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Abstract

We study cooperative solutions for differential games where players consume a common

property resource. Players are asymmetric, in the sense that they have different preferences

and, in particular, different time preferences. We propose a new time-consistent dynamic

bargaining procedure for this class of games. This solution concept, which is defined as the

time-consistent dynamic bargaining (TCB) solution, extends the recursive Nash bargaining

solution introduced in Sorger (2006) to a continuous time setting. The underlying idea is

that, in case of disagreement, the threat is that players will play a noncooperative Markov

Perfect Nash equilibrium just during a very small period of time, since new negotiations

can take place at every future moment and, in particular, immediately later. Conditions for

interior TCB solutions are derived. To illustrate the results, two common property resource

games are analyzed in detail.

Keywords: Differential games; time-consistency; dynamic bargaining; asymmetric players;

heterogeneous discounting; common property resource games

1 Introduction

Consider a differential game where players share the property of a resource. If cooperation

is permitted, players could decide to coordinate their strategies in order to optimize their

collective payoff. Pareto optimal solutions can be found by maximizing a weighted sum

of the intertemporal utility functions. However, although it is typically assumed that all

agents have the same rate of time preference, there is no reason to believe that players

(consumers, firms or countries) have identical time preferences for utility streams. In that
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case, in the computation of optimal decision rules, as in hyperbolic discounting, a problem

of time-inconsistency arises: what is optimal for the coalition or the society at time t will be

no longer optimal at time s, for s > t.

If utilities are cardinal, the most natural way to address the problem of finding time-

consistent policies if agents with heterogeneous discount functions can cooperate - or if there

is a social planner aggregating their preferences - is to add the individuals intertemporal

utility functions and - as in hyperbolic discounting - look for time-consistent policies1. In

this approach there are two implicit fundamental assumptions: all players can cooperate at

every instant of time t, and the different t-coalitions (coalitions at time t) lack precommitment

power for future decision rules. As a result, the solution becomes partially cooperative (agents

at the same time cooperate to achieve higher joint payoffs) but partially noncooperative

(coalitions at different moments have different time preferences and do not cooperate among

them). As in nonconstant discounting, time-consistent equilibria can be computed by finding

subgame perfect equilibria in a noncooperative sequential game where agents are the different

t-coalitions. However, the time-consistent “cooperative” solution obtained in this way (the

t-cooperative equilibrium2) can have some important drawbacks.

First, such time-consistent solutions are not Pareto optimal. As a result, time-consistent

cooperative solutions can be inefficient for the group: joint payments can be higher if players

act in a fully noncooperative way (see Maŕın-Solano, 2015). A second problem is that, if

payments are not transferable among players, it seems natural to assume that players will

take into account what they obtain if they decide not to cooperate. Last but not least, if

players have different instantaneous utility functions, time-consistent cooperative equilibria

seem to be extremely cumbersome to compute (see e.g. de-Paz et al., 2013).

In this paper we propose to work within the framework of a dynamic Nash bargaining

theory in a continuous time setting, where negotiations can be done at every instant of time.

Our proposal starts from the recursive Nash bargaining solution introduced in Sorger (2006).

This solution concept was proposed for dynamic games with heterogeneous players in a dis-

crete time setting. According to this solution, knowing the decision rule at future periods

s = t+ 1, t+ 2, . . . , agents look for a weighted Nash bargaining solution in which the status

quo or threat point is given by the payoffs of the players if they do not cooperate just at

period t. As a result, weights of players become time-varying and the corresponding solution

is time-consistent3. In our paper, we maximize, at every time, a Nash welfare function. In

case of disagreement, agents can bargain again at any possible moment in the future and,

in particular, immediately later. As a result, the corresponding solution becomes fully time-

consistent (subgame perfect). Finally, we illustrate our theoretical findings by computing

the time-consistent dynamic bargaining solution for two common property resource games.

In particular, the second example shows that it seems that there is a clear advantage in ana-

lytical tractability of the dynamic bargaining solution proposed in the paper when compared

1In the literature of hyperbolic discounting, time-consistent policies are those followed by sophisticated agents.
2We use the same definition as in Maŕın-Solano (2015) for this solution concept. In de-Paz et al. (2013), it was

defined as a time-consistent equilibrium under partial cooperation and, in Maŕın-Solano and Shevkoplyas (2011),

as a Pareto efficient solution.
3Variable weights are also considered in Yeung and Petrosyan (2015).
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with the t-cooperative equilibrium. For this model, unlike the t-cooperative solution, linear

decision rules can exist.

Related literature. Although there is a huge amount of papers in economics address-

ing the issue of bargaining theory in static and repeated games, the topic has received less

attention in state-dependent common resource games with asymmetric players discounting

the future at different rates. Sorger (2006) introduced the concept of recursive Nash bar-

gaining. More recently, Flamini (2016) proposed an alternative non-cooperative approach to

dynamic bargaining, not making use of a Nash welfare function, unlike Sorger (2006). Both

papers address the problem in a discrete time setting. In contrast, we consider problems in

continuous time, i.e. differential games. The search of time-consistent policies in cooper-

ative differential games with asymmetric players, exhibiting different utilities and discount

rates, was addressed in de-Paz et al. (2013), Ekeland et al. (2013) and Maŕın-Solano and

Shevkoplyas (2011). Techniques involved are those of time inconsistent preferences. For a

recent survey containing the main references on the topic, we refer to Yan and Yong (2019).

Concerning Nash bargaining theory in differential games, the classical approach, consisting

in maximizing a Nash welfare function at initial time, presents several unsatisfactory aspects

(Haurie, 1976), and looks non appropriate in the search if time-consistent (subgame perfect)

solutions. First, there is the dynamic-consistency problem related to the fact that weights of

players, calculated at initial time, do not guarantee that the solution is individually rational

along the whole time-horizon. This problem has been addressed is several papers (see e.g.

Petrosyan and Yeung (2014) and references therein). In addition, there is another source

of time-inconsistency: if players can renegotiate their weights in a future moment, the new

ones will be typically different, as a consequence of the evolution of the state of the system

and the asymmetric discount rates. As a result, they will change their decision rules (lack of

subgame perfectness). In Castañer et al. (2020), an attempt to manage all these issues was

made. As in the present paper, agents can bargain again at every moment in the future, but

the threat (the trigger strategy) is that, in case of disagreement, players will not cooperate

forever. The corresponding solution concept belongs to what some authors name the class

of collusive equilibria (see e.g. Haurie et al., 2012). But the choice of such threat point looks

a bit extreme and unrealistic in many real life situations. In addition, it is not fully time-

consistent. Instead, in the present paper, the threat is that, in case of disagreement, players

will play a noncooperative Markov Perfect Nash equilibrium just during a time period of

lenght ε, for ε arbitrarily small, with the knowledge that new negotiations can take place

immediately later in order to achieve an agreement. In this sense, as we have mentioned

above, our paper can be seen as the continuous time counterpart of Sorger (2006).

The paper is structured as follows. Section 2 describes the general model. Section 3

presents the main contribution of the paper. We introduce and characterize, in a continuous

time setting, the time-consistent dynamic bargaining solution (TCB solution). A common

property renewable resource model with log-utilities is analyzed in Section 4. Section 5

studies the joint management in a resource model with general isoelastic utilities and constant

gross rate of return. Section 6 concludes the paper. Appendix A contains a brief review of

the time-consistent cooperative equilibrium rule (t-CE). Proofs of the main results can be

found in Appendix B.
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2 Preliminaries

In this section we introduce the differential game model and fix notation. Let N be the

number of players, and x ∈ X ⊂ R the state variable. For each player i ∈ {1, . . . , N}, let

ci ∈ Ui ⊂ R be her control (decision) variable, c = (c1, . . . , cN ) the corresponding vector of

decision rules, ui(x, c1, . . . , cN ) the instantaneous utility function, and ρi the discount rate.

The intertemporal utility function of player i at time t is

Ji(xt; c1, . . . , cN ; t) =

∫ ∞
t

e−ρi(s−t)ui(x(s), c1(s), . . . , cN (s)) ds , with (1)

ẋ(s) = g(x(s), c1(s), . . . , cN (s)) , x(t) = xt . (2)

In this paper, function ui depends just on ci, for i = 1, . . . , N . We will assume that ui(ci)

is continuously differentiable, increasing and strictly concave4. In addition, g(x(s), c(s)) =

f(x(s)) −
∑N
i=1 ci(s), with f(x) a continuously differentiable and concave (possibly linear)

production function, so (2) becomes

ẋ(s) = f(x(s))−
N∑
i=1

ci(s) , x(t) = xt . (3)

These conditions, that are standard in economic models, facilitate the fulfilment of the

conditions in Benveniste and Scheinkman (1979) for the concavity and differentiability of the

value functions appearing in our problem, properties that are assumed in our derivations.

