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Barcelona, Spain

Abstract AMPARs control fast synaptic communication between neurons and their function

relies on auxiliary subunits, which importantly modulate channel properties. Although it has been

suggested that AMPARs can bind to TARPs with variable stoichiometry, little is known about the

effect that this stoichiometry exerts on certain AMPAR properties. Here we have found that

AMPARs show a clear stoichiometry-dependent modulation by the prototypical TARP g2 although

the receptor still needs to be fully saturated with g2 to show some typical TARP-induced

characteristics (i.e. an increase in channel conductance). We also uncovered important differences in

the stoichiometric modulation between calcium-permeable and calcium-impermeable AMPARs.

Moreover, in heteromeric AMPARs, g2 positioning in the complex is important to exert certain

TARP-dependent features. Finally, by comparing data from recombinant receptors with

endogenous AMPAR currents from mouse cerebellar granule cells, we have determined a likely

presence of two g2 molecules at somatic receptors in this cell type.

Introduction
Glutamate is a crucial neurotransmitter in the central nervous system (CNS), mediating the vast

majority of the fast-excitatory synaptic transmission acting on postsynaptic ionotropic glutamate

receptors. Among these, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors

(AMPARs) are fundamental players in the synaptic course besides their pivotal role as regulators of

synaptic plasticity. AMPARs are homo or heterotetrameric structures composed of four GluA subu-

nits (GluA1-4) (Traynelis et al., 2010) and their biophysical properties are dramatically changed

depending on the subunits that conform the ion channel, with the presence or absence of the GluA2

subunit a critical determinant of channel behaviour. In particular, while GluA2-lacking AMPARs are

permeable to both Na+ and Ca2+ ions, AMPARs containing the GluA2 subunit are impermeable to

Ca2+. GluA2-containing AMPARs do not allow Ca2+ influx through the channel due to an RNA edit-

ing process that results in the replacement of a neutral glutamine for the positive amino acid argi-

nine in the cation selectivity filter region of this subunit at the so-called Q/R site (Hollmann et al.,

1991; Burnashev et al., 1992). GluA2-exclusive RNA editing process occurs in 99% of native GluA2

subunits (Geiger et al., 1995; Kawahara et al., 2003). This change not only affects Ca2+ permeabil-

ity but also single-channel conductance, which is decreased in GluA2-containing AMPARs mainly

due to the lack of Ca2+ permeability (Swanson et al., 1997). Editing at the Q/R site also impairs the

blocking effect of endogenous polyamines on these receptors at depolarized membrane potentials

compared to GluA2-lacking AMPARs, which are strongly blocked by spermine (Bowie and Mayer,

1995; Kamboj et al., 1995; Koh et al., 1995). Thus, AMPARs are frequently classified as Ca2+-

impermeable vs. Ca2+-permeable (CI vs. CP-AMPARs – or GluA2-containing vs. GluA2-lacking).

Finally, the Q/R editing of the GluA2 subunit powerfully influences AMPAR tetramerization and
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strongly disfavours formation of GluA2 homotetramers (Greger et al., 2003) although a marginal

population of GluA2 homomers (~1%) have been found to reach the plasma membrane in vivo

(Zhao et al., 2019).

While AMPAR gating – and also trafficking – properties are determined by their subunit composi-

tion, these features are also strongly dependent on AMPAR-associated transmembrane proteins that

behave as auxiliary subunits of the receptor. In the last 15 years, the number of interacting proteins

that can act as modulatory partners of AMPARs has vastly increased. Stargazin and other TARPs

(Transmembrane AMPAR Regulatory Proteins) were the first AMPAR-modulating proteins to be dis-

covered (Chen et al., 2000; Tomita et al., 2003). TARPs are one of the most studied AMPAR auxil-

iary proteins because of their indispensable role in neuronal physiology (see Payne, 2008 for review)

and in different types of synaptic plasticity (Rouach et al., 2005; Louros et al., 2014; Sullivan et al.,

2017; Louros et al., 2018). It is well-known that members of the TARP family can modify biophysical

properties of AMPARs by increasing conductance, slowing down kinetics or diminishing polyamine

block in CP-AMPARs (Straub and Tomita, 2012; Haering et al., 2014; Jackson and Nicoll, 2011;

Greger et al., 2017). Furthermore, TARPs can modify AMPAR pharmacology such as kainate-evoked

responses (Turetsky et al., 2005; Kott et al., 2007). However, much less is known about the num-

ber of TARP molecules that can be present in an AMPAR complex although AMPAR/TARP stoichi-

ometry has been investigated by single-molecule subunit counting (Hastie et al., 2013) and

electrophysiological studies, which demonstrated that AMPAR efficiency to kainate varies depending

on the number of TARPs present in the receptor (Shi et al., 2009). More recently, functional studies

together with high definition structural data provided evidence for a favoured 2-TARP per AMPAR

stoichiometry (Dawe et al., 2019; Herguedas et al., 2019). However, with only a small number of

studies investigating AMPAR/TARP stoichiometry, it is still not established whether TARPs can mod-

ulate AMPARs in a stoichiometry dependent manner.

In the present work we have determined how the number of g2 (the prototypical TARP) per

AMPAR complex modifies the biophysical properties of these receptors in a stoichiometry depen-

dent manner in both CP and CI-AMPARs. To approach this issue, we have used AMPAR/TARP fusion

proteins to fix stoichiometries of 2 and 4 TARPs per AMPAR. Our results show a complex stoichiom-

etry-dependent modulation with important differences observed between CP and CI-AMPARs.

Moreover, we have attempted to reveal the endogenous functional AMPAR/TARP stoichiometry in

cerebellar granule cells (CGCs) by correlating results obtained in recombinant AMPARs with record-

ings on CGC cultures. We have taken advantage that this cerebellar neuronal type expresses a lim-

ited variety of GluA and TARP subunits together with a lack of cornichons expression on the plasma

membrane (another important AMPAR auxiliary protein) (Schwenk et al., 2009; Shi et al., 2010).

We propose that just 2 molecules of the TARP family (specifically g2) determine functional somatic

AMPAR properties in CGCs acting in a complex manner on both GluA2 and GluA4c subunits.

Results

g2 induce a graded change in CP-AMPAR kinetics
The archetypal TARP g2 slows deactivation and desensitization of AMPAR-mediated responses

(Priel et al., 2005), as observed with the other members of the TARP family (Soto et al., 2009).

However, the potential impact of a different TARP stoichiometry on AMPAR kinetics is quite

unknown. We wondered whether an increasing number of TARP subunits present into the AMPAR

complex modulates channel properties in a graded way or whether the presence of two TARP mole-

cules is enough to provide AMPARs with a TARPed behaviour. We studied two fixed stoichiometries

using the fusion protein GluA1:g2, which comprises GluA1 and g2 in the same protein product that

has been previously validated (Soto et al., 2014). We co-transfected tsA201 cells with GluA1 and/or

GluA1:g2 in such a way that GluA1 homomeric CP-AMPARs had zero, putatively two or four TARPs

per receptor. Then we extracted outside-out patches from transfected cells, and we applied a 10

mM glutamate step during 100 ms with a piezoelectric controller to acquire fast AMPAR-mediated

responses.

We analysed desensitization kinetics of GluA1 homomeric receptors in these three conditions.

