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Abstract: Non-alcoholic fatty liver affects about 25% of global adult population. On the long-term,
it is associated with extra-hepatic compliances, multiorgan failure, and death. Various invasive
and non-invasive methods are employed for its diagnosis such as liver biopsies, CT scan, MRI, and
numerous scoring systems. However, the lack of accuracy and reproducibility represents one of the
biggest limitations of evaluating the effectiveness of drug candidates in clinical trials. Organ-on-chips
(OOC) are emerging as a cost-effective tool to reproduce in vitro the main NAFLD’s pathogenic
features for drug screening purposes. Those platforms have reached a high degree of complexity
that generate an unprecedented amount of both structured and unstructured data that outpaced our
capacity to analyze the results. The addition of artificial intelligence (AI) layer for data analysis and
interpretation enables those platforms to reach their full potential. Furthermore, the use of them do
not require any ethic and legal regulation. In this review, we discuss the synergy between OOC and
AI as one of the most promising ways to unveil potential therapeutic targets as well as the complex
mechanism(s) underlying NAFLD.

Keywords: NAFLD; extra-hepatic outcome; organ-on-a-chip; artificial intelligence

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is defined as a continuum of abnormalities
caused by lipid accumulation within the liver defined as hepatic steatosis. Fatty liver is
considered as the liver manifestation of metabolic syndrome when is accompanied by
simultaneously presence of three or more of the following features: high triglycerides,
hypertension, visceral obesity, insulin resistance and high cholesterol, in the absence or
reduced alcohol intake [1]. It ranges from non-alcoholic fatty liver (NAFL), characterized
by > 5% of steatotic hepatocytes, to its more advanced and aggressive form known as
non-alcoholic steatohepatitis (NASH). This latter form is characterized by extended liver
inflammation and often accompanied by fibrosis which may progress to cirrhosis and
hepatocellular carcinoma (HCC) (Figure 1). The strongest predictor of NAFLD/NASH
is central or visceral obesity, rather than general obesity, while the presence of advanced
fibrosis is the strongest predictor of mortality in those patients [2,3].

The global prevalence of NAFLD has been estimated around 25.24% with highest
peak of 30.45% in South America, whereas NASH ranges from 3 to 5% globally. These
numbers increase when other factors are considered, for example, the estimated preva-
lence of NAFLD and NASH in patients with type 2 diabetes mellitus rise up to 21.51%
and 43.63%, respectively, while 51.34% and 81.83% in people affected by obesity [4]. The
gold standard for the diagnosis of NAFLD/NASH is the liver biopsy although many
non-invasive methods—ultrasonography, computed tomography scan and magnetic reso-
nance imaging/spectroscopy—and various scores—NAS score, FIB-4, fatty liver index and
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NAFLD fibrosis score—are considered valid alternatives [5–8]. However, this potpourri of
techniques, the intra- and inter-variability of pathologists in liver biopsies evaluation [9],
and the non-standardized site location of biopsies [10] interfere with the inclusion of pa-
tients in clinical trials, but most important, compromise the possibility to assess the efficacy
of treatments in clinical trials.
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Figure 1. Representation of natural progression of Non-alcoholic fatty liver disease.

In the last 10 years, many technologies such as tissue engineering, sensing, and
microfluidics are converging to build more sophisticated organ(s)-on-a-chip (OOC). The
aim is to reproduce in vitro the physiological conditions for drug screening purposes in
order to increase the success rate of clinical trials [11]. This system ranges from multicellular
to multiorgan set-up in both healthy and diseased disposition, where the responses to
perturbation/treatment can be monitored in real-time regardless from the mechanisms
of action. The OOCs are changing the translational science paradigm being an extremely
cost-effective surrogate to the animal testing with a far higher predictive power and shorter
time of response. The impact of these tools is the ability to assess at same time the efficacy
and toxicity of new treatments giving important insights about their biological activity.
Those platforms are designed to deeper investigate the mechanism(s) of action of a specific
disease, its early detection, as well as the effectiveness of a drug and its potential side effects.
The OOCs are reaching a level of complexity comparable with real organs allowing the
early identification of crucial features of NAFLD to intervene efficiently. The new OOCs 2.0
are high-throughput devices where mini-tissues in three-dimensional (3D) are subjected to
a microfluidic regimen and integrated with a sensor platform capable of collecting massive
amount of data in real time [12–14]. Just to give an idea, over 200 Gigabytes of data can be
generated by a single time-lapse experiment of 72 h where three images of 10,000 cells (one
brightfield plus two fluorescent bands) for six timepoints/hours at two Megabytes/each
are taken. Another example is the over millions of datapoints that can be easily collected
from a 384 wells microfluidic platform in real-time [15]. Unfortunately, at moment the data
generated by these platforms have far outpaced our capacity to process and analyze them
creating an important analytic bottleneck.

One of the most promising approaches is to employ machine learning and artificial
intelligence to metabolize these unprecedent amount of data. Although traditional machine
learning offers advanced data processing capabilities, the advent of its most important
component, the deep learning, made possible to analyze massive unstructured data such
as images, drug-target interactions and computational biology [16–19]. These AI-based
techniques employ algorithms that learn without direct programming overcoming the
limitation of human recognition boosting human knowledge in various fields.

In this review we will discuss: (i) the implication of other organs in the progression
of the disease; (ii) how the recent advances in OOCs field might improve the knowledge
on early onset of NAFLD; (iii) how the artificial intelligence could help in tasks such as
classifying known NAFLD-associated features while identifying new ones.
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2. Extra-Hepatic Outcomes: NAFLD as Multiorgan Disease

In the past years, various lines of investigation have proved that NAFLD extends
beyond the liver paving the way to multiorgan failure, and eventually death (Figure 2).
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In the meta-analysis of Targher et al. [20], 64% of patients with NAFLD are at risk of
cardiovascular disease (CVD), which represents the first cause of death. The outcomes
range from non-fatal to fatal CVD complications such as angina, stroke, and myocardial
infarction [21]. Obesity and other metabolic disorders like insulin resistance, atherogenic
dyslipidemia, increased uric acid, reduced vitamin D, and impaired fibrinolysis are com-
mon risk factors of NAFLD and CVD [22].

Following CVD, the most frequent cause of death among NAFLD patients are the
extra-hepatic malignancies, where colorectal cancer in males and breast cancer in females
are the most prevalent types [23]. Specifically, Mantovani et al. [24] showed that in male
patients with NAFLD, the prevalence of colorectal adenomas is 20.4% as opposed to 15.8%
in those without NAFLD whilst the prevalence of colorectal cancer is 2.4% for NAFLD
vs 1.97% without NAFLD [25]. On the other hand, NAFLD has been concurrently found
associated with breast cancer in 45.2% of the female cohort vs the 16.4% of the controls [26].
Other evidence confirmed that visceral obesity, metabolic syndrome, and insulin resistance
contribute to colorectal cancer progression [27], while disturbances in insulin metabolism,
hormonal imbalance and inflammation are associated to higher risk of breast cancer [28].

Sarcopenia—referred as progressive and generalized loss of skeletal muscle mass
and strength—is one more extra-hepatic complication that recently has been linked to
NAFLD [29]. Between 30–70% of NAFLD patients with cirrhosis suffer sarcopenia [30],
which increase the risk of worse outcomes in post-hepatic transplanted patients. Those
patients have higher rates of mortality compared to non-sarcopenic patients [31]. Hence,
sarcopenia is listed as exclusion criteria for a liver transplant [32].

Kidneys can be also affected by NAFLD. The decreased glomerular filtration rate
and proteinuria, specific for chronic kidney disease (CKD), have been found in 20–55% of
patients with NAFLD in contrast to 5–35% in patients without NAFLD. Moreover, there
is a strong correlation between the stage of NAFLD and the severity of CKD [32]. Last
evidence links the increased release of proinflammatory and prothrombotic molecules due
to NAFLD to the promotion of vascular and renal injury [33].
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The brain is also non-exempted from NAFLD-induced damage. Studies have associ-
ated NAFLD and cerebrovascular events (CVE), although data are frequently inconclusive.
For example, El Azeem et al. observed CVE in 36% of NAFLD patients [34]. The associated
complications were the asymptomatic brain lesions, alterations in cerebral perfusion and
activity, cognitive impairment, brain aging, and increased risk of both ischemic and hemor-
rhagic stroke [35]. NAFLD and cerebrovascular accidents share some risk factors such as
type II diabetes and obesity mainly related to metabolic syndrome [36]. Furthermore, recent
findings indicate that the chronic inflammatory environment and ammonia generated by
NAFLD might lead to microglia activation causing micro and macrovascular damage in
the brain [37–39].

Other minor complications linked to NAFLD are skin-related (such as psoriasis),
obstructive sleep apnea, osteoporosis, hormonal dysregulation (as polycystic ovary), male
sexual disfunction, hypothyroidism, periodontitis, urolithiasis, etc. [40].

In NAFLD, multiple pathways are concurrently dysregulated. The liver homeostasis is
chronically compromised by low level of inflammation and lipid accumulation. However,
how this propagates to the other organs or vice versa the failure of other organs exacerbates
the liver damage is still unknown. Further work is still urgently needed to elucidate the
mechanism of interorgan cross talk in order to develop the right pharmaceutical target(s)
or identify the right timing for treatment.

