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Abstract

Rockfall detection is a crucial procedure in the field of

geology, which helps to reduce the associated risks.

Currently, geologists identify rockfall events almost

manually utilizing point cloud and imagery data ob-

tained from different caption devices such as Terrestrial

Laser Scanner (TLS) or digital cameras. Multitemporal

comparison of the point clouds obtained with these

techniques requires a tedious visual inspection to iden-

tify rockfall events which implies inaccuracies that de-

pend on several factors such as human expertize and the

sensibility of the sensors. This paper addresses this issue

and provides an intelligent framework for rockfall event

detection for any individual working in the intersection

of the geology domain and decision support systems.

The development of such an analysis framework pre-

sents major research challenges and justifies exhaustive

experimental analysis. In particular, we propose an in-

telligent system that utilizes multiple machine learning

algorithms to detect rockfall clusters of point cloud data.

Due to the extremely imbalanced nature of the problem,

a plethora of state‐of‐the‐art resampling techniques ac-

companied by multiple models and feature selection

procedures are being investigated. Various machine
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learning pipeline combinations have been examined

and benchmarked applying well‐known metrics to be

incorporated into our system. Specifically, we developed

machine learning techniques and applied them to ana-

lyze point cloud data extracted from TLS in two distinct

case studies, involving different geological contexts: the

basaltic cliff of Castellfollit de la Roca and the con-

glomerate Montserrat Massif, both located in Spain. Our

experimental results indicate that some of the above‐
mentioned machine learning pipelines can be utilized to

detect rockfall incidents on mountain walls, with ex-

perimentally validated accuracy.

KEYWORD S

geology, imbalanced classification, intelligent systems, machine
learning, rockfall monitoring

1 | INTRODUCTION

In the field of geology, one crucial task is rockfall detection, which helps to reduce the risk of
future hazards.1 Recently, technologies that are able to characterize the geometrical properties
of rock slopes and cliffs have emerged.2 As a result, the possibility of detecting changes in a cliff
with high precision has been increased greatly.

Currently, geoscientists utilize specific methodologies to detect changes in rock slopes
mainly by comparing measurements at different points in time.3 However, the problem with
such techniques is that they rely greatly on the sensitivity of the sensor that captures the data or
even the measurement tool. Consequently, due to potential measurement errors, the users need
to examine case by case analyzing the nature of the change in the cliff, that is, vegetation, edge
effect, noise or random objects. For instance, it is often difficult to distinguish rock detachments
from other changes optically in point cloud or imagery data.

The issues presented above justify the need for a new automated intelligent system designed
to detect rockfalls. Therefore, in this paper, we propose an intelligent framework for rockfall
detection. At the time of writing, a thorough search for such a system has failed to yield results.
In addition, although there are recent studies such as Reference [4] that develop rockfall
identification frameworks using point cloud data, they do not address the data imbalance
issues, which are significant in the geology field. We consider our study capable of elucidating
the field towards the implementation of a general machine learning classification framework
able to handle cases with extremely imbalanced data. The level of data imbalance in this study
is significant. This is justified in the later sections of this article since there is a low number of
rockfall labeled instances. Depending on the nature of the scenery, the vegetation or edge
effects can be numerous compared to rockfall events.

In this article, we examine several of the intelligent methods dealing with rockfall and
landslide detection, implement the relative machine learning models accompanied by various
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resampling strategies to handle the imbalanced nature of the study and apply them on point
cloud data to identify rockfall events. Two well differentiated geological environments have
been selected as case studies. The first one is located at the Montserrat Massif (Barcelona,
Spain), which corresponds to a fractured conglomerate cliff, called Degotalls. The second case
study involves data from the basaltic lava flow cliff of Castellfollit de la Roca (Girona, Spain).
The acquired data are preprocessed and used as input in the learning stage of our intelligent
framework. We systematically compare various models to select the most accurate for each case
study. Then, our prototype system utilizes the aforementioned selected models to perform
effective rockfall event identifications.

Our framework provides a novel intelligent solution for the geoscientists, which may be
incorporated as a stand‐alone component in a geological decision support system targeted to
rockfall monitoring. Its novelty is also derived from the fact that it is a ready‐to‐use geological
point cloud machine learning software able to deal with imbalanced data, which is the only
published work providing such a stand‐alone rockfall detection system at the time of writing.
Also, our results portray great robustness and generalizability performance, which is of utmost
importance in rockfall detection.

Finally, the main contributions of this article are the following:

• We propose a full intelligent framework for rockfall detection handling highly im-
balanced data.

• We conduct experiments with real data from two distinct case studies to validate the
efficacy and effectiveness of our proposed intelligent system.

• We develop a web‐based rockfall detection system.
• We provide a baseline methodology and a detection accuracy benchmark for future
related experimental analyses.

The paper is organized as follows. Section 2 contains a synopsis of related efforts and
Section 3 summarizes the design specifications and the implementation of the developed fra-
mework, while also provides the background information needed to understand the whole
procedure of detecting rockfall events. In Section 4, we present the experimental analysis of the
examined intelligent process, concerning common performance metrics for imbalanced clas-
sification, and the prototype web‐based Rockfall Detection System. Section 5 includes the final
observations of our experiments. Finally, Section 6 includes our concluding comments and
potential issues for further investigation.

2 | RELATED WORK

Various research studies have been conducted on the intersection of the geology and machine
learning domains. Over recent years, several machine learning applications have emerged in
the geoscience field and there is a growing enthusiasm for intelligent methods.5 However, the
geoscience domain presents new and special challenges for machine learning algorithms and
methodologies, because of the combinations of geoscience properties encountered in each
specific case. In addition, there is an open need for novel machine learning research and
automatic intelligent analysis, especially in the geosciences field as highlighted by Reference
[6]. The automation of intelligent pipelines performing specific, special analysis will bring
significant advances in both the geoscience and machine learning domains, especially in the
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task of detecting objects and events, estimating and long‐term predictions for geoscience
variables and in extracting knowledge from geoscience data.

The detection of deformations and rockfall events have been studied in the literature for a
couple of decades.7,8 The number of scientific articles on the use of modern and advanced
sensors such as Terrestrial Laser Scanner (TLS) in rockfall and landslide studies has escalated
considerably in the last years. However, further research into the development of new meth-
odologies using such sensors is required to address and improve the current time consuming
analytical methods due to the high volume of data that these sensors produce.9‐13 Research
studies on the identification of landslide and rockfall events and on general classification tasks
in the geology domain present variations regarding their input data, feature inventories,
methodologies, and in general their specific objectives.

Regarding the input data, we could categorize the related research studies into three broad
categories: (i) the imagery data studies; (ii) point cloud studies; and (iii) other sensory data
studies. Considering imagery data studies, remote‐sensing techniques are considered to be
among the most important for landslide event detection and monitoring. Multiple efforts by
researchers working in the remote sensing field applied in geology appear in the literature,
utilizing intelligent methods on high‐resolution Earth Observation imagery data.14 Imagery
data seem to be a popular data source utilized in numerous studies. Recently published articles,
such as References [15‐21] use images as their main data source. In addition, researchers
involved in Reference [22] constructed 3D images using a multiview stereo algorithm and
consumer‐grade cameras.