Desensitization of GluA1 in the presence of the saturating concentration of glutamate – measured as

the weighted time constant (tw) – showed a clear TARP dependence with an increase in
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desensitization time as the number of g2 units in the complex increased (2.32 ± 0.16 ms, 3.77 ± 0.39

ms and 6.70 ± 0.41 ms for 0-TARPs, 2-TARPs and 4-TARPs respectively; p<0.05 for comparisons

between all groups; one-way ANOVA; Figure 1A–B).

In contrast to the well-defined step changes observed for desensitization kinetics, there was not a

crystal-clear graded change in steady state current (Figure 1C). A significant change was detected

when the CP-AMPAR was fully saturated with TARPs (2.78 ± 1.04% for 0-TARPs vs. 13.95 ± 1.85%
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Figure 1. CP-AMPAR kinetics are differentially affected by AMPAR-TARP stoichiometry. (A) Traces evoked at �60 mV by rapid application of 10 mM

glutamate to outside-out patches from cells expressing GluA1 alone (black; average of 39 responses) or together with 2 (blue; average of 37 responses)

or 4 (red; average of 67 responses) g2 subunits. (B) Pooled data of the weighted time constant of desensitization (tw, des). Box-and-whisker plots indicate

the median value (gray line), the 25–75th percentiles (box), and the 10–90th percentiles (whiskers); crosses and open circles represent mean and the

individual experimental values respectively. (C) Pooled data showing the increase in the steady state current only in 4 TARPed CP-AMPARs. (D) Rise

time of glutamate-activated currents is not affected by TARPs. The data from this figure containing statistical tests applied, exact sample number, p

values and details of replicates are available in ‘Figure 1—source data 1’.

The online version of this article includes the following source data for figure 1:

Source data 1. Kinetic properties of CP-AMPARs.
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for 4-TARPs; p<0.001; one-way ANOVA) although a graded variation cannot be discarded since 2-

TARPs and 4-TARPs conditions significantly differed (5.58 ± 1.70% for 2-TARPs vs. 13.95 ± 1.85% for

4-TARPs; p<0.01).

We next analysed the kinetics of the current activation (rise time) and we did not observe a signif-

icant increase in the time to reach the peak current (0.46 ± 0.06 ms, 0.61 ± 0.12 ms and 0.67 ± 0.08

ms for 0-TARPs, 2-TARPs and 4-TARPs respectively; one-way ANOVA; p>0.05 for all comparisons

between groups; Figure 1D).

TARPs also speed the recovery from desensitization of AMPARs (Priel et al., 2005; Gill et al.,

2012; Cais et al., 2014; Carbone and Plested, 2016) so we checked if this phenomenon was stoi-

chiometry dependent. We applied paired pulses of glutamate separated by 20 to 720 ms intervals

onto patches from cells expressing GluA1, GluA1+GluA1:g2 or GluA1:g2. Figure 2A shows typical

recordings for the three conditions mentioned above. We then calculated the desensitization recov-

ery rate and we observed a graded effect, with the 2-TARPs condition halfway between the slow

recovery of 0-TARPs and the quicker recovery of 4-TARPs (Figure 2B). Specifically, we found time

constants (t) of 98.57 ± 7.35 ms for 0-TARPs, 68.91 ± 5.92 ms for 2-TARPs and 53.86 ± 4.78 ms for 4-

TARPs (Figure 2C; n = 9, 14 and 10 respectively). Despite the seemingly graded effect due to a vari-

able stoichiometry, we did not find differences between the 2-TARP and 4-TARP conditions (p>0.05;

one-way ANOVA).

CP-AMPAR polyamine block attenuation strongly depends on g2
dosage
An important canonical property of CP-AMPARs is the strong intracellular polyamine block of the

channel especially at depolarized potentials, which translates into a characteristic inwardly rectifying

current-voltage relationship (Kamboj et al., 1995). This strong block by polyamines is attenuated as

a consequence of TARP modulation (Soto et al., 2007; Soto et al., 2009). Thus, we investigated if

this weakening of the block followed a stepwise pattern similar to the one observed for desensitiza-

tion kinetics. A strong dependence on the number of g2 molecules associated with the CP-AMPAR

in such attenuation across different membrane voltages was observed (Figure 3A–B). The rectifica-

tion index (RI; +60 mV /-60 mV; Figure 3C) clearly demonstrates a stoichiometry dependence of g2-

mediated attenuation of spermine block (0.056 ± 0.004 for 0-TARPs; 0.128 ± 0.011 for 2-TARPs and

0.274 ± 0.021 for 4-TARPs; p<0.05 for comparisons between all groups; one-way ANOVA).

The results obtained in Figures 1–3 supported the idea of a graded modulation of GluA1 homo-

meric receptors depending on the number of TARPs. However, the possibility existed that in the

studied 2-TARPed condition there was a mixture of two distinct populations of AMPARs (0-TARPed

and 4-TARPed) rather than a pure population of heteromeric GluA1-GluA1:g2. This would account

for the intermediate phenotype observed in most of the parameters analysed. Therefore, we

decided to transfect tsA201 cells with GluA1(Q) together with its edited variant GluA1(R) and use

the polyamine block as an indicator of the existence of an heteromeric population. GluA1(Q) homo-

mers are strongly blocked by polyamines and since GluA1(R) homomers are strongly disfavoured, a

linear response would be indicative of a GluA1(Q)-GluA1(R) heteromeric receptor. We set the RI cut

point as 0.7, considering a lower value in the responses as evidence for a substantial contamination

with GluA1(Q) homomers. We found that 80% of the responses showed a RI >0.7 (8 out of 10

recordings). When we co-transfected GluA1(Q):g2 with GluA1(R) we observed RIs above 0.7 in all

recorded patches (n = 9), a percentage that did not differ from the TARPless condition (p=0.4737;

Fisher’s exact test). We examined the desensitization kinetics of these recordings to confirm the

effect of g2 in the complex. Importantly, as detected with GluA1(Q) forms, in the GluA1(R)-contain-

ing receptors the weighted time constant (tw) of the TARPed receptor was slowed significantly com-

pared with the TARPless receptor (2.87 ± 0.47 for 0-TARPs vs. 4.32 ± 0.46 for 2-TARPs; p<0.05;

student’s t-test; data not shown). This suggests that the results obtained in the 2-TARPed conditions

with GluA1(Q) from Figures 1–3 were acquired putatively from a major 2-TARPed population,

although it cannot be completely ruled out the presence of a small amount of ‘contaminating’ homo-

meric AMPARs.
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CP-AMPAR conductance increase by g2 needs a fully saturated receptor
We next performed non-stationary fluctuation analysis (NSFA) to obtain single-channel conductance

and peak open probability from these macroscopic responses. Figure 4A shows representative

responses from TARPless, 2 TARPed and 4 TARPed AMPARs together with their corresponding

NSFA (Figure 4B). We obtained conductance values for TARPless GluA1 homomeric receptors

(16.58 ± 0.69 pS; Figure 4C) similar to conductance values of 16.53 pS we previously described in

the laboratory (Gratacòs-Batlle et al., 2014). As expected GluA1:g2 fusion protein (4-TARPed)

responses were increased ~1.4–1.5 fold as previously described when GluA1 is co-transfected

Figure 2. Recovery from desensitization of CP-AMPARs is enhanced in a graded manner with increased g2. (A) Representative traces of a two-pulse

protocol with increasing time interval between pulses for CP-AMPAR without g2 TARP (GluA1 homomers; black), with 2 g2 TARPs (blue) and with 4 g2

TARPs (red). (B) Recovery from desensitization dynamics where it can be observed a gradual diminishment in the time needed to recover as the number

of g2 increases. (C) Recovery time constant values for the experiments showed in A and B. The data from this figure containing statistical tests applied,

exact sample number, p values and details of replicates are available in ‘Figure 2—source data 1’.

