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In this letter, we elaborate further on a Cosmological “Running-Vacuum” type model for the Universe, 
suggested previously by the authors [1,2], within the context of a string-inspired effective theory in the 
presence of a Kalb-Ramond (KR) gravitational axion field which descends from the antisymmetric tensor 
of the massless gravitational string multiplet. In the presence of this field, which has anomalous CP 
violating interactions with the gravitons, primordial gravitational waves induce gravitational anomalies, 
which in turn are responsible for the appearance of H2 and H4 contributions to the vacuum energy 
density, these terms being characteristic of generic “running-vacuum-model (RVM) type”, where H
is the Hubble parameter. In this work we prove in detail the appearance of the H4 terms due to 
gravitational-anomaly-induced condensates in the energy density of the primordial Universe, which can 
self-consistently induce inflation, and subsequent exit from it, according to the generic features of RVM. 
We also argue in favour of the robustness of our results, which were derived within an effective low-
energy field theory approach, against Ultra Violet completion of the theory. During the radiation and 
matter-dominated eras, gravitational anomalies cancel, as required for the consistency of the quantum 
matter/radiation field theory. However, chiral and QCD-axion-type anomalies survive and have important 
consequences for both cosmic magnetogenesis and axionic dark matter in the Universe. Finally, the 
stringy RVM scenario presented here predicts quintessence-like dynamical dark energy for the current 
Universe, which is compatible with the existing fitting analyses of such model against observations.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In spite of the very good agreement of the �CDM model (the current standard or “concordance” model of cosmology) with the 
currently available plethora of observational data [3], nonetheless the model appears to be currently in tension with some important 
measurements [4], associated with the value of σ8 (the mean matter fluctuations in spheres of radius 8h−1 Mpc, with h the reduced 
Hubble constant) and the disparate current Hubble parameter H0 values obtained independently from measurements of the local and 
the early universe. Whether these tensions are the result of yet unknown systematic errors or hint some underlying new Physics is still 
unclear. Therefore, there remains strong the possibility that a deviation from the �CDM model could provide an explanation for such 
discrepancies [5].

Among the several existing candidates beyond the �CDM, which can alleviate these tensions, here we focus on the “running vacuum 
model” (RVM) [6,7]. For a review see [8]. The detailed phenomenology of this framework, and its advantages as compared to �CDM in 
fitting the current data, has been amply discussed in several works [9], including its scalar field description [10]. It is also remarkable 
that frameworks mimicking the RVM (even beyond the GR paradigm) may acquire the ability to alleviate those tensions [11]. This fact 
is actually very important since it is a solid motivation for us to explore fundamental models which can lead to such phenomenological 
success thanks precisely to their “effective RVM behaviour”.
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Attempts to link the evolution of the vacuum energy density with a fundamental framework of Quantum Field Theory in curved 
spacetime can be found in the above mentioned RVM papers and, in the case of Supergravity inflationary models, in [12]. Recently [1], 
we have also presented a potential connection of the RVM with string effective actions, through gravitational anomalies, that exist due to 
gravitational-wave perturbations in the early Universe — see [2] for a comprehensive exposition. Specifically, we studied a four-dimensional 
string-inspired version of the RVM, based on the low-energy effective action of graviton and antisymmetric tensor fields of the massless 
(bosonic) string gravitational multiplet. The latter, provides the minimal field content of the inflationary universe in these kinds of theories, 
and is responsible for the effective RVM behaviour of the vacuum energy density through ∼ H4 contributions. It has been shown that, 
once such high power of H has been generated, the inflationary regime with graceful exit is warranted [13] and the cosmic evolution 
satisfies the Generalized Second Law of Thermodynamics [14]. Remarkably, condensates of graviton fluctuations have been argued to 
provide dynamically such ∼ H4 contributions, which are responsible for the early de Sitter phase [13]. Furthermore, it has recently been 
found in [1,2], that, at the exit from the inflationary phase, there exist undiluted backgrounds of the antisymmetric tensor field which 
violate spontaneously the Lorentz and CPT symmetry, thus providing the interesting possibility of baryogenesis through leptogenesis [15]. 
Moreover, the generation of chiral matter at the exit from inflation was held responsible for the cancellation of gravitational anomalies, 
but chiral anomalies may remain uncompensated, and have been considered responsible for cosmic magnetogenesis.

The purpose of the present Letter is first to scrutinise the rôle of the gravitational anomalies in the early Universe in producing 
dynamical inflation, without the need of fundamental inflatons, since the RVM already contains an alternative ingredient for inflation, 
which is the aforementioned ∼ H4 term. Second, we argue in favour of the robustness of the results of ref. [1,2], against Ultraviolet 
Completion (UV) of the effective theory. Finally, we discuss the physics of the post inflationary Universe in more detail, by arguing that 
QCD-axion-type anomalies, that may survive during the QCD epoch, have important consequences for axionic dark matter, the source of 
which can be the KR field itself. Indeed, we show that non-perturbative instanton effects can generate a potential (and hence a mass) 
for the KR axion, thus implying its rôle as conventional Cold Dark Matter, consistently with phenomenology. Moreover, the presence of 
the KR axion triggers the more moderate effective ∼ H2 behaviour of the vacuum density at late epochs, which can be responsible for a 
dynamical form of dark energy at present and hence be susceptible of detection [9].

2. Gravitational anomalies and string effective actions for running vacuum

Our starting framework is the four-dimensional string-inspired version of the RVM, based on critical-string low-energy effective actions 
of the graviton and antisymmetric tensor (spin-one) Kalb-Ramond (KR) fields of the massless (bosonic) string gravitational multiplet [16–
18]:

S B = −
∫

d4x
√−g

( 1

2κ2
R + 1

6
Hλμν Hλμν + . . .

)
, (1)

where Hμνρ ≡ κ−1∂[μ Bνρ] is the field strength of the KR field Bμν , with κ = M−1
Pl , and MPl = 2.4 × 1018 GeV is the four-dimensional 

reduced Planck mass; the symbol [. . . ] denotes complete antisymmetrisation of the respective indices. The dots . . . in Eq. (1) involve, on 
the one hand, the higher order terms in the expansion of the effective action in powers of α′ = M−2

s (the Regge slope of the string), with 
Ms the string mass scale (which is, in general, different from MPl [17]); and, on the other hand, a (non-perturbatively generated) effective 
potential for the dilaton. More details are given in the Appendix.

An important remark is due at this point. Although the model (1), and its Bianchi-anomaly constraint (4), to be discussed below, 
are inspired by string theory considerations, the theory might be considered independent of strings, as a self consistent field theory of 
graviton and KR degrees of freedom. This is the point of view we take in this article. Nonetheless, as we explain in the Appendix, our main 
conclusions remain unaffected when features from microscopic string theory are taken into account, such as, for instance, the inclusion of 
the dilaton degree of freedom, existing in string models, through its equations of motion, providing extra constraints, as well as the rôle 
of higher order stringy-inspired terms in (1). As we show in the Appendix, the solution of a constant dilaton, adopted in our work and in 
[2], appears self consistently in that framework.

