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Abstract

Type 1 Diabetes (T1D) is a 𝛽­cell­targeted autoimmune disease, leading to a
reduction in pancreatic 𝛽­cell mass that renders patients insulin­dependent
for life. In early stages of the disease, cells from the immune system infiltrate
pancreatic islets in a process called insulitis. During this stage, a cross­talk is
established between cells in the pancreatic islets and the infiltrating immune
cells, mediated by the release of cytokines and chemokines. Studying the
gene regulatory networks driving 𝛽 cell responses during insulitis, will allow us
to pinpoint key gene pathways leading to 𝛽­cell loss­of­function and apoptosis,
and also to understand the role 𝛽 cells have in their own demise. In the
present thesis, we used two different cytokine cocktails, IFN­𝛼 and IFN­𝛾 +
IL­1𝛽, to model early and late insulitis, respectively. After exposing 𝛽 cells
and pancreatic islets to such proinflammatory cytokines, we characterized
the changes in their chromatin landscape, gene networks and protein profiles.
Using both models, we observed dramatic chromatin remodeling in terms
of accessibility and/or H3K27ac histone modification enrichment, coupled
with up­regulation of the nearby genes and increased abundance of the
corresponding protein. Mining gene regulatory networks of 𝛽­cells exposed
to IFN­𝛼 revealed two potential therapeutic interventions which were able to
reduce interferon signature in 𝛽 cells: 1) Inhibition of bromodomain proteins,
which resulted in a down­regulation of IFN­𝛼­induced HLA­I and CXCL10
expression; 2) Baricitnib, a JAK1/2 inhibitor, which was able to reduce both
IFN­𝛼­induced HLA­I and CXCL10 expression levels and 𝛽 cell apoptosis. In
𝛽 cells exposed to IFN­𝛾 + IL­1𝛽, we were able to identify a subset of novel
regulatory elements uncovered upon the exposure, which we named Induced
Regulatory Elements (IREs). Such regions were enriched for T1D­associated
risk variants, suggesting that 𝛽 cells might carry a portion of T1D genetic risk.
Interestingly, we identified two T1D lead variants overlapping IREs, in which
the risk allele modulated the IRE enhancer activity, exposing a potential T1D
mechanism acting through 𝛽 cells. To facilitate the access to these genomic
data, together with other datasets relevant for the pancreatic islet community,
we developed the Islet Regulome Browser (http://www.isletregulome.org/), a
free web application that allows exploration and integration of pancreatic islet
genomic data.
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1

Chromatin and gene expression regulation

1.1 DNA and chromatin structure
Deoxiribonucleic acid, globally known with its acronym DNA, is a molecule
formed by two complementary nucleotide chains that are structured as a double
helix. The nucleotides are molecules that compose DNA and consist of one
of four nitrogenous bases (cytosine (C), guanine (G), adenine (A) or thymine
((T)), deoxyribose and a phosphate group (Figure 1.1 A). As the nitrogenous
bases are the elements that distinguish one nucleotide from another, they are
usually used to identify the whole monomer. Therefore, a DNA molecule can
be reduced to a sequence of nucleotides (A, C, T or G).

DNA can be subject to biologically relevant modifications that do not alter the
nucleotide sequence. This is the case of DNA methylation, which consists on
the addition of a methyl group to the cytosine residues of CpG dinucleotides
(Figure 1.1 B and Figure 1.4 A). These dinucleotides can be scattered along
the genome or concentrated in regions with high CpG density, named CpG
islands.

In humans, each of the diploid cells contains 46 DNA molecules corresponding
to 23 pairs of chromosomes, and a smaller DNA molecule found within
mitochondria. The nucleotide sequences corresponding to all these DNA
molecules is known as the human genome and contain all the genetic
information necessary for proper development and function of a human
individual.

Genes are units of genome sequences that are transcribed into mRNA –
another nucleic acid – by the RNA polymerase II (Pol II). The mRNA molecules
will in turn leave the cell’s nucleus and be translated into proteins, which
regulate cell metabolism and function. In a single gene, we can find several
stretches of nucleotides that are translated into mRNA – exons – intertwined
with non­coding regions – introns. Many times, gene exons are referred to
as coding regions or sequences – as they code for proteins –, representing
around 2% of the human genome (Carninci et al. 2005).

For a long time it was thought that only the coding sequences in our genome
had biological relevance. The rest of the genome (98%), consisting of
non­coding sequences, was disregarded and referred to as “junk DNA”.
In 2012, the Encyclopedia of DNA Elements (ENCODE) project published

9



10 1. Chromatin and gene expression regulation

Figure 1.1: DNA and chromatin structure. A, The DNA molecule is composed of
nucleotides, which can contain one of four nitrogenous bases (Adenine, Thymine,
Cytosine and Guanine). B, DNA methylation involves the covalent addition of a methyl
group to a cytosine followed by a guanine. C and D, Chromatin can be classified
into euchromatin, more dispersed and accessible (C), and heterochromatin, more
compacted (D).E, Histone complexes are formed by two copies of each of the four core
histones. F, A nucleosome is a structure formed by the histone complex and the DNA
portion wrapped around it. G, Chromatin inside the cell nucleus is organized in different
domains of interaction of variable size, such as A/B compartments (comp.) and TADs.
H, Chromatin loops are the smaller domains of interaction, where enhancer­promoter
contacts take place.
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several decade­long studies that suggested that 80% of the human genome
has a biochemically relevant function (Pennisi 2012), thus challenging the
conception of non­coding sequences as mere “junk”. During the last decade,
many studies have unraveled functions of the non­coding genome, including
non­coding genes and regulatory elements, which are indispensable for the
regulation of gene transcription.

If stretched end­to­end, the DNA contained in one cell measures about 2
meters long, and is tightly folded to fit inside the cell nucleus, which has an
average diameter of 6 micrometers (𝜇m). This is achieved with the help
of many different proteins that bind DNA. The structure formed by DNA
and all the proteins bound to it form what we know as chromatin. Thus,
these DNA­bound proteins affect packaging and condensation of chromatin.
Taking this into consideration, chromatin can be classified into euchromatin,
which is more disperse and accessible, and heterochromatin, which is more
tightly packaged (Figure 1.1 C­D). Interestingly, this condensed or accessible
structure also has a biological meaning: euchromatin is enriched in actively
transcribed regions, as it allows the transcription machinery to access DNA;
heterochromatin, on the other hand, is enriched for inactive and repressed
regions.

