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Quantum droplets of bosonic mixtures in a one-dimensional optical lattice
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We demonstrate the existence of quantum droplets in two-component one-dimensional Bose-Hubbard chains.
The droplets exist for any strength of repulsive intraspecies interactions provided they are balanced by
comparable attractive interspecies interactions. The ground-state phase diagram is presented and the different
phases are characterized by examining the density profile and off-diagonal one- and two-body correlation
functions. A rich variety of phases is found, including atomic superfluid gases, atomic superfluid droplets,
pair superfluid droplets, pair superfluid gases, and a Mott-insulator phase. A parameter region prone to be
experimentally explored is identified, where the average population per site is lower than three atoms, thus
avoiding three-body losses. Finally, the bipartite entanglement of the droplets is found to have a nontrivial
dependence on the number of particles.
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Ultracold gases trapped in optical lattices provide highly
controllable setups which nowadays implement versatile
quantum simulators for quantum many-body problems [1,2].
A prominent example is the experimental observations of a
quantum zero-temperature phase transition (QPT) [3] between
a weakly interacting superfluid Bose gas and a strongly inter-
acting Mott insulator in three [4,5] and one dimensions [6].

Recently, a whole new class of ultradilute dropletlike quan-
tum liquids has been studied both theoretically [7–10] and ex-
perimentally [11–17]. Such quantum droplets are self-bound
objects and are capable of existing with no external trapping,
similarly to the case of helium droplets [18]. The crucial dif-
ference is that the ultracold atoms provide an unprecedented
control over the tunability of interactions and geometry of
the system. The droplets were first produced in Bose gases
with dipolar interactions [11–13,19] and afterwards in binary
bosonic mixtures with contactlike interactions [14–17]. The
observed equilibrium density can be eight orders of magnitude
smaller than in liquid helium, due to an almost exact compen-
sation between mean-field repulsion and attraction. Moreover,
it was evidenced [7] that the existence of the quantum droplets
itself is a beyond mean-field effect as on the mean-field level
the system collapses.

Arguably, the one-dimensional (1D) case is very promis-
ing. On one hand, in 1D quantum effects are enhanced, and,
on the other hand, stability is increased due to the suppression
of three-body losses [19–22]. Contrary to the 3D case, the
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quantum droplets appear in the regime where at the mean-
field level the system is on average repulsive and predicts a
stable gas [23]. In this case, quantum fluctuations result in an
effective attraction which is able to liquefy the system for an
arbitrary number of particles [24].

In this Rapid Communication we go one step further
and demonstrate the existence of quantum droplets in 1D
Bose-Hubbard mixtures for both small and large interaction
strengths. Computing the ground state with density-matrix
renormalization group (DMRG) methods using TENPY [25],
we obtain the phase diagram of the system in the relevant
parameter region where droplets can be produced. A very
rich phase diagram is obtained, with atomic and pair super-
fluids appearing in both droplet and gas phases. This exciting
scenario is found to be within imminent reach with current
experimental setups.

Two-component Bose-Hubbard model. We study a bosonic
mixture with short-range interactions loaded into a high 1D
optical lattice at zero temperature described by the Bose-
Hubbard Hamiltonian [2]

H = −t
∑

i

∑

α=A,B

(b̂†i,α b̂i+1,α + H.c.)

+ U

2

∑

i

∑

α=A,B

[n̂i,α (n̂i,α − 1)] + UAB

∑

i

n̂iAn̂iB, (1)

where b̂iα (b̂†iα) are the annihilation (creation) bosonic oper-
ators at site i = 1, . . . , L for species α = A, B, respectively,
and n̂iα are their corresponding number operators. We assume
an equal tunneling strength, t > 0, and repulsive intraspecies
interaction strength, U > 0, for both components. For the rest
of the work we set the energy scale to the tunneling strength
t , which is kept fixed, and work with an equal number of
bosons of both species, NA = NB ≡ N/2. For convenience,
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FIG. 1. Energy per particle e = 2E/N in the system with N =
128 particles as a function of the intraspecies interaction strength for
different values of r from the weakly interacting situation (a) to the
strongly interacting one (b).

we introduce the dimensionless ratio r = 1 + UAB/U , and
concentrate on the case of an attractive interspecies interaction
UAB < 0 but always fulfilling |UAB| < U (r > 0). This choice
is motivated by previous studies in the continuum geometry,
where mean-field interactions were shown to compensate each
other exactly for r = 0 [23]. Furthermore, we will consider
open boundary conditions.

