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Abstract

Since the beginning of the degree that I think that everyone should have the
oportunity to know mathematics as they are and not as they are presented (or were
presented) at a high school level. In my opinion, the answer to the question "why
do we do this?" that a student asks, shouldn’t be "because is useful", it should
be "because it’s interesting" or "because we are curious". To study mathematics
(in every level) should be like solving an enormous puzzle. It should be a playful
experience and satisfactory (which doesn’t mean effortless nor without dedication).

It is this idea that brought me to choose knot theory as the main focus of my
project. I wanted a theme that generated me curiosity and that it could be attrac-
tive to other people with less mathematical background, in order to spread what
mathematics are to me. It is because of this that i have dedicated quite some time
to explain the intuitive idea behind every proof and definition, and it is because of
this that the great majority of proofs and definitions are paired up with an image
(created by me).

In regards to the technical part of the project I have had as main objectives: to
introduce myself to knot theory, to comprehend the idea of genus of a knot and know
the propeties we could derive to study knots.

Resum

Des que vaig començar la carrera que penso que tothom hauria de tenir la opor-
tunitat de conèixer les matemàtiques tal i com són i no com són (o almenys eren)
presentades a nivell de secundària. En la meva opinió, la resposta a la pregunta "per
què fem això?" que formula un alumne no hauria de ser "perquè és útil", si no més
aviat "perquè ens interessa" o "perquè tenim curiositat". Estudiar matemàtiques
(en tots els nivells) hauria de ser com resoldre un trencaclosques gegant. Hauria de
ser una experiència juganera i satifactoria (que no vol dir que no requereixi esforç ni
dedicació).

És aquesta idea la que m’ha portat a escollir la teoria de nusos com a branca
principal del meu treball. Volia una temàtica que em despertés curiositat i que a
la vegada pogués ser atractiva per a gent sense gaire coneixement matemàtic, per
així poder difondre al màxim el què són per a mi les matemàtiques. És per això
que he dedicat força temps a explicar la idea intuïtiva darrera de cada definició i
demostració, i és per això que la gran majoria d’aquestes va acompanyada d’una
imatge (fetes per mi).

Pel que fa a la part tècnica del treball, com a principals objectius he tingut:
introduïr-me en la teoria de nusos, comprendre la idea del gènere d’un nus i veure
quines propietats ens proporcionava per a estudiar nusos.
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Chapter 1

Basic concepts

In this chapter we will give the necessary definitions to work with knots, we
will define the equivalence between knots, we will give a brief explanation why is it
natural to consider such definition of equivalence and not others and we will define
the connected sum of two knots.

1.1 Knots and diagrams

Loosely speaking, a mathematical knot is a piece of string entangled with itself,
with no ends, inside a three dimensional space. The easiest way to imagine this is
to take a piece of string, tie a knot, and glue the ends together.

Of course, this is not a rigorous definition and we cannot work whit it. The
mathematical definition is as follows.

Definition 1.1. A knot K is a subspace of R3 homeomorphic to S1.

Figure 1.1: Examples of knots projected on a plane

We can also think a knotK, as the image of a continuous map α : [0, 1]→ R3 such
that α|[0,1) is injective and α(0) = α(1). Such a map will be called a parametrization
of K.
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2 Basic concepts

The examples in Figure 1.1 are not knots, in rigorus terms, they are what we will
call knot diagrams.

Definition 1.2. Let K be a knot, α a parametrization of K and π : R3 → R2 a
projection. Supose there exists t0, t1 ∈ [0, 1) such that π ◦ α(t0) = π ◦ α(t1) (that is,
the plane curve π ◦ α has a self intersection). We say that such self intersection is
transversal if π ◦α is differentiable at t0 and t1, and the tangent vectors are linearly
independent.

Definition 1.3. Given a knot K, a projection π : R3 → R2 is a regular projection of
K if:

i) For every point p ∈ π(K), we have |π−1(p)| ≤ 2.

ii) Every self intersection of π(K) is transversal.

The points p ∈ π(K) where |π−1(p)| = 2 are called crossing points.

|A| denotes the cardinality of the set A.
For us, a projection of a knot will always be regular unless is otherwise indicated.

Then, a knot diagram (or a knot projection) for a knot K is a picture of π(K), where
π is a regular projection and where we indicate that a line is above another at a
crossing point as follows:

At each crossing point p we have two lines, say A and B, that intersect at p.
To indicate that A is over B, we will draw A as a connected line, and B as two
disconnected lines. Each connected line in π(K) is called a strand.

(a) A crossing point (b) A blue strand

Figure 1.2: Example of a crossing and a strand

Figure 1.3b illustrates the explanation of a knot diagram.

Definition 1.4. We say that a projection of a knot K is alternating if each strand
contains three crossing points.

A knot K is said to be alternating if there exists an alternating projecction of K.
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(a) Not a knot diagram (b) A proper knot diagram

Figure 1.3: Difference between a knot diagram and a shadow of a knot

Examples of alternating projections can be found in Figure 1.2b and in Figure
1.3b.
A first measure of the complexity of a knot K is the crossing number of K, usually
denoted by c(K), which is the minimum number of crossings needed to represent a
diagram ofK. In fact, most tables of knots are ordered by crossing number and using
the Alexander-Biggs notation, which works as follows. Every knot K is designated
by ci where c = c(K) and i is just a natural number to enumerate different knots with
the same crossing number (although the choice of i is arbitrary, mathematicians have
come to a consent as shown in Appendix A). This notation was introduced by James
W. Alexander and Garland B. Briggs in 1926 and it is known as the Alexander-
Briggs notation (the paper were the notation was first introducced can be found in
[2]). Some knots even have names, for example 31 is called the trefoil knot and 41
figure eight knot.