On the other hand, the use of TLS devices to extract point cloud data for the categorization
of landslide kinematics is significant. Also, research studies show that it seems to be necessary
to fuse point cloud data from various sources, namely TLS combined with Airborne Laser
Scanner (ALS) or Structure from Motion (SfM) methods combined with TLS, to overcome the
limitations of each individual technique.23 Point clouds are heavily utilized by various re-
searchers, mainly because they carry detailed, high quality information. Specifically, recent
studies, including References [4,24-30] use point clouds as their main data source for their
analysis. Moreover, advanced research studies use both images and point clouds portraying a
speciality and differentiate themselves from the majority of the related studies.31‐33 Further-
more, Reference [34] use images and TLS point cloud data to model slopes. Last but not least,
Reference [35] utilize data from wireless sensor networks and machine learning algorithms to
monitor and forecast landslides in real time.

Several researchers have compiled a brief selection of the features used for landslide and
rockfall identification. These features can be categorized in five groups, namely morphological,
hydrological, geological, land cover features and features obtained from other sources, like
rainfall intensity, according to Reference [14]. Pure geological features like the lithology of a
studied field or geo‐structural information appear in older studies such as Reference [36].
Recently, various scientists have utilized explanatory variables derived from basic cartographic
operations on geological records. These variables are commonly used to form land cover fea-
tures based on distances to faults, roads, and rivers, which are measured using simple spatial
operations in GIS software.37 In addition, Reference [20] use combined morphological pre-
dictors, namely elevation, aspect, curvature, slope, with hydrological ones like wetness index
and rainfall intensity data. Similarly, Reference [38] utilize morphological and hydrological
features adding multiple curvature measurements, such as plan and surface curvature to ex-
plain the mechanisms of landslides and to confirm the state of vegetation, roads and, in general,
geometric deformations.
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Furthermore, there are variations regarding the methodologies utilized in rockfall and
landslide identification and forecasting, ranging from methods using traditional geology
and statistics to more intelligent ones using machine learning approaches such as deep learning
and neural networks. Multiple efforts have been presented introducing analysis frameworks
able to deal with landslide and rockfall events.

Traditional geology is mainly utilized in research articles published more than 10 years ago,
such as Reference [39] although recent papers still investigate the application of such methods.2

Lague et al.11 proposed a technique, which compares and combines two different sets of point
clouds obtained from a TLS device. According to their methodology, two different time frames
of point cloud data are combined and later compared to identify whether the input data form
deformation or rockfall event. The aforementioned method uses traditional statistics and lacks
generalization performance.

Machine learning‐based methodological workflows are the most used techniques, as there
are various research articles utilizing them. Recent research studies such as References [25‐
30,32,33,35] utilize mainly machine learning algorithms for rock‐slope and landslide mon-
itoring and analysis. More elaborate machine learning methods outperform the majority, ex-
amples include Reference [40], who developed a landslide monitoring approach for TLS point
cloud data, which integrates a specialized machine learning classification involving topological
rules in an object‐based framework of analysis.

Although deep learning and neural networks are highly popular in other domains, such as
the biomedical domain, achieving significant results in classification tasks,41,42 are currently
utilized in fewer studies in the geology domain, such as References [43,44]. However, advanced
neural network architectures using specialized loss functions are being employed to tackle
specific issues in the field such as data imbalance in landslide analysis, showing important
advances in terms of performance.14 Also, Xiao et al.15 present a landslide susceptibility as-
sessment framework based on deep learning algorithms using multisource imagery data. A
wide assortment of recently published research studies combines and compares machine
learning, neural networks, and ensemble‐based techniques to achieve higher performance in
terms of accuracy and generalizability.4,15‐21,31,45

The data imbalanced issue has been addressed in multiple fields, for instance, in classifi-
cation approaches in the biomedical domain.46,47 Ijaz et al.46 used Synthetic Minority Over‐
Sampling Technique (SMOTE) combined with Random Forest (RF) classifier to deal with
imbalanced data and model diseases. In the geoscience domain, the landslide and rockfall
identification are two tasks that present significant imbalanced data issues. Prakash et al.14

approached the imbalanced learning task by utilizing sophisticated loss functions in the
training phase and data augmentation techniques. Stumpf et al.48 proposed a machine learning‐
based analysis framework with a repetitive strategy to handle class imbalance. Zhao et al.49

tackled minor data imbalance issues in predicting landslide susceptibility by utilizing a voting
system and the random processing of samples with a random forest algorithm.

In a more recent framework,4 proposed combining ALS and TLS data with GIS and in-
troducing a hybrid ensemble model and a 3D kinematic rockfall forecasting model able to deal
with rockfall hazard assessment, achieving promising accuracy. However, they did not address
the imbalanced nature of the study or deal with imbalanced data. Our proposal considers a
novel machine learning approach that also deals with the problem of imbalanced data. Spe-
cifically, we propose an intelligent analysis framework and rockfall detection decision support
software that incorporate various processing stages, which are considered to be essential for
such problems, namely clustering, resampling, model parameterization, and feature selection.
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Regarding the input data sources, we consider only point cloud data acquired by a TLS device
from two distinct geological contexts, with features derived mostly from the morphology of the
terrain.

3 | END ‐TO ‐END MACHINE LEARNING FRAMEWORK:
DESIGN AND IMPLEMENTATION

This section introduces our developed end‐to‐end machine learning framework for detecting
rockfall events. First, we explain the basic procedure of detecting rockfalls. Then, we analyti-
cally present our proposed framework.

3.1 | Background on detecting rockfalls

One of the most common processes in the detection of rockfall events on mountain cliffs and
slopes is explained in Reference [3] and depicted in Figure 1, specifically in Steps (A)–(E).
The methodology implies capturing periodical measurements of the same cliff face at different
time frames with a TLS, denoted as Step (A) in Figure 1. TLS is a measuring device which offers
the ability to collect dense point‐clouds of objects. It also provides high‐precision and high‐
accuracy data and is widely used in the geology domain.50 After the capture, the procedure
continues with the detection of changes at the surface of the cliff from point cloud data
comparison, which is mostly performed with a technique calledm3c2,11 denoted as Step (B). As
a result, a new point cloud is obtained containing the metric distances between the compared
dense clouds. A clustering algorithm is then applied in Step (C) following the change detection
step outputting a set of clusters, which are aggregations of points with a significant distance
value. These clusters allow for the management of subsets of point clouds with specific topo-
logical properties. A statistical analysis then generates a set of features (Step (D)) to be eval-
uated manually, through a visual inspection with expert criteria, to determine whether they are
rockfalls or random noise (Step (E)). In most cases, samples, that is, the clusters, happen to be
random noise or even measurement errors by the scanner itself.

The current semimanual classification task of the TLS point cloud data for the detection of
rockfall events presents two main challenges. The first concerns the sensibility of the sensor
because in some cases the detection of movements is smaller than the device's margin of error.
The second concerns the process of distinguishing rock movement events from other kinds of
events, such as the movement of the sensor between measurements, the appearance of

FIGURE 1 Procedure for detecting rockfalls. TLS, terrestrial laser scanner

6 | ZOUMPEKAS ET AL.



vegetation or even random noise. The use of clustering techniques helps to mitigate the
aforementioned issues.