The KR-field-strength terms H2 in (1) can be absorbed (up to an irrelevant total divergence) into a contorted generalised curvature [16,
17] R(
), with a “torsional connection” [19] 
, corresponding to a contorsion tensor proportional to Hρ

μν field strength,



ρ
μν = 


ρ
μν + κ√

3
Hρ

μν �= 

ρ
νμ , (2)

where 
ρ
μν = 


ρ
νμ is the torsion-free Christoffel symbol.1 The torsion interpretation of Hμνρ is of crucial importance when one discusses 

effective actions in the presence of fermions [1,2], as we shall discuss later on.
Due to its definition as a curl of the spin-one antisymmetric tensor Bμν , the 3-form Hμνρ satisfies the following Bianchi identity at 

the classical level

∂[μ Hνρσ ] = 0, (3)

by construction. However, in string theory, in the presence of gauge and gravitational fields, cancellation of anomalies at the quantum 
level requires the modification of the definition of the KR field strength Hμνρ by appropriate gauge (Yang-Mills (Y)) and Lorentz (L) 
Chern–Simons three-forms [16]

1 Exploiting local field redefinition ambiguities [17,18], which do not affect the perturbative scattering amplitudes, one may extend the above conclusion to the quartic 
order in derivatives, that is, to the O(α′) effective low-energy action, which includes Gauss-Bonnet quadratic curvature invariants. In terms of a generalised curvature, the 
Gauss-Bonnet-type invariants are not total derivatives, and simply correspond to higher than quadratic order Hμνρ terms.



S. Basilakos et al. / Physics Letters B 803 (2020) 135342 3
The modified Bianchi identity constraint can be expressed in the usual tensor notation as follows:

ε
μ

abc Habc
;μ = α′

32κ

√−g
(

Rμνρσ R̃μνρσ − Fμν F̃ μν
)

≡ √−g G(ω,A), (4)

where the semicolon denotes covariant derivative with respect to the standard Christoffel connection, and the dual .̃ . . of the gauge field 
strength is defined as: F̃μν = 1

2 εμνρσ F ρσ . The term 
√−g

(
Rμνρσ R̃μνρσ − Fμν F̃ μν

)
in (6) is the Hirzebruch-Pontryagin topological density, 

also known as the Chern-Simons (CS) topological, or mixed anomaly, term [20]. It contains a gravitational (henceforth referred to as the 
gCS-term) and an ordinary gauge part, both being individually total derivatives:

√−g
(

Rμνρσ R̃μνρσ − Fμν F̃ μν
)

= √−g Kμ
mixed(ω);μ = ∂μ

(√−g Kμ
mixed(ω)

)
= 2 ∂μ

[
εμναβ ωab

ν

(
∂α ωβab + 2

3
ω c

αa ωβcb

)
− 2εμναβ

(
Ai

ν ∂α Ai
β + 2

3
f i jk Ai

ν A j
α Ak

β

)]
, (5)

with Latin letters i, j, k being gauge group indices, and 
√−g Kμ

mixed denoting the mixed-anomaly current density. Here ωab
μ is the spin-

connection one-form and Ai
μ are the ordinary gauge fields, labelled respectively ω and A for short. For more technical details, see [2].

Since the anomaly G(ω, A) is an exact one loop result, one may implement the Bianchi identity (4) as a δ-functional constraint in 
the quantum path integral of the action (1) over the fields H, A, and gμν , and express the latter in terms of a Lagrange multiplier 
(pseudoscalar) field [18] b(x)/

√
3 (where the normalisation factor 

√
3 is inserted so that the field b(x) will acquire a canonical kinetic 

term). Inserting such a constraint into the path integral with respect to the action (1), and integrating over the H field, one obtains an 
effective action in terms of the anomaly and a canonically normalised dynamical, massless, KR axion field b(x) [1,2,18]

Seff
B =

∫
d4x

√−g
[
− 1

2κ2
R + 1

2
∂μb ∂μb +

√
2

3

α′

96κ
b(x)

(
Rμνρσ R̃μνρσ − Fμν F̃ μν

)
+ . . .

]
, (6)

where the dots . . . denote gauge, as well as higher derivative, terms appearing in the string effective action, that we ignore for our 
discussion here. The reader should notice in this respect that, in view of (5), the anomaly terms in (6) are quadratic in derivatives.

We thus observe that, in view of the anomaly, the KR axion field in (6) couples to both gravitational (gCS) and gauge-field CS terms 
(cf. (5)). These interactions are P and T violating, and hence in view of the overall CPT invariance of the quantum theory (6), also CP 
violating.2 They play quite an important rôle for our purposes in this work and in [1], see also [2] for an expanded exposition.

3. Primordial gravitational waves and anomalies

In the early Universe, before and during inflation, we assume that only fields from the gravitational multiplet of the string exist, which 
implies that our effective action pertinent to the dynamics of the inflationary period, is given by (6) upon setting the gauge fields to zero, 
A = 0. Thus, to describe the dynamics of the beginning and the inflationary period of the Universe, we use the following effective action 
involving only the KR axion and the gravitational field:

Seff
B =

∫
d4x

√−g
[
− 1

2κ2
R + 1

2
∂μb ∂μb +

√
2

3

α′

96κ
b(x) Rμνρσ R̃μνρσ + . . .

]
=

∫
d4x

√−g
[
− 1

2κ2
R + 1

2
∂μb ∂μb −

√
2

3

α′

96κ
∂μb(x)Kμ + . . .

]
, (7)

where in the second equality we have partially integrated the CP violating anomaly term. Notice that here the anomaly current Kμ

contains only the gravitational part of (5).
For a complete study of the equation of state (EoS) of the gravitational-KR-axion fluid we refer the reader to [2]. For our purposes here 

we notice that, in the presence of the gCS term, the corresponding Einstein’s equations derived from variation of the action (7) (using the 
first expression in that equation on this occasion) have the form

Rμν − 1

2
gμν R −

√
2

3

α′ κ
12

Cμν = κ2 T μν
b , (8)

where

T μν
b = ∂μb ∂νb − 1

2
gμν

(
∂αb ∂αb

)
, (9)

is the stress tensor of the massless KR axion, and

Cμν = −1

2

[
vσ

(
εσμαβ Rν

β;α + εσναβ Rμ
β;α

)
+ vστ

(
R̃τμσν + R̃τνσμ

)]
= −1

2

[(
vσ R̃λμσν

)
;λ + (μ ↔ ν)

]
,

vσ ≡ ∂σ b = b;σ , vστ ≡ vτ ;σ = b;τ ;σ , (10)

2 In this respect, the reader should recall that any breaking of the Lorentz and CPT symmetry by the KR axion background, which we considered in our analysis so far [1,2], 
and shall employ in this work, implies a spontaneous violation of these symmetries.
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is the Cotton tensor [20],3 arising from the variation of the gCS-term in (7) with respect to the gravitational field:

δ
[ ∫

d4x
√−g b Rμνρσ R̃μνρσ

]
= 4 

∫
d4x

√−g Cμν δgμν = −4 
∫

d4x
√−g Cμν δgμν . As follows from its definition (10), and properties of the 

Riemann tensor, the Cotton tensor is traceless [20]

gμν Cμν = 0 . (11)

In standard situations, general coordinate diffeomorphism invariance, would imply the conservation of the matter stress tensor, T μν
b ;ν = 0. 