1.2 Equivalence of knots

So far we haven’t introduced the idea of equivalence between knots. We want the
definition of equivalence between two knots to corespond to the idea of untangling
(or tangling) one knot to get the other. We are going to see that the concepts of
homotopy equivalence and homeomorphic equivalence are not enough to descrive
what we want.

Let’s just say that two knots K1 and K2 are equivalent if they are homeomorphic.
Since cutting K1 by an arbitrary point, untangling it and gluing back together the
points previuosly cutted, is an homeomorphism, we would have that every knot could
be untangled, in other words, all knots would be equivallent to each other! Then
homeomorphic equivalence is not what we need. This, should have been clear from
the definition of knot.
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Now, since all knots are homeomorphic to each other, they are also homotopy
equivalent. Therefore homotopy equivalence is not good enough either.

What we want is a definition that takes into account what happens to the space
around the knot while we deform it. This fact of taking into account how the space
around is deformed is encapsulated with the concept of ambient isotopy.

Definition 1.5. Let X,Y be topological spaces, I = [0, 1], and f, g embeddings from
X to Y . Then, f and g are said to be ambient isotopic if there exists a continuous
map H : Y × I → Y such that:

i) For all t ∈ I, H(·, t) is an homeomorphism from Y to itself.

ii) H(·, 0) = idY .

iii) For all x ∈ X, H(f(x), 1) = g(x).

We say that H is an ambient isotopy between f and g.
Here idY denotes the identity map in Y .

With this in mind the definition of eqivalence between knots is the following.

Definition 1.6. Given two knots K1 and K2, we say that K1 and K2 are equivalent
and we will write K1 ∼ K2, if there exists an ambient isotopy H : R3 × I → R3

between idR3 : R3 → R3 and an homeomorphismH1 : R3 → R3 such that,H(K1, 1) =

H1(K1) = K2

It is common to write Ht(x) instead of H(x, t).

We are now ready to define the unknot, also known as the trivial knot.

Definition 1.7. We say that a knot K is the unknot (or the trivial knot) if it is
equivalent to the subspace {(x, y, z) ∈ R3| x2 + y2 = 1, z = 0}. We will denote the
unknot by O

A diagram of the unknot can be found in the first picture of Figure 1.1.
We are not interested in all possible knots, we want to avoid knots with rather

complicated structures like those with infinite crossings. To avoid these type of knots
we will work only with tame knots.

Definition 1.8. A polygonal knot K is the union of a finite collection of line seg-
ments that are disjoint or that intersect at their end points in such a way that K is
homeomorphic to S1

Definition 1.9. A knot is tame if it is equivalent to a polygonal knot. A knot is
wild if it’s not tame.

From now on, all knots considered will be tame unless is otherwise indicated.
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Figure 1.4: A picture of a wild knot

1.3 Connected sum

The idea behind the connected sum of two knots is that of cutting two knots and
gluing the ends so that from two knots we get a new one. But, to rigorously define
this operation we first need to define what an oriented knot is.

Definition 1.10. Given a knot K and two homeomorphisms f, g : S1 → K, we say
that an oriented knot is a class of equivalence of the pair

(
K, f

)
, where[(

K, f
)]

=
[(
K, g

)]
if and only if deg(f−1 ◦ g) = 1,

where [a] denotes the equivalence class of a and deg(h) denotes the degree of the
continuous map h : S1 → S1

An oriented knot is in some sense, a knot equiped with a direction to traverse
the knot. In a diagram we will idicate the orientation of a knot with arrows.

Figure 1.5: Diagram of an oriented knot

Every knot can have two different orientations. If
[(
K, f

)]
is an oriented knot

then the same knot with the reversed orientation is
[(
K, f ◦ i

)]
(where i : S1 → S1

is given by z 7→ z−1).
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Let’s see that they are in fact two different orientations. What we need to see is that
deg(f−1 ◦ f ◦ i) 6= 1, but that is clear since

deg(f−1 ◦ f ◦ i) = deg(i) = −1

If K denotes a knot, K+ will denote the same knot with a fixed orientation and
we will denote the same knot with the other orientation by K−. Ocasionally we will
not use the superscript to indicate the orientation, whether we are talking about a
knot or an oriented knot will be clear from context.

Equivalence of knots translates to equivalence of oriented knots as follows:

Definition 1.11. Let K+
1 and K+

2 be two oriented knots given by the classes[(
K1, f1

)]
,
[(
K2, f2

)]
. Then we say that the oriented knots are equivalent, and

we will write K+
1 ∼ K+

2 if there is an ambient isotopy between the two that respects
the orientation. That is K1 ∼ K2 via the ambient isotopy H, and

[(
K2, f2

)]
=[(

K2, H1 ◦ f1
)]
, i.e, deg(f−12 ◦ H1 ◦ f1) = 1. We say that a knot K is invertible if

K+ ∼ K−.