Machine learning algorithms present an interesting and currently widely accepted solution
for the automatic classification of TLS point cloud data for the detection of rockfall events.
However, rockfall detection is considered to be a highly imbalanced classification task, due to
the rarity of a rockfall event in a relative data set. Moreover, clustered point cloud data present
patterns that are not easily distinguishable, while having high dimensionality, due to the
considerable number of features. In addition, automating the above‐mentioned process seems
to be an interesting solution for an individual working in the geology domain. There is an open
need for a consistent and concise intelligent rockfall identification framework, as detailed by
Reference [6]. In Section 3.2, we propose a developed machine learning framework, which
represents Step (F) in Figure 1.

3.2 | Framework overview

An outline of our proposal can be seen in Figure 3, where we synthesize our framework by
providing its methodology workflow, and in Figure 2, where we present its component‐based
system architecture.

First, we collect point cloud data in different time frames (Figure 2A) using the TLS device
and store it in a database (Figure 2B). Next, we preprocess it (Figure 2C) to be fed in our
analysis framework. Then, we statistically analyse the input data, obtaining descriptive sta-
tistics to elucidate the field regarding the data. The obtained data set is then stored and
normalized. Subsequently, to prevent issues of imbalance, we define our resampling module,

FIGURE 2 Intelligent framework—methodology workflow [Color figure can be viewed at
wileyonlinelibrary.com]
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portrayed in Figure 2D, which balances the normalized data (Figure 2E) to be used as input for
machine learning algorithms (Figure 2F). Several intelligent machine learning pipelines are
utilized to detect rockfall events and to identify the most significant features (Figure 2G). Fi-
nally, a reporting component is used to display the results in a convenient and illustrative
manner, as depicted in Figure 2H.

Regarding our methodology, we initially feed normalized point cloud data in our intelligent
framework as depicted in Figure 3A. Then, in the resampling process (Figure 3B), an assort-
ment of several resampling strategies accompanied by multiple machine learning models are
investigated to handle this imbalanced classification task. The three best resamplers are then
selected and paired with a variety of models in the model selection and parametrization stage
(Figure 3C). The completion of the hyper‐parameterization stage follows the feature selection
phase (Figure 3D), in which the best parameterized models of each model variant accompanied
by each one of the three best resamplers are experimentally evaluated using different numbers
of features. The output of the aforementioned stage consists of multiple properly parameterized
machine learning pipelines (Figure 3E). These pipelines are then statistically compared to
decide on the best intelligent pipeline to be used in our prototype system (Figure 3F), which is
able to produce detection results (Figure 3G) and rank feature importance (Figure 3H) with
promising accuracy. In the following sub‐sections, we analytically present our framework and
methodological approach.

3.3 | Data collection

The data used in this study has been freely provided by the RISKNAT* research group and the
GEOMODELS** Research Institute, which belong to the University of Barcelona.

In this article, we utilize two distinct case studies. Regarding the first case study, we use
point cloud data measured from the Degotalls cliff in Montserrat Massif, located in Barcelona,
Spain. The data set consists of clustered TLS point cloud data aggregated from temporal point
cloud measurements, from 2007 to 2020 in eight nearly regular time steps. The second case
study includes clustered TLS point cloud data measured from the cliff of Castellfollit de la Roca,
located in Girona, Spain, from 2008 to 2012. We would like to highlight that the two landscapes
are very different in terms of their geological and imagery properties.

FIGURE 3 Component‐based system architecture
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Actually, in each case study, the data is composed of a set of statistics computed from the
point cloud data, using a technique based on the m3c2 methodology,11 which creates clusters
of points, as described in Section 3.1, including several numerical features that are used in the
proposed workflow to identify rockfalls. Then, the aforementioned statistical set is fed in our
analysis framework. The Degotalls data consist of 6004 instances, that is, clusters, and has 37
distinct numerical features, while the Castellfollit data consist of 10,371 instances and has 31
numerical features. The aforementioned features include the coordinates of the point clouds
and other statistically computed values. A list of these variables with a brief explanation can be
found in Appendix S1.

3.4 | Data analysis

A data exploration analysis of the point cloud data is provided in this section. This analysis is
critical because it elaborates the entire data collection process. Particularly, in Tables 4 and 5 in
Appendix S2, we display the summary statistics for all the data features used in the Degotalls
and Castellfollit case studies, respectively, supplying the foundation for our subsequent ana-
lysis. For clarification purposes, we chose to use an abbreviation for each variable of the data.
The complete variable names followed by a brief explanation can be found in Appendix S1.

The classification labels of the clusters are determined by the event that causes the change
at the surface of the cliff. Rockfall events are denoted as “Candidate.” Also, we call “Precursor”
the events in which the rock presents a small movement before rockfall. In addition, the
vegetation of the cliffs is denoted as “Vegetation” and the unknown or human‐based events as
“Unknow.” The artifacts due to the edge effects or the TLS noise are denoted as “Limit_effect.”

Observing the graphs in Figure 4, it is clear that the data in each case study are considered
highly imbalanced. In the Degotalls case study (Figure 4A), we have only 65 rockfall candidate
samples compared to the total of 6004 samples. On the other hand, the Castellfollit case study
(Figure 4C) includes only 38 compared to the total of 10,371 samples. Please note, that the
labeling process is done by expert geoscientists with a visual inspection of the 6004 and the
10,371 clusters.

3.5 | Data preprocessing

Section 3.4 reveals that the initial data contains a wide range of values of significant size,
indicating that normalization is essential to facilitate the faster convergence of the optimization
algorithms and the machine learning models to achieve the best performance.51 Thus, we first
normalize the data using z‐score normalization technique as proposed in Reference [51], which
is defined in Equation (1).

X
X mean X

std X
=

− ( )

( )
,norm (1)

where X denotes the feature array and Xnorm is the normalized X as resulting from the
subtraction of its mean (mean X( )) and division by its SD (std X( )).

The normalized clustered data of point clouds are used for the training of our machine
learning models. Then, a vector (v) is constructed that models the target label naively as
follows. If the cluster is considered a rockfall event, which can also be denoted as rockfall
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candidate event, then we set a positive label (v = 1i ), and if not, we assign a negative label
(v = 0i ). A summary of cluster labels is depicted in Figure 4, where subfigures (A) and (C) show
the distribution of cluster labels before and subfigures (B) and (D) after encoding in the
Degotalls and Castellfollit case studies, respectively.

Please note that the rockfall candidates belong in the class where v = 1i and the various
“Limit_effect,” “Unknow,” “Vegetation,” “Precursor” cases belong in the class where v = 0i .

3.6 | Resampling techniques

Rockfall events are characterized by their rarity and thus our task is considered to be an
imbalanced classification task. This is also justified by Figure 4, where the candidate clusters
for rockfall represent roughly 1% and 0.4% of the total cases in Degotalls and Castellfollit,
respectively. There are two well‐known approaches to balance the data instances, namely
undersampling and oversampling methods.52 Undersampling removes elements from the ma-
jority class, while oversampling creates synthetic samples from the minority class. There are

FIGURE 4 Target labels summary. Y‐axis is in log‐scale for comparison purposes. The actual values are
included as text above each bar (A) Cluster labels—Degotalls case study, (B) encoded cluster labels for
classification task—Degotalls case study, (C) cluster labels—Castellfollit case study, (D) encoded cluster labels
for classification task—Castellfollit case study [Color figure can be viewed at wileyonlinelibrary.com]
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also ensemble methods that oversample the minority class and undersample the majority one
simultaneously.53 Below, we briefly describe each one of the resamplers examined in this study.
Finally, we conclude by utilizing the three best approaches in our subsequent analysis phases,
according to their performance.

