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Abstract: We develop the process of discounting when underlying rates follow a jump-diffusion
process, that is, when, in addition to diffusive behavior, rates suffer a series of finite discontinuities
located at random Poissonian times. Jump amplitudes are also random and governed by an arbitrary
density. Such a model may describe the economic evolution, specially when extreme situations occur
(pandemics, global wars, etc.). When, between jumps, the dynamical evolution is governed by an
Ornstein–Uhlenbeck diffusion process, we obtain exact and explicit expressions for the discount
function and the long-run discount rate and show that the presence of discontinuities may drastically
reduce the discount rate, a fact that has significant consequences for environmental planning. We also
discuss as a specific example the case when rates are described by the continuous time random walk.

Keywords: stochastic processes; finance; climate; discount function; environmental econonomics;
Poissonian jumps; Ornstein–Uhlenbeck process; interest rates; asymptotics

1. Introduction

The importance of discounting, particularly in the long run, does not exclusively refer
to finance, but to many aspects of global economy. This is the case of long-term environ-
mental planning, which is certainly acute in climate action. In essence, an environmental
disaster that could cost X to repair at a future time t is worth exp(−rt)X today, where r is
the interest rate assuming that is continuously compounded. This simple analysis assumes
that interest rates remain constant between today and the distant future t, which may be
decades ahead. The rate r thus becomes a key magnitude to decide whether it is more
beneficial to take action today with a significant investment or whether the discount gives
negligible value to today’s investment.

No wonder that the estimation of the discount rate has enormous consequences and
has been the object of intense work and controversy for a long time. While, for instance,
the reputed and highly influential British economist Nicholas Stern [1] had been using a
discounting rate of 1.4%, William Nordhaus [2] did propose a discount rate of 4% and even
a higher rate (6%) [3]. The two estimates stand for very different perspectives on how to
face climate change and other catastrophic events. Stern’s rate entails for an immediate
spending, and Nordhaus’s figures say that action could be less urgent and not that strong.
The choice of discount rate lays at the center of the debate on the urgency of climate
change mitigation.

When we refer to climate, discount rates choice is based on ethical grounds [4,5] and
on future economic growth assumptions. Economic arguments involve the maximization
of utility functions [6]. Discounting not only includes economic growth; it also includes
behavioral aspects such as impatience or the possibility of having a declining marginal
utility. All of these aspects are covered in the Ramsey formula [7], which constitutes the
basis of the more traditional approach to discounting [8]. It is, however, not realistic to
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represent discounting by deterministic functions of time. To consider decreasing exponen-
tials with fixed rates is then too simplistic and it is necessary to consider an average overall
interest rate path. In global warming, this issue becomes particularly sensitive as one
must consider costs and benefits for long time horizons. Quantitative finance has indeed
provided a robust framework (e.g., the so called Heath–Jarrow–Morton framework) [9],
while several works have long recognized that interest rates must be modeled as random
processes [10–14].

An economist working with statistics might decide to compute the discount rate as
the average over empirical interest rates during the last 200 years (which is 2.7% in stable
countries [15,16]), or estimate the average of Wall Street forward looking models with the
30 year bond prices. However, our recent work [17] shows that the rate is considerably
below these averages, and this can be attributed to historical fluctuations. As a result, any
proper analysis must take into account fluctuations in the real interest rate (obtained by
subtracting nominal rates from inflation), which are fundamentally due to fluctuations in
economic growth [18–22].

The function r(t) can, in principle, be described by any random process. Markovian
processes are the simplest and most common hypothesis and they consist of continuous
sample paths. In other words, real rates r(t) are modeled as diffusion processes. Through-
out this paper, we will assume the so-called “Local Expectation Hypothesis”, in which
there is no market price of risk (investors are assumed to be risk neutral) and rates are
based on the data generating measure [23–25].

We have been analyzing these issues by assuming three of the most popular stochastic
models for the dynamics of interest rates [26]: Ornstein–Uhlenbeck [27], Feller [28], and log-
normal [29] processes, which are also relevant in the context of statistical physics. However,
we are interested in real rates which can be negative even during prolonged periods
of time [15,17]: recall, real rates are nominal rates corrected by inflation, that is, r(t) =
n(t)− i(t), where n(t) are nominal rates (usually positive, but not always) and computed
from government bonds, and i(t) is the rate of inflation constructed out of consumer price
indexes. The Ornstein–Uhlenbeck (OU) model is the only one that allows for negative rates
while still considering simplest (and linear) mean reversion towards a normal interest rate.
Moreover, discount asymptotic expression thus has an exponential decay with a long-run
rate r∞ that differs from historical average interest rates by being substantially smaller,
zero or eventually negative [15–17,26,30].

We will go one step further and assume that, in addition to diffusive and continuous
behavior, the sample paths of real rates r(t) also exhibit discontinuities. That is, we
will model rates by a jump-diffusion process. During the last fifty years, jump-diffusion
models have been extensively used not only in many branches of statistical mechanics and
condensed matter physics [31], but also in economics and finance [32,33]. Specially relevant
here is the work by Ahn and Thompson [13], which in 1988 already added jumps to a
quite general diffusion model to investigate the effect of discontinuities on interest rates
and highlighted the effects with the Feller process [28] (also called Cox–Ingersoll–Ross
model [23]). Thus, the economic evolution is known to occasionally have sudden bursts
that hardly adjust to continuous diffusion-like evolution. The fact that these discontinuities
do not occur frequently sustains in a great measure the use of diffusion models for the
economic evolution. However, many empirical observations of economic time series tend
to show the appearance of many outliers in which changes of great magnitude occur during
small intervals of time, in opposition to the basic diffusive hypothesis for which changes
during short intervals of time are only by small amounts.

One very recent example is provided by the COVID-19 pandemics, where prices
dropped worldwide approximately 40% in less than 3 weeks. Pandemic episodes are
rather recurrent, thus during the 20th century, there have been reported several pandemic
incidents from the Spanish flu of 1918 to the Hong Kong flu in 1968 or AIDS starting in
1981. Several similar episodes are reported during the 19th century (cholera, etc.). One
could approximately quantify the appearance of 3 to 5 of such episodes per century. Other
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“nightmare scenarios” [34,35] of environmental disasters would include climate change,
biotechnology, asteroid impacts, runaway computer systems, and nuclear proliferation,
among others (see Refs. [36,37] for a thorough discussion).

The main objectives of this work are to provide a general framework and to elucidate
the effect on the long-run discount—and, hence, on how we should value the future—of
discontinuities that reflect the existence of high-risk events. For the sake of completeness,
we consider not only sudden negative bursts, but also positive bursts as the two show
distinctive behaviors.

Section 2 has two parts. Section 2.1 provides the main and broad definitions being
used for the analysis, and Section 2.2 presents the specificities of the Ornstein–Uhlenbeck
jump-diffusion process to model interest rates. The first paragraphs in Section 3 provide
the main result. Section 3.1 presents the asymptotic discount function jointly with the long-
run discount rate. Two specific jump distributions are studied in Section 3.2: fixed jump
amplitudes and Laplacian jump amplitudes. Before a final discussion and the conclusions,
Section 3.3 finally provides the discount within the continuous time formalism, that is: a
purely discontinuous process.

2. Materials and Methods
2.1. Main Definitions

Suppose that r(t) is a random process representing the dynamical evolution of real
rates. If we define the cumulative process

x(t) =
∫ t

t0

r(t′)dt′, (1)

the discount function is then defined as

D(t) = E
[
e−x(t)

]
, (2)

where the average is taken over all possible realizations of r(t) and market price of risk
is assumed to be zero (see our previous work [16]). “Local Expectation Hypothesis”
in which there is no market price of risk (investors are assumed to be risk neutral) is
considered [23–25].