As an example, the unknot is invertible. An ambient isotopy Ht between O+

and O− is the one that for every t ∈ I, Ht is a rotation around the x axis of angle
πt radians, that is

Ht(x, y, z) = (x, cos(πt)y + sin(πt)z,−sin(πt)y + cos(πt)z) (x, y, z) ∈ R3

We are now ready to define the connected sum of two knots.

Definition 1.12. Let K1,K2 be two oriented knots, and consider their diagrams
(given by regular projections π1, π2, respectively) in such a way that they do not
intersect. Consider a closed disk D such that:

i) D ∩ π1(K1) and D ∩ π2(K2) have no crossing points and are connected.

ii) |∂D ∩ π1(K1)| = |∂D ∩ π2(K2)| = 2

If needed bring π1(K1) and π2(K2) closer or further apart via an ambient isotopy
so that the conditions are satisfied (keeping in mind they cannot intersect!). Then
remove Int(D) from both K1 and K2. Finally, identify each point of ∂D ∩ π1(K1)

with a point of ∂D ∩ π2(K2) in such a way that orientations match up.
This process gives us a new diagram. The connected sum of K1 and K2, denoted
K1#K2, is an oriented knot with that diagram.
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(a) π(K1) ∪ π(K2) ∪D (b)
(
π(K1) ∪ π(K2)

)
\D

(c) K1#K2

Figure 1.6: Connected sum of 51 and 41

The pictures in Figure 1.6 help to understand the process.
It is important to notice that if we had not required the knots to be oriented,

then there would be two possible diagrams of K1#K2 that could end up beeing not
equivalent!
Although the connected sum is a well defined operation between oriented knots, the
result does depend on the orientation of both K1 and K2. But if one of the knots is
invertible, say K1 then K+

1 #K2 ∼ K−1 #K2.

The name connected sum suggests there must be some connection between this
new operation and the sum of numbers as we know it. The next result shows us the
connection between the two.

Proposition 1.13. The following staments are true:

i) The connected sum is commutative.

ii) The connected sum is associative.

iii) For every oriented knot K, K#O ∼ K. That is, O is the neutral element of
the connected sum.

Proof.

i) Given the sumK1#K2, we can get toK2#K1 via an ambient isotopy by sliding
one knot through the other (see an example in Figure 1.7).
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ii) It is clear that the sum (K1#K2)#K3 gives the same diagram asK1#(K2#K3),
and hence they are equivalent.

iii) The procedure of the sum of O with any knot K doesn’t change the knot K
since we are replacing a piece of an untangled strand of K with another piece
of an untangled strand of K (since O has no crossings).

Figure 1.7: Ambient isotopy from 3+1 #4+1 to 4+1 #3+1

To end this chapter we introduce two interesting concepts.

Definition 1.14. A knot K is irreducible if K ∼ K1#K2 implies that K1 ∼ O or
K2 ∼ O.
A knot K is prime if it is irreducible and it is not equivalent to O.

With this, we can ask ourselves different questions:
How can we tell if a knot is prime or not? Is there a fundamental theorem of
arithmetic-type theorem for the sum of knots?. That is, can every knot (except the
unknot) be uniquely represented by a finite sum of prime knots?.
The answer of the second question is a theorem proved by Schubert in 1949 and can
be found in [4] page 96.
In chapter four, we will give a sufficient condition for a knot to be prime, and we
will be able to see that every knot is a finite sum of prime knots (we won’t prove the
uniqueness).



Chapter 2

Seifert surfaces and genus

In this chapter we first recall some notions regarding surfaces and we will intro-
duce the concept of Seifert surfaces of a knot in order to define a knot invariant, the
genus of a knot.

2.1 Topological surfaces

We first recall some definitions about topological surfaces

Definition 2.1. A topological surface is a topological space S such that:

i) S is a Hausdorff space.

ii) S is a second countable space i.e, S has a countable base.

iii) For every p ∈ S, there exists an open neighborhood Up of p, and an homeo-
morphism ϕp : Up −→ ϕ(Up) ⊆ R2 where ϕ(Up) is open in R2.

The pair
(
Up, ϕp

)
is called a chart of S. And a family of charts A =

{(
Ui, ϕi

)}
i∈I

is called an atlas of S if S =
⋃

i∈I Ui.

In Figure 2.1 there are two examples of surfaces.

Definition 2.2. A topological surface with boundary is a topological space S such
that:

i) S is a Hausdorff space.

ii) S is a second countable space i.e, S has a countable base.

iii) For every p ∈ S, there exists an open neighborhood Up of p, and an homeo-
morphism ϕp : Up −→ ϕ(Up) ⊆ R2

+ = {(x, y) ∈ R2|y ≥ 0} where ϕ(Up) is open
in R2

+.

9



10 Seifert surfaces and genus

Figure 2.1: From left to right: a sphere, a torus and a sphere with one boundary
component

The interior of S, denoted Int(S), is the set of points in S which have neighbor-
hoods homeomorphic to an open subset of R2. The boundary of S, denoted ∂S is
the compliment of Int(S) in S.

A boundary component B of ∂S is a connected component of ∂S.

It is important to observe that in the case of a topological surface with boundary
S, ∂S is locally homeomorphic to R.

We will only work with compact connected topological surfaces, so from now
on every topological surface will be compact and connected (unless is otherwise
indicated).

