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Mutations in genes encoding centriolar or ciliary proteins cause diseases collectively 20 

known as ciliopathies. Interestingly, the Human Phenotype Ontology database lists 21 

numerous disorders that display clinical features reminiscent of ciliopathies, but do 22 

not involve defects in the centriole-cilium proteome. Instead, defects in different 23 

cellular compartments may impair cilia indirectly and cause additional, non-ciliopathy 24 

phenotypes. This phenotypic heterogeneity, perhaps combined with the field’s 25 

centriole-cilium-centric view, may have hindered the recognition of ciliary 26 

contributions. Identifying these diseases and dissecting how the underlying gene 27 

mutations impair cilia will not only add to our understanding of cilium assembly and 28 

function, but may also open up new therapeutic avenues. 29 

  30 
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Ciliary defects are linked to disease 31 

Cilia are hair-like protrusions exposed at the cell surface that can be immotile or motile 32 

(Figure 1). A single, immotile cilium is present on most vertebrate cell types and serves to 33 

detect and respond to environmental cues including mechanical, chemical, or, in the case 34 

of photoreceptors, light signals. Upon detection the cilium transduces the signal to regulate 35 

gene expression, send a nerve signal to connected neurons, or control other cellular 36 

processes [1–3]. The best characterized example is the Hedgehog signaling pathway, which 37 

in vertebrates involves the primary cilium [4]. Motile cilia are present only on certain cell 38 

types and are used to propel cells (e.g. sperm) or move fluids over the cell’s surface (e.g. 39 

multi-ciliated epithelial cells of the airways) [5].  40 

Cilia are important for various developmental processes, as well as the function and 41 

homeostasis of many cell types. Consequently, ciliary defects cause a range of diseases 42 

that affect almost all organs and tissues of the human body. Common clinical phenotypes 43 

include impaired brain development and intellectual disability, distinct facial features, 44 

obesity, skeletal abnormalities, vision and hearing loss, heart malformations, abnormal 45 

organ placement, kidney and liver cysts, and respiratory defects. Collectively these diseases 46 

are referred to as ciliopathies [5–7]. The total number of identified ciliopathies has been 47 

growing continuously over the past decade. Established ciliopathies comprise at least 38 48 

diseases with mutations in at least 247 genes (Figure 2; Supplemental File), all of which 49 

affect the assembly, maintenance, or function of centrioles or cilia. In the majority of cases 50 

the encoded proteins also localize to these structures. Such cases were recently referred to 51 

as ‘first-order’ ciliopathies [6]. In contrast, ‘second-order’ ciliopathies are caused by 52 

mutations in non-centriolar, non-ciliary genes. First and second-order ciliopathies can be 53 

further grouped as motile or sensory ciliopathies, depending on the type of cilium affected. 54 

Various loss-of-function screens have implicated non-ciliary genes in ciliogenesis and ciliary 55 

function [8–11], but most mechanistic studies have focused on the centriole-cilium proteome 56 

and how it is linked to first-order ciliopathies. Here we discuss genes with indirect effects on 57 

cilia, which are linked to second-order ciliopathies and potentially to diseases that we term 58 

‘disorders with ciliary contribution’ (DCCs). In the case of DCCs, only a subset of the 59 

clinical manifestations may result from ciliary impairments, and these may be obscured by 60 

additional, non-ciliary phenotypes. Using Human Phenotype Ontology (HPO) data (see: 61 

http://hpo.jax.org), we identify candidate second-order ciliopathies and candidate DCCs and 62 

discuss how the underlying gene defects may impair cilia. This information may serve as 63 

starting point for experimental validation and for further mechanistic studies in the future. 64 
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 65 

The many roads to ciliopathy 66 

Cilia are highly complex organelles that depend on a plethora of proteins for their assembly 67 

and roles in signaling and motility. Ciliopathies can result from defects in the cilium itself or 68 

from defective centrioles, which serve as platforms for cilium assembly (Box 1). The most 69 

direct impact is expected from mutations in the ciliome, which comprises between ~300 70 