3. Organ-on-a-Chip 2.0

The organ-on-a-chip (OOC) revolutionized the way how the drug screening process
was done, mimicking and miniaturizing the physiologic environment of almost any organ.
In the last five years, these platforms have become more sophisticated thanks to a multidis-
ciplinary approach. Three are the critical components of those platforms: the 3D tissue, the
microfluidic, and the integrated sensing system.

The first of them is the three-dimensional structure obtained by mixing cells with
a biomaterial in a pre-specified structure. In vivo, the liver is structured in hexagonal
functional units defined lobules of 1–2 mm in size. At center of each lobule there is a large
vein called “central vein” that drain blood from the small vessels (capillary) (Figure 3).
At six corners, the lobules are delimited by the portal triad composed of bile duct, portal
vein and hepatic artery. The cells placed between these two structures are organized
according to their function. They are divided in non-parenchymal cells, composed by
Kupffer cells (KC), liver sinusoidal endothelial cells (LSEC), and hepatic stellate cells (HSC)
and parenchymal cells, hepatocytes, that constitute roughly the 20% and 80% of the liver
mass, respectively. While the functions of non-parenchymal cells span from maintaining
the structural organization of the liver (HSC) to regulate exchange with blood (LSEC) and
immune response (KC), the function of parenchymal (hepatocytes) is to perform most of the
metabolic jobs such as decomposition and synthesis of sugars and fats, ammonia removal
and synthesis of bile acids. The place where the hepatocytes are located between the portal
triad and central vein is extremely important for the body and it is known as zonation [41].
The environment of the cells closer to portal triad is rich in oxygen and glucose because the
cells perform the processes that are more energetically demanding, such as glycolysis, bile
acid production and xenobiotic metabolism. The mid-lobule hepatocytes are specialized in
modulation of insulin growth factors and iron metabolism while the cells in the proximity of
central vein are dedicated to gluconeogenesis, β-oxidation and cholesterol metabolism [41].

The cellular organization of the liver represents an essential factor for the hepatocytes’
optimal working condition but, at same time, the most significant challenge for the mimetic
tissue engineering. In fact, when these cells are taken out from this configuration, they
rapidly lose their polarization, capacity to replicate as well as some of the liver-specific
functions. One of the first approach oriented towards the preservation of functionality
of hepatocytes was made in the 1991 when Dunn et al. demonstrated that primary rat
hepatocytes growth on collagen substrate were able to maintain polarity and release
albumin, transferrin, and urea for two weeks. Once a second layer of collagen was added
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on top of these hepatocytes, those functions were prolonged for six weeks [42]. A different
approach to prolong the hepatocytes’ phenotype, has been adopted by Suurmond et al.
that cocultured hepatocytes, endothelial and Kupffer cells in 3D spheroids maintained
in inter-connected honeycomb wells [43]. Interestingly, the presence of endothelial cells
improves the function of hepatocytes—increase in urea albumin secretion—but not any
other further improvement was induced by Kupffer cells. Conversely, the presence of the
Kupffer cells determined an increase in lipid accumulation, and release of Tumor Necrosis
Factor-α (TNFα) and Interleukin-6 (IL-6). These examples show that both the interaction
with non-parenchymal cells and the presence of extracellular matrix are essential to recreate
a useful in vitro model of NAFLD. Others crucial factors often neglected in many studies
are the cell density and the contact with other cell types [44–46].
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homogeneous throughout all the liver. Hepatic stellate cells give structural support to the endothelial cells which regulate
the exchange with blood. Kupffer cells are the macrophage of the liver and responsible for the initial immune response in
case of an insult. The hepatocytes represent the metabolic factory of the liver and organized according to their function.
This anatomical configuration is the main challenge of tissue engineering.

Recently, giant steps towards the replacements of extracellular matrix with synthetic
biocompatible polymers have been made. These biopolymers with controlled diffusion
properties mimic natural tissue stiffness, making it possible to keep hepatocytes’ phenotype
and functions for a longer time. The most studied materials for tissue engineering are
based on natural origins like gelatin, alginate, and cellulose [47–49] or synthetic materi-
als such as poly L-lactic acid, poly (lactic-co-glycolic acid) and polycaprolactone [50–52].
Many variables, under the operator’s control, concur in the design and fabrication of these
three-dimensional biopolymers. Porosity and stiffness are the essential variables to build a
functional 3D structure compatible with cell viability and functionality [47]. The optimal
pore size allows the cells to attach, interact, and form aggregates [53–55]. On the other
hand, the scaffold must prevent the cells from escaping as well as constitute some sort
of protection against the host’s immune system in case of implantation. Stiffness instead
affects cell adhesion, motility, and polarization (referred to as the cell’s ability to differen-
tiate in space and function). Generally, a healthy human liver has a stiffness that ranges
from 3 to 8 kPa which can increase about 30% when fibrosis and fibrosis-related processes
are in place [56]. Overall, rigid materials, with a stiffness that resemble the fibrotic state,
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enhance hepatocytes attachment, proliferation, mobility, and dedifferentiation [57,58]. It is
biological plausible because of the intense cellular recruitment that takes place surrounding
the damaged/fibrotic area where a high number of undifferentiated cells are needed to
replace the dead ones. On the other hand, gene expression and the release of soluble
markers of liver functionality, increase in hepatocytes encapsulated in soft substrates [48].

Microfluidic and shear stress have been shown to improve cell phenotype in vitro. An
OOC is by definition a microfluidic cell culture device fabricated using microchip manufac-
turing techniques. These tools are provided with continuously perfused chambers where
living cells are arranged to simulate tissue- and organ-level physiology. These devices
produce tissue and organ functionality not possible with conventional 2D or 3D culture
systems by recapitulating the body’s physicochemical microenvironments and vascular
perfusion. Control of fluid flow in chips has proved enormously useful. Viscous forces dom-
inate over inertial ones at small length scales, then the flow is laminar if the ‘microfluidic’
channel’s diameter is less than about one millimeter. Laminar flow allows the generation
of physical and chemical gradients, which have been exploited for non-invasive study of
directional cell migration [59–61], cardiac tissue formation [62], nerve axon outgrowth [63],
and graded metabolic [64], differentiation [65], and neurotoxin [66] responses, as well as
analysis of subcellular structure [59] and cell-cell junctional integrity [67]. Fluid shear
stresses can be controlled independently of physical and chemical gradients by altering
flow rates or channel dimensions [68,69] and separating cells from the flow path using a
nano porous membrane [68] or micro-engineered posts that restrict cell passage [70]. Fluid-
mechanical computational models can be applied to optimize microchannel geometry and
enhance oxygen and nutrient delivery, thereby increasing cell survival and function [68].

Accurate representation of in vivo organ physiology and drug pharmacokinetics can be
achieved in OOC devices through precise control of cellular microenvironments; however,
quantitative information extraction is equally essential. OOC integrated with new sens-
ing technology allows easier intra- and extracellular measurements across different tissues.
Biosensors are analytical devices consisting of a biological component (enzyme, receptor,
oligonucleotide, cell, antibody, etc.) in intimate contact with a physical transducer that convert
the biorecognition process into a measurable signal (electrical or optical) (Figure 4).
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Because of its simplicity electrochemical transduction is the oldest and most common
methods used in biosensors. They can determine the level of biomarkers by measuring the
change of potential, current, conductance, or impedance caused by the immunoreaction.
From all possible electrochemical transduction systems those based on recording ampero-
metric signal generated after an enzymatic reaction have seen greatest development [71].
Amperometric biosensors are based on the measurement of the current generated by ox-
idation/reduction of redox species at the electrode surface, which is maintained at an
appropriate electric potential. The current observed has a linear relationship with the
concentration of the electroactive species. The electrode is usually constructed of platinum,
gold, or carbon.

Optical transducers are based on various technologies involving optical phenomena,
which are the result of an interaction of analyte with receptor. This group may be further
subdivided according to the optical properties that have been applied in sensing (i.e.,
absorbance, reflectance, luminescence, fluorescence, refractive index, and surface plasmon
resonance (SPR), and light scattering). The plasmon resonance is an evanescent electro-
magnetic field generated at the surface of a metal conductor (usually Ag or Au) when
excited by the impact of light of an appropriate wavelength at a particular angle (α). Since
distinct SPR prototypes (Biacore, IASys, etc.) have appeared in the market, a significant
number of applications of this principle have been reported during the last years. Recently,
localized surface plasmon resonance (LSPR) has been confirmed as a perfect candidate for
OOC integration [72].

Microcantilever (MCL) translate molecular recognition of biomolecules into nanome-
chanical motion that is commonly coupled to an optical or piezo-resistive read-out detector
system. Microcantilever sensors rely on their deflection to indicate sensing. Thus, molecular
adsorption onto the sensing element shifts the resonance frequency and changes its surface
forces (surface stress). Surface stress due to conformation change of proteins and other
polymers has been a recent focus of MCL research. MCL that respond to conformational
change-induced surface stress are promising transducers of chemical information and are
ideal for developing microcantilever-based biosensors. (Figure 4).

