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Abstract 1 

Resveratrol is a natural compound that mimics the antioxidant and antiaging effects of caloric restriction, mainly 2 

mediated through SIRT1, a deacetylase that induces longevity and neuroprotection. We aimed to analyze the effects of 3 

resveratrol on the brain status of control non-transgenic (NoTg) and AD transgenic (3xTg-AD) mice to discern the 4 

mechanisms involved in a potential inducement of resilience against age-related neurodegeneration and Alzheimer’s 5 

disease (AD). Mice were fed with a diet supplemented with 100 mg/kg of trans-resveratrol from 2 months of age during 6 

10 months. Resveratrol administration induced complete protection against memory loss and brain pathology in 3xTg-7 

AD mice, and also induced cognitive enhancement in healthy NoTg mice. Resveratrol improved exploration and 8 

reduced anxiety in both mouse strains, indicative of well-being. Resveratrol reduced the presence of Aβ and p-tau 9 

pathology in the hippocampus of the 3xTg-AD mouse. Proteostasis analysis showed the following in both NoTg and 10 

3xTg-AD mice: (i) increased levels of the amyloid degrading enzyme neprilysin; (ii) reduction of the amyloidogenic 11 

secretase BACE1, and (iii) increase of proteasome protein levels and enhancement of proteasome activity. Resveratrol 12 

also increased AMPK protein levels, then upregulating the SIRT1 pathway, as shown by the activation of PGC-1α and 13 

CREB in both mice, resulting in further beneficial changes. Our data demonstrated that resveratrol induces cognitive 14 

enhancement and neuroprotection against amyloid and tau pathologies. Improvement of proteostasis by resveratrol, in 15 

both healthy and AD mice, suggests that it is a mechanism of brain resilience and defense against neurodegeneration 16 

caused by the accumulation of aberrant proteins. 17 
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Introduction 33 

The progressive increase in life expectancy has led to an increase in the incidence of age-related diseases, including 34 

dementia [1]. Alzheimer’s disease (AD) is the most common cause of dementia in the elderly [2,3], characterized by 35 

brain depositions of amyloid-β (Aβ) and hyperphosphorylated tau (p-tau), leading to synapse dysfunction, cognitive and 36 

memory deficits and, finally death [4,5]. To date, there is no effective treatment of AD, except for temporarily 37 

symptom-relieving drugs [6,7]. Finding a treatment is crucial to reducing the overall effects of aging, increasing 38 

healthspan in humans. 39 

Resveratrol is a polyphenol found in common dietary sources such as grapes, berries, peanuts and red wine, and in some 40 

herbal remedies [8,9]. In animal models, resveratrol exhibits a wide spectrum of potential therapeutic activities, 41 

including antioxidant, anti-inflammatory, neuroprotective and longevity-promoting properties [9-11]. Experimental 42 

studies suggest that resveratrol is active against AD pathogenesis [12-15]. First clinical trials of dietary supplementation 43 

with resveratrol in AD have been completed, with encouraging changes such as attenuation of the decline of 44 

cerebrospinal fluid (CSF) levels of Aβ species [16,17], and reduction of plasma levels of pro-inflammatory markers and 45 

attenuation of cognitive and functional decline [17]. Furthermore, improvement of cognitive performance reported in 46 

trials with non-demented older adults [18,19] suggests a preventive potential of resveratrol. Studies with transgenic 47 

mouse models of AD showed that resveratrol intake protected against Aβ plaque formation in Tg19959 [20] and 48 

APP/PS1 mice [21,22]. Increased synaptic markers and preservation of recognition memory were also found in 49 

resveratrol treated APP/PS1 mice [22]. Moreover, in the p25 mouse model of AD and tauopathies, 50 

intracerebroventricular delivery of resveratrol prevented impairment of fear conditioning associative learning and 51 

reduced the levels of markers of apoptosis and astrogliosis [23].  52 

The hypothesis of the most widely accepted mechanism comprises that resveratrol mimics the antioxidant and antiaging 53 

effects of caloric restriction [24,25], which are mediated by SIRT1 [22,26]. SIRT1 is a nicotinamide-adenine 54 

dinucleotide (NAD
+
)-dependent deacetylase associated with anti-aging pathways [27] that induces protective effects 55 

against AD brain pathology through regulating the acetylation homeostasis of key proteins [28-30]. There is 56 

controversy over whether resveratrol may be a direct activator of SIRT1 [31] or whether SIRT1 is indirectly activated 57 

by other resveratrol-induced pathways [32,33]. Recent evidences suggest that resveratrol increases adenosine 58 

monophosphate-activated protein kinase (AMPK) activity, leading to an increase of NAD
+
 levels, which in turn 59 

enhances SIRT1 activity [34,35].  60 

At the cellular level, resveratrol demonstrated protective effects against oxidative stress and inflammatory processes 61 

induced by Aβ in PC12 cell line [36] and human stem cells [37]. Resveratrol promotes Aβ clearance through 62 

enhancement of proteasome-dependent proteolysis, as shown in cell lines expressing APP695, either wild-type or 63 

harboring the Swedish mutation [38] and in a C.elegans model of AD [39]. Resveratrol was also shown reducing Aβ 64 

levels of transgenic cell line and worm models by autophagy and lysosomal degradation activated by AMPK signaling 65 

[21,39]. Furthermore, resveratrol may decrease Aβ generation by favoring the non-amyloidogenic pathway of APP 66 

degradation [26]. 67 

One of the molecular changes of aging that might contribute to the development of AD is the deficiency in cellular 68 

control mechanisms that degrade aberrant proteins [40]. Clearance of Aβ and tau through proteolytic mechanisms 69 

include ubiquitin-proteasome system (UPS), autophagy-lysosomal system, and extracellular proteases [41]. 70 