Closely related to the discount function, D(t) is the (average) discount rate defined as

d(t) = − ln D(t)
t

, (3)

so that the discount function can be written in the standard exponential form
D(t) = exp(−td(t)). Moreover, in terms of d(t), we can define the long-run discount
rate, r∞, as the asymptotic value of the discount rate d(t)→ r∞ as t→ ∞. That is,

r∞ = − lim
t→∞

ln(D(t))
t

. (4)

When introducing specific stochastic models, it then becomes particularly useful
to consider the bidimensional process

(
x(t), r(t)

)
and denote by p(x, r, t|x0, r0, t0) the

probability density function (PDF) of such process (sometimes referred to as the data
generating measure). This PDF is defined as

p(x, r, t|x0, r0, t0)dxdr = Prob
{

x ≤ x(t) < x+ dx, r ≤ r(t) < r+ dr|x(t0) = x0, r(t0) = r0
}

,

and the discount function defined as the average (2) can therefore be written as

D(t) =
∫ ∞

−∞
dr
∫ ∞

−∞
e−x p(x, r, t|x0, r0, t0)dx. (5)
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The joint characteristic function of the bidimensional process (x(t), r(t)) is defined as
the Fourier transform of the joint PDF:

p̃(ω1, ω2, t|x0, r0, t0) =
∫ ∞

−∞
e−iω1xdx

∫ ∞

−∞
e−iω2r p(x, r, t|x0, r0, t0)dr. (6)

Once we know the joint characteristic function obtaining discount is straightforward.
Comparison of Equations (5) and (6) shows that

D(t) = p̃
(
ω1 = −i, ω2 = 0, t|x0, r0, t0

)
, (7)

and obtaining the discount function is equivalent to knowing the joint characteristic
function of the bidimensional return process.

2.2. Diffusion Process in the Presence of Random Jumps

The process r(t) can be any random process, although the simplest and most usual
assumption consists in modeling r(t) as a diffusion process, that is, a Markovian process
with continuous sample paths. We here take the further step of assuming that r(t) is a
compound process that combines an ordinary diffusion with random jumps. The diffusion
process trajectory thus exhibits discontinuities at random instants of time. Discontinuities
will here be assumed to be finite. The resulting bidimensional process (x(t), r(t)) is de-
scribed by the following pair of stochastic differential equations (all stochastic differential
equations are interpreted in the sense of Itô):

dx
dt

= r

dr
dt

= f (r) + g(r)ξ(t) + n(t), (8)

where f (r) and g(r) are given functions (the drift and noise intensity, respectively), ξ(t)
is a zero-mean Gaussian white noise (ξ(t)dt = dW(t) where W(t) is the standard Wiener
process with unit variance), and n(t) is a white shot noise. The white shot noise can be
written as [38,39]

n(t) = ∑
j

γjδ(t− tj), (9)

where γj and tj (j = 1, 2, 3 . . . ) are independent and identically distributed random vari-
ables. The random quantities γi characterize the size of jumps and are described by a given
PDF, which we denote by h(u). For simplicity, the size of these discontinuities are taken
to be identically distributed and independent of each other as well as independent of the
instants of time at which they occur. We further assume that these random times form a
Poisson set of events. In such a case, the time interval τ between two consecutive jumps
{tj, tj+1} is governed by the PDF [40]

ψ(τ) = λe−λτ , (10)

where λ > 0 is the rate of the Poisson process and λ−1 is the average time interval between
two consecutive jumps.

To obtain the discount we need to look at the joint PDF p(x, r, t|x0, r0, t0) of the bidi-
mensional process (x(t), r(t)). It is, however, convenient to first consider the jump PDF
characterizing the discontinuities of the return process. This density is defined as [31]

W(x, r|x0, r0) = lim
∆t→0

[
1

∆t
p(x, r, t0 + ∆t|x0, r0, t0)

]
,
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A standard reasoning—based on the Chapman–Kolmogorov equation and detailed
in Gardiner’s monograph [31] (see also [40]) shows that the PDF of the bidimensional
jump-diffusion process defined in (8) obeys the integro-differential equation

∂p
∂t

= − r
∂p
∂x
− ∂

∂r
[

f (r)p
]
+

1
2

∂2

∂r2

[
g2(r)p

]
+

∫ ∞

−∞
dy
∫ ∞

−∞

[
W(x, r|y, ρ)p(y, ρ, t|x0, r0, t0)−W(y, ρ|x, r)p(x, r, t|x0, r0, t0)

]
dρ, (11)

with the initial condition

p(x, r, t0|x0, r0, t0) = δ(x− x0)δ(r− r0). (12)

The assumptions made above about discontinuities allow us to obtain a a more explicit
expression for both the transition density W and the integro-differential Equation (11). Let
us recall that the magnitude of the discontinuities, expressed by the random variables γi, is
independent of the times ti where jumps occur. We see from the model expressed by Equa-
tion (8) that the instantaneous jumps only affect r(t), but not x(t). These considerations,
along with the Poisson character of jump times, allow us to take as transition density the
following expression [40]:

W(x, r|x0, r0) = λδ(x− x0)h(r− r0). (13)

Substituting this simpler expression for W into Equation (11) and taking into account
the homogeneity of both x and t (which amounts to take x0 = 0 and t0 = 0) as well as the
normalization condition on the PDF h(u),∫ ∞

−∞
h(u)du = 1,

we see that the integro-differential equation for p(x, r, t|r0), Equation (11) reads

∂p
∂t

= −r
∂p
∂x

− ∂

∂r
[

f (r)p
]
+

1
2

∂2

∂r2

[
g2(r)p

]
− λp(x, r, t|r0) + λ

∫ ∞

−∞
h(r− ρ)p(x, ρ, t|r0)dρ, (14)

and the initial condition is

p(x, r, 0|r0) = δ(x)δ(r− r0). (15)

Equation (14) is the most general formulation of the discount problem of time-
homogeneous diffusion with independent and Poissonian random jumps. In order to
proceed further we need to further specify a particular diffusion process for the continuous
part of the return.

The Ornstein–Uhlenbeck Process and Poissonian Jumps

In the modeling of financial interest rates, the Ornstein–Uhlenbeck (OU) diffusion
process was proposed by Oldrich Vasicek during the late nineteen seventies [10]. The model
allows for both positive and negative rates and is, therefore, suitable for describing the
so-called real interest rates. We have extensively used this process in the study of long-run
discounting [15–17,26]. For the OU process, the drift is linear and the noise intensity con-
stant:

f (r) = −α(r−m), g(r) = k. (16)

The parameter m (usually referred to as “normal level”) is the mean value to which
the process reverts in the long run, α > 0 is the strength of the reversion to the mean, and
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k > 0 is the amplitude of the fluctuations. In the stationary regime when t� α−1 rates are
explicitly given by [26]

r(t) = m + k
∫ t

−∞
e−α(t−t′)ξ(t′)dt′,

where ξ(t) is the Gaussian white noise defined above. We, thus, easily see that the normal
level m is the stationary mean value of the return, while the stationary autocorrelation
function C(τ) is given by [26]

C(τ) =
(

k2

2α

)
e−ατ

showing that α−1 is the autocorrelation time and σ2 = k2/2α is the variance. For this
continuous model, we have been able to obtain a closed expression for the discount
function D(t), which in the long run, as t→ ∞ (cf. Equation (4)), reads [26]

D(t) ' e−r∞t, r∞ = m− k2/2α2. (17)

Let us now assume that the rate process r(t) is governed by an OU process with
random discontinuities described by Poissonian jumps. The integro-differential equation
for the joint PDF p(x, r, t|r0) will be given by (cf. Equations (14) and (16))

∂p
∂t

= − r
∂p
∂x

+ α
∂

∂r
[
(r−m)p

]
+

1
2

k2 ∂2 p
∂r2

− λp(x, r, t|r0) + λ
∫ ∞

−∞
h(r− ρ)p(x, ρ, t|r0)dρ, (18)

with the initial condition
p(x, r, 0|r0) = δ(x)δ(r− r0). (19)

Fourier transforming Equations (18) and (19) results in a much simpler problem for
the characteristic function,