From Mott insulator to pair superfluid droplets. The Hamil-
tonian (1) at strong coupling U � t supports different quan-
tum phases, including the Mott insulator (MI) and the pair
superfluid (PSF) [26,27]. The PSF is a state characterized by
the formation of pairs of atoms (molecules) which exhibit
long-range phase coherence [26–29]. On the other hand,
coherence is exponentially lost in the MI state. As predicted in
Ref. [28], the transition from the MI state into the PSF takes
place at a fixed value of U 2r/t2 independent of the r [see
Fig. 1(b)]. We numerically extract the position of the critical
point for the MI-PSF transition and obtain (U 2r/t2)c � 9.25,
shown with the dashed line in Fig. 4. Superfluid states are
commonly characterized by having long-range phase coher-
ence. Therefore, we test if the one- (two-) body correlation
functions possess off-diagonal quasi-long-range order, seen
as a slow power-law decay, and interpret its presence as the
superfluidity of atoms (pairs). In addition, we have verified
for several selected points that the PSF phase possesses a fi-
nite gap � = E (N + 1, N ) − 2E (N, N ) + E (N − 1, N ) > 0
which instead is absent in other phases [30]. Thus, the PSF
is characterized by (i) the absence of phase coherence in the
one-body correlator, (ii) the appearance of phase coherence in
the two-body correlator, and (iii) a finite gap associated with
spin excitations. Therefore, the correlations between bosons
of the same species decay exponentially with the distance
〈âiâ

†
j 〉 = 〈b̂ib̂

†
j〉 ∝ exp {|i − j|/ξ} [see the U/t = 20 line in

Fig. 2(a)]. Simultaneously, in the PSF phase the correlation
function of pairs should behave as 〈âib̂iâ

†
j b̂

†
j〉 ∝ 1/|i − j|α

[27] [see the U/t = 20 line in Fig. 2(b)]. Finally, for the MI
state all correlation functions decay exponentially (see the
U/t = 35 line in Fig. 2). The change of the form of the decay
from exponential in the MI phase to algebraic in the PSF one
allows one to identify the phase transition (see Fig. 4).

FIG. 2. Correlation functions as a function of the distance |i − j|.
The index i = 32 is fixed at the center of the lattice of size L = 64.
Dots correspond to numerical data and dashed (dotted-dashed) lines
correspond to algebraic (exponential) fits. For the droplet configu-
rations (U/t = 5, 20), an abrupt exponential decay is visible in the
correlation functions at the edges of the drop. In all cases, r = 0.01.

An intrinsic property of a dropletlike liquid is being self-
bound and localized at zero pressure while a gas occupies
the whole available volume. Thus, the density profile contains
additional information on the phases (see the inset of Fig. 3
for some examples). For certain parameter values, self-bound
objects are observed which do not occupy the whole available
space. To characterize these objects, we fit the total density
with a symmetrized Fermi function [31] which produces a
flattop profile of size R and an exponential decay with a typical
length scale a at the edges,

ni = nM sinh [R/(2a)]

cosh [R/(2a)] + cosh (i/a)
, (2)

FIG. 3. Typical size of the system as a function of the in-
traspecies interaction for different ratios r, for NA = NB = L = 64.
Inset: Total density profiles of a droplet configuration (dots) for
two different interaction strengths U/t = 15, 25 for r = 0.01. The
dashed lines are fits (2) to the density profiles.
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FIG. 4. Phase diagram of the two-component Bose-Hubbard
model Eq. (1) close to the droplet regime for NA = NB = L = 64.
The MI phase is characterized by the exponential loss of phase
coherence. Green triangles represent the MI-PSF phase transition
characterized by the appearance of quasi-long-range coherence in
the two-body correlators. The dashed line represents the MI-PSF
transition line, r = 9.25 t2/U 2 (see the main text). The PSF-2SF
transition (orange triangles) is characterized by the appearance of
quasi-long-range coherence in the one- and two-body correlators.
Blue squares represent the regime where we detect the appearance
of droplets with a size smaller than the lattice length. Droplets are
identified by the exponential decay in the density at the edges.