Furthermore, protein folding stress in the endoplasmic reticulum may activate the unfolded protein response aimed to 71 

restore proteostasis, preferentially through autophagy in the AD brain [42], or trigger apoptosis of irreversible damaged 72 

cells [43]. However, the stress responsivity of the different AD mouse models is highly variable [44]. UPS is the 73 
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primary selective mechanism to maintain proteostasis in eukaryotic cells and is involved in many nerve cell functions, 74 

such as plasticity and memory [45,46]. Increasing evidence postulates functional alterations of UPS and its molecular 75 

components as causes of early changes in AD pathology [47]. Heat shock protein 70 (Hsp70) facilitates the 76 

ubiquitination of aberrant proteins through interaction with the carboxyl-terminus of Hsp70 interacting protein (CHIP) 77 

and the E3 ligase [48]. Polyubiquitinated proteins are recognized by the proteasome complex for subsequent proteolytic 78 

degradation by the 20S catalytic core [49,50]. 79 

Studies with AD mouse models were needed to confirm resveratrol-induced cognitive improvement and further unveil 80 

its mechanism of action against AD-like neurodegeneration. We aimed to analyze the effects of the administration of 81 

resveratrol in mice as a preventive and therapeutic agent, with emphasis in APP processing and UPS activity, and their 82 

effects on learning and memory. For this purpose, we treated both control non-transgenic mice (NoTg) and triple-83 

transgenic mice for AD (3xTg-AD) with a daily dose of 100 mg/kg of resveratrol during 10 months. Our results 84 

demonstrated that resveratrol administration induced complete protection against memory loss and brain pathology in 85 

AD mice. Furthermore, we showed that resveratrol induced proteostasis enhancement in both 3xTg-AD and healthy 86 

NoTg mice. We propose that proteostasis enhancement increases brain resilience against neurodegeneration. New 87 

insights into the mechanisms of resveratrol in preclinical studies may aid in the design of preventive strategies against 88 

AD. 89 

  90 
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Materials and methods 91 

Animals 92 

Male 3xTg-AD mouse strain harboring familial AD mutations of the APP (APPSwe) and the Presenilin 1 (PS1M146V), and 93 

a tau gene mutation (TauP301L) [51] was used in the present study. These mice mimic many of the critical hallmarks of 94 

AD as Aβ and tau pathologies, impaired learning and memory, presence of behavioral and psychological symptoms of 95 

dementia (BPSD)-like, and oxidative stress [30,52]. Furthermore, 3xTg-AD mice reproduce the temporal course and 96 

areas affected by amyloid and tau pathology of AD neuropathology [53]. Control NoTg mice had the same genetic 97 

background hybrid 129 × C57BL/6 than 3xTg-AD mice [51]. Genotypes were confirmed by PCR analysis of DNA 98 

obtained from tail biopsies. Animals were individually housed in Makrolon® cages under standard laboratory 99 

conditions of food and water ad libitum, 22 ± 2°C, and 12h:12h light-dark cycle. Animal breeding, treatment, and 100 

behavioral studies were performed at the University of Barcelona Animal House (UB, Barcelona, Spain). Animal 101 

handling and experimental procedures were approved by the Ethics Committee for animal experimentation (CEEA) of 102 

the University of Barcelona (UB) (Ref: DAAM 6523, CEEA), in accordance with the Decree 214/1997 of the 103 

Generalitat of Catalonia and the Directive 2010/63/EU of the European Union for animal experiments.  104 

 105 

Resveratrol administration 106 

At 2 months of age, mouse standard diet (2018 Teklad Global 18 % Protein Rodent Maintenance Diet, Harlan) was 107 

supplemented with 1 g/kg of trans-resveratrol (Mega Resveratrol, Candlewood Stars, Inc., CT, USA). Resveratrol 108 

groups (RV) received 100 mg/kg bw/day during 10 months. The period of 2 to 12 months of age covers a broad period 109 

of the AD pathology progression in 3xTg-AD mice, from the pre-symptomatic to the advanced pathology phase. 110 

Control groups (Ct) received standard diet. The experimental groups were as follows: NoTg-Ct (n = 14), NoTg-RV (n = 111 

12), 3xTg-Ct (n = 10) y 3xTg-RV (n = 10). No significant differences were found among the treatment groups in diet 112 

intake or in body weight along the study (not shown). 113 

 114 

Behavioral and cognitive tests 115 

Animals were tested for behavior and cognitive improvement at 10 months of the chronic resveratrol treatment, at 12 116 

months of age. The behavioral tests were carried out at the Unitat d'Experimentació Animal of the Faculty of 117 

Psychology of the University of Barcelona (Campus Mundet, UB). Selected BPSD-like symptoms and cognitive tests 118 

were analyzed as previously described [54,55]. Briefly, the Open field test was used to evaluate vertical and horizontal 119 

locomotor activity and general behavior in a white chamber during 5 min. The Boissier’s 4 hole-board test was utilized 120 

to evaluate exploratory behavior by measuring head-dipping during 5 min. The Dark & Light test was employed to 121 

assess anxiety during 5 min in a black compartment connected to a lit compartment. The Novel object recognition 122 

(NOR) test was used to evaluate recognition memory, and is based on the spontaneous tendency of rodents to spend 123 

more time exploring a novel object than a familiar one. The animals were submitted to a 10 min acquisition trial in the 124 

presence of two identical novel objects (A1 + A2). A 10 min retention trial occurred 2 h later, replacing object A1 with 125 

object B; and another 10 min retention trial took place 24 h later, replacing object A2 with object C. Discrimination 126 

index was calculated as [novel (t) – familiar (t)] / [total time (t) at novel + familiar]. The Morris water maze (MWM) 127 

test was employed to assess spatial learning and memory, and consisted of 1 day of cue learning, 6 days of learning 128 

acquisition, and 1 final day of memory retrieval. Animals were trained to locate the hidden platform in a circular water 129 

tank by relying on distinctive landmarks as visual cues (four trial sessions of 60 sec per day). On the last day, the 130 
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platform was removed and the mice performed a 60 sec probe trial to test learning retention. A computerized tracking 131 

system (SMART, Panlab S.A., Barcelona, Spain) was employed to measure escape latency, and distances and quadrants 132 

covered. At the end of the behavioral tests, the animals were decapitated under light anesthesia and the hippocampus 133 

and cerebral cortex were dissected and stored at −80°C for further analysis. 134 

 135 

Western blotting 136 

Protein extracts from hippocampus and cerebral cortex were obtained in 50 mM Tris/HCl (pH 7.6), 150 mM NaCl, 1% 137 