∂ p̃
∂t

= (ω1 − αω2)
∂ p̃

∂ω2
−
[

λ− λh̃(ω2) + iαmω2 +
k2

2
ω2

2

]
p̃, (20)

where p̃ = p̃(ω1, ω2, t|r0) is the joint Fourier transform defined in Equation (6) and

h̃(ω2) =
∫ ∞

−∞
e−iω2uh(u)du (21)

is the characteristic function of the jump PDF h(u). The initial condition is now given by

p̃(ω1, ω2, 0|r0) = e−iω2r0 . (22)

Equation (20) is a partial differential equation of first order whose solution can be
obtained by the method of characteristics [41]. In the Appendix A, we show that the exact
solution to the initial-value problem (20) and (22) is given by

p̃(ω1, ω2, t|r0) = exp
{
−λ
[
t + φ(ω1, ω2, t)

]
− A(t)ω2

2 − B(ω1, t)ω2 − C(ω1, t)
}

, (23)

where

φ(ω1, ω2, t) =
∫ χ(ω1,ω2,t)

ω2

h̃(θ)
αθ −ω1

dθ, χ(ω1, ω2, t) =
ω1
α
(1− e−αt) + ω2e−αt, (24)

A(t) =
k2

4α

(
1− e−2αt

)
, (25)

B(ω1, t) = ir0e−αt + im
(

1− e−αt
)
+

k2ω1

2α2

(
1− 2e−αt + e−2αt

)
, (26)
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and

C(ω1, t) = iω1r0
1
α

(
1− e−αt)+ imω1

[
t− 1

α

(
1− e−αt)]

+
k2ω2

1
2α3

[
αt− 2

(
1− e−αt)+ 1

2

(
1− e−2αt

)]
. (27)

Looking at Equation (23), we see that when there are no discontinuities (i.e., λ = 0),
the PDF (23) reduces to a Gaussian density as we had obtained in previous works [26].
Denoting this density by p(0) and setting λ = 0 in Equation (23), we get

p̃(0)(ω1, ω2, t|r0) = exp
{
−
[

A(t)ω2
2 + B(ω1, t)ω2 + C(ω1, t)

]}
. (28)

We can thus write Equation (23) as

p̃(ω1, ω2, t|r0) = p̃(0)(ω1, ω2, t|r0) exp
{
−λ
[
t + φ(ω1, ω2, t)

]}
. (29)

Let us finally recall that knowing the joint PDF of the two-dimensional process
(x(t), r(t)), the distribution of the return r(t) is given by the marginal density,

p(r, t|r0) =
∫ ∞

−∞
p(x, r, t|r0)dx,

and the characteristic function of return, p̃(ω2, t|r0), is simply obtained by setting ω1 = 0
in the joint characteristic function. From Equations (23)–(27), we get

p̃(ω2, t|r0) = exp
{
− k2

4α

(
1− e−2αt

)
ω2

2 − i
[
r0e−αt + m

(
1− e−αt)]ω2

−λ

[
t +

1
α

∫ ω2e−αt

ω2

h̃(θ)
θ

dθ

]}
. (30)

In terms of the characteristic function p̃(ω2, t|r0), the moments of the return, 〈rn(t)〉,
are given by the derivatives in p̃(n)(ω2 = 0, t|r0) (n = 1, 2, . . . ). Thus, for example, the vari-
ance of the return, that is the volatility, is given by

σ2(t) =
1

2α

(
k2 + λµ

)(
1− e−2αt

)
, (31)

where µ is the second moment of the jump density, µ = −h̃′′(0). In the long-range (t→ ∞)
the volatility reaches the stationary value

σ2
stat =

1
2α

(
k2 + λµ

)
. (32)

3. Results

We know that in terms of the characteristic function of the bidimensional process
(x(t), r(t)) the discount function D(t) is given by (cf. Equation (7))

D(t) = p̃(ω1 = −i, ω2 = 0, t|r0).

Then from Equation (29) we see that

D(t) = D(0)(t)e−λ[t+φ(t)], (33)
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where D(0)(t) is the discount function for the continuous process in the absence of jumps
and φ(t) ≡ φ(−i, t). The explicit form of these quantities is, respectively, given by
(cf. Equations (27) and (24))

D(0)(t) = exp

{
− r0

α

(
1− e−αt)−m

[
t− 1

α

(
1− e−αt)]

+
k2

2α3

[
αt− 2

(
1− e−αt)+ 1

2

(
1− e−2αt

)]}
, (34)

and

φ(t) =
1
α

∫ −i(1−e−αt)/α

0

h̃(θ)
θ + i/α

dθ = − 1
α

∫ (1−e−αt)/α

0

h̃(−iξ)
1/α− ξ

dξ. (35)

Equation (33) constitutes the main result of this work and expresses the discount
function of the jump-diffusion process in terms of the discount function D(0)(t) of the
continuous OU process and the function φ(t) related to discontinuities.

3.1. Asymptotic Discount Function

We next analyze the asymptotic behavior as t → ∞ of the discount function (33).
Firstly from Equation (34) we easily see that

D(0)(t) ' exp
{
−
(

m− k2

2α2

)
t
}

(t→ ∞). (36)

On the other hand, in order to get the asymptotic behavior of φ(t) we expand the
jump characteristic function h̃(θ) around the value θ = −i/α,

h̃(θ) = h̃(−i/α) +
∞

∑
n=1

1
n!

h̃(n)(−i/α)(θ + i/α)n,

and plugging it into Equation (35) we have

φ(t) =
1
α

h̃(i/α)
∫ −i(1−e−αt)/α

0

dθ

θ + i/α
+

1
α

∞

∑
n=1

1
n!

h̃(n)(−i/α)
∫ −i(1−e−αt)/α

0
(θ + i/α)n−1dθ.

But ∫ −i(1−e−αt)/α

0

dθ

θ + i/α
= −αt,

while ∫ −i(1−e−αt)/α

0
(θ + i/α)n−1dθ = − (i/α)n

n
(
1− e−nαt).

Thus

φ(t) = −h̃(−i/α)t− 1
α

∞

∑
n=1

(i/α)n

n
h̃(n)(−i/α)

n!
(
1− e−nαt), (37)

and in the long-time limit we have

φ(t) ' −h̃(−i/α)t− 1
α

∞

∑
n=1

(i/α)n

n
h̃(n)(−i/α)

n!
.

Let us note that if the sum on the right hand side of this expression is convergent and
h̃(−i/α) is finite, we then have

φ(t) ' −h̃(−i/α)t, (t→ ∞). (38)
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Substituting Equations (36) and (38) into Equation (33) yields

D(t) ' exp
{
−
(

m− k2/2α2 + λ
[
1− h̃(−i/α)

])
t +O(t0)

}
, (t→ ∞). (39)

where term discarded first order approximation (other remaining terms are exponentially
small) reads

O(t0) =

[
m− r0 −

3k2

4α2 + λ
∞

∑
n=1

(i/α)n

n
h̃(n)(−i/α)

n!

]
1
α

. (40)

The asymptotic discount function can thus be written as

D(t) ' e−r∞t, (t→ ∞), (41)

where the long-run discount rate defined in Equation (4) reads

r∞ = r(0)∞ + λ
[
1− h̃(−i/α)

]
, (42)

and

r(0)∞ = m− k2

2α2 , (43)

is the long-run discount rate in the absence of jumps [26]. From Equation (42) we see that
discontinuities will reduce the long-run discount rate as long as

r∞ < r(0)∞ ⇔ h̃(−i/α) > 1. (44)

Let us remark that all expressions involving the long-run rate are meaningful as long
as h̃(−i/α) exists. We will, however, see below some cases in which h̃(−i/α) is infinite and
r∞ is meaningless.