Because of the curvature tensor Bianchi identity, the Einstein tensor Rμν − 1
2 gμν R , also obeys such a covariant conservation law, but this 

is not the case for the Cotton-tensor, as one can readily check from (10) [20]. As a consequence, by taking the covariant derivative on both 
sides of (8) we find√

2

3

α′ κ
12

Cμν
;μ = −

√
2

3

α′ κ
12

1

8
(∂νb) Rαβγ δ R̃αβγ δ = −κ2 T μν

b ;μ . (12)

Thus, in the presence of gravitational anomalies, the diffeomorphism invariance, and hence the conservation of T μν
b appears to be in 

trouble, unless one deals with specific gravitational backgrounds, as the ones pertaining to the FLRW Universe of interest to us here, for 
which the Pontryagin density vanishes identically Rμνρσ R̃μνρσ = 0. Nonetheless, there is no fundamental issue here. Indeed, notice, from 
(12), that there is a conserved modified stress-energy tensor

κ2 T̃ μν
b+gCS ≡

√
2

3

α′ κ
12

Cμν + κ2T μν
b ⇒ T̃ μν

b+gCS ;μ = 0 , (13)

and hence, the non-vanishing divergence of the Cotton tensor in anomalous backgrounds simply expresses the non-trivial interactions 
between the axion b-field and gravity, leading to energy exchange4

As we shall discuss later on, the contributions of the (quadratic in Riemann curvature tensor) gCS term to the time component of the 
modified stress-energy tensor T̃00 (i.e. the energy density) in our mean-field ground state solution will turn out to be negative, in a similar 
spirit to the energy contributions of the dilaton-Gauss-Bonnet term in O(α′) string effective actions [22].

In a de Sitter-type cosmological background, characterised by an (approximately) constant Hubble parameter H 
 const., the aver-
age 〈. . . 〉 of the anomalous gCS term (over quantum fluctuations about the de Sitter cosmological background) of the metric tensor of 
primordial gravitational-wave type) yields a non-zero result [23]:

〈Rμνρσ R̃μνρσ 〉 = 16

a4
κ2

μ∫
0

4π k2 dk

(2π)3

H2

2 k3
k4 � + O(�3),

�≡
√

2

3

α′ κ
12

H ḃ  1, (14)

under the slow-roll assumption for the KR axion field b(t),

ḃ  H/κ. (15)

Here and in what follows, the notation b(t) indicates a background solution of the equations of motion for the KR field (cf. Eqs. (20), 
(21) below). The overdot denotes derivative with respect to the cosmic time. The 〈. . . 〉 is calculated in [23], using appropriate Green 
functions to leading order in k η � 1, where k is the standard Fourier scale variable for the gravitational wave graviton modes, and η is 
the conformal time dη = dt

a(t) ⇒ η = 1
H exp(−Ht), during inflation, which runs in the opposite direction of the cosmic time t . Because the 

integral in (14) is quartically divergent, we use an ultraviolet cutoff μ for k. Following [23] we take the range

0 < k < μ/(ηH). (16)

The smallness of � (i.e. |�|  1), when combined with (15), implies the sufficient condition

H2/M2
s  12

√
3/2 ⇒ H/Ms  3.83 . (17)

We take for concreteness the inflationary Hubble parameter H in the range

H

MPl
∼ 10−4 , (18)

as implied by the cosmological data [3]. From (14) and (18), then, we arrive at the sufficient condition

MPl

Ms
 3.83 × (104 − 105). (19)

3 We note, for completeness, that the (3+1)-dimensional Cotton tensor constructed in [20] and used here is different from another four-space-time-dimensional tensor, also 
called (1+3)-dimensional Cotton, which was constructed in [21] as a direct extension of a three-dimensional Cotton tensor, associated with (1+2)-dimensional gCS theories.

4 A similar situation characterises the interactions between dilatons and Gauss-Bonnet quadratic curvature terms in O(α′) string effective actions [22]. That there is no 
fundamental problem also follows in our case by the fact that, both, the effective action (7), and the underlying microscopic string theory, which leads to it at low energies, 
are fully covariant.
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We shall make use of this result later on.
From (7) – using this time the expression on the second line – it follows that the classical equations of motion of the KR axion field 

b(x), imply the existence of backgrounds b that satisfy

∂α

[√−g
(
∂αb̄ −

√
2

3

α′

96κ
Kα

)]
= 0, (20)

which, on the assumption of homogeneity and isotropy of the inflationary space time, would imply a partial solution [1,2]:

ḃ =
√

2

3

α′

96κ
K0. (21)

Eq. (21) is a mathematically consistent relation, since both ∂μb and Kμ are (covariant) axial four-vectors. This solution implies a back-
ground for the KR axion field that breaks, spontaneously Lorentz, CP and CPT symmetry, which is crucial for leptogenesis in the post 
inflationary period [1,2], following the mechanism of [15]. In fact the masslessness of the KR axion b can be understood by viewing this 
pseudoscalar field as the Goldstone-Boson of the spontaneously broken Lorentz symmetry [24].

From the anomaly equation (5), and taking into account that the gravitational waves are weak perturbations, since their intensity tends 
to be proportional to |�|  1 [23], one obtains [1,2]

d

dt

(√−g K0(t)
)

= 〈√−g Rμνρσ R̃μνρσ 〉 
 √−g 〈Rμνρσ R̃μνρσ 〉 
 √−g
1

π2

( H

MPl

)2
μ4 �



[ 1

3π2 × 6 × 96

( H

MPl

)3 ( μ

Ms

)4
MPl

]
×

(√−g K0(t(η))
)
, (22)

where we used (14) and (21).
Since, during inflation, H remains approximately constant, (22) can be integrated over the inflationary period, yielding

K0(t(η)) 
 K0
begin(t = 0) exp

[
− 3H t(η)A

]
, A ≡ 1 − 1

3π2 × 18 × 96

( H

MPl

)2 ( μ

Ms

)4
, (23)

where we have set the beginning of inflation at t = 0 (η = H−1) and its end at t → +∞ (η → 0), so that in conformal time units the 
duration of inflation is |�η| = 1/H [1,2,23]. The value K0

begin(t(η = H−1), which on account of (21) corresponds to an initial condition for 

the cosmic time derivative of the KR axion, ḃ(0), is a boundary condition to be determined phenomenologically, as we shall discuss later 
on.

In [1,2] it was observed that if the factor A 
 0 then K0 is approximately constant, for a momentum cutoff on the graviton modes of 
order

A 
 0
(cf .(23))⇒ μ

Ms

 15

( MPl

H

)1/2
, (24)

where the 
 in the above relations are to be interpreted as within an error of order of at most a %.5

If one insists on phenomenologically acceptable ranges of H  MPl, e.g. (18), then

μ ∼ 103 Ms. (25)

This provides, through (21), a self-consistent and necessary condition for ḃ to be approximately constant during inflation, which thus 
remains undiluted at the end of the inflationary period of the string Universe:

ḃ =
√

2

3

α′

96κ
K0 
 constant , (26)

which can be integrated to give:

b(t) = b(0) +
√

2

3

α′

96κ
K0 t , (27)

5 Indeed, an approximately constant K0 in (23) is guaranteed provided that at the end of the inflationary period its value is diminished no more than an order of 
magnitude, that is

K0
end(tend) 


(
e−1 − e−2

)
K0

begin(t(η = H−1))

Taking in to account that, in units of cosmic Robertson-Walker time t , the end of inflation occurs for H tend ∼ N , with N , the number of e-foldings, which is expected from 
the data [3] to be of order N = O(60 − 70), we thus observe from the above equation that the following condition

0 �A� ξ (3N )−1 ∼ ξ(0.0048 − 0.0056), ξ =O(1),

suffices for our purposes, which leads to the aforementioned uncertainty of at most a % in the value of μ in (24),

μ

Ms

 15

(
1 − ξ

3N
)1/4 ( MPl

H

)1/2 
 (0.998 − 0.999) × 15
( MPl

H

)1/2
.
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where b(0) is an initial value of the KR axion field, at the beginning of inflation, immediately after the Big Bang. The value and sign of 
b(0) cannot be known at this point, but it will be motivated at due time in our framework when we discuss the vacuum energy density 
during the inflationary epoch, see Eq. (44).