Definition 2.3. Given a topological surface S (with or without boundary), a triangle
T in S is a closed subset of S such that there exists an homeomorphism f : ∆ −→ T

where ∆ is the following subspace of R2, ∆ =
{

(x, y) ∈ R2| x, y ≥ 0 and x+ y ≤ 1
}

(which is a triangle in R2).
The vertices of T are the images (by f) of the vertices of ∆ and the edges of T

are the images (also by f) of the edges of ∆.
A triangulation of S is a family of triangles in S, T = {Ti}i∈I such that:

i) S =
⋃

i∈I Ti

ii) If Ti ∩ Tj 6= ∅ (i 6= j) then Ti ∩ Tj is either just one vertex of both Ti and Tj
or just one edge of both Ti and Tj .

It is a well known theorem that every topological surface S can be triangulated.
Moreover if the surface is compact, the triangulation consists of finetly many trian-
gles. A proof of this theorem can be found in [9]

Definition 2.4. Let S be a topological surface (with or without boundary) and
T =

{
Ti
}
i∈I a triangulation of S. If v denotes de number of vertices in

⋃
i∈I Ti, e
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the number of edges in
⋃

i∈I Ti and f the number of triangles of T (also known as
faces), then the Euler-Poincaré characteristic of T is

χ(T ) = v − e+ f.

It can be proved (using homology groups) that the Euler-Poincaré characteristic
is a topological invariant and therefore does not depend on the triangulation, so it
is common to talk about the Euler-Poincaré characteristic of a topological surface
instead of the characteristic of a triangulation of that surface. We will write χ(S) to
denote the Euler-Poincaré characteristic of the surface S.

In the same way that there is a notion of connected sum for knots, there is also
a notion of connected sum of topological surfaces.

Definition 2.5. Given two surfaces S1 and S2. Let D1 be a closed disk in a chart of
S1 and D2 a closed disk in a chart of S2. Let h : ∂D1 −→ ∂D2 be a homeomorphism.

Then the connected sum of S1 and S2 is another topological surface defined as

S1#S2 = (S1 \
◦
D1) t (S2 \

◦
D2)/ ∼

where for all x ∈ ∂D1 and all y ∈ ∂D2, x ∼ y if and only if y = h(x)

Proposition 2.6. Let S1 and S2 be two topological surfaces (with or without bound-
ary) then the following equation holds:

χ(S1#S2) = χ(S1) + χ(S2)− 2

Proof. Let T1 and T2 be two triangulations of S1 and S2 (respectively) and vi, ei and
fi the number vertices, edges and faces of Ti respectively (with i = 1, 2).

We can think of S1#S2 as the surface resulting of removing a face of a triangle
T1 of S1 and a face of a triangle T2 of S2 and then identifying each edge of T1 with an
edge of T2 (we can do this because every closed triangle is homeomorphic to a closed
disk). From this, it is clear that there is a triangulation T of S1#S2 such that the
number vertices of T are v1 + v2 − 3, the number of edges of T are e1 + e2 − 3 and
the number of faces of T are f1 + f2− 2. Therefore the Euler-Poincaré characteristic
of S1#S2 is:

χ(S1#S2) = v1 + v2 − 3− e1 − e2 + 3 + f1 + f2 − 2 = χ(S1) + χ(S2)− 2.

We now recall the calssification theorem of compact connected surfaces.
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Theorem 2.7 (Classification of compact connected surfaces). Every compact con-
nected topological surface is homeomorphic to one and only one of the following
surfaces:

i) S2

ii) gT2 = T2#
g
· · ·#T2

iii) #gP2
R = #P2

R#
g
· · ·#P2

R

Where g ∈ N \ {0}. S2 denotes the two dimensional sphere, T2 the two dimensional
torus and P2

R the real projective plane.

A proof of this theorem can be found in [6]

Definition 2.8. A topological surface S is orientable if it is either homeomorphic
to S2 or to gT2 with g ∈ N \ {0}.

The genus of an orientable surface S, denoted g(S), is 0 if S is homeomorphic to
S2 or n if S is homeomorphic to nT2 (with n ∈ N).

In some sense, a surface is orientable if it has two different sides.

Figure 2.2: The Möbius strip, a non oriantable surface with one boundary component

Taking into account the formula in Proposition 2.6 and the fact that χ(S2) = 2

and χ(T2) = 0 , we can conclude that χ(gT2) = 2− 2g (understanding 0T2 as S2).
We end this section with the theorem of classification of compact connected

surfaces with boundary.

Theorem 2.9 (Classification of compact connected surfaces with boundary). Let S
be a compact connected topological surface with boundary. Then S is homeomorphic
to one and only one of the following surfaces:

i) S2 \ (D1 ∪D2 ∪ . . . ∪Db) where b is the number of boundary components of S
and each Di is homeomorphic to an open disc disjoint to every other disc.
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ii) gT2 \ (D1 ∪D2 ∪ . . .∪Db) where b is the number of boundary components of S
and each Di is homeomorphic to an open disc disjoint to every other disc.

iii) nP2
R \ (D1 ∪D2 ∪ . . . ∪Db) where b is the number of boundary components of

S and each Di is homeomorphic to an open disc disjoint to every other disc.

Proof. Let S be a compact connected topological surface with boundary. Since ∂S
is closed in S and S is both Hausdorff and compact, it follows that ∂S is compact.
From this, we know that ∂S has a finite number of boundary components, say b.
Each boundary component is closed and therefore also compact. And since every
boundary component is compact, connected and locally homeomorphic to R it follows
that every boundary component is homeomorphic to S1.