(high confidence SYSCILIA ‘gold standard’ list, based on experimental evidence) [12] and 71 

~1000 (‘CiliaCarta’, includes SYSCILIA and adds GO annotations and predictions) [13] 72 

proteins.  73 

 74 

Involvement of the ciliome 75 

Proteins of the ciliome linked to first-order ciliopathies can be classified in four major groups 76 

that work together to form functional cilia (Figure 1). All first-order ciliopathies have causative 77 

mutations that can be linked to one of these groups. Motile ciliopathies have in common that 78 

they specifically affect the motility apparatus, impairing ciliary beating or altering the beating 79 

pattern (Figure 1) [6,7]. Some proteins of the ciliome assemble together with a set of scaffold 80 

proteins into 70-100 nm cytoplasmic granules known as centriolar satellites [14,15]. 81 

Centriolar satellites traffic around centrioles in a microtubule-dependent manner and were 82 

found to be important for ciliogenesis in some cell line models [16,17], but a PCM1 knockout 83 

mouse only displayed defects in long-term cilia maintenance in some brain tissues [18]. Loss 84 

of the centriolar satellite scaffold protein PCM1 interferes with the ciliary localization of 85 

several proteins. This suggests that is not the formation of satellites per se, but the 86 

incorporation of satellite-associated proteins into cilia, which is crucial [19]. This notion is 87 

also consistent with the proposed role of centriolar satellites in protein targeting and cellular 88 

proteostasis [15,20]. 89 

Apart from defects in the ciliome, mutations that impinge on proteins in other cellular 90 

compartments can also cause ciliopathies. 91 

 92 

Involvement of proteins not associated with centrioles or cilia 93 

By comparison with the SYSCILIA ciliome [12] and the ciliary protein list compiled by Reiter 94 

and Leroux [6], we observed that only about half of the genes associated with 38 95 

established, non-motile ciliopathies (Supplemental File) encode components of centrioles 96 

or cilia. The other half localizes to the nucleus and the plasma membrane, as major 97 

compartments, is secreted to the extracellular space, or is associated with the ER, the Golgi, 98 
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and other sites. How do mutations that affect proteins residing in these diverse 99 

compartments result in ciliary defects? 100 

Nuclear proteins may control the expression of centriolar and ciliary genes. Examples 101 

are the transcription factors CRX, NRL, and NR2E3 that cooperate in the regulation of 102 

photoreceptor differentiation and homeostasis and that have been linked to retinitis 103 

pigmentosa and other retinal diseases [21–25]. Another example is GLIS2, a suppressor of 104 

transcription downstream of the Hedgehog signaling pathway that is implicated in 105 

nephronophthisis [26,27]. Other nuclear proteins are splicing factors (DHX38, RP9) and core 106 

spliceosome proteins (PRPF3, PRPF4, PRPF6, PRPF8, PRPF31, SNRNP200). Some were 107 

identified in screens for factors required for centriole biogenesis [28] and ciliogenesis [9,11], 108 

and all are linked to retinal degeneration [29–31]. A high demand for splicing activity may 109 

explain why the retina is particularly sensitive to systemic splicing defects [32,33].  110 

 Plasma membrane-associated proteins include surface receptors and associated 111 

signal transduction machinery, ion channels, as well as cell adhesion proteins. Many of 112 

these may also be present and have important roles in the ciliary membrane. This includes 113 

the receptor FGFR1, which was shown to localize to the kinocilium of mechanosensory hair 114 

cells in the inner ear [34]. Mechanotransduction involves adjacent rows of actin-based 115 

stereocilia, which are inter-connected and linked to the kinocilium by the membrane-116 

associated adhesion molecules CDH23 and PCDH15 [35]. Recruitment of PCDH15 to the 117 