In [1,2] the assumption that Ms ∼ MPl was made for concreteness, which led to transplanckian graviton modes. We have argued 
though [2] that this does not present any conceptual problem for our effective theory, but simply implies that the constant Lorentz 
violating solution for the KR background is associated with the primordial graviton waves that are generated deeply inside the quantum 
gravity region of momenta.

In view of (17) and (18), one obtains from (25) the sufficient condition

μ � 2.61 × (10−3 − 10−2) MPl, (28)

which, in turn, implies that the cutoff scale μ can be at least of order of MPl, which is a quite natural order of magnitude for the UV 
completion of the low-energy effective theory. In such a case, (17) implies the following range of the minimal allowed order of magnitude 
of the string scale Ms � 10−3 MPl. Saturating from above Ms � MPl we thus obtain the following approximate range for the string scale

MPl � Ms � 10−3 MPl , (29)

in order to guarantee the Lorentz-violating solution (26) for the KR background.
The reader should note that the (constant) initial values of the anomaly K0(t = 0) and of the KR axion b(0) cannot be predicted in the 

context of our effective low-energy theory, because they pertain to the UV-completion of the theory, in our case the full string theory.6

In principle they might be determined within microscopic string theory models. For our low-energy field theoretic approach here the 
parameters b(0) and K0(t = 0) are going to be fixed phenomenologically below (cf. (31) and (45), (46).

4. Gravitational-anomaly-induced inflation through running vacuum

A slow-roll condition on the KR background is consistent with the Lorentz-Violating background solution (26). On imposing [1,2]

ε ∼ 1

2

1

(H MPl)
2

ḃ
2 ∼ 10−2, (30)

consistent with the Planck data [3], implies

ḃ ∼ √
2ε MPl H ∼ 0.1414 MPl H ∼ 1.414 · 10−5 M2

Pl , (31)

where we used (18). Its integral form (27) then can be written as

b(t) ∼ b(0) + √
2ε MPl H t ∼ b(0) + 1.414 · 10−5 M2

Pl t. (32)

This determines phenomenologically the anomaly K0(0):

K0(0) ∼ 0.00166 M2
s MPl (33)

which, on account of (29) lies in the range

1.66 · 10−3 � K0(0)

M3
Pl

� 1.66 · 10−9. (34)

We shall come back to the phenomenologically acceptable range of b(0) later on (cf. (45), (46) below).
For now, we come back to the anomalous conservation law Eq. (12). We assume a non-zero vacuum expectation value (VEV) (14) of the 

anomaly term, due to gravitational waves, and assume an isotropic and homogeneous temporal component of the Cotton tensor C00(t). 
Anticipating the latter to be proportional to |�|  1 (cf. (14))), one obtains from (12), in a mean field approximation, to lowest order in 
a perturbative � expansion (whereby in the left-hand side of the equation we use a (spatially-flat) FLRW background space-time), the 
following result:

Cμ0
;μ = d

dt
C00 + 4H C00 
 −1

8
ḃ 〈Rαβγ δ R̃αβγ δ〉 
 −1

8

√
2

3

α′ κ
12

H
1

π2

( H

MPl

)2
μ4 ḃ

2
, (35)

where we used (11), and b denotes the KR background, satisfying (21). Assuming a (approximately) constant in time C00 (because H itself 
is approximately constant during inflation) together with homogeneity and isotropy (i.e. setting C0i = 0), we find from (35) the consistent 
solution

C00 
 −ε

√
2

3

α′ κ
192

1

π2
μ4 H4 < 0, (36)

6 We remark at this point that, independently of our considerations here, it was also pointed out in [25] that the predictions of [23] for leptogenesis due to primordial chiral 
fermions depend heavily on the ultraviolet completion of the theory, given that mainly modes in the deep quantum-gravity/string-theory regime contribute to the lepton 
asymmetry; moreover, as argued in [25,26], by performing proper ultraviolet regularization, including higher-than-quadratic-order derivative terms, one may effectively obtain 
much smaller lepton asymmetry than the one claimed in [23], since the cutoff μ is effectively replaced by the Hubble constant during the de Sitter phase. Par contrast, in 
our approach, there are no primordial fermions, and leptogenesis during the radiation era occurs in a completely different way [15], due to the presence of the constant 
Lorentz Violating axial background of the KR field (26), whose value can be fixed phenomenologically, to produce sufficient leptogenesis [1,2].
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where we used (31) keeping, though, the slow-roll parameter ε generic for the moment. From (8), this contributes to the energy density 
of the vacuum a negative term,7 in a similar spirit to the Gauss-Bonnet-dilaton coupling [22] which, like the gravity-anomaly term, also 
involves terms quadratic in the Riemann curvature tensor:

ρgCS =
√

2

3

α′

12κ
C00 
 −2

3

1

π2 × 192 × 12
ε

( μ

Ms

)4
H4


 −2.932 × 10−5 ε
( μ

Ms

)4
H4 < 0. (37)

Using (24), we then obtain in order of magnitude8

ρgCS 
 −1.484ε M2
Pl H2, (38)

From (13), and the first equality of (35), we also obtain

d

dt
(ρb + ρ gCS) + 3H

(
(1 + wb)ρ

b + 4

3
ρ gCS

)

 0

⇒ ρb 
 −2

3
ρ gCS , (39)

where the last result holds if d
dt (ρ

b + ρ gCS ) 
 0 (which is valid to the extent that the expansion rate remains constant during inflation) 
and we took into account that the EoS of the pure kinetic b-fluid (with no potential) is that of stiff matter, i.e. wb = 1. Thus, we see from 
(39) that the negative value of the ρ gCS is essential for the consistency of the approach, since it is only then that the energy conservation 
of the total stress energy tensor (13) leads to consistent results, given the positivity of ρb . From (38) and (39) we then obtain

ρb 
 0.9895ε M2
Pl H2. (40)

The KR axion stress tensor T μν
b in (8), on the other hand, will contribute H2 terms to the vacuum energy density [1,2] (but of the same 

order of magnitude as the ∼ H4 terms of the gravitational anomaly, due to (39)):

ρb = 1

2
(ḃ)2 
 ε M2

Pl H2 , (41)

where we used the first equality in (31). Comparing with (40) we can then see the consistency of our approach, for every value of 
the slow roll parameter ε < 1 and every value of H . We can then adopt the range of values for these parameters dictated by the 
data [3], (30) and (18), respectively. The 1% discrepancy between (41) and (40) is to be expected, according to our previous discussion 
(cf. footnote 5, which implies that the result for (38) for ρ gCS should be multiplied by an uncertainty factor (1 − ξ

3N ), which lies in the 
range 0.9889 � (1 − ξ

3N ) � 0.9905). This is perfectly justified when taking into account also theoretical uncertainties in our estimate (14)
of the gravitational-anomaly condensate.