Next, let us consider an intertemporal decision problem with several agents in which

players can coordinate their strategies in order to optimize their collective payoff. In a

cooperative setting, we can aggregate preferences as

Jc(xt, c, t) =

N∑
i=1

λiJi(xt, c, t) =

N∑
i=1

λi

∫ ∞
t

e−ρi(s−t)ui(ci(s)) ds , (4)

with λi ≥ 0. If players have equal weights, we can take λ1 = · · · = λN = 1. If there

is a unique and constant discount rate of time preference for all agents, Pareto optimal

solutions can be obtained by solving a standard optimal control problem. However, in the

case of different discount rates, joint preferences become time inconsistent. In order to find

time-consistent solutions, the problem can be solved as a noncooperative sequential game

with a continuum of “players” (each “player” is each coalition at time t, that we call the

t-coalition). Hence, we can follow the ideas in Karp (2007), Ekeland and Lazrak (2010) or

Yong (2011), who suggested three different procedures to find subgame perfect equilibria for

this sequential game. A brief summary of this solution concept, that we call a t-cooperative

equilibrium (t-CE), can be found in Appendix A.

The t-CE is the natural extension of the standard cooperative solution within our setting

with asymmetric discounting, since it is constrained (to the future behavior of the agents)

Pareto optimal. However, in a differential game with heterogeneous discounting, if utility

4The extension of the theoretical results in the paper to more general utility functions and multidimensional

problems of the form u(x, c) with x ∈ X ⊂ Rn and ci ∈ Ui ⊂ Rmi is straightforward, provided that the

corresponding value functions are sufficiently smooth. A similar comment applies to the state equation below.
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functions are essentially different, the t-CE can become extremely difficult to compute (as

illustrated, e.g., in de-Paz et al. (2013), for the case when marginal elasticities are different).

In addition, it can be group inefficient, in the sense that joint payoffs can be lower in the t-

cooperative equilibrium than in a noncooperative Markov Perfect Nash Equilibrium (MPNE)

(Maŕın-Solano, 2015). Finally, the t-CE has a property that looks rather unsatisfactory: if

players have equal weights and equal preferences for consumption, represented by the same

utility function, but they are asymmetric in their time-preferences, the t-CE assigns the same

consumption to all players at every time, independently of who is more or less impatient.

In the paper, we propose a new time-consistent (and subgame perfect) solution in Marko-

vian strategies. Here, we understand time-consistency and subgame perfectness according to

the definition in noncooperative differential games (see e.g. pages 99–103 in Dockner et al.,

2000, or pages 173–174 and 260 in Haurie et al., 2012), linked to the issue of credibility of

the announced equilibrium strategies. This is indeed the convention that has been adopted

as the standard in the literature of time inconsistent preferences.

Definition 1 Let Γ(x0, 0) denote a game played along [0,∞), with initial state x0 ∈ X, and

let Γ(x, t) be the corresponding subgame defined on the time interval [t,∞) with initial state

x(t) = x ∈ X.

• Let (φ1, φ2, . . . , φN ) be a Markovian solution for the game Γ(x0, 0), and denote by

x∗(t) the unique state trajectory generated by the solution to the game. The solution

is time consistent if, for each t ∈ [0,∞), the subgame Γ(x∗(t), t) admits a Markovian

solution (ψ1, ψ2, . . . , ψN ) such that ψi(y, s) = φi(y, s) holds for all i ∈ {1, . . . , N} and

all (y, s) ∈ X × [t,∞).

• If, for each (x, t) ∈ X×[0,∞), the subgame admits a Markovian solution (ψ1, ψ2, . . . , ψN )

such that ψi(y, s) = φi(y, s) holds for all i ∈ {1, . . . , N} and all (y, s) ∈ X × [t,∞), the

solution (φ1, φ2, . . . , φN ) is said to be subgame perfect.

It is important to stress here that, in the context of NTU cooperative differential games,

a different idea of time-consistency (and agreeability) has been used (see e.g. Petrosyan

and Yeung, 2014, or Yeung and Petrosyan, 2015), by incorporating Pareto optimality and

individual rationality. These concepts are related to the stability of the coalition, in the sense

that both players are better off by playing in a cooperative way during the whole planning

horizon, so there is not a future moment in which it can be profitable for some of them to

play in a fully noncooperative way and break the coalition. The t-CE is a time-consistent

and subgame perfect equilibrium according to Definition 1. But it is not time-consistent, in

general, in this other sense.

3 A dynamic bargaining procedure

As an alternative to the t-cooperative equilibrium rule, in this paper we propose to use

a dynamic version of Nash bargaining theory. In Nash bargaining theory, payments are

obtained as the maximizers of a Nash bargaining function (Nash, 1953). These payments

implicitly characterize the weights of players in the whole coalition. Munro (1979) proposed
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to use Nash bargaining theory with constant weights in a transboundary resource model with

asymmetric players. In his model, the threat (status quo, disagreement or reference) point is

the payoff associated to a noncooperative Nash equilibrium, and weights are bargained at the

beginning of the game. In order to avoid the problems of dynamic inconsistency5 (implicit in

any differential game, see Haurie (1976)) and time inconsistency (due to the different discount

rates) of the solution, he assumed full commitment of agents, which is unrealistic in most

of cases. As a way to overcome these problems, we propose to work within a Markovian

formulation, where strategies are derived as the result of repeated negotiations that take

place at every moment t.

We assume that, at time t, players know the state of the system and take as given their

future decision rule, c = φ(x(s), s), s > t, as a reaction to their current decisions6. Then,

as in the classical Nash bargaining solution, they compare what they get cooperating at

time t (or during the time interval [t, t+ ε), with ε arbitrarily small) with what they receive

otherwise (the status quo, threat point or reference point). Let us denote the threat point

by (W1(x, t), . . . ,WN (x, t)). When players at time t try to reach an agreement and to derive

their corresponding actions, they choose their policy in the time interval [t, t + ε) as the

maximizer of some “distance” between what they obtain in case of agreement and in case of

disagreement. We assume that this distance is measured according to the generalized Nash

welfare function with strictly positive bargaining powers η1, . . . , ηN

N∏
i=1

[Ji(x, c1, . . . , cN , t)−Wi(x, t)]
ηi .

This solution concept has been characterized (for static games) with a set of three axioms:

strong individual rationality, independence of utility calibration and independence of irrele-

vant alternatives. For η1 = · · · = ηN = 1 we recover the classical Nash bargaining solution

satisfying symmetry.

For a decision rule (c1, . . . , cN ) = (φ1(x, t), . . . , φN (x, t)) and a set of threat value func-

tions W (x, t) = (W1(x, t), . . . ,WN (x, t)) satisfying Ji(x, φ1(x, t), . . . , φN (x, t), t)−Wi(x, t) ≥
0, for all i = 1, . . . , N , let

Π(x, t) =

N∏
i=1

[Ji(x, φ1(x, t), . . . , φN (x, t), t)−Wi(x, t)]
ηi .

If players can precommit their behavior during a time period of length ε, take

cε(s) =

{
c̄ if s ∈ [t, t+ ε) ,

φ(x(s), s) if s ≥ t+ ε ,

so that

Ji(x, cε, t) =

∫ t+ε

t

e−ρi(s−t)ui(c̄i) ds+

∫ ∞
t+ε

e−ρi(s−t)ui(φi(x(s), s)) ds (5)

5In cooperative differential game theory, the words dynamic consistency or time consistency are frequently

used to characterize the property that none of players are worse under the whole planning horizon in comparison

with the noncooperative payments. In the present paper we reserve the use of time consistency to the common

way in the literature of time inconsistent preferences.
6We will not assume, in advance, that there exist stationary strategies. Their existence will depend on each

particular problem and the threat point considered in case of disagreement.
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and

Πcε(x, t) =

N∏
i=1

[Ji(x, cε, t)−Wi(x, t)]
ηi . (6)

Then, at least in principle (as we will see later, this will be the case if bargaining powers are

normalized so that
∑N
i=1 ηi = 1), we can expect that

Πcε(x, t) = Π(x, t) + Π1(x, φ, c̄, t)ε+ o(ε) .

The underlying idea consists, in general, in maximizing the first order term Π1(x, φ, c̄, t) (or,

in general, the lower order term in ε), in such a way that c̄∗ = φ(x(t), t).