kinocilium involves FGFR1-dependent PCDH15 phosphorylation and loading on IFT 118 

transport complexes [34]. Mutations in FGFR1, CDH23, and PCDH15 have all been linked 119 

to ciliopathies that involve hearing loss. 120 

Photoreceptors are cells that receive light signals via opsins, G-protein-coupled 121 

receptors (GPCRs) in the outer segment, a highly specialized cilium. Transduction of the 122 

signal involves hydrolysis of the second messenger cyclic GMP (cGMP) [36]. 123 

Phosphodiesterase subunits PDE6A, PDE6B, and PDE6G, the guanylate cyclase GUCY2D, 124 

and the calcium-sensitive guanylate cyclase activator GUCA1B are involved in the dynamic 125 

cycle of cGMP hydrolysis and re-synthesis. Mutations in these genes have been linked to 126 

vision loss in a number of ciliopathies [37–41]. 127 

 Factors secreted to the extracellular space such as extracellular matrix proteins, 128 

growth factors, and other intercellular signaling molecules are also linked to established 129 

ciliopathies. The most prominent example is SHH, the ligand of the receptor PTCH1 that 130 

initiates the Hedgehog signaling cascade [4]. 131 
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 The remaining proteins are associated with various other organelles. ER enzymes 132 

(DHDDS, ALG9, GANAB, PRKCSH) participate in protein glycosylation. During N-linked 133 

glycosylation precursor oligosaccharides linked to the lipid dolichol are synthesized and 134 

transferred by ER-resident glycosyltransferases to nascent proteins. Mutations in the 135 

glucosidase II complex subunits GANAB and PRKCSH, interfere with the biogenesis and 136 

targeting of the glycoproteins PKD1 and PKD2 to the ciliary membrane and cell surface, 137 

causing polycystic kidney and liver disease [42–44]. O-linked glycosylation is initiated in the 138 

ER and completed mainly by Golgi-resident enzymes such as the glycosyltransferase 139 

POMGNT1. POMGNT1 mutations result in the loss of a complex carbohydrate modification 140 

on the cell surface protein a-dystroglycan (DAG1), which is required for photoreceptor 141 

function and survival [45,46]. 142 

 In summary, apart from the ciliome, major groups of genes implicated in established 143 

ciliopathies comprise regulators of gene expression, as well as surface receptors and 144 

secreted factors that mediate signaling through the ciliary membrane. An additional 145 

contribution is made by factors controlling protein glycosylation and trafficking of ciliary 146 

building blocks. Of note, some of the ciliopathy-linked gene products that are not generally 147 

considered part of the ciliome, may in fact localize to cilia in certain cell types or transiently 148 

in response to specific signals. Moreover, ciliary proteins may also have additional functions 149 

outside of the cilium [47]. 150 

 151 

Identifying novel ciliary disease genes 152 

The prevalence of non-ciliome gene mutations in established ciliopathies suggests that cilia, 153 

owing to the complexity of their biogenesis and function, are affected by a wide range of 154 

cellular processes. Thus, disorders with mutations in genes that are seemingly unrelated to 155 

centrioles or cilia may include ciliary defects as part of their phenotypic spectrum. To 156 

address this, we probed the HPO database for any diseases that display at least a subset 157 

of features observed in established ciliopathies. Since motile ciliopathy presents with a 158 

relatively narrow range of specific phenotypes, we excluded it from this analysis. For each 159 

disease we scored the different organs and body parts that were associated with ciliopathy-160 

like phenotypes, scoring those that are more frequently affected higher than those in which 161 

phenotypes are less frequent (Figure 2; Supplemental File 1). This resulted in a ranked list 162 

of candidate diseases that are not generally classified as ciliopathies but include ciliopathy-163 

like phenotypes (Supplemental File 2). Most of the associated genes encode proteins that 164 

do not localize to centrioles or cilia, but there are a few exceptions (Figure 3). Meier-Gorlin 165 
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syndrome-associated ORC1, a subunit of the origin recognition complex in the nucleus, 166 

additionally localizes to the centrosome and its depletion impairs ciliogenesis in cell lines 167 

and in a zebrafish model [48,49]. Centrosome localization has also been observed for 168 