However, as follows from (37), (39), the total vacuum energy density turns out to be negative

ρb + ρ gCS = 1

3
ρ gCS 
 −0.496ε M2

Pl H
2 < 0, (42)

indicating that the anomaly induces an instability in the de Sitter vacuum.
However, this is not the case. Indeed, in our analysis so far, we have assumed the Einstein equations (8), as they follow from the 

metric variation of the effective action (7), and then, we have averaged the modified stress tensor over the (quantum) gravitational-
wave perturbations 〈T b+gCS

μν 〉. The more correct approach is to average the partition function over gravitational perturbations about a de 
Sitter background corresponding to the effective action (7), and then arrive at the corresponding semiclassical equations with respect to 
the gravitational field. Equivalently, we may expand the gCS term in (7) around the VEV of the operator b Rμμρσ R̃μνρσ , i.e. about the 
condensate induced by averaging over gravitational-wave perturbations of the metric tensor:

gCS =
√

2

3

α′

96κ

∫
d4x

√−g
(
〈b(x) Rμνρσ R̃μνρσ 〉 + :b(x) Rμνρσ R̃μνρσ :

)
, (43)

where : . . . : denotes proper quantum ordering of (quantum field) operators, which, in the path-integral language, is interpreted as indicat-
ing terms with the appropriate subtraction of the UV divergencies, via regularization by means of the UV cut-off μ. This quantum-ordered 
term can give rise (via its variation with respect to the gravitational field) to a quantum-ordered Cotton tensor (10), which is traceless (cf.
(11)).

On the other hand, the first (averaged) term on the right-hand side of (43), i.e. the condensate induced by the anomaly term, will 
correspond to an extra term in the effective action, of the form of an induced (positive) cosmological constant, which should be added to 
(7). The vacuum action term associated with that condensate reads:

7 For the benefit of the reader, we note that the negativity of C00 is robust against a change of signature of the coefficient of the gCS term in (7), given that the latter 
will be compensated by a corresponding change of signature of the averaged anomaly (14), which is proportional to that coefficient.

8 An important remark we would like to make is that the condition (24) is assumed to be valid as an order of magnitude estimate, and does not imply that the cutoff μ
varies with H as H−1/2. The quantity μ is independent of H and a constant in time. This implies that the gCS term varies as H4, in contrast to the ρb term that varies as 
H2. However, for our solution under which (24) is valid, both terms are of the same order of magnitude.
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S� cond =
√

2

3

α′

96κ

∫
d4x

√−g 〈b Rμμρσ R̃μνρσ 〉 =
∫

d4x
√−g

1

3π2 × 6 × 96

(
μ

Ms

)4 √
2ε

[b(0)

MPl
+ √

2εN
]

H4



∫

d4x
√−g

(
5.86 × 107

√
2ε

[b(0)

MPl
+ √

2εN
]

H4
)

≡ −
∫

d4x
√−g ρ� cond , (44)

where the negative sign in front of the integral on the right-hand side of the above equation is due to our conventions, in which a 
de Sitter vacuum energy corresponds to a (constant) positive ρ� cond . Thus we must have b(0) < 0 so as to get positive vacuum energy 
density capable of triggering inflation. The symbol 
 indicates an order of magnitude estimate, and we used (22), (25), (26) and (32). 
We took also into account that (H t)max is a maximum order of magnitude [1,2] evaluated at the end of the inflationary period, for 
which H tend ∼ N = 60 − 70 = (H t)max, with N the number of e-foldings. In the above we take ε ∼ 10−2, as required by inflationary 
phenomenology (cf. (30)). We next notice that, if we consider transplanckian values for |b(0)| � MPl (in analogy with what happens with 
the inflaton field in conventional inflationary scenarios), with b(0) < 0, then the quantity ρ� cond > 0 in (44) does not change order of 
magnitude during the entire inflationary period, for which H 
 constant, and thus it can be approximated by a constant, leading to a de 
Sitter situation. In fact, for this purpose, it suffices to assume

|b(0)| �√
2εN MPl , (45)

say,

|b(0)| ∼ 10 MPl. (46)

The alert reader might worry about the compatibility of the transplanckian values of the KR background axion, (45), (46), with the 
validity of the effective low-energy field theory below Planck scale. However, during the inflationary phase, with the exception of the 
condensate term (44) our effective theory depends only on derivatives of the massless KR axion, ḃ, which in view of (31), is sufficiently 
smaller than M2

Pl to justify the validity of the effective field theory (7), and also ignoring higher order in α′ corrections, as discussed 
in the Appendix. Moreover, as we show below (cf. (47)), the condensate term (44) itself, being proportional to H4, also assumes sub-
Planckian values, despite the Planck size fluctuations of the KR field, compatible with the validity of the effective theory and with current 
phenomenology.

The reader should take notice of the fact that, as typical with other condensates in field theory, e.g. gluon condensates in QCD, the 
gravitational-anomaly condensate 〈b(x) Rμμρσ R̃μνρσ 〉 in (44) is an (scalar) invariant which does not depend on the metric tensor, whereby 
it may lead to a positive-cosmological-constant (de Sitter) type term in the effective action under the above mentioned conditions. In a 
sense, the term (44) is equivalent to a quantum-gravity-induced “trace” of the Cotton tensor, which, as we have seen above, is classically
traceless (11). Such a �-type-term cannot arise in a classical general-relativistic treatment, and, hence, it was not considered in the 
analysis of [20]. Notice also that the quantum induced ρ� cond term is approximately constant during the de Sitter stage, but it evolves 
with time (dynamical vacuum energy) in subsequent eras, as is characteristic of the RVM-type models [8].

The cosmological constant type term (44), then, leads to an additional �-de-Sitter-type induced contribution to the modified stress-
energy tensor (13), with the characteristic EoS of vacuum ρ� cond = −p� cond . Such EoS is maintained even when the vacuum energy 
density becomes dynamical, as the energy-momentum tensor still keeps the pure vacuum form proportional to the metric. The presence 
of ρ� cond still preserves the conservation law (13), and corresponds to the following (positive) contribution to the total energy density: 
ρ� cond ∼ 108

√
2ε |b(0)|

MPl
H4, which, for ε ∼ 10−2, N =O(60 − 70) and |b(0)| � 10 MPl (cf. (45)), dominates the total energy density,

ρtotal = ρb + ρgCS + ρ� cond 
 3M4
Pl

[
−1.65 × 10−3

( H

MPl

)2 +
√

2

3

|b(0)|
MPl

× 5.86×106
(

H

MPl

)4 ]
> 0 . (47)

This expression, by virtue of equations (18) and (45)), is positive and drives the de Sitter (inflationary) space-time.
Let us now compare the expression (47) with the form of the energy density of the so-called “running vacuum model” (RVM) of the 

Universe [6], according to which the vacuum energy density of the Universe, after integrating out matter degrees of freedom, reads:

ρ�
RVM(H) = 3

κ2

(
c0 + νH2 + α

H4

H2
I

)
+ . . . , (48)

where the coefficients ν and α are constants, H I is the Hubble parameter close to GUT scale, and c0 is an integration constant, which 
in the early Universe is not dominant, while it (approximately) coincides with the cosmological constant in the late Universe (up to a 
correction of O(ν)). For the conventional RVM, the expectation is that both ν and α are positive [6]. The . . . denote terms of higher order 
in H2 (due to general covariance the expansion is necessarily in terms of even powers of the Hubble parameter H). As mentioned in the 
introduction, the model is in agreement with observations [9]. The ∼ H4 terms in (48) are not suppressed by heavy masses, and although 
irrelevant for the current universe, nonetheless they can play a central rôle in the early universe and can explain inflation and successful 
exit from it (see [9,12,14] for details), without the need for introducing an external inflaton field. The H4 terms characteristic of the RVM 
are equivalent to the presence of a slowly-rolling internal scalar degree of freedom, which in the scenario discussed in [12] and here, is 
provided by the scalar mode hidden in the quantum fluctuations of the graviton condensate.