It remains to define the threat value function. If we assume full rationality of players,

under no commitment, in case of non cooperation at time t, decision-makers can bargain

again at time t+ε, for ε arbitrarily small. Hence, the threat point (noncooperative behavior)

lasts after a time period of length ε. This is the natural extension to a continuous time setting

of the recursive Nash bargaining solution introduced in Sorger (2006). By construction, the

corresponding solution is dynamically consistent but typically non Pareto optimal for the

t-coalition.

Next, we make precise in a rigorous mathematical way the ideas introduced above. First,

we will define the time-consistent bargaining solution. Later on, we will propose a candidate

for threat point in case of disagreement. Finally, we will describe interior time-consistent

bargaining solutions.

3.1 The time-consistent dynamic bargaining (TCB) solution

Let us assume that, for s ∈ [t, t+ ε), the decision rule in case of non cooperation is given by

φε,nc(x(s), s) and, for s ≥ t + ε, players follow φb(x(s), s). We denote as (W ε
1 , . . . ,W

ε
N ) the

threat point corresponding to the threat decision rule φε,nc(x, t). The actual threat point

will be obtained in the limit ε→ 0+. In the following subsection we will make a proposal for

an appropriate choice of φε,nc(x, t). For the moment, we take it as given.

If φb(x, s) is the equilibrium (bargaining) decision rule for s ≥ t + ε, we can write the

threat point for player i ∈ {1, . . . , N} as

W ε
i (x, t) =

∫ t+ε

t

e−ρi(s−t)ui(φ
ε,nc
i (xε(s), s)) ds+

∫ ∞
t+ε

e−ρi(s−t)ui(φ
b
i (x

ε(s), s)) ds ,

where xε(s) is the solution to ẋε(s) = g(xε(s), φε,nc(xε(s))) with xε(t) = x. The second

integral illustrates that, since players can bargain again at time t + ε, the threat of non

cooperation lasts at that moment, so we have φε,nc(xε(s), s) = φb(xε(s), s), for s ≥ t+ ε.

On the other hand, from (5),

Ji(x, cε, t) =

∫ t+ε

t

e−ρi(s−t)ui(c̄i) ds+

∫ ∞
t+ε

e−ρi(s−t)ui(φ
b
i (xε(s), s)) ds ,

where xε(s) is the solution to ẋε(s) = g(xε(s), c̄) with xε(t) = x, for s ∈ [t, t + ε); and

ẋε(s) = g(xε(s), φ
b(xε(s))) for s ≥ t + ε, with the initial condition xε(t + ε) derived by

continuity.
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The objective is to maximize Πcε , as given in (6), at order ε (or at the minimum order

in ε). Note that

Ji(x, cε, t)−W ε
i (x, t) =

∫ t+ε

t

e−ρi(s−t) [ui(c̄i)− ui(φε,nci (x(s), s))] ds

+

∫ ∞
t+ε

e−ρi(s−t)
[
ui(φ

b
i (xε(s), s))− ui(φbi (xε(s), s))

]
ds .

Since, at time t, limε→0+ xε(t+ ε) = x0(t) = x and limε→0+ φε,nc(x, t) = φ0,nc(x, t), then∫ t+ε

t

e−ρi(s−t) [ui(c̄i)− ui(φε,nci (x(s), s))] ds =
[
ui(c̄i)− ui(φ0,nc

i (x, t))
]
ε+ o(ε)

and∫ ∞
t+ε

e−ρi(s−t)
[
ui(φ

b
i (xε(s)), s)− ui(φbi (xε(s)), s)

]
ds = e−ρiε

∫ ∞
t+ε

e−ρi(s−t−ε)
[
ui(φ

b
i (xε(s)), s)

− ui(φ
b
i (x

ε(s)), s)
]
ds = e−ρiε

[
V bi (xε(t+ ε), t+ ε)− V bi (xε(t+ ε), t+ ε)

]
=
∂V bi (x, t)

∂x

[
g(x, c̄)− g(x, φ0,nc(x, t))

]
ε+ o(ε) ,

where

V bi (x, t) =

∫ ∞
t

e−ρi(s−t)ui(φ
b
i (x(s), s) ds , with x(t) = x ,

denotes the value function. Therefore,

Ji(x, cε, t)−W ε
i (x, t) = ε

[
u(c̄i)− ui(φ0,nc

i (x, t)) +
∂V bi (x, t)

∂x

(
g(x, c̄)− g(x, φ0,nc(x, t))

)]
+o(ε) .

The Nash welfare function becomes

N∏
i=1

[Ji(x, cε, t)−W ε
i (x, t)]

ηi =

N∏
i=1

[
u(c̄i)− ui(φ0,nc

i (x, t)) +
∂V bi (x, t)

∂x

(
g(x, c̄)− g(x, φ0,nc(x, t))

)]ηi
εη1+···+ηN+o(εη1+···+ηN ) .

If we normalize bargaining powers so that η1 + · · ·+ ηN = 1 (just relative bargaining powers

are relevant), then
N∏
i=1

[Ji(x, cε, t)−W ε
i (x, t)]

ηi =

N∏
i=1

[
u(c̄i)− ui(φ0,nc

i (x, t)) +
∂V bi (x, t)

∂x

(
g(x, c̄)− g(x, φ0,nc(x, t))

)]ηi
ε+ o(ε) .

Then, we define the time-consistent dynamic bargaining (TCB) solution as the maximizer of

the term at order εη1+···+ηN (i.e. the first order term if bargaining powers are normalized)

in the Nash welfare function. More precisely,
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Definition 2 Let

φεi(x(s), s) =

{
φε,nci (x(s), s) if t ≤ s < t+ ε ,

φbi (x(s), s) if s ≥ t+ ε ;

be the decision rule followed by player i, for i = 1, . . . , N , in case of disagreement during the

time period [t, t+ ε). Let φ0(x, t) = limε→0+ φε(x, t). We define the time-consistent dynamic

bargaining solution (TCB) as

φb = arg max
{c̄}

Π1(x, φb, c̄, t) , (7)

where

Π1(x, φb, c̄, t) =

N∏
i=1

[
u(c̄i)− ui(φ0,nc

i (x, t)) +
∂V bi (x, t)

∂x

(
g(x, c̄)− g(x, φ0,nc(x, t))

)]ηi
,

with

V bi (x, t) =

∫ ∞
t

e−ρi(s−t)ui(φ
b
i (x(s), s) ds , with x(t) = x .

A few comments on the existence of a solution to equation (7) follow. First, as in the

classical Nash bargaining theory, we need a well-defined threat (reference) point. We will

discuss this issue in the Section 3.2. If the threat point φ0,nc is well-defined, we have to

find the fixed point φb satisfying (7). Note that, in the right-hand side of that equation, φb

appears implicitly in V bi and φ0,nc
i , as we will illustrate with the examples. Given the difficulty

of finding general existence conditions within the class of differential games and problems

with nonconstant discounting, it seems reasonable to analyze the problem for particular

classes of games. In Sections 4 and 5 we study with some detail two classes of games which

have been widely used in the literature describing the common management of renewable

and nonrenewable resources. Linear state and linear-quadratic games, with applications to

environmental problems of climate policy, are also good candidates for our bargaining model.

3.2 The threat or reference point

As a proposal for a threat of reference point in case of disagreement, we assume that, under

non cooperation at time t, the threat is that agents will play the noncooperative MPNE (see

e.g. Dockner et al. (2000) or Haurie et al. (2012)) in the noncooperative game played in the

time interval s ∈ [t, t + ε). As we have seen, agents can achieve an agreement later on, at

time t+ ε. Next we formalize this idea.

Definition 3 Assume that, at time t, players take as given the future decision rule φb(x(s), s),

for s ≥ t+ ε. The threat point in case of disagreement during the time interval time [t, t+ ε),

with x(t) = x, is given as follows:

W ε
i (x, t) = Ji(x, φ

ε,nc(x, t), t) ≥ Ji(x, φε,nc−i (x, t), σi(x, t), t) , ∀i, σi , i = 1, . . . , N ,

where
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• σi : X × [t,∞)→ Ui ⊂ R, i = 1, . . . , N , is given by

σi(x(s), s) =

{
σ̄i(x(s), s) if t ≤ s < t+ ε ,

φbi (x(s), s) if s ≥ t+ ε ;

• σ̄i : X × [t, t + ε) → Ui ⊂ R, i = 1, . . . , N , is any possible admissible feedback law for

player i for the problem with planning horizon [t, t+ ε); and

• φε,ncj : X × [t,∞)→ Uj ⊂ R, j = 1, . . . , N , is such that φε,ncj (x(s), s) = φbj(x(s), s), for

s ≥ t+ ε.