3.6.1 | Undersampling methods

The simplest way to perform undersampling is to do it at random, that is, by eliminating
individual samples from the majority class without using any heuristics. More elaborate
techniques employ some kind of heuristic processing to exclude elements that are in-
formationally irrelevant to the overall data set. Some of the aforementioned methods, aggregate
distinct samples to undersample the data using well‐known clustering techniques, such as
References [54].

In this study, we utilize two undersampling methodologies based on the K‐means clustering
algorithm. Specifically, we use two of the methods proposed by Reference [54] utilizing the K‐
means with the number of clusters proportional to the number of elements belonging to
minority class. The first methodology swaps a cluster of samples belonging to the majority class
with the cluster centroid obtained by the K‐means algorithm (denoted as Cluster Centroids in
this writing). The second one utilizes the same approach but uses the cluster center of the
K‐means instead of the cluster centroid (denoted as Cluster Representatives). Similar under-
sampling techniques utilizing clustering appear in recent studies such as Reference [55].

3.6.2 | Oversampling methods

Oversampling techniques perform the balancing of the data set by focusing on the minority
classes. Various oversampling approaches are described in the literature.56 SMOTE, one of the
most widely used oversampling techniques, creates synthetic samples by combining features of
the minority class's nearest neighbors.57 Numerous variants of the aforementioned algorithm
appear in the literature.58 Kovacs et al.56 presented a detailed empirical comparison of multiple
variants of minority oversampling methods involving a wide assortment of imbalanced data
sets. In this study, we focus on some of them, specifically the ones that we utilized for the
purpose of this study.

The ADASYN oversampler determines the number of artificial samples to be produced for a
given point by using a weighted density distribution for distinct minority class elements based
on their level of difficulty in learning.59 In contrast, SMOTE weights uniformly all minority
points. The major difference between SMOTE and ADASYN lays in the generation of synthetic
sample points for minority data points.

Barua et al.60 introduced a “proximity weighted synthetic oversampling technique”
(ProWSyn), which calculates weight values for the minority data samples based on their
proximity information. Proximity, in this case, is portrayed as the distance between the sample
and the boundary.60 Another variant of SMOTE is the SMOTE‐IPF, which is an extension
through a new component, an “iterative ensemble‐based noise filter called Iterative‐
Partitioning Filter” (IPF). SMOTE‐IPF is considered to be a solution to the problems caused
by noisy and borderline examples in unbalanced datasets as presented and explained in
Reference [61].
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SMOTE algorithm lacks distribution and density information of the data, both of which are
critical for correctly synthesizing minority examples. The SMOBD algorithm addresses the
above issues by effectively removing the effects of noise.62 In addition, the Assembled‐SMOTE
approach implements oversampling by taking data distribution information into account to
prevent the overlapping between classes.63

Other methods, such as the Lee algorithm, produce synthetic samples and determine
whether to reject or accept them based on their location, that is, a synthetic sample's nearest
neighbors.64 Batista et al.65 proposed an oversampling method call SMOTE‐TomekLinks, which
is essentially a SMOTE algorithm with the additional application of Tomek links to the over-
sampled training set as a data cleaning technique. Thus, the aforementioned technique im-
proves the oversampling accuracy by removing examples from both classes. Tomek links are
introduced in Reference [66] and can be defined as follows:

“Given two examples Ei and Ej belonging to different classes, and d E E( , )i j is the
distance between Ei and Ej. A E E( , )i j pair is called a Tomek link if there is not an
example El, such that d E E d E E( , ) < ( , )i l i j or d E E d E E( , ) < ( , )j l i j .”65

Furthermore, to effectively identify minority class instances, the CCR algorithm integrates
the cleaning of the decision boundary around minority elements and controlled synthetic
oversampling.67 Moreover, the G‐SMOTE approach pioneered hybrid oversampling that is
driven by previously unknown patterns derived from the class with minor samples and ran-
domization. The authors utilize concurrent oversampling and undersampling to deal with
heavily skewed data distributions.68 Additionally, LVQ‐SMOTE integrates the SMOTE ove-
sampler with feature codebooks learned by vector quantization to create synthetic samples that
use more feature space than the other SMOTE variants.69 Also, a comparable performance can
be obtained using the Polynom‐fit SMOTE, which oversamples the minority class using poly-
nomial fitting functions.70

Moreover, the research study of Reference [71] proposed a method for selective pre-
processing, called SPIDER, that combines filtering and oversampling of imbalanced data. Also,
the SWIM algorithm creates synthetic elements with the same Mahalanobis distance from the
majority class as currently available minority data samples.72

In this study, we examine and experiment with the 16 resamplers explained above, namely
Cluster Centroids, Cluster Representatives, SMOTE, ProWSyn, SMOTE‐IPF, SWIM, SMOBD,
Lee, ADASYN, Assembled‐SMOTE, SMOTE‐TomekLinks, CCR, G‐SMOTE, LVQ‐SMOTE,
Polynom‐fit‐SMOTE, and SPIDER.

3.7 | Models

This section presents the machine learning models trained and evaluated in the rockfall de-
tection task. In addition, we provide basic information regarding the models utilized. However,
a complete explanation and analysis of the algorithmic aspects of each model is out of the scope
of this paper.

Our aim is to deal with rockfall detection with models belonging to two distinct and broad
families of models, namely “single base learning” and “ensemble learning” algorithms, which
are utilized in similar landslide classification tasks, as presented in Reference [73]. Single base
learners are simpler models and learn by using a single algorithm, such as a decision tree
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algorithm, while ensemble learners are comprised usually of multiple single base learners.74 In
this case, and following the notation of Ma et al.,73 we use the following “single base learning”
algorithms: Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis
(QDA), K‐Nearest Neighbors Classifier (KNN), Gaussian Naive Bayes (GNB), Decision
Tree Classifier (DT), Support Vector Classifier (SVC) and Multilayer Perceptron (MLP)
Classifier, and the following “ensemble learning” algorithms: AdaBoost Classifier (AdaB),
Random Forest Classifier (RF), Extra Trees Classifier (ET), XGBoost Classifier (XGB).
Following, there is a list containing all the models examined including their hyper‐parameters.