Fanconi anemia-associated BRCA1, BRCA2, XRCC2, and RAD51, which function in the 169 

nucleus in the DNA damage response [50–52]. While there is evidence for a relationship 170 

between DNA damage response and ciliogenesis, its mechanistic basis is still unclear 171 

[53,54]. The AAA ATPase family member PEX6, which mediates protein import into 172 

peroxisomes and is mutated in Zellweger syndrome, was recently suggested to have 173 

peroxisome-independent roles in the ciliary structures of photoreceptors [55].  174 

Below we will highlight a few of the remaining genes and associated diseases, which 175 

are candidates for second-order ciliopathies or DCCs. 176 

 177 

Nuclear factors 178 

Most of these genes may affect cilia via the regulation of gene expression. The splicing 179 

factor SON controls specifically the expression of various centriolar and ciliary genes 180 

[9,56,57] and was shown to affect centriole biogenesis [28]. The chromatin regulators 181 

KMT2D and ANKRD11, linked to Kabuki and KBG syndromes, respectively, were among 182 

the hits in a screen for factors involved in ciliary Hedgehog signaling [8]. Both were also 183 

identified by exome sequencing in patients with congenital heart disease [58,59], a disease 184 

in which cilia have a central role [60]. Additional genes identified in the exome sequencing 185 

studies are PTPN11, ADNP, NSD1, KMT2A, and DYRK1A, which are associated with 186 

various human disorders. SMARCA4, associated with Coffin-Siris syndrome, has not yet 187 

been shown to affect cilia, but mutation of the mouse ortholog is associated with congenital 188 

heart disease [60].  189 

 190 

Plasma membrane and secreted proteins 191 

As discussed above, this group may include components of ciliary signaling pathways. 192 

Notch signaling, for example, may function upstream of ciliogenesis, but may also be 193 

mediated by cilium-localized NOTCH receptors such as NOTCH3 [61]. Mutation of the 194 

NOTCH2 receptor is associated with cystic kidneys among other phenotypes in Alagille 195 

syndrome and Hajdu-Cheney syndrome, and impairs primary cilia during renal tube 196 

morphogenesis [62]. Recent work in zebrafish showed that primary cilia control 197 

hematopoiesis through Notch signaling [63]. Apart from various signaling pathways that are 198 

initiated in the cilium [64], others function upstream of the cilium. An example are 199 
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noncanonical Wnt signaling ligand WNT5A and planar cell polarity DVL proteins, which have 200 

been implicated in primary cilium assembly/disassembly [65–67]. 201 

 202 

Secretory pathway 203 

Components of the secretory pathway may affect ciliary membrane composition. Coatomer 204 

proteins (ARCN1, SEC24C) are involved in vesicle trafficking between ER and Golgi and 205 

TBC domain-containing proteins (TBC1D20, TBC1D25, TBCK) function as Rab-GTPases 206 

activating proteins to mediate specific trafficking steps. For instance, TBC1D20 is required 207 

for the ER-Golgi-plasma membrane trafficking of GPCRs [68]. Several candidate genes of 208 

the ER and Golgi, linked with congenital disorders of glycosylation (CDGs), affect protein 209 

glycosylation and glycoprotein trafficking (MOGS, SSR4, ALG12, COG1, COG5, COG6). 210 

Two genes are involved in related GPI-anchor disorders (PIGT, PIGQ). Others are involved 211 

in phospholipid synthesis and distribution (PIK3C2A, VAC14, FIG4), as well as cholesterol 212 

metabolism (EBP, SC5D, DHCR7). The phosphatidylinositol and phosphatidylinositol-4-213 

phosphate kinase PIK3C2A is associated with oculoskeletodental syndrome and has been 214 

implicated in primary cilium formation and function [69,70]. Similarly, DHCR7, mutated in 215 