OOCs can be employed to study the crosstalk between different cell populations of the
same organ allowing further understanding of complex metabolic diseases. Current OOCs
assays heavily rely on fluorescence microscopy and have mainly been used for specialized
proof-of-concept studies, for example, in angiogenesis [73–75], in electrophysiology [76,77],
and in pharmacological modulation of cell growth [76,78,79]. However, fluorescent la-
belling is a qualitative method and end-point assay losing all the real-time changes in
metabolic behavior of the cells. There are few examples of OOCs where 3D functional
tissues are integrated with an in-built sensor platform. Some lab-on-chip assays allow to
measure parameters, such as oxygen concentration [80–82], pH level [83,84], and glucose
consumption [85]. The use of antibodies add specificity to the sensors in detecting biomark-
ers, such as insulin or IL6 from complex biological media [71,86]. These biosensors are
based on redox or enzymatic reactions that imply incubation and washing steps therefore
limiting the value of the data acquired and not providing real-time information. Ideally, the
next OOC platforms equipped with sophisticated built-in sensors would provide real-time
data at cellular level.

4. Artificial Intelligence and NAFLD

Since 1970, when the potential of applying artificial intelligence technology in clinical
setting was discussed, only few AI solutions were successfully employed. The main tasks
performed were literature mining, automated experiments, and data collection [87–90]. For
the following 20 years, there was a general loss of interest towards AI solutions in medicine
known as “AI winter” that lasted until the end 90′s when “big data” became available.
According to the website ClinicalTrials.gov, the ongoing clinical trials using big data and
artificial intelligence are 3417 and 405, respectively.
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AI is the ability of a computer-based machine to apply a pre-determined set of rules
(algorithm) to solve a specific task. By definition, these machines have the capacity to
accurately predict a determined outcome or even take a decision that mitigates that outcome
in a timely fashion. Both capabilities are prerogative of most human beings. To succeed in
their task, these machines need to process a set of initial values (input) to generate a different
set of values (output) thanks to a task-tailored algorithm. AI technology is a collection of
physical (e.g., intelligent prostheses for handicapped people, robot performing surgeries)
and virtual (e.g., predictive models that guide the clinicians’ decisions) applications. The
Electronic Health Records (EHR) keep records of both practice and clinical management
of patients during episodes of patient care and represents the primary reason of the
tremendous upsurge of the virtual retrospective studies [91] (Figure 5).
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Whilst computers can be programmed to perform better and more efficient tasks
compared with humans, we are years far from AI tools capable to replace the latter in
the medical practice, and more specifically, in the decision-making process. Machine
learning, and its most powerful component deep learning, are crucial to make a machine
able to acquire, analyze and interpret data in humanly fashion. The three most common
approaches used are unsupervised, supervised, and reinforced learning [92]. The difference
between the first two is the presence or not of a clean and labelled dataset to train the
algorithm in order “to learn”. The limitation of these two approaches is the need of
large dataset to train properly the algorithm, in case of supervised learning, and the low
accuracy for the unsupervised. Differently, a reinforced algorithm interacts continuously
with environment getting a feedback from it [93,94]. Every time it performs a task, it gets
back an index, generally higher for the success and lower for the failure of the task. In that
way, the algorithm modify itself to tend always to the higher index possible. However, this
can lead to longer waiting time (Figure 6).

Nowadays, we are just mining massive amount of data to get insights about diseases.
The next and closer step is to carry out predictive analysis to detect the early onset of
the disease or at least identify its stronger risks factors. However, in medicine the main
limitations are (i) the short follow-up of the patients—that reduce the predicting power
of the models applied—and (ii) the inclusion during the analyses of potential hidden
cofounding factors—that limit the matched-pair in clinical trial design causing a failure
of the study. So far in NAFLD, only few papers have attempted to apply and implement
the use of AI and machine learning mainly for its diagnosis. For example, Han Ma
et al. investigated 11 machine learning (ML) techniques in a cross-sectional study of
2522 patients with NAFLD (assessed by ultrasonic examination), coming up with the
conclusion that “users could focus only in five features—body weight, triglycerides, alanine
aminotransferase, gamma-glutamyl transpeptidase, and levels of serum uric acid—that
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contribute to the NAFLD phenotype”. In this study, the Bayesian network model gave
the best performance (the Bayesian network model consists in a graphical scheme where
the nodes or features are connected each other according to causal relationship among
them) [95]. A different approach has been used by Heinemann et al. where they attempt
to automate the Kleiner score—ballooning, inflammation, steatosis, and fibrosis as main
histopathological features—for the diagnosis of NASH for NAFLD/NASH models using
a whole slide of liver rat and mouse stained by Masson’s trichrome. Four models of
convolutional neural networks for image classification have been employed. Although it
seems a very interesting approach, it is very difficult to apply to human [96]. First, this
approach needs years of validation performed by expert pathologists to train the algorithm
properly. Second, the high variability of the human evaluation of liver biopsies already in
place using standard features. Third, the human biopsy is a tiny portion of tissue which
most of the time is not representative of the whole organ.
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Despite the advantages in applying AI for the diagnosis or treatment of patients,
many challenges still exist in the quality and quantity of the collected data. First, the
reduced number of samples affect the consistency and accuracy of the analysis. Second, the
implementation of AI in medicine is faster than the ethical and legal regulation of the field.
From this point of view, the biggest issues are data privacy, safety, and transparency [97].

5. In Vitro NAFLD Features Recognition: The Synergy between OOC and AI

The application of AI to the OOCs enables to analyze parameters that could not be
considered so far for the study of NAFLD. Furthermore, their low in cost and automation
propel them from engineering research into to any biomedical fields. With incredibly fast
progress of OOCs in mimicking the complexity of native anatomical structures, many deep
learning techniques developed for human can be applied. Deep learning is the biggest part
of machine learning techniques and it is employed to recognizes pattern from the data using
many levels of interpretation of unstructured data (images, text etc.). Its main limitation is
the use of big training dataset that, in case of OOCs, is resolved using single cells images.
For example, Guo et al. developed a high-throughput single cell lipid screening using an
optofluidic time-stretch quantitative phase microscopy [98,99]. The combination of the
quantitative phase imaging and machine learning allows the physical classification of cells
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(shape, area etc.) with high accuracy. This system can spot rare or even unknown events
without a training dataset (unsupervised learning) and applicable to various fields. For
example, it could be employed to study the kinetic of di- and triglyceride accumulation in
spheroids of primary human hepatocytes trough imaging [100]. The rationale would be
the understanding of fat trafficking inside the cells and its timing.

In another example, Blasi et al. demonstrated that it is possible to determine the
cells’ DNA content, live or fixed, using brightfield and darkfield images obtained via
imaging flow cytometry. Moreover, the cells’ mitotic phase can be also assessed [101].
The machine learning algorithm is trained against a dataset specific for the cell type
or the interested feature. An interesting application would be the assessment of the
in vitro regenerative capacity of hepatocytes according to their cell cycle phase. In fact, in
patients with NAFLD, liver regeneration is compromised making these patients not optimal
recipient for a transplanted organ [102]. One more study conducted by Chu et al. employed
a machine learning based control system for microfluidic microencapsulation [103]. This
system assesses via real-time the quality of the microencapsulation using spheroids images.
This technology could be very useful to spot abnormal spheroids in a 3D printing high
throughput platform therefore increasing the reproducibility for drug screening purposes.

These are only three examples of new technologies built for machine and deep learning
techniques that might be applicable to identify the early pathological phenotypic changes
of the cells or evaluate the efficacy of drugs candidates. On the other hand, many are the
algorithm generated to analyze old data or applicable to old technologies. For example,
Das et al. used light microscopic image acquisition from stained slides to extract 96 features
to discriminate between Plasmodium-infected and non-infected erythrocytes [104]. The
ability to discriminate the healthy or diseased status according to the shape would be
extremely interesting in evaluating the change in shape in hepatic stellate cells strictly in
contact with hepatocytes [105].

In another example, Mirsky et al. employed interferometric phase microscopy to
develop a machine learning based classification method for sperm analyses and charac-
terization [106]. The algorithm was able to extract 89 custom-designed features. This
technology could be easily applicable to measure the degree of lysosomal permeabilization
in hepatocytes upon treatment with saturated and unsaturated lipids [107]. This would
give important insight about cell death. Ko et al. combines the nanofluidic technology
with machine learning to discriminate between patients suffering of pancreatic cancer and
healthy subject [108]. Although few human samples were analyzed, this study showed the
potential of combining different technologies, in this case, nanofluidic, exosome screening
and machine learning to better characterize patients in order to improve the success/failure
ratio of clinical trial and/or treatment effectiveness.

6. Body on a Chip: An Exponential Growth in Complexity

The liver is the shield of the body protecting it from endogenous and exogenous
substances. Once it fails in its function, many other organs are subjected to a continuous
pathogenic signal that inexorably will lead to their failure, on a short time (acute) or a long
time (chronic), if not neutralized. However, little information is available about the actors
and their kinetic in pathogenesis of NAFLD.