Regarding the utilized “single base learning” approaches, we explain the models below:

Linear Discriminant Analysis (LDA) is a linear decision boundary classifier. The
boundary of this classifier is created by fitting class conditional densities to the input data.
In this model, each class is fitted with a Gaussian density function. The covariance matrix
for all classes is considered to be the same.75 We experiment with solvers such as singular
value decomposition (SVD), eigenvalue decomposition (EIGEN) and least squares solu-
tion (LSQR), and with automatic or no shrinkage parameters.
Quadratic Discriminant Analysis (QDA) is a classifier that uses a quadratic decision
boundary created by fitting class conditional densities to the input data to classify objects.
The covariance matrix for all classes is assumed to be the same.75 We utilize a regular-
ization parameter of 0, that is, we do not regularize the per‐class covariance
approximations.
K‐Nearest Neighbors Classifier (KNN) is a memory‐based algorithm. Naively, given a
query point x0, we find the k training points x r k, = 1, …,r( ) nearest in distance to x0, and
then classify it using a majority vote policy among the k neighbors.75 We experiment
using various numbers of nearest neighbors, such as 1, 3, 5 and 9 neighbors.
Gaussian Naive Bayes (GNB) supposes that given a classC j= , the k number of features
Xk are independent: f X f X( ) = ( )j k

p
jk k=1

∏ .75 GNB considers continuous valued features
and models them all as Gaussian (normal) distributions. To maintain measurement sta-
bility, a value of e1 − 9 of the highest variance of all features is appended to variances.
Decision Tree Classifier (DT) divides the feature space into rectangles, and then fits a
simple model to each of them. Theoretically, tree‐based classifiers are simple but efficient
and accurate.75 For this particular classifier, we experiment with two strategies for
splitting each node, namely the best split and random split. Regarding the criterion for
splitting or alternatively the function to calculate the quality of a split, we experiment
with Gini impurity76 and information gain metrics.
Support Vector Classifier (SVC) algorithm creates a hyperplane or set of hyperplanes in
a high‐dimensional space that can be used for classification. The margins of the hyper-
planes are described by support vectors, which are discovered after an optimization
process involving an objective function regularized by an error term and a constraint.
SVMs may use kernel functions to create linear or nonlinear decision boundaries. Dif-
ferent kernel functions can be specified for the decision function.77 In this particular case,
we experiment with common kernels such as polynomial with multiple distinct degree
values ranging from 2 to 8, a radial‐basis function, and sigmoid. Regarding the regular-
ization parameter, we have used multiple values, such as 0.1, 1, 10, and 100.
Multi‐Layer Perceptron (MLP) Classifier is a class of feed‐forward artificial neural
networks.78 Alternatively, the MLP classifier can be considered to be a shallow deep
neural network. The investigated hyper‐parameters are hidden layer sizes of 50, 100, 150,
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and 200 and activation functions for the hidden layers, namely rectified linear unit (ReLu)
f x max x( ) = (0, ), hyperbolic tangent (TanH) f x tanh x( ) = ( ), and logistic sigmoid
f x( ) =

exp x

1

1 + (− )
. Besides, three optimizers are tested namely LBFGS, which is an opti-

mizer belonging to the group of quasi‐Newton methods, the stochastic gradient descent
(SGD) and Adam, which is a stochastic gradient‐based optimizer.

Following, we provide information on the utilized “ensemble learning” models:

AdaBoost Classifier (AdaB) is a meta‐estimator and an ensemble machine learning
algorithm that initially fits a classifier on the original input data and then fits additional
copies of the classifier on the same data but conditionally. It fits the additional copies
where the weights of wrongly classified instances are changed such that subsequent
classifiers concentrate more on difficult cases.79,80 Multiple numbers of estimators are
investigated, such as 10, 50, 100, and 500. The base estimator is chosen to be a simple
decision tree classifier with a max tree depth of 5.
Random Forest Classifier (RF) is a meta‐estimator belonging to the ensemble group of
algorithms that uses averaging methods to improve predictive accuracy. Also, it manages over‐
fitting by fitting multiple decision tree classifiers on various subsamples of the original input
data.75 Multiple numbers of trees are investigated, such as 10, 100, 500, and 1000. The quality
measurement of a split of a tree‐node is done by applying the Gini impurity and the in-
formation gain strategy. Both approaches are commonly used in the decision tree algorithms.76

Extra Trees Classifier (ET) is a meta estimator and an ensemble machine learning
algorithm that uses averaging methods to boost predictive accuracy. Also, similarly to RF
classifier, it manages over‐fitting by fitting multiple randomized decision trees on
different sub‐samples of the original input data.81 Different numbers of estimators are
investigated, namely 10, 100, 500, and 1000. Also, the function to calculate the quality of a
split of a tree‐node is set to be the Gini impurity76 or the information gain.
XGBoost Classifier (XGB) is a scalable end‐to‐end ensemble machine learning frame-
work. It is actually a version of gradient boosted decision trees that has been engineered to
produce cutting‐edge results while staying fast and effective.82 Different values of boosting
learning rate are examined, ranging from 10−1 to 10−4. In addition, various numbers of
gradient boosted trees are used such as 10, 50, and 100, together with a variety of boosters
such as gbtree, which is a version of a regression tree as a weak learner, gblinear, which
uses generalized linear regression with L1 and L2 shrinkage, and dart, which drops trees
in such way as to reduce the over‐fitting issue.

Even though by using the “single base learning” algorithms, many pitfalls may be observed,
such as overfitting and unreliable results,73 in reality they are not always weak, as the correct
utilization of them often leads to better outcomes.74 For instance, DT is able to mine and
identify significant relationships and key features, but it achieves lower accuracy values than its
competitors.83 Additionally, in simple rockfall and landslide classification applications, SVC
algorithm achieves marginally better accuracy than the other methods, but the quality of its
results is highly depended on the quality of the input data.84 Besides, MLP achieved reasonably
accurate results in similar studies.85

On the other hand, although “ensemble learning” algorithms, in general, are able to
increase the robustness and generalizability of the “single base learning” ones,73 they still
need to be properly constructed and selected.74 Essentially, in similar identification tasks an
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RF model is considered to outperform other models and the stability of such ensemble
models is ensured by the numerous base learners, that is, sets of decision trees.86 Hong
et al.87 highlight that tree‐based ensemble models could greatly improve the accuracy in
landslide classification tasks.

Theoretically, GNB or SVC perform well in circumstances where limited and imbalanced
data is available88 although, practically, this phenomenon is not always witnessed.89 LDA and
QDA algorithms are utilized in classification studies, that involve geological features and
phenomena.90 While LDA can easily distinguish the data between two classes by applying
linear combinations to input features, QDA enhances this ability and can also deal with classes
having different covariance values, that is, imbalanced data.

Intuitively, facing the complex and challenging task of rockfall detection, which involves
imbalanced point cloud data having a certain amount of features to handle, and examining
studies such as Reference [91], where certain single base learners outperform some ensemble
learners, lead us to use this selection of classifier models starting from simpler models like
GNB, KNN, and so on, to more complex and elaborated ensemble methods like AdaB, ET, and
XGB, to get strong performance proofs and to experimentally compare the ensemble methods
with baseline methods. In addition, to further provide performance evidence of the utilized
machine learning models, we use 10‐fold cross‐validation procedures, as explained in the
Section 4.2, which clearly facilitate the model selection by providing significant insights on the
accuracy and robustness of each model.

3.8 | Feature selection

In this phase of the analysis framework, see Figure 3D, the best selected and properly para-
meterized models of each model variant accompanied with each one of the three best re-
samplers are used as inputs in a grid search algorithm aiming to select the exact number of
features that achieve the highest performance. The criterion used for the univariate feature
selection is mutual information between two random variables. Mutual information is a non‐
negative value that measures the dependency between the variables.92 According to the
aforementioned methodology, we keep only the k highest scoring features, with k ranging from
5 to 37 (all features) in the Degotalls case study and from 5 to 31 (all features) in the Castellfollit
case study.