Smith-Lemli-Opitz syndrome and involved in cholesterol biosynthesis, was shown to localize 216 

at the ciliary base and promote Hedgehog signaling [71,72]. RAB18, RAB3GAP1, 217 

RAB3GAP2, mutated in Warburg Micro syndrome, have been implicated in the mobilization 218 

of cholesterol by promoting lipid transfer between distinct membrane compartments [73]. 219 

Also implicated in lipid transport are VPS13 family members such as Cohen Syndrome-220 

associated VPS13B, a Golgi protein [74]. 221 

 222 

Peroxisome proteins 223 

A number of PEX genes, associated with Zellweger syndrome, and other peroxisomal 224 

components (HSD17B4, ACOX1) are also found in our candidate list. Interestingly, acute 225 

depletion of peroxisome biogenesis factors PEX1 and PEX3 by knockdown was shown to 226 

partially inhibit ciliogenesis [75]. Thus, peroxisomes and not only peroxisomal proteins that 227 

localize to cilia (as discussed above for PEX6) may be important for cilia, possibly owing to 228 

their role in cholesterol trafficking. Cells from Zellweger patients were shown to have 229 

reduced ciliary cholesterol and microtubule-dependent transport of peroxisomes was 230 

proposed to deliver cholesterol to the ciliary pocket [76]. 231 

 232 

Mitochondria 233 



 8 

A functionally diverse set of mitochondrial factors, linked to various disorders, may also 234 

affect cilia, possibly by regulating cellular ATP levels. Indeed, knockdown of a set of genes 235 

with roles in mitochondria and mutated in patients with heterotaxy (misplacement of visceral 236 

organs) was shown to reduce cellular ATP levels and increase the length of cilia in cultured 237 

cells and caused ciliopathy-like phenotypes in zebrafish [77]. Depletion of ACOX1, an 238 

enzyme of the peroxisomal b-oxidation pathway, has similar effects, potentially involving 239 

mitochondrial dysfunction that is secondary to disrupted peroxisomal b-oxidation. Reduction 240 

in cellular ATP was proposed to inhibit the ATP-dependent kinesin KIF19A, which limits 241 

ciliary length by its microtubule depolymerase activity [77]. 242 

 243 

Protein degradation machinery 244 

The protein degradation machinery has been identified as an important ciliary regulator in 245 

several screens [8,9,11]. Interestingly, our candidate list also contains several components 246 

of the ubiquitin-conjugation machinery (SPOP, FANCL, HUWE1, RFWD3, RNF113A, 247 

UBE3B, UBE2T, UBA1). 248 

 249 

 250 

Concluding remarks  251 

The association of ciliopathy-like phenotypes with a large number of human genetic 252 

disorders suggests a much broader involvement of ciliary dysfunction in human disease than 253 

generally appreciated. It also suggests that the underlying gene mutations frequently do not 254 

directly interfere with ciliary function, but impair other organelles, with secondary effects on 255 

cilia. The discussion provided here may serve as starting point for future studies aimed at 256 

uncovering such links. Integrating seemingly unrelated cellular compartments and 257 

processes with the assembly and function of cilia will allow a better grasp of the true 258 

complexity of these organelles. Moreover, being able to add rare disorders with poorly 259 

understood etiology to the ciliopathy disease spectrum will raise urgently needed awareness 260 

among clinicians and researchers and may allow identification of new therapeutic strategies. 261 