The online version of this article includes the following source data for figure 2:

Source data 1. Recovery from desensitization of CP-AMPARs.
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together with g2 (Soto et al., 2014) (16.58 ± 0.69 pS for 0-TARP vs. 24.34 ± 1.69 pS for 4-TARP;

p<0.01; n = 10 and 16 respectively; Figure 4B–C). Surprisingly, the 2-TARP condition (co-transfec-

tion of GluA1 and GluA1:g2) did not increase single-channel conductance (16.58 ± 0.69 pS for 0-

TARP vs. 17.03 ± 2.06 pS for 2-TARP; p>0.05; n = 10 for both conditions), indicating that 2

g2 molecules were not sufficient to increase AMPAR conductance.

While it is true that TARPs have a profound effect on single channel conductance of AMPARs

(Soto et al., 2007; Soto et al., 2009) their effect on the open probability is more controversial.
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Figure 3. CP-AMPAR polyamine block attenuation is dependent on TARP dosage. (A) Representative glutamate-evoked currents from outside-out

patches at different membrane potentials from �80 to +80 in 20 mV increments from cells expressing CP-AMPARs, GluA1 (black), GluA1+GluA1: g2

(blue) and GluA1: g2 (red). Bottom: Traces at +60 mV and �60 mV membrane potentials are marked. (B) I-V relationships constructed from glutamate-

evoked peak currents of patches held at different membrane potentials in different AMPAR-TARP stoichiometries. (C) Pooled data showing an increase

in the RI as the number of TARPs per CP-AMPAR increases. The RI in 2 (blue) and 4 (red, 4 TARPed) TARPs per CP-AMPAR complex is higher compared

with 0 TARPs (white, TARPless). Box-and-whiskers plots meaning as in Figure 1. The data from this figure containing statistical tests applied, exact

sample number, p values and details of replicates are available in ‘Figure 3—source data 1’.

The online version of this article includes the following source data for figure 3:

Source data 1. Polyamine block attenuation of CP-AMPARs.
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Figure 4 continued on next page
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Some studies have shown an increase of open probability in AMPARs mediated by g2 (Suzuki et al.,

2008) while others have not observed such an increase with g2 nor with other members of the TARP

I subfamily (Soto et al., 2007; Shi et al., 2010). The NSFA allows determination of the number of

channels contributing to a given response besides of the unitary conductance. Henceforth, peak

open probability (Po,peak) can be easily deduced from the experimental mean peak current analysed.

We determined the Po,peak of CP-AMPARs when 0, 2 or 4 g2 were forming part of the complex. As

shown in Figure 4D, we did not find any increase of Po,peak regardless of the amount of g2 in the

AMPAR complex (0.54 ± 0.06, 0.47 ± 0.06 and 0.62 ± 0.05 for 0-TARPs, 2-TARPs and 4-TARPs.

p>0.05 for all comparisons between groups. One-way ANOVA; n = 9,10 and 17 respectively).

Characterization of GluA4c
In order to study the effect of stoichiometry on heteromeric GluA2-containing CI-AMPARs, we

focused on GluA2/GluA4, the putative AMPAR present in CGCs (Mosbacher et al., 1994). However,

an alternative splicing short isoform of GluA4 – GluA4c – is highly expressed in CGCs (Gallo et al.,

1992; Kawahara et al., 2004) and we thus considered that GluA2/GluA4c would be a better read-

out of CGC AMPARs. Consequently, the examination of this specific combination would permit us

to study CI-AMPARs and compare later on the results from expression systems with data extracted

from CGCs.

We first explored the behaviour of homomeric GluA4c(flip) receptors – referred hereafter as

GluA4c – given the relative scarce data of GluA4c in the literature. When long and short forms of

GluA4 were compared we observed that GluA4c homomeric AMPARs were functionally identical to

GluA4 homomers. No differences were spotted in the single channel conductance or peak open

probability (Figure 4—figure supplement 1A–B) measured by means of NSFA. Likewise, desensiti-

zation kinetics did not differ between both isoforms (Figure 4—figure supplement 1C). Finally,

both homomeric receptors presented the same degree of intracellular block by spermine (Figure 4—

figure supplement 1D–E).

CI-AMPAR channel conductance is differentially affected depending on
g2 location within AMPAR complex
Once GluA4c was validated, we created a GluA4c:g2 fusion protein to study AMPAR/TARP stoichi-

ometry in CI-AMPARs. Unlike homomeric GluA1 receptors, in a heteromeric receptor such as GluA2/

GluA4c, a 2-TARPed configuration might be achieved by locating the TARPs either in the GluA2 or

in GluA4c subunit. Since this might be relevant, we co-transfected GluA2, GluA4c, GluA2:g2 or

GluA4c:g2 to obtain 0-TARPed, 2-TARPed in GluA4c, 2-TARPed in GluA2 or a fully TARPed hetero-

meric AMPARs. We studied responses in out-side out patches where GluA2 presence into the

AMPAR was evaluated with the linearity of the responses (Figure 5A).

NSFA performed on glutamate-evoked responses of patches from tsA201 cells transfected with

different combinations (Figure 5B–C) depicted a remarkable effect not observed with CP-AMPARs.

Although any number of g2 molecules into the CI-AMPAR was sufficient to increase single channel

conductance as reported previously (Jackson et al., 2011) (p<0.01 for all comparisons between 0-

TARPs and the other TARPed groups; Figure 5C–D), the g2 location within the complex was impor-

tant in determining the extent of conductance increase. Specifically, g2 intensified its effect on single

channel conductance when it was attached to GluA2 subunit compared with GluA4c (15.85 ± 1.62

pS vs. 9.72 ± 1.09 pS for g2 attached to GluA2 or GluA4c respectively; p<0.01; n = 10 and 20

patches), which represents a 309% and an 189% conductance increase respect to GluA2/GluA4c

Figure 4 continued

variance and error bars denote SEM. Single channel conductance values for these recordings are presented. (C) Pooled data showing an increase of the

single channel conductance only in a full-TARPed CP-AMPAR. (D) Pooled data for peak open probability of CP-AMPARs. The data from this figure

containing statistical tests applied, exact sample number, p values and details of replicates are available in ‘Figure 4—source data 1’.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Channel conductance of CP-AMPARs.

Figure supplement 1. Short and long isoforms of GluA4 show the same electrophysiological behaviour.

Figure supplement 1—source data 1. Source data.
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Figure 5. Single channel conductance of CI-AMPARs is modulated differently by TARPs depending on their location within the complex. (A) Evoked

currents by rapid application of 10 mM glutamate from membrane patches at +60 mV (upward traces) and �60 mV (downward traces) with their

corresponding RI. The experimental conditions are designated as grey for 0 TARPs per AMPAR, blue for 2 TARPs per AMPAR with g2 linked to GluA4c,

purple for 2 TARPs per AMPAR with g2 linked to GluA2 and red for 4 TARPs per AMPAR. (B) Average traces of current responses evoked at �60 mV

Figure 5 continued on next page
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(5.13 ± 0.50 pS). Finally, peak open probability deduced from the same NSFA did not seem to be

affected regardless of the number of TARP molecules or their location on GluA2-containing hetero-

mers (Figure 5E).