Now for every boundary component Ci consider a closed disk Di and consider
a homeomorphism hi : Ci −→ ∂Di (i = 1, . . . , b). Finally consider the topological
space Ŝ = S tD1 t . . . tDb/ ∼ where for every pair of points x ∈ Ci and y ∈ ∂Di,
x ∼ y if and only if y = hi(x). It is clear from the construction that Ŝ is Hausdorff,
has a countable base, is compact and connected. What it may not be obvious at first
glance is that it is locally homeomorphic to an open set of R2. Let us see that it is
indeed the case.

Take a point p ∈ Ŝ. If p ∈ Int(S)∪Int(D1)∪. . .∪Int(Db) then by definition p has
an open neighborhood homeomorphic to an open set of R2. Supose then that p ∈ Ci

for a particular i ≤ b. Since Ci is identyfied with ∂Di we can think of p as beeing
both in Ci and ∂Di. Because p ∈ Ci and p ∈ ∂Di there exist two open neighborhoods
U, V of p with U ⊆ S and V ⊆ Di and two homeomorphism f : U −→ f(U) ⊆ R2

+

and g : V −→ g(V ) ⊆ R2
+. Without loss of generality we can supose that f(p) = g(p)

(if nedded bring g(p) to f(p) with a translation). Choose a neighborhood I of p in
Ci such that I ⊆ U and I ⊆ V . Consider now U ′ = f(Int(U)) ∪ f(I) and V ′ =

g(Int(V ))∪g(I), then f−1(U ′) and g−1(V ′) are open in S and Di (respectively) and
they overlap only in I. Therefore W = f−1(U ′) ∪ g−1(V ′) is an open neighborhood
of p homeomorphic to an open subset of R2.

With all of this, Ŝ is a compact connected topological surface and by Theorem
2.7 we have that Ŝ is homeomorphic to either S2, gT2 or nP2

R via H. So S is
homeomorphic to either S2 \ (H(D1) ∪ H(D2) ∪ . . . ∪ H(Db)) , gT2 \ (H(D1) ∪
H(D2) ∪ . . . ∪H(Db)) or nP2

R \ (H(D1) ∪H(D2) ∪ . . . ∪H(Db)).

With the previous theorem in mind it is easy to see that for every surface S with
boundary, χ(Ŝ) = χ(S) + b where b is the number of boundary components of S.

Definition 2.10. Given a surface with boundary S, we say that S is orientable if Ŝ
is orientable.

The genus of S (denoted g(S)) is the genus of Ŝ.
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Figure 2.3: A torus with two boundary components

In the end, for every orientable surface with boundary S we have the following
formula (which will be of use later on)

χ(S) = 2− 2g(S)− b (2.1)

2.2 Seifert surfaces

Now that we are familiarized with orientable surfaces with boundary we are ready
to define the concept of Seifert surface.

Definition 2.11. Given a knot K, a Seifert surface for K is an orientable compact
connected surface S ⊂ R3 such that ∂S = K. We will also say that S is a Seifert
surface spanning K.

It is not clear from the definition that such surfaces must exist, even less clear is
how to construct them (if they even exist of course). The next theorem proves the
existence of Seifert surfaces and gives a way to construct them.

Theorem 2.12. Given a knot K, there exists a Seifert surface S spanning K.

Proof. This proof relies on the so-called Seifert algorithm. Begin by fixing an orien-
tation in K, say K+, and consider a diagram of K+. At each crossing point choose
four points, the first two p1, p2 from the over strand in such a way that p1 comes be-
fore the crossing point and p2 after (as indicated by the orientation previously fixed)
and q1, q2 from the under strand in such a way that q1 comes before the crossing
point and q2 after (see Figure 2.4a).

Remove the line going from p1 to p2 (the one that intersects the crossing point)
and the one going from q1 and q2 (which also intersects the crossing point) and
connect p1 with q2 with a continuous line and p2 with q1 with another continuous
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(a) (b)

Figure 2.4: Choosing points in a crossing to create Seifert circles

line that does not intersect the previus one (see Figure 2.4b). The result is a diagram
of disjoint loops with an induced orientation, these loops are called Seifert circles.

Now consider each Seifert circle c contained in a plane z = zc in R3, where zc
is different for every Seifert circle (thus every Seifert circle is at a different height).
Continue by considering, for each Seifert circle c, a disc (or subset homeomorphic to
a disc) in z = zc whose boundary is c (the process is similar to that of the proof of
Theorem 2.9). Finally connect each disc with a twisted band begining in the line
previosly attached to p1 and q2 and ending in the line previously attached to p2 and
q1. Connect it in such a way that the orientations on the boundries of the discs
match up, that is p1 must be connected with a line (an "edge" of the band) to p2
that does not contain q1 and q2 (and the same must happen with q1 and q2).

The result is a compact connected orientable surface (because it is a union of
discs joined by strips) with one boundary component which coincides with K. The
fact that the surface is orientable comes from considering the bands in such a way
that orientations match up (see figures 2.5 and 2.6 for an example of the Seifert
algorithm applied to the knot 31).