As in Definition 2, in the definition above, agents take as given the future decision rule,

derived through a dynamic bargaining procedure, at time s ≥ t + ε. The threat is not

to cooperate during the time period [t, t + ε) and possibly to cooperate for s ≥ t + ε, by

computing the MPNE for the noncooperative game with finite planning horizon [t, t+ ε) and

final functions

Fi(x(t+ ε), t+ ε) =

∫ ∞
t+ε

e−ρi(s−t)ui(φ
b
i (x(s)), s) ds .

Since we consider the situation in which there is no commitment at all and players can

bargain again at any possible future moment τ > t, ε can be arbitrarily small. Hence, the

threat point is given by φ0,nc(x, t) = limε→0+ φε,nc(x, t), with φε,nc(x, t) computed as in

Definition 3.

As we have commented above, we need a well-defined threat (reference) point. In our

problem, φ0,nc is well defined if there exists a unique Nash equilibrium in the game where

players do not cooperate in the time interval [t, t+ ε), and they follow the TCB solution for

s ≥ t + ε. Provided that φb is known, this is a differential game played in a finite horizon

setting. Although working in a finite planning horizon can reduce the number of MPNE (as

is the case of linear-quadratic differential games), existence and uniqueness is not guaranteed,

in general. If there are several MPNE but one Pareto dominates the others, the most natural

choice is to take the Pareto superior MPNE. Otherwise, unless in the limit when ε → 0+

they converge to a unique solution, the choice of the threat point is not straightforward. In

that case, as in the classical (static) Nash bargaining theory, we can take the status quo

point as given, by selecting e.g. one of the MPNE.

The TCB solution obtained from Definitions 2 and 3 is, by construction, time-consistent

and subgame perfect in the sense of Definition 1.

3.3 Interior TCB solutions

If interior solutions to equation (7) exist for all t, we can compute the first order conditions

∂

∂c̄j

{
N∏
i=1

[
u(c̄i)− ui(φ0,nc

i (x, t)) +
∂V bi (x, t)

∂x

(
g(x, c̄)− g(x, φ0,nc(x, t))

)]ηi}
= 0 ,

for j = 1, . . . , N , whose solution is given by

N∑
i=1

ηi

ui(c̄i)− ui(φ0,nc
i (x, t)) +

∂V bi (x,t)

∂x [g(x, c̄)− g(x, φ0,nc(x, t))]

∂V bi (x, t)

∂x

∂g

∂c̄j
(8)
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+
ηj

uj(c̄j)− uj(φ0,nc
j (x, t)) +

∂V bj (x,t)

∂x [g(x, c̄)− g(x, φ0,nc(x, t))]
u′j(c̄j) = 0 .

In our problem with g(x, c) = f(x) −
∑N
k=1 ck, in the limit ε → 0+, strategies become

stationary. Hence, the (interior) time-consistent dynamic bargaining solutions cj = φj(x)

satisfy
ηj

uj(cj)− uj(φ0,nc
j (x)) +

(
V bj (x)

)′∑N
k=1

[
φ0,nc
k (x)− ck

]u′j(cj) (9)

=

N∑
i=1

ηi
(
V bi (x)

)′
ui(ci)− ui(φ0,nc

i (x)) +
(
V bi (x)

)′∑N
k=1

[
φ0,nc
k (x)− ck

] .
Remark 1 If, in the intertemporal utility function (1), instantaneous utilities take the gen-

eral form ui(x, c), TCB solutions follow from (8) for these utility functions.

4 A common property renewable natural resource model

with log-utilities

In this section we apply the results in the previous section to a common property resource

game with heterogeneous agents coming from the literature of resource economics. The

model considers the problem of joint exploitation of a renewable natural resource if players

have logarithmic utilities.

The intertemporal utility function of player i is given by

Ji =

∫ ∞
t

e−ρi(s−t) ln [(ci(s))
µi ] ds , (10)

with µi > 0, for i = 1, . . . , N . The stock of the resource evolves according to

ẋ(s) = x(s)(a− b lnx(s))−
N∑
j=1

cj(s) , x(t) = xt , (11)

with a, b > 0. This model with a Gompertz recruitment function (and more general versions

of it, including extensions to multiple species) was studied, for equal discount rates, in

Clemhout and Wan (1985).

4.1 Noncooperative MPNE and the t-cooperative equilibrium

For µi = 1, noncooperative MPNE and t-cooperative equilibria were already derived in

Maŕın-Solano (2014). The extension is straightforward and we summarize the results.

4.1.1 Noncooperative MPNE

If players do not cooperate, stationary linear strategies exist and are given by

cni (x) = φni (x) = (ρi + b)x (12)
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for i = 1, . . . , N . The corresponding value functions are of logarithmic type, Wn
i (x) =

αni lnx+ βni , where

Wn
i (x) = αni lnx+ βni =

(
µi

ρi + b

)
lnx+

µi
ρi

[
a−

∑N
j=1(ρj + b)

ρi + b
+ ln (ρi + b)

]
. (13)

4.1.2 The t-cooperative equilibrium rule

In order to compare the results, we recall the solution provided by the t-cooperative equilib-

rium rule. Again, we restrict our attention to stationary linear strategies.

Proposition 1 In Problem (10)-(11), if linear t-cooperative equilibria exist, equilibrium

rules are given by ctci (x) = φtci (x) = Atci x, for i = 1, . . . , N , where

Atci =
λiµi∑N
j=1

λjµj
ρj+b

(14)

and the corresponding value functions are V tci (x) = αtci lnx+ βtci , where

αtci =
µi

ρi + b
, βtci =

µi
ρi(ρi + b)

a− ∑N
j=1 λjµj∑N
j=1

λjµj
ρj+b

+
µi
ρi

ln(λiµi)− ln

 N∑
j=1

λjµj
ρj + b

 .

(15)

Proof: See Maŕın-Solano (2014). �

Next, we briefly compare these t-cooperative equilibria with the MPNE.

• In both cases, a unique steady state exists, so there is no multiplicity of equilibria. We

will denote it as xn∞ in the MPNE, and xtc∞ in the t-cooperative equilibria.

• As in the standard case with equal and constant discount rates, harvest coefficients are

higher in the pure noncooperative solution provided by the MPNE than in the problem

with t-cooperation. Note that, from (12) and (14), cni (x) − ctci (x) > 0 if, and only if,∑N
j=1 λjµj(ρi + b)/(ρj + b)− λiµi > 0, and this condition is obviously satisfied.

• As a result, xtc∞ > xn∞, i.e., the resource is overexploited in the MPNE in comparison

with the t-cooperative equilibria.

• However, the t-cooperative equilibria can be less efficient. The reason is that, if a high

weight is placed on impatient agents, since ctci (x)/ctcj (x) = (λiµi)/(λjµj), then the

t-CE will prescribe, at every point in time, low relative consumption for very patient

agents. However, overall utility is heavily dependent on the future consumption of

agents with very low discounting, so constraining them to consume much less than

impatient agents at every point in time can be inefficient. We refer to Maŕın-Solano

(2015) for an example of this situation.

4.2 Time-consistent dynamic bargaining solution

The first step consists in computing the threat point in case of disagreement. We compute

first the threat point according to Definition 3, and we take the limit ε→ 0+ later on.
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Proposition 2 In Problem (10)-(11), if players follow, for s ≥ t+ε, strategies φbi (x(s), s) =

Abi (s)x(s), then the threat points according to Definition 3 are given by W ε
i (x, t) = µi

ρi+b
lnx+

βε,nci (t), for i = 1, . . . , N , where

βε,nci (t) = µi

[
1

ρi

(
1− e−ρiε

)(
1−

a−
∑N
j=1(ρj + b)

b

)
+
a−

∑N
j=1(ρj + b)

b(ρi + b)

(
1 + e−ρiε−

2e−(ρi+b)ε
)

+

∫ ∞
t+ε

e−ρi(s−t)

lnAbi (s) +

∫ s

t+ε

e−b(s−z)

a− N∑
j=1

Abj(z)

 dz

 ds

 .

The corresponding decision rules are φε,nci (x(s), s) = (ρi + b)x(s), for s ∈ [t, t+ ε).