TARP g2 linked to GluA4c slows down desensitization kinetics of CI-
AMPARs
The striking observation about a differential modulation of g2 depending on its particular position

into the receptor prompted us to investigate whether other properties of CI-AMPARs were also

affected differentially when g2 was linked to a specific subunit. Figure 6A–B shows that desensitiza-

tion kinetics of GluA2/GluA4c heteromeric combination (0T) were slowed down only when g2 was

linked to GluA4c subunit irrespective of a 2- or 4-TARP stoichiometry. Indeed, the kinetics of GluA2/

GluA4c:g2 – 2T(A4c) – were not different from GluA2:g2/GluA4c:g2–4T – (7.23 ± 0.43 ms for 2T(A4c)

vs. 8.43 ± 0.61 ms for 4T; p>0.05; n = 21 and 20 respectively; Figure 6C) while both combinations

were slower than 0T or 2T(A2) (p<0.05; Figure 6C). Finally, g2 linked to GluA2 subunits did not

seem to affect GluA2/GluA4c desensitization (4.76 ± 0.28 ms for 0T vs. 5.42 ± 0.40 ms for 2T(A2);

p>0.05; n = 14 and 11, respectively). Thus, kinetic behaviour in CI-AMPARs is apparently not

changed by g2 unless the TARP is attached to GluA4c subunit. Concerning the activation time to

reach the peak current (rise time), we did not notice any variation amongst the different combina-

tions tested (Figure 6D).

TARP g2 hinders recovery from desensitization of CI-AMPARs by acting
on specific subunits
We also checked how recovery from desensitization of GluA2/GluA4c heteromers was affected by

distinct TARP stoichiometries. Previous reports have shown that the recovery of GluA2 is unaffected

by g2 (Cais et al., 2014). In line with this work, we did not observe faster recoveries regardless of

the amount of TARP present into the AMPAR, contrary to what happened in CP-AMPARs. Interest-

ingly, we found that recovery from desensitization was significantly slowed in the 2T(A2) receptor

(Figure 6E–G).

CI-AMPAR pharmacology is altered depending on their TARP
stoichiometry
A previous study revealed that AMPAR efficiency to the partial agonist kainate is enhanced as the

number of TARPs in the AMPAR complex increase (Shi et al., 2009). We wondered whether peram-

panel, a non-competitive inhibitor of AMPARs, would vary its blocking effect depending on the num-

ber of TARPs present on AMPARs. To address this question, we performed recordings where we

rapidly applied perampanel in a set of experiments where whole-cell currents were activated in

transfected tsA201 held at �60 mV with 100 mM AMPA plus 50 mM cyclothiazide to avoid desensiti-

zation (Figure 6—figure supplement 1A). The outcome of those experiments did show the same

pattern as the one found for desensitization: TARP g2 modified the percentage of block only when

attached to GluA4c subunit. CI-AMPARs with 2 TARPs at the GluA2 subunit displayed a similar block

as TARPless CI-AMPARs (47.33 ± 5.95% for 0T vs. 46.13 ± 5.47% for 2T(A2); p>0.05; n = 6 and 5,

respectively; Figure 6—figure supplement 1C). However, the block by perampanel in a 2-TARPed

at GluA4c (70.65 ± 8.06; n = 7) and in a 4-TARPed CI-AMPARs (71.64 ± 6.76; n = 6) was higher than

for TARPless receptors (p<0.05 for 0T vs. 2T(A4c) and 0T vs. 4T).

Figure 5 continued

used for NSNA shown in black overlaid with a representative single response. Insets show the studied combination. (C) Current-variance plots for the

recordings shown in B, with the weighted single-channel conductance for the single recordings. (D) Pooled data showing a distinct degree in single

channel conductance increase when g2 is present into the AMPAR complex. (E) Pooled data for peak open probability of CI-AMPARs, where no effect

of TARP stoichiometry was evident. The data from this figure containing statistical tests applied, exact sample number, p values and details of

replicates are available in ‘Figure 5—source data 1’.

The online version of this article includes the following source data for figure 5:

Source data 1. KInetic properties of CI-AMPARs.

Miguez-Cabello et al. eLife 2020;9:e53946. DOI: https://doi.org/10.7554/eLife.53946 10 of 24

Research article Neuroscience

https://doi.org/10.7554/eLife.53946


20 ms

2
0

 p
A

20 ms

2
0

 p
A

20 ms

5
0

 p
A

20 ms

5
0

 p
A

0 TARPs 2 TARPs (A4c) 4 TARPs2 TARPs (A2)

0T = 4.78 ms

2T-A4c = 7.43 ms

4T = 7.79 ms

2T-A2 = 4.94 ms

5 ms
20 pA

50 pA
20 pA
50 pA

A

B

C

0

5

10

15

20

0T 2T(A4c) 4T2T(A2)

D
e
se

n
si

tiz
a
tio

n
 t
im

e
 c

o
n
st

a
n
t 
(m

s)

D

0

0.5

1

1.5

R
is

e
 T

im
e
 (

m
s
)

0T 2T(A4c) 4T2T(A2)

*
****

** ***

E F

G

25 ms

1
0

 p
A

25 ms

5
0

 p
A

0 TARPs

2 TARPs (A2)

0

20

40

60

80

100

100 200 300 400 500 6000

R
e
co

ve
ry

 f
ro

m
 d

e
se

n
si

tiz
a
tio

n
 (
%

)

Time interval (ms)

0 TARPs

2 TARPs (A4c)

4 TARPs

2 TARPs (A2)

0

100

50

150

200

0TARP 2TARP(A4c) 4TARP2TARP(A2)

ns

**

R
e
c
o
v
e
ry

 T
im

e

C
o
n
s
ta

n
t 
(m

s
)

****
****

****
****

Figure 6. CI-AMPAR kinetics differ upon g2 attachment to GluA4c or GluA2 subunit. (A) Representative traces of currents at �60 mV from cells

expressing CI-AMPARs without or with TARP g2 linked to GluA subunits. Under the traces a scheme of the subunits forming the receptors with g2

associated to different AMPAR subunits is shown. (B) Peak-scaled normalization from traces shown in A for a better comparison of desensitization

kinetics. (C) Weighted time constant of desensitization (tw,des) where is clear that desensitization is slowed only when g2 is linked to GluA4c subunit. (D)

Rise time of the current activation is not changed by the AMPAR-TARP stoichiometry. (E) Representative traces monitoring recovery from

desensitization for CI-AMPAR in cells expressing 0 TARPs or 2 TARPs linked to GluA2 subunit where it is manifest the difference between the two

Figure 6 continued on next page
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CL mutation differentially blunts g2 function in CP- and CI-AMPARs
We next decided to inquire into the differential effect of g2 fused to either GluA2 (conductance) or

GluA4c (kinetics) in CI-AMPARs. Specifically, we wanted to ascertain if g2 was acting on the subunit

that it was fused to or, on the contrary, it was operating on the non-fused subunit. To address this

question, we decided to selectively blunt g2 function on either GluA2 or GluA4c by using the CL

mutation (Hawken et al., 2017). This point mutation in the first TM domain of AMPAR subunit does

not interfere with the binding of both proteins but prevents g2 from modulating the kinetics of

AMPARs.