Triton X-100, 1 mM phenylmethylsulfonyl fluoride, 1 mM dithiothreitol and 10 µg/mL aprotinin. Aliquots of 30 µg of 138 

protein were analyzed for Western blot analysis by standard procedures [30,56]. The following antibodies were 139 

employed for immunodetection: Aβ clone 6e10, sAPPα, sAPPβ, C-terminal fragment of APP (APP-CTF), a disintegrin 140 

and metalloproteinase 10 (ADAM10), AMPK, phosphorylated AMPK (p-AMPK), beta-site APP cleaving enzyme 1 141 

(BACE1), cAMP response element-binding protein (CREB), phosphorylated CREB (p-CREB), Hsp70, IDE, neprilysin, 142 

acetylated p53 (ac-p53), peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), proteasome 20S core 143 

subunits, postsynaptic density protein 95 (PSD95), SIRT1, synaptophysin, acetylated tau (ac-tau), p-tau clone AT8, 144 

total tau clone HT7, and ubiquitin. Details of primary antibodies used are presented in Supplementary Table 1. 145 

Secondary antibodies were peroxidase-conjugated (1:2000) (GE Healthcare). Quantitative values of the correspondent 146 

bands were detected by a chemiluminiscence method using VersaDoc Imaging System 5000 (Bio-Rad, USA). Optical 147 

density of the studied proteins was normalized to actin or tubulin. Protein levels were calculated and expressed relative 148 

to the amount in the NoTg-Ct mouse group. 149 

 150 

Proteasome activity assay 151 

Proteasomal activity was evaluated in the brain cortex by the Proteasome-Glo™ Assay Systems (Promega, USA). 152 

Cortex tissues in ice-cold PBSE (PBS, 5 mM EDTA, pH 7.4) at a ratio of 1:10 (buffer/tissue; v/w) were sonicated on 153 

ice for 20 sec with a 1 sec pulse length, twice, using a pulsed homogenizer. Obtained tissue lysates were centrifuged at 154 

13,000 g for 10 min at 4°C, and the supernatants were subjected to protein quantification employing the Bradford assay. 155 

The supernatants were diluted with cold PBSE at a concentration of 0.2 mg/ml total protein. A total of 10 µg of protein 156 

(50 µl of 0.2 mg/ml diluted extract) was added to 50 µl of the luminescent reagent containing the Ultra-Glo™ 157 

Luciferase and the specific luminogenic substrate (Suc-LLVY-Glo™ for the chymotrypsin-like activity assay, Z-LRR-158 

Glo™ for the trypsin-like activity assay, or Z-nLPnLD-Glo™ for the caspase-like activity assay) in a 96-well plate. 159 

Solutions were mixed for 30 sec at 400 rpm and incubated for 30 min at room temperature. The resulting luminescence 160 

was measured twice with an integration time of 1 sec utilizing the Orion II Microplate Luminometer (Titertek-Berthold, 161 

Germany). In this setup, luminescence signal intensity corresponded to proteasomal proteolytic activity. The 162 

proteasomal inhibitor was used (MG-132, 10 μM) to calculate unspecific background activity. 163 

 164 

Statistical analysis 165 

Results are expressed as mean ± SEM. Data were analyzed with analysis of variance (ANOVA) procedures; factors 166 

were genotype and treatment. Two-way repeated measures ANOVA was employed to analyze the acquisition task of 167 

the MWM test. All other data were analyzed by regular two-way ANOVA followed by main effect analysis for 168 

comparison of groups where interaction between factors was present. Statistical analyses were performed using 169 

GraphPad Prism 6 and IBM SPSS Statistics v23.  170 
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Results 171 

Resveratrol administration induced beneficial effects on BPSD-like behavior 172 

Ten-month resveratrol treatment induced a significant protective effect against the AD-like pathology underlying 173 

BPSD-like behavioral alterations in 12 month-old mice (Fig. 1a-e). In the Open field test, 3xTg-Ct mice demonstrated 174 

lower vertical explorations (rearings) compared to NoTg mice (Fig. 1a). Resveratrol administration increased the 175 

number of total rearings in both NoTg-RV and 3xTg-RV mice [genotype, F(1, 39) = 48.29, p < 0.0001; and treatment, 176 

F(1, 39) = 4.219, p = 0.0467]. Moreover, 3xTg-Ct mice showed lower horizontal mobility compared to NoTg mice (Fig. 177 

1b). Resveratrol treatment also increased the total distance covered in both strains [genotype, F(1,42) = 40.75, p < 178 

0.0001; and treatment, F(1,42) = 7.343, p = 0.0097]. In the Boissier’s 4 hole-board test, 3xTg-Ct mice showed higher 179 

latency for first-hole exploration compared to NoTg mice (Fig. 1c). Resveratrol treatment reduced latency in both 180 

NoTg-RV and 3xTg-RV mice [genotype, F(1,42) = 28.88, p < 0.0001; and treatment, F(1,42) = 6.349, p = 0.0156]. In 181 

the Dark & Light box test, 3xTg-Ct mice presented a higher anxiety response compared to NoTg mice (Fig. 1d-e). 182 

Resveratrol administration increased, in both mouse, strains the number of entries into the lit area (Fig. 1d) [genotype, 183 

F(1,42) = 11.89, p = 0.0013; and treatment, F(1,42) = 5.027, p = 0.0303] and the time spent in the lit area (Fig. 1e) 184 

[genotype, F(1,42) = 9.360, p = 0.0039; and treatment, F(1,42) = 4.844, p = 0.0333]. 185 