with nM , R, and a being free parameters. The size of these
droplets has a nontrivial dependence on the interaction U
for fixed r as shown in Fig. 3. For any value of r, there
is a certain value of U/t above which the system is in a
MI state, which extends to the full lattice. Decreasing U/t ,
the size of the droplet is found to decrease up to a critical
value of U/t . Beyond this point, for weaker interactions the
droplet size starts to increase until we reach again a size
comparable to the system size in the noninteracting limit.
In the following, we obtain the phase diagram and clearly
identify the important differences between the weakly and
strongly interacting regimes.

The phase diagram. The system undergoes dramatic
changes when it is brought from the strongly interacting to
the weakly interacting regime. Indeed, if we decrease the in-
teraction below the critical value discussed above, we observe
that the system goes from a PSF to a two-atomic-superfluid
(2SF) state. In the latter, the pair correlator 〈âib̂iâ

†
j b̂

†
j〉 and the

two correlators 〈âiâ
†
j 〉 and 〈b̂ib̂

†
j〉 exhibit a slow power-law

decay, meaning that each species separately features quasi-
long-range phase coherence (see, for instance, the U/t = 5
line in Fig. 2). Thus, we can now draw two critical lines
denoting the quantum phase transition from MI to PSF and
from PSF to 2SF (see the phase diagram in Fig. 4). At the same
time, a PSF-2SF transition can occur when both phases are in
their gaseous form or in their droplet configuration (termed
D-PSF and D-2SF). The region of parameters U/t-r in the
phase diagram where droplet configurations (smaller than the
system size) are stable is also represented in Fig. 4. Due
to the open boundary conditions the gaseous phases do not

FIG. 5. (a) and (c) Total density profiles ni for weak interactions
with r = 0.01 and several values of N . Two cases are considered,
a gaseous 2SF state, U/t = 0.1, and a D-2SF, U/t = 2.5 [see the
dots in (a) and (c), respectively]. An asymmetric configuration with
UAA = 2UBB = 5 is shown with red crosses in (c). Black dashed lines
correspond to fits using Eq. (2). (b) and (d) Droplet properties for a
gaseous 2SF U/t = 0.1, a D-2SF U/t = 2.5, and a D-PSF U/t = 25.
The typical spatial size and the maximum density of the system is
shown in (b) and (d), respectively.

entirely occupy the system size, because usually the extension
is larger than R > 0.95L. Droplets are identified when an
exponential decay of the density is found at its edges and the
size R is smaller than the one observed in the gaseous phase.
Importantly, one expects that the Andreev-Bashkin drag [32]
is maximal in the 2SF phase in the vicinity of the transition
to PSF [33,34]. In this case, a superflow imposed on one
component induces a supercurrent in the second component
which is dragged without any energy dissipation.

We observe that in the 2SF phase the energy of the system
decreases with increasing value of the interaction U/t up to
some critical value of r [see Fig. 1(a)]. Therefore, there is a
regime where the energy of the system is larger than the zero-
point one, E0 = −2Nt , where droplet configurations are not
stable. This corresponds to the U/t � 1 region in the phase
diagram (see Fig. 4).