First, we validated the CL mutation in a fully TARPed homomeric CP-AMPAR. When we com-

pared responses from cells transfected with either GluA4c:g2 or GluA4c(C550L):g2, we confirmed

that the slowing of desensitization kinetics caused by g2 was prevented in the C550L mutated recep-

tor (6.31 ± 0.80 ms for GluA4c:g2 vs. 3.60 ± 0.60 ms for GluA4c(C550L):g2; p=0.036; student’s t-test;

n = 11 and 6, respectively; Figure 6—figure supplement 2A) as previously reported for a CP-

AMPAR (Hawken et al., 2017). Moreover, we expanded the previously described CL mutation

blunting effects by observing that it had also a dampening effect on single channel conductance

modulation, avoiding the typical increase induced by g2 (Soto et al., 2007) (23.84 ± 1.87 pS for

GluA4c:g2 vs. 17.46 ± 2.99 pS for GluA4c(C550L):g2; p=0.031; student’s t-test; n = 10 and 6, respec-

tively; Figure 6—figure supplement 2B).

Then, we explored the CL mutation on GluA2/GluA4c CI-AMPARs. The blunting C550L mutation

did not prevent the slowing of kinetics caused by g2 attached to GluA4c (p=0.9189; student’s t-test;

n = 21 and 12, respectively; Figure 6—figure supplement 2D), However, the milder increase in con-

ductance caused by g2 when it is attached to GluA4c (9.72 ± 1.09 pS – 2T(A4c)) was avoided and

conductance levels were very similar to the ones seen in TARPless condition (6.03 ± 0.63 pS in 2T

(A4c(550L)) vs. 5.15 ± 0.50 pS in 0T; p=0.2775; Figure 6—figure supplement 2F). Surprisingly, the

C549L mutation on GluA2 did not affect the increase in conductance caused by g2 when it is linked

to GluA2 (p=0.8556; student’s t-test; n = 10 and 6, respectively; Figure 6—figure supplement 2E).

Moreover, no effect on CL mutation was observed in 4T condition with both subunits mutated (data

not shown). The results denote a complex situation in which the CL mutation does not have a clear

effect as occurs with homomeric AMPARs.

Somatic AMPARs from cerebellar granule cells display features of 2-
TARPed AMPARs
CGCs have a high expression of GluA2 and GluA4c AMPAR subunits. Besides, these neurons only

express two TARPs (g2 and g7) (Fukaya et al., 2005) and no other auxiliary subunits such as corni-

chons have been described to be functionally present. While g2 has been proved to be essential in

AMPAR signalling in this cell type (Chen et al., 2000), the role of g7 does not seem to be important

to determine CI-AMPAR expression in granule cells (Studniarczyk et al., 2013). This converts CGCs

into a well-defined system to study AMPARs. Thus, to determine whether CI-AMPARs in CGCs

showed properties indicative of a given TARP stoichiometry, we firstly extracted somatic patches

from 6 to 8 days in vitro CGC cultures (Figure 7A) and applied the selective agonist AMPA at 100

mM. We obtained non-rectifying responses such as the one shown in Figure 7B and performed

NSFA (Figure 7C–D) to extract single channel conductance and peak open probability values from

the recorded responses (Figure 7E–F; orange boxes), and we also calculated desensitization values

Figure 6 continued

conditions. (F) Recovery of desensitization kinetics showing a relatively slow recovery only in 2-TARPed (located in GluA2) CI-AMPARs. (G) Recovery

time constant values for the experiments showed in E and F. The data from this figure containing statistical tests applied, exact sample number, p

values and details of replicates are available in ‘Figure 6—source data 1’.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Channel conductance of CI-AMPARs.

Figure supplement 1. The block of the non-competitive antagonist perampanel varies with AMPAR-TARP stoichiometry.

Figure supplement 1—source data 1. Source data.

Figure supplement 2. Effect of C549L and C550L AMPAR mutations in AMPAR-TARP modulation.

Figure supplement 2—source data 1. Source data.
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Figure 7. Somatic currents from CGCs exhibit properties of GluA2:g2 + GluA4c CI-AMPARs. (A) CGCs in culture after 7 days in vitro. (B) Traces at +60

mV and �60 mV evoked with 100 mM AMPA from a CGC somatic patch showing the typical lineal response of a CI-AMPAR. (C) Representative

response of current evoked at �60 mV by rapid application of 100 mM AMPA to somatic patches from CGCs. Grey: representative single response;

black: average of 275 stable responses. (D) NSFA from the recording in C. (E) Data showing comparison of single channel conductance values obtained

Figure 7 continued on next page
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from those same patches (Figure 7G; orange box). We next compared those results with the ones

obtained in expression systems shown previously in Figures 5 and 6. Figure 7E to G show, for each

analysed parameter, the CGCs results (orange box) together with the different combinations ana-

lysed in which dull colours represent the comparable combinations (with no significant differences)

and in light grey the improbable combination responsible for currents found in CGCs (p<0.05).

Taken together, it was clear that values obtained from CGCs were closely equivalent to values from

recombinant receptors only for a 2-TARPed CI-AMPAR with the two TARP molecules linked to the

GluA2 subunit.

We next studied the recovery from desensitization in CGCs and compared the results with the dif-

ferent CI-AMPAR combinations analysed in this study. Surprisingly, we consistently recorded cur-

rents with an exceptionally slow recovery that were different from any CI-AMPAR studied

(Figure 7I). Given that no other TARP seems to be present on CGCs except g7, we wondered if this

auxiliary subunit was responsible for the extraordinary slow recovery seen on AMPARs from CGCs.

We examined the presence/absence of g7 by applying a 20 s jump of AMPA to CGC somatic

patches. This type II TARP has been demonstrated to confer a remarkable feature to either homo-

meric and heteromeric GluA2-containing AMPARs consisting in resensitization of the current a few

seconds after desensitization (Kato et al., 2007; Kato et al., 2010). We did not appreciate any

change in desensitized current in the presence of the agonist for the whole recording period

(Figure 7J) ruling out any contribution of g7 to CI-AMPAR currents from somatic CGCs. We also

speculated about the possibility that the use of the selective agonist AMPA to activate the currents

might slow down the recovery from desensitization since AMPA is known to slow this parameter

(Zhang et al., 2006). However, recordings from cell lines expressing GluA2:g2+GluA4c did not vary

when we used AMPA as agonist (Figure 7—figure supplement 1), ruling out this possibility.

All together, these results seem to indicate that CI-AMPARs from somatic CGCs are very possibly

modulated by two g2 in a similar manner as in our 2T(A2) condition.

Discussion
One of the first evidences of a functionally variable AMPAR-TARP stoichiometry came from the

observation that mEPSCs were differentially altered depending on the TARP expression levels

(Milstein et al., 2007). Shortly after, by using fusion constructs similar to the ones used in our study

it was seen that the pharmacology – the kainate efficacy – of recombinant AMPARs was stoichiome-

try-dependent (Shi et al., 2009). This same work suggested that AMPARs from hippocampal pyrami-

dal and dentate gyrus granule neurons were 4 and 2-TARPed, respectively. Finally, a recent work has

provided evidence for the presence of different stoichiometries in cerebellar cells – 2 and 4 TARPed

AMPARs in stellate and Purkinje cells, respectively (Dawe et al., 2019). We have expanded these

previous findings by carefully dissecting the effect of different stoichiometries on basic AMPAR

properties. We demonstrate a sophisticated modulation of TARPs either in CP- and CI-AMPARs and

we propose that 2 TARPs attached on the gating-controlling BD ‘pore distal’ subunit GluA2 modu-

late somatic AMPARs in CGCs in line with recent reports (Herguedas et al., 2019).