 186 

Resveratrol administration induced beneficial effects on cognitive behavior 187 

Ten-month resveratrol treatment induced a significant protective effect against the AD-like pathology involved in 188 

learning and memory capacities (Fig. 2a-f). Cognition was preserved in 12-month-old 3xTg-RV mice, in addition to 189 

inducing cognitive enhancement effects in NoTg-RV mice. In the NOR test, 3xTg-Ct mice exhibited a deficit of 190 

recognition memory, while NoTg-RV and 3xTg-RV mice increased their capacity to remember familiar objects at 2 h 191 

(Fig. 2b) [genotype, F(1,36) = 4.195, p = 0.0479; and treatment, F(1,36) = 8.826, p = 0.0053] and at 24 h (Fig. 2c) 192 

[treatment, F(1,36) = 6.759, p = 0.0134; and interaction genotype × treatment, F(1,36) = 4.256, p = 0.0464]. In the 193 

MWM test, the distances covered to locate the platform decreased along the 6 days of place-task acquisition (Fig. 2d) in 194 

3xTg-RV mice, similar to NoTg mice; however, two-way repeated measures ANOVA did not show significant 195 

differences between groups. Nevertheless, in learning retrieval, 3xTg-Ct mice swam at random in the pool unaware of 196 

the former position of the escape platform, while both NoTg groups and that of the 3xTg-RV mice remembered the 197 

quadrant where the platform was situated (Fig. 2e) [genotype, F(1,42) = 5.537, p = 0.0234; and interaction genotype × 198 

treatment, F(1,42) = 6.645, p = 0.0135], indicating better memory response after resveratrol treatment. In addition, 199 

resveratrol administration increased swimming speed in both strains (fig. 2f) [treatment, F(1,42) = 4.081, p = 0.0498]. 200 

 201 

Resveratrol administration induced neuroprotective effects against amyloid-β pathology 202 

Analysis of immunoblotting from hippocampus tissue showed higher protein levels of total APP (Fig. 3a) in 3xTg-AD 203 

mice as compared with NoTg mice [genotype, F(1,20) = 48.59, p < 0.0001], as expected. Furthermore, the levels of Aβ 204 

peptides, such as APP-CTF (Fig. 3b) [genotype, F(1,20) = 41.45, p < 0.0001; treatment, F(1,20) = 8.680, p = 0.0080; 205 

and interaction genotype × treatment, F(1,20) = 6.687, p = 0.0177], Aβ 6e10 (Fig. 3c) [genotype, F(1,15) = 10.45, p = 206 

0.0056; treatment, F(1,15) = 6.976, p = 0.0185; and interaction genotype × treatment, F(1,15) = 4.709, p = 0.0465], and 207 

sAPPβ (Fig. 3d) [genotype, F(1,23) = 4.528, p = 0.0443; and interaction genotype × treatment, F(1,23) = 9.954, p = 208 

0.0044], were increased to a higher degree in 3xTg-Ct compared to NoTg mice, as characterized for AD pathogenesis. 209 

Resveratrol treatment induced a decrease in amyloid pathology, by a recovery of the APP-CTF (Fig. 3b), Aβ 6e10 (Fig. 210 
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3c), and sAPPβ (Fig. 3d) protein levels in 3xTg-RV mice, due to a decrease of BACE1 secretase levels (Fig. 3e) 211 

[treatment, F(1,19) = 4.993, p = 0.0377] and the increase of the neprilysin protease (Fig. 3f) [treatment, F(1,20) = 5.334, 212 

p = 0.0317] in both strains. These results confirm the effect of resveratrol on Aβ pathology mitigation. The attenuation 213 

of the amyloidogenic pathway and the increased proteostasis exerted an effect on both strains treated with resveratrol; 214 

however, no significant changes were observed in the levels of the neuroprotector sAPPα peptide (Supplementary Fig. 215 

1a). Resveratrol increased secretase ADAM10 levels with borderline statistical significance (Supplementary Fig. 1b) 216 

[treatment, F(1,16) = 4.218, p= 0.0567]. Protease IDE was reduced in 3xTg-AD mice, but resveratrol did not change 217 

levels (Supplementary Fig. 1c) [genotype, F(1,14) = 4.789, p = 0.0461]. 218 

 219 

Resveratrol administration induced neuroprotective effects against tau pathology 220 

Analysis of immunoblotting from hippocampal tissue revealed elevated protein levels of total tau (Fig. 3g) in 3xTg-AD 221 

mice as compared with NoTg mice [genotype, F(1,20) = 24.36, p < 0.0001], as expected. The protein levels of p-tau 222 

(Fig. 3h) [genotype, F(1,24) = 10.72, p = 0.0032; treatment, F(1,24) = 10.11, p = 0.0040; and interaction genotype × 223 

treatment, F(1,24) = 5.313, p = 0.0301], and of ac-tau (Fig. 3i) [genotype, F(1,25) = 12.53, p = 0.0016; treatment, 224 

F(1,25) = 8.924, p = 0.0062; and interaction genotype × treatment, F(1,25) = 5.562, p = 0.0265] were increased to a 225 

greater degree in 3xTg-Ct compared to NoTg mice, as characterized for AD pathogenesis. Resveratrol treatment 226 

protected against tau pathology, in that it normalized p-tau (Fig. 3h) protein levels in 3xTg-RV mice, due to a decrease 227 

of ac-tau (Fig. 3i) protein levels in 3xTg-RV mice. Deacetylation of tau protein allows it to be degraded by the UPS. 228 

