 in homotopy type theory.

The last case is the longest:

add-comm (succ n) (succ m) =
(succ n) + (succ m)
=⟨ idp ⟩

succ (n + (succ m))
=⟨ ap (succ) (add-comm n (succ m)) ⟩

succ ((succ m) + n)
=⟨ idp ⟩

succ (succ (m + n))
=⟨ ap (succ) (ap (succ) (add-comm m n)) ⟩

succ (succ (n + m))
=⟨ idp ⟩

succ ((succ n) + m)
=⟨ ap (succ) (add-comm (succ n) m) ⟩

succ (m + (succ n))
=⟨ idp ⟩

(succ m) + (succ n)
=∎

It is reduced to previous cases through recursion with the help of ap and the definition of
+.

24

This concludes the proof. Now, it can be applied as such:

_ : (1 + 2) == (2 + 1)
_ = add-comm 1 2

We could go a step further and mark the arguments n and m as implicit, so that we could
invoke this theorem just by writing add-commwithout parameters, but we leave them explicit
for illustrative purposes.

An interesting observation is that both the definitions and the theorems are implemented by
definingAgda functions. What does this entail? First, this clearly embodies the philosophy of
constructivism: the proofs are elements of a type. The consequences are subtle but important:
proving something is the same as making a valid definition. Conversely, all definitions in
type theory (and thus Agda) are “valid”. In conventional mathematics, one might impose
a definition and then study it to prove it is valid in some sense. Of course, this just is a
way of hiding the fact that we prove a theorem that enables such definition to exist, we just
present it in the opposite order. In type theory the same is as true, if not even more. The
construction of an object often requires pieces that we have to previously construct, and those
can sometimes be theorems, so many times we will see that defining something is as hard as
proving something. In the end, one could even argue that whether a particular term should
be deemed as a “definition” or as a “proof” on paper, is a matter of opinion.

2.3.2 Higher inductive types
Higher inductive types, although easy to explain, are very hard to implement. Classical Agda
does not offer a native way to implement higher inductive types. A variant, known as Cubical
Agda, which enables creating some higher inductive types, has recently been released, but
the homotopy type theory project has not yet been ported to Cubical Agda.

Mathematicians have looked for alternate tricks for implementing higher inductive types.

The “naive” way to introduce higher inductive types is through postulates. postulate is a
keyword in Agda that introduces an axiom. One could easily define the circle as:

data S¹ : Set where
base : S¹

postulate
loop : base == base

First, we create a type with a single point constructor base, and then tell Agda that there
exists a path loop from base to base.

This method has a couple of issues. The first and most obvious, postulates are a dangerous
tool. One could easily define:

data ⊥ : Set where
-- Nothing here

25

postulate
impossible : ⊥

We have defined the empty type ⊥ (what we call 0 in homotopy type theory), and through
postulates we have introduced an element of the type. This creates an inconsistency which
allows us to prove anything.

Another reason why this is complicated is that we do not get the full elimination principle,
as Agda is not aware that loop is a constructor of the higher inductive type. This issue can
be taken care of by being aware of it and introducing loop “by hand” in the definitions that
require it.

A refinement of this technique, due to Licata (2011), andwhich came to be known as “Licata’s
trick”, makes it all safer by using modules.

The idea is to build the type inside a module. Now, instead of exposing the whole type, we
postulate a function that simulates the elimination principle and expose that instead. The
users of the type then only use the elimination principle as a function, which is more cumber-
some but also safer, as there is not need for further postulates. One only has to trust whoever
has defined the type to do it correctly in the first place.

26

Chapter 3

The Circle

In order to gauge the complexity of proofs in homotopy type theory and Agda, we study an
idiosyncratic exercise of homotopy theory: calculating the fundamental group of the circle.
To do this, we have to explain a couple of concepts first: truncations and coverings.

3.1 Truncation
Intuitively, a type 𝐴 ∶ 𝒰 is called an 𝑛-type (or just 𝑛-truncated) when all its identity spaces
of order greater than 𝑛 are trivial. A few key examples:

• 𝐴 ∶ 𝒰 is a (−2)-type, or contractible, when there is a point all other points are equal to,
i.e., ∑(𝑎∶𝐴) ∏(𝑥∶𝐴) 𝑎 = 𝑥 (“there exists an 𝑎 such that for every 𝑥, 𝑎 = 𝑥”).

• 𝐴 ∶ 𝒰 is a (−1)-type when all of its points are trivial, i.e., ∏(𝑥,𝑦∶𝐴) 𝑥 = 𝑦 (“for all 𝑥 and
𝑦 of type 𝐴, there is a proof that 𝑥 is equal to 𝑦”). This kind of types are also called
(mere) propositions, because they contain no other information than “true” (they are
inhabited) or “false” (they are not inhabited).

• 𝐴 ∶ 𝒰 is a 0-type when all of its identity types are trivial. So, given any 𝑥, 𝑦 ∶ 𝐴 that are
equal, then the type 𝑥 = 𝑦 has a single element, i.e., it is a (−1)-type. This can be read as
saying that “there is only one way in which 𝑥 and 𝑦 are equal to each other”. A 0-type is
also called a set, because it is a type that has no further homotopical information about
its elements other than whether they are equal or not. This point of view agrees with
looking at their identity types as mere propositions: two elements in a set are either
equal or different, nothing else can be said about their equality status.

In view of this, we can define the notion of 𝑛-type inductively.

Definition 3.1.1. A type 𝐴 ∶ 𝒰 is called a −2-type if it is contractible, this is, if there exists a
term 𝑎 ∶ 𝐴 such that ∏(𝑥∶𝐴) 𝑎 = 𝑥. A type 𝐴 ∶ 𝒰 is called a (𝒏+1)-type if, for every 𝑥 and 𝑦 in
𝐴, 𝑥 = 𝑦 is an 𝑛-type.

The idea of contractibility in homotopy type theory tries to represent the homonymous prop-
erty in topology. Nonetheless, one might look at the definition and wonder whether, for

27

example, the circle 𝕊1 is contractible or not. The answer, just as in classical topology, is no.
But why not? After all, we only have to provide a center of contraction (for example, base),
and a function contr ∶ ∏(𝑥∶𝕊1) base = 𝑥. Every point in 𝕊1 is path connected to base by a piece
of loop, so what is stopping us from building such a function?

The reason is continuity. All functions in homotopy type theory are naturally continuous, as
they have to respect paths. This means that the function contr not only assigns a path from
base to 𝑥 for every 𝑥 ∶ 𝕊1, but does so in a continuous way. Pick any valid path for the case
𝑥 ≡ base. Then, as we travel along loop, the path to base changes as well, until we reach
base again. Now, the image of the function contr at base should be the same as before, with a
loop appended, as we have made one turn around the circle. But this amounts to saying that
reflbase = loop, which would imply the existence of a two-dimensional cell in the circle that
just does not exist. In fact, the circle is not even a mere proposition, nor a set! We will see a
formal proof of this in sec. 3.3.