Very few multiple organs on a chip have been developed in the last years to unveil
the crosstalk between organs during the pathology. For example, Lee and Sung built
a gut-liver on a chip to study the lipid accumulation as well as a potential treatment
for reducing it [109]. Although the model is based on the use HepG2 (hepatoma cell
line)—phenotypically and genotypically very different from healthy hepatocytes—they
showed the importance of proinflammatory cytokine Tumor Necrosis Factor-α on the gut
absorption permeability of the lipids. Interestingly, TNFα per se, did not exert any effect
on the lipid’s accumulation in liver cells. On the same line, Ahluwalia et al. cocultured
hepatic, endothelial, and different amount of adipose cells in an interconnected tissue
models for the study of obesity and its lipid-related molecules and pro-inflammatory
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markers [110]. They showed the increase of pro-inflammatory markers such as Interleukin-
6 and Monocyte chemoattractant protein-1 in endothelial and liver cells when connected to
adipose tissue demonstrating the adipose tissue as an important source of inflammatory
cytokine production.

These are only two examples of multiple organs interaction under the high load lipids
intake regimen. However, a far more complex platform is necessary to identify both the
players and the temporal role of them during the pathogenesis and progression of NAFLD.
Real-time sensing system that targets concurrently multiple proteins and soluble factors
and a computer-aided system to help in the analysis and interpretation would dramatically
transform these platforms in the next few years. More important than a technological
transition, it is the interaction of different fields such as biology, physiology, medicine, and
engineering that will allow the full comprehension of the data generated by these platforms.

7. Conclusions

NAFLD is a multifactorial disease with unknown cause(s). Machine and deep learning
are mainly used to improve the performance of OOCs. At the moment, the real job of these
techniques is to reduce the dimensionality of the large number of variables or measure-
ments to allow us to extrapolate useful information. The marriage between OOCs and
artificial intelligence overcome the risk to apply AI-based application directly to human
and therefore no need of ethical approval. In the next 10 years, artificial intelligence will
turn these devices output in a real-time source of clinically relevant information improving
medical decision. It is not too far to imagine a multi-organ on a chip completely con-
trolled by algorithm that regulates the fluidic, the injection of treatments the measurement
while correlates and interprets the outcome at same time. The combination of these two
technologies will allow to analyze not only standard but also new features helping the phar-
maceutical companies for screening of massive number of molecules in very short period.
Furthermore, it will give a more exhaustive information compared with the traditional
methods so far employed such as: discovering synergy between treatments, finding more
effective concentrations, unveiling, and reducing potential side effect of drugs. From the pa-
tient’s point of view, the incorporation of these new OOCs could improve the stratification
of recruited patients in clinical trials, saving cost and time, accelerating the development of
precision medicine, and helping the clinicians in the diagnostic.

Author Contributions: Conceptualization, F.D.C. and A.F.-M.; resources, J.R.-A.; writing—original
draft preparation, F.D.C., A.F.-M., and J.R.-A.; writing—review and editing, F.D.C., A.F.-M., and
J.R.-A.; funding acquisition, J.R.-A. All authors have read and agreed to the published version of
the manuscript.

Funding: This work has been developed in the context of BLAD project (2019 LLAV 00056) with the
support of AGAUR (Generalitat de Catalunya) and the European Community under the Catalonian
ERDF operational program (European Regional Development Fund) 2014–2020. This project received
financial support from the European Research Council program under grants ERC-StG-DAMOC
(714317), the Spanish Ministry of Economy and Competitiveness, through the “Severo Ochoa”
Program for Centres of Excellence in R&D (SEV-2016–2019) and “Retos de investigación: Proyectos
I+D+i” (TEC2017-83716-C2-2-R), the CERCA Programme/Generalitat de Catalunya (2014- SGR-1460)
and Fundación Bancaria “la Caixa”—Obra Social “la Caixa” (project IBEC-La Caixa Healthy Ageing).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: We would like to thank Alice Senni for the kind proofread of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Biomedicines 2021, 9, 248 12 of 16

References
1. Adams, L.A.; Lymp, J.F.; St. Sauver, J.; Sanderson, S.O.; Lindor, K.D.; Feldstein, A.; Angulo, P. The natural history of nonalcoholic

fatty liver disease: A population-based cohort study. Gastroenterology 2005. [CrossRef]
2. Pang, Q.; Zhang, J.-Y.; Song, S.-D.; Qu, K.; Xu, X.-S.; Liu, S.-S.; Liu, C. Central obesity and nonalcoholic fatty liver disease risk

after adjusting for body mass index. World J. Gastroenterol. 2015, 21, 1650–1662. [CrossRef]
3. Hagström, H.; Nasr, P.; Ekstedt, M.; Hammar, U.; Stål, P.; Hultcrantz, R.; Kechagias, S. Fibrosis stage but not NASH predicts

mortality and time to development of severe liver disease in biopsy-proven NAFLD. J. Hepatol. 2017, 67, 1265–1273. [CrossRef]
[PubMed]

4. Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver
disease—Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016. [CrossRef] [PubMed]

5. Lonardo, A.; Leoni, S.; Alswat, K.A.; Fouad, Y. History of Nonalcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2020, 21, 5888.
[CrossRef]

6. Marchesini, G.; Day, C.P.; Dufour, J.F.; Canbay, A.; Nobili, V.; Ratziu, V.; Tilg, H.; Roden, M.; Gastaldelli, A.; Yki-Jarvinen, H.;
et al. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 2016.
[CrossRef]

7. Rinella, M.E.; Tacke, F.; Sanyal, A.J.; Anstee, Q.M. Report on the AASLD/EASL joint workshop on clinical trial endpoints in
NAFLD. J. Hepatol. 2019, 71, 823–833. [CrossRef]

8. Machado, M.V.; Cortez-Pinto, H. Non-invasive diagnosis of non-alcoholic fatty liver disease. A critical appraisal. J. Hepatol. 2013,
58, 1007–1019. [CrossRef] [PubMed]

9. Davison, B.A.; Harrison, S.A.; Cotter, G.; Alkhouri, N.; Sanyal, A.; Edwards, C.; Colca, J.R.; Iwashita, J.; Koch, G.G.; Dittrich, H.C.
Suboptimal reliability of liver biopsy evaluation has implications for randomized clinical trials. J. Hepatol. 2020. [CrossRef]

10. Jensen, V.S.; Tveden-Nyborg, P.; Zacho-Rasmussen, C.; Quaade, M.L.; Ipsen, D.H.; Hvid, H.; Fledelius, C.; Wulff, E.M.; Lykkesfeldt,
J. Variation in diagnostic NAFLD/NASH read-outs in paired liver samples from rodent models. J. Pharm. Toxicol. Methods 2020,
101, 106651. [CrossRef]

11. Fogel, D.B. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: A review.
Contemp. Clin. Trials Commun. 2018, 11, 156–164. [CrossRef]

12. Freag, M.S.; Namgung, B.; Reyna Fernandez, M.E.; Gherardi, E.; Sengupta, S.; Jang, H.L. Human Nonalcoholic Steatohepatitis on
a Chip. Hepatol. Commun. 2020. [CrossRef]

13. Bulutoglu, B.; Rey-Bedón, C.; Kang, Y.B.A.; Mert, S.; Yarmush, M.L.; Usta, O.B. A microfluidic patterned model of non-alcoholic
fatty liver disease: Applications to disease progression and zonation. Lab Chip 2019, 19, 3022–3031. [CrossRef] [PubMed]

14. Gori, M.; Simonelli, M.C.; Giannitelli, S.M.; Businaro, L.; Trombetta, M.; Rainer, A. Investigating Nonalcoholic Fatty Liver Disease
in a Liver-on-a-Chip Microfluidic Device. PLoS ONE 2016, 11, e0159729. [CrossRef] [PubMed]

15. Trietsch, S.J.; Naumovska, E.; Kurek, D.; Setyawati, M.C.; Vormann, M.K.; Wilschut, K.J.; Lanz, H.L.; Nicolas, A.; Ng, C.P.; Joore, J.;
et al. Membrane-free culture and real-time barrier integrity assessment of perfused intestinal epithelium tubes. Nat. Commun.
2017. [CrossRef] [PubMed]

16. Jordan, N.V.; Bardia, A.; Wittner, B.S.; Benes, C.; Ligorio, M.; Zheng, Y.; Yu, M.; Sundaresan, T.K.; Licausi, J.A.; Desai, R.; et al.
HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature 2016, 537, 102–106. [CrossRef]

17. McKinney, S.M.; Sieniek, M.; Godbole, V.; Godwin, J.; Antropova, N.; Ashrafian, H.; Back, T.; Chesus, M.; Corrado, G.S.; Darzi, A.;
et al. International evaluation of an AI system for breast cancer screening. Nature 2020, 577, 89–94. [CrossRef] [PubMed]

18. Kobayashi, H.; Lei, C.; Wu, Y.; Huang, C.-J.; Yasumoto, A.; Jona, M.; Li, W.; Wu, Y.; Yalikun, Y.; Jiang, Y.; et al. Intelligent
whole-blood imaging flow cytometry for simple, rapid, and cost-effective drug-susceptibility testing of leukemia. Lab Chip 2019,
19, 2688–2698. [CrossRef] [PubMed]

19. Isozaki, A.; Harmon, J.; Zhou, Y.; Li, S.; Nakagawa, Y.; Hayashi, M.; Mikami, H.; Lei, C.; Goda, K. AI on a chip. Lab Chip 2020, 20,
3074–3090. [CrossRef]

20. Targher, G.; Byrne, C.D.; Lonardo, A.; Zoppini, G.; Barbui, C. Non-alcoholic fatty liver disease and risk of incident cardiovascular
disease: A meta-analysis. J. Hepatol. 2016. [CrossRef]

21. Federico, A.; Dallio, M.; Masarone, M.; Persico, M.; Loguercio, C. The epidemiology of non-alcoholic fatty liver disease and its
connection with cardiovascular disease: Role of endothelial dysfunction. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 4731–4741.