Figure 7 continued

in CGCs (orange box) with recordings from transfected cell lines. The conductance values obtained resembled (without significant difference) to the

ones seen with 2T(A2) or 4T conditions (marked in bold grey). (F) Comparison of peak open probability values from CGCs were

no significant differences from recordings in cell lines was observed. (G) Compared data of desensitization time constant (ms) from CGCs with

recordings in tsA201 cells. The results are no significantly different from conditions with 0T or 2T(A2). (H) Representative trace from two-pulse protocol

monitoring recovery from desensitization for CGCs somatic patches to 100 mM AMPA application. (I) Recovery from desensitization kinetics of CGS

somatic AMPARs compared with recoveries of GluA2:GluA4c combinations shown in Figure 6F (in grey). (J) Representative response to a 100 mM AMPA

application for 20 s in a somatic patch from CGCs to test for the presence of g7. No re-sensitization of the receptors is observed in the trace. Inset:

magnification of 200 ms showing the initial fast desensitizing response. The data from this figure containing statistical tests applied, exact sample

number, p values and details of replicates are available in ‘Figure 7—source data 1’.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Cerebellar granule cells properties.

Figure supplement 1. Recovery of desensitization kinetics showing no differences between agonists used to evoke currents in 2T(A2) condition.

Figure supplement 1—source data 1. Source data.
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Graded vs. all-or-nothing modulation of CP-AMPARs by g2
We have found a clear stoichiometry dependence for some of the parameters modulated by g2 (i.e:

desensitization kinetics or attenuation of polyamine block). However, a more intricate modulation

appears to be present since a full TARPed GluA1 receptor is necessary to vary other CP-AMPAR

intrinsic properties such as single channel conductance. On the other hand, other characteristics are

not altered by the number of TARPs acting on AMPARs (open probability or rise time). Thus, a multi-

faceted scenario arises regarding how TARPs alter AMPAR behaviour. It might be interesting in the

future to test whether other auxiliary subunits from the TARP family modulate the AMPAR features

studied here, especially single channel conductance since Ib TARPs (g4 and g8) seem to associate

with AMPARs in a 2-TARPed dependent manner (Hastie et al., 2013; Herguedas et al., 2019)

although they clearly produce an increase in AMPAR channel conductance (Shi et al., 2010;

Suzuki et al., 2008; Soto et al., 2009).

In our hands, rise time of the current in GluA1 appears not to be affected by g2 molecules. In line

with that, for this same homomeric AMPAR it has been shown in HEK cells that only TARPs g4 and

g8 are able to increase the period of time to the peak response (Milstein et al., 2007). Previous

mEPSCs recordings from CGCs, which are mediated by CI-AMPARs have revealed no differences in

the rise time of these quantal synaptic currents when the ‘dose’ of TARP g2 was altered into the

receptor by using homozygous or heterozygous stargazer mice (Milstein et al., 2007). Accordingly,

our data of rise time of GluA2/GluA4c seems to indicate that AMPAR current activation is indepen-

dent of the number of TARPs modulating the receptor in CI-AMPARs.

In the present study of CP-AMPAR:TARP stoichiometry a caveat arose when the 2-TARPed condi-

tion (transfection of GluA1 and GluA1:g2 plasmids) was investigated since some homomeric recep-

tors (either TARPless or fully TARPed) might be expressed on the plasma membrane. However,

there is some evidence from this work in favour of a major heteromeric population when both con-

structs are co-transfected. The vast majority of the responses when recording GluA1(Q) + GluA1(R)

were linear since in those conditions – that is, in the presence of GluA1(Q) – it is difficult that GluA1

(R) homomers contribute significantly. In that situation, we observed the same effect in kinetic

desensitization for 0 vs. 2 TARPed AMPARs as the ones seen with GluA1(Q), which supports the

view of a predominant heteromeric population vs. two homomeric ones. Moreover, the fact that

some intrinsic properties are undoubtedly affected in the 2-TARP condition (i.e. polyamine block

attenuation or desensitization) while others are clearly not (channel conductance or rise time), in the

same patches argues in favour of the assembling of mainly heteromeric receptors. Finally, it is worth

mentioning that in crosslinking experiments we have observed an intermediate molecular weight of

surface AMPARs in GluA1 + GluA1:g2 transfection compared with GluA1 transfection (with a band

at a lower weight) or with GluA1:g2 (with a band at a higher molecular weight) suggesting that the

degree of homomeric contamination in a heteromeric condition is minimal (data not shown). Unluck-

ily, we cannot rule out a small presence of a mixed population despite these indications that a major

2-TARPed population exists in the GluA1+GluA1:g2 condition.

CI-AMPAR/TARP stoichiometry in granule cells from the cerebellum
Our experiments indicate that, in terms of TARP presence, 2-TARPed rather than 4-TARPed

AMPARs are responsible for somatic responses in CGCs. In fact, the overexpression of TARP g2 in

this cell type increased kainate affinity (Milstein et al., 2007), indicating that CGCs are not totally

saturated by TARPs since the efficiency to kainate is strongly dependent on the number of TARPs in

the complex (Shi et al., 2009). When comparing the data from GluA2/GluA4c heteromeric receptors

using fusion proteins with those from CGCs, it is evident that neither zero TARPs (low conductance)

nor four TARPs (slow desensitization kinetics) are modulating somatic AMPARs in CGCs. Importantly,

the findings in CGCs closely recapitulated those on expression systems only when 2 TARPs were

attached to GluA2 subunit. It has been suggested that TARP subtypes might have different binding

sites in the AMPAR complex (Greger et al., 2017) on the basis that, for example, only two g4 can

co-assemble with AMPARs as seen with single-molecule photobleaching in live cells (Hastie et al.,

2013).

Hippocampal CA1 neurons express almost exclusively heteromeric CI-AMPARs (Wenthold et al.,

1996; Lu et al., 2009) and present a 2-TARPs stoichiometry together with 2 CNIHs (Gill et al.,

2011). This stoichiometry might not be possible in CGCs due to the lack of cornichon homolog
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proteins (Schwenk et al., 2009). However, in CGCs, g7 could potentially be playing a role at somatic

AMPARs although it has been shown to selectively suppress somatic CI-AMPARs in CGCs

(Studniarczyk et al., 2013) and not to have an important involvement in excitatory transmission

(Yamazaki et al., 2015). The absence of resensitization – a g7 hallmark (Kato et al., 2007) – in CGC

somatic patches rules out g7 functional presence (Figure 7J). Recent reports show evidence that this

recovery of the current upon prolonged agonist application might be a common feature of all TARPs

(Carbone and Plested, 2016) including g2. However, resensitization is a fingerprint that indicates

the presence of 4-TARPed AMPARs (Kato et al., 2010). Indeed, Purkinje cells from stargazer mice,

with low g7 stoichiometry lack this feature (Gill et al., 2011). Thus, the absence of resensitization, a

characteristic signature of a fully TARPed receptor, reinforces the view of a 2-TARPed conformation

in CGCs.

The results in expression systems show that the 2-TARPed stoichiometry (with g2 fused to GluA2)

displayed the slowest recovery from desensitization (Figure 6F) but somatic CGC responses dis-

played even a slower recovery rate. The use of AMPA as agonist in CGC experiments to circumvent

other glutamate-activated receptors – especially kainate receptors present in CGCs (Bahn et al.,

1994; Belcher and Howe, 1997) – might account for the slow recovery since this agonist is known

to speed entry into desensitization and to slow recovery, relative to glutamate (Zhang et al., 2006).