Bounded and Symmetric Jump Density

We next develop condition (44) when the jump density h(u) is bounded and symmetric
around u = 0. In other words, when sudden ups and downs of r(t) are finite and equally
likely. From the definition of h̃(θ),

h̃(θ) =
∫ ∞

−∞
h(u)e−iuθdu, (45)

and bearing in mind the symmetry of h(u) around u = 0 (implying that h(u) = h(−u)),
we may write

h̃(−i/α) =
∫ ∞

−∞
h(u)e−u/αdu =

∫ ∞

0
h(u)

[
e−u/α + eu/α

]
du, (46)

that is,

h̃(−i/α) = 2
∫ ∞

0
h(u) cosh(u/α)du. (47)

Since cosh(u/α) > 1 and recalling that the normalization and symmetry of h(u) imply∫ ∞
0 h(u)du = 1/2, we have

h̃(−i/α) > 2
∫ ∞

0
h(u)du = 1,

hence h̃(−i/α) > 1 and condition (44) holds. Therefore, for finite and symmetric jumps where
ups and downs in return are equally likely, discontinuities always reduce the long-run discount
rate. Let us recall that this conclusion remains valid as long as the integral in (47) is finite.
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This result coincides with the Cox–Ingersoll–Ross process (rates are always positive) with
negative and fixed jumps [13].

It is also possible to write an explicit expression of the long-run discount rate in terms
of the jump PDF h(u) instead of the expression given by Equation (42), which gives r∞ in
terms of the characteristic function h̃(−i/α). Indeed, taking into account Equation (47) and
recalling the normalization of h(u), we write

1− h̃(−i/α) = 1− 2
∫ ∞

0
h(u) cosh(u/α)du = 2

∫ ∞

0
h(u)[1− cosh(u/α)]du

= −
∫ ∞

0
h(u) sinh2(u/2α)du

and substituting this result into Equation (42), we obtain

r∞ = r(0)∞ − λ
∫ ∞

0
h(u) sinh2(u/2α)du, (48)

clearly showing that r∞ < r(0)∞ for symmetrical jumps. See also the final part of Appendix B
for an alternative approach. Appendix B is, however, fundamentally focused in providing
the discount rate when the jump distribution is asymmetric, that is, when sudden ups and
downs are not equally likely.

3.2. Some Specific Jump Distributions

We now study two particular examples of the jump distribution h(u). For these
examples, we obtain the long-run discount rate and elucidate the meaning of condition (44)
assuring that discontinuities reduce the long-run rate.

3.2.1. Fixed Jump Amplitudes

Let us first assume that the amplitudes of the discontinuities consist of a series of
N fixed values, γ1, . . . , γN (N = 1, 2, 3, . . . ). If these values are equally likely, the jump
distribution function is

h(u) =
1
N

N

∑
j=1

δ(u− γj) ⇒ h̃(θ) =
1
N

N

∑
j=1

e−iθγj . (49)

In this case, the function φ(t) defined in (35) can be written as

φ(t) = − 1
αN

N

∑
j=1

∫ (1−e−αt)/α

0

e−γjξ

1/α− ξ
dξ =

1
αN

N

∑
j=1

e−γj/α
∫ e−αt/α

1/α

eγjη

η
dη

=
1

αN

N

∑
j=1

e−γj/α[Ei
(
γie−αt/α

)
− Ei(γi/α)

]
, (50)

where Ei(·) is the Exponential integral defined as [42]

Ei(x) =
∫ x

−∞

eη

η
dη.

Expanding the integrand we get:

∫ eη

η
dη = ln η +

∞

∑
n=1

ηn

nn!
.

Hence ∫ e−αt/α

1/α

eγjη

η
dη = −αt−

∞

∑
n=1

(γj/α)n

nn!
(
1− e−nαt),
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and

φ(t) = −
(

1
N

N

∑
j=1

e−γj/α

)
t− 1

αN

N

∑
j=1

e−γj/αψj(t), (51)

where

ψj(t) ≡
∞

∑
n=1

(γj/α)n

nn!
(
1− e−nαt). (52)

The discount function D(t), given in Equation (33), now reads

D(t) = D(0)(t) exp

{
−λt

[
1− 1

N

N

∑
j=1

e−γj/α

]
+

λ

αN

N

∑
j=1

e−γj/αψj(t)

}
(53)

with the jump-free discount D(0)(t) given by Equation (34).
Figure 1 shows the effect on the average discount rate d(t), defined in (3), of the

presence of jumps with the simplest possible case when there is only one jump amplitude
γ < 0 (N = 1). In this case, the average discount rate reads (cf. Equations (53) and (50))

d(t) = − ln D(0)(t)
t

+ λ

{
1 +

exp(−γ/α)

αt
[
Ei
(
γe−αt/α

)
− Ei(γ/α)

]}
. (54)

In Figure 1, we assume a jump frequency λ = 0.02 1/year (1 jump every 50 years) and
show how the discount d(t) changes as a function of time when considering no jumps and
negative jumps of size |γ|/α = 0.25 and 0.5, where α is the reversion to the mean of the
OU process (cf. Equation (16)). When considering the case of United States of America [17],
it can be shown that small changes in γ < 0 parameter can lead to very sensitive effects to
the discount rate, lowering the rate to values close to 1% and lower, even if jumps size are
small or very small.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1  10  100

d(
t) 

(in
 %

)

t (in years)

Ornstein-Uhlenbeck
Ornstein-Uhlenbeck with jumps. Fixed jump amplitude γ=0.5α<0
Ornstein-Uhlenbeck with jumps. Fixed jump amplitude γ=0.25α<0

Figure 1. The discount rate (54) (in %) as a function of time (in years). We present the effects of the
addition of jumps to the Ornstein–Uhlenbeck process by modifying the scaled jump size |γ|/α < 0.
Jumps frequency λ is 1/50 years. General parameters for the Ornstein–Uhlenbeck process are those
estimated by Ref. [17] for the case of the United States of America, whose estimated parameters are
m̂ = 0.0319 year−1, α̂ = 0.0603 year−1, k̂2 = 10.03× 10−5 year−3.

In the long-run, as t→ ∞, we see from (51) and (52) that

φ(t) ' −
(

1
N

N

∑
j=1

e−γj/α

)
t (t→ ∞),
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and the discount function can be approximated by Equation (41):

D(t) ' e−r∞t, (t→ ∞),

where the long-run discount rate given in Equation (42) now reads

r∞ = r(0)∞ + λ

[
1− 1

N

N

∑
j=1

e−γj/α

]
(55)

and r(0)∞ is the jump-free discount rate, Equation (43). Let us also note that r∞ < r(0)∞ if

1
N

N

∑
j=1

e−γj/α > 1. (56)

The simplest case, when all jumps have the same amplitude, γj = γ, reads (cf.
Equation (55))

r∞ = r(0)∞ + λ
[
1− e−γ/α

]
. (57)

In this case, if there is a sudden decrease in return (γ < 0) then r∞ < r(0)∞ . Otherwise,
an increase of return (γ > 0) implies the increase of the long-run discount ratio, r∞ > r(0)∞ .
These results are consistent with condition (44). Figure 2 shows how r∞ change as a
function of the scaled dimensionless jump length magnitude |γ|/α where α is the reversion
to the mean of the OU process (cf. Equation (16)). Figure 2 shows the opposite effects
in the long run discount function for positive and negative jumps when r(0)∞ = 1.81%,
which corresponds to the long-run discount rate estimated in Ref. [17] with United States
of America (USA) real interest rate ratio datasets. For positive jumps γ > 0, the long-run
rate in the case of USA can increase up to 3% with jump amplitudes of size 5% taking place
once every 50 years. For negative jumps γ < 0, the long-run discount rates can become
negative for jumps amplitudes of only 4%. These results confirm the high sensitivity of the
long-run discount rate r∞ when considering jumps.