(a) 31 with a fixed orientation (b) Seifert circles

Figure 2.5: Creating Seifert circles from an oriented diagram of a knot
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(a) Discs at different heights (b) Seifert surface for 31

Figure 2.6: Joining Seifert circles with bands

A question one might ask is if Seifert surfaces are unique to every knot, the
answer is no, one can construct many different Seifert surfaces for a same knot.

What will be of interest is the genus of a Seifer surface.

2.3 Genus

Now we are ready to fulfill the objective of this chapter, to define the genus of a
knot.

Definition 2.13. Let K be a knot. Then the genus of K, denoted g(K), is the
minimal genus of any Seifert surface spanning K. We will say that a Seifert surface
S spanning K is minimal if g(K) = g(S).

The next result shows us that the genus of a knot is a knot invariant, in other
words, if two knots are equivalent then their genera is equal.

Proposition 2.14. Let K1 and K2 be two knots. If K1 ∼ K2 then g(K1) = g(K2)

Proof. Consider a minimal Seifert surface S1 spanning K1. Since K1 ∼ K2 then
there must exist an homeomorphism h : R3 −→ R3 such that h(K1) = K2. Then
h(S1) is a Seifert surface spanning K2 and g(h(S1)) = g(S1) = g(K1). Even more,
h(S1) is a minimal Seifert surface spanning K2 and then g(K1) = g(K2). If h(S1)

were not a minimal Seifert surface for K2, then there would be a minimal Seifert
surface S2 spanning K2 such that g(S2) < g(h(S1)), and then h−1(S2) would be a
Seifert surface spanning K1 whose genus is less than g(S1), but that is impossible
since S1 is a minimal Seifert surface spanning K1.

We now give a characterization of the unknot in terms of the genus.
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Theorem 2.15. Let K be a knot. Then K is the unknot if and only if g(K) = 0.

Proof. If K is the unknot, then a disc with boundary K is clearly a minimal Seifert
surface spanning K. And since a disc is a sphere with one boundary component it
follows that g(K) = g(S2) = 0.

Conversely, if K is a knot with g(K) = 0, then there is a minimal Seifert surface
S of K with g(S) = 0, and so S is a sphere with one boundary component, i.e, a
disc. We can view K in S as a poligonal knot and the vertices of K as vertices
of a triangulation T of S. Now for each vertex in the boundary of S if the vertex
is attatched to only two edges, we remove those two edges and end up with the
remaining edge of the triangle (this can be viewed as pushing the vertex inside the
triangle along with its edges, which is an ambient isotopy). This process is done
until we end up with just on triangle (the fact that we can do that is because T is in
fact a triangulation of a disc). Since the boundary of a triangle and O are ambient
isotopic we have that K ∼ O (see an example in Figure 2.7).
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Figure 2.7: A sequence of pictures (from left to right and up to down) illustrating
the proof in Theorem 2.15



Chapter 3

Minimal genus theorem for alter-
nating knots

In Chapter 2 we have seen that the genus of a knot is a knot invariant. But if we
try to calculate the genus of a knot K from a Seifert surface obtained using Seifert’s
algorithm, we end up with an upper bound for g(K) and not necessarily g(K). Then
how do we actually calculate the genus of a knot?

In this chapter we will prove that applying Seifert’s algorithm to an alternating
projection of a knot K does in fact yield a minimal Seifert surface for K.

3.1 The theorem

The proof we are presenting is an adaptation of a proof presented by David Gabai
(a mathematician at Princeton University) in an article of the Duke Mathematical
Journal. In his article, David Gabai proves the result for alternating links (links
essentially are finite collection of knots tangled between each other). Since we are
only interested in knots, we have adapted the proof to our case. The complete proof
can be found in [5].

To prove the theorem we first need the following result:

Lemma 3.1. Let K be a knot. If S is a Seifert surface for K, which is not minimal,
then there exists a Seifert surface T for K such that Int(S) ∩ Int(T ) = ∅ and
g(T ) < g(S).

It is important to remark that in his article David Gabai writes χ(S′) > χ(S)

instead of g(S′) < g(S). The two facts are equivalent if one considers formula (2.1)
from Section 1 Chapter 2.

We are not going to prove this lemma here since it relies on the notions of tubular
neighborhoods, intersection numbers and how these concepts are related to homology

19
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groups, and this falls out of the scope of our project.

Theorem 3.2. Let K be an alternating knot. If S is a Seifert surface for K obtained
by applying Seifert’s algorithm to an alternating projection of K then S is a minimal
Seifert surface for K.

Proof. Let K be an alternating knot. Consider an alternating projection of K (given
by a regular projection π) with n crossings and the Seifert surface S obtained through
Seifert’s algorithm. We are going to prove the theorem by induction on n.

Base case: n = 1

On one hand, since the projection has only one crossing, by applying an ambient
isotopy to K we can remove the crossing (by twisting the knot) then K ∼ O, and so
g(K) = 0.

On the other hand, S is two discs joined by a twisted band. By performing an
homeomorphism (the one induced by the ambient isotopy above is enough) we have
that S is homeomorphic to a disc, and thus g(S) = 0.

So in the case n = 1 Seifert’s algorithm applied to an alternating knot yields a
minimal Seifert surface.

Induction step
Begin by considering an alternating projection of K with n+ 1 crossings, and let

S be the Seifert surface obtained by applying Seifert’s algorithm to that projection.
Suppose S is not minimal.