Quantum droplet properties. Above we have characterized
the properties of the ground state for the important case of an
integer filling, NA = NB = L. Here, we study how the proper-
ties change with the filling fraction in a symmetric mixture,
NA = NB ≡ N/2. We consider three characteristic examples
taken from different phases: a gaseous 2SF, a 2SF droplet, and
a PSF droplet. For the gaseous configuration, atoms tend to
occupy the whole available space for any number of particles
N [see Fig. 5(a)]. When the number of particles N is aug-
mented, the maximum density nmax and the typical extension
R/L always increase [see the U/t = 0.1 line in Fig. 5(d)].
The effect of the open boundary conditions is reflected in the
gaseous phases where a decay of the density is observed at the
boundaries of the system. This decay does not correspond to
an exponential one and it is not captured by Eq. (2). On the
other hand, for the droplets a different tendency is observed
allowing one to differentiate two additional regimes: small
and saturated droplets. In the first regime (small number of
particles) the droplets are weakly bound and have a large
spatial size. An increase in the number of particles results
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FIG. 6. Entanglement entropy as a function of the total number
of particles. We fixed the ratio r = 0.01 and we choose three interac-
tion strengths U/t = 0.1, 2.5, 25.0 corresponding to a gaseous two-
superfluid, a droplet two-superfluid, and a droplet pair superfluid,
respectively.

in a stronger binding, decreasing the size, and increasing
the maximal density [see the data for U/t = 2.5 and 25 in
Figs. 5(b) and 5(d)]. Then, once the density in the center of the
droplet reaches the equilibrium density of the homogeneous
liquid, the density saturates and a flattop plateau is formed.
In this second regime (large number of particles) the size of
the droplets increases for an increasing number of particles,
while the maximum density remains constant and equal to the
equilibrium density. In both regimes the droplets feature an
exponential decay of their density profiles at their boundaries.
A notable difference between 2SF and PSF droplets is seen in
the small N behavior: The size of PSF droplets drops abruptly
as N is increased, while for 2SF the behavior is smoother, as
can be seen comparing the U/t = 2.5 and U/t = 25 lines in
Fig. 5(b).

Finally, we explore the quantum entanglement present in
this system. We consider equal bipartitions of the state and
explore the left (L)-right (R) entanglement entropy, defined
as SE = −Tr{ρL log ρL}, where ρL = TrR ρ is the reduced
density matrix. In Fig. 6 we show the entanglement entropy
corresponding to these bipartitions as a function of the total
number of particles N and for three characteristic values of
the interaction. For the gaseous state we observe that the
entanglement entropy saturates as the number of particles is
increased. Instead, for the droplet configurations the regimes
of saturated and nonsaturated droplets can be distinguished.

For a small number of particles the entanglement entropy
rapidly increases with the number of particles. Then it reaches
a maximum at the same point where the droplets show a
minimum size, shown in Fig. 5. For a larger number of
particles the entanglement entropy decreases. Therefore, we
can conclude that the droplets with a minimum size for a given
number of particles are the ones showing larger quantum
effects. It is interesting to note that this is exactly the regime
of the strongest correlations where the maximum frequency
of the breathing mode in the absence of the lattice is reached
[24].

Notes on a possible experimental implementation. One
of the main complications of the experimental observation
of quantum droplets is their very short lifetimes due to
three-body losses [16,17]. This effect can be suppressed by
reducing the density of the quantum droplet [17]. In our
system we have found quantum droplets with densities below
three for which three-body losses are greatly suppressed.
Another important aspect to take into account for a possible
experimental implementation is the asymmetry between the
two bosonic species [14,17]. To this aim, we have performed
numerical simulations introducing an asymmetry between
the intraspecies interaction strengths UAA/t = 2UBB/t . In this
case, the droplet remains stable and the density remains below
three (see Fig. 5). All this together makes the system under
study very suitable for the possible experimental observation
of long-lived quantum droplets.

In conclusion, we have demonstrated the existence of
quantum droplets in two-component one-dimensional Bose-
Hubbard chains. We have obtained the phase diagram in the
relevant parameter region where multiple phases are realized
as a function of the intra- and interspecies interactions. Ex-
ploring the long-range decay of one- and two-body correlation
functions we have been able to identify quantum droplets with
atomic or pair superfluid phase coherence. We have deter-
mined a parameter region where three-body recombination ef-
fects are negligible, thus opening a way to produce long-lived
bosonic droplets. Finally, we have found that the bipartite
entanglement entropy present in the drops reaches a maximum
when the central density saturates to the equilibrium one and
then it decreases for increasing number of particles.
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