On comparing (47) with (48), by identifying ρtotal and ρ�
RVM(H), we make the following observations for our model:

• (i) In our string-inspired model for the early Universe we have c0 = 0. Such a term may appear in the late eras of the Universe, e.g. 
through the generation of a potential for the b(x) field [1,2].
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• (ii) As a result of the negative contributions of the Cotton tensor to the energy density ρtotal , the coefficient of the H2 terms in 
(47) would imply, on account of (48), a ν < 0 in the early Universe, where gravitational anomaly contributions dominate. However 
there is no contradiction with the spirit of the RVM. Indeed, in our case, the Cotton tensor is not a vacuum contribution, as it is 
associated with gravitational-wave excitations on the FLRW metric background space-time. For the background space-time the Cotton 
tensor vanishes, as we have already mentioned [20]. On the other hand, the KR axion is associated with the spin-one antisymmetric 
tensor field of the massless gravitational multiplet of strings [17], which in the case of the (phenomenologically relevant) superstring 
constitutes the ground state, due to the absence of tachyon modes from the spectrum. In this sense, the RVM should be associated 
with the contributions of the b-axion field stress tensor T μν

b (9) alone, ignoring the Chern-Simons terms, which, on account of (30), 
(31) leads (cf. (48)) to a positive ν coefficient (which we denote νb), given in our framework by

νb ≡ κ2 ḃ2

6H2
= ε

3

 3 × 10−3 > 0 , (49)

which emerges from the corresponding expression for ρb = T 0
b 0 [1,2]. Let us notice that this theoretical prediction is just within the 

right order of magnitude of the typical fitting values obtained for the ν-parameter using the wealth of observational data on CMB, 
BAO, LSS and expansion history, see the detailed analyses [9]. This is realistic and remarkable, as this is the situation expected in the 
present era in which the effect of the Chern-Simons terms are irrelevant, only to reappear in the remote future when the final de 
Sitter phase will become fully dominant anew.
We stress that the positivity of νb in the radiation and matter dominated eras is warranted, since the gravitational anomalies cancel 
during the standard FLRW periods [1,2]. In particular, in the late epochs we find contributions to the Universe energy density of order 
H2 due to the late-era KR axion field (whose background configuration receives contributions from chiral anomalies [1,2]). These 
come with a positive ν > 0 (which has been argued [1,2] to be of the same order as the primordial νb above (49), on phenomeno-
logical reasons). This result, which as indicated is phenomenologically sound [9], is also in remarkable agreement with the theoretical 
expectations based on general renormalisation-group arguments for the RVM [7,8].

• (iii) On the other hand, we find that the coefficient α is positive already during the inflationary era, and of order:

α =
√

2

3

|b(0)|
MPl

× 5.86×106
(

H I

MPl

)2

∼ 2.8 × 10−2 |b(0)|
MPl

, (50)

assuming a (typical) Hubble parameter H I during inflation of order (18). Notice that the value of α does not depend on the specific 
magnitude of the string scale, but only on the ratio μ/Ms , as follows from (24), used in the estimate of the total energy density 
(47). From (47), and (18), then, one easily sees that we may identify the total energy density with a GUT-like potential V ∼ M4

X
corresponding to an energy scale M X :

ρtotal 
 ρ� cond ∼ M4
X 
 √

2
|b(0)|
MPl

5.86 × 10−10 M4
Pl 
 |b(0)|

MPl
8.3 × 10−10 M4

Pl

⇒ M X
 1.3 × 1016
( |b(0)|

MPl

)1/4
GeV 
 2.3 × 1016 GeV , (51)

for |b(0)| � 10 MPl, as indicated before. As it turns out, the GUT scale that we associate to the total energy density in the early epoch 
is in perfect agreement with generic RVM predictions based on GUT models [8].

5. Insensitivity of the results to specifics of UV completion

At this point, we would like to offer support to the insensitivity of our findings to the specifics of UV completion, by demonstrating that 
the Lorentz-Violating constant KR backgrounds (21), (26) constitute solutions to the axion equations of motion obtained from the generic 
one-loop effective action of [26], not necessarily in the context of string theory. Indeed, for a generic gCS coupling (in the notation of 
[26]) 

∫
d4x

√−g F(ã)Rμνρσ R̃μνρσ , where ã denotes a (generic) pseudoscalar field, the one-loop effective action obtained by integrating 
out graviton fluctuations about a given background space time ĝμν is given by

W [F] = MPl
2
∫

d4x
√

−ĝ
[

R̂ + a1 (∂μF ĝμν∂νF) + a2
1

MPl
2

R̂2 + a3
1

MPl
2

R̂μν R̂μν

+ (a4
R̂

MPl
2

ĝμν + a5
R̂μν

MPl
2
) (∂μF ∂νF) + a6

1

MPl
2

(∂μF ĝμν∂νF)2 + a7
1

MPl
2

(�̂F)2 + . . .
]

(52)

where the . . . denote higher derivative terms, and hatted quantities denote the ones pertaining to a metric background, in our case taken 
to be the inflationary (de Sitter) FLRW space-time. The symbol �̂ denotes the covariant d’Alembertian in the background (de Sitter) space-
time. The (dimensionless) coefficients ai , i = 1, . . . 7 depend on the specific UV completion, and in general are divergent, thus becoming 
functions of the UV cutoff μ after proper regularisation (such regularised coefficient are background independent [26]). Not all terms of 
(52) are independent, as they can be related by field redefinitions, but this is not of specific interests to us. In our specific string-inspired 
case (cf. (7)) F =

√
2
3

α′
96κ b(x).

Assuming a homogeneous and isotropic F(t) field, and an inflationary space-time de Sitter background, for which R̂μν = 3H2 ĝμν with 
H = constant, we shall seek solutions to the equations of motion for the pseudoscalar field F(t) which are of the Lorentz-violating form 
(21), (26):
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Ḟ = constant . (53)

Under those circumstances, the pertinent equations read:

∂t

(√
−ĝ

[
2a1M2

Pl + 2 H2 (12a4 + 3a5) + 2 a6
1

M2
Pl

(
Ḟ

)2 + . . .
]
Ḟ

)
= 0, (54)

where the . . . denote the corresponding terms obtained from the last term on the right-hand side of (52), with coefficient a7, which for 
solutions of the type (53), we are seeking for, vanish. From (54), we indeed observe that there can be solutions of the type (53), if

2a1M2
Pl + 2 H2 (12a4 + 3a5) + 2 a6

1

M2
Pl

(
Ḟ

)2 = 0, (55)

which implies a solution of the type (53), provided some of the ai coefficients in (52) are negative, something which is generically 
expected, due to the fact that UV subtractions have taken place in order to obtain (52).

This completes our argument on the robustness of the existence of Lorentz-violating solutions (53), or (21), (26), independently of the 
specifics of the UV completion of effective theories in a generic framework. We remind the reader that taking into account terms of higher 
order in α′ that appear in a string effective action does not affect our conclusion on the existence of the solution (26), as argued in the 
Appendix. Of course, to obtain the value of the solution one needs to have a full knowledge of the underlying UV complete quantum 
gravity model, e.g. the full string theory in our case, something which may not be available.