By an ambient isotopy we can deform K so that K lies in the sphere S2 except
for a small neighborhood of each crossing. Now via an ambient isotopy deform K

slightly in a way that K intersects S2 in exactly 2n+ 2 points (we are separating the
crossing from the knot with S2). For an example see Figure 3.1

Figure 3.1: A knot that intersects S2 at 2n+ 2 points shown in red
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Let T be the Seifert surface of K obtained by applying Lemma 3.1 to S, and let
D be an open disc in S2 \ S. Perform an ambient isotopy so that T ∩D is exactly k
arcs (here D denotes the closure of D in R3), where k is such that K∩D is exactly 2k

points. Any innermost arc β in T ∩D (that is, any arc in T ∩D closest to the center
of D) is parallel to an arc α in S, here by parallel we mean that their intersections
are only the endpoints (for an example see Figure 3.2).

S

βα

D

Figure 3.2: A Seifert surface S, a disc D and the arcs α and β

Now consider S′ = S\Int(α) (that is, cut S along α) and T ′ = T \Int(β). We can
now remove a crossing from S′ as we have done in the previous case. By doing this,
we end up with a new surface S∗ which is the Seifert surface obtained by applying
Seifert’s algorithm to a projection of n crossings of a knot K ′, and by the induction
hypothesis S∗ is minimal. T ′ is also a Seifert surface spanning K ′, but removing
α and β from S and T , respectively, results in either adding two vertices and one
edge to each triangulation or adding four vertices, two edges and two faces to each
triangulation. In either case χ(T )− χ(S) = χ(T ′)− χ(S∗) and since g(T ) < g(S) it
follows that g(T ′) < g(S∗) which contradicts the fact that S∗ is minimal. Therefore
we conclude that S must be minimal.

With the proof of the theorem ended we give some examples of calculations of
genera of knots.

3.2 Examples

We start by calculating the genus of the trefoil knot. Let S be the Seifert surface
obtained by applying Seifert’s algorithm to 31. It will be of some use if we choose
to view the seifert circles in S as a collection of polygons with some edges identified
(see Figure 3.3 for an example). Let us denote by s the number of Seifert circles.
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a

b

c a

b

c

Figure 3.3: A Seifert surface for 31 made of polygons

Now consider the triangulation of S whose vertices are the vertices of each polygon
plus one point in the interior of each polygon and whose edges are the edges of each
polygon plus one line for each polygon connecting a vertex of the polygon with the
vertex in the interior of the polygon (we are essentialy chopping each polygon with
smaller triangles that have two vertices at the boundary and one in the interior as
shown in Figure 3.4 ).

a

b

c a

b

c

Figure 3.4: A triangulation of the Seifert surface of 31

This triangulation can be achieved with 2c(K) + s vertices, 7c(K) edges and
4c(K) faces, and so

χ(S) = 2c(K) + s− 7c(K) + 4c(K) = s− c(K) = 2− 3 = −1.

And using equation (2.1) we have that

g(K) = g(S) =
1− (−1)

2
= 1.

In fact this procedure can be applied to every alternating knot K to find its
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genus, giving the following formula:

g(K) = g(S) =
1− χ(S)

2
=

1 + c(K)− s
2

, (3.1)

where s is the number of Seifert circles. Moreover for any knot K we have the
following inequality:

g(K) ≤ 1 + c(K)− s
2

Lets calculate now the genus of the figure eight knot. Using the notation previ-
ously described, as it can be seen in Figure 3.5 we have that c(41) = 4 and s = 3

therefore
g(41) =

1 + 4− 3

2
= 1

Figure 3.5: Seifert circles for 41
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Chapter 4

Genus additivity and aplications

In this chapter we are going to see that the genus of a knot is additive with
respect to the connected sum of knots. This property will allow us to answer the
questions asked in Chapter 1 and thus conclude with one of the objectives of the
project.

4.1 Additivity

Theorem 4.1. For any two knots K1 and K2, g(K1#K2) = g(K1) + g(K2)

Proof. We will prove the theorem in two parts, the first one will prove g(K1#K2) ≤
g(K1) + g(K2) and the second one g(K1#K2) ≥ g(K1) + g(K2).

Part 1: g(K1#K2) ≤ g(K1) + g(K2)

Consider K1 and K2 in such a way that there is a plane that separetes them and
consider S1 and S2 two minimal Seifert surfaces spanning K1 and K2 respectively
(S1 and S2 also separeted by the plane). Give orientations to both K1 and K2 and
consider K1#K2 making sure that K1#K2 does not intersect Int(S1) nor Int(S2).

Now consider a band B connecting K1 and K2 whose boundary is the two lines
introduced when creating K1#K2 and such that B does not intersect Int(S1) nor
Int(S2) (see Figure 4.1 for an example). Then B connects S1 and S2, and therefore
S = S1 ∪ S2 ∪ B is an orientable compact connected surface whose boundary is
K1#K2, that is S is a Seifert surface spanning K1#K2. Finally since g(S) = g(S1)+

g(S2) = g(K1) + g(K2), we have that g(K1#K2) ≤ g(K1) + g(K2).