Histones are key proteins that bind and help packageDNA. Histone complexes
are organized in the form of octamers, where each complex contains two copies
of the four core histones (H2A, H2B, H3 and H4) (Figure 1.1 E). The different
histone proteins have long tails that allow different modifications to be added
covalently, which can affect the function and packaging of the neighboring
DNA sequences (Bannister and Kouzarides 2011; Buschbeck and Hake 2017).
Thus, a portion of the DNA molecule (~150 base pairs [bp]) is wrapped around
the histone complex, resulting in a tight packaging favored by the negative
charge of the DNA being attracted to the positive charge of the histones. This
structure formed by the histone octamer and the 150 bp DNA portion wrapped
around it is called a nucleosome (Figure 1.1 F).

1.2 Chromatin three­dimensional organization
Genome organization inside the cell’s nucleus is highly complex. Chromosomes
are folded in different hierarchical domains resulting in functional compartments
that are biologically relevant, as they are key for maintenance of proper gene
expression regulation.

Several architectural proteins are involved in maintaining the different layers
of genome organization. Some of the key players in maintaining genome
architecture are the CCCTC binding factor (CTCF), the cohesin complex and
the mediator complex. The cohesin complex consists of three core subunits
(SMC1, SMC3 and RAD21) that form a ring shaped structure. This complex
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usually co­localizes with CTCF, a transcriptional repressor that is involved in
gene expression regulation and insulator activity (Phillips and Corces 2009).
However, cohesin binds to thousands of genomic sites independently of CTCF,
many of which are co­bound by the mediator complex. The mediator complex
is essential for Pol II transcription and is thus proposed to also have a role in
mediating transcriptional regulation.

Taking into account the different probabilities and size of interactions, we can
identify hierarchical layers of genome organization of decreasing sizes (Figure
1.1 G) (Kempfer and Pombo 2020):

• Chromosome territories. These domains are the highest order of
nuclear organization, consisting on different chromosomes occupying
specific territories within the cellular nucleus (Meaburn and Misteli
2007). This layer of organization favors intra­chromosomal chromatin
interactions.

• A/B compartments. These multi­megabase­sized domains distinguish
between active and gene­rich regions (“A” compartment) and silenced
and compact regions (“B” compartment).

• Topologically Associating Domains (TADs). TADs are conserved and
stable domains with increased interactions between elements within the
same domain, usually ~1Mb in size.

• Chromatin loops. Chromatin loops or “insulated neighborhoods”
function as structural units of gene expression control.

1.2.1 A/B compartments
A/B compartments are multi­megabase spatial domains with increased
probability of genomic interactions in regions found within the same
compartment. They were first identified in Hi­C experiments (Lieberman­Aiden
et al. 2009; Fortin and Hansen 2015).

The “A” or active compartment contains gene­rich regions and is enriched for
accessible chromatin regions and histone modifications associated with active
transcription. On the other hand, the “B” or inactive compartment tends to
be gene­poor and compact, contains histone marks for gene silencing, and
overlaps with lamina­associating domains.

The composition of A/B compartments seems to be plastic and cell­type
specific. For example, during human cell lineage specification extensive (36%)
compartment switching was reported (Dixon et al. 2015). Additionally, Schmitt
et al. (2016) analyzed 21 primary human tissues and observed over 60% of
compartment switching between different cell types.

In contrast to TADs and chromatin loops, the formation of A/B compartments
seems to be independent of cohesin, as shown by some recent cohesin­depletion
studies (Schwarzer et al. 2017; Rao et al. 2017).
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1.2.2 Topologically Associating Domains
TADs are submegabase­size domains that have increased contact frequency
of intra­domain interactions (Nora et al. 2012; Laat and Duboule 2013; Dixon
et al. 2012). They were first characterized genome­wide in mouse embryonic
stem cells, where more than 90% of the genomewas found to be organized into
~2,200 TADs with a median size of 880 kilobases (kb). TADs are considered
to be the fundamental unit of genome organization, as TADs are mostly stable
across different cell types and even conserved across species (Dixon et al.
2012).

It has been proposed that TAD boundaries act as insulators that facilitate
intra­TAD interactions – which would otherwise be too infrequent – and thus
ensure proper transcriptional activation. In support of this theory, Javierre et
al. (2016) observed that one­third of significant genomic interactions crossed
TAD boundaries, which represents a smaller proportion than what would be
expected by chance. Therefore, even though TADs are effective in insulating
and increasing intra­domain interactions, they are not absolute, as some
inter­TAD interactions might be found.

However, recent studies have challenged the conception of TADs as
biologically relevant domains of genome organization, as they may be
artifacts arising from the use low­resolution assays [Rowley2018]. Thus,
by increasing the resolution of 3D chromatin assays, smaller interaction
domains can be found, which appeared as homogeneous TADs when using
lower resolutions. This smaller domains of interaction may correspond to
sub­TADs (Phillips­Cremins et al. 2013), of 185 kb median size (Rao et
al. 2014). Sub­TADs also display increased intra­domain interactions, with
smaller contact frequencies with genomic regions outside that specific
sub­domain. The main difference between TADs and sub­TADs is
related to their conservation in different tissues: sub­TADs appear to be
much more cell­type­specific. This variant sub­TAD partitioning may be
caused by cell­type­specific interactions mediated by Mediator/Cohesin and
lineage­specific proteins (Phillips­Cremins et al. 2013).

1.2.3 Chromatin loops
Chromatin loops allow long­range interactions between different genomic
regions. Loops may be formed between two convergent CTCF sites that are
co­bound by cohesin, establishing the insulator anchor (Figure 1.1 H). This
insulation increases the interaction probability of two distant regions in the
linear genomic space, which would otherwise happen at very low frequency
due to random collisions.

A proposedmodel for the chromatin loop formation is the “loop extrusion model”
(Sanborn et al. 2015; Fudenberg et al. 2016), in which CTCF, the cohesin
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complex and their cofactors are responsible for establishing these spatial
regulatory domains. When the cohesin complex is loaded onto the chromatin,
it entraps the DNA fiber in the lumen of its ring, forming a small chromatin loop.
This loop is then extruded until cohesin encounters two CTCF­bound sites
in convergent orientation. At this point, the cohesin­unloading factor WAPL
(Wings apart­like protein) removes cohesin from the chromatin.