Given any type 𝐴, we can introduce its 𝒏-truncation ∥𝐴∥𝑛 as the “𝑛-type that best approxi-
mates 𝐴”.

Definition 3.1.2. For 𝑛 ≥ −1, we take ∥𝐴∥𝑛 to be the higher inductive type generated by:

• a function |–|𝑛 ∶ 𝐴 → ∥𝐴∥𝑛,
• for each 𝑟 ∶ 𝕊𝑛+1 → ∥𝐴∥𝑛, a “hub” point ℎ(𝑟) ∶ ∥𝐴∥𝑛, and
• for each 𝑟 ∶ 𝕊𝑛+1 → ∥𝐴∥𝑛 and each 𝑥 ∶ 𝕊𝑛+1, a “spoke” path 𝑠𝑟(𝑥) ∶ 𝑟(𝑥) = ℎ(𝑟).

This definition uses a construction technique known as “hub and spokes” that we will later
see in detail. The idea is that it adds the (𝑛 + 2)-cells necessary for 𝐴 to become an 𝑛-type
(remember that in an 𝑛-type all (𝑛 + 1)-loops on a point have to be equal, so we need to add
(𝑛 + 2)-paths between those that are not).

3.2 Covering Spaces
We remind some topological definitions which will be relevant in this chapter.

Definition 3.2.1. A covering space of a topological space 𝑋 is a space 𝐶 (known as the total
space) together with a continuous function 𝑝 ∶ 𝐶 → 𝑋 (the projection) satisfying the follow-
ing condition: each point 𝑥 in 𝑋 has a neighborhood 𝑈 such that its preimage 𝑝−1(𝑈) is the
disjoint union of open sets, each homeomorphic to 𝑈.

We say that 𝑈 is evenly covered by 𝑝−1(𝑈). We call the preimage of each point in 𝑋 its fiber.
We can visualize 𝐶 as “lying over” 𝑋, and the fiber of each point lying over it.

A very important property of covering spaces is that of path lifting.

Theorem 3.2.2. Given a path 𝑓 ∶ [0, 1] → 𝑋 starting at 𝑥 ∈ 𝑋, for each ̃𝑥 ∈ 𝑝−1(𝑥) there is a unique
path ̃𝑓 ∶ [0, 1] → 𝐶 starting at ̃𝑥 and projecting onto 𝑓 . We call ̃𝑓 a lift of 𝑓 .

We can also uniquely lift homotopies.

Theorem 3.2.3. Given a homotopy ℎ ∶ [0, 1] × [0, 1] → 𝑋 starting at 𝑥 ∈ 𝑋, for each ̃𝑥 ∈ 𝑝−1(𝑥)
there is a unique homotopy ℎ̃ ∶ [0, 1] × [0, 1] → 𝐶 starting at ̃𝑥 and projecting onto ℎ. We call ℎ̃ a lift
of ℎ.

28

A proof of both theorems is given in Hatcher (2000), Section 1.1.

In a covering space, the base 𝑋 parametrizes the total space: each point 𝑥 of 𝑋 “represents”
its fiber. Each fiber is discrete, but the elevation of the topological structure of 𝑋 bundles all
the fibers, bringing a non-trivial topological structure to 𝐶. In homotopy type theory, we take
the idea of parametrizing the fibers via the base space to be the very definition.

Definition 3.2.4. A covering of a type 𝑋 is a type family 𝑃 ∶ 𝑋 → 𝒰 such that 𝑃(𝑥) is a set for
each 𝑥 ∶ 𝑋. We call 𝑃(𝑥) the fiber of 𝑥, and ∑(𝑥∶𝑋) 𝑃(𝑥) the total space.

The fiber of each 𝑥 ∶ 𝑋 is now its image 𝑃(𝑥), which is a type. This allows us to assign entire
“subspaces” to every point in the base space, in the same way as 𝑝−1 would do in the classical
definition. The sum type ∑(𝑥∶𝑋) 𝐶(𝑥) not only joins all the fibers, but also gives them the
appropriate homotopical structure of the analogous classical construction.

Just as with the classical version, homotopy type theory coverings have a unique path lifting
property.

Theorem 3.2.5. Given a path 𝑝 ∶ 𝑥 = 𝑦 of 𝑋, for each ̃𝑥 ∶ 𝑃(𝑥) there is a unique path lift(̃𝑥, 𝑝) ∶
(𝑥, ̃𝑥) = (𝑦, 𝑝∗(̃𝑥)) in the type ∑(𝑥∶𝐴) 𝑃(𝑥).

Proof. We apply path induction. It suffices to assume 𝑦 ∶≡ 𝑥 and 𝑝 ∶≡ refl𝑥. Hence, we want to
build a witness lift(̃𝑥, refl𝑥) of (𝑥, ̃𝑥) = (𝑥, (refl𝑥)∗(̃𝑥)). By definition of the transport operation
(−)∗, (refl𝑥)∗ equals id𝑃(𝑥). So it is enough to take refl(𝑥, ̃𝑥) as lift(̃𝑥, refl𝑥).

In the following section we will gain a deeper understanding on how to deal with coverings
in homotopy type theory.

3.3 The Fundamental Group of the Circle
We finally approach the calculation of the fundamental group of 𝕊1. This was used as an
exercise in learning both homotopy type theory and Agda. The proof showcased here is
practically the same that has been implemented and attached to this work. Compared to
that of the commutativity of addition exposed in sec. 2.3, this is non-trivial as it deals with
topological concepts (fibrations, paths and homotopies), which result in more complex type-
theoretic constructions (type families, identity types). The program for the proof is well
self-documented and tries to guide the reader along the path explained in this section.

In classical topology, the fundamental group is defined as such:

Definition 3.3.1. Given a topological space 𝑋 together with a base point 𝑥, we define the
fundamental group of (𝑋, 𝑥) as the group 𝜋1(𝑋, 𝑥) formed by the homotopy classes of the
paths from 𝑥 to 𝑥, and the group operation defined as [𝑓] � [𝑔] = [𝑓 � 𝑔].

That this is indeed a group requires proving that the equivalence classes respect composition,
and that the group laws are fulfilled. This can be found in Hatcher (2000) Proposition 1.3.
The identity is none other than the constant path on 𝑥, and the inverses are given by walking
the paths backwards, i.e. 𝑓 −1(𝑡) = 𝑓 (1 − 𝑡).

29

In homotopy type theory, the quotient is not necessary, as paths that are homotopy equivalent
are propositionally equal. What we need to do, though, is make sure that the fundamental
group is a discrete set, so we have to kill all higher order paths:

Definition 3.3.2. The fundamental group of a based type (𝑋, 𝑥), denoted as 𝜋1(𝑋, 𝑥), is the
0-truncation of its loop space at 𝑥, i.e.:

𝜋1(𝑋, 𝑥) = ∥Ω(𝑋, 𝑥)∥0

The classical proof uses the universal cover of 𝕊1, which is the real line ℝ with the projection
𝑝(𝑡) = 𝑒𝑖𝑡. This can be visualized as ℝ “going around” 𝕊1 in circles, like a helix. One can lift
paths from 𝕊1 to its cover, and there they can be classified by the number of turns they do.