22. Lonardo, A.; Sookoian, S.; Pirola, C.J.; Targher, G. Non-alcoholic fatty liver disease and risk of cardiovascular disease. Metabolism
2016, 65, 1136–1150. [CrossRef]

23. Kim, G.A.; Lee, H.C.; Choe, J.; Kim, M.J.; Lee, M.J.; Chang, H.S.; Bae, I.Y.; Kim, H.K.; An, J.; Shim, J.H.; et al. Association between
non-alcoholic fatty liver disease and cancer incidence rate. J. Hepatol. 2018. [CrossRef]

24. Mantovani, A.; Dauriz, M.; Byrne, C.D.; Lonardo, A.; Zoppini, G.; Bonora, E.; Targher, G. Association between nonalcoholic
fatty liver disease and colorectal tumours in asymptomatic adults undergoing screening colonoscopy: A systematic review and
meta-analysis. Metabolism 2018. [CrossRef]

25. Shen, H.; Lipka, S.; Kumar, A.; Mustacchia, P. Association between nonalcoholic fatty liver disease and colorectal adenoma: A
systemic review and meta-analysis. J. Gastrointest. Oncol. 2014. [CrossRef]

26. Nseir, W.; Abu-Rahmeh, Z.; Tsipis, A.; Mograbi, J.; Mahamid, M. Relationship between non-alcoholic fatty liver disease and
breast cancer. Isr. Med. Assoc. J. 2017, 19, 242–245. [PubMed]

http://doi.org/10.1053/j.gastro.2005.04.014
http://doi.org/10.3748/wjg.v21.i5.1650
http://doi.org/10.1016/j.jhep.2017.07.027
http://www.ncbi.nlm.nih.gov/pubmed/28803953
http://doi.org/10.1002/hep.28431
http://www.ncbi.nlm.nih.gov/pubmed/26707365
http://doi.org/10.3390/ijms21165888
http://doi.org/10.1016/j.jhep.2016.11.002
http://doi.org/10.1016/j.jhep.2019.04.019
http://doi.org/10.1016/j.jhep.2012.11.021
http://www.ncbi.nlm.nih.gov/pubmed/23183525
http://doi.org/10.1016/j.jhep.2020.06.025
http://doi.org/10.1016/j.vascn.2019.106651
http://doi.org/10.1016/j.conctc.2018.08.001
http://doi.org/10.1002/hep4.1647
http://doi.org/10.1039/C9LC00354A
http://www.ncbi.nlm.nih.gov/pubmed/31465069
http://doi.org/10.1371/journal.pone.0159729
http://www.ncbi.nlm.nih.gov/pubmed/27438262
http://doi.org/10.1038/s41467-017-00259-3
http://www.ncbi.nlm.nih.gov/pubmed/28811479
http://doi.org/10.1038/nature19328
http://doi.org/10.1038/s41586-019-1799-6
http://www.ncbi.nlm.nih.gov/pubmed/31894144
http://doi.org/10.1039/C8LC01370E
http://www.ncbi.nlm.nih.gov/pubmed/31287108
http://doi.org/10.1039/D0LC00521E
http://doi.org/10.1016/j.jhep.2016.05.013
http://doi.org/10.1016/j.metabol.2015.09.017
http://doi.org/10.1016/j.jhep.2017.09.012
http://doi.org/10.1016/j.metabol.2018.06.004
http://doi.org/10.14309/00000434-201410002-00538
http://www.ncbi.nlm.nih.gov/pubmed/28480679


Biomedicines 2021, 9, 248 13 of 16

27. Campbell, P.T.; Deka, A.; Jacobs, E.J.; Newton, C.C.; Hildebrand, J.S.; McCullough, M.L.; Limburg, P.J.; Gapstur, S.M. Prospective
study reveals associations between colorectal cancer and type 2 diabetes mellitus or insulin use in men. Gastroenterology 2010.
[CrossRef] [PubMed]

28. Lohmann, A.E.; Goodwin, P.J.; Chlebowski, R.T.; Pan, K.; Stambolic, V.; Dowling, R.J.O. Association of obesity-related metabolic
disruptions with cancer risk and outcome. J. Clin. Oncol. 2016, 34, 4249–4255. [CrossRef] [PubMed]

29. Kim, G.; Lee, S.E.; Lee, Y.B.; Jun, J.E.; Ahn, J.; Bae, J.C.; Jin, S.M.; Hur, K.Y.; Jee, J.H.; Lee, M.K.; et al. Relationship Between Relative
Skeletal Muscle Mass and Nonalcoholic Fatty Liver Disease: A 7-Year Longitudinal Study. Hepatology 2018. [CrossRef]

30. Montano-Loza, A.J.; Meza-Junco, J.; Prado, C.M.M.; Lieffers, J.R.; Baracos, V.E.; Bain, V.G.; Sawyer, M.B. Muscle Wasting Is
Associated With Mortality in Patients With Cirrhosis. Clin. Gastroenterol. Hepatol. 2012. [CrossRef] [PubMed]

31. Tsien, C.; Garber, A.; Narayanan, A.; Shah, S.N.; Barnes, D.; Eghtesad, B.; Fung, J.; Mccullough, A.J.; Dasarathy, S. Post-liver
transplantation sarcopenia in cirrhosis: A prospective evaluation. J. Gastroenterol. Hepatol. 2014. [CrossRef] [PubMed]

32. Marcuccilli, M.; Chonchol, M. NAFLD and chronic kidney disease. Int. J. Mol. Sci. 2016, 17, 562. [CrossRef] [PubMed]
33. Targher, G.; Byrne, C.D. Non-alcoholic fatty liver disease: An emerging driving force in chronic kidney disease. Nat. Rev. Nephrol.

2017, 13, 297–310. [CrossRef] [PubMed]
34. El Azeem, H.A.; Khalek, E.S.A.; El-Akabawy, H.; Naeim, H.; Khalik, H.A.; Alfifi, A.A. Association between nonalcoholic fatty

liver disease and the incidence of cardiovascular and renal events. J. Saudi Hear. Assoc. 2013. [CrossRef] [PubMed]
35. Weinstein, G.; Zelber-Sagi, S.; Preis, S.R.; Beiser, A.S.; DeCarli, C.; Speliotes, E.K.; Satizabal, C.L.; Vasan, R.S.; Seshadri, S.

Association of nonalcoholic fatty liver disease with lower brain volume in healthy middle-aged adults in the Framingham Study.
JAMA Neurol. 2018. [CrossRef]

36. Fargion, S.; Porzio, M.; Fracanzani, A.L. Nonalcoholic fatty liver disease and vascular disease: State-of-the-art. World J.
Gastroenterol. 2014, 20, 13306. [CrossRef]

37. Lombardi, R.; Fargion, S.; Fracanzani, A.L. Brain involvement in non-alcoholic fatty liver disease (NAFLD): A systematic review.
Dig. Liver Dis. 2019, 51, 1214–1222. [CrossRef]

38. Hadjihambi, A.; De Chiara, F.; Hosford, P.S.; Habtetion, A.; Karagiannis, A.; Davies, N.; Gourine, A.V.; Jalan, R. Ammonia
mediates cortical hemichannel dysfunction in rodent models of chronic liver disease. Hepatology 2017, 65. [CrossRef]

39. Jalan, R.; De Chiara, F.; Balasubramaniyan, V.; Andreola, F.; Khetan, V.; Malago, M.; Pinzani, M.; Mookerjee, R.P.; Rombouts, K.
Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension. J.
Hepatol. 2016, 64. [CrossRef]

40. Rosato, V.; Masarone, M.; Dallio, M.; Federico, A.; Aglitti, A.; Persico, M. NAFLD and extra-hepatic comorbidities: Current
evidence on a multi-organ metabolic syndrome. Int. J. Environ. Res. Public Health 2019, 16, 3415. [CrossRef]

41. Manco, R.; Itzkovitz, S. Liver zonation. J. Hepatol. 2021, 74, 466–468. [CrossRef]
42. Dunn, J.C.Y.; Tompkins, R.G.; Yarmush, M.L. Long-Term in Vitro Function of Adult Hepatocytes in a Collagen Sandwich