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

r ∞

|γ|/α

Fixed jump amplitude γ>0
Fixed jump amplitude γ<0
Fixed symmetric jump amplitude ± γ, γ>0
Laplacian jump amplitudes with avg. abs. values γ

Figure 2. The long-run discount rate r∞ as a function of the the scaled jump size (|γ|/α) for jumps
with fixed and bounded amplitudes (γ > 0 and γ < 0, cf. Equation (57)), with two fixed and bounded
symmetric jumps ±γ (cf. Equation (58)) and for Laplacian jumps with average absolute value equals

to γ (cf. Equation (68)). In all cases, jumps frequency λ is 1/50 years and r(0)∞ = 1.81%.
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Another particular case consists in assuming that discontinuities have only two possi-
ble amplitudes, which are equal but of opposite signs, that is, γ1 = γ and γ2 = −γ. Now
(cf. (49))

h̃(θ) = cosh(γθ/α)

and the long-run discount rate (42) is

r∞ = r(0)∞ + λ[1− cosh(γ/α)]. (58)

Note that since cosh(γ/α) > 1 for all values of γ/α, then r∞ < r(0)∞ . In this example
in which return suddenly decreases or increases equally likely by a fixed quantity, disconti-
nuities always reduce the long-run rate, as we have already proved in a previous section.
Figure 2 shows that this decrease can be quite sensitive even when jumps amplitudes are
relatively small (r∞ can already be negative when jumps sizes are of the order of 5% when
considering USA datasets).

3.2.2. Laplacian Jump Amplitudes

As a second example, we suppose that jump amplitudes are not fixed but distributed
according to the Laplace (“tent shape”) density:

h(u) =
1√
2γ

e−
√

2|u|/γ, (59)

(γ > 0). In this model, increasing and decreasing jumps are equally likely with zero
average discontinuity, 〈∆r〉 = 0, and σ =

√
〈∆r2〉 = γ. Thus, the parameter γ represents

the average of absolute values of the amplitude of discontinuities. Bearing in mind that
Equation (59) represents a symmetric distribution around u = 0 we see that the Fourier
transform of h(u) can be written as

h̃(θ) =
2

γ
√

2

∫ ∞

0
e−u
√

2/γ cos(θu)du. (60)

When θ ∈ R is real direct integration [42] yields

h̃(θ) =
1

1 + γ2θ2/2
. (61)

Suppose, however, that θ = iξ (ξ ∈ R) is an imaginary number, in such a case since
cos iθ = cosh ξ the integral in Equation (60) diverges when |ξ| ≥

√
2/γ. We thus have

h̃(iξ) =

{
1

1−γ2ξ2/2 , |ξ| <
√

2/γ,

∞ |ξ| ≥
√

2/γ.
(62)

For the special case ξ = −1/α, we have

h̃(−i/α) =

{
1/(1− c2), c < 1,
∞, c ≥ 1,

(63)

where
c ≡ γ

α
√

2
(64)

is a dimensionless parameter that combines the average absolute jump γ and the strength
α of the reversion to the mean of the OU process.

Recall that in terms of the jump-free discount, the discount function is given by
(cf. Equation (33))

D(t) = D(0)(t)e−λ[t+φ(t)]. (65)
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where D(0)(t) and φ(t) are, respectively, given by Equations (34) and (35). In the Appendix C,
we show that for the Laplace density (59), the form and behavior of the discount function
depends on the value of the parameter c defined in Equation (64). We have three cases:

1. When c < 1 (i.e., γ < α
√

2) we prove in the Appendix C that the function φ(t) is
given by

φ(t) = − t
1− c2 −

1
2α

[
1

1− c
ln
(
1− c(1− e−αt)

)
+

1
1 + c

ln
(
1 + c(1− e−αt)

)]
. (66)

In this case, the discount function is finite and follows from Equation (65) after sub-
stituting Equation (66). Figure 3 illustrate this result considering the OU parameters
estimated in Ref. [17] while considering different jumps frequencies λ and different
jumps amplitudes in terms of c. For large values of t, we have

φ(t) ' − t
1− c2 , (t→ ∞).

Since D(0)(t) ' e−r(0)∞ t as t→ ∞ (cf. Equations (36) and (43)), we finally obtain

D(t) ' exp
{
−
[
r(0)∞ − λc2/(1− c2)

]
t
}

, (t→ ∞), (67)

and the expression for the long-run rate reads

r∞ = r(0)∞ −
λc2

1− c2 < r(0)∞ , (c < 1), (68)

with r(0)∞ given in Equation (43). In this model, discontinuities reduce the long-run
discount rate if c < 1, which implies that r∞ is finite. That is, when γ < α

√
2 and the

average of the absolute value of discontinuities is smaller than the strength of the
reversion to the mean represented by α

√
2. The behavior of the long-run discount rate

r∞ for Laplacian jumps can be compared to the fixed and bounded jumps amplitude
case provided in Section 3.2.1. As shown in Figure 2, the behavior is qualitatively
similar to the case of two symmetric jumps. The differences among both examples
become relevant when c→ 1−, being the curve consistent with the critical behavior
described in Equation (63).

2. When c > 1 (i.e., γ > α
√

2), we prove in the Appendix C that the discount becomes
infinite for times greater than a critical time,

D(t) = ∞, (t ≥ t∗), (69)

where

t∗ = − 1
α

ln
(

1− 1
c

)
, (70)

while for t < t∗ the discount function is given as in case (i) above (even though now
it has no sense asking for the asymptotic behavior of discount as t → ∞). Figure 4
shows the sensitivity of the critical time with respect to jumps amplitude. We there
show that critical time t∗ can become shorter than a year or be strongly reduced as
c increases.

3. For the threshold case c = 1 (i.e., γ = α
√

2), the discount function grows exponentially.
Thus, in the Appendix C we show that

D(t) ' exp
{

λ

2α
eαt
}

, (t→ ∞). (71)
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Note that this behavior is not contradictory with our previous results since, as
r(0)∞ > 0 and

1 <
2α2

γ2 < 1 +
λ

r(0)∞

,

r∞ becomes negative, and discount turns into an increasing function for t large enough.
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Figure 3. Discount function for Laplacian jump amplitudes with c < 1 (cf. Equations (65) and (66))
as a function of time (in years) and for different jumps time frequency λ. We take the Ornstein–
Unlenbeck parameters estimated somewhere else with initial interest rate r0 = 1% [17] with United
States of America (USA) and Sweden (SWE) dates, which are considered to be stable countries.
(a,b) we explore the effect of increasing jumps time frequency (thinner lines, 1/λ = {500 and 50 years})
while fixing jumps amplitude (c = 0.5, cf. Equation (64)). The panel figures (a,b) show that the
higher the frequency, the lower the discount function curve. The panel figures (c,d) explore the
effect of increasing jumps amplitude (thinner lines, c = {0.2, 0.9}) while fixing jumps frequency
(1/λ = 50 years). The higher the c (jump size), the lower the discount. The case of the United
States of America (USA), whose Ornstein–Uhlenbeck estimated parameters are m̂ = 0.0319 year−1,
α̂ = 0.0603 year−1, k̂2 = 10.03× 10−5 year−3. The case of Sweden (SWE), whose Ornstein–Uhlenbeck
estimated parameters are m̂ = 0.0279 year−1, α̂ = 0.0676 year−1, k̂2 = 16.9× 10−5 year−3.

From this case, we conclude that if jump amplitudes are on average smaller than the
restoring force toward the normal level (γ < α

√
2) jumps reduce the long-run discount rate.

However, when jump amplitudes are larger (γ > α
√

2), the discount function becomes
infinite at a finite time.
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Figure 4. Critical time as a function of the Laplacian jumps amplitude c = γ/(
√

2α̂) > 1
(cf. Equation (70)) and for several values of α̂ attributed to different countries. We take the
Ornstein–Uhlenbeck α̂ parameter estimated somewhere else [17]: 1/(6.068 years) for Netherlands
(NED), 1/(16.58 years) for United States of America (USA), 1/(70.42 years) for Canada (CAN), and
1/(188.7 years) for Japan (JAP). The inset shows in further detail the cases with shorter critical times.