3.9 | Pipeline selection

The input of this stage consists of the multiple machine learning pipelines, each properly
parameterized with the best number of features, as shown in Figure 3E. These pipelines
are statistically compared to conclude with the best intelligent pipeline to be used in our
prototype system. The statistical comparison of the various pipelines is conducted by applying
the Friedman and Nemenyi test, a nonparametric statistical test and a post‐hoc test respec-
tively, as described in Reference [93]. We run every pipeline n = 10 times using 10‐fold cross‐
validation. In each run, we rank the pipelines from 1 to nmodels. By averaging the ranks table to
get the averaged ranks for each pipeline, we can infer that two models are significantly different
if their average ranks vary by at least the critical difference, as explained in Reference [94]. The
critical difference is computed with the following formula93:

ZOUMPEKAS ET AL. | 15



CD q
n n

n
=

( − 1)

6
,α

models models∗

∗
(2)

where qα denotes the critical value of the two tailed Nemenyi test, which depends on the
chosen α level of statistical significance and the number of models or in this case the
pipelines, nmodels.

3.10 | Feature importance

In this phase of our framework, see Figure 3H, we calculate and visualize the feature im-
portance of the input data set. This step provides significant insights in terms of the inter-
pretability and explainability of the outcome produced by the utilized algorithm. Thus, we
utilize a generalized feature importance measurement, the permutation feature importance as
introduced and described in Reference [95]. The computation of permutation feature im-
portance is done by first calculating a baseline metric, defined by a performance scoring
function, and evaluated on a data set X . Next, a feature from the validation set is permuted and
the metric is evaluated again. Finally, the permutation importance is defined as the difference
between the baseline metric and the metric obtained from permutating the aforementioned
feature.

In our study, we utilize an extensive permutation feature importance test to get robust
results and insights regarding the most significant features utilized by the classifier. Specifi-
cally, we use the most statistical significant classifier as concluded from the computations in
the Pipeline Selection stage of our framework, depicted in Figure 3E, with a 10‐fold cross
validation technique on input data and 100 feature permutations in each fold. Then, we average
all the values obtained and express them in percentage values for interpretability purposes. In
addition, we use K‐means clustering algorithm to group the feature importance obtained to get
a better view of the most important features and their neighbors.

4 | EXPERIMENTAL ANALYSIS

This section presents the experimental analysis of our designed intelligent framework, based on
well‐known performance metrics. First, we explain the accuracy metric and then we present
evaluation tables for each stage of the framework. Additionally, an ablation study is conducted
to justify the addition of each component to the final prototype implementation.

4.1 | Performance metrics

Our aim is to design our models for a classification task, in which a false negative is usually
more disastrous than a false‐positive for preliminary rockfall detection. The nature of our
problem is imbalanced as discussed in Section 3.1. For this reason, we utilize a special metric
called balanced accuracy, as introduced and explained in Reference [96]. The authors of the
aforementioned study define balanced accuracy as a performance metric for imbalanced
classification tasks. The average accuracy obtained in either class can be naively characterized
as balanced accuracy. The balanced accuracy is given by
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where FP, TP, FN, and TN, are the false‐positives, true‐positives, false‐negatives, and
true‐negatives, respectively, according to the confusion matrix, all of them clearly defined in
Reference [96].

4.2 | Experimental evaluation

In this section, we evaluate the various machine learning models, which we proposed and
concisely discussed in Section 3.7. We first exhibit the performance evaluation of the various
resamplers in Table 1 and then a thorough evaluation of all the models used in the model
selection and parameterization and feature selection phases in Table 2. The entire evaluation
process is based on the balanced accuracy metric, denoted in Equation (3), using stratified
10‐fold cross‐validation, which provides robust accuracy results.

4.2.1 | Resamplers

Table 1 displays the average performance of each resampler in the Degotalls (A) and Cas-
tellfollit (B) case studies. The depicted values are the average performances of all machine
learning models evaluated with a stratified 10‐fold cross validation procedure, without prior
parameterization, paired with each resampler. We average the balanced accuracy metric values
resampler‐wise, to select the three best resamplers to proceed to the model selection and
parameterization stage. In both case studies, the Cluster Centroids resampler achieves the
highest balanced accuracy while being the most robust method. It achieves a Accb of 0.89 with
3.83% error and 0.82 with 7.78% error in the Degotalls and Castellfollit case studies respectively.
Observing the two subtables in Table 1, the results obtained in both cases do not seem to differ
much in terms of ranking.

4.2.2 | Model selection

Table 2 shows the performance evaluation of the model selection and parameterization
phase in the Degotalls (A) and Castellfollit (B) case studies. Specifically, it displays only
the six best methods for each case study. For clarification purposes, the full tables are
included in Tables 6 and 7, respectively in Appendix S2. For the selection of the best hyper‐
parameters of each model, a grid search algorithm is utilized using a stratified 10‐fold
cross‐validation procedure for each available combination of parameters. Please note that
the depicted values in the above‐mentioned table are the balanced accuracy measurements
of another stratified 10‐fold cross‐validation procedure on the data set utilizing only the
best properly configured models that resulted from the aforementioned grid search. It is
clear that in the Degotalls case study, the XGBoost classifier parameterized the best, ac-
companied by the SMOTE‐IPF oversampler, noted as XGB‐SMOTE_IPF in Table 2A, and
performed better than all the other models while remaining robust. It achieves a Accb of
0.94 with a 3.83% error score. Regarding the best hyper‐parameters of the XGBoost
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classifier, a linear booster, namely gblinear, with a learning rate of 0.1 with 50 estimators,
was chosen. On the other hand, in the Castellfollit case study, the Linear Discriminant
Analysis classifier paired with the ProWSyn oversampler, noted as LDA‐ProWSyn in
Table 2B, appears to be the most robust technique in terms of balanced accuracy, achieving
a Accb of 0.93 with 0.36% of error, using Eigenvalue Decomposition as the solver and with
an automatic shrinkage parameter.

4.2.3 | Feature selection

In addition, Table 2 also displays the performance results of the feature selection phase in the
Degotalls (A) and Castellfollit (B) case studies, in which each properly parameterized model

TABLE 1 Accb metric summary for each resampling method. Accb denotes the average value of Accb of
the 10‐fold cross validation

(a) Degotalls case study.

Resampling Method Accb Error (%)

Cluster Centroids 0.89 3.83

ProWSyn 0.87 5.34

SMOTE-IPF 0.87 5.56

SWIM 0.86 5.65

SMOBD 0.86 6.29

Lee 0.86 5.48

ADASYN 0.86 6.28

Assembled-SMOTE 0.86 6.16

SMOTE 0.86 5.85

SMOTE-TomekLinks 0.86 6.56

CCR 0.85 7.91

G-SMOTE 0.85 7.15

LVQ-SMOTE 0.84 6.20

Polynom-fit-SMOTE 0.83 7.56

SPIDER 0.80 6.29

Cluster Representatives 0.78 7.67

(b) Castellfollit case study.

Resampling Method Accb Error (%)

Cluster Centroids 0.82 7.78

ProWSyn 0.71 16.94

CCR 0.70 15.88

SWIM 0.70 14.90

Lee 0.68 17.52

SMOTE 0.68 18.13

LVQ-SMOTE 0.68 18.33

ADASYN 0.68 18.50

SMOBD 0.68 18.86

SMOTE-IPF 0.68 17.76

SMOTE-TomekLinks 0.68 17.33

Assembled-SMOTE 0.67 18.08

G_SMOTE 0.66 19.83

Polynom-fit-SMOTE 0.65 18.00

SPIDER 0.58 17.29

Cluster Representatives 0.56 18.28

Note: With dark grey we denote the best, with lighter grey the second best and with pale grey the third best.
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accompanied by a resampler is evaluated using the best number of features over a stratified
10‐fold cross‐validation process. In the first case study, the XGBoost classifier accompanied by
the SMOTE‐IPF oversampler with 35 features seems to be the best performing model, while in
the second best model is the XGBoost classifier paired with ProWSyn with 30 features, as
displayed in Table 2.