Configuration. Biotechnol. Prog. 1991, 7, 237–245. [CrossRef] [PubMed]
43. Suurmond, C.-A.E.; Lasli, S.; van den Dolder, F.W.; Ung, A.; Kim, H.-J.; Bandaru, P.; Lee, K.; Cho, H.-J.; Ahadian, S.; Ashammakhi,

N.; et al. In Vitro Human Liver Model of Nonalcoholic Steatohepatitis by Coculturing Hepatocytes, Endothelial Cells, and Kupffer
Cells. Adv. Healthc. Mater. 2019, 8, 1901379. [CrossRef]

44. Wei, G.; Wang, J.; Lv, Q.; Liu, M.; Xu, H.; Zhang, H.; Jin, L.; Yu, J.; Wang, X. Three-dimensional coculture of primary hepatocytes
and stellate cells in silk scaffold improves hepatic morphology and functionality in vitro. J. Biomed. Mater. Res. Part A 2018, 106,
2171–2180. [CrossRef] [PubMed]

45. Baze, A.; Parmentier, C.; Hendriks, D.F.G.; Hurrell, T.; Heyd, B.; Bachellier, P.; Schuster, C.; Ingelman-Sundberg, M.; Richert, L.
Three-Dimensional Spheroid Primary Human Hepatocytes in Monoculture and Coculture with Nonparenchymal Cells. Tissue
Eng. Part C Methods 2018, 24, 534–545. [CrossRef] [PubMed]

46. Abu-Absi, S.F.; Hansen, L.K.; Hu, W.-S. Three-dimensional co-culture of hepatocytes and stellate cells. Cytotechnology 2004, 45,
125–140. [CrossRef]

47. Kim, Y.; Kang, K.; Jeong, J.; Paik, S.S.; Kim, J.S.; Park, S.A.; Kim, W.D.; Park, J.; Choi, D. Three-dimensional (3D) printing of mouse
primary hepatocytes to generate 3D hepatic structure. Ann. Surg. Treat. Res. 2017, 92, 67–72. [CrossRef]

48. Lewis, P.L.; Green, R.M.; Shah, R.N. 3D-printed gelatin scaffolds of differing pore geometry modulate hepatocyte function and
gene expression. Acta Biomater. 2018, 69, 63–70. [CrossRef]

49. Krüger, M.; Oosterhoff, L.A.; van Wolferen, M.E.; Schiele, S.A.; Walther, A.; Geijsen, N.; De Laporte, L.; van der Laan, L.J.W.; Kock,
L.M.; Spee, B. Cellulose Nanofibril Hydrogel Promotes Hepatic Differentiation of Human Liver Organoids. Adv. Healthc. Mater.
2020. [CrossRef]

50. Török, E.; Lutgehetmann, M.; Bierwolf, J.; Melbeck, S.; Düllmann, J.; Nashan, B.; Ma, P.X.; Pollok, J.M. Primary human hepatocytes
on biodegradable poly(l-lactic acid) matrices: A promising model for improving transplantation efficiency with tissue engineering.
Liver Transpl. 2011. [CrossRef]

51. Li, J.; Li, L.; Yu, H.; Cao, H.; Gao, C.; Gong, Y. Growth and metabolism of human hepatocytes on biomodified collagen
poly(lactic-co-glycolic acid) three-dimensional scaffold. Asaio J. 2006. [CrossRef]

52. Xiao, Y.; Zhou, M.; Zhang, M.; Liu, W.; Zhou, Y.; Lang, M. Hepatocyte culture on 3D porous scaffolds of PCL/PMCL. Colloids Surf.
B Biointerfaces 2019, 173, 185–193. [CrossRef]

http://doi.org/10.1053/j.gastro.2010.06.072
http://www.ncbi.nlm.nih.gov/pubmed/20633560
http://doi.org/10.1200/JCO.2016.69.6187
http://www.ncbi.nlm.nih.gov/pubmed/27903146
http://doi.org/10.1002/hep.30049
http://doi.org/10.1016/j.cgh.2011.08.028
http://www.ncbi.nlm.nih.gov/pubmed/21893129
http://doi.org/10.1111/jgh.12524
http://www.ncbi.nlm.nih.gov/pubmed/24443785
http://doi.org/10.3390/ijms17040562
http://www.ncbi.nlm.nih.gov/pubmed/27089331
http://doi.org/10.1038/nrneph.2017.16
http://www.ncbi.nlm.nih.gov/pubmed/28218263
http://doi.org/10.1016/j.jsha.2013.07.004
http://www.ncbi.nlm.nih.gov/pubmed/24198448
http://doi.org/10.1001/jamaneurol.2017.3229
http://doi.org/10.3748/wjg.v20.i37.13306
http://doi.org/10.1016/j.dld.2019.05.015
http://doi.org/10.1002/hep.29031
http://doi.org/10.1016/j.jhep.2015.11.019
http://doi.org/10.3390/ijerph16183415
http://doi.org/10.1016/j.jhep.2020.09.003
http://doi.org/10.1021/bp00009a007
http://www.ncbi.nlm.nih.gov/pubmed/1367596
http://doi.org/10.1002/adhm.201901379
http://doi.org/10.1002/jbm.a.36421
http://www.ncbi.nlm.nih.gov/pubmed/29607608
http://doi.org/10.1089/ten.tec.2018.0134
http://www.ncbi.nlm.nih.gov/pubmed/30101670
http://doi.org/10.1007/s10616-004-7996-6
http://doi.org/10.4174/astr.2017.92.2.67
http://doi.org/10.1016/j.actbio.2017.12.042
http://doi.org/10.1002/adhm.201901658
http://doi.org/10.1002/lt.22200
http://doi.org/10.1097/01.mat.0000217794.35830.4a
http://doi.org/10.1016/j.colsurfb.2018.09.064


Biomedicines 2021, 9, 248 14 of 16

53. Loh, Q.L.; Choong, C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng.
Part B Rev. 2013, 19, 485–502. [CrossRef]

54. Krieghoff, J.; Picke, A.-K.; Salbach-Hirsch, J.; Rother, S.; Heinemann, C.; Bernhardt, R.; Kascholke, C.; Möller, S.; Rauner, M.;
Schnabelrauch, M.; et al. Increased pore size of scaffolds improves coating efficiency with sulfated hyaluronan and mineralization
capacity of osteoblasts. Biomater. Res. 2019, 23, 26. [CrossRef] [PubMed]

55. Tytgat, L.; Kollert, M.R.; Van Damme, L.; Thienpont, H.; Ottevaere, H.; Duda, G.N.; Geissler, S.; Dubruel, P.; Van Vlierberghe, S.;
Qazi, T.H. Evaluation of 3D Printed Gelatin-Based Scaffolds with Varying Pore Size for MSC-Based Adipose Tissue Engineering.
Macromol. Biosci. 2020, 20, 1900364. [CrossRef] [PubMed]

56. Roulot, D.; Czernichow, S.; Le Clésiau, H.; Costes, J.L.; Vergnaud, A.C.; Beaugrand, M. Liver stiffness values in apparently healthy
subjects: Influence of gender and metabolic syndrome. J. Hepatol. 2008, 48, 606–613. [CrossRef]

57. Ruoß, M.; Rebholz, S.; Weimer, M.; Grom-Baumgarten, C.; Athanasopulu, K.; Kemkemer, R.; Käß, H.; Ehnert, S.; Nussler, A.K.
Development of Scaffolds with Adjusted Stiffness for Mimicking Disease-Related Alterations of Liver Rigidity. J. Funct. Biomater.
2020, 11, 17. [CrossRef] [PubMed]

58. Hosseini, V.; Maroufi, N.F.; Saghati, S.; Asadi, N.; Darabi, M.; Ahmad, S.N.S.; Hosseinkhani, H.; Rahbarghazi, R. Current progress
in hepatic tissue regeneration by tissue engineering. J. Transl. Med. 2019, 17, 383. [CrossRef] [PubMed]

59. Takayama, S.; Ostuni, E.; LeDuc, P.; Naruse, K.; Ingber, D.E.; Whitesides, G.M. Subcellular positioning of small molecules. Nature
2001. [CrossRef]

60. Li Jeon, N.; Baskaran, H.; Dertinger, S.K.W.; Whitesides, G.M.; Van De Water, L.; Toner, M. Neutrophil chemotaxis in linear and
complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotechnol. 2002. [CrossRef]

61. Prentice-Mott, H.V.; Chang, C.H.; Mahadevan, L.; Mitchison, T.J.; Irimia, D.; Shah, J.V. Biased migration of confined neutrophil-like
cells in asymmetric hydraulic environments. Proc. Natl. Acad. Sci. USA 2013. [CrossRef]

62. Radisic, M.; Deen, W.; Langer, R.; Vunjak-Novakovic, G. Mathematical model of oxygen distribution in engineered cardiac tissue
with parallel channel array perfused with culture medium containing oxygen carriers. Am. J. Physiol. Hear. Circ. Physiol. 2005.
[CrossRef]