Proof: See Appendix B. �

Proposition 3 In Problem (10)-(11), if players follow, for s > t, strategies φbi (x(s)) =

Abix(s), the threat point in the time-consistent dynamic bargaining solution is given by

W 0
i (x, t) =

µi
ρi + b

lnx+
lnAbi
ρi

+
a−

∑N
j=1A

b
j

ρi(ρi + b)
,

i = 1, . . . , N , and the corresponding decision rules are φ0,nc
i (x) = (ρi + b)x.

Proof: It follows by taking the limit ε → 0+ in Proposition 2. Note that in this limit we

can restrict our attention to stationary strategies. �

Finally, for the derivation of the time-consistent dynamic bargaining solution, we substi-

tute the expression of the threat point W 0 and threat strategy φ0,nc (see Proposition 3) into

(9).

Proposition 4 Within the class of linear strategies, time consistent dynamic bargaining

solutions φbi (x) = Abix, i = 1, . . . , N , satisfy

(ρi + b)ηi

Abi

[
(ρi + b) ln

Abi
ρi+b

+
∑N
k=1(ρk + b−Abk)

] =

N∑
j=1

ηj

(ρj + b) ln
Abj
ρj+b

+
∑N
k=1(ρk + b−Abk)

.

(16)

Proof: See Appendix B. �

Remark 2 If players are symmetric, µ1 = · · · = µN and ρ1 = · · · = ρN , within the class

of linear decision rules, the standard symmetric cooperative decision rule is also a time-

consistent dynamic bargaining solution.

Remark 3 Note that, for all the solution concepts (noncooperative MPNE, t-cooperative

equilibrium and time-consistent bargaining solution), although value functions and steady

states depend on the value of the parameter a, decision rules are independent on a.

The equation system (16) is highly nonlinear. In the numerical illustrations we will

restrict our attention to the case of just two players and values of ηi (bargaining powers)

simplifying the equations. For N = 2, if η1 = 1 and η2 = (ρ1 + b)/(ρ2 + b) (this specification
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of bargaining powers coincides, for b = 0, with that in Sorger (2006)), then we have to solve

the equation system (see the Appendix)

(Ab1)2 − (ρ1 + b)Ab1 lnAb1 +Ab1((ρ1 + b) ln(ρ1 + b)− ρ1 − ρ2 − 2b) = (Ab2)2− (17)

(ρ2 + b)Ab2 lnAb2 +Ab2((ρ2 + b) ln(ρ2 + b)− ρ1 − ρ2 − 2b) , Ab2 = (ρ2 + b)

[
1− Ab1

ρ1 + b

]
.

4.3 Comparison of the results: numerical illustrations

We illustrate numerically the results obtained in the noncooperative case with those by the

t-cooperative equilibrium rule with equal weights (λi = 1) and the time-consistent dynamic

bargaining solution. Since, in the expression of the value function, αi = µi/(ρi + b) for all

these solution concepts, in the analysis of efficiency levels (i.e. comparison of payments) it

suffices to compute the values of the corresponding βi. Value functions and decision rules

are given by (12)-(13) (in the case of noncooperation), Proposition 1 (t-CE) and Proposition

4 (TCB solution). From (11), the steady state is given by x∞ = exp[(a−
∑N
i=1Ai)/b]. For

the numerical illustrations, we take N = 2 (two players), a = 10, b = 2.18, µ1 = µ2 = 1,

x0 = 100, ρi ∈ [0.01, 0.19], η1 = 1 and η2 = (ρ1 + b)/(ρ2 + b). Note that, in this case, η2 is

very near to η1.

Table 1 presents the results for harvest coefficients Ai and steady states. Harvesting is

clearly lower under cooperation, as expected. Joint harvesting, and hence the correspond-

ing steady states, are quite similar in the two cooperation settings considered, with some

qualitative differences among players depending on the discount rates. In the bargaining

scenario, harvesting is higher if players are more impatient, whereas the t-CE does not make

distinction among them.

Table 1: Harvest coefficients and steady states
MPNE t-CE Time consistent bargaining

ρ1 ρ2 An
1 An

2 xn∞ Atc
1 Atc

2 xtc∞ Ab
1 Ab

2 xb∞

0.01 0.01 2.19 2.19 13.1705 1.09500 1.09500 35.9658 1.09500 1.09500 35.9658

0.01 0.07 2.19 2.25 12.8130 1.10980 1.10980 35.4809 1.09063 1.12949 35.4723

0.01 0.13 2.19 2.31 12.4651 1.12420 1.12420 35.0151 1.08637 1.16411 34.9818

0.01 0.19 2.19 2.37 12.1267 1.13822 1.13822 34.5675 1.08221 1.19884 34.4946

0.07 0.07 2.25 2.25 12.4651 1.12500 1.12500 34.9894 1.12500 1.12500 34.9894

0.07 0.13 2.25 2.31 12.1267 1.13980 1.13980 34.5175 1.12062 1.15949 34.5094

0.07 0.19 2.25 2.37 11.7975 1.15422 1.15422 34.0639 1.11636 1.19410 34.0324

0.13 0.13 2.31 2.31 11.7975 1.15500 1.15500 34.0395 1.15500 1.15500 34.0395

0.13 0.19 2.31 2.37 11.4773 1.16981 1.16981 33.5802 1.15062 1.18949 33.5726

0.19 0.19 2.37 2.37 11.1657 1.18500 1.18500 33.1155 1.18500 1.18500 33.1155

Table 2 illustrates efficiency by showing gains under cooperation over the noncooperative

MPNE. Although gains are relatively low for players with higher discount rates, all the

cooperative solutions Pareto dominate payments given by the MPNE.
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Table 2: Efficiency analysis

t-CE Time consistent bargaining

ρ1 ρ2 V tc
1 − V n

1 V tc
2 − V n

2 V b
1 − V n

1 V b
2 − V n

2

0.01 0.01 30.685 30.685 30.685 30.685

0.01 0.07 33.4160 4.0013 31.6530 4.2493

0.01 0.13 36.1300 1.9580 32.6110 2.2194

0.01 0.19 38.8290 1.2110 33.5720 1.4739

0.07 0.07 4.3836 4.3836 4.3836 4.3836

0.07 0.13 4.7633 2.1599 4.5177 2.2900

0.07 0.19 5.1408 1.3467 4.6515 1.5210

0.13 0.13 2.3604 2.3604 2.3604 2.3604

0.13 0.19 2.5596 1.4813 2.4307 1.5680

0.19 0.19 1.6150 1.6150 1.6150 1.6150

5 A resource model with general isoelastic utilities

As a second example, we solve a model describing the joint management of a productive asset

with constant gross rate of return if players have general isoelastic utilities with different

marginal elasticities. The intertemporal utility function of player i is given by

Ji =

∫ ∞
t

e−ρi(s−t)ui(ci(s)) ds (18)

with

ui(ci) =


c1−σii − 1

1− σi
if σi > 0, σi 6= 1, for i ∈ {1, . . . , J} ,

ln ci if σi = 1, for i ∈ {J + 1, . . . , N} .

The stock of the resource evolves according to

ẋ(s) = ax(s)−
N∑
i=1

ci(s) , x(t) = xt , (19)

with a ≥ 0. For a = 0 we obtain an exhaustible resource model.

This problem was studied in Castañer et al. (2020) for an alternative dynamic bargaining

procedure, giving rise to the introduction of what they call the agreeable dynamic bargain-

ing solution. In that solution, the trigger strategy is characterized by the threat point in

which, in case of disagreement, players will not cooperate forever, i.e., new negotiations are

not permitted in the future. This is a kind of precommitment and, in that sense, the corre-

sponding solution is not fully time-consistent (and unrealistic in many real life applications).

After deriving conditions for TCB solutions in Section 5.1, we compare, in Section 5.2, for

N = 2 and a = 0, the extraction rates obtained under the noncooperation (for the MPNE),

agreeable dynamic bargaining and time-consistent dynamic bargaining. For the results on

the first two solution concepts, we refer to Castañer et al. (2020).
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5.1 Time consistent dynamic bargaining solution

In general, t-cooperative equilibria seem to be extremely cumbersome to compute for this

simple problem. In fact, no linear decision rules exist unless all marginal elasticities coincide.

In addition, as observed in de-Paz et al. (2013), the search of such nonlinear decision rules

seems to be extremely difficult, not just analytically, but also numerically, given the high

nonlinearity of the differential equation systems involved. On the contrary, linear TCB

solutions can exist. In order to calculate them, as in the example studied in Section 5, we

compute first the threat point and we derive later on the TCB solution.

