A bicyclic α-iminophosphonate improves cognitive decline in 5xFAD murine model of neurodegeneration

Bicyclic α-iminophosphonates as Imidazoline I₂ Receptor Ligands

C. Escolano^a, S. Abás,^a S. Rodríguez-Arévalo,^a A. Bagán,^a C. Griñán-Ferré,^a F. Vasilopoulou,^a I. Brocos-Mosquera,^b C. Muguruza,^b L. F. Callado,^b B. Pérez,^c P. Pérez-Lozano,^d J. Brea,^e M. I. Loza,^e E. Hernández-Hernández,^f J. A. García-Sevilla,^f M. J. García-Fuster,^f M. Radan,^g T. Djikic,^g K. Nikolic,^g C. Díaz,^h J. Pérez,^h C. Ramos,^h F. Vicente,^h E. Molins,ⁱ and M. Pallàs,^a

^a Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine of the University of Barcelona (IBUB), Institut de Neurociències, University of Barcelona. Spain.

^b Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain.

^c Department of Pharmacology, Therapeutic and Toxicology, Autonomous University of Barcelona, Barcelona, Spain.

^d Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona. Spain.

^e Innopharma screening platform, BioFarma research group, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain.

^{*f*} IUNICS University of the Balearic Islands (UIB), Health Research Institute of the Balearic Islands (IdISBa), *P. Mallorca, Spain.*

^g Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia ^h Fundacion MEDINA, Health Sciences Technology Park, Granada, Spain.

¹ Institut de Ciència de Materials de Barcelona (CSIC), Cerdanyola, Spain.

 I_2 receptors (I_2 -IR) are widely distributed in the central nervous system. I_2 -IR ligands are associated with a neuroprotective effect but, as I_2 -IR structure remains unknown, the discovery of better and more selective ligands is necessary to understand the pharmacological and molecular implications of I_2 -IR.

Recently, we described a new imidazoline-structure family which showed high affinity and selectivity for I_2 -IR. *In vivo* studies in mice indicated a neuroprotective role and revealed beneficial effects in behaviour and cognition with a murine model of neurodegeneration, senescence-accelerated prone mouse (SAMP8).

Herein, we report a novel non-imidazoline-structure of bicyclic α -iminophosphonates family with high affinities for I₂-IR. *In vivo* studies in 5X-FAD mice (a transgenic representative model of AD) and SAMP8 mice (a model of neurodegeneration linked to aging) showed an improvement in behaviour and cognition, a reduction of AD hallmarks and of neuroinflammation markers for the mice treated with the lead compound BO6. After evaluating several pathways associated with neurodegeneration, we demonstrated that CaN pathway plays a critical role on the neuroprotective effects of I₂-IR ligands on SAMP8 mice model.

To rule out warnings of the novel family, we calculated DMPK and physicochemical properties for the novel bicyclic α -iminophosphonates. As well, we carried out drug metabolism, safety studies and in vivo pharmacokinetics for lead compound B06.

In summary, we present a novel family of I₂-IR ligands, its effectiveness in *in vivo* models and the possible neuroprotective molecular mechanism mediated by them. This highlights that the

modulation of I_2 -IR by bicyclic α -iminophosphonates may open a new therapeutic venue for unmet neurodegenerative conditions.

SupportorFundingInformationPID2019-107991RB-I00, PID2019-106285RB-I00 and 2017SGR106. The project leading to theseresults has received funding from "la Caixa" Foundation (ID 100010434), under agreementCl18-00002. r F. V. (University of Barcelona, APIF_2017), S. R.-A. (Generalitat de Catalunya,2018FI_B_00227), A. B. (Institute of Biomedicine UB_2018), C. M. (Marie Sklodowska-CurieActions Individual Fellowships H2020-MSCA-IF-2016, ID747487), and E. H.-H. (Consejería deInnovación, Investigación y Turismo del Gobierno de las Islas Baleares y del Fondo SocialEuropeo, FPI/2102/2018). MR, TD and KN Ministry of Science and Technological Developmentof the Republic of Serbia, Project Contract No. 172033, and HORISON2020-COST-ActionCA18133 ERNEST: European Research Network on Signal Transduction.