63. Xiao, R.R.; Zeng, W.J.; Li, Y.T.; Zou, W.; Wang, L.; Pei, X.F.; Xie, M.; Huang, W.H. Simultaneous generation of gradients with
gradually changed slope in a microfluidic device for quantifying axon response. Anal. Chem. 2013. [CrossRef]

64. Peng, C.C.; Liao, W.H.; Chen, Y.H.; Wu, C.Y.; Tung, Y.C. A microfluidic cell culture array with various oxygen tensions. Lab Chip
2013. [CrossRef]

65. Cimetta, E.; Cannizzaro, C.; James, R.; Biechele, T.; Moon, R.T.; Elvassore, N.; Vunjak-Novakovic, G. Microfluidic device
generating stable concentration gradients for long term cell culture: Application to Wnt3a regulation of β-catenin signaling. Lab
Chip 2010. [CrossRef] [PubMed]

66. Seidi, A.; Kaji, H.; Annabi, N.; Ostrovidov, S.; Ramalingam, M.; Khademhosseini, A. A microfluidic-based neurotoxin concentra-
tion gradient for the generation of an in vitro model of Parkinson’s disease. Biomicrofluidics 2011. [CrossRef] [PubMed]

67. Chen, S.; Lee, L.P. Non-invasive microfluidic gap junction assay. Integr. Biol. 2010. [CrossRef]
68. Carraro, A.; Hsu, W.M.; Kulig, K.M.; Cheung, W.S.; Miller, M.L.; Weinberg, E.J.; Swart, E.F.; Kaazempur-Mofrad, M.; Borenstein,

J.T.; Vacanti, J.P.; et al. In vitro analysis of a hepatic device with intrinsic microvascular-based channels. Biomed. Microdev. 2008.
[CrossRef]

69. Griep, L.M.; Wolbers, F.; de Wagenaar, B.; ter Braak, P.M.; Weksler, B.B.; Romero, I.A.; Couraud, P.O.; Vermes, I.; van der Meer,
A.D.; van den Berg, A. BBB ON CHIP: Microfluidic platform to mechanically and biochemically modulate blood-brain barrier
function. Biomed. Microdev. 2013, 15, 145–150. [CrossRef] [PubMed]

70. Lee, P.J.; Hung, P.J.; Lee, L.P. An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture.
Biotechnol. Bioeng. 2007. [CrossRef]

71. Ortega, M.A.; Fernández-Garibay, X.; Castaño, A.G.; De Chiara, F.; Hernández-Albors, A.; Balaguer-Trias, J.; Ramón-Azcón, J.
Muscle-on-a-chip with an on-site multiplexed biosensing system for: In situ monitoring of secreted IL-6 and TNF-α. Lab Chip
2019, 19. [CrossRef]

72. Lopez-Muñoz, G.A.; Ortega, M.A.; Ferret-Miñana, A.; De Chiara, F.; Ramón-Azcón, J. Direct and Label-Free Monitoring of
Albumin in 2D Fatty Liver Disease Model Using Plasmonic Nanogratings. Nanomaterials 2020, 10, 2520. [CrossRef] [PubMed]

73. Corcoran, M.P.; Lamon-Fava, S.; Fielding, R.A. Skeletal muscle lipid deposition and insulin resistance: Effect of dietary fatty acids
and exercise. Am. J. Clin. Nutr. 2007, 85, 662–677.

74. Osaki, T.; Sivathanu, V.; Kamm, R.D. Crosstalk between developing vasculature and optogenetically engineered skeletal muscle
improves muscle contraction and angiogenesis. Biomaterials 2018. [CrossRef] [PubMed]

75. Theberge, A.B.; Yu, J.; Young, E.W.K.; Ricke, W.A.; Bushman, W.; Beebe, D.J. Microfluidic Multiculture Assay to Analyze
Biomolecular Signaling in Angiogenesis. Anal. Chem. 2015. [CrossRef] [PubMed]

76. Uzel, S.G.M.; Platt, R.J.; Subramanian, V.; Pearl, T.M.; Rowlands, C.J.; Chan, V.; Boyer, L.A.; So, P.T.C.; Kamm, R.D. Microfluidic
device for the formation of optically excitable, three-dimensional, compartmentalized motor units. Sci. Adv. 2016. [CrossRef]

77. Wevers, N.R.; Van Vught, R.; Wilschut, K.J.; Nicolas, A.; Chiang, C.; Lanz, H.L.; Trietsch, S.J.; Joore, J.; Vulto, P. High-throughput
compound evaluation on 3D networks of neurons and glia in a microfluidic platform. Sci. Rep. 2016. [CrossRef] [PubMed]

78. Oh, S.; Ryu, H.; Tahk, D.; Ko, J.; Chung, Y.; Lee, H.K.; Lee, T.R.; Jeon, N.L. “open-top” microfluidic device for in vitro three-
dimensional capillary beds. Lab Chip 2017. [CrossRef]

http://doi.org/10.1089/ten.teb.2012.0437
http://doi.org/10.1186/s40824-019-0172-z
http://www.ncbi.nlm.nih.gov/pubmed/31890268
http://doi.org/10.1002/mabi.201900364
http://www.ncbi.nlm.nih.gov/pubmed/32077631
http://doi.org/10.1016/j.jhep.2007.11.020
http://doi.org/10.3390/jfb11010017
http://www.ncbi.nlm.nih.gov/pubmed/32183326
http://doi.org/10.1186/s12967-019-02137-6
http://www.ncbi.nlm.nih.gov/pubmed/31752920
http://doi.org/10.1038/35082637
http://doi.org/10.1038/nbt712
http://doi.org/10.1073/pnas.1317441110
http://doi.org/10.1152/ajpheart.00787.2004
http://doi.org/10.1021/ac4022055
http://doi.org/10.1039/c3lc50388g
http://doi.org/10.1039/c0lc00033g
http://www.ncbi.nlm.nih.gov/pubmed/20936235
http://doi.org/10.1063/1.3580756
http://www.ncbi.nlm.nih.gov/pubmed/21799720
http://doi.org/10.1039/b919392h
http://doi.org/10.1007/s10544-008-9194-3
http://doi.org/10.1007/s10544-012-9699-7
http://www.ncbi.nlm.nih.gov/pubmed/22955726
http://doi.org/10.1002/bit.21360
http://doi.org/10.1039/C9LC00285E
http://doi.org/10.3390/nano10122520
http://www.ncbi.nlm.nih.gov/pubmed/33334062
http://doi.org/10.1016/j.biomaterials.2017.11.041
http://www.ncbi.nlm.nih.gov/pubmed/29190499
http://doi.org/10.1021/ac503700f
http://www.ncbi.nlm.nih.gov/pubmed/25719435
http://doi.org/10.1126/sciadv.1501429
http://doi.org/10.1038/srep38856
http://www.ncbi.nlm.nih.gov/pubmed/27934939
http://doi.org/10.1039/C7LC00646B


Biomedicines 2021, 9, 248 15 of 16

79. Jang, K.J.; Suh, K.Y. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 2010.
[CrossRef]

80. Suzuki, H.; Hirakawa, T.; Watanabe, I.; Kikuchi, Y. Determination of blood pO2 using a micromachined Clark-type oxygen
electrode. Anal. Chim. Acta 2001. [CrossRef]

81. Wang, L.; Acosta, M.A.; Leach, J.B.; Carrier, R.L. Spatially monitoring oxygen level in 3D microfabricated cell culture systems
using optical oxygen sensing beads. Lab Chip 2013. [CrossRef]

82. Bellin, D.L.; Sakhtah, H.; Rosenstein, J.K.; Levine, P.M.; Thimot, J.; Emmett, K.; Dietrich, L.E.P.; Shepard, K.L. Integrated
circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms. Nat. Commun. 2014.
[CrossRef]

83. Eklund, S.E.; Cliffel, D.E.; Kozlov, E.; Prokop, A.; Wikswo, J.; Baudenbacher, F. Modification of the CytosensorTM microphysiome-
ter to simultaneously measure extracellular acidification and oxygen consumption rates. Anal. Chim. Acta 2003. [CrossRef]

84. Wu, M.H.; Lin, J.L.; Wang, J.; Cui, Z.; Cui, Z. Development of high throughput optical sensor array for on-line pH monitoring in
micro-scale cell culture environment. Biomed. Microdev. 2009. [CrossRef]

85. Obregón, R.; Ahadian, S.; Ramón-Azcón, J.; Chen, L.; Fujita, T.; Shiku, H.; Chen, M.; Matsue, T. Non-invasive measurement of
glucose uptake of skeletal muscle tissue models using a glucose nanobiosensor. Biosens. Bioelectron. 2013. [CrossRef]

86. Hernández-Albors, A.; Castaño, A.G.; Fernández-Garibay, X.; Ortega, M.A.; Balaguer, J.; Ramón-Azcón, J. Microphysiological
sensing platform for an in-situ detection of tissue-secreted cytokines. Biosens. Bioelectron. X 2019. [CrossRef]

87. Schwartz, W.B. Medicine and the Computer. New Engl. J. Med. 1970, 283, 1257–1264. [CrossRef]
88. Andrade, M.A.; Bork, P. Automated extraction of information in molecular biology. FEBS Lett. 2000, 476, 12–17. [CrossRef]
89. Ghassemi, M.; Naumann, T.; Schulam, P.; Beam, A.L.; Chen, I.Y.; Ranganath, R. Practical guidance on artificial intelligence for

health-care data. Lancet Digit. Heal. 2019, 1, e157–e159. [CrossRef]
90. Stein, H.S.; Gregoire, J.M. Progress and prospects for accelerating materials science with automated and autonomous workflows.