 262 
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 276 

Glossary 277 

 278 

First-order ciliopathy: disease caused by ciliary defects due to mutations in genes 279 

encoding ciliary or centriolar components. 280 

 281 

Second-order ciliopathy: disease caused by ciliary defects due to mutations in genes 282 

encoding proteins that are not present at centrioles or cilia. 283 

 284 

Disorders with ciliary contribution (DCCs): disorders caused by mutations in proteins 285 

that do not localize to the centriole-cilium compartment but affect cilia indirectly and that 286 

may cause additional, non-ciliary phenotypes. 287 

 288 

Intraflagellar transport (IFT): motor-dependent bidirectional traffic of molecules along 289 

axonemal microtubules. 290 

 291 

BBSome: heterooctameric BBS protein complex that acts as a ciliary cargo adapter in 292 

retrograde transport, linking membrane-bound ciliary proteins to the intraflagellar transport 293 

machinery. Mutations in the BBSome genes cause the ciliopathy Bardet-Biedl syndrome 294 

(BBS). 295 

 296 

Human Phenotype Ontology (HPO): standardized vocabulary of phenotypic 297 

abnormalities encountered in human disease. It provides more than 150,000 phenotype 298 

and gene annotations to human hereditary diseases.  299 

 300 

 301 
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Box 1: Step-wise cilium assembly 519 

Before serving as platform for cilium assembly, the mother centriole acquires distal and 520 

subdistal appendages. Only distal appendages are essential for ciliogenesis. Subdistal 521 

appendages are not required for cilium formation, but for its positioning, including its 522 

submerged configuration in the ciliary pocket by tethering the mother centriole to the Golgi 523 

[78,79]. Loss of subdistal appendages results in farther protrusion of cilia on the cell surface, 524 

increasing their susceptibility to chemical and mechanical stimuli [78].  525 

Ciliogenesis is coupled to the cell cycle. Cilia assemble during G0/G1 phase and, as 526 

cells re-enter or progress in the cell cycle, disassemble again at some point prior to mitosis. 527 

The first step of cilium formation is the docking of small, pre-ciliary vesicles, presumably 528 

originated from the Golgi, at the distal appendages of the mother centriole, a process that 529 

requires the distal appendage protein CEP164 [80,81]. The kinase TTBK2 promotes the 530 

removal of the inhibitory factors CP110 and CEP97 from the distal centriole end [82,83]. 531 

Ciliary membrane growth and protein composition are established by vesicle trafficking 532 

mediated by members of the Rab and Arf GTPase families, such as Rab8A and Rab11, in 533 

cooperation with the actin network. Fusion of pre-ciliary vesicles gives rise to a larger ciliary 534 

vesicle that spans the entire distal centriole end [84]. Axoneme formation by elongation of 535 

the centriolar doublet microtubules is accompanied by growth of the ciliary vesicle, forming 536 

a sheath around the nascent axoneme. An important event is assembly of the transition 537 

zone complex, which controls protein transition into and out of the cilium [85,86]. These 538 

processes involve the intraflagellar transport (IFT) and vesicular trafficking machineries 539 

that are recruited to the ciliary base and into the growing cilium. Finally, the membrane-540 

bounded axoneme reaches the cell surface where the ciliary sheath fuses with the plasma 541 

membrane, allowing the docking of the distal appendages to the plasma membrane and 542 

extension of the membrane-enclosed axoneme into the exterior of the cell [84,87]. 543 

Alternatively, some cells (e.g. polarized epithelial cells) employ a plasma membrane-544 

associated cilium assembly pathway. Here, the mother centriole first migrates and docks to 545 

the apical cell membrane, where the entire ciliary assembly process takes place. Other cells 546 

(e.g. multi-ciliated cells) use a combination of both pathways [87]. 547 

 548 

Figure I. Key steps of ciliogenesis 549 

The key steps of cilium assembly are shown from left to right. The first step is the tethering 550 

of small vesicles at the distal appendages of the mother centriole. Multiple small vesicles 551 

fuse to form a larger ciliary vesicle. The axoneme assembles and the ciliary vesicle forms a 552 
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sheath around it. Fusion of the ciliary sheath with the plasma membrane and membrane 553 

docking of the mother centriole exposes the growing cilium at the cell surface. 554 

 555 

  556 



Outstanding questions 
 
 
Are genes linked to second-order ciliopathies truly non-ciliary? 
Several examples suggest that proteins that are not considered components of 
centrioles or cilia may localize to these structures transiently or only in certain cell 
types. Thus, it will be important to investigate their localization in a disease-
relevant tissue and context. 
 