25
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(a) Disjoint seifert surfaces of 31 (b) Seifert surface for 31#31

Figure 4.1: Connecting two Seifert surfaces with a band

Part 2: g(K1) + g(K2) ≤ g(K1#K2)

Consider a minimal Seifert surface S spanning K1#K2, and a sphere Σ that
intersects K1#K2 at two points (the points identified at the definition of K1#K2)
transverally, that is, the tangent space of K1#K2 and the tangent space of Σ at the
point of intersection span R3 (here we are assuming K1#K2 to be smooth, which is
no restriction). Then Σ separates K1#K2 in two arcs α1, α2, one in the bounded
component of R3 \Σ, and the other in the unbounded comonent (we know that those
components exist because of the Jordan-Brower theorem). Then if β is an arc in Σ

connecting the two previous points, it follows that α1 ∪ β is a copy of K1 and α2 ∪ β
is a copy of K2 (see Figure 4.2 for an example).

Figure 4.2: Σ separating K1 and K2

Without loss of generality, we can assume that S and Σ intersect transversaly
(they intertect transversaly at each point in S ∩ Σ) if needed we deform Σ in a
neighborhood of Σ ∩ S so that the assumption holds. It follows that S ∩ Σ must be
a one dimensional manifold i.e, a finite collection of loops and β (for an example see
Figure 4.4).
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Figure 4.3: Σ ∩ S a collection of loops (in green) and β (in blue)

The idea now is to do a sequence of deformations of S for each loop in a way that
the genus does not change but at each step S ∩Σ has fewer loops to finally conclude
that S ∩ Σ = β.

Let C be a loop in S ∩Σ and D a disc in Σ that bounds C such that D ∩ S = ∅.
Now, let Ŝ be the surface resulting of the following process. Remove from S a

small annular neighborhood U of C (a neighborhood homeomorphic to an annulus)
and consider two discs D1 and D2, D1 in the bounded component of R3 \ Σ and
D2 in the unbounded one (we know that such components exist because of the
Jordan-Brower theorem). Attach D1 to the boundary component of U included
in the bounded component of R3 \ Σ (the "inside" of Σ) and D2 to the boundary
component of U included in the unbounded component of R3 \ Σ (the "outside" of
Σ).

D1

D2
C
U

Figure 4.4: Removing the annular neighborhood and attaching discs

If S \ C has only one connected component then Ŝ is also a Serifert surface
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spanning K1#K2 whose genus is less than the genus of S, but that is impossible
since S is minimal. Then S \ C has more than one connected component. Consider
the connected component fo Ŝ that containsK1#K2, this is a Seifert surface spanning
K1#K2 whose genus is the same as S and that intersects Σ in fewer loops (at least
we have eliminated C).

By repeating this process a finite number of times (because the number of loops
is finite), we end up with a Seifert surface S∗ for K1#K2 that intersects at Σ only at
β. Then if we denote B1 the bounded component of R3 \ Σ and B2 the unbounded
one, we have that S∗1 = (B1∩S∗)∪β is a Seifert surface for K1 and S∗2 = (B2∩S∗)∪β
is a Seifert surface for K2 and so we have

g(K1) + g(K2) ≤ g(S∗1) + g(S∗2) = g(S∗) = g(K1#K2)

and thus we complete the proof.

4.2 Aplications

Theorem 4.1 has a good amount of impications which we now state and prove.

Corollary 4.2. Given any two knots K1 and K2, then if K1#K2 ∼ O then K1 ∼
K2 ∼ O.

Proof. By Theorem 4.1 we have that 0 = g(K1#K2) = g(K1) + g(K2) and since
g(K) ≥ 0 for any knot K, it must be that g(K1) = g(K2) = 0 and by Theorem 2.15
we have that K1 ∼ K2 ∼ O.

This tells us that the unknot is not a connected sum of two non trivial knots
(intuitively a rope with two knots tied in it where the ends are joined, will only
untangle if the rope is cutted).

Corollary 4.3. For every knot K if g(K) = 1 then K is a prime knot

Proof. If K = K1#K2 then by Theorem 4.1 either g(K1) = 0 or g(K2) = 0 and then
either K1 ∼ O or K2 ∼ O.

Corollary 4.4. Every knot K is a sum of at least g(K) prime knots, and thus a
finite sum of prime knots.

Proof. IfK is prime then the result is obvious. Suppose then thatK is not prime. By
definition there exist K1,K2 both different from the unknot such that K = K1#K2

and from Theorem 4.1 it follows that g(K1), g(K2) < g(K). Now we do the same
process for K1 and K2 in order to end up with new knots (assuming K1 and K2
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are no both prime knots) whose connected sum is K. By repeating this process we
conclude that K is a sum of prime knots. The fact that the number of prime knots
is at most g(K) is immediate from the additivity of the genus and the fact that all
prime knots have genus greater or equal than 1.

Corollary 4.5. There are non trivial knots with arbitrarily large crossing number.

Proof. For any knot K, by equation (3.1), since the number of seifert circles will
always be at least 1 we have that

g(K) ≤ c(K)

2
.

Let K be a non trivial knot, and Kn the sum of n copies of K. Then

n ≤ g(Kn) ≤ c(Kn)

2

and as n approaches infinity so does c(Kn).
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Appendices
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Appendix A

This appendix contains a table with projections of prime knots with up to 6 cross-
ings, and does not contain its mirror images (that is, the same projection changing
every crossing so that the strand that was over the crossing will now be under, and
the one that was under will now be over). We have also included the genus of every
knot.

31 g(31) = 1 41 g(41) = 1

51 g(51) = 2 52 g(52) = 1

61 g(61) = 1 62 g(62) = 2

63 g(63) = 2
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