These results confirm the effect of resveratrol on tau pathology mitigation. 229 

 230 

Resveratrol administration enhanced ubiquitin-proteasome system activity 231 

Immunoblotting analysis demonstrated higher Hsp70 protein levels (Fig. 4a) [genotype, F(1,20) = 35.84, p < 0.0001; 232 

treatment, F(1,20) = 6.283, p = 0.0209; and interaction genotype × treatment, F(1,20) = 7.517, p = 0.0126] and 233 

ubiquitinated proteins levels (Fig. 4b) [genotype, F(1,18) = 5.867, p = 0.0262; treatment, F(1,18) = 10.53, p = 0.0045; 234 

and interaction genotype × treatment, F(1,18) = 6.450, p = 0.0205] in 3xTg-Ct compared to the hippocampus of NoTg 235 

mice. Resveratrol treatment restored Hsp70 (Fig. 4a) and ubiquitinated (Fig. 4b) protein levels in 3xTg-RV mice. 236 

Moreover, resveratrol treatment induced an enhancement of proteasome 20S core subunits levels (Fig. 4c) [treatment, 237 

F(1,28) = 12.34, p = 0.0015] in the hippocampus of NoTg-RV and 3xTg-RV mice. A tendency to a decrease in 238 

proteasome protein levels in 3xTg-Ct mice did not reach significance. Besides, resveratrol also induced enhancement of 239 

proteasome 20S core subunits levels (Fig. 4d) [treatment, F(1,20) = 11.02, p = 0.0034] in the cerebral cortex of both 240 

strains. Accordingly, resveratrol treatment induced an increase of trypsin-like activity (Fig. 4e) [treatment, F(1,29) = 241 

7.638, p = 0.0098] in the cerebral cortex of both strains, but no changes were detected in chymotrypsin-like 242 

(Supplementary Fig. 2a) and caspase-like activity (Supplementary Fig. 2b). These results showed the neuroprotective 243 

effects of resveratrol for aberrant proteins disposal by enhancement of the brain proteasome function. 244 

 245 

Resveratrol administration activates SIRT1 pathway regulators 246 

Immunoblotting analysis did not show significant variations of SIRT1 protein levels in the hippocampus of both strains, 247 

or after resveratrol treatment (Fig. 5a). However, SIRT1 activity was confirmed by the diminution of p53 acetylated in 248 

both strains after resveratrol treatment, indicative of SIRT1 deacetylation action (Fig. 5b) [treatment, F(1,20) = 9.208, p 249 

= 0.0065]. Moreover, resveratrol treatment incremented p-AMPK protein levels (Fig. 5c) [treatment, F(1,23) = 8.867, p 250 
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= 0.0067] in both strains, which subsequently produces an increase of the substrate NAD
+
, indicative of SIRT1 pathway 251 

activation. Resveratrol promoted the increase of p-CREB (Fig. 5d) [treatment, F(1,20) = 15.75, p = 0.0008] by SIRT1 252 

pathway in both strains. Moreover, PGC-1α protein levels were lower in 3xTg-AD compared to NoTg mice, indicative 253 

of mitochondria dysfunction (Fig. 5e); however, resveratrol administration increased protein levels in both strains 254 

[genotype, F(1,23) = 8.937, p = 0.0065; treatment, F(1,23) = 7.419, p = 0.0121]. 255 

 256 

Resveratrol administration does not modulate neurotrophism or plasticity. 257 

Immunoblotting demonstrated that PSD95 (Supplementary Fig. 3a) [genotype, F(1,16) = 21.79, p = 0.0003], and 258 

Synaptophysin (Supplementary Fig. 3b) [genotype, F(1,23) = 5.960, p = 0.0227] protein levels were higher in NoTg as 259 

compared with 3xTg-AD hippocampal tissue. However, resveratrol treatment had no effect, and protein levels were 260 

unchanged. 261 

  262 
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Discussion 263 

Chronic administration of resveratrol in the 3xTg-AD mouse model of AD, and in normal NoTg mice, confirmed its 264 

potential usefulness for the treatment and prevention of AD, and further extended previous mechanisms in findings 265 

from in vitro [38,57,58] and in vivo studies [20,22,23,26,59,60].  266 

Our results showed that resveratrol administration induced total protection against cognitive loss in 3xTg-AD mice and 267 

memory enhancement in control mice, in hippocampus-based tests of learning and memory. The hippocampus is an 268 

area selectively affected by AD [61], and the deterioration of hippocampal circuits contributes greatly to the devastating 269 

effects of memory loss in the disease [62]. Several regions of cerebral cortex are also deeply affected by AD pathology 270 

[63]. Both hippocampus and cerebral cortex shown accumulation of Aβ and p-tau and neurodegenerative changes in 12 271 

months old 3xTg-AD mice [53]. 272 

The spatial learning and memory analyzed in the MWM test are considered to be associated with optimal functioning of 273 

hippocampal circuits [64,65]. Untreated 3xTg-AD mice exhibited deficient learning and impaired retention in the 274 

MWM task, as reported previously [52]. This task, which is dependent on the dorsal hippocampus [66], revealed totally 275 

protection in 3xTg-AD mice by means of resveratrol administration. Furthermore, 3xTg-AD mice showed impairment 276 

of recognition memory evaluated by the NOR test [67], a task involving the hippocampus and brain cortex regions 277 

[68,69]. Recognition memory was also preserved by resveratrol administration in 3xTg-AD mice. The neuroprotection 278 

of resveratrol against cognitive impairment in 3xTg-AD mice confirmed previous studies in the SAMP8 mouse model 279 

of pathological aging and AD [26,59] and in APP/PS1 AD transgenic mice [22]. Furthermore, recognition memory was 280 

generally improved by resveratrol, demonstrating cognitive enhancement in NoTg mice. Benefits of resveratrol 281 

administration were also proven by reversal of the abnormal behaviors included in the BPSD phenotype, which 282 

comprise very prevalent neuropsychiatric symptoms in patients with AD [70]. In these non-cognitive behaviors, 283 

resveratrol also exhibited beneficial effects in NoTg mice, which is indicative of enhanced well-being, such as increased 284 

exploration and decreased anxiety behaviors. Considering the results of cognitive and non-cognitive behavior, a 285 

preventive and therapeutic effect of resveratrol against AD dementia has been demonstrated. The benefits in neuronal 286 

activity demonstrated in control-strain mice suggest an enhancement in brain resilience that would decrease the risk of 287 