The loop extrusion model is supported mainly by two observations:

1. Chromatin loops and TADs are dramatically weakened upon depletion of
chromatin­bound cohesin (Wutz et al. 2017).

2. The amount of residence time of chromatin­bound cohesin directly
determines the chromatin size, showing an increased loop size with
increased cohesin residence time (Haarhuis et al. 2017; Wutz et al.
2017).

1.3 Regulation of gene expression
The human genome contains about 3 billion bp, which carry all the information
needed to develop from a single cell – a fertilized egg – to an adult functional
organism. During development, different rounds of gene transcription drive the
differentiation of all cell types that compose an adult organism. Interestingly,
even after the adult organism has developed, it is necessary to activate or
inhibit expression of genes in order maintain cell function and to respond to
external stimuli.

The switching on and off of gene transcription is mediated by different
mechanisms including the modulation of non­coding DNA sequences named
cis­regulatory elements which include promoters and enhancers, among
others. Promoters are non­coding regions located around the transcription
start site (TSS) of genes, that allow binding of different proteins to initiate
gene transcription. Conversely, enhancers can be located from bases to
megabases away from their target genes. They are also bound by different
proteins, such as transcription factors (TFs), and may physically interact with
their target gene promoter to modulate gene expression.

Additional mechanisms of gene expression regulation are also in place, such
as non­coding RNAs. However, as they are not the focus of this thesis, they
will not be discussed in this introduction.

1.3.1 Promoters and transcription initiation
Promoters are the basic units of gene regulation. They are indispensable
for gene transcription, as promoter sequences allow the assembly of the
Pol II transcription machinery and auxiliary factors that are key to start gene
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transcription. As mentioned above, they are located adjacently to their target
genes, surrounding their TSS.

We can divide promoters into three distinct elements (Hernandez­Garcia and
Finer 2014) (Figure 1.2):

• Core promoter. The core promoter is a short sequence located 50
bp upstream and downstream of the TSS and represents the minimal
sequence needed to initiate transcription. It contains specific binding
motifs for general transcription factors (GTFs), which are proteins that
form the transcription pre­initiation complex (PIC) together with Pol II.
One example of GTF is the TATA­box­binding protein (TBP), part of the
transcription factor IID (TFIID) complex, that mediates Pol II recruitment
and PIC assembly.

• Proximal promoter. The proximal promoter is formed by the 250
bp sequence upstream of the core promoter. It is characterized by
containing binding motifs for sequence­specific TFs that activate or
inhibit the expression of the target gene.

• Distal promoter. Distal promoters are not as clearly characterized as
the two elements above, but are usually defined as sequences up to 2 kb
upstream of the TSS. Similarly to proximal promoters, they are also rich
in TF binding motifs.

Figure 1.2: Distinct sequence elements that compose promoters.

The levels to which a promoter can activate gene transcription will depend
on its sequence composition and its occupancy by sequence­specific TFs.
For example the core promoter can induce basal transcription, but the
presence of a proximal promoter can further increment the transcriptional
activity. Additionally, enhancers can also interact with their target promoters
to modulate gene transcription.

Promoter sequences also have a distinct nucleotide composition, presenting
an elevated GC content compared to the rest of the genome. Moreover,
70% of human proximal promoters contain regions with high density of CpG
dinucleotides, known as CpG islands (Saxonov, Berg, and Brutlag 2006).
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These CpG islands can be methylated and thus prevent binding of the
transcription machinery leading to the inhibition of gene transcription (see the
DNA methylation section for more information).

In a simplified model, gene promoters can be classified based on their basal
level of activity (Haberle and Lenhard 2016):

• Constitutive promoters. Constitutive promoters are those that present
high expression levels in most cell types. They are used in many genetic
engineering techniques to express foreign genes.

• Inducible or regulated promoters. Inducible or regulated promoters
are activated in a cell­type specific molecular context, by external
environmental stimuli to induce a specific transcriptional response.

1.3.2 Enhancers and tissue­specific regulation
Enhancers are non­coding regulatory sequences that are generally located
distally relative to their target gene TSS. Their distribution is mostly intergenic,
though some enhancers can also be found within genes, especially at introns.
They are able to increase basal gene activity levels by interacting physically
with their target gene promoter (Figure 1.3).

Figure 1.3: Enhancers regulate gene expression by interacting with gene
promoters.

Enhancers are generally considered to be 200­500 bp in length. Their
sequence composition facilitates the binding of TFs and the interaction with
their target promoters resulting in the induction of gene transcription. Similarly
to promoters, enhancers may contain CpG islands which can in turn repress
enhancer activity if methylated (Bell and Vertino 2017).

The mechanism by which a single enhancer affects the transcription of a target
gene is still poorly understood. Considering that enhancers are defined by their
potential to increase gene transcription and this effect has been mostly studied
in a bulk of cells, there are two models that could explain their individual action
(García­González et al. 2016):

• The binary model. Enhancers increase the probability that a higher
proportion of cells activate transcription at a given locus within a cell
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population.
• The progressive or rheostatic model. Enhancers increase the number
of RNA molecules transcribed from the target gene in a single cell, but
not the number of cells that initiate transcription.

Until recently, it was not clear which of the above models was true. However,
with the recent availability of single cell methodologies, Larsson et al.
(2019) were able to show that, transcriptome­wide, core promoters affect
mRNA burst size, that is, the number of RNA molecules transcribed, while
enhancers regulate burst frequencies, which is proposed to be the primary
driver of tissue­specific gene expression. This result goes in line with other
observations suggesting that enhancers confer tissue­specificity to a linked
gene. First, cell­type specific differences between histone modification
patterns, TF binding and chromatin accessibility, which are key regulatory
features, are mainly localized at enhancers and not promoters (Xi et al.
2007; Heintzman et al. 2009). Second, in functional assays performed with
constructs containing an enhancer and a minimal promoter, the expression of
the reporter gene is governed by the enhancer, even if enhancer and promoter
come from genomic loci that have very different expression patterns in vivo
(Bulger and Groudine 2010).