Proposition 5 In Problem (18)-(19) if, according to Definition 3, players follow, for s ≥
t+ ε, strategies φbi (x(s), s) = Abi (s)x(s), then the candidates to threat points are given by

W ε
i (x, t) =

{
αε,nci (t)x1−σi + βε,nci (t) for i ∈ {1, . . . , J} ,
αε,nci (t) lnx+ βε,nci (t) for i ∈ {J + 1, . . . , N} ,

and the corresponding decision rules are φε,nci (x(s), s) = Aε,nci (s)x(s), for s ∈ [t, t+ ε). For

every t ∈ [0,∞), functions αε,nci (t), βε,nci (t) and Aε,nci (t), i = 1, . . . , N , are the solutions to

the integral equation system

Aε,nci (t) =

{
[(1− σi)αε,nci (t)]

−1/σi for i ∈ {1, . . . , J} ,
1/αε,nci (t) for i ∈ {J + 1, . . . , N} ,

αε,nci (t) =


(1− σi)−1

[∫ t+ε
t

e−ρi(s−t) [Aε,nci (s)Λε,nc(t, s)]
1−σi ds+

[Λε,nc(t, t+ ε)]
(1−σi) ∫∞

t+ε
e−ρi(s−t)

(
Abi (s)Λ

b(t+ ε, s)
)1−σi

ds
]

for i ∈ {1, . . . , J} ,
1/ρi for i ∈ {J + 1, . . . , N} ,

βε,nci (t) =


−1/((1− σi)ρi) for i ∈ {1, . . . , J} ,∫ t+ε

t
e−ρi(s−t) ln [Aε,nci (s)Λε,nc(t, s)] ds+ e−ρiε

ρi
ln Λε,nc(t, t+ ε)

+
∫∞
t+ε

e−ρi(s−t) ln
[
Abi (s)Λ

b(t+ ε, s)
]
ds for i ∈ {J + 1, . . . , N} ,

where Λε,nc(t, s) = e
∫ s
t

(a−
∑N
i=1 A

ε,nc
i (z)) dz and Λb(t, s) = e

∫ s
t

(a−
∑N
i=1 A

b
i (z)) dz.

Proof: See Appendix B. �

It is interesting to realize that, in the above proposition, players with log-utilities (i ∈
{J + 1, . . . , N}) apply as threat strategies those given by the noncooperative MPNE. On

the contrary, this is not the case for players with marginal elasticities different to one. For

i ∈ {1, . . . , J}, threat points are computed as the solutions to a highly nonlinear system of

integral equations. Next we analyze what happens in the limit when ε goes to zero of the

strategies derived in Proposition 5.

Corollary 1 In Problem (18)-(19), if players follow, for s > t, strategies φbi (x(s)) = Abix(s),

then the candidates to threat points in the time-consistent dynamic bargaining solution are

given by

W 0
i (x) =

{
α0,nc
i x1−σi + β0,nc

i for i ∈ {1, . . . , J} ,
α0,nc
i lnx+ β0,nc

i for i ∈ {J + 1, . . . , N} ,
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and the corresponding decision rules are φ0,nc
i (x(s)) = A0,nc

i x(s). Functions α0,nc
i , β0,nc

i and

A0,nc
i , i = 1, . . . , N , are the solution to

A0,nc
i (x, t) =


[
(1− σi)α0,nc

i

]−1/σi
for i ∈ {1, . . . , J} ,

1/α0,nc
i for i ∈ {J + 1, . . . , N} ,

α0,nc
i =


(Abi )

1−σi

(1−σi)[ρi−(1−σi)(a−
∑N
k=1 A

b
k)]

for i ∈ {1, . . . , J} ,

1/ρi for i ∈ {J + 1, . . . , N} ,

β0,nc
i =

{
− 1

(1−σi)ρi for i ∈ {1, . . . , J} ,
lnAbi
ρi

+
a−

∑N
k=1 A

b
k

ρ2k
for i ∈ {J + 1, . . . , N} .

Proof: It follows by taking the limit ε → 0+ in Proposition 1. Note that in this limit we

can restrict our attention to stationary strategies. �

Once we have computed the threat point we use (9) for the derivation of the time-

consistent dynamic bargaining solution.

Proposition 6 Within the class of linear strategies, time-consistent bargaining solutions

φbi (x) = Abix, i = 1, . . . , N , satisfy the equation system

F (Ab) = (20)

(1− σi)ηi(ρi − (1− σi)(a−
∑N
k=1A

b
k))(Abi )

−σi

(ρi − (1− σi)(a−
∑N
k=1A

b
k))[(Abi )

1−σi − (A0,nc
i )1−σi ] + (Abi )

1−σi(1− σi)
∑N
k=1(A0,nc

k −Abk)

for i = 1, . . . , J , with A0
j , for j = 1, . . . , N , given from Corollary 1, and

F (Ab) =
ρiηi

Abi

[
ρi(lnAbi − ln ρi) +

∑N
k=1(A0,nc

k −Abk)
] , (21)

for i = J + 1, . . . , N , with Ab = (Ab1, . . . , A
b
N ), where

F (Ab) =

N∑
j=J+1

ηj

ρj(lnAbj − ln ρj) +
∑N
k=1(A0,nc

k −Abk)
+

J∑
j=1

(1− σj)ηj(Abj)1−σj

(ρj − (1− σj)(a−
∑N
k=1A

b
k))[(Abj)

1−σj − (A0,nc
j )1−σj ] + (Abj)

1−σj (1− σj)
∑N
k=1(A0,nc

k −Abk)
.

Proof: It is similar to the proof of Proposition 4. �

Remark 4 As in the previous example, in Problem (18)-(19), if σi = σ and ρi = ρ, for

i = 1, . . . , N , the (standard) symmetric cooperative decision rule is also a time-consistent

dynamic bargaining solution.
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5.2 Numerical illustrations

As in the previous example, we illustrate numerically the results. We take a = 0, which

corresponds to the case of a nonrenewable resource, and N = 2 (two players). We compare

the extraction rates obtained under the noncooperative MPNE, (An1 , A
n
2 ); the agreeable

dynamic bargaining procedure, denoted by (Adb1 , A
db
2 ); and under time-consistent dynamic

bargaining, (Ab1, A
b
2).

Table 3 presents the results for ρ1 = 0.07, ρ2 = 0.13, σ1 = σ2 = σ ∈ [0.6, 1.5],

(η1, η2) = (1, 1) and (η1, η2) = (1, ρ1/ρ2). We observe that extraction rates are clearly

lower under the two dynamic bargaining procedures. On the contrary, although the two

dynamic bargaining procedures make use of clearly different threat points (and the mathe-

matical derivation of the corresponding solutions is quite different), results are very similar.

Concerning this comparison, for equal bargaining powers (η1 = η2), under time consistent

bargaining, extraction rates are slightly higher for the player with a lower discount rate,

Ab1 > Adb1 , and slightly lower for the player with a higher discount rate, Ab2 < Adb2 . Joint

extractions are lowest under time-consistent bargaining. When σ increases, extraction rates

decrease for the three solution concepts.

Table 3: Equal marginal elasticities
η1 = η2 = 1 η1 = 1, η2 = ρ1/ρ2

σ An
1 An

2 Adb
1 Adb

2 Ab
1 Ab

2 Adb
1 Adb

2 Ab
1 Ab

2

0.6 0.470000 0.530000 0.063417 0.107405 0.0636756 0.1069300 0.073037 0.089541 0.0673988 0.1000670

0.9 0.095000 0.155000 0.032804 0.084896 0.0350572 0.0807385 0.036033 0.078936 0.0377459 0.0757846

1.2 0.041429 0.101429 0.018062 0.072843 0.0206550 0.0679256 0.019515 0.070083 0.022676 0.0641191

1.5 0.020000 0.080000 0.009427 0.065627 0.0119666 0.0605203 0.010102 0.064253 0.0135038 0.0575044

Table 4 uses the same values of the parameters but now players exhibit different marginal

elasticities: σ1 ∈ [0.9, 1.5] and u2(c2) = ln c2 (which corresponds to the limit σ2 = 1). Players

are asymmetric both in their discount rates and instantaneous utility functions. Similar

qualitative results to those on Table 3 are obtained, although differences are lower. In this

case, by maintaining σ2 = 1 constant, an increase of σ1 induces a decrease of the extraction

rates of the more patient player and an increase in the extraction rate of the more impatient

player (with the exception of the noncooperative behavior, in which it remains constant).