AD. 288 

Analysis of brain pathological changes in 3xTg-AD mice demonstrated that resveratrol induced a decrease in amyloid 289 

and tau pathologies to levels similar to those in the control strain. Only higher levels of APP and total tau were observed 290 

in all 3xTg-AD mouse groups compared to NoTg mice, in agreement to their transgene expression [51]. Western blot 291 

immunodetection results of amyloidogenic fragments (Aβ and CTF) were conclusive of total protection. The fight 292 

against the cerebral excess of Aβ is one of the main objectives of therapies in clinical studies [71]. The origin of the 293 

excess of Aβ in the brain is not known, although both increased generation and unbalanced degradation are assumed 294 

[72]. The non-amyloidogenic pathway appears to be neuroprotective, while the amyloidogenic pathway generates 295 

neurotoxic Aβ peptides [73]. Both pathways compete with each other, since increasing α-secretase activity reduces 296 

production of the Aβ peptides [74,75]. BACE1 is regarded as a key target for therapeutic interventions in AD because it 297 

is one of the main responsible for Aβ generation in the brain [76,77]. Targeted deletion of BACE1 in APP transgenic 298 

mice completely abolishes the production and deposition of Aβ and also rescues memory deficits [78]. We found a 299 

reduction of the amyloidogenic secretase BACE1 by resveratrol in both 3xTg-AD and NoTg strains, thus indicating a 300 

shift to the non-amyloidogenic pathway of APP processing. Peptide sAPPβ was higher only in 3xTg-AD and resveratrol 301 

reduced the protein levels. One of the most important amyloid degrading enzymes is neprilysin, which plays a major 302 

role in degrading Aβ. Administration of resveratrol promoted the increase in neprilysin protein levels, contributing to 303 
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the anti-amyloidogenic effect of resveratrol in both strains. Gene or cell therapy mediated increase of neprilysin is 304 

sufficient to ameliorate AD-like phenotypes in several mouse models [79-81]. Our results suggest that resveratrol 305 

reduced Aβ load through the decrease of amyloidogenic secretase BACE1 and by means of the increase of amyloid-306 

degrading enzyme neprilysin levels. Supplementation of resveratrol also induced a trend toward increasing the levels of 307 

ADAM10 in both strains, altogether contributing to neuroprotection and cerebral resilience. SIRT1 decreases Aβ 308 

production [30,82,83]; therefore, activation of SIRT1 might at least partially mediate the anti-amyloid pathological 309 

effects of resveratrol. Resveratrol revealed outstanding protection against tau pathology in 3xTg-AD mice. Tau 310 

pathology is proposed to be triggered by amyloid pathology in the AD brain [84]. However, 3xTg-AD neurons, in 311 

addition to the APP and PS1 familial AD genes, express a human tauopathy gene, thus stressing tau pathology in this 312 

mouse model. Tau is one of the therapeutic targets in AD [85]. We found that the increase of p-tau levels in 3xTg-AD 313 

mice was paralleled by an increase in tau acetylation. Acetylation of lysine residues has been reported as a novel 314 

modification in the brain tissue of patients with AD and familial tauopathies [86-88]. Resveratrol administration 315 

reduced p-tau levels in 3xTg-AD mice, which may occur through the deacetylation of the tau protein by SIRT1, thereby 316 

favoring degradation of p-tau by the proteasome pathway. It is known that activation of SIRT1 pathway has a positive 317 

effect on the reduction of p-tau formation [86] and mice with a SIRT1 deletion show an accumulation of ac-tau in the 318 

brain [86,88]. 319 

The enhancement of proteolysis systems shown here by resveratrol may be chief in both prevention and therapy against 320 

AD and in neurodegenerative diseases coursing with the accumulation of aberrant proteins. We found a normalization 321 

of Hsp70 and ubiquitin levels in 3xTg-AD and a significant increase of proteasome levels and enzymatic activity in 322 

both NoTg and 3xTg-AD mice. UPS is the major proteolytic system that degrades aberrant proteins, including Aβ and 323 

p-tau [50]. Loss of proteasome activity increases the risk of AD, representing a clear link between this 324 

neurodegenerative disease and the aging process [40]. Functional proteasome degrades ubiquitin-tagged misfolded or 325 

aggregated proteins. Our results are in agreement with the previous observation that resveratrol promotes the 326 

intracellular degradation of Aβ in cell lines by a mechanism that implicates the proteasome [38]. SIRT1 is known to be 327 

involved in the maintenance of quality control of proteins mediated by UPS in vitro [30,89]; however, an effect of 328 

resveratrol on UPS activation had not been reported previously in vivo. The chaperone Hsp70 is involved in the 329 

degradation of aberrant proteins through interaction with CHIP and the ubiquitin E3 ligase [48,90,91]. Resveratrol 330 

induced a further decrease of Hsp70, in agreement with SIRT1 regulation [48], and also normalized ubiquitinated 331 

protein levels in 3xTg-AD mice, suggesting a recovery of UPS functionality. Proteasome 20S core subunits levels were 332 

decreased in 3xTg-AD mice, indicating impairment of the proteasome function, in agreement with previous results in 333 

AD brain tissue [92] and in hippocampal homogenates of 3xTg-AD mice [93]. Resveratrol enhanced the levels of 334 

proteasome 20S core subunits in both hippocampus and cortex tissue of NoTg and 3xTg-AD mice, and trypsin 335 

proteasomal activity in cerebral cortex of both strains of mice, suggesting an enhancement of UPS functionality. Some 336 

neurofibrillary tangles of p-tau are ubiquitinated [94,95], and neuronal death appears to be the end-point for 337 

neurofibrillary degeneration [96]. The increased yield of proteasome protein levels in brain tissue of 3xTg-AD mice 338 

would lead to the total degradation of aberrant Aβ and p-tau proteins, so that ubiquitinated proteins and Hsp70 were 339 

restored to baseline levels. Resveratrol also induced proteostasis enhancement in NoTg mice; thus, this is, to our 340 

knowledge, the first time reported that resveratrol increases proteasome function and ameliorates AD-like pathology in 341 

vivo. We highlight the increase of both the proteasome and neprilysin in the strain of NoTg mice, which would induce 342 

resilience against the accumulation of abnormal proteins. 343 

Although resveratrol was initially shown to directly activate SIRT1 in an assay utilizing a fluorophore-linked substrate 344 