How are cilia affected by defects in other cellular compartments? 
Many disorders with mutations in non-ciliary genes share phenotypes with known 
ciliopathies, suggesting that cilia are sensitive to a range of different cellular 
impairments. Identifying such cases and deciphering the underlying mechanisms 
will provide new insight into disease pathophysiology and increase our 
understanding of cilia biology. 
 
Is the crosstalk between cilia and other cellular compartments or processes 
enhanced in particular cell types? 
As for centriolar and ciliary genes, mutations in non-ciliary genes may not 
necessarily have general effects on cilia. Thus, it will be crucial to study their 
impact in a context that is relevant to the disease.   
 
Do ciliary proteins have functions beyond the cilium? 
There are examples of centriolar or ciliary genes having additional roles outside 
the cilium. Mutations in these genes may produce phenotypes not consistent with 
ciliopathy, resulting in misclassification. 
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Figure Legends 557 

 558 

Figure 1: The structure and composition of cilia. 559 

The base of a cilium is formed by the mother centriole. An extension of its distal wall 560 

constitutes the axoneme, a scaffold structure at the core of the cilium that is surrounded by 561 

the ciliary membrane [88]. Only the mother centriole carries subdistal appendages, which 562 

anchor cytoplasmic microtubules, and distal appendages, which mediate docking to the 563 

ciliary and plasma membranes. Cargo trafficking along the axoneme, mediated by 564 

intraflagellar transport (IFT) particles composed of IFT-A complex and dynein (retrograde 565 

transport) or IFT-B complex and kinesin-2 (anterograde transport) is required for cilium 566 

biogenesis and function [1,3]. Cargo entry into the cilium can be passive (small proteins), 567 

chaperone-assisted (e.g. lipidated cargo), or TUB/TULP3-mediated (e.g. GPCRs) (not 568 

shown). The BBSome cargo adapter is involved in retrograde transport and export [1]. As 569 

depicted in the cross-section views, the axonemes of most motile cilia contain a central pair 570 

of microtubules and additional features that are required for ciliary motility. The transition 571 

zone is a higher-order protein assembly that functions as a diffusion barrier, controlling entry 572 

and exit of lipids and proteins [85,89]. The ciliary membrane is enriched in 573 

phosphatidylinositol-4-phosphate (PI4P) and also contains microdomains composed of 574 

sterols and sphingolipids. The specific lipid composition together with protein glycosylation 575 

and lipidation are crucial for the targeting and function of various ciliary membrane proteins 576 

such as receptors, ion channels, and associated signal transduction proteins [90,91]. 577 

Colored boxes indicate major groups of proteins that constitute the distinct centriolar and 578 

ciliary sub-compartments and participate in their function. First-order ciliopathies are caused 579 

by mutations in genes that encode proteins of these groups [6]. 580 

 581 

Figure 2: Probing the HPO database using phenotypes of established ciliopathies 582 

The matrix indicates for each of the 38 established ciliopathies (listed on the left) the organs 583 

and body parts (indicated at the top) in which clinical phenotypes are observed, according 584 

to the HPO database. The different categories were ordered from left to right, color-coded 585 

from blue to red, and provided with a score (shown on the top right), according to how 586 

prevalent they are among the 38 established ciliopathies. To identify new diseases with 587 

ciliopathy-like phenotypes (flowchart at the bottom; Supplemental File S1) we compared the 588 

associated phenotypes of all diseases in the HPO database with the phenotypes of 589 

established ciliopathies and scored the matches. Phenotype matches in categories 590 
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frequently affected in established ciliopathies were scored higher, phenotype matches in 591 

categories less frequently affected were scored lower. The result is a ranked list of diseases 592 

with associated genes (Supplemental File S2). Top scoring diseases are candidates for 593 

previously undescribed ciliopathies or DCCs.  594 

 595 

 596 

Figure 3: Compartments and roles of proteins associated with candidate ciliopathy-597 

like diseases 598 

Proteins encoded by genes mutated in 38 established ciliopathies (left column) and in 599 

candidate ciliopathy-like diseases (right column) identified as described in Figure 2 and 600 