Chem. Sci. 2019. [CrossRef] [PubMed]
91. Ambinder, E.P. Electronic health records. J. Oncol. Pr. 2005, 1, 57–63. [CrossRef] [PubMed]
92. Abràmoff, M.D.; Lavin, P.T.; Birch, M.; Shah, N.; Folk, J.C. Pivotal trial of an autonomous AI-based diagnostic system for detection

of diabetic retinopathy in primary care offices. NPJ Digit. Med. 2018. [CrossRef]
93. Raghu, A.; Komorowski, M.; Singh, S. Model-based reinforcement learning for sepsis treatment. arXiv 2018, arXiv:1811.09602.

Available online: https://arxiv.org/abs/1811.09602 (accessed on 23 November 2018).
94. Yom-Tov, E.; Feraru, G.; Kozdoba, M.; Mannor, S.; Tennenholtz, M.; Hochberg, I. Encouraging Physical Activity in Patients With

Diabetes: Intervention Using a Reinforcement Learning System. J. Med. Internet Res. 2017. [CrossRef] [PubMed]
95. Ma, H.; Xu, C.; Shen, Z.; Yu, C.; Li, Y. Application of Machine Learning Techniques for Clinical Predictive Modeling: A

Cross-Sectional Study on Nonalcoholic Fatty Liver Disease in China. Biomed. Res. Int. 2018, 2018, 4304376. [CrossRef]
96. Heinemann, F.; Birk, G.; Stierstorfer, B. Deep learning enables pathologist-like scoring of NASH models. Sci. Rep. 2019, 9, 18454.

[CrossRef] [PubMed]
97. Gerke, S.; Minssen, T.; Cohen, G. Ethical and legal challenges of artificial intelligence-driven healthcare. Artif. Intell. Healthc. 2020,

295–336. [CrossRef]
98. Guo, B.; Lei, C.; Kobayashi, H.; Ito, T.; Yalikun, Y.; Jiang, Y.; Tanaka, Y.; Ozeki, Y.; Goda, K. High-throughput, label-free, single-cell,

microalgal lipid screening by machine-learning-equipped optofluidic time-stretch quantitative phase microscopy. Cytom. Part A
2017, 91, 494–502. [CrossRef] [PubMed]

99. Chen, C.L.; Mahjoubfar, A.; Tai, L.-C.; Blaby, I.K.; Huang, A.; Niazi, K.R.; Jalali, B. Deep Learning in Label-free Cell Classification.
Sci. Rep. 2016, 6, 21471. [CrossRef] [PubMed]

100. Kozyra, M.; Johansson, I.; Nordling, Å.; Ullah, S.; Lauschke, V.M.; Ingelman-Sundberg, M. Human hepatic 3D spheroids as a
model for steatosis and insulin resistance. Sci. Rep. 2018, 8, 14297. [CrossRef]

101. Blasi, T.; Hennig, H.; Summers, H.D.; Theis, F.J.; Cerveira, J.; Patterson, J.O.; Davies, D.; Filby, A.; Carpenter, A.E.; Rees, P.
Label-free cell cycle analysis for high-throughput imaging flow cytometry. Nat. Commun. 2016, 7, 10256. [CrossRef] [PubMed]

102. Caldez, M.J.; Bjorklund, M.; Kaldis, P. Cell cycle regulation in NAFLD: When imbalanced metabolism limits cell division. Hepatol.
Int. 2020, 14, 463–474. [CrossRef] [PubMed]

103. Chu, A.; Nguyen, D.; Talathi, S.S.; Wilson, A.C.; Ye, C.; Smith, W.L.; Kaplan, A.D.; Duoss, E.B.; Stolaroff, J.K.; Giera, B. Automated
detection and sorting of microencapsulation via machine learning. Lab Chip 2019, 19, 1808–1817. [CrossRef]

104. Das, D.K.; Ghosh, M.; Pal, M.; Maiti, A.K.; Chakraborty, C. Machine learning approach for automated screening of malaria
parasite using light microscopic images. Micron 2013, 45, 97–106. [CrossRef] [PubMed]

105. Hetherington, A.M.; Sawyez, C.G.; Zilberman, E.; Stoianov, A.M.; Robson, D.L.; Borradaile, N.M. Differential Lipotoxic Effects of
Palmitate and Oleate in Activated Human Hepatic Stellate Cells and Epithelial Hepatoma Cells. Cell. Physiol. Biochem. 2016, 39,
1648–1662. [CrossRef]

106. Mirsky, S.K.; Barnea, I.; Levi, M.; Greenspan, H.; Shaked, N.T. Automated analysis of individual sperm cells using stain-free
interferometric phase microscopy and machine learning. Cytom. Part A 2017. [CrossRef]

107. Feldstein, A.E.; Werneburg, N.W.; Canbay, A.; Guicciardi, M.E.; Bronk, S.F.; Rydzewski, R.; Burgart, L.J.; Gores, G.J. Free fatty
acids promote hepatic lipotoxicity by stimulating TNF-α expression via a lysosomal pathway. Hepatology 2004, 40, 185–194.
[CrossRef]

http://doi.org/10.1039/B907515A
http://doi.org/10.1016/S0003-2670(00)01325-8
http://doi.org/10.1039/c3lc41366g
http://doi.org/10.1038/ncomms4256
http://doi.org/10.1016/S0003-2670(03)00992-9
http://doi.org/10.1007/s10544-008-9233-0
http://doi.org/10.1016/j.bios.2013.06.020
http://doi.org/10.1016/j.biosx.2019.100025
http://doi.org/10.1056/NEJM197012032832305
http://doi.org/10.1016/S0014-5793(00)01661-6
http://doi.org/10.1016/S2589-7500(19)30084-6
http://doi.org/10.1039/C9SC03766G
http://www.ncbi.nlm.nih.gov/pubmed/32153744
http://doi.org/10.1200/jop.2005.1.2.57
http://www.ncbi.nlm.nih.gov/pubmed/20871681
http://doi.org/10.1038/s41746-018-0040-6
https://arxiv.org/abs/1811.09602
http://doi.org/10.2196/jmir.7994
http://www.ncbi.nlm.nih.gov/pubmed/29017988
http://doi.org/10.1155/2018/4304376
http://doi.org/10.1038/s41598-019-54904-6
http://www.ncbi.nlm.nih.gov/pubmed/31804575
http://doi.org/10.1016/B978-0-12-818438-7.00012-5
http://doi.org/10.1002/cyto.a.23084
http://www.ncbi.nlm.nih.gov/pubmed/28399328
http://doi.org/10.1038/srep21471
http://www.ncbi.nlm.nih.gov/pubmed/26975219
http://doi.org/10.1038/s41598-018-32722-6
http://doi.org/10.1038/ncomms10256
http://www.ncbi.nlm.nih.gov/pubmed/26739115
http://doi.org/10.1007/s12072-020-10066-6
http://www.ncbi.nlm.nih.gov/pubmed/32578019
http://doi.org/10.1039/C8LC01394B
http://doi.org/10.1016/j.micron.2012.11.002
http://www.ncbi.nlm.nih.gov/pubmed/23218914
http://doi.org/10.1159/000447866
http://doi.org/10.1002/cyto.a.23189
http://doi.org/10.1002/hep.20283


Biomedicines 2021, 9, 248 16 of 16

108. Ko, J.; Bhagwat, N.; Yee, S.S.; Ortiz, N.; Sahmoud, A.; Black, T.; Aiello, N.M.; McKenzie, L.; O’Hara, M.; Redlinger, C.; et al.
Combining Machine Learning and Nanofluidic Technology to Diagnose Pancreatic Cancer Using Exosomes. ACS Nano 2017.
[CrossRef]

109. Lee, S.Y.; Sung, J.H. Gut–liver on a chip toward an in vitro model of hepatic steatosis. Biotechnol. Bioeng. 2018, 115, 2817–2827.
[CrossRef]

110. Ahluwalia, A.; Misto, A.; Vozzi, F.; Magliaro, C.; Mattei, G.; Marescotti, M.C.; Avogaro, A.; Iori, E. Systemic and vascular
inflammation in an in-vitro model of central obesity. PLoS ONE 2018, 13, e0192824. [CrossRef]

http://doi.org/10.1021/acsnano.7b05503
http://doi.org/10.1002/bit.26793
http://doi.org/10.1371/journal.pone.0192824

	Introduction 
	Extra-Hepatic Outcomes: NAFLD as Multiorgan Disease 
	Organ-on-a-Chip 2.0 
	Artificial Intelligence and NAFLD 
	In Vitro NAFLD Features Recognition: The Synergy between OOC and AI 
	Body on a Chip: An Exponential Growth in Complexity 
	Conclusions 
	References