3.3. Discount in the Continuous Time Random Walk Formalism

Up to this point, we have dealt with a rate process described by a diffusion process in
which there are superimposed finite discontinuities. At one extreme of the model, we find
continuous diffusion processes with no discontinuities, which have been developed in our
previous works [15,17,26]. At the other extreme, we find a purely discontinuous process
where the return starting at some initial value keeps this value during a random interval of
time and makes a sudden jump with a random amplitude to a new value, keeps the new
value another random time interval, makes another jump, and so on. This is precisely the
Continuous Time Random Walk (CTRW) with countless applications in many branches of
natural sciences, engineering and economics and social sciences [43,44]. Let us observe that
if waiting times between jumps are Poissonian with rate λ and independent of the jump
amplitudes, then the PDF of the bidimensional process (x(t), r(t))—which we denote by
p0(x, r, t|r0)—is described by the integro-differential Equation (14) with f (r) = g(r) = 0

∂p0

∂t
= −r

∂p0

∂x
− λp0(x, r, t|r0) + λ

∫ ∞

−∞
h(r− ρ)p0(x, ρ, t|r0)dρ, (72)

with the initial condition
p0(x, r, 0|r0) = δ(x)δ(r− r0). (73)

By Fourier transforming this problem, we easily obtain the expression for the character-
istic function p̃(ω1, ω2, t|r0). It reads (this solution can be also obtained from Equation (23)
with the values α = 0 and k = 0):

p̃0(ω1, ω2, t|r0) = exp
{
−i(ω1t + ω2)r0 − λ

[
t− 1

ω1

∫ ω1t+ω2

ω2

h̃(θ)dθ

]}
. (74)

The marginal distribution of the return, p̃0(ω2, t|r0), is obtained from (74) after setting
ω1 = 0:

p̃0(ω2, t|r0) = exp
{
−iω2r0 − λt

[
1− h̃(ω2)

]}
, (75)

and the return variance reads σ2
0 (t) = λµt, where µ = −h̃′′(0) is the jump second moment.

The discount function is obtained by setting ω1 = −i and ω2 = 0 in the joint charac-
teristic function (74). For the CTRW model, this yields

D0(t) = exp{−r0t− λ[t + φ0(t)]}, (76)
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where

φ0(t) =
1
i

∫ −it

0
h̃(θ)dθ = −

∫ t

0
h̃(−iξ)dξ. (77)

Equation (76) is the expression of the discount function when rates are modeled by a
Markovian CTRW with a general jump density h(u).

In the special case of Laplacian jumps h̃(−iξ) (cf. Equation (62))

h̃(iξ) =

{
1

1−γ2ξ2/2 , |ξ| <
√

2/γ,

∞ |ξ| ≥
√

2/γ.
(78)

For times such that t <
√

2/γ, we see from Equation (77) that ξ < t <
√

2/γ, hence

φ0(t) = −
∫ t

0

dξ

1− γ2ξ2/2
=

1
γ

[
− ln

(
1− γt/

√
2
)
+ ln

(
1 + γt/

√
2
)]

.

In this case, the discount function reads

D0(t) =

(
1 + γt/

√
2

1− γt/
√

2

)λ/γ

e−(r0+λ)t, (t <
√

2/γ). (79)

On the other hand, if t >
√

2/γ, we can write

φ0(t) = −
[∫ √2/γ

0
h̃(−iξ)dξ +

∫ t
√

2/γ
h̃(−iξ)dξ

]
.

However, due to Equation (78), the second integral is infinite, hence φ0(t) = −∞ and

D0(t) = ∞, (t >
√

2/γ). (80)

Therefore, for the CTRW model with Laplacian jumps, the discount function becomes
infinite in the finite time t∗ =

√
2/γ.

4. Discussion

In a series of recent works [15–17,26,30], we have analyzed the process of discounting
using mostly methods borrowed from non-equilibrium statistical physics and stochastic
processes. In these works, we have considered three of the most popular stochastic models
for the dynamics of interest rates: Ornstein–Uhlenbeck [27], Feller [28], and log-normal [29]
processes, which are also very relevant in statistical physics. However, we are interested in
real rates (that is, nominal rates corrected by inflation), which can be negative even during
prolonged periods of time [15,17] and, since Feller and log-normal models deal exclusively
with positive quantities, this leads to the Ornstein–Uhlenbeck (OU) process as the only
model with mean reversion and allowing for negative rates. The Ornstein–Uhlenbeck (OU)
model is the only one that allows for negative rates while still considering simplest (and
linear) mean reversion towards a normal interest rate. Mean-reversion assumes that the
interest rate follows a stationary process and this can be considered as a limitation when
the model is contrasted with empirical data.

The work presented here continues with such an undertaking, but we go one step
further and assume that, in addition to diffusive and continuous behavior, the sample
paths of real rates r(t) also exhibit discontinuities. That is, we will model rates by a jump-
diffusion process as the economic evolution is known to occasionally have sudden bursts
that hardly adjust to continuous diffusion-like evolution. We have thus wanted to elucidate
the effect on the long-run discount of discontinuities that reflect the high-risk events that
might occur in the future.
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We have obtained a very general formula of the discount function for processes that
combine an Ornstein–Uhlenbeck (OU) dynamics with the presence of Poissonian jumps
with frequency λ (see also the Feller process with jumps in [13]). Equation (33) shows this
key result. Two almost immediate questions are: how this general formula behaves for very
long times? Additionally, which is the resulting long-run discount rate r∞? Thus, if h̃(θ)
is the jump characteristic function, we have proved that as long as h̃(−i/α) exists, one
obtains a value for r∞. Otherwise, the discount becomes infinite for a finite time horizon.
An infinite discount is indeed catastrophic for the economy because it implies that any
future value is zero. Furthermore, in case that h̃(−i/α) > 1, the addition of jumps to the
model results into a decrease of r∞ (cf. Equations (43) and (44)). This latter case entails
a call for a more immediate action to climate change and it applies to those processes
with symmetric jump amplitude. The obtention of lower long-run discount rates r∞ for
symmetric jumps amplitude is of particular importance, as it deepens in the idea already
suggested by the OU process with no sudden jumps. That is to say, the fact that bounded
unbiased uncertainty, no matter whether continuous or not, increases the urgency for
immediate action.

To go deeper in evaluating the effect of discontinuities, we have gone through three
different scenarios. The simplest case refers to the existence of a fixed jumps amplitude.
We have been able to obtain the exact formula for the discount, which is represented in
Figure 1 by considering the parameters of the OU process for United States of America [17]
for a single negative jump γ. We there show that even by considering a frequency λ
of one jump every 50 years and small jumps (γ = 0.5α) the effect is more than evident.
As expected, sudden negative returns represent a quicker decrease in the discount function.
Negative jumps of 5% return size (due to catastrophic news such as the COVID-19 outbreak)
can already lead r∞ to negative values, which in practice is telling us that immediate
actions with strong investment are unavoidable to face, even if they are unknown, climate
effects in the future (see Figure 2). In contrast, the assumption of having future sudden
positive returns—due, for instance, to positive news or a major technological breakthrough—
increments r∞, thus releasing pressure for taking action rapidly. It is, however, important
to mention that the increment is lower than the decrement observed for negative jumps of
the same size (see Figure 2).

A more sophisticated scenario is to consider the possibility of having two jumps of the
same amplitude, but of opposite signs. This symmetric scenario also allows us to obtain
the discount function, and this case always lowers the rate because of its symmetry. In the
case of USA, as can also be shown in Figure 2, this drives r∞ from 1.8% to 1% with jump
amplitude γ = 5 % and frequency λ = (1/50) year−1.

While keeping the same number of parameters (so it does not provide further com-
plexity in data calibration), but considering a symmetric and continuous distribution of
jumps amplitude (Laplace density), it is possible to provide a third scenario. This case
interestingly contrasts to the case of two fixed and symmetric jumps. Laplacian jumps
brings up two different discount solutions depending on the value of c = γ/α

√
2. The jump

size average γ must be compared to the mean-reversion intensity α (cf. Equation (64)).
If c < 1, it is possible to obtain an analytical formula of the discount function, which is
carefully explored in Figure 3 with the OU estimated parameters with real interest rate
datasets from USA and Sweden [17]. We there extend the analysis by exploring the effect
of different values for jumps frequency λ and scaled jump amplitude c. However, when
c > 1, the discount function becomes infinite for a critical time t∗. Figure 4 shows that the
critical time t∗ is quite sensitive to jumps amplitude size in a wide variety of cases and t∗

can become rather small, even for small jump amplitudes (For instance, few years, less
than a decade, with jumps amplitude size about 7%, if we consider OU parameter from the
case of USA).