Generalizing, we could say that in both case studies the top performing methods are
approximately the same utilizing around the same percentage of features compared to the total
available number of features in each case.

TABLE 2 Accb metric summary. Accb denotes the average value of Accb of the 10‐fold cross validation

(a) Degotalls case study.

Method Model Parameterization Feature Selection

Accb Error (%) Accb Error (%) Features

XGB-SMOTE_IPF 0.94 3.83 0.95 3.78 35

MLP-SMOTE_IPF 0.94 5.54 0.95 5.64 35

KNN-ClusterCentroids 0.94 4.29 0.95 4.09 36

XGB-ProWSyn 0.94 3.84 0.95 3.68 35

SVC-ProWSyn 0.94 5.68 0.95 4.14 17

LDA-SMOTE_IPF 0.94 4.13 0.95 4.07 31

(b) Castellfollit case study.

Method Model Parameterization Feature Selection

Accb Error (%) Accb Error (%) Features

XGB-ProWSyn 0.93 8.11 0.94 6.92 30

LDA-ProWSyn 0.93 0.36 0.93 3.98 30

MLP-CCR 0.93 8.21 0.93 8.18 30

LDA-CCR 0.93 0.54 0.93 4.06 29

XGB-CCR 0.92 8.11 0.92 8.17 30

SVC-ClusterCentroids 0.91 8.18 0.91 8.26 30

Note: With dark grey we denote the best model in terms of accuracy and then robustness and with lighter grey the second
best for each phase. “Features” column displays the number of features utilized by each algorithm to achieve this score.
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4.2.4 | Pipeline selection

In Figure 5, there is an illustration of the Friedman and Nemenyi techniques, which are
computed as described in Section 3.9, for the Degotalls (A) and Castellfollit (B) case studies.
This process provides enough evidence to identify which of the methods are more statistically

FIGURE 5 Nemenyi test—scores of model pipelines (A) Degotalls case study, (B) Castellfollit case study
[Color figure can be viewed at wileyonlinelibrary.com]
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significant than the others. We use a critical distance corresponding to 95% statistical sig-
nificance. Please note that between two algorithmic approaches there is a statistical significance
when the lines do not overlap. The best algorithm is the one with the minimum rank value.

Figure 5A shows that the XGBoost classifier properly parameterized and paired with the
SMOTE‐IPF oversampler with 35 features performs significantly better than the majority of the
machine learning pipelines examined. In addition, the MLP classifier paired with the SMOTE‐
IPF undersampler with 35 features could also be an acceptable solution.

Regarding the second case study in Figure 5B, the XGBoost classifier properly para-
meterized and paired with the ProWSyn oversampler with 30 features is the best machine
learning pipeline by a significant margin. Furthermore, the MLP classifier accompanied by the
CCR oversampler with 30 features could also be an alternative acceptable solution.

4.2.5 | Feature importance

In Figure 6, there is a visualization of permutation feature importance technique, as described
and explained in Section 3.10. Please note that the colorization refers to the distinct clusters
acquired from the K‐means algorithm. For the calculation of the importance of feature in the
Degotalls case study, we use the XGB classifier paired with the SMOTE‐IPF oversampler with
35 features, which we concluded performed better than the majority of all other methods
tested, while for the Castellfollit case study, we utilize the XGB classifier paired with the
ProWSyn oversampler with 30 features.

Observing Figure 6A,B, we can conclude that the most important features for each case
study appear to be the same. Moreover, the highly important features for rockfall event de-
tection are the coordinates of the point clouds.

4.3 | Ablation study

An ablation study is crucial for the development of an intelligent system because it helps to
understand the contribution of each component to the overall system. Table 3 portrays how the
balanced accuracy metric is increased with the addition of each proposed component in our
analysis framework, in the Degotalls (A) and Castellfollit (B) case studies. It shows the in-
crement of the aforementioned metric across all models (Accb ) and the best performing model
(Accb

best) in each phase. The baseline is considered a state in which all the models are trained
and evaluated without prior resampling of data, parameterization and feature selection. It is
clear in both case studies that the addition of each component provides an interesting
performance increment, improving the accuracy and robustness of the utilized method.

4.4 | Prototype implementation

The implementation of a web‐based system for rockfall detection is presented in this section.
Informatively, the end system incorporates the best intelligent pipeline according to our per-
formance evaluation. To showcase the effectiveness of our intelligent system, we have designed
a simple application that detects whether the input point cloud data are considered candidates
for a rockfall event. Figure 7 illustrates the architecture of the developed prototype system for
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FIGURE 6 Feature Importance. Orange color denotes high importance, blue and red denote mid and low
importance respectively (A) Degotalls case study and (B) Castellfollit case study [Color figure can be viewed at
wileyonlinelibrary.com]
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the visualization of the predictions. A basic but well‐designed table is used to source input
feature values in the front‐end, as shown in Figure 8, and a button that triggers the in-
itialization of the detection procedure. In the back‐end, we normalize the data entered by the
users, if needed, and generate a prediction using our intelligent framework, which is the
pretrained and loaded machine learning pipeline. Finally, the results are displayed to the user
in a fast and accurate manner.

Our web application is placed at this GitHub repository. In addition, we used the Python
programming language to develop our models and run our experiments. Particularly, for the
development of the models, we mainly use the Scikit‐learn Python library.97 The Matplotlib
library is used for visualization.98 Also, for developing the web application, we utilize a mi-
croweb framework, which is called Flask.99

5 | FINAL OBSERVATIONS

In this section, we provide the final observations of our experiments and analysis. In the
particular case studies, we conclude that some of the resampling methods and machine
learning models examined could be used to form intelligent pipelines to detect rockfall events.
In the case of the Degotalls mountain wall TLS data, we come to the conclusion that the
XGBoost classifier using a linear booster, namely gblinear, with a learning rate of 0.1 and 50
estimators utilizing 35 features of the input data set accompanied by the SMOTE‐IPF re-
sampler, achieved the best outcome, with a robust balanced accuracy score of 95%. Further-
more, in the Castellfollit case study, we conclude that the XGBoost classifier with a linear
booster, a learning rate of 0.1 and 100 estimators utilizing 30 features accompanied by the
ProWSyn resampler achieved the best balanced accuracy score of 94%.