Additionally, we know that the relationship between enhancers and promoters
is not lineal, as an enhancer can regulate several promoters and a promoter
can be regulated by many enhancers. Thus, enhancers are proposed to act as
modular units of gene expression showing seemingly additive and/or redundant
effects on their target genes. This redundancy ensures robustness of gene
expression.

1.3.3 Transcription factors as modulators of gene transcription
TFs are proteins with domains that can bind short DNA sequences, usually
enriched at enhancers and promoters, and participate in themodulation of gene
transcription. The DNA sequences bound by a specific TF include a consensus
sequence, known as motif. TF motifs are usually 6­10 bp long and contain
degenerate positions in which different nucleotides facilitate the binding of the
protein.

The presence of a TF motif, however, is not sufficient to direct TF binding.
Instead, TFs bind to a small fraction of their binding motif occurrences in the
genome. Additional factors that vary in different tissues and cell types facilitate
TF binding; these include for example the chromatin context, the presence
of partner TFs, enrichment of specific histone modification or the chromatin
accessibility. As a result, broadly expressed TFs may exert cell­type specific
binding and function.

As mentioned above, several TFs can be bound at the same time in close
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physical proximity at an enhancer. There are currently two models that attempt
to explain how this binding affects enhancer activity and transcription induction
(García­González et al. 2016):

• The “enhanceosome” model. The enhancer DNA sequence acts as a
scaffold for the ordered and cooperative binding of TFs to form a protein
complex that can activate transcription. Enhancer activity emerges from
a network of interactions and its action is lost just by the absence of one
of the proteins involved.

• The “billboard” model. The binding of each TF is independent from
each other and they do not act as a single unit.

1.4 Characterization of regulatory elements using
chromatin features

Regulatory elements are key to understanding the cis­regulatory networks
that guide gene expression. Because of their tissue­ and state­specific nature,
and despite the effort of the scientific community during the last decade in
mapping regulatory maps (The ENCODE Project Consortium 2012; Martens
and Stunnenberg 2013; Andersson et al. 2014), a comprehensive map
and characterization of active regulatory elements in each human cell type
developmental stage and disease relevant state is still far to be completed.

Proper characterization of cis­regulatory elements requires the depiction of
three main features:

1. Regulatory element genomic position. Knowing the genomic
coordinates of a regulatory element is key to study its sequence features,
such as TF binding motifs, which can guide characterization of the
networks involved in its activation.

2. Regulatory element activity status. Regulatory elements can be in
various activity states, such as active, poised or repressed. Such states
may be cell­type­ and state­specific. Understanding the activity status
can help clarify the role of the regulatory element in the cell’s gene
regulatory programs.

3. Regulatory element gene targets. Identifying the putative gene targets
of a regulatory element is challenging, as distal enhancers can be
megabases away from their target genes.

Sequence features of enhancers alone, such as phylogenetic sequence
conservation or TF motifs, have limited capacity to properly predict enhancer
characteristics. Meanwhile, complementary information can be obtained by
the study of chromatin structure that can inform on the regulatory element
features, such as its position and/or activity.
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In the following sections I will describe the main chromatin features that are
used to identify regulatory elements, establish their activity level and help to
pinpoint their putative target genes (Table 1.1), together with the available
high­throughput technologies that allow retrieving genome­wide information of
these chromatin elements.

Table 1.1: Characterization of regulatory elements using chromatin features.
Summary of some of the main associations found between chromatin features and
regulatory elements (RE) characteristics.

Chromatin
feature

Main association

DNA methylation Repressed or inactive RE.

Histone
modification

Depending on the queried histone mark, can help identify
active, poised or repressed RE. Can approximate the
genomic coordinates of the RE.

Chromatin
accessibility

Accessibility may be used as a proxy for active RE. Can
approximate the genomic coordinates of the RE.

Chromatin
contacts

Guides identification of RE putative target genes, which
may be in physical contact.

1.4.1 DNA methylation

DNA methylation consists of the covalent addition of a methyl group to
a cytosine (Figure 1.4 A) followed by a guanine, known as CpG sites.
The methylated CpGs can be sparsely distributed along the genome or
concentrated in what we call CpG islands, mainly located at repetitive
sequences and promoter regions.

So far, DNA methylation has been associated with a large variety of biological
processes such as development, tissue­specific gene expression, imprinting,
inactivation of the X chromosome and silencing of repetitive DNA sequences
(Law and Jacobsen 2010). Thus, dysregulation of DNA methylation is
present in many different diseases, such as cancer (Klutstein et al. 2016)
and psychiatric disorders, including autism (Tremblay and Jiang 2019) and
schizophrenia (Pries, Gülöksüz, and Kenis 2017). Moreover, treatments that
target DNA methylation have been approved for many cancer types (Pan et al.
2018).

DNAmethylation – especially at CpG islands – is associated with transcriptional
repression (Goll and Bestor 2005). Mechanistically, DNA methylation does not
necessarily initiate gene repression, but rather maintains the repression stable
(Curradi et al. 2002). Interestingly, DNA methylation has also been shown to
physically interfere with the binding of some TFs to DNA (Yin et al. 2017).
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DNA methylation does not guide the identification of the regulatory element
genomic coordinates, as 70 to 80% of CpGs in mammal genomes are
methylated (Jabbari and Bernardi 2004). Querying DNA methylation at
specific regulatory elements, on the other hand, can provide insights on
their activity levels: CpG methylation is associated with inactive regulatory
elements. However, the absence of DNA methylation does not necessarily
identify active regulatory elements.

A B

Figure 1.4: DNAmethylation. A, Chemical structure of cytosine and 5­methylcytosine.
B, Schematic of the bisulfite conversion process, followed by PCR amplification.

1.4.1.1 High­throughput assays for detecting DNA methylation

Most of the techniques developed to query genome­wide DNA methylation
status take advantage of the bisulfite conversion, a process that turns
unmethylated cytosines into uracils using sodium bisulfite (Figure 1.4 B). This
process can be performed in the whole genome and coupled with massive
sequencing (Bisulfite­seq) to obtain the methylation status of all the cytosines
genome­wide. Alternatively, microarrays that query specific CpGs are broadly
used to obtain high throughput information on the DNA methylation genome
wide.