Finally, it is also possible to obtain the discount function if we disregard the diffusion
contribution. This scenario corresponds to the Continuous Time Random Walk and the
results when assuming Laplacian jumps amplitudes are different depending on the critical
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time
√

2/γ. At short times, when t <
√

2/γ, the discount function decreases exponentially
(cf. Equation (79)). However, as t >

√
2/γ, the discount function becomes infinite.

5. Conclusions

The main results of this paper are summarized in Table 1. Let us recall that the chief
objective of the present work is to contribute to the mathematical modeling of discounting,
within the context of environmental economics and climate action, by considering extreme
situations or outliers. Although Martin Weitzman has already introduced the effect of fat
tails in the economic evolution [34,35], our approach here is more dynamical and it is based
not on fat tails, but on the addition of discontinuities in the economic time evolution. As we
have shown such discontinuities may result, under certain conditions, into an infinite
discount, confirming what Weitzman foresaw a few years ago. Let us emphasize that our
approach (being complementary to that of Weitzman) provides a very general mathematical
framework which allows for direct computation which can lead to future research in for
instance option pricing by means of the martingale analysis and the characteristic function
of the process.

Table 1. Summary of the results proved in Section 3. The Ornstein–Uhlenbeck diffusion process

already shows that the presence of noise (k 6= 0) reduces the long-run discount rate r(0)∞ . The inclusion
of Poissonian jumps with specific scenarios leads to several discount functions D(t) and several
long-run discount rate r∞.

Model Discount

Main definitions Discount function:
dx/dt = r D(t) = E

[
exp

(
−
∫ t

0 r(t′)dt′
)]

dr/dt = f (r) + g(t)ξ(t) + n(t) Discount rate: ln D(t)/t
Long-run discount rate:
r∞ = limt→∞ ln D(t)/t

Ornstein–Uhlenbeck (OU)
dr/dt = −α(r−m)dt + kξ(t) r(0)∞ = m− k2/(2α2)
OU and Poissonian jumps
dr/dt = −α(r−m)dt + kξ(t) + n(t)
n(t) = ∑j γjδ(t− tj)
Jumps size PDF h(γj)
Poissonian τ = ti+1 − ti time interval PDF
ψ(τ) = λe−λτ

If h̃(−i/α) is finite r∞ = r(0)∞ + λ
[
1− h̃(−i/α)

]
If h̃(−i/α) is finite and h̃(−i/α) > 1 r∞ < r(0)∞

If h̃(−i/α) is finite and jumps are symmetric r∞ < r(0)∞

If jumps have two fixed amplitudes ±γ r∞ = r(0)∞ + λ[1− cosh (γ/α)] < r(0)∞
Laplacian jumps with absolute jump average γ

If 0 < γ < α
√

2 r∞ = r(0)∞ − λ
2α2/γ̄2−1 < r(0)∞

If γ > α
√

2 Not defined
Critical explosive time

If jumps have one-fixed increasing amplitude r∞ = r(0)∞ + λ
(

1− e−|γ|/α
)
> r(0)∞

If jumps have one-fixed decreasing amplitude r∞ = r(0)∞ + λ
(

1− e|γ|/α
)
< r(0)∞

If jumps have two-fixed amplitudes ±γ r∞ = r(0)∞ + λ[1− cosh(γ/α)] < r(0)∞
Continuous Time Random Walk
dr/dt = n(t)
Laplacian jumps with absolute jump average γ Not defined

Critical explosive time t∗ =
√

2/γ

We have also explored specific scenarios that show that discontinuities due to un-
expected shocks (even if they represent downside shocks such as epidemics or a climate
disaster or upside shocks due, for instance, to a new technological breakthrough) can
severely affect current estimates of economic variables such as the long-run discount rate.
Changes on this economic variables are shown to be strong enough to influence current
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decision mechanisms on whether and in which degree we shall take action today to face
climate change.

We finally would like to stress the fact that that we here have wanted to include
extreme and infrequent events to the rate process. The most natural choice to capture these
events is to consider the addition of a Poisson jump process to an underlying diffusion
process. However, there are other ways to incorporate a more generic class of jumps, which
allows both frequent and infrequent jumps [45,46]. This generalization could lead to new
and interesting theoretical results for the discount function that definitely would deserve
careful attention and can drive new promising research avenues.
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Appendix A. The Method of Characteristics

We here address the problem of solving Equation (20),

∂ p̃
∂t

+ (αω2 −ω1)
∂ p̃

∂ω2
= −

[
λ− λh̃(ω2) + iαmω2 +

k2

2
ω2

2

]
p̃, (A1)

with the initial condition (22),

p̃(ω1, ω2, 0|r0) = e−iω2r0 . (A2)

Equation (A1) is a linear partial differential equation of first order and it can be solved
by the method of characteristics [41]. Note that here, t and ω2 are the actual variables of
Equation (A1), whereas ω1 is just a parameter. The method of characteristics consists in
replacing the variable ω2 by a function of time ω2 → β(t) (the characteristic) such that

dβ

dt
= αβ−ω1. (A3)

With this replacement the distribution, p̃(ω1, ω2, t|r0) is only a function of t, that is,

p̃
(
ω1, β(t), t|r0

)
≡ p̃(t),

and by the chain rule we have
dp̃
dt

=
∂ p̃
∂t

+
∂ p̃
∂β

dβ

dt
,

then using Equation (A3), we see from Equation (A1) that p̃(t) satisfies the ordinary
differential equation

dp̃(t)
dt

= −
[

λ− λh̃
(

β(t)
)
+ iαmβ(t) +

k2

2
β2(t)

]
p̃, (A4)

whose solution is

p̃(t) = p̃(0) exp
{
−
[

λt− λ
∫ t

0
h̃
(

β(t′)
)
dt′ + iαm

∫ t

0
β(t′)dt′ +

k2

2

∫ t

0
β2(t′)dt′

]}
, (A5)
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where as initial condition we take

p̃(0) = e−iβ(0)r0 . (A6)

Solving Equation (A3) we get

β(t) =
1
α

(
ω1 + Ceαt), (A7)

where C is an integration constant. Using this expression for β(t) we have

∫ t

0
h̃
(

β(t′)
)
dt′ =

∫ t

0
h̃
[

1
α

(
ω1 + Ceαt′

)]
dt′ =

∫ (ω1+Ceαt)/α

(ω1+C)/α

h̃(θ)
αθ −ω1

dθ,∫ t

0
β(t′)dt′ =

ω1t
α

+
C
α2

(
eαt − 1

)
,∫ t

0
β2(t′)dt′ =

1
α2

[
ω2

1t +
2Cω1

α

(
eαt − 1

)
+

C2

2α

(
e2αt − 1

)]
and (cf. (A6) and (A7))

p̃(0) = exp
{
−i

r0

α
(ω1 + C)

}
.

Collecting these expressions into Equations (A5) and (A6), we have

ln p̃(t) = −i
r0

α
(ω1 + C)− λt + λ

∫ (ω1+Ceαt)/α

(ω1+C)/α

h̃(θ)
αθ −ω1

dθ

−iαm
[

ω1t
α

+
C
α2

(
eαt − 1

)]
− k2

2α2

[
ω2

1t +
2Cω1

α

(
eαt − 1

)
+

C2

2α

(
e2αt − 1

)]
, (A8)

On the other hand, solving for C in Equation (A7), we have

C = [αβ(t)−ω1]e−αt.

Now reverting to the original variable ω2 independent of t, i.e., β(t) → ω2 and for
which p̃(t)→ p̃(ω1, ω2, t|r0), we set

C = (αω2 −ω1)e−αt,

and substituting this expression for C into Equation (A8) we finally obtain

ln p̂(ω1, ω2, t|r0) = −i
r0

α

[
ω1
(
1− e−αt)+ αω2e−αt]− λ[t + φ(ω1, ω2, t)]

−iαm
[

ω1t
α

+
1
α2 (αω2 −ω1)

(
1− eαt)]

− k2

2α2

[
ω2

1t +
2ω1

α
(αω2 −ω1)

(
eαt − 1

)
+

1
2α

(αω2 −ω1)
2
(

1− e2αt
)]

, (A9)

where

φ(ω1, ω2, t) =
∫ χ(ω1,ω2,t)

ω2

h̃(θ)
αθ −ω1

dθ and χ(ω1, ω2, t) =
ω1

α

(
1− e−αt)+ ω2e−αt.