In this proof, we do something similar. We build the covering space and, for each point 𝑥 ∶ 𝕊1,
show an equivalence between its fiber and the paths from base to 𝑥. Conceptually, we are
doing the same thing: we have “as many” paths as elements in the fiber, because each point
in the fiber is another turn completed by the path starting at base. Let us start by defining the
cover.

Definition 3.3.3. Define code ∶ 𝕊1 → 𝒰 by circle recursion:

code(base) = ℤ
apcode(loop) = ua(succ)

The fiber at base is ℤ by definition. But we need to assign a fiber to all the points in 𝕊1, not
just base. Instead of saying what the fiber is for a given point, we say how the path loop of 𝕊1

should be lifted to a path in 𝒰 (where ℤ belongs). succ induces an equivalence between ℤ
and ℤ, which can be converted into a path via the univalence axiom.

The next step consists in introducing two functions, encode and decode, which will become
the two directions of the equivalences we want to find.

Definition 3.3.4.

encode ∶ ∏
𝑥∶𝕊1

(base = 𝑥) → code(𝑥)

encode(𝑥, 𝑝) = transportcode(𝑝, 0)

This is a natural step in the direction hinted before. Suppose a fixed 𝑥; we want to assign to
each path joining 𝑥 and base an element of code(𝑥). transport takes the path 𝑝 ∶ base = 𝑥 to a
function ℤ → code(𝑥) (which can be thought of as 𝑝 lifted to the covering space).

We observe that, because transport is functorial, encode takes any loop on base to a composition
of functions, like so:

transportcode(loop±1 � loop±1 � loop±1 � ⋯ , −)
=transportcode(loop±1, −) ∘ transportcode(loop±1, −) ∘ transportcode(loop±1, −) ∘ ⋯
=succ±1 ∘ succ±1 ∘ ⋯

30

The key idea here is to think of ℤ as a pointed type (ℤ, 0), and the application of code to loop
as the path from (ℤ, 𝑛) to (ℤ, succ(𝑛)). Now we can see what the result of transport above is
when applied to 0: the winding number of the path 𝑝, i.e., the number of “net” turns it does.

On the other hand, we have the decode function of type ∏𝑥∶𝕊1 code(𝑥) → (base = 𝑥). The
definition in this direction is not so easy: wemust use circle induction. This means we have to
provide an image for base of type code(base) → (base = base) and a path from this function to
itself lying over loop. For the image of base, we pick the natural choice 𝑛 ↦ loop𝑛, which takes
any integer to a loop with that as its winding number. For the path, as this is a dependent
function, we have to prove loop∗(loop−) = loop−, or, writing the full type of the transport:

Lemma 3.3.5. There is a path of type transport𝑦↦code(𝑦)→(base=𝑦)(loop, loop−) = loop−.

Proof.

transportcode(−)→(base=−)(loop, loop−)
= transport(base=−)(loop, −) ∘ loop− ∘ transportcode(−)(loop−1, −) (1)
= (− � loop) ∘ loop− ∘ transportcode(−)(loop−1, −) (2)
= (− � loop) ∘ loop− ∘ succ−1 (3)
= 𝑛 ↦ loopsucc−1(𝑛) � loop (4)
= 𝑛 ↦ loop𝑛 (5)

(1) and (2) are by the action of transport on type families of the form 𝑦 ↦ 𝐴(𝑦) → 𝐵(𝑦)
and 𝑦 ↦ 𝑏𝑎𝑠𝑒 = 𝑦, correspondingly (see The Univalent Foundations Program 2013, 2.9.4
and 2.11.2). (3) is due to the functoriality of transport, and (4) and (5) due to reducing the
function composition and then the path concatenation.

Definition 3.3.6. Define decode ∶ ∏𝑥∶𝕊1 code(𝑥) → (base = 𝑥) by circle recursion. For the
image at base, pick loop−. For the lifting of loop, use the path from lemma 3.3.5.

Next, we prove that code and decode are inverse functions:

Lemma 3.3.7. For each 𝑥 ∶ 𝕊1, 𝑝 ∶ base = 𝑥, and 𝑐 ∶ code(𝑥), we have:

decode𝑥(encode𝑥(𝑝)) = 𝑝

encode𝑥(decode𝑥(𝑐)) = 𝑐

Proof. For the first equality, we apply path induction. So it suffices to prove the case 𝑥 = base,
𝑝 = reflbase.

decodebase(encodebase(reflbase))
= decodebase(transportcode(reflbase, 0)) (definition of encode)
= decodebase(0) (transport over refl is trivial)
= loop0 (definition of decode)
= reflbase (path composition)

For the second equality, we apply circle induction. Usually, we would have to supply an
image for base and check that the application respects loop. But, in the case of base, the

31

codomain is ℤ, which is a set, and sets do not have non-trivial paths. Or, in other words,
any loop (including loop) will always be lifted to a trivial path. So we only need to check that
encodebase(decodebase(𝑛)) = 𝑛 for all 𝑛 ∶ ℤ. We apply integer induction. The case for 𝑛 = 0 is
true by definition. The positive and negative cases are analogous to each other, so we do the
positive case:

encodebase(decodebase(succ(𝑛)))
= encodebase(loopsucc(𝑛)) (definition of decode)
= transportcode(loopsucc(𝑛)) (definition of encode)
= transportcode(loop𝑛 � loop, 0) (composition of paths)
= (transportcode(loop𝑛, −) ∘ transportcode(loop, −))(0) (functoriality of transport)
= (succ𝑛 ∘ succ)(0) (inductive hypothesis)
= succ(𝑛) (application)

Theorem 3.3.8. There is a family of equivalences ∏𝑥∶𝕊1(base = 𝑥) ≃ code(𝑥).

Proof. We apply lemma 3.3.7 to see that encode and decode act as mutual quasi-inverses.

Corollary 3.3.9.
𝜋1(𝕊1) = ℤ.

Proof. We use theorem 3.3.8 with 𝑥 = base. This gives us an equivalence (base = base) ≃ ℤ.
We apply the univalence axiom to obtain an equality from the equivalence. Applying 0-
truncation to both sides gives us ‖base = base‖0 = ‖ℤ‖0. On the left side, we have the defi-
nition of 𝜋1(𝕊1). On the right, because ℤ is a set, we obtain ℤ again. So we have 𝜋1(𝕊1) =
ℤ.

The last step is to prove that the equivalence on base takes path composition to addition, in
order to see that it is a group homomorphism as well.

Theorem 3.3.10. 𝜋1(𝕊1) and ℤ are isomorphic as groups.

Proof. It is enough to see that, for all 𝑝, 𝑞 in 𝜋1(𝕊1), encodebase(𝑝 � 𝑞) = encodebase(𝑝) +
encodebase(𝑞).

encodebase(𝑝 � 𝑞)
= transportcode(𝑝 � 𝑞, 0) (definition of encode)
= (transportcode(𝑞, −) ∘ transportcode(𝑝, −))(0) (functoriality of transport)
= (succencodebase(𝑞) ∘ succencodebase(𝑝))(0) (path lifting)
= encodebase(𝑞) + encodebase(𝑝) (definition of succ)

32

Chapter 4

The Real Projective Plane

4.1 Classical Construction
For the final part of this thesis, we will take a closer look at an interesting family of types and
how they are built in homotopy type theory: the real projective spaces.

In classical topology, the real projective space of dimension 𝒏, denoted by ℝP𝑛, is the topo-
logical space 𝕊𝑛/𝑅, where 𝑅 is the relation that identifies each point with its antipode. We
can also describe the real projective spaces as CW complexes using the following facts:

• The sphere 𝕊𝑛 has a CW complex structure with two 0-cells, two 1-cells, two 2-cells, etc.
up to two 𝑛-cells.

• The quotient space by the relationship𝑅 glues each pair of 𝑖-cells antipodally (“flipping”
one of the 𝑖-cells).

Thus, ℝP𝑛 is a CW complex with one cell for each dimension from 0 up to 𝑛. It is important
to notice that there is more than one CW complexwith these cells. For example, if onewere to
try and build a CW complexwith one 0-cell, one 1-cell, and one 2-cell, it wouldmost probably
not end up being the real projective plane ℝP2. To get the projective plane, one has to mind
using the 2-cell to glue the 1-cell to itself reversed.

The projective spaces owemost of their homotopical structure to the spheres they come from:
ℝP0 is a single-pointed space, ℝP1 is homeomorphic to 𝕊1. For the rest, they all share their
higher homotopy groups with the sphere: 𝜋𝑘(ℝP𝑛) ≅ 𝜋𝑘(𝕊𝑛) for all 𝑘 > 1.

But what about the fundamental group? Calculating the fundamental group of projective
spaces is very educational, because it helps us conceptualize the relationship between them
and the spheres in a more visual way.

Take any projective space ℝP𝑛 as 𝕊𝑛/𝑅, with 𝑅 as above. Consider then the covering space
𝑝 ∶ 𝕊𝑛 → ℝP𝑛 given by the projection of the equivalence relation 𝑅. Each fiber has exactly
two elements: the two antipodal points that have been identified. Covering spaces have a
unique path lifting property, which states that, given a point 𝑥 ∈ ℝP𝑛 and an element ̃𝑥 of its
fiber 𝑝−1(𝑥), then any path starting at 𝑥 “lifts” to a unique path in the covering space starting
at ̃𝑥. In our case, if we take any loop 𝛾 ∶ [0, 1] → ℝP𝑛, 𝛾(0) = 𝛾(1) = 𝑥, we can lift it to a path

33

in 𝕊𝑛. As the fibers have two elements, we say that the covering space has two “sheets”. So,
depending on our choice of 𝛾, it can be lifted in two different ways: taking both endpoints
of the lifted path to be the same (say, ̃𝑥), or taking each endpoint to be the antipodal of the
other (̃𝑥 and − ̃𝑥).

For the first, we obtain a loop in the sphere. As 𝕊𝑛 has a trivial fundamental group for 𝑛 > 1,
that loop is homotopic to the constant path on ̃𝑥. This homotopy on the covering space induces
a homotopy on the base space taking 𝛾 to the constant path on 𝑥. So the loop is then trivial.

For the second, we see that the lifted path is not a loop, so it cannot be contracted to a constant
path without moving its endpoints, which we cannot do as that would change the endpoints
of the underlying loop 𝛾. So, we have a non-trivial loop 𝛾 on ℝP𝑛. What can be said of such
loop? It seems to be the only generator of the fundamental group of ℝP𝑛, so the only thing
left to do is to check what order it has. Hence, we want to see what 𝛾 � 𝛾 is. As we have done
before, we can lift the path to 𝕊𝑛. The first 𝛾 is, as before, a path from ̃𝑥 to − ̃𝑥. In order for
𝛾 � 𝛾 to be a valid loop, the second 𝛾 has to be lifted to a path from − ̃𝑥 to ̃𝑥, otherwise the
endpoints do not match. But then, we obtain a loop on ̃𝑥, which makes 𝛾 �𝛾 homotopic to the
constant path on 𝑥.

So, we have seen that the loops on 𝑥 are of two kinds: those homotopic to the constant path,
and those which are not. But those of the second kind, when repeated, are homotopic to the
constant path. Therefore, the fundamental group of ℝP𝑛 is isomorphic to ℤ/2ℤ.

Why does this not work for ℝP1? Because, for 𝑛 > 1, 𝕊𝑛 is simply connected, but 𝕊1 is not.

4.2 Pushouts
As we have seen, higher inductive types allow mimicking CW complexes by using 𝑛-
dimensional paths as 𝑛-cells. Unfortunately, this is not always possible. An 𝑛-path can only
connect two (𝑛 − 1)-paths, whereas cells can join an arbitrary number of lower dimensional
cells.

So the question is raised: how does one build more complex spaces in homotopy type the-
ory? In classical topology, there are tools like gluing (quotient spaces) that allow us to join
or collapse spaces in different ways. In homotopy type theory we need more refined tech-
niques, because we want these to preserve the homotopical invariants we are working with.
In sec. 3.1 we have seen a way to do this, parametrizing 1-types by lower dimensional cells.
As an alternative, more robust method, in this chapter we present the pushout.

In category theory, a pushout is a kind of colimit. This roughly means that it is a unique (up
to factorization) object out of a diagram. The diagram for a pushout is usually represented
as such:

34

𝑋 𝑌

𝑍

𝑓

𝑔

In certain categories, there is a pushout of such diagram.

Definition 4.2.1. The pushout of a diagram 𝑌 𝑓←− 𝑋 𝑔−→ 𝑍 is an object 𝑃 together with mor-
phisms 𝑌 𝑖−→ 𝑃 𝑗←− 𝑋 such that the following diagram commutes:

𝑋 𝑌

𝑍 𝑃

𝑓

𝑔 𝑖

𝑗

and such that, for any other such diagram 𝑌 𝑖′−→ 𝑃′ 𝑗′
←− 𝑋, there exists a unique morphism

𝑠 ∶ 𝑃 → 𝑃′ such that the full diagram commutes:

𝑋 𝑌

𝑍 𝑃

𝑃′

𝑓

𝑔 𝑖

𝑗

𝑖′

𝑗′

𝑠

This last property is know as the universal property of the pushout, which makes it unique
up to isomorphism.

The category Top of topological spaces is cocomplete, which means that it contains all (set-
indexed) colimits, such as pushouts. The pushout of two topological spaces 𝑌 and 𝑍 is the
space (𝑌 ⊔ 𝑍)/ ∼, where ∼ is the equivalence relationship generated by 𝜄𝑌(𝑓 (𝑥)) ∼ 𝜄𝑍(𝑔(𝑥))
for all 𝑥 in 𝑋, and 𝜄𝑌, 𝜄𝑍 are the inclusion functions. This can be visualized as “gluing” 𝑌 and
𝑍 along the points that share a preimage in 𝑋.

Things get ugly once we step into homotopy theory territory. Homotopy equivalences can be
studied from a categorical point of view by taking homotopy classes of maps as morphisms.
The resulting category, known as Ho(Top), does not have all colimits. In particular, we cannot
always build pushouts. A classical example: consider the diagram 𝔻2 ↩ 𝕊1 ↪ 𝔻2 given by
the standard inclusion of the circle into two copies of the closed 2-dimensional disk. The

35

pushout of this diagram is the sphere 𝕊2, because it is the result of gluing the two disks along
their boundaries:

𝕊1 𝔻2

𝔻2 𝕊2

One would expect that, in Ho(Top), replacing all the spaces by homotopy equivalent ones
would result in a homotopy equivalent pushout. This is not the case. For example, as the
disk is contractible, it can be replaced with ∗ (the single-point space), and then the resulting
pushout is ∗ as well:

𝕊1 ∗

∗ ∗

But ∗ is not homotopy equivalent to 𝕊2.

As a fix, mathematicians came up with the homotopy pushout.

Definition 4.2.2. The mapping cylinder of a map 𝑓 ∶ 𝑋 → 𝑌 is the space:

𝑀𝑓 = ((𝑋 × [0, 1]) ⨿ 𝑌)/ ∼

where ∼ is the equivalence relationship generated by (𝑥, 0) ∼ 𝑓 (𝑥) for all 𝑥 ∈ 𝑋, and ⨿
denotes disjoint union.

Lemma 4.2.3. 𝑀𝑓 is homotopically equivalent to 𝑌.

Proof. It is enough to show that 𝑌 is a deformation retract of 𝑀𝑓 . To do this, we define 𝐹 ∶ 𝑀𝑓 ×
[0, 1] → 𝑀𝑓 to be constant on the inclusion of𝑌 into𝑀𝑓 , andmap ((𝑥, 𝑡), 𝑠) ∈ (𝑋×[0, 1])×[0, 1]
to (𝑥, 𝑡(1 − 𝑠)). This definition is correct because for (𝑥, 0), both parts of the definition concur.
Now, we observe that 𝐹(−, 0) is the identity of 𝑀𝑓 , as 𝑡(1 − 𝑠) = 𝑡 for 𝑠 = 0. We also see
that 𝐹(𝑝, 1) belongs in 𝑌 for any 𝑝 ∈ 𝑀𝑓 , because 𝐹((𝑥, 𝑡), 1) = (𝑥, 0), which is identified with
𝑓 (𝑥) ∈ 𝑌 by ∼. Finally, 𝐹(−, 1) is the identity function in 𝑌, as we have defined 𝑀𝑓 to be
constant on 𝑌.

Lemma 4.2.4. Given any map 𝑓 ∶ 𝑋 → 𝑌, there exists an injective map ̃𝑓 ∶ 𝑋 → 𝑀𝑓 that makes the
follow diagram commute:

𝑋 𝑀𝑓

𝑌

̃𝑓

𝑓
≃

36

Proof. We take ̃𝑓 to be 𝐹(−, 0) ∶ 𝑋 → 𝑀𝑓 .

Definition 4.2.5. The homotopy pushout of the diagram 𝑌 𝑓←− 𝑋 𝑔−→ 𝑍 is the topological

pushout of the diagram 𝑀𝑓
̃𝑓←− 𝑋 �̃�−→ 𝑀𝑔.

Equivalently, it is the quotient of 𝑀𝑓 ⨿𝑀𝑔 by the relation that identifies each (𝑥, 1) in 𝑀𝑓 with
each (𝑥, 1) in 𝑀𝑔. As we are replacing spaces with homotopy equivalent ones, and arrows
with homotopic ones, we are respecting the diagram from a categorical point of view. The
homotopy pushout, once defined, does respect homotopy types: if we replace any (or all) of 𝑋,
𝑌, or 𝑍 with homotopy equivalent objects, then the homotopy pushout will also be homotopy
equivalent to the original one. But, as a tradeoff, the homotopy pushout is not a pushout in
the homotopy category Ho(Top). This costs us the universal property. Suppose we have two
different commuting squares:

𝑋 𝑌

𝑍 𝑃

𝑃′

𝑓

𝑔 𝑖

𝑗

𝑖′

𝑗′

𝑠

The arrow 𝑠 ∶ 𝑃 → 𝑃′ is not unique up to homotopy, in fact there are infinitely many different
choices, in general. Uniqueness is not completely lost, though, it is only weakened. In a
categorical pushout, the triple (𝑃′, 𝑖′, 𝑗′), determines a unique 𝑠. In a homotopy pushout, this
is not enough.

Remember that the pushoutmakes a commutative square. Thismeans that there exists at least
one homotopy between 𝑖 ∘ 𝑓 and 𝑗 ∘ 𝑔. In a sense, the function 𝑠 extends one such homotopy
into another one 𝑠 ∘ 𝑖 ∘ 𝑓 ∼ 𝑠 ∘ 𝑗 ∘ 𝑔. If we choose one particular homotopy 𝐻 ∶ 𝑖 ∘ 𝑓 ∼ 𝑗 ∘ 𝑔, then
𝑠 ∶ 𝑃 → 𝑃′ is indeed the unique map extending 𝐻 in this way.

For example, in the case of the diagram 𝔻2 ↩ 𝕊1 ↪ 𝔻2 seen before, the homotopy pushout is
the sphere 𝕊2. The homotopy in the pushout square relates the inclusion of 𝕊1 in 𝕊2 to itself.
But there are many ways to do that, in particular, the homotopy classes of those homotopies
form a group isomorphic to ℤ. On the other hand, if we build a different commutative square
to 𝕊2, we have multiple arrows 𝑠 ∶ 𝕊2 → 𝕊2. Again, the mappings of 𝕊2 into 𝕊2 generate a
group isomorphic to ℤ. This shows how the choices of the homotopy in the pushout square
correspond to the choices of arrows with the pushout as domain.

With all this information, it is now appropriate to introduce the pushout in homotopy type
theory.

Definition 4.2.6. A pushout of functions 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑋 → 𝑍 is a higher inductive type

37

𝑌 +𝑋 𝑍 presented by:

• a function inr ∶ 𝑌 → 𝑌 +𝑋 𝑍,
• a function inl ∶ 𝑍 → 𝑌 +𝑋 𝑍, and
• a dependent function glue ∶ ∏𝑥∶𝑋 inr(𝑓 (𝑥)) = inl(𝑔(𝑥)).

The homotopy type theory pushout retains the idea of “gluing”: for each 𝑥 in 𝑋, the function
glue gives us a path from 𝑓 (𝑥) to 𝑔(𝑥) (in the pushout type, via the inclusions inr and inl). As
this definition is type-theoretic, it accepts replacing types with equivalent ones (through the
univalence axiom) and preserve the pushout type.

Pushouts allow us to make topological constructions in homotopy type theory. As an exam-
ple, given a type𝐴, one can build its suspension as the pushout of the unique span 1 ← 𝐴 → 1.
Notice what we obtain in this case:

• a function inr ∶ 1 → 1 +𝐴 1,
• a function inl ∶ 1 → 1 +𝐴 1, and
• a dependent function glue ∶ ∏𝑎∶𝐴 inr(⋆) = inl(⋆).

Here inr and inl are just inclusions, they do not contribute anything meaningful. But glue is
interesting: instead of literally gluing 1 to 1 via 𝐴, we just use 𝐴 to parametrize the paths,
but ignore its points (𝑎 ∶ 𝐴) altogether. The natural functoriality of functions in homotopy
type theory will guarantee that the “copy” of 𝐴 of the suspension will retain the homotopical
structure of 𝐴.

As with any higher inductive type, we can form its elimination principles. For example, the
recursion principle states that, to define a function 𝑠 ∶ 𝑌 +𝑋 𝑍 → 𝐷 into another type 𝐷, we
just have to provide:

• for each 𝑦 ∶ 𝑌, the value of 𝑠(inr(𝑦)) ∶ 𝐷,
• for each 𝑧 ∶ 𝑍, the value of 𝑠(inl(𝑧)) ∶ 𝐷, and
• for each 𝑥 ∶ 𝑋, the value of ap𝑠(glue(𝑥)) ∶ 𝑠(inr(𝑓 (𝑥))) = 𝑠(inl(𝑔(𝑥))).

From this principle, one can deduce a uniqueness principle, which states that given two func-
tions 𝑠, 𝑠′ ∶ 𝑌 +𝑋 𝑍 → 𝐷 that coincide on the values above, then 𝑠 = 𝑠′. This uniqueness
principle corresponds to our previous statement about choosing a particular homotopy in
a homotopy pushout. The higher inductive type is given with a constructor glue, which is
a choice of homotopy in the square. Observe that 𝑠 is unique whenever it also respects the
equalities given by glue.

In the following section we discuss how cells are attached via pushouts.

4.3 Constructions Using Pushouts
The common procedure to attach cells in homotopy type theory is known as the “hub and
spokes” technique. One possible interpretation is as follows:

Definition 4.3.1. Suppose given a type 𝑋 and a function 𝑓 ∶ 𝕊𝑛−1 → 𝑋 with 𝑛 > 0. We define
the attachment of an 𝒏-cell to 𝑋 via 𝑓 as the higher inductive type �̂� defined by:

• an inclusion function 𝑖 ∶ 𝑋 → �̂�,

38

• a “hub” point ℎ ∶ �̂�, and
• a family of “spokes” 𝑠 ∶ ∏(𝑝∶𝕊𝑛−1) 𝑓 (𝑥) = ℎ.

We visualize the attachment as taking 𝑋 and gluing an 𝑛-disk along the image of 𝑓 .

Most often, we do not use this definition but rather apply the concept of attachment ad hoc.
For example, this can be done through the following pushout:

𝕊𝑛−1 𝑋

1 𝑃

𝑓

inr

inl

which attaches an 𝑛-cell via the path family glue ∶ ∏(𝑝∶𝕊𝑛−1) inr(𝑓 (𝑥)) = inl(⋆), with inl(⋆)
acting as the hub.

We will now see how to build the real projective spaces in homotopy type theory. Using
pushouts, we can build ℝP𝑛+1 from ℝP𝑛 as such:

𝕊𝑛 1

ℝP𝑛 ℝP𝑛+1

𝛼𝑛

This amounts to attaching an 𝑛 + 1 cell to ℝP𝑛, as we said before. The function 𝛼𝑛, which
states how to attach the cell, is the canonical covering function. Unfortunately, this is hard to
express in the language of homotopy type theory.

We can take a closer look at that 𝕊𝑛 in the pushout diagram. We have just seen that the sphere
is a covering space of ℝP𝑛. This suggests rewriting the diagram as:

∑(𝑥∶ℝP𝑛) cov𝑛(𝑥) 1

ℝP𝑛 ℝP𝑛+1

where cov𝑛(𝑥) is the fiber of 𝑥 ∶ ℝP𝑛. Now we have to define ℝP𝑛 and cov𝑛 inductively on 𝑛.

As the fiber of a covering space, wewould usually define cov to be of type cov𝑛 ∶ ℝP𝑛 → 𝒰 . In
this case, though, we need a little bit more precision, and so we first define the “subuniverse”
𝒰𝕊0 of 2-element sets, so that we can have cov𝑛 ∶ ℝP𝑛 → 𝒰𝕊0 . As there are no subtypes in
homotopy type theory, this is actually a fibration itself:

Definition 4.3.2. The universe of 2-sets 𝒰𝕊0 consists of types together with a proof that they
are equal to 𝕊0, i.e., ∑(𝐴∶𝒰) ∥𝐴 = 𝕊0∥−1.

39

We take 𝕊0 as the inductive type with two constructors, N and S.

Luckily, the fibers are mere propositions, so we can omit them for brevity without changing
the constructions, and treat 𝒰𝕊0 like a universe of types. Similarly, we consider 𝕊0 to be a
pointed type, with center N, but we will not write it explicitly throughout the text.

Consider the map encode ∶ ∏(𝐴∶𝒰𝕊0)(𝕊0 = 𝐴) → 𝐴 given by taking the center of 𝕊0 to the ele-
ment that the chosen equality transports it to. In other words, encode(𝐴, 𝑝) = idtoeqv(𝑝)(N),
where idtoeqv is the equivalence induced by the equality of types.

Lemma 4.3.3. The function encode ∶ ∏(𝐴∶𝒰𝕊0)(𝕊0 = 𝐴) → 𝐴 given by encode(𝐴, 𝑝) =
idtoeqv(𝑝)(N) is an equivalence.

This encode, like the others we have seen, tries to give a combinatorial interpretation of an
equality type, in this case 𝕊0 = 𝐴. To correctly interpret this function, we disregard the first
argument (𝐴 ∶ 𝒰𝕊0), as it is only necessary in order to introduce the path 𝑝. Then we see
the actual meaning of the lemma: every element of a 2-set 𝐴 corresponds uniquely with an
equality between 𝐴 and the canonical pointed 2-set 𝕊0. After all, there are only two ways to
identify 𝕊0 with 𝐴. This identification is uniquely determined by the image of N through the
path.

The proof of the lemma is given in Buchholtz and Rijke (2017), Corollary II.6. It is slightly
technical and requires introducing results about pointed types that are out of scope, so we
skip directly to building ℝP𝑛 and cov𝑛:

• For the base case (𝑛 = −1), we take ℝP−1 ∶≡ 0, the empty type. Then, there is only one
candidate for cov−1, which is the only function of type 0 → 𝒰𝕊0 .

• For the inductive case, assume ℝP𝑛 and cov𝑛 are defined. Then ℝP𝑛+1 is defined as the
following pushout:

∑(𝑥∶ℝP𝑛) cov𝑛(𝑥) 1

ℝP𝑛 ℝP𝑛+1

pr1

To define cov𝑛+1 ∶ ℝP𝑛+1 → 𝒰𝕊0 , consider the following diagram:

∑(𝑥∶ℝP𝑛) cov𝑛(𝑥) 1

ℝP𝑛 𝒰𝕊0

pr1 𝕊0

cov𝑛

where 𝕊0 represents the function taking ⋆ to 𝕊0. If we can prove that the square com-
mutes, then, by the universal property of the pushout, there has to exist a function from
ℝP𝑛+1 to 𝒰𝕊0 , which we will take to be cov𝑛+1.

40

For every 𝑥 ∶ ℝP𝑛, we have the equivalence encode(cov𝑛(𝑥)) ∶ (𝕊0 = cov𝑛(𝑥)) ≃ cov𝑛(𝑥)
given by the lemma. Theorem 4.7.7 of The Univalent Foundations Program (2013) in-
duces an equivalence

∑
𝑥∶ℝP𝑛

cov𝑛(𝑥) ≃ ∑
𝑥∶ℝP𝑛

(𝕊0 = cov𝑛(𝑥))

So we have the following diagram:

∑𝑥∶ℝP𝑛 cov𝑛(𝑥)

∑𝑥∶ℝP𝑛(𝕊0 = cov𝑛(𝑥)) 1

ℝP𝑛 𝒰𝕊0

pr1 𝕊0

cov𝑛

pr1

≃

The inner square is an instance of what is known as a pullback square, because its up-
per left corner is (equivalent to) the double sum type over equalities of the top right
and bottom left corners, ∑(𝑦∶1) ∑(𝑥∶ℝP𝑛)(𝕊0 = cov𝑛(𝑥)). These are dual to the pushout
squares and are also commutative (The Univalent Foundations Program 2013, Exercise
2.11). Hence, the outer square is also commutative, as we wanted to prove.

4.4 Construction as a Higher Inductive Type
We begin by highlighting the fact that in homotopy type theory we use the word homotopy
in two different senses. The first, like the one that appears in the definition of a pushout,
matches the classical notion of “a path between functions”. On the other hand, following the
analogy between higher identity types and homotopy types, we can consider the terms of
a type as points, their equalities as paths, and the equalities between those as homotopies.
To distinguish them, we will call the first kind function homotopies and the second kind path
homotopies.

In the literature of homotopy type theory, cell complexes are mainly built using pushouts.
The function homotopy in the definition of the pushout plays the role of the higher cell.

In a few cases, the other notion of homotopy is used. For example, the higher inductive type
definitions of the higher spheres are built like this: we provide a 0-cell and an 𝑛-cell, in the
form of a higher path.

With this in mind, it was hypothesized that path homotopies could be used in other spaces.
In particular, the idea appeared when trying to see how to obtain the fundamental group of
the real projective plane. If one distills the (topological) idea of what a projective plane is, it

41

can be seen as a 1-cell, together with a 2-cell that reverses it. We can express this as a higher
inductive type:

𝑋0 ∶ 𝑋
𝑋1 ∶ 𝑋0 = 𝑋0
𝑋2 ∶ 𝑋1 = 𝑋−1

1

This construction is conceptually simpler than the one with pushouts. But not only that: it
also allows an easy construction of its fundamental group.

We recall that the fundamental group is defined as the 0-truncation of the path space over
the base point (∥𝑋0 = 𝑋0∥0).

Theorem 4.4.1. The fundamental group of the space 𝑋 is ℤ/2ℤ.

Proof. Observe that, as this is a higher inductive type, it is freely generated by these construc-
tors. We want to know which paths exist from 𝑋0 to itself. If we had not provided the 𝑋2
constructor, we would have the circle, and thus the fundamental group would be ℤ, as we
have already seen. But the next constructor 𝑋2 is a path homotopy between 𝑋1 and itself. By
adding another constructor, we can only further constrain the fundamental group, i.e., add
new relationships. In this case, we are stating that 𝑋1 = 𝑋−1

1 . This tells us that the group of
loops over 𝑋0 is freely generated by 𝑋1 and the relationship 𝑋2 of type 𝑋1 = 𝑋−1

1 , or, in other
words, ⟨𝑋1 ∣ 𝑋1 = 𝑋−1

1 ⟩, which is isomorphic to ℤ/2ℤ, the cyclic group of order two.

This clearly suits our conception of the fundamental group of the projective plane as seen in
sec. 4.1. What we called 𝛾 in there is represented by 𝑋1 here. And the fact that 𝛾 � 𝛾 is the
constant path can be seen here as 𝑋1 � 𝑋1 = refl𝑋0

, proven by 𝑋2.

So, we pose the question: is 𝑋 equivalent to ℝP2?

Following the definition of equivalence, we should find two functions, 𝜓 ∶ 𝑋 → ℝP2 and
𝜑 ∶ ℝP2 → 𝑋, that are mutual quasi-inverses, or, in other words, such that 𝜓 ∘ 𝜑 ∼ idℝP2 and
𝜑 ∘ 𝜓 ∼ id𝑋.

We start by defining a candidate for 𝜑. This in itself posed a considerable challenge, as it
required having a very clear understanding of how 2-paths work that might not be intuitive
at first, in particular regarding induction.

As ℝP1 = 𝕊1 (Buchholtz and Rijke 2017, Example III.3), the type ℝP2 can be seen as the
pushout of 𝕊1 ← ∑𝑥∶𝕊1 cov1(𝑥) → 1.

Definition 4.4.2. We define 𝜑 ∶ ℝP2 → 𝑋 using the recursion principle of ℝP2.

• For each 𝑎 ∶ 𝕊1, the value of 𝜑(inl(𝑎)) ∶ 𝑋.

We choose to embed 𝕊1 into 𝑋 by sending base to 𝑋0 and loop to 𝑋1.

• For each 𝑏 ∶ 1, the value of 𝜑(inr(𝑏)) ∶ 𝑋.

By the recursion principle of 1, it is enough to define the image of ⋆. We pick the base
point 𝑋0.

42

• For each 𝑐 ∶ ∑(𝑥∶𝕊1) cov1(𝑥), the value of ap𝜑(glue(𝑐)) ∶ 𝜑(inl(𝑓 (𝑐))) = 𝜑(inr(𝑔(𝑐))).

For this pushout, 𝑓 is the projection onto the first component of the dependent pair,
and 𝑔 is the only function into 1. So, what we are looking for is, for every pair (𝑥, 𝑦)
of ∑(𝑥∶𝕊1) cov1(𝑥), a way to apply 𝜑 to a path of type inl(𝑥) = 𝑋0, where inl(𝑥) is the
inclusion of 𝑥 into 𝑋. Notice how, for each 𝑥 ∶ 𝕊1, there are two different pairs (𝑥, 𝑦) of
type ∑(𝑥∶𝕊1) cov1(𝑥), as cov1 is a double cover of 𝕊1.

We use the induction principle for Σ types, which essentially states that we have to
provide a value for each possible pair. Then, we do induction on each component. This
leaves us with four values to provide:

– ap𝑠(glue(base, N)) ∶ 𝑋0 = 𝑋0,
– ap𝑠(glue(base, S)) ∶ 𝑋0 = 𝑋0,
– ap𝑠(apglue(loop, N)) ∶ ap𝑠(glue(base, N)) = ap𝑠(glue(base, S)), and
– ap𝑠(apglue(loop, S)) ∶ ap𝑠(glue(base, S)) = ap𝑠(glue(base, N)).

We choose ap𝑠(glue(base, N)) ∶= refl𝑋0
and ap𝑠(glue(base, N)) ∶= 𝑋1 �𝑋1, so that the other

two have types:

– ap𝑠(apglue(loop, N)) ∶ refl𝑋0
= 𝑋1 � 𝑋1, and

– ap𝑠(apglue(loop, S)) ∶ 𝑋1 � 𝑋1 = refl𝑋0
.

We can then choose 𝑋−1
2 and 𝑋2 for those.

For 𝜓 ∶ 𝑋 → ℝP2, we try using the recursion principle. We have to provide a point 𝜓(𝑋0) for
𝑋0, a path 𝜓(𝑋0) = 𝜓(𝑋0) for 𝑋1, and a homotopy 𝜓(𝑋1) = 𝜓(𝑋1)−1.

• For 𝜓(𝑋0) we choose inl(base).
• For 𝜓(𝑋1), apinl(loop).

Unfortunately, the construction of 𝜓(𝑋2) requires providing a proof that

apinl(loop) � apinl(loop) = reflinl(base),

which practically amounts to calculating the fundamental group of ℝP2.

If we could define 𝜓 like this, then proving they are mutual quasi-inverses amounts to once
again use the eliminators of each type, but in a trickier way. As the induction principle tells
us that a function is determined by a series of parameters, we can prove that 𝜑 ∘ 𝜓 and 𝜓 ∘ 𝜑
are equal to the corresponding identity functions by just showing they agree with them on
these parameters alone.

In the case of 𝜑 ∘ 𝜓 ∶ 𝑋 → 𝑋, we would use the elimination principle of 𝑋, whereas for
𝜓 ∘ 𝜑 ∶ ℝP2 → ℝP2, we would use the elimination principle of ℝP2.

The difficulties in defining the function 𝜓 are a clear display of the complexity of higher in-
ductive types that require a second order eliminator (i.e., that have higher order paths), and
explain the reasonwhy these constructions are not thoroughly used. Nonetheless, we believe
that building them and proving them correct can be useful.

43

Conclusions

We have high hopes for the synthetic projective plane we are postulating. All the clues have
been pointing to this construction being correct, and perhaps more important, being “in the
style” of homotopy type theory.

The equivalences between the pushout and synthetic versions take the “skeleton” (points
and 1-paths) to the corresponding items with little trouble. Each of the two implementations
has a “special” surface: in the case of the pushout, the path family glue, and in the case of
the higher inductive type, the constructor 𝑋2. The complexity and defining property of the
equivalences is in describing correctly how these surfaces correspond to each other. These
surfaces are actually the generators of the second order homotopy group of each of the spaces,
and in fact also spawn all the higher homotopy structure. We also had postulated a possible
implementation of higher projective spaces following this technique of attaching “reversing”
paths, but this would add extra higher homotopical structure, which would not work.

Nonetheless, we will still eagerly try to prove the equivalence for ℝP2. The conversion from
pushout to higher inductive type in this manner is proposed by the book of The Univalent
Foundations Program (2013) itself, but we have not been able to find any complete proof of
this style. Hence, we believe that publishing the complete version of the proof would actually
contribute value to the homotopy type theory community.

One of our objectives was to use Agda as an aid for learning homotopy type theory. Using a
machine turns out to be of big use: the compiler is blunt and does not forgive any mistake.
The learning path with a proof assistant can feel like pushing a boulder up a hill, but the error
messages at every wrong step help correct misguided intuitions. Although it did not help in
producing complete results, Agda is useful for making “enquiries” about (homotopy) type
theory. It is particularly good for clearing up how higher paths should be built from lower
ones, as it does not allow to abuse the language, hence avoiding conceptual or syntactical
mistakes.

Some people may wonder what use does a proof checker have if the job of writing the proof
relies on the mathematician. After all, it might just seem like doing double work for nothing.

The immediate benefit is that verification helps catch mistakes that might be otherwise hard
to notice by humans in very complex settings. Some peoplemight have philosophical reserva-
tions about computers proving things that people cannot. We propose seeing the computer
as a mathematical object: one first proves the computer to be correct (this entails everything
from the processing unit up to the proof assistant), and then uses it to prove further things.

44

The long-term answer is that formalization of proofs is an indispensable step for further im-
provements, like proof assistants (programs that help the mathematician by proposing ways
of filling holes in proofs), which already exist, and eventually automated proof development,
which would consist of the computer being capable of deducing valid theorems from a set of
hypotheses (which already shows up in logic programming).

45

References

Brunerie, Guillaume, Kuen-Bang Hou (Favonia), Evan Cavallo, Tim Baumann, Eric Finster,
Jesper Cockx, Christian Sattler, Chris Jeris, Michael Shulman, and others. n.d. “Homotopy
Type Theory in Agda.” Accessed June 14, 2020. https://github.com/HoTT/HoTT-Agda.

Buchholtz, Ulrik, and Egbert Rijke. 2017. “The Real Projective Spaces in Homotopy Type
Theory.” arXiv:1704.05770 [Math], April. http://arxiv.org/abs/1704.05770.

Hatcher, Allen. 2000. Algebraic Topology. Cambridge: Cambridge Univ. Press. https://cds.ce
rn.ch/record/478079.

Licata, Dan. 2011. “Running Circles Around (in) Your Proof Assistant; or, Quotients That
Compute.” Homotopy Type Theory. https://homotopytypetheory.org/2011/04/23/runnin
g-circles-around-in-your-proof-assistant/.

The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent Foundations of
Mathematics. Institute for Advanced Study. https://homotopytypetheory.org/book.

46

https://github.com/HoTT/HoTT-Agda
http://arxiv.org/abs/1704.05770
https://cds.cern.ch/record/478079
https://cds.cern.ch/record/478079
https://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant/
https://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant/
https://homotopytypetheory.org/book

	Introduction
	Preliminaries
	Homotopy Theory
	Homotopy Type Theory
	Types and terms
	Function types
	Product types
	Coproduct types
	Identity types
	Inductive types
	Univalence

	The Curry-Howard Correspondence

	Agda
	Setup
	Using Docker
	Local installation

	The Language
	Modules
	Function types
	Universe types
	Record types
	Data types
	Built-ins
	--without-K

	Homotopy Type Theory in Agda
	An example
	Higher inductive types

	The Circle
	Truncation
	Covering Spaces
	The Fundamental Group of the Circle

	The Real Projective Plane
	Classical Construction
	Pushouts
	Constructions Using Pushouts
	Construction as a Higher Inductive Type

	Conclusions
	References