[97], recent studies have shown that resveratrol indirectly activates SIRT1 due to its effect on cAMP signaling [34]. 345 
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SIRT1 is a nuclear localization protein [98] that, catalyzes the deacetylation of histones and several transcription factors 346 

through the consumption of the substrate NAD
+
 [29,99]. Resveratrol is thought to elicit its beneficial effects through 347 

upregulation of the AMPK/SIRT1 pathway [100-102]. It is suggested that resveratrol enhances AMPK activity, which 348 

in turn increases NAD
+
 concentration, resulting in the activation of SIRT1 [34,35,103]. Accordingly, AMPK-deficient 349 

mice showed to be resistant to the metabolic effects of resveratrol [101]. We found higher levels of p-AMPK in the 350 

hippocampus of both resveratrol-treated groups of mice; however, we did not observe changes in SIRT1 protein levels. 351 

In the inducible p25 transgenic mouse model of AD and tauopathies, introduction of resveratrol directly into the brain 352 

ventricles prevented learning impairment, reduced hippocampal neurodegeneration, and decreased acetylation of the 353 

SIRT1 substrate p53 [23]. SIRT1 induces neuroprotective effects against AD pathology through regulating the 354 

acetylation homeostasis of key proteins [29]. Accordingly, a decrease in p53 acetylation indicates SIRT1 activation in 355 

mouse hippocampus.  356 

The cyclic-AMP responsive element binding protein (CREB) is a basic leucine zipper transcription factor and a 357 

downstream target of ERK signaling during hippocampal-dependent learning [104]. The transcription of several 358 

downstream neuroprotective molecules is regulated by p-CREB. Deficiencies in CREB signaling have been linked to 359 

neurodegenerative processes and AD [105]. In previous studies, elevated p-CREB levels were found in the hippocampal 360 

CA1 region of resveratrol-treated rats [106]. Furthermore, it has been demonstrated that resveratrol can modulate 361 

learning and memory function by modulating SIRT1 and regulating p-CREB expression [60]. SIRT1 can regulate 362 

mitochondrial biogenesis, contributing to the maintenance of functional mitochondria [107]. It is also well-established 363 

that SIRT1 regulates the activity and acetylation status of PGC-1α [103,108,109], and many studies have pointed out 364 

the ability of resveratrol to upregulate PGC-1α activity[110], which results in beneficial changes in the mitochondrial 365 

function [100,111,112]. Previous studies indicate the deficiencies of mitochondrial complexes in 3xTg-AD mice [54] 366 

and elevated levels of oxidative lesions and alterations of antioxidant enzymes [52,113]. In this regard, we cannot 367 

discard some contribution of direct antioxidant mechanisms of reveratrol or other protective effects of this pleiotropic 368 

molecule [14,114]. Mitochondrial dysfunction is a molecular marker of aging that establishes a connection between 369 

aging and the risk of AD [115,116]. Mitochondrial dysfunction can be ameliorated by inducing PGC-1α via resveratrol-370 

mediated modulation of AMPK [117,118]. The enhancement of AMPK [35], PGC-1α [119] and CREB [60] pathways 371 

in all the mice treated with resveratrol corroborates the beneficial changes in mitochondrial function and plasticity 372 

processes, which will induce effector ways of protecting mitochondria, thus increasing the resilience of the brain. 373 

  374 
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Conclusions 375 

In summary, diet supplementation with resveratrol led to complete protection against memory loss in 3xTg-AD mice 376 

and to cognitive enhancement in healthy NoTg mice. Furthermore, resveratrol improved non-cognitive behaviors 377 

indicative of well-being in both mouse strains. Analysis of resveratrol administration in AD and healthy mice led to the 378 

uncovering of the following novel resveratrol mechanisms in vivo: i) activation of neprilysin and downregulation of 379 

BACE1, which reduces amyloid load; ii) enhancement of UPS, which leads to a reduction of aberrant amyloid and tau 380 

proteins, and iii) upregulation of AMPK/SIRT1 pathways, leading to an increase of PGC-1α and CREB. A schematic 381 

representation of the proposed mechanisms activated by resveratrol in this study is depicted in Fig. 6. The results 382 

depicted here suggest resveratrol-induced activation of SIRT1 as the main pathway inducing potent neuroprotective 383 

effects. This natural polyphenol has a potential in AD prevention by increasing brain resilience against aberrant 384 

proteins.  385 
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Figure Legends 397 

Fig. 1 Resveratrol treatment induced protection against BPSD-like behavior. Total number of rearings (a) and distance 398 

covered (b) in the Open field test. Latency of first-hole exploration (c) in the Boissier’s 4 hole-board test. Number of 399 

entries in the lit area (d), and time spent in the lit area (e) in the Dark & Light box test. Values are mean ± SEM (n = 10-400 

14). Statistical analysis: Two-way ANOVA, effect of genotype &&p < 0.01 and &&&p < 0.001; and effect of treatment 401 

$p < 0.05 and $$p < 0.01 402 

 403 

Fig. 2 Resveratrol administration induced protection against cognitive loss. NOR test at times 0h (a), 2h (b), and 24h 404 

(c). MWM test with distances covered to reach platform (d), distance covered in platform quadrant after removal (e), 405 

and swimming speed (f). Values are mean ± SEM (n = 8-14). Statistical analysis: c, e Two-way ANOVA, *p < 0.05 and 406 