Table 4: Different marginal elasticities
η1 = η2 = 1 η1 = 1, η2 = ρ1/ρ2

σ1 An
1 An

2 Adb
1 Adb

2 Ab
1 Ab

2 Adb
1 Adb

2 Ab
1 Ab

2

0.9 0.092222 0.13 0.032729 0.077486 0.0368897 0.0706110 0.034897 0.073909 0.0395965 0.0661115

1.2 0.036667 0.13 0.016166 0.087367 0.0168594 0.0856627 0.018590 0.081626 0.0187841 0.0811702

1.5 0.003333 0.13 0.001673 0.112894 0.0027548 0.1066160 0.002251 0.109376 0.0036810 0.1020620

6 Concluding remarks

In this paper we have introduced a time-consistent dynamic bargaining procedure in contin-

uous time. This solution concept can be seen as the continuous time version of the recursive
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Nash bargaining solution introduced in Sorger (2006) for dynamic games in discrete time. In

comparison with the time-consistent cooperative solution, it has clear advantages in terms of

applicability to a wider class of problems, computability and, in addition, decision rules seem

to be more realistic. These ideas have been applied to the study of two common property

resource games.

We think that the dynamic bargaining procedure proposed in the paper can be valuable in

the search of cooperative solutions in games with asymmetric players, not just for problems

in which they exhibit unequal discount rates, but also if they discount the future at the same

rate but have different preferences (i.e. utility functions). Linear in state games and linear

quadratic games describing environmental problems related to pollution control are other

fields where our results could be applied in a natural way.

Another topic that could be of interest is to study if the so known impatience problem

arising in dynamic models of equilibrium with heterogeneous households (the most patient

household ends up by owning all the capital in the long run, see Becker,1980, and Becker

et al., 2013) is also present if agents take their decisions according to the TCB solution.

It is clear that this is not the case for the t-CE since, since if players differ just in their

time preferences, they will consume the same. This property derives from the fact that

discount rates do not make differences among players in equation (25): a social planner,

when choosing stationary equilibrium strategies, will aim to maximize the sum of present

utilities plus the effects on the future joint welfare of all players. On the contrary, in the

case of the TCB solution, from Definition 2 and the structure of the left-hand side term of

equation (9), consumption of players will depend on their discount rates. However, it also

depends on the choice of the bargaining powers, so we cannot conclude which agent will be

more impatience, in general. For equal bargaining powers, the intuition tells us that the

impatience problem could be present, and it is an interesting topic that could be explored

in the future.
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APPENDIX A

As in Ekeland and Lazrak (2010), we restrict our attention to stationary (note that the

problem is autonomous) convergent Markovian strategies, i.e. strategies ci = φi(x) for which

there exists x∞ <∞ and a neighbourhood U of x∞ such that, for every x0 ∈ U , the solution

to (3) along c = φ(x) = (φ1(x), . . . , φN (x)) converges to x∞. For stationary convergent

strategies, the integral in (1) converges.

If c∗(s) = φ(x(s)) is a continuously differentiable equilibrium rule for Problem (4) subject

to (3), by denoting xt = x, the corresponding value function for the whole coalition is

V (x, t) =

N∑
i=1

λiVi(x, t) , where Vi(x, t) =

∫ ∞
t

e−ρi(s−t)ui(φi(x(s))) ds . (22)

For stationary equilibrium strategies, the value functions Vi (and V ) are time-independent.

In de-Paz et al. (2013), a dynamic programming equation describing time-consistent

equilibria for Problem (3)-(4) was derived by following a formal limiting procedure. First,

these authors discretized equations (3)-(4), by following the classical Euler method, with

periods of constant length ε, in the case of finite planning horizon T . For this problem, a

dynamic programming algorithm was derived. Next, time-consistent cooperative equilibria

and the corresponding value function V (x, t) were defined as the (formal) continuous time

limit (assuming that such a limit exists and that V (x, t) is sufficiently smooth) when ε→ 0

of the discrete time dynamic programming equation. Finally, the solution to Problem (3)-(4)

was defined by taking the limit when T →∞.

Alternatively, one can follow the approach in Ekeland and Lazrak (2010) and Ekeland et

al. (2013). For ε > 0 and c̄ = (c̄1, . . . , c̄N ), c̄i ∈ Ui, let

cε(s) =

{
c̄ if s ∈ [t, t+ ε) ,

φ(x(s)) if s ≥ t+ ε .
(23)

If the t-coalition has the ability to precommit its behavior during the period [t, t + ε), the

valuation along the perturbed control path cε is given by

Vcε(x, t) =

N∑
i=1

λi

{∫ t+ε

t

e−ρi(s−t)ui(c̄i) ds+

∫ ∞
t+ε

e−ρi(s−t)ui(φi(x(s))) ds

}
.

If we expand Vcε(x, t) in ε, we obtain Vcε(x, t) = V (x, t) + P (x, φ, c̄, t)ε+ o(ε), i.e.,

P (x, φ, c̄, t) = lim
ε→0+

Vcε(x, t)− V (x, t)

ε
(24)

Since the problem is autonomous, we can write P (x, φ, c̄).

Definition 4 A decision rule c∗(s) = φ(x(s)) is a t-cooperative equilibrium (t-CE) if func-

tion P (x, φ, c̄) given by (24) attains its maximum for c̄ = φ(x).

According to both procedures, time-consistent equilibria (t-CE) are given by

(φ1, . . . , φN ) ∈ argmax{c1,...,cN}


N∑
i=1

λiui(ci) +

N∑
i=1

λiV
′
i (x) ·

f(x)−
N∑
j=1

cj

 , (25)

so
∑N
i=1 λiu

′
i(ci) =

∑N
i=1 λiV

′
i (x), together with (22). For a detailed analysis, we refer to

de-Paz et al. (2013) and Ekeland et al. (2013).
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APPENDIX B

Proof of Proposition 2: The threat point in case of disagreement is given as in Definition

3. Let us compute it. At time t players take as given the decision rule for s ≥ t + ε. Let

(cb1, . . . , c
b
N ) = (φb1, . . . , φ

b
N ) be the corresponding future decision rule. Hence

Ji = µi

∫ t+ε

t

e−ρi(s−t) ln ci(s) ds+ µi

∫ ∞
t+ε

e−ρi(s−t) lnφbi (x(s), s) ds , (26)

with
ẋ(s) = x(s) (a− b lnx(s))−

∑N
i=1 ci(s)

x(t) = xt

}
for s ∈ [t, t+ ε) , (27)

ẋ(s) = x(s) (a− b lnx(s))−
∑N
i=1 φ

b
i (x(s), s)

x(t+ ε) = xt+ε

}
for s ≥ t+ ε . (28)

Since we are interested in the existence of linear strategies, we will assume that φbi (x(s), s) =

Abi (s)x(s), for s ≥ t+ ε. By integrating (28) we obtain

x(s) = exp

[
e−b(s−t−ε) lnxt+ε +

∫ s

t+ε

e−b(s−z)

(
a−

N∑
i=1

Abi (z)

)
dz

]
. (29)

By substituting (29) in (26) we can write

Ji = µi

∫ t+ε

t

e−ρi(s−t) ln ci(s)ds+ µi
e−ρiε

ρi + b
lnxt+ε

+µi

∫ ∞
t+ε

e−ρi(s−t)

lnAbi (s) +

∫ s

t+ε

e−b(s−z)

a− N∑
j=1

Abj(z)

 dz

 ds . (30)

From Definition 3, player i solves maxci{µi ln ci +
∂W ε

i

∂x (x(a− b lnx)− ci −
∑N
j=1,j 6=i φ

ε,nc
j )},

hence cε,nci = µi (∂W ε
i /∂x)

−1
. By assuming linear strategies, cε,nci = φε,nci (x(s), s) =

Aε,nci (s)x(s) and

W ε
i (x, t) =

µi
Aε,nci (t)

lnx+ βε,nci (t) . (31)

Alternatively, by substituting in (30) we obtain

W ε
i (x, t) = µi

∫ t+ε

t

e−ρi(s−t) lnAε,nci (s) ds+ µi

∫ t+ε

t

e−ρi(s−t) lnx(s) ds+ µi
e−ρiε

ρi + b
lnxt+ε

+µi

∫ ∞
t+ε

e−ρi(s−t)

lnAbi (s) +

∫ s

t+ε

e−b(s−z)

a− N∑
j=1

Abj(z)

 dz

 ds . (32)

By solving (27) for ci(s) = Aε,nci (s)x(s) we get

lnx(s) = e−b(s−t) lnx+

∫ s

t

e−b(s−z)

a− N∑
j=1

Aε,ncj (z)

 dz

so, by continuity,

lnxt+ε = e−bε lnx+

∫ t+ε

t

e−b(t+ε−z)

a− N∑
j=1

Aε,ncj (z)

 dz .
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By substituting in (32) and identifying the result with (31) we obtain, after several calcula-

tions, Aε,nci = ρi + b and βε,nci as given in Proposition 2. �

Proof of Proposition 4. Note that u′(cbi ) = µi
cbi

= µi
Abix

and φ0,nc
i (x) = (ρi + b)x. In

addition,

V bi (x) =

∫ ∞
t

e−ρi(s−t)µi ln[Abix(s)] ds , (33)

where ẋ(s) = x(s)[a− b lnx(s)]−
∑N
k=1A

b
kx(s), x(t) = x, whose solution is

x(s) = exp

[
e−b(s−t) lnx+

a−
∑N
k=1A

b
k

b
(1− e−b(s−t))

]
.