After rearranging terms Equation (A9) corresponds to Equation (23).
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Appendix B. Long-Run Discount Rate for Asymmetric Jump Distributions

We here draw some general conclusions about the properties of the long-run discount
rate r∞ given in Equation (42) when up and down discontinuities are not equally likely.
From the definition (cf. Equation (21))

h̃(θ) =
∫ ∞

−∞
h(u)e−iuθdu,

we see that
h̃(−i/α) =

∫ ∞

−∞
h(u)e−u/αdu. (A10)

We will now assume that the jump distribution PDF h(u), albeit being a continuous
and non-singular function, is also non symmetrical around the origin and write

h(u) =

{
h+(u)Θ(u),
h−(−u)Θ(−u),

(A11)

where h±(u) are bounded functions and continuity at the origin implies h+(0) = h−(0) 6= 0.
Hence, combining Equations (A10) and (A11), we can obtain

h̃(−i/α) =
∫ ∞

0
h+(u)e−u/αdu +

∫ ∞

0
h−(u)eu/αdu. (A12)

In order to gain further insight, we next replace h±(u) by

h±(u) = p± f±(u), (A13)

such that ∫ ∞

0
f±(u)du = 1. (A14)

Clearly p+ + p− = 1 and, since h+(0) = h−(0), we obtain

p± =
f∓(0)

f+(0) + f−(0)
. (A15)

Substituting these expressions into Equation (A12) we get

h̃(−i/α) =
1

f+(0) + f−(0)

[
f−(0)

∫ ∞

0
f+(u)e−u/αdu + f+(0)

∫ ∞

0
f−(u)eu/αdu

]
, (A16)

and returning to Equation (42) we have

r∞ = r(0)∞ − λ
[
h̃(−i/α)− 1

]
= r(0)∞ −

λ

f+(0) + f−(0)

[
f−(0)

∫ ∞

0
f+(u)e−u/αdu

+ f+(0)
∫ ∞

0
f−(u)eu/αdu− f+(0)− f−(0)

]
,

so that,

r∞ = r(0)∞ −
λ

f+(0) + f−(0)

{
f+(0)

∫ ∞

0
f−(u)

[
eu/α − 1

]
du

− f−(0)
∫ ∞

0
f+(u)

[
1− e−u/α

]
du
}

. (A17)
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Observe that the two integrals are positive definite which implies that we will obtain
a diminution of the long-run rate with respect to the jump free case, r∞ < r(0)∞ , if and only
if the quantity within curly brackets is positive, that is∫ ∞

0
f−(u)

[
eu/α − 1

]
du∫ ∞

0
f+(u)

[
1− e−u/α

]
du

>
f−(0)
f+(0)

. (A18)

Let us incidentally note that the numerator on the left-hand side of this inequality
must be bounded, otherwise the expression of the long-run rate given in Equation (A17) is
no longer valid.

For symmetrical jumps around the origin we have

f−(u) = f+(u) ≡ f (u),

and Equation (A17) reduces to

r∞ = r(0)∞ −
λ

2

∫ ∞

0
f (u)

[
eu/α + e−u/α − 2

]
du = r(0)∞ − λ

∫ ∞

0
f (u)[cosh(u/α)− 1]du,

that is,

r∞ = r(0)∞ − 2λ
∫ ∞

0
f (u) sinh2(u/2α)du,

which corresponds to the expression (48) of the main text.

Appendix C. Discount Function for Laplacian Jumps

As shown in the main text, the discount function is given by (cf. Equation (33))

D(t) = D(0)(t)e−λ[t+φ(t)], (A19)

where D(0)(t) is the discount in the absence of discontinuities (cf. Equation (34)) and φ(t)
is given by Equation (35):

φ(t) = − 1
α

∫ (1−e−αt)/α

0

h̃(−iξ)
1/α− ξ

dξ. (A20)

For Laplacian jumps, we have shown in the main text that (cf. Equation (62))

h̃(−iξ) =

{
1

1−γ2ξ2/2 , |ξ| <
√

2/γ,

∞ |ξ| ≥
√

2/γ.
(A21)

We will obtain the form of the discount function D(t) depending on the values of
the dimensionless c defined as c = γ/(α

√
2) (cf. Equation (64)). Let us have in mind that

(1− e−αt)/α is an increasing function of time, such that

1
α

(
1− e−αt)→ 0 (t→ 0) and

1
α

(
1− e−αt)→ 1

α
(t→ ∞). (A22)

We therefore have the following cases:
(i) c < 1: From Equation (A22), we see that (1− e−αt)/α <

√
2/γ for all t ≥ 0. Hence,

looking at (A20) we conclude that in this case ξ <
√

2/γ, which allows us to use the
first equation of (A21) for evaluating the integral of Equation (A20). After performing the
change of integration variable u = γξ/

√
2, we have

φ(t) = − 1
α

∫ (1−e−αt)/α

0

1
1/α− ξ

· 1
1− γ2ξ2/2

dξ = − 1
α

∫ c(1−e−αt)

0

1
c− u

· 1
1− u2 du, (A23)
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Noticing that

1
c− u

· 1
1− u2 =

1
1− c2 ·

1
c− u

+
1
2

[
1

1 + c
· 1

1 + u
− 1

1− c
· 1

1− u

]
,

the last integral in (A23) is immediate and yields

φ(t) = − t
1− c2 −

1
2α

[
1

1− c
ln
(
1− c(1− e−αt)

)
+

1
1 + c

ln
(
1 + c(1− e−αt)

)]
, (c < 1). (A24)

(ii) c > 1: Defining t∗ such that

1
α

(
1− eαt∗

)
= 0 ⇒ t∗ = − 1

α
ln
(

1− 1
c

)
, (A25)

we easily convince ourselves after looking at Equation (A22) that

1
α

(
1− eαt∗

)
<

√
2

γ
, (t < t∗);

1
α

(
1− eαt∗

)
>

√
2

γ
, (t > t∗).

Hence for t > t∗ the integral in (A20) can be split into

φ(t) = − 1
α

∫ √2/γ

0

h̃(−iξ)
1/α− ξ

dξ − 1
α

∫ (1−e−αt)/α

√
2/γ

h̃(−iξ)
1/α− ξ

dξ.

However, the second integral considers ξ >
√

2/γ and h̃(−iξ) = ∞, hence φ(t) = −∞.
For t < t∗, ξ <

√
2/γ and we can proceed as in case (i) above with the result that φ(t) is

already given by Equation (A24). Therefore, when c > 1 and t < t∗ the function φ(t) is
given by (A24) while if t > t∗ φ(t) = −∞.

(iii) c = 1: Setting c = 1 in Equation (A24) yields an indeterminate result. We write
the equation as

φ(t) = − 1
1− c

ψ(c|t)− 1
2α

1
1 + c

ln
[
1 + c(1− e−αt)

]
, (A26)

where
ψ(c|t) = t

1 + c
+

1
2α

ln
[
1− c

(
1− e−αt)].

Expanding this function in Taylor series around c = 1, we obtain

ψ(c|t) = −
[

t
4
+

1
2α

(
eαt − 1

)]
(c− 1) + O((c− 1)2)

which substituting into Equation (A26) and after taking the limit c→ 1 yields

lim
c→1

φ(t) = − t
4
− eαt − 1

2α
− 1

4α
ln
(
2− e−αt) (A27)

and as t→ ∞ we have
φ(t) ' − 1

2α
eαt, (γ = α

√
2), (A28)

and discount will be eventually dominated by this term, leading to

D(t) ' exp
(

λ

2α
eαt
)

(t→ ∞), (A29)

which shows that the discount function increases in an explosive way.
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