***p < 0.001 compared to NoTg mice; #p < 0.05 and ##p < 0.01 compared to control treatment; d Two-way repeated 407 

measures ANOVA; b, f Two-way ANOVA, effect of genotype &p < 0.05; and effect of treatment $p < 0.05 and $$p < 408 

0.01 409 

 410 

Fig. 3 Resveratrol treatment protects against Aβ and tau pathology in hippocampus. Western blot analysis of total APP 411 

(a), APP-CTF (b), Aβ fragment (c), sAPPβ (d), BACE1 (e), neprilysin (f), total tau (g), p-tau (h) and ac-tau (i) in the 412 

hippocampus of 3xTg-AD and NoTg mice. Values are mean ± SEM (n = 4-8). Statistical analysis: a, d, f, g Two-way 413 

ANOVA, effect of genotype &&&p < 0.001; and effect of treatment $p < 0.05; b, c, e, h, i Two-way ANOVA, **p < 414 

0.01 and ***p < 0.001 compared to NoTg mice; #p < 0.05 and ##p < 0.01 compared to control treatment 415 

 416 

Fig. 4 Resveratrol administration enhances the activity of the ubiquitin-proteasome system. Protein analysis of Hsp70 417 

(a), ubiquitinated proteins (b) and proteasome 20S core subunits (c) in the hippocampus of 3xTg-AD and NoTg mice. 418 

Protein analysis of proteasome 20S core subunits (d) and proteasome trypsin-like activity (e) in the cerebral cortex 419 

tissue of 3xTg-AD and NoTg mice. Values are mean ± SEM (n = 5-11). Statistical analysis: a, b Two-way ANOVA, 420 

**p < 0.01 and ***p < 0.001 compared to NoTg mice; ##p < 0.01 compared to control treatment; c, d, e Two-way 421 

ANOVA, effect of treatment $$p < 0.01 422 

 423 

Fig. 5 Resveratrol administration activates SIRT1 pathway by activation of p-AMPK. Protein analysis of SIRT1 (a), 424 

ratio of p53 acetylated to total p53 (b), ratio of p-AMPK to total AMPK (c), ratio of p-CREB to total CREB (d), and 425 

PGC-1α (e) in the hippocampus of 3xTg-AD and NoTg mice. Values are mean ± SEM (n = 5-7). Statistical analysis: 426 

Two-way ANOVA, effect of genotype &&p < 0.01; and effect of treatment $p < 0.05, $$p < 0.01 and $$$p < 0.001 427 

 428 

Fig. 6 Proposed pathways involved in the neuroprotective effects of resveratrol administration, leading to a reduction in 429 

AD-like pathology through proteostasis enhancement. See text for discussion of mechanisms. Abbreviations: Ac, 430 

acetylated; Aβ, amyloid-β; AD, Alzheimer’s disease; ADAM10, a disintegrin and metalloproteinase 10; AMPK, 431 

adenosine monophosphate-activated protein kinase; BACE1, beta-site APP cleaving enzyme 1; CREB, cAMP response 432 

element-binding protein; PGC-1α, peroxisome proliferator-activated receptor-γ coactivator 1α; p-tau, 433 

hyperphosphorylated tau; UPS, ubiquitin proteasome system. 434 

 435 

  436 
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Supplementary Table 1 

 

List of primary antibodies used in Western blotting (WB) 

Antibody Dilution Source Catalog Nº 
    

Aβ, clone 6e10 1:1000 BioLegend 803001 

sAPPα 1:500 BioLegend 813501 

sAPPβ 1:1000 BioLegend 813401 

APP-CTF, clone C1/6.1 1:1000 Covance SIG-39152 

Actin (20-33) 1:10 000 Sigma A5060 

ADAM10 1:1000 Abcam  ab1997 

AMPK 1:1000 Cell Signaling 2532S 

p-AMPK (Thr172) 1:1000 Cell Signaling 2535S 

BACE1 1:1000 Abcam ab2077 

CREB 1:1000 Cell Signaling 9197S 

p-CREB (Ser133) 1:1000 Cell Signaling 9196S 

Hsp70 (W27) 1:2000 Calbiochem HSP01 

IDE 1:1000 Calbiochem PC730 

Neprilysin/CD10 1:1000 R&D system AF1126 

ac-p53, acetyl K382 1:1000 Abcam  ab37318 

PGC-1α 1:500 Santa Cruz Biotechnology sc-13067 

Proteasome 20S core 1:1000 Enzo Life Sciences  BML-PW8155 

PSD95 1:500 Millipore MAB1598 

SIRT1 1:2500 Cell Signaling 2028s 

Synaptophysin 1:10 000 Dako A0010 

ac-tau, acetyl K280 1:500 AnaSpec 56077 

p-tau, clone AT8  1:1000 Thermo Scientific MN1020 

Total tau, clone HT7 1:1000 Thermo Scientific MN1000 

β-tubulin 1:10000 Sigma T4026 

Ubiquitin 1:2000 Abcam ab137031 

 



Supplementary figures 

 

 

Supplementary Fig. 1 Resveratrol administration has minor effect on the non-amyloidogenic pathway and IDE. 

Protein analysis of sAPPα peptide (a), ADAM10 (b) and IDE (c) in the hippocampus of 3xTg-AD and NoTg mice. 

Values are mean ± SEM (n = 4-7). Statistical analysis: Two-way ANOVA, effect of genotype &p < 0.05. 

 

 

 

 

Supplementary Fig. 2 Resveratrol administration does not modulate chymotrypsin-like and caspase-like activity. 

Chymotrypsin-like activity (a) and Caspase-like activity (b) in the cortex tissue of 3xTg-AD and NoTg mice. Values 

are mean ± SEM (n = 5-11). 

 

 

 

 

Supplementary Fig. 3 Resveratrol does not modulate neurotrophism or plasticity. Relative protein levels for PSD95 (a) 

and Synaptophysin (b) in the hippocampus of 3xTg-AD and NoTg mice. Values are mean ± SEM (n = 5-7). Statistical 

analysis: Two-way ANOVA, effect of genotype &p < 0.05. 
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