6. Post inflationary era chiral anomalies and axion dark matter

In the cosmological model of [1,2], it was assumed that at the end of inflation the appearance of chiral fermions, with anomalous 
axial currents, among other matter occurs. Then, in models involving right-handed massive neutrinos, matter-antimatter asymmetry in 
the observable universe could be due to such an anomaly in the post-inflationary era through the mechanism advocated in [15], as a 
consequence of the appearance of the undiluted KR background (21), (26). For details we refer the reader to [2].

The effective action of chiral fermions during the post inflationary eras is crucially based on the link of the KR axion b(x) with the 
torsion provided here [17,18] by the (totally antisymmetric) quantity εμνρσ ∂σ b, which is dual to the Kalb-Ramond antisymmetric tensor 
field strength Hμνρ , as discussed previously (cf. (2)). Indeed, such a torsion is present in the gravitational covariant derivative of the 
fermion Dirac term, which leads eventually to the coupling of the axial fermion current with the KR axion field b(x). The effective action 
was derived in [1,2], and reads:

Seff =
∫

d4x
√−g

[
− 1

2κ2
R + 1

2
∂μb ∂μb −

√
2

3

α′

96κ
∂μb(x)Kμ

]
+ S F ree

Dirac +
∫

d4x
√−g

α′

κ

√
3

8
∂μb J 5μ − 3α′2

16κ2

∫
d4x

√−g J 5
μ J 5μ + . . . , (56)

where J 5
μ denotes the (anomalous in general) fermion axial current, summed over all fermion species in the model, and the . . . indicate 

gauge field kinetic terms, as well as terms of higher order in derivatives, of no direct relevance to us here. The reader should notice the 
four fermion axial-current-current term in (56), which is characteristic of Einstein-Cartan theories with torsion [19,27].

In the scenario of [1,2] the generation of chiral matter at the end of inflation leads to a cancellation of the gravitational anomalies 
locally, thus restoring diffeomorphism invariance in the presence of matter, required for consistency of the matter/radiation quantum 
field theory. However, chiral [28] or QCD-axion [29] type anomalies may remain uncompensated. These do not contribute to stress tensor of 
matter, unlike the gravitational ones, hence there is no fundamental reason for the matter theory to be chiral-anomaly free, only the gauge 
symmetry must be anomaly free so as to preserve the Ward identities. Thus, we postulate the following relation during the radiation (and 
matter) eras:

∂μ

[√−g
(√

3

8

α′

κ
J 5μ − α′

κ

√
2

3

1

96
Kμ

)]
=

√
3

8

α′

κ

(αEM

2π

√−g F μν F̃μν + αs

8π

√−g Ga
μν G̃aμν

)
, (57)

where Fμν is the electromagnetic (EM) Maxwell tensor, and Ga
μν is the gluon field strength, with a = 1, . . . 8 an adjoint SU(3) colour index, 

αEM is the electromagnetic fine structure constant, and αs is the strong interactions fine structure constant. The fact that the anomaly is 
proportional to these fine structure constants is due to the fact that it is a one-loop effect, with chiral fermions circulating in the loop.

In [1,2] we considered only the effects of the electromagnetic chiral anomalies only, arguing in favour of their rôle in the generation of 
large-scale cosmic magnetic fields, which lead to H2 contributions to the vacuum energy density, which again assumes an RVM form (48). 
Here we concentrate on the QCD anomalies, which are assumed dominant during the QCD-epoch of the Universe. By partially integrating 
the b − J 5 interaction term in (56), and using (57), it is straightforward to observe that in the QCD era one obtains an effective action for 
the KR pseudoscalar b(x) of the form

Seff
b =

∫
d4x

√−g
[1

2
∂μb ∂μb − α′

κ

√
3

8

αs

8π
b(x) Ga

μν G̃aμν
]

. (58)

We now remark that shift-symmetry-breaking QCD instanton (non-perturbative) effects can generate a periodic potential for the KR axion 
during the QCD era
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V QCD
b 
 �4

QCD

(
1 − cos(

b

fb
)
)

,

fb ≡
√

8

3

κ

α′ =
√

8

3

( Ms

MPl

)2
MPl , (59)

minimisation of which fixes the strong-CP-violating angle 〈θCP〉 = 0. In (59), �QCD ∼ 218 MeV is the QCD scale, and fb plays the rôle of 
the (mass-dimension-one) QCD axion decay coupling constant fa , which is estimated phenomenologically to lie in the range [29]

109 GeV < fa < 1012 GeV , (60)

although the upper bound can be extended up to 1017 GeV by means of astrophysical constraints [30]. In our string-inspired case, this is 
determined by the string scale α′ = M−2

s . For the validity of our Lorentz-violating constant solution for the KR axion (26) we have seen 
that (29) must be valid, which implies a range

3.9 × 1012 GeV � fb � 3.9 × 1018 GeV , (61)

where we used that MPl = 2.4 ×1018 GeV. We thus observe that there is a marginal overlap (in order of magnitude) between the minimally 
allowed region of fb (61) and the maximally allowed phenomenological region of the QCD axion coupling constant (60). If the constraints 
of [30], however, are taken into account, we see that the overlap of the allowed regions between fa and fb increases significantly.

The instanton-induced KR-axion mass is then given by

mb =
√√√√ ∂2 V QCD

b

∂b2

∣∣∣∣∣
b=0

= �2
QCD

fb
=

√
3

8

(�QCD

Ms

)2
MPl =

√
3

8

(�QCD

MPl

)2 ( MPl

Ms

)2
MPl , (62)

which, in view of (29), lies in the range

1.17 × 10−11 eV � mb � 1.17 × 10−5 eV , (63)

which lies well within the range calculated in lattice QCD approaches [31]: ma ∼ 5.7 ( 1012 GeV
fa

) × 10−6 eV.

The above considerations are rather string-theory-model independent, in the spirit of [32] and [33], where the KR axion is viewed 
as a Lagrange multiplier of the modified Bianchi identity (4), and acquires dynamics by dualization (path-integral integration) of the KR 
field strength H. Our point above was to present the simplest of the scenarios, in which, during the QCD epoch, non-perturbative QCD 
instanton effects in our effective field theory (58) generate a KR axion potential, and examine whether the non-diluted solution (26), (31)
for the b-axion, resulting from primordial-gravitational-wave condensates, provides phenomenological consistency for the pertinent axion 
parameters. We found a rather marginal agreement with cosmology, see (61). In terms of microscopic string theory models, discussed 
in [32,33], where we refer the interested reader for more information, there is a plethora of different ranges for the axion parameters. 
In most models, like in our case here, the axion coupling constant fa is found larger than the GUT mass scale, outside its cosmological 
bounds, although there are models in which fa is much smaller. It would be interesting to discuss specific string theory model realisations 
of the solutions (26), (31), in the spirit of [32,33]. This falls outside our scope. We hope though that our current work and that in [2]
serve as motivations for such a study in the future.