Surprisingly, the use of AMPA as agonist in the 2T(A2) condition did not slow recovery from desensi-

tization compared with glutamate (Figure 7—figure supplement 1). One possible explanation could

be the presence of g2 into the AMPAR. In the absence of TARPs, it has been demonstrated that an

inverse relationship between the affinity of the agonist and recovery from AMPAR desensitization

exist (Zhang et al., 2006). As seen in many studies, g2 causes a drastic reorganization of the com-

plex and a well-known consequence of the presence of g2 is the increased affinity of the receptor for

glutamate (Priel et al., 2005; Tomita et al., 2005). Therefore, the change in the affinity for gluta-

mate induced by g2 might potentially explain that recovery from desensitization in our conditions

was not changed when stimulating with AMPA or glutamate.

On the other hand, the use of AMPA vs. glutamate may also potentially alter the outcome of

other properties. When we checked both agonists on GluA4c, neither weighted single-channel con-

ductance nor open probability were changed (data not shown). Similar channel conductance esti-

mates were reported, regardless of the use of AMPA or glutamate as agonist (Swanson et al.,

1997). Furthermore, for GluA2/GluA4, similar conductance values have been described for both

agonists (5.5–6 pS) (Swanson et al., 1997), matching the values obtained in our and other studies

(Jackson et al., 2011) using the agonist glutamate. Conversely, in our hands, AMPAR desensitization

kinetics of GluA4c seemed to be significantly slower when AMPA was used as agonist (data not

shown) despite previous reports indicating that the kinetic properties of AMPA-activated GluA4

homomers were comparable to those activated by glutamate (Swanson et al., 1997). In principle,

this might confuse the interpretation when comparing recordings in expression systems (glutamate

used as agonist) with neurons (AMPA used as agonist). However, the kinetics of the currents evoked

with AMPA in CGCs were fast – indeed as rapid as the quicker responses observed in expression

systems with glutamate. Therefore, it would be expected that the AMPAR-mediated responses in

CGCs using the agonist glutamate would be even faster than using AMPA as agonist – in any case

kinetics would be overestimated – which still rules out that the possible TARP stoichiometry present

in CGCs were any of the slow combinations: 4 TARPs or 2 TARPs attached to GluA4c.

The remarkably slow recovery of the currents in CGCs could be also attributed to the presence of

CKAMPs in the native AMPAR complex since recovery from desensitization is strongly reduced

either in neurons and heteromeric recombinant AMPARs by the members of the CKAMP family

(Farrow et al., 2015; von Engelhardt et al., 2010; Klaassen et al., 2016). Notably, one of the

members of the family, CKAMP39, is highly expressed in the cerebellum (Farrow et al., 2015;

von Engelhardt, 2019). Considering the reported absence of other members of the TARP family in

CGCs, the functional absence of CNIH2 (Shi et al., 2010) and the really low expression of other

AMPAR auxiliary proteins as GSG1L and CKAMP44 (shisa9) (Zeisel et al., 2018), CKAMP39 might

be a potential good candidate. Future works will elucidate whether this protein plays a role in

AMPARs form CGCs.
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Final remarks
AMPAR responses depend on the subunit composition but also importantly rely on the nature of the

auxiliary subunit/s accompanying them. This work adds important information about the extraordi-

nary degree of functional variety in AMPARs and shows that AMPAR properties can be modulated

differently depending on the number of TARPs, the type of AMPAR and the specific interactions

that these auxiliary subunits set up with a given GluA subunit. The broad number of possible combi-

nations of pore-forming plus auxiliary subunits and stoichiometries that can be achieved on AMPARs

generate a profuse diversity in glutamatergic responses in the brain. One of the major challenges

scientists of the field will face is to resolve the exact composition of the AMPAR complex at different

neurons.

Materials and methods

Animals and housing
C57BL/6N wild-type mice were housed in cages with free access to food and water and were main-

tained under controlled day–night cycles in accordance with the NIH Guide for the Care and Use of

Laboratory Animals, the European Union Directive (2010/63/EU), and the Spanish regulations on the

protection of animals used for research, following a protocol approved and supervised by the CEEA-

UB (Ethical Committee for Animal Research) from University of Barcelona with the license number

OB117/16, of which DS is the responsible researcher.

Cell lines culture and transfection
TsA201 cells have been used in this study. This cell line (also known as HEK293T or 293T) is an

important variant derived from HEK293 cells containing the SV40 Large temperature sensitive T-anti-

gen (293tsA1609neo), that permits the replication of certain type of constructs containing the viral

promoter CMV. This allows for amplification of transfected plasmids and extended temporal expres-

sion of the desired gene products in HEK293T and thus to produce increased levels of recombinant

proteins compared to HEK293. tsA201 cells were a kind gift of Francisco Ciruela (University of Barce-

lona), who purchased them from the American Type Culture Collection (ATCC; Reference CRL-

3216). The ATCC confirmed the identity of HEK293T by STR profiling (STR Profile; CSF1PO: 11,12;

D13S317: 12,14; D16S539: 9,13; D5S818: 8,9; D7S820: 11; TH01: 7, 9.3; TPOX: 11; vWA: 16,19;

Amelogenin: X). After the purchase of the cell line, mycoplasma tests were performed in the labora-

tory on every new defrosted aliquot. Cells were maintained as described in Gratacòs-Batlle et al.,

2014.

Cells were plated into poly-D-lysine coated coverslips 24 hr before transfection at a density of

1.5 � 106 cells/coverslips. Cells were then transiently transfected with 0.8–1 mg total cDNA using PEI

reagent (1 mg/ml) in a 3:1 ratio (PEI:DNA) according to the manufacturer’s directions. The ratio of

cDNA used in each condition varied depending on the set of experiments.

Constructs
GluA1, GluA2 and GluA4 cDNAs (rat, flip isoforms) were old gifts from S. Heinemann (Salk Institute,

La Jolla, CA, USA) and P. Seeburg (Max Planck Institute, Heidelberg, Germany).

For this work we used the short version of GluA4, namely GluA4c – first described in 1992

(Gallo et al., 1992) – in its flip form. The GluA4c subunit was cloned from mRNA obtained from

adult rat cerebellum (Rattus norvegicus) cerebellum into a pIRES-mCherry plasmidic vector. The pri-

mers used were the following:

Primer Forward (5’�3’): GCGC GCT AGC ATG AGG ATT TGC AGG CAG ATT (GCGC GCT AGC

restriction site cloned using NheI-HF enzyme, catalog: NEB #R3131S).

Primer Reverse (5’�3’): CGCGG CTC GAG ATT CTT AAT ACT TTC GGT TCC A (CGCGG CTC

GAG restriction site cloned using XhoI-HF enzyme, catalog: NEB #R0146S).