Intuitively, we could say that the second‐order gradients and the advanced regularization
of the XGBoost algorithm during the learning phase, help to identify better the data rela-
tions. In addition, using the gblinear booster, the algorithm builds multiple regularized

TABLE 3 Ablation study—results based on Accb metric

(A) Degotalls case study

Method Accb Error (%) Accb
best

Baseline 0.78 7.65 0.84

+Resampling 0.85 3.25 0.89

+Model parameterization 0.89 4.65 0.94

+Feature selection 0.91 4.45 0.95

(B) Castellfollit case study

Method Accb Error (%) Accb
best

Baseline 0.56 18.04 0.80

+Resampling 0.68 8.21 0.82

+Model parameterization 0.79 15.93 0.93

+Feature selection 0.82 11.75 0.94
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linear models to later incorporate them in a generalized linear model with advanced reg-
ularization. It seems that learning inner linear models and then additively producing a
generalized linear model facilitates the achievement of a higher accuracy than the other
algorithms in both case studies while remaining fast. Additionally, the Castellfollit case
study appears to be more difficult than the Degotalls case study in terms of model learning,
because of its data imbalance of 0.4% compared to 1% in the Degotalls study. This can also
be justified by the fact that the XGBoost algorithm utilized twice as many estimators in
Castellfollit than Degotalls.

Moreover, the ablation study, portrayed in Table 3 justifies the need for each component of
our system. The increment in balanced accuracy metric seems to be significant with the ad-
dition of the special framework stages, namely resampling, model selection and para-
meterization and feature selection. Specifically, the most significant addition appears to be the
resampling module of our system, displaying an increment in accuracy from the baseline of
approximately 9% and 21% in the Degotalls and Castellfollit case studies, respectively. Ad-
ditionally, in general, an ablation study provides an interesting view of how the developed

FIGURE 7 Rockfall detection—web application architecture [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 8 Rockfall detection—web application [Color figure can be viewed at wileyonlinelibrary.com]
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intelligent system behaves by adding additional components. This is a good practice to identify
the performance gains of a developed system.

To provide further evidence for our developed framework, we visualize the predicted
point cloud data along with the original data of the Degotalls case study, as displayed in
Figure 9. We chose to display the former visualization because it includes four incorrectly
classified rockfall events representing roughly 6% of the total rockfall events in the data set,
as depicted in Figure 4A. For clarification purposes, in the Castellfollit case study, all
rockfall events in the initial data set were correctly classified by the XGBoost classifier using
30 features paired with the ProWSyn resampler, which is the best selected pipeline, as
discussed above.

5.1 | Practical implications

Point cloud data of a 3D scan may contain millions of points with highly detailed information,
but they also contain scattered, disjointed information and in most cases with a lot of noise.100

Geoscientists, to properly deal with such huge data and correctly identify rockfall candidates,
go through a semimanual repetitive process, as explained in Section 3.1. The proposed in-
telligent system will be a key tool in the hands of geology engineers, scientists, and any
individual working at the intersection of the geology domain and decision support systems. It
aims to provide meaningful and accurate insights into the task of rockfall detection in distinct
geological contexts. Our learning methodology provides a robust and accurate way to identify
rockfalls using point clouds. Indeed, our automatic intelligent system advances the accuracy
and efficiency of the geoscientists' work, saving a lot of time from their work‐routines on
identifying such events.

Moreover, the final intelligent system could easily be incorporated as a stand‐alone
component in a rockfall monitoring system providing support and warning alarms. The web
application that incorporates our intelligent system could automate the whole rockfall
detection process by providing a user‐friendly front‐end, explained in Section 4.4 and
shown in Figure 8.

Particular practical implications of our proposed intelligent system, which enhance the
accuracy and efficiency of the geoscientists' work, are further explained below with ex-
amples. For instance, having identified the best intelligent pipeline for a specific mountain
cliff could aid the rockfall detection in other similar geological contexts, that is, similar
mountain cliff types. This is especially relevant for geologists as they regularly capture
point clouds from the same mountains to observe changes in their surface structure.
Therefore, having a pretrained model on such mountains is essential to observe and detect
the evolution of changes automatically. This means, that in a run of our web‐based ap-
plication, using the pretrained best intelligent pipeline derived by analysing a mountain
cliff, an individual could identify rockfall candidates in a similar mountain. In addition,
taking a closer look at the outcome of our intelligent system, that is, a predicted rockfall
candidate cluster of points, geoscientists could later focus on this specific region of the
mountain cliff and take additional 3D scans of only this region to be further processed and
analysed. To sum up, our system accelerates both the process and the analysis of identi-
fying rockfall events.
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5.2 | Limitations

Currently, the proposed intelligent system is analyzed and applied in two distinct geological
contexts, that is, two types of mountain cliffs. The potential next steps are to enrich our
database with more point cloud data coming from various geological contexts. Additionally, the
use of clustering techniques on geological point cloud data increases resource efficiency by
decreasing the processing time and memory footprint of the data but in some cases it eliminates
some detailed geometrical and topological properties of them. Thus, this can be considered
another limitation of the current study, which, however, could be lifted by processing and
analysing clustered with raw point cloud data simultaneously.

Although deep learning models are popular in a vast majority of challenging engineering
tasks, they are not analysed in this study. On the other hand, even though advanced neural
network architectures may produce higher accuracy with lower error rates in a great variety of
engineering tasks, they are not the panacea for every specific task they are employed to. The

FIGURE 9 Point clouds visualization—Degotalls case study. We denote the correctly and incorrectly
classified instances with yellow and blue colors, respectively. We further highlight them in green and circle, the
events that are initially rockfall events but were incorrectly classified as not rockfall [Color figure can be viewed
at wileyonlinelibrary.com]
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case of analyzing imbalanced geological point cloud data with deep learning needs to be
carefully investigated to properly select the right methods and algorithms to deal with the
challenging task of rockfall and landslide detection.

6 | CONCLUSION AND FUTURE WORK

Rockfall events are considered to be a great hazard in multiple regions across the world. People
working in the geology domain put a lot of effort into identifying such events. However,
rockfall event detection utilizing data from remote sensors such as LiDAR or commercial
cameras still need specialized analysis tools that can improve the accuracy and efficiency of the
distinction of such events from other changes triggered by edge effects, data noise, vegetation,
and so on. We believe that an intelligent decision assisting tool would facilitate geologists' work.
However, the development of such a tool seems to be a complex process, due to the inherent
nature of the data.

This study presents a thorough examination of several computational approaches for de-
tecting rockfall events. In particular, we focus on the development of an end‐to‐end machine
learning framework able to analyze clustered point cloud data from a TLS device. In the
presented framework, due to the imbalanced nature of the rockfall event detection, we im-
plement various resampling methodologies, parameterize several machine learning models and
create intelligent pipelines to tackle the abovementioned task.

We experimentally evaluate our framework on two case studies, involving data from TLS
measurements of a cliff at the Degotalls, Montserrat Massif in Barcelona and the cliff at the
Castellfollit de la Roca in Girona, both located in Spain. We introduce and examine our design
analytically and validate it experimentally. These actions clarify the components of the overall
process required to set up the pillars of a reliable and intelligent rockfall detection system. We
demonstrate the feasibility of creating a practical system for detecting rockfalls.

Our study provides an opportunity to clarify some key issues and provide concrete scientific
and technical solutions at the intersection of geology and machine learning. There is a major
potential for further additional research on the identification of rockfalls. Additionally, raw
point cloud data carry an enormous amount of information and utilizing such information
effectively and efficiently remains a challenging task. For this, a system utilizing raw point
cloud data as input is being developed, in which the proposed methodology is used in con-
junction with various added machine learning and neural network based methodologies to
detect rockfall events directly from temporal point cloud data, showing good potential. Ana-
lyzing raw point cloud data without any grouping techniques using sophisticated deep learning
architectures may bring advances in rockfall detection, because of the complete utilization of
the inner geometrical and topological features of the data.
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