By substituting the equation above into (33) and differentiating, we easily obtain (V bi (x))′ =
µi
ρi+b

1
x . The result follows by substituting the expressions for u′(cbi ), φ

0,nc
i (x) and (V bi (x))′

into equation (9). �

Proof of equations (17). Since

(ρi + b)ηi

Abi

[
(ρi + b)

lnAbi
ln(ρi+b)

+
∑N
k=1(ρk + b−Abk)

] =
(ρl + b)ηl

Abl

[
(ρl + b)

lnAbl
ln(ρl+b)

+
∑N
k=1(ρk + b−Abk)

] ,
for all i, l = 1, . . . , N , if ηi(ρi + b) = ηl(ρl + b), then

Abi

[
(ρi + b)

lnAbi
ln(ρi + b)

+

N∑
k=1

(ρk + b−Abk)

]
= Abl

[
(ρl + b)

lnAbl
ln(ρl + b)

+

N∑
k=1

(ρk + b−Abk)

]

and equation (16) becomes

(ρi + b)ηi

Abi

[
(ρi + b)

lnAbi
ln(ρi+b)

+
∑N
k=1(ρk + b−Abk)

] =

∑N
j=1 ηjA

b
j

Abi

[
(ρi + b)

lnAbi
ln(ρi+b)

+
∑N
k=1(ρk + b−Abk)

] .
Therefore,

ηi(ρi + b) =

N∑
j=1

ηjA
b
j =

N∑
j=1

ηj(ρj + b)
Abj

ρj + b
= ηi(ρi + b)

N∑
j=1

Abj
ρj + b

.

As a result,
∑N
j=1A

b
j/(ρj + b) = 1. For N = 2, equations (17) follow. �

Proof of Proposition 5: For the computation of the threat point, from Definition 3, at

time t players take as given the decision rule for s ≥ t + ε. Let (cb1, . . . , c
b
N ) = (φb1, . . . , φ

b
N )

be the corresponding future decision rule. Hence

Ji =

∫ t+ε

t

e−ρi(s−t)ui(ci(s)) ds+

∫ ∞
t+ε

e−ρi(s−t)ui(φ
b
i (x(s), s)) ds , (34)

with
ẋ(s) = a−

∑N
i=1 ci(s)

x(t) = xt

}
for s ∈ [t, t+ ε) , (35)

ẋ(s) = a−
∑N
i=1 φ

b
i (x(s), s)

x(t+ ε) = xt+ε

}
for s ≥ t+ ε . (36)
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Since we are interested in the existence of linear strategies, we will assume that φbi (x(s), s) =

Abi (s)x(s), for s ≥ t+ ε.

By integrating (36) we obtain

x(s) = Λb(t+ ε, s)xt+ε , with Λb(t+ ε, s) = ea−
∑N
i=1

∫ s
t+ε

Abi (z) dz . (37)

By substituting (37) in (34) we can easily derive

Ji =

∫ t+ε

t

e−ρi(s−t)ui(ci(s)) ds+ Γi(t, ε, xt+ε) , (38)

where

Γi =

{
[x1−σi
t+ε

∫∞
t+ε

e−ρi(s−t)
(
Abi (s)Λ

b(t+ ε, s)
)1−σi

ds− e−ρiε/ρi]/(1− σi) for i ∈ {1, . . . , J}
(e−ρiε/ρi) lnxt+ε +

∫∞
t+ε

e−ρi(s−t) ln[Abi (s)Λ
b(t+ ε, s)] ds for i ∈ {J + 1, . . . , N}

(39)

We have to compute the Markovian Nash equilibria for Problem (38)-(39) with state dy-

namics (35). According do Definition 3, player i solves max{ci}{ui(ci) +
∂W ε

i

∂x (a − ci −∑N
j=1,j 6=i φ

ε,nc
j )}, whose solution is (cε,nci )−σi = ∂W ε

i /∂x. We are restricting our attention

to the existence of linear strategies, so we assume that cε,nci = φε,nci (x(s), s) = Aε,nci (s)x(s),

for i = 1, . . . , N . For these strategies, ∂W ε
i /∂x = [Aε,nci (t)]−σix−σi and

W ε
i (x, t) =

{
[Aε,nci (t)]

−σi x1−σi

1−σi +Bε,nci (t) for i ∈ {1, . . . , J}
[Aε,nci (t)]

−1
lnx+Bε,nci (t) for i ∈ {J + 1, . . . , N}

(40)

By integrating (35) we obtain, for s ∈ [t, t + ε), x(s) = xtΛ
ε,nc(t, s), where Λε,nc(t, s) =

e
∫ s
t

(a−
∑N
j=1 A

ε,nc
j (z)) dz.

For i ∈ {1, . . . , J}, from (38)-(39) we have

W ε
i (x, t) =

∫ t+ε

t

e−ρi(s−t)
(φε,nci (x(s), s))1−σi − 1

1− σi
ds+ Γi(t, ε, xt+ε) =

∫ t+ε

t

e−ρi(s−t)
[Aε,nci (s)x(s)]

1−σi − 1

1− σi
ds− e−ρiε

(1− σi)ρi
+

x1−σi
t+ε

∫ ∞
t+ε

e−ρi(s−t)
(
Abi (s)Λ

b(t+ ε, s)
)1−σi

1− σi
ds = x1−σi

t

∫ t+ε

t

e−ρi(s−t)
[Aε,nci (s)Λε,nc(t, s)]

1−σi

1− σi
ds

− 1

(1− σi)ρi
+ x1−σi

t+ε

∫ ∞
t+ε

e−ρi(s−t)
[
Abi (s)Λ

b(t+ ε, s)
]1−σi

1− σi
ds .

Since, by continuity, xt+ε = xte
∫ t+ε
t

(a−
∑N
j=1 A

ε,nc
j (z)) dz, by identifying xt = x,

W ε
i (x, t) =

[∫ t+ε

t

e−ρi(s−t)
[Aε,nci (s)Λε,nc(t, s)]

1−σi

1− σi
ds + (41)

[Λε,nc(t, t+ ε)]
(1−σi)

∫ ∞
t+ε

e−ρi(s−t)
[
Abi (s)Λ

b(t+ ε, s)
]1−σi

1− σi
ds

]
x1−σi − 1

(1− σi)ρi
.

Finally, from (40),

αε,nci (t) =
[Aε,nci (t)]

−σi

1− σi
=

1

1− σi

[∫ t+ε

t

e−ρi(s−t) [Aε,nci (s)Λε,nc(t, s)]
1−σi ds
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+ [Λε,nc(t, t+ ε)]
1−σi

∫ ∞
t+ε

e−ρi(s−t)
[
Abi (s)Λ

b(t+ ε, s)
]1−σi

ds

]
and Bε,nci (t) = −1/[(1− σi)ρi].

In a similar way, for i ∈ {J + 1, . . . , N}, from (38)-(39) and (35) we obtain

W ε
i (x, t) =

∫ t+ε

t

e−ρi(s−t) lnφε,nci (x(s), s)) ds+ Γi(t, ε, xt+ε) =

∫ t+ε

t

e−ρi(s−t) ln [Aε,nci (s)x(s)] ds+
e−ρiε

ρi
lnxt+ε+∫ ∞

t+ε

e−ρi(s−t) ln
[
Abi (s)Λ

b(t+ ε, s)
]
ds =

∫ t+ε

t

e−ρi(s−t) ln [Aε,nci (s)Λε,nc(t, s)] ds

+
1

ρi
lnx+

e−ρiε

ρi
ln Λε,nc(t, t+ ε) +

∫ ∞
t+ε

e−ρi(s−t) ln
[
Abi (s)Λ

b(t+ ε, s)
]
ds

and, from (40), the result follows. �
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