Supplemental File S1 were ordered by compartments to which they localize. Within each 601 

compartment proteins with similar roles were grouped. For each compartment the total 602 

number of proteins is indicated. Some proteins are associated with multiple compartments. 603 

The complete lists can be found in the Supplemental File S2. For established ciliopathies 604 

only about half of the associated proteins are components of centrioles or cilia, the other 605 

half localizes to various other cellular compartments. For the novel candidate ciliopathies 606 

and DCCs the large majority of associated gene products are not part of the centriole-cilium 607 

proteome. 608 

 609 

 610 

 611 
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MAP2K2
MYH3
MYO9A

OTUD6B
PHGDH
PPP2R1A
RPL10

RTL1
SMS
TARS1
TASP1

TBCK
TMEM94
UBR1

USP9X
WDR73
WHCR
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- Supplemental File S1, related to Figure 2 and Figure 3: provides a flow chart 

depicting the steps that were carried out in order to identify candidate ciliopathies and 

DCCs, as well as the localization and roles of the proteins encodes by genes 

associated with these diseases.  

 

- Supplemental File S2: Excel file containing all the data obtained in our analysis 

including a list of established ciliopathies and their associated phenotypes and newly 

identified diseases with ciliopathy-like phenotypes. This file also contains tables 

showing disease-gene association, as well as encoded protein localization and 

function, for the genes associated with the top 300 scoring diseases from our 

analysis. 

 

 

  



Supplemental File S1: Outline of the procedure used to identify candidate ciliopathies 
and DCCs. 
The HPO database was used to extract phenotypes of 38 established ciliopathies and 

identify recurrent phenotypes. These were classified into different categories according to 

the affected body parts/tissues. For each phenotype category a prevalence was calculated 

based on how frequently it is among the established ciliopathies. All HPO disease entries 

were then probed for association with any of the ciliopathy phenotype categories and a score 

was assigned, calculated from the sum of prevalences of the phenotype categories the 

disease is associated with. This resulted in a ranked list of diseases with ciliopathy-like 

phenotypes. The top 300 scoring diseases were subjected to further analysis. For each 

disease the associated genes were identified in the HPO database. For all gene products 

subcellular localization and the biological process they are involved in were listed using GO 

terms (http://go.princeton.edu; http://pantherdb.org), information in Uniprot, and manual 

curation based on available literature. 

 

 

Supplemental File S2: Gene lists and phenotypes of established ciliopathies, 
candidate ciliopathies, and candidate DCCs. 
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Classify recurrent phenotypes
associated with 38 established

ciliopathies into categories based on
affected body part/tissue

Filter HPO database for diseases
(OMIM and ORPHA IDs) associated

with any recurrent ciliopathy phenotype

For each disease calculate score as
sum of the prevalenes of the

associated phenotype categories

Calculate prevalence of each
phenotype category:

# established ciliopathies
with this phenotype category / 38

Rank diseases by score

For each disease
identify associated genes
based on HPO database

Classify genes based on subcellular
localization and biological process
GO terms, UniProt, and manual annotation

based on literature

Analyze 300 top-ranked diseases
Note: cutoff is arbitrary, lower ranked diseases

may also be considered

see Figure 2

see Suppl. File S2

see Figure 3,
Suppl. File S2

see Figure 2,
Suppl. File S2

Supplemental File S1