GluA1:g2 and GluA2:g2 tandem proteins (into pIRES-GFP vectors) were a generous gift from Ian

Coombs (UCL, London, UK). They were obtained as described in Soto et al., 2014. GluA4c:g2 tan-

dem was subcloned into a pIRES-mCherry vector from the GluA4c and the g2 plasmidic vectors

using the same linker region (nine aa linker: GGGGGEFAT). All constructs have been fully

sequenced.
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Cerebellar granule cells (CGCs) culture
Primary cultures of CGCs were prepared from pups on postnatal day 7–8 as previously described

(Verdaguer et al., 2002). The cerebella from 8 to 10 mice pups were collected in 9.5 ml buffer con-

taining 120 mM NaCl, 5 mM KCl, 25 mM HEPES, and 9.1 mM glucose. Thereafter, meninges were

carefully removed, and cerebella were dissected out, minced carefully with a blade, and dissociated

at 37˚C for 15 min with a solution containing 250 mg /ml trypsin. After 15 min, solution with 2.7 mg/

ml DNAse and 8.32 mg/ml soybean trypsin Inhibitor (SBTI) was added. CGCs were separated from

non-dissociated tissue by sedimentation and, finally, resuspended in basal medium Eagle’s (BME)

supplemented with 10% inactivated fetal calf serum, 25 mM KCl, and gentamycin (5 mg/ml), and

plated onto poly-L-lysine-coated 24-well plates at a density of 300,000 cells/cm2. After 16–19 hr in

culture, cytosine arabinoside was added to a final concentration of 10 mM to inhibit glial cell prolifer-

ation. Electrophysiological experiments were performed at 6 to 8 days after platting.

Generic electrophysiological procedures
Recordings were performed from isolated transfected cells or cerebellar granule cells (CGCs) visual-

ized with an inverted epifluorescence microscope (Axio-Vert.A1; Zeiss). Cells expressing EGFP and/

or mCherry fluorescent proteins were selected for patch-clamp recordings. Macroscopic currents

were recorded at room temperature (22–25˚C) from outside-out membrane patches or from isolated

whole cells using an Axopatch 200B amplifier and acquired using a Digidata 1440A interface board

and pClamp 10 software (Molecular Devices Corporation, Sunnyvale, CA).

For all recordings the extracellular solution contained (in mM): 145 NaCl, 2.5 KCl, 1 CaCl2, 1

MgCl2, 10 glucose and 10 HEPES (pH to 7.42 with NaOH). The extracellular control solution applied

with the fast agonist application tool was composed by extracellular solution diluted 4% with milli-Q

H2O. The extracellular agonist solution applied with the fast agonist application tool was extracellu-

lar solution plus 2.5 mg/ml of sucrose with 10 mM glutamate for tsA201 recordings or 100 mM

AMPA for tsA201 cells and CGC recordings. The intracellular pipette solution contained (in mM):

145 CsCl, 2.5 NaCl, 1 Cs-EGTA, 4 MgATP, and 10 HEPES (pH to 7.2 with CsOH). The polyamine

spermine tetrahydrochloride (Sigma-Aldrich) was added to intracellular solution at 100 mM in all

cases, which has been calculated to yield free concentrations in the physiological range (Soto et al.,

2007).

Patch pipettes were fabricated from borosilicate glass (1.5 mm o.d. and 0.86 mm i.d.; Harvard

Apparatus, Edenbridge, UK) by using a Horizontal puller (Sutter P-97) with several resistances

depending on the configuration used.

Whole-cell recordings
Whole-cell recordings were made from isolated cells using electrodes with a resistance of 3–5 MW,

giving a final series resistance of 5–15 MW. Voltage was held at �60 mV unless otherwise stated.

Currents were low-pass filtered at 2 kHz and digitized at 5 kHz. Receptors were activated by bath

application of 100 mM AMPA plus 50 mM cyclothiazide (CTZ) to prevent receptor desensitization.

Fast agonist application into outside-out patches
Outside-out patches were obtained using electrodes with a resistance of 5–10 MW. Rapid solution

switching at the patch was carried out by piezoelectric translation of a theta-barrel application tool

made from borosilicate glass (1.5 mm o.d.; Sutter Instruments) mounted on a piezoelectric translator

(P-601.30; Physik Instrumente). Control and agonist solutions flowed continuously through the two

barrels of the theta glass and solution exchange occurred when movement of the translator was trig-

gered by a voltage step (pClamp). To enable visualization of the solution interface and to allow mea-

surement of the solution exchange 2.5 mg/ml sucrose was added to the agonist solution and the

control solution was diluted by 4%. Currents were activated by 10 mM glutamate and were low-pass

filtered at 10 kHz and digitized at 50 kHz. At the end of each experiment, the adequacy of the solu-

tion exchange was assessed by destroying the patch and measuring liquid-junction current at the

open pipette; the 10–90% rise time was always <400 ms.
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Recovery from desensitization
To study AMPAR recovery from desensitization, a two-pulse protocol (20 or 25 ms each) was used in

which a first pulse was applied followed by a second pulse at different time intervals (from 20 ms to

720 ms). The paired pulses were separated 1 s to allow full recovery from desensitization. To esti-

mate the percentage of recovery, the magnitude of peak current at the second pulse (P2) was com-

pared with the first one (P1).

Non-stationary fluctuation analysis (NSFA)
To infer channel properties from macroscopic responses, glutamate (10 mM) was applied onto out-

side-out patches (100 ms duration at 1 Hz) and the ensemble variance of all successive pairs of cur-

rent responses was calculated using IGOR Pro 6.06 (Wavemetrics, OR) and NeuroMatic

(Rothman and Silver, 2018). The single-channel current (i), total number of channels (N) and maxi-

mum open probability (Po,max) were then determined by plotting this ensemble variance (s2) against

mean current (I) and fitting with a parabolic function:

s
2 ¼ s

2

B
þ iI�

I
2

N

� �� �

where s
2

B
is the background variance. Along with the expected peak-to-peak variation in the currents

due to stochastic channel gating, some responses showed a gradual decrease in peak amplitude

(run-down of the current). The mean response was calculated from epochs containing 50 to 350 sta-

ble responses, which were identified by using a Spearman rank-order correlation test (NeuroMatic).

The weighted-mean single-channel conductance was calculated from the single-channel current and

the holding potential (being -0.055 V after corrected for liquid-junction potential). Po,peak was esti-

mated by dividing the average peak current by theoretical maximum current (iN).

Kinetics of desensitization
The kinetics of desensitization of glutamate-evoked responses and the kinetics of recovery from

desensitization were fitted according to a double-exponential function to calculate the weighted

time constant (t w;des):

t w;des ¼ t f

Af

Af þAs

� �

þ t s

As

Af þAs

� �

where Af and t f are the amplitude and time constant of the fast component of recovery and As and

t s are the amplitude and time constant of the slow component.

Current-voltage relationships
In order to study the degree of spermine block of CP-AMPARs at different membrane potentials we

applied 10 mM glutamate onto outside-out membrane patches at different holding potentials (from

�80 mV to +80 mV in 20 mV increments) and the peak current was used to construct the current-

voltage relationship.

The rectification index (RI) was defined as the absolute value of glutamate-evoked current at +60

mV divided by that at �60 mV:

RIþ60mV=�60mV ¼
Iþ60mVj j

I�60mVj j

Statistical Analysis
Analysis of current waveforms and curve fitting was performed with IGOR Pro 6.06 (Wavemetrics)

using NeuroMatic 2.03 (Rothman and Silver, 2018; http://www.neuromatic.thinkrandom.com). Sta-

tistical analysis was performed using GraphPad Prism version 8.0.1 for Mac OS X (GraphPad Soft-

ware, San Diego California USA, www.graphpad.com). Comparisons between two groups were

performed using the parametric Student’ t-test for data following a normal distribution or using the

non-parametric Mann-Whitney U test for comparisons between groups in which one of them did not

follow a normal distribution. Normality of data distribution was tested by Shapiro-Wilk normality

test. All statistical differences between three or more groups were examined by one-way ANOVA,
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followed by Newman-Keuls multiple comparisons test. P values < 0.05 were considered statistically

significant as follows: *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001.
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