7. Summary

In this Letter, we have shown that the leading order structures of the energy density of the running vacuum model (RVM), namely the 
H4 and H2 terms (the latter being subdominant in the early Universe but playing a role at late epochs) can be derived from the effective 
action of string theory. The high power H4 is able to produce inflation with graceful exit. The lower power H2 carries a negative coefficient 
(ν < 0) in the early universe, indicating that the anomaly triggers instabilities in the de Sitter vacuum and as a result inflation quickly 
transmutes into a standard radiation regime. However, the coefficient ν flips sign at this point to a positive one, since the gravitational 
anomaly contribution disappears during the standard epochs of the FLRW evolution.

At low energy, the sign ν > 0 is crucial since it makes the RVM to mimic quintessence-like behaviour at present. The theoretically 
predicted value of ν for the post-inflationary universe (viz. ν = +O(10−3) is nicely in agreement with the existing fitting analyses of the 
RVM in the light of the modern observational data, as shown in detail in [9]. At the same time, we have found that in the above simplified 
scenario, the KR axion itself becomes the Dark-Matter axion through the generation of a non-perturbative potential in the QCD era, in 
which case the spontaneous Lorentz symmetry breaking solution ḃ = constant (cf. (26), (31)) ceases to exist. However, as discussed in 
[2], there are other, more complicated, but in the same spirit, mechanisms for generating mass for the KR axion through non-perturbative 
potentials arising in string theory models [34] involving mixing of the b(x) fields with other axions that are abundant in string theory [35]. 
These scenarios are capable of preserving the structure (26), (31) for the KR axion background at modern eras, notably with an ε of the 
same order as the primordial one. They also allow for ultralight axion dark matter with mass less than 10−21 eV, which constitutes 
currently the subject of intense research [36]. Overall, the theoretical framework presented here suggests that string-inspired RVM models 
can provide a global explanation for inflation, dark matter (of axionic nature) and (dynamical) dark energy in the form of running vacuum.
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Appendix. String theory considerations

In this Appendix we would like to justify the use of the effective action (1), based only on antisymmetric tensor and graviton degrees 
of freedom. What we shall argue below is that a constant (or slowly moving) dilaton configuration, as assumed above and in [2], can 
be consistently implemented, and all our conclusions are not affected by the inclusion of the dilaton dynamics, upon certain reasonable 
assumptions that we shall outline explicitly.

Our starting point is the string effective action of the massless string gravitational multiplet (graviton, dilaton and KR antisymmetric 
tensor fields) in the Einstein frame [16–18]9

S B =
∫

d4x
√−g

( 1

2κ2
[−R + 2 ∂μ�∂μ�] − 1

6
e−4� HλμνHλμν − V (�)

)
+ S(α′)

B , (64)

where V (�) is a (non-perturbatively) generated potential for the dilaton field �, which we leave unspecified for the purposes of this 
work.

The S(α′)
B represent two classes of string low-energy effective action terms, of higher order in α′ [17], with α′ = M−2

s the Regge slope 
of the string and Ms the string mass scale, which is not necessarily the same as the four dimensional gravitational constant κ2 = 8π G =
M−2

Pl : (i) higher (than two) derivative terms, including couplings of dilatons to the Gauss-Bonnet quadratic curvature invariant and (ii) 
terms involving higher than quadratic powers of Hμνρ . Their explicit form to O(α′) reads [17]:

S(α′)
B = α′

g(0)2
s κ2

∫
d4x

√−g
[
− c1

1

8
e−2�

(
Rμνρσ Rμνρσ − 4Rμν Rμν + R2

)
+ c2e−2�(∂ρ�∂ρ�)2+

+ c3 e−2� (Rμν − 1

2
gμν R) ∂μ�∂ν� + c4 e−2� ∇μ∂ν�∂μ�∂ν�

+ c5 e−6� (−∇μHνρσ ∇νHσμρ + ∇μHμρσ ∇νHνρσ )

+ c6 e−6� (5Rμνρσ Hμνλ Hλ
ρσ − 8Rμν Hμρσ H ρσ

ν + R Hμνρ Hμνρ)

+ c7 e−6� Hμνρ ∂ρ�∂λ�Hλμν + c8 e−6� Hμνρ Hμνρ ∂λ�∂λ�

+ c9 e−10�
(

− 3Hμνρ Hλνρ HλστHμστ +Hμνρ H λσ
μ H κ

νλ Hκρσ + 2

3
(Hμαβ Hναβ)2

)
+ . . .

]
(65)

where g(0)
s is the string coupling when the dilaton � = 0, ∇μ denotes the gravitational covariant derivative with respect to the torsion-

free connection, the . . . denote higher order terms and ci , i = 1, . . . 9 are numerical coefficients that can be determined by matching with 
string scattering amplitudes or σ -model conformal invariant conditions [16,17]. For constant (or sufficiently slowly moving) dilatons, or 
weak KR field strengths Hμνρ , slowly evolving with the cosmic time, all of the terms in (65) (and those of higher order) are subleading or 
not contributing to our discussion Thus we can neglect them and the relevant field equations can be highly simplified in our case. Apart 
from the graviton equation, which we do not write explicitly here, variation of the effective action with respect to both the antisymmetric 
tensor and dilaton, yields the following field equations:

antisymmetric tensor : ∇μ
(

e−4�Hμνρ

)
= 0, (66)

dilaton : 2

κ2
∇μ∂μ� − 2

3
e−4� HλμνHλμν + ∂V (�)

∂�
= 0 . (67)

In four space-time dimensions, a general solution of (66) is

e−4�Hμνρ ∝ εμνρσ ∂σ b(x) , (68)

where b(x) is the background of the KR axion field b(x), which was introduced in the main text, as a Lagrange multiplier for the constraint 
(4). Indeed, if one ignores higher than quadratic Hμνρ terms in the path integral, after the introduction of the Lagrange multiplier b
field [2], and considers a saddle point of the action in the (exact) path integration over Hμνρ fields, the mere use of the equations of 
motion for the KR field strength yields (68).

Let us now more specifically address the constant dilaton situation on which we based our discussion in this work. Upon considering 
cosmic b(t) fields, with canonically normalised kinetic terms, using (68), and noting that in our conventions [2] 2

3 e−4� Hμνρ Hμνρ =
−2(ḃ)2 < 0, we find from (67) that ∂μ� 
 0 can be sustained provided the following relation is reached asymptotically:

(ḃ)2 = −1

2

∂V (�)

∂�

∣∣∣
�→�0
const

� 0 . (69)

9 Our conventions and definitions used throughout this work are: signature of metric (+, −, −, −), Riemann Curvature tensor Rλ
μνσ = ∂ν 
λ

μσ + 

ρ
μσ 
λ

ρν − (ν ↔ σ), 
Ricci tensor Rμν = Rλ

μλν , and Ricci scalar R = Rμν gμν .
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A typical scenario which could satisfy (69), with ḃ 
 constant, hence fulfilling Eq. (26) of interest to us here, would be, for instance, that 
of a ‘run away’ pre big bang type [37] dilaton potential, in the range where the dilaton slowly approaches a constant value asymptotically 
and with a decaying trend ∂V (�)/∂� < 0. Interestingly, this situation characterises N=1 globally supersymmetric theories that can be 
embedded in a supergravity/superstring framework [38].10 It is then straightforward to see that, under the above conditions, the higher 
order terms in (65) have either vanishing contributions to the equations of motion, or are subleading, for sufficiently small ḃ  M2

Pl, as 
required in the approach of [2], for our cosmic background solutions in a FLRW space time. The upshot is that � 
const. appears to be a 
viable assumption within our framework both as a self-consistent field theory of graviton and KR degrees of freedom or within a generic 
string inspired approach.
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