Within several commercially available platforms, Illumina provides two
microarrays – HumanMethylation450 BeadChip (Infinium) methylation
microarray (450K) (Sandoval et al. 2011) and MethylationEPIC BeadChip
(Infinium) methylation microarray (850K) (Moran, Arribas, and Esteller 2016) –
that query the methylation state of a comprehensive number of human CpGs,
preferentially located in CpG islands, promoters or enhancers. Even though
this technology fails to query DNA methylation status in all cytosines, it is
the preferred method for large consortia such as The Cancer Genome Atlas
(TCGA), due to their robustness and very high reproducibility (Moran, Arribas,
and Esteller 2016).
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1.4.2 Chromatin accessibility and nucleosome occupancy

Nucleosomes are key in the compaction of DNA, allowing it to fit inside the
nucleus of a cell. However, the level of compaction of different genomic
regions has a crucial functional role in determining the activity of regulatory
elements. Thus, promoters of active genes and their putative enhancers are
located in nucleosome­depleted regions. The “openness” of these regions
allows the transcriptional machinery to bind and initiate gene transcription.
Nucleosomes also act as “gatekeepers” of inactive regions, as the compacted
chromatin is inaccessible to the binding of the transcriptional machinery.
Chromatin accessible regions are also known as DNase I hypersensitivity
sites, as the DNA is exposed and thus sensitive to cleavage by the DNase I
enzyme.

Nucleosome occupancy is not fixed: different nucleosome­depleted regions
– or open chromatin sites – have been identified in different cell types (Xi
et al. 2007; The ENCODE Project Consortium 2012) and these accessible
regions are dynamically regulated during development (Xu and Xie 2018) or
upon exposure to different stimuli (Calderon et al. 2019).

Changes in chromatin accessibility are known to be regulated by different
proteins, such as a specific class of TFs known as pioneer transcription
factors. Pioneer factors, unlike other TFs, are able to bind compacted DNA
sequences and recruit ATP­dependent chromatin modifiers, histone modifiers
and other TFs, culminating in the activation of the underlying regulatory
sequences (Zaret and Carroll 2011).

Thus, chromatin accessibility can be used as a proxy for the genomic location
of functional regulatory elements (Figure 1.5). However, accessibility per se
does not imply regulatory elements are in an active state, as some regions
might become accessible by indirect mechanisms and not induce expression
of their target genes.

1.4.2.1 High­throughput assays for detecting chromatin accessibility

Open chromatin regions can be interrogated using different methodologies that
rely on the fact that open regions are accessible to DNA­cutting enzymes, as
opposed to compacted regions. This process generates nucleosome­depleted
fragments that can be sequenced and aligned to a reference genome.

Many different techniques have been developed throughout the years,
including FAIRE­seq (Giresi et al. 2007), MNAse­seq (Schones et al. 2008),
DNAse­seq (Boyle et al. 2008) and the Assay for Transposase­Accessible
Chromatin using sequencing (ATAC­seq) (Buenrostro et al. 2013). ATAC­seq
takes advantage of a hyperactive mutant Tn5 Transposase, that cuts DNA
accessible regions and ligates sequencing adapters in a single step. Therefore,
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Figure 1.5: Chromatin features allow identification of regulatory elements.
Summary of the profiles obtained when using specific high­throughput sequencing
techniques to query different chromatin features.

it allows reducing the protocol time and the amount of starting material – even
to a single cell level – to produce high­quality open chromatin profiles.

1.4.3 Histone modifications
Histones are proteins with a key role in the structure and function of chromatin.
They form octamer complexes that are wrapped by DNA, forming structures
called nucleosomes.

Interestingly, the role of histone complexes is not limited to DNA packaging:
all four core histones have long N­terminal tails which are extruded from
their central domains and can carry different covalent modifications. Such
modifications at different N­terminal residues are associated with regulatory
element activity and gene transcription.

Some of the most studied histone modifications affect the lysine 4 of
histone H3 (H3K4). The monomethylation of H3K4 (H3K4me1) was the first
modification found to be specifically enriched at distal enhancers, whereas
the trimethylation of H3K4 (H3K4me3) was found to be associated with
active promoters (Heintzman et al. 2007). Di­ (H3K4me2) and tri­methylation
(H3K4me3) of H3K4 can also be found at distal regulatory elements, though
at lower enrichment compared to proximal regulatory elements (Trynka and
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Raychaudhuri 2013). Interestingly, H3K4me1 is a marker for distal regulatory
elements that can also be found at inactive enhancers, meaning that distal
regulatory elements involved in the regulation of diverse processes, such
as development, can be pre­labeled by this mark (Bernstein et al. 2006;
Vastenhouw and Schier 2012). This suggests that H3K4 methylation might
protect enhancers from being targeted by inhibitory complexes, such as DNA
methylation enzymes, thus maintaining a poised state that may become active
after the appropriate stimulus (Ooi et al. 2007).

The modifications in lysine 27 of histone H3 have become much more
informative in terms of regulatory activity. Acetylation of this residue (H3K27ac)
at both enhancers and promoters has been clearly associated with the
induction of gene expression in the neighboring genes (Creyghton et al. 2010;
Rada­Iglesias et al. 2011). On the other hand, tri­methylation (H3K27me3)
is a mark of active repression of regulatory elements that is deposited by
the Polycomb repressive complex (Morey and Helin 2010; Margueron and
Reinberg 2011). Usually, this mark is linked to facultative heterochromatin,
a type of silent chromatin that is regulated during development. Defects in
the deposition or removal of H3K27me3 have also been associated with the
development of several types of cancer (Conway, Healy, and Bracken 2015).

In general, histone modifications can approximate the genomic location of
regulatory elements, as they are present in the nucleosomes that delimit the
accessible regulatory site (Figure 1.5).

Figure 1.6: Histone modifications as proxies of regulatory element activity.
Summary of some of the main histone modifications used to identify regulatory
elements and characterize their activity status.

More importantly, querying histone marks can provide a clear picture of the
regulatory element activity state. Enhancers marked with H3K4me1 and
H3K27me3 and promoters marked with H3K4me3 and H3K27me3 can be
classified as poised, which are actively repressed by the polycomb complex
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but primed for activation. Conversely, enhancers enriched in H3K4me1 and
H3K27ac and promoters marked with H3K4me3 and H3K27ac are considered
active, as H3K27ac in both enhancers and promoters is correlated with the
induction of gene expression (Figure 1.6).

Of note, correlation or association of histone modification enrichment with
enhancer and/or promoter activity and gene transcription is not necessarily a
causal clue, as it may reflect a bystander event or a secondary result of the
transcriptional machinery recruitment and gene transcription activation.

1.4.3.1 High­throughput assays for detecting histone modifications

The most popular method for detecting histone modification enrichment is
chromatin immunoprecipitation (ChIP), a technique that uses antibodies
that recognize specific epitopes to selectively precipitate genomic regions
enriched for different histone modifications (Collas 2010). The combination of
this technique with high­throughput sequencing (ChIP­seq) allows querying
genome­wide for the specific location of the histone modification. However,
there are twomain limitations of the classical ChIP­seq: it is strongly dependent
on the quality of the antibody and requires a relatively large number of cells as
starting material.

The number of cells required to perform the experiment represents a critical
limitation of ChIP­seq, together with the fact that ChIP­seq protocols are
quite tedious, time­consuming and expensive. ChIPmentation (Schmidl et
al. 2015) emerged as an alternative to reduce both the number of cells and
the protocol time. This method combines chromatin immunoprecipitation with
sequencing library preparation by Tn5 transposase (‘tagmentation’), which
adds sequencing adapters in a single step, thus reducing both the time and
cost of performing this protocol. Additionally, as few as 10,000 cells can be
used to obtain reproducible histone modification profiles.

An alternative to using the ChIP technology is the Cleavage Under Targets
and Release Using Nuclease (CUT&RUN) (Skene and Henikoff 2017), which
is based on the Chromatin ImmunoCleavage (ChIC) strategy. This method
allows protein mapping by successive binding of a specific antibody, followed
by tethering a Protein A/Micrococcal Nuclease (pA­MNase) fusion protein in
permeabilized cells without cross­linking. As with ChIP­seq, a modification
of this technique has been developed in which the Tn5 transposase can add
the sequencing adapters in situ, having the same benefits described above
with ChIPmentation. This modification is called Cleavage Under Targets and
Tagmentation (CUT&Tag) (Kaya­Okur et al. 2019).
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1.4.4 Chromatin 3D interactions

The physical location of the regulatory elements in the cell nucleus is
central to the regulation of gene expression. Thus, assessing chromatin
three­dimensional contacts, allows identification – or at least prioritization
– of the putative gene targets of distal enhancers and facilitates a deeper
understanding of cell­specific gene regulatory programs.

Chromatin loops represent the structural units of gene expression control that
allow gene promoters to physically interact with their putative enhancers. Many
different techniques allow identifying chromatin interactions at various levels of
resolution, influencing our ability to pinpoint the specific gene target of a distal
regulatory element.

1.4.4.1 High­throughput assays for detecting chromatin interactions

Most assays for detecting chromatin interactions are based on C­technologies,
in which the nucleus is cross­linked to preserve 3D chromatin conformation.
This is followed by DNA fragmentation and re­ligation of loci that were spatially
close at the time of cross­linking (Dekker et al. 2002). This process creates
chimerical molecules that contain the two loci found to be in contact or in
close proximity. Finally, the frequency of ligation determined by PCR or DNA
sequencing can finally be used as a proxy of spatial proximity.

Many different techniques have been developed and coupled with DNA
sequencing technologies to obtain high­throughput chromatin interactions with
different levels of coverage and resolution. Here, I highlight some of the most
used methods classified by the number of queried loci in the genome:

• All loci vs all the genome. Hi­C (Lieberman­Aiden et al. 2009)
was the first technique that allowed retrieval of chromatin interactions
genome­wide. While the major advantage of this technique is that
of generating a comprehensive 3D interaction map of the genome, a
limitation resides in the reduced resolution obtained from the individual
contacts, which can be partially overcome by using frequent restriction
enzyme cutters and high sequencing depth.

• Many loci vs all the genome. With these techniques, the query is
narrowed down to a large number of genomic loci. In Promoter Capture
Hi­C (Javierre et al. 2016), for example, the query is limited by sequence
capture to a selection of gene promoters, resulting in a strong enrichment
for promoter interactions, a reduction of the overall library complexity
compared to Hi­C and an increased chromatin contact resolution.
Another interesting example is Hi­ChIP (Mumbach et al. 2016), in which
the loci containing the feature of interest, such as relevant histone
modifications, are selected for sequencing by immunoprecipitation.
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• 1 locus vs all the genome. In Circular Chromosome Conformation
Capture (4C) techniques (Simonis et al. 2009), a locus of interest –
named viewpoint or bait – is queried for genome­wide interactions. For
instance, the use of a specific enhancer as a viewpoint would result in
the observation of a profile with 4C reads enrichment at genomic regions
the enhancer is interacting with (Figure 1.5). These chromatin contact
profiles can be obtained by using primers designed to capture the region
of interest, which will select all the chimeric fragments containing the
viewpoint sequence. The benefit of 4C techniques resides in the fact
that it can achieve very high resolution (very few kb) with only a few
million sequencing reads. Interestingly, a modification of this technique
with unique molecular identifiers (UMIs), called UMI­4C (Schwartzman
et al. 2016), was developed to reduce the PCR amplification bias, thus
allowing a more accurate quantification of chromatin interactions.

1.5 Chromatin dynamics in response to external
stimuli

1.5.1 Uncovering novel regulatory elements

Regulation of gene expression is key not only to maintain proper cell function,
but also to allow terminally differentiated cells to respond to external stimuli.
This permits cells to accommodate changes in their environment and to
respond accordingly. The stimuli­induced remodeling of the regulatory
landscape has been mostly studied in immune specialized cell types, as
one of their key hallmarks is their ability to transition between resting and
stimulated states upon the appropriate stimulus.

An initial view of gene regulatory mechanisms hypothesized that changes
in gene expression were induced by means of a predetermined regulatory
landscape enforced by TFs controlling cell identity. This would imply that
an external stimulus would affect gene expression through a fixed repertoire
of regulatory elements established after terminal differentiation, allowing the
maintenance of cell identity in spite of a changing environment.

However, Ostuni et al. (2013) proposed that external stimuli modulating
cell behavior might be associated with a partial reprogramming of the
pre­established cis­regulatory elements. To test this hypothesis, they
stimulated mouse bone­marrow­derived macrophages with lipopolysaccharide
(LPS) – a canonical inflammatory agent – for 4 and 24 hours. Next, to
characterize the repertoire of regulatory elements in unstimulated and
stimulated cells, they performed ChIP­seq experiments of two histone marks
– H3K4me1 and H3K27ac – and of the macrophage lineage determining
TF Pu.1. These experiments revealed the activation of regulatory elements
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that were poised in unstimulated conditions, and identified latent regulatory
elements, which were activated by LPS, as they were unbound by TFs and
lacked enrichment of H3K4me1 and H3K27ac in unstimulated cells. To
explore whether these new regulatory elements were stimuli­specific, they
next treated macrophages with different molecules, such as Toll­like receptor
(TLR) agonists, tumor growth factor­𝛽 (TGF­𝛽) or tumor necrosis factor­𝛼
(TNF𝛼) and interleukin 1­beta (IL­1𝛽). Indeed, they observed diverse latent
enhancers being activated with different stimuli, with an overlap reflecting
the functional similarity of the used stimuli. This was the first observation
that terminally differentiated cells were able to expand their predetermined
regulatory element repertoire in response to external stimuli.

To deepen the understanding of the macrophage­specific regulatory landscape
plasticity, Lavin et al. (2014) and Gosselin et al. (2014) explored how the
cellular microenvironment could affect the repertoire of active regulatory
elements. Their studies provide insights into the differences in the enhancer
landscape of different tissue­residing macrophage populations, such as
microglia or large peritoneal macrophages, which are more divergent
than what can be explained by their developmental origin. Indeed, they
observed that different populations showed different enhancer landscapes,
although sharing a common developmental origin. Moreover, Lavin et al.
(2014) showed that when transplanting bone marrow precursors or even
differentiated macrophages to another tissue, they could be reprogrammed by
their new microenvironment.

Recently, Calderon et al. (2019) explored the landscape of stimulation­responsive
chromatin for up to 32 human immune cell populations by querying chromatin
accessibility and mRNA expression under resting and stimulated conditions.
They observed that the chromatin landscape features that appeared in
response to stimulation were also dependent on the cell lineage.

These works demonstrate that regulatory maps of immune lineage cell types
are stimuli­responsive. Nevertheless, less is known regarding the regulatory
landscape plasticity of other disease­relevant terminally differentiated tissues,
such as the pancreatic islets.

1.5.2 Dynamics of chromatin interactions

The uncovering of novel regulatory elements upon stimuli raises the question
whether chromatin interactions may also be modified in response to the
environment. A negative answer would suggest that enhancer­promoter
contacts are already pre­formed, even when the regulatory elements are
inactive, while a positive answer would indicate that differentiated cells retain
the ability to form new enhancer­promoter interactions in response to their
environment.
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During development, different chromatin interactions are established to
regulate gene expression patterns and give rise to the different cell types
in the human body. Once cells are terminally differentiated, higher order
structures like chromosome territories or TADs are usually shared among
cell types, while smaller domains and chromatin loops are considered
tissue­specific.

Chromatin organization has been shown to be disrupted in cancer, usually as a
consequence of different processes, such as chromosome structural variation
(Spielmann, Lupiáñez, and Mundlos 2018) or copy­number alterations
(Taberlay et al. 2016). However, the observed changes are likely due to the
high number of genetic and epigenetic alterations found in cancerous cell
types.

To provide insights into the role of TADs during transient gene expression
changes, such as those induced by hormonal exposure, Le Dily et al. (2014)
analyzed changes in TAD structure after exposing breast cancer cells to
progesterone. Interestingly, they observed that TAD structure was modified
upon treatment, with smaller TADs enabling transient coordinated regulation
of genes.

Nonetheless, the mentioned studies focus in large structures such as TADs,
while changes in chromatin interactions are likely to happen in the chromatin
loops, reflecting enhancer­promoter dynamics. Thus, more studies evaluating
the dynamics of chromatin at a greater resolution may help understanding how
novel regulatory elements driving the response to transient factors interact with
their target genes.
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Pancreatic islets and glucose homeostasis

The islets of Langerhans, or pancreatic islets, are endocrine micro­organs
embedded in the exocrine pancreas. The pancreas of a healthy adult human
hosts about 1 million islets, representing less than 2% of the pancreatic mass.
Each micro­organ has a 50–500 𝜇m diameter and is composed of 50 to 3,000
cells. The main function of pancreatic islets is the release of hormones, mainly
involved in the regulation of glucose homeostasis.

2.1 Pancreatic islet composition
In humans, pancreatic islets are composed of different cell types exerting
distinct endocrine functions (Röder et al. 2016):

• Alpha (𝛼) cells (15­20%) which primarily secrete glucagon, a catabolic
hormone that induces an increase in blood glucose levels.

• Beta (𝛽) cells (65­80%) represent the most predominant pancreatic islet
cell type. These cells release insulin and amylin at a 100:1 ratio. Insulin
is an anabolic hormone that promotes absorption of glucose from the
bloodstream into peripheral tissues. Amylin, or islet amyloid polypeptide
(IAPP), is a hormone that plays a role in the regulation of glycemia by
slowing gastric emptying and promoting satiety.

• Delta (𝛿) cells (3­10%) are in charge of the production and release of
somatostatin, or growth hormone­inhibiting hormone (GHIH), which can
inhibit insulin and glucagon secretion.

• Epsilon (𝜖) cells (<1%) produce ghrelin, a hormone that increases food
intake, gastric motility and gastric acid secretion.

• PP (Gamma, 𝛾 or F) cells (3­5%) secrete pancreatic polypeptide,
involved in self­regulating both endocrine and exocrine pancreatic
secretion.

All these different cell types and others are intermingled in each pancreatic
islet, forming trilaminar epithelial plates. Plates are surrounded by blood
vessels that allow release of the secreted hormones into the bloodstream. In
the epithelial plates, most 𝛽­cells are found in a central position and show
cytoplasmic extensions between outlying non­𝛽­cells (Bosco et al. 2010).

29
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Figure 2.1: Pancreatic islet immunostained cell types. Immunoflourescent staining
of insulin (light blue), glucagon (red), somatostatin (green) and cell nuclei (DAPI, dark
blue). Scale bar, 25 𝜇m. Extracted from Morgan and Richardson (2018).

This specific distribution favors both heterologous contacts between 𝛽 and 𝛼
cells and homologous contacts between 𝛽 cells.

𝛼 and 𝛽 cells together compose ~90% of the islet cell population. Because of
their function in secreting blood­regulating hormones, pancreatic islets are key
in maintaining glucose homeostasis.

2.2 Glucose homeostasis
Glucose is a keymolecule central to cell metabolism and used in many complex
and coordinated biochemical reactions. In humans, glucose is obtained from
food ingestion and digestion, and is transported to all the cells and tissues
through the bloodstream. To ensure proper function, glucose levels in blood –
or glycemia – should be maintained within a very narrow range (3.3­7.8mM).
The preservation of the physiological levels of glycemia is primarily obtained
through the opposite functions of insulin and glucagon (Figure 2.2).

Pancreatic 𝛽 cells respond to increased glycemia by releasing insulin, which
will bind cell receptors in peripheral tissues, including adipose and skeletal
muscle, to induce glucose uptake allowing to reduce the levels of glucose in the
bloodstream. Decreases in the glucose levels will instead result in the release
of glucagon from 𝛼 cells, which will in turn target various organs, including liver
and kidneys, to facilitate both glycogenolisis and gluconeogenesis and induce
the release of glucose in the bloodstream.

Maintenance of euglycemia is vital, as hypoglycemia is a life­threatening
event and chronic hyperglycemia can result in serious complications, including
macrovascular disease and microangiopathy. Pancreatic islets are thus
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Figure 2.2: Insulin and glucagon control glycemia. After a meal, nutrients are
absorbed throughout the digestive tract and converted into simple molecules, such
as glucose, which are then released into the bloodstream, resulting in raise of blood
glucose levels (hyperglycemia). When pancreatic 𝛽 cells detect high levels of glucose
in the bloodstream, they release insulin, which will bind its receptors in peripheral
tissues, such as adipose tissue, and induce glucose uptake. After fasting or exercise,
blood glucose levels will drop (hypoglycemia), thus inducing the release of glucagon by
pancreatic 𝛼 cells. Glucagon will target the liver and kidney, among other tissues, and
induce the production and release of glucose by glycogenolisis and gluconeogenesis,
thus restoring blood glucose levels to normal values.

fundamental in maintaining glucose homeostasis and failure of pancreatic cell
function can result in diseases of the glucose metabolism such as diabetes.

2.3 Deciphering regulatory maps in pancreatic islets
With the advent of next­generation sequencing techniques, many different
human tissues and cell populations have been analyzed to produce
tissue­specific regulatory maps. Large consortia such as ENCODE and
the Epigenome Roadmap allowed mapping human tissues including skeletal
muscle, liver and adipose tissue, which are relevant to glucose metabolism
diseases. Pancreatic islets and their cell types, however, are less accessible,
and, for this reason, were not initially prioritized in these large consortia.

Human pancreatic endocrine tissue is difficult to access, being embedded
inside the exocrine pancreas, and obtaining viable pancreatic islets cells
requires a complex isolation procedure (Bucher et al. 2005; Melzi et al.
2010). Moreover, pancreas biopsies or resections, which can result in
undesirable effects such as acute pancreatitis, are performed only under very
special circumstances. For this reason, human pancreatic islets used for islet
transplantation or research purposes aremainly obtained from deceased organ
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donors. Heterogeneity of pancreatic islets represents an additional challenge
to the study of the different islet cell population. Fluorescence­activated cell
sorting (FACS) has been successful in separating major cell populations, such
as 𝛽 and 𝛼 cells (Bramswig et al. 2013; Ackermann et al. 2016; Muraro et al.
2016; Arda et al. 2018), though specific markers for separating minority cell
types are still needed.

Nevertheless, due to the central role of pancreatic islets in diseases such
as diabetes, different laboratories embarked in deciphering the regulatory
landscape of this tissue, in an ongoing effort to dissect the molecular
mechanisms underlying glucose metabolism diseases. To this end, several
groups focused on profiling the chromatin landscape of adult pancreatic islets
(Bhandare et al. 2010; Gaulton et al. 2010; Stitzel et al. 2010; Parker et al.
2013; Pasquali et al. 2014) and pancreatic progenitors (Cebola et al. 2015).

One early study mapped the first atlas of regulatory elements in pancreatic
islets (Gaulton et al. 2010). In this work, the authors used FAIRE­seq to
identify accessible regions in human pancreatic islets and compared them
to those of five non­islet cell lines. This allowed the characterization of
islet­specific accessible sites. When studying the genomic distribution of these
sites they identified islet­selective clusters of open regulatory elements
(COREs), which were associated with islet­specific gene expression.

Subsequent studies used chromatin states identified by the ChromHMM
algorithm (Parker et al. 2013) or the distribution of distal regulatory enhancers
(Pasquali et al. 2014) to link stretch enhancers or enhancer clusters to
tissue­specificity in pancreatic islets. By integrating this information with gene
transcription data and islet­specific TF binding sites, Pasquali et al. (2014)
were able to create integrative regulatory maps of human pancreatic islets and
demonstrate that enhancer clusters are enriched of type 2 diabetes (T2D) risk
variants, implicating their dysregulation to the susceptibility to develop T2D.

Recently, Miguel­Escalada et al. (2019) updated the linear conception
of enhancer clusters by adding three­dimensional chromatin interactions,
analyzed using promoter­capture Hi­C experiments. By characterizing
enhancer­promoter interactions, they were able to define groups of
tissue­specific regulatory elements that were not necessarily close in the
linear space. They named these compact co­regulated regions enhancer
hubs.

Nowadays, with the increasing availability of single cell methods to profile not
only the transcriptome, but also the epigenome, we might be able to deepen
our understanding of the regulatory circuitry acting through the different cell
types that compose pancreatic islets.



3

Type 1 diabetes

Type 1 Diabetes (T1D), also known as autoimmune or juvenile diabetes, is an
autoimmune disease in which insulin­producing pancreatic 𝛽 cells are targeted
and attacked by the immune system. This results in patients suffering a chronic
insulin deficiency and a lifelong dependence on insulin injections.

T1D onset symptoms include increased urination (polyuria), thirst (polydipsia)
and increased hunger (polyphagia), together with fatigue and weight loss. If
untreated, T1D can lead tomild to severe complications, including ketoacidosis,
which may present with rapid and deep breaths, drowsiness, thirst, abