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The unconstrained ensemble describes completely open systems whose control parameters are the chemical
potential, pressure, and temperature. For macroscopic systems with short-range interactions, thermodynamics
prevents the simultaneous use of these intensive variables as control parameters, because they are not independent
and cannot account for the system size. When the range of the interactions is comparable with the size of
the system, however, these variables are not truly intensive and may become independent, so equilibrium
states defined by the values of these parameters may exist. Here, we derive a Monte Carlo algorithm for the
unconstrained ensemble and show that simulations can be performed using the chemical potential, pressure, and
temperature as control parameters. We illustrate the algorithm by applying it to physical systems where either
the system has long-range interactions or is confined by external conditions. The method opens up an avenue for
the simulation of completely open systems exchanging heat, work, and matter with the environment.
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The Metropolis Monte Carlo (MC) method [1] vastly con-
tributed to the understanding of many physical phenomena
[2,3]. Different versions of the method have been devised, ap-
plied to various statistical ensembles as, e.g., microcanonical
[4], canonical [1], grand canonical [5], semigrand canoni-
cal [6], isothermal-isobaric [7,8], isostress-isostrain [9], and
distinct variants of the Gibbs ensemble [10,11]. All these
ensembles include at least one extensive variable as a control
parameter, such as energy, volume, or number of particles:
Little attention has been paid to MC methods in which the
control parameters are the chemical potential μ, pressure P,
and temperature T . Indeed, thermodynamics tells us that the
latter intensive quantities are not independent and cannot ac-
count for the size of a macroscopic system with short-range
interactions [2,12]. When applied to these systems, the μPT
ensemble requires the addition of the equation of state linking
μ, P, and T or, conversely, it can be used to infer such a link
[13]. Reported MC methods [14,15] have taken advantage of
this fact by considering a constrained μPT ensemble in which
the examined systems are partially closed in either the volume
or number of particles, thus finding the underlying relation
μ(P, T ) of the system under scrutiny.

In contrast, an unconstrained ensemble with μ, P, and T
as independent control parameters can be properly defined
for small systems [16], confined systems [17,18], and for
long-range interacting systems [19,20], which are intrinsically
nonadditive [21,22] and have an additional degree of freedom
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that may render μ, P, and T independent. This makes it possi-
ble to study completely open systems exchanging heat, work,
and matter with the environment. In this Letter we derive an
elementary MC scheme for simulations in the unconstrained
ensemble and show that it consistently combines the MC
algorithms of the grand canonical and isothermal-isobaric en-
sembles. By testing the method for simple physical systems
that can be analytically evaluated, we identify the role of
interactions in equilibrium states of completely open systems.

Since dealing with completely open systems is rather
unconventional, we first recall some concepts about their
thermostatistics [16,19]. Considering for simplicity a one-
component system where the combination of the first and
second laws of thermodynamics is expressed by dE = T dS −
PdV + μdN , where E , S, V , and N are the energy, entropy,
volume, and number of particles, respectively, one defines a
statistical ensemble by taking a collection of N independent
replicas of the system, with total energy, entropy, volume,
and number of particles Et = N E , St = N S, Vt = N V , and
Nt = N N , respectively. The energy balance for the ensemble
becomes [16]

dEt = T dSt − PdVt + μdNt + E dN , (1)

where the last term accounts for the variation of Et when
N varies at constant St , Vt , and Nt ; the quantity E is called
the subdivision potential [16] or replica energy [22,23]. No
assumption has been made on the nature of the system, so
Eq. (1) is general. It can be integrated holding E , S, V ,
and N constant, arriving at E = E − T S + PV − μN (see
the Supplemental Material [24] for details). The variation of
E , making use of dE = T dS − PdV + μdN , yields dE =
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FIG. 1. System coupled to two reservoirs under completely open
conditions.

−Ndμ + V dP − SdT , showing that the natural variables of
the replica energy are μ, P, and T . One realizes that con-
ventional thermodynamics [12] focuses on systems in which
E = 0 by imposition, but this is not the general situation. Sys-
tems with E �= 0 are nonadditive [22], because their entropy
is not a linear homogeneous function of E , V , and N . As
discussed below, E can be derived [16] from a partition func-
tion ϒ(μ, P, T ) such that E (μ, P, T ) = −kBT ln ϒ(μ, P, T ),
where kB is the Boltzmann constant.

To establish the basis for the MC algorithm in the uncon-
strained ensemble, we closely follow Ref. [2], extending the
standard arguments used for other ensembles. For simplicity
we consider a system in a cubic box of side L = V 1/3 (the
extension to a rectangular box is immediate) in which particles
have coordinates ri, i = 1, . . . , N , and define scaled coordi-
nates by ri = V 1/3si. The canonical partition function of the
system takes the form

Q(N,V, T ) = V N

�3N N!

∫ 1

0
· · ·

∫ 1

0
dsN e−βU (sN ;V ), (2)

where sN ≡ (s1, . . . , sN ), β = 1/kBT , � is the de Broglie
thermal wavelength, and U (sN ;V ) is the potential energy. We
assume that the system is coupled to two independent reser-
voirs of ideal gas particles at temperature T : reservoir a that
exchanges particles with the system and reservoir b that ex-
changes volume (see Fig. 1). Reservoir a has Na − N particles
and volume Va, reservoir b has Nb particles and volume Vb −
V , and their canonical partition functions Qa(Na − N,Va, T )
and Qb(Nb,Vb − V, T ) are easily obtained from Eq. (2) by
setting U = 0. The partition function of the total system in-
cluding the reservoirs is Qtot = QaQQb. Thus, the probability
density of observing the system with N particles and volume
V is P (N,V ) = Qtot/

∑Na
N=0

∫ Vb

0 dV Qtot, so the most probable
values of N and V are those that minimize the total free energy
F tot = −kBT ln Qtot. Taking the limit of infinite reservoirs, the
quantities that survive, besides T , are the chemical potential
μ of reservoir a and the pressure P of reservoir b (see the
Supplemental Material [24] for details). Hence, the probabil-
ity density of finding the system in volume V in a particular
N-particle configuration takes the form

P (N,V ; sN ) = βPeβμN−βPV +N ln(V/�3 )−ln N!−βU (sN ;V )

ϒ(μ, P, T )
, (3)

where the unconstrained partition function is given by

ϒ(μ, P, T ) = βP
∞∑

N=0

eβμN
∫ ∞

0
dVe−βPV Q(N,V, T ). (4)

Notice that it would not be possible to implement completely
open conditions with a single reservoir of ideal gas particles,
since μ, P, and T are not independent in this case.

Given a system configuration C from which a new con-
figuration C ′ is generated in the simulation, we follow the
Metropolis algorithm [2] using Eq. (3) and compute the ac-
ceptance probability of the new configuration as Pacc(C →
C ′) = min [1,P (C ′)/P (C)]. MC moves in this case consist of
displacements of particles, insertion and removal of particles,
and changes of volume, yielding a potential energy variation
�U = U (C ′) − U (C). A particle displacement is attempted by
selecting a single particle at random with coordinates s and
performing a random displacement from s to s′. According
to Eq. (3) and the Metropolis rule, this move is accepted
with a probability Pacc(s → s′) = min (1, e−β�U ). Similarly,
the insertion of a particle at a random position and the removal
of a random particle are accepted with respective probabilities

Pacc(N → N + 1) = min

[
1,

Ve−β(�U−μ)

�3(N + 1)

]
, (5)

Pacc(N → N − 1) = min[1,V −1�3Ne−β(�U+μ)]. (6)

Finally, trial moves that attempt to change the volume from V
to V ′ are accepted with probability

Pacc(V → V ′) = min

{
1,

e−β[�U+P(V ′−V )]

e−N ln(V ′/V )

}
. (7)

Equations (5) and (6) correspond to particle insertion and
removal acceptance probabilities in the grand canonical en-
semble, while Eq. (7) is the acceptance probability for volume
changes in the isothermal-isobaric ensemble [2]. Therefore, a
consistent MC algorithm for simulations in the unconstrained
ensemble can be obtained as a simple combination of the
usual algorithms for these two ensembles. In the Supplemental
Material [24] we describe the details of the procedure adopted
to decide which kind of move is implemented at each MC step.
We now illustrate two applications of the method.

As a first example, consider a system with spatially
constant, repulsive interactions φ(ri, r j ) = ε, for which the
potential energy is U = ∑N

i> j φ(ri, r j ) = 1
2εN (N − 1), where

ε > 0 is a coupling constant. This system is nonadditive
because interactions are long ranged, regardless of its size.
Although interactions not depending on the interparticle dis-
tances may be difficult to justify physically, with this simple
model we will show that repulsive interactions in nonad-
ditive systems can withstand completely open conditions
resulting in states of thermodynamic equilibrium. For the
present case, the canonical partition function is Q(N,V, T ) =
V N e− 1

2 βεN (N−1)/(�3N N!), from which the unconstrained par-
tition function (4) becomes

ϒ(μ, P, T ) =
∞∑

N=0

e[βμ−ln(βP�3 )+ 1
2 βε]N− 1

2 βεN2
. (8)

Since ε > 0, the probability of observing the system with N
particles, given by the exponential in Eq. (8), has a maximum
at

N̄ (μ, P, T ) = ε−1kBT [βμ − ln(βP�3)] + 1/2, (9)
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FIG. 2. MC simulations of a system with spatially constant, long-
range repulsion in the unconstrained ensemble: fixing the chemical
potential and varying the applied pressure in (a) and fixing the
applied pressure and varying the chemical potential in (b). Solid
curves in (a) and (b) are obtained from the expression N̄ = μ∗ −
T ∗ ln(P∗/T ∗) + 1/2.

with the control parameters taken such that N̄ > 0. Intro-
ducing T ∗ = kBT/ε and x = N/T ∗, we rewrite the partition
function (8) as ϒ = e

1
2 T ∗ x̄2 ∑

N e− 1
2 T ∗(x−x̄)2

, where x̄ = N̄/T ∗.
Hence, the distribution has a sharp peak around x̄ in the
limit T ∗ → ∞, requiring N̄ → ∞ with x̄ fixed. Since E =
−kBT ln ϒ , we have E = − 1

2εN̄2 in this limit, which displays
the dependence of the replica energy on μ, P, and T through
Eq. (9). From this relation, it follows that the average volume
V̄ = ∂E /∂P satisfies PV̄ = N̄kBT , just as for an ideal gas.
The basic feature introduced by the interactions, however, is
that the size of the system can be controlled with indepen-
dent μ, P, and T , which is impossible for a macroscopic
ideal gas. Moreover, we have shown that a large N̄ can be
realized for temperatures kBT � ε, which can be seen as a
weak-coupling limit for small ε. In order to get a finite den-
sity N̄	3/V̄ = P∗/T ∗ in the thermodynamic limit, the reduced
pressure P∗ = P	3/ε must be large as well, where 	 is an
arbitrary unit of length. Accordingly, the reduced chemical
potential μ∗ = μ/ε − T ∗ ln(�3/	3) has to be taken of the
same order as T ∗ and P∗, since, from Eq. (9), we see that
N̄ = μ∗ − T ∗ ln(P∗/T ∗) + 1/2.

The average number of particles is known analytically in
this simple model. To test the proposed MC scheme, we
perform simulations in the unconstrained ensemble for this
system taking μ∗, P∗, and T ∗ as control parameters. In this
case, the potential energy remains constant for random par-
ticle displacements and variations of volume, while �U =
εN and �U = ε(1 − N ) for the insertion and removal of a
particle, respectively. Particle displacements are only rejected
when the particle leaves the simulation box (we do not use
periodic boundary conditions here) and the remaining accep-
tance probabilities can be easily obtained from Eqs. (5)–(7),
whose explicit expressions are given in the Supplemental
Material [24]. The simulations are shown in Fig. 2 for fixed
μ∗ while P∗ is varied, and varying μ∗ with fixed P∗, in both
cases for different values of T ∗. Solid curves in this figure
correspond to the analytical expression for N̄ .

Despite the fact that completely open conditions can be
achieved by assuming the system coupled to two reservoirs,
controlling μ, P, and T independently may be challenging in
practice. In what follows we describe an example in which
completely open conditions can be readily conceived and
which shares key similarities with the previous example, even

though this is not evident at first sight. We consider a system
of N hard spheres of diameter σ at temperature T confined
between parallel plates of area A and gap thickness H , so
the volume of the system is V = AH . The dimensions of the
plates are constant and much larger than the particle diam-
eter σ , while H is comparable to σ . Neglecting hard-core
interactions between particles but keeping A(H − σ ) as the
available volume due to particle-plate interactions, the sys-
tem behaves as an ideal gas with free energy F given by
[25] βF/N = ln{N�3/[A(H − σ )]} − 1. In this situation one
can define a lateral pressure Plat = −H−1∂F/∂A (acting in
directions parallel to the plates) and a transversal pressure
P = −A−1∂F/∂H (acting in the direction perpendicular to the
plates), which can be shown to be related to each other through
[25]

P = HPlat/(H − σ ). (10)

Clearly, P → Plat as H → ∞, so they are no longer indepen-
dent in this limit. In addition, the chemical potential is given
by μ = ∂F/∂N and can be written as

μ = kBT ln{N�3/[A(H − σ )]}. (11)

Thus, the canonical replica energy E = F + PV − μN takes
the form E = H2PlatA/(H − σ ) − NkBT . When H and σ are
comparable, the system is nonadditive because E �= 0. In the
limit H → ∞, PlatAH = PV → NkBT , so E → 0 and addi-
tivity is recovered.

Assume now that, in this idealized approximation, the
canonical and unconstrained ensembles are equivalent and let
H and N be fluctuating quantities with averages H̄ and N̄ ,
respectively. Ensemble equivalence does not hold, in general,
when interactions are included. We suppose that the plates
are surrounded by a fluid, acting as a reservoir in equilibrium
with the system, with temperature T and chemical potential
μr which therefore fixes its pressure Pr (as in a narrow pore
with slit geometry [17,26]). Since the system is laterally open,
equilibrium requires that μ = μr and Plat = Pr , while the
transversal pressure P can be externally controlled regardless
of the value of Pr , provided the gap thickness is not too large.
One possible way to control P is by applying weights to the
plates, so these exert on the system a transversal pressure
larger than the pressure Pr of the surrounding fluid. Thus, μ,
P, and T are independent and define the state of the system.
A reason for this is that the pressure P is not an intensive
quantity, since it depends on the size of the system as can be
seen from Eq. (10). Although the above arguments presume an
ideal system, they capture in first approximation the behavior
of hard-sphere systems including the interactions, as we test
below with simulations in the unconstrained ensemble.

We now concentrate on a more realistic treatment of the
confined hard-sphere system by means of the MC method.
In the simulations, lengths are measured in units of σ

and energies in units of kBT . Accordingly, we introduce
the reduced pressure P∗ = βPσ 3 and chemical potential
μ∗ = βμ − ln(�3/σ 3), while the temperature is just a
scaling factor which will be assumed constant. Periodic
boundary conditions are implemented at the limits of the
box in the transversal directions, while hard walls are
assumed in the direction perpendicular to the plates. All
MC moves in the unconstrained ensemble, consisting of

L061303-3



IVAN LATELLA et al. PHYSICAL REVIEW E 103, L061303 (2021)

0

5

10

15

20

P
∗ r
(0

.1
2
)

P
∗ r
(0

.0
4
)

P
∗ r
(0

.0
8
)

(a)

0

0.04

0.08

0.12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(b)

1

2

3

4

0.48 0.56

P∗
c

H̄
/
σ

µ∗ = µ∗
r(0.12)

µ∗ = µ∗
r(0.08)

µ∗ = µ∗
r(0.04)

η̄

P ∗

0

5

10

15

20

µ
∗ r
(0

.0
4
)

µ
∗ r
(0

.0
8
)

µ
∗ r
(0

.1
2
)(c)

0

0.04

0.08

0.12

−3 −2 −1 0

(d)

H̄
/
σ

P ∗ = P ∗
r (0.12)

P ∗ = P ∗
r (0.08)

P ∗ = P ∗
r (0.04)

η̄

μ∗

µ

P

FIG. 3. MC simulations of confined hard spheres in the uncon-
strained ensemble: fixing the chemical potential and varying the
applied pressure in (a) and (b), and fixing the applied pressure and
varying the chemical potential in (c) and (d). Solid lines in (a) corre-
spond to the approximation P∗ = H̄P∗

r (ηr )/(H̄ − σ ), while in (c) to
the approximation μ∗ = μ∗

r (η0) − ln [H̄/(H̄ − σ )].

particle displacements, insertion and removal of particles, and
variations of the box length H at constant A, are rejected if
they lead to an overlap between particles, between particles
and the plates, and between the plates. When there is no
overlap, particle displacements are always accepted and
the remaining acceptance probabilities can be obtained
by direct substitution from Eqs. (5)–(7) taking V = AH
and a vanishing potential energy (see the Supplemental
Material [24]). The scaling of particle coordinates for volume
changes is performed in the direction perpendicular to
the plates only. Here, we further consider that the fluid
surrounding the plates consists of hard spheres described by
the Carnahan-Starling equation of state [27], for which the
pressure is P∗

r (ηr ) = (6ηr/π )(1 + ηr + η2
r − η3

r )/(1 − ηr )3 in
our reduced units, where ηr is the packing fraction in this fluid.
The corresponding chemical potential [28] reads μ∗

r (ηr ) =
ln(6ηr/π ) + (8ηr − 9η2

r + 3η3
r )/(1 − ηr )3. We emphasize

that this characterization of the reservoir serves only to
evaluate the simulations, since the actual packing fraction of
the system is determined by the control parameters μ∗ and P∗.

To be able to compare the simulations with the analyti-
cal approximation discussed above, we restrict ourselves to
small ηr . We first choose ηr = 0.04, 0.08, and 0.12 and fix
the chemical potential of the system to μ∗ = μ∗

r (ηr ), mean-
while an external pressure P∗ is applied on the plates (their
area is fixed to A/σ 2 = 202). In Figs. 3(a) and 3(b), we
show the average gap thickness H̄ and the packing frac-
tion η̄ = π

6 σ 3〈N/V 〉 as a function of P∗. We observe that
H̄ becomes large and approaches a macroscopic limit when
the applied pressure approaches the pressure P∗

r (ηr ) of the
reservoir. In this limit, the freedom to control μ∗ and P∗
independently at fixed temperature is lost, as expected. The

solid lines in Fig. 3(a) correspond to the approximation P∗ =
H̄P∗

r (ηr )/(H̄ − σ ) given by Eq. (10). Furthermore, a smooth
kink around H̄ ≈ 2σ is observed at P∗ = P∗

c ≈ 0.54 for the
case ηr = 0.12, which is enlarged in the inset of Fig. 3(a).
For decreasing pressures P∗ > P∗

c , the gap slowly increases
and the system is quasibidimensional because configurations
with two particles aligned in the direction perpendicular to
the plates are not realized. Fluctuations of the gap size at P∗

c
allow such configurations to be realized and the gap grows
faster for decreasing pressures P∗ < P∗

c . The average pack-
ing fraction consequently decreases for decreasing pressures
P∗ > P∗

c . This behavior is also observed for ηr = 0.04 and
0.08, but it is less pronounced in the plots. We next consider
a situation in which P∗ is fixed to a value P∗ = P∗

r (η0) for
some packing fraction η0. Then, the chemical potential of
the reservoir is varied (by changing ηr), so μ∗ = μ∗

r (ηr ) also
changes. In other words, we control μ∗ keeping P∗ constant.
The results of the simulations are shown in Figs. 3(c) and 3(d)
for η0 = 0.04, 0.08, and 0.12. When μ∗ approaches μ∗

r (η0),
the average thickness H̄ approaches the macroscopic limit.
The solid lines in Fig. 3(c) correspond to the approxima-
tion μ∗ = μ∗

r (η0) − ln [H̄/(H̄ − σ )], obtained by combining
Eqs. (10) and (11). Therefore, we have shown that the chem-
ical potential and pressure can be independently controlled
in this system at fixed temperature. We emphasize that the
hard-core repulsion makes the system nonadditive for gap
sizes comparable to σ , since E �= 0 in this case. Similar to
the previous example, a key point here is that repulsive in-
teractions maintain equilibrium states under completely open
conditions in a regime in which the system is nonadditive.

When restricting to the particular situation of a confined
geometry as in the example above, we highlight that the MC
scheme presented here is similar to the approach introduced
in Ref. [17] describing the grand isostress ensemble. In that
case, the replica energy E plays the role of the grand isostress
potential considered there.

In conclusion, we have shown that a consistent MC scheme
for simulations in the unconstrained ensemble can be ob-
tained by combining the algorithms of the grand canonical
and isothermal-isobaric ensembles. This scheme applies to
nonadditive systems in which the chemical potential, pressure,
and temperature can be controlled independently. We have
also shown with some examples that repulsive interactions can
hold a nonadditive system in equilibrium under completely
open conditions. While the implementation of the proposed
scheme does not present any further difficulties other than
those inherently associated with the isobaric-isothermal and
grand canonical ensembles, we remark that nonadditivity is
required to observe equilibrium states in the unconstrained
ensemble. The proposed method paves the way for new devel-
opments in simulations of systems that exchange heat, work,
and matter with their environment. Beyond long-range inter-
acting systems and confined systems as considered here, such
environmental conditions can be relevant, e.g., in small self-
assembled aggregates [29–31] whose structures are stabilized
by the competition of repulsive and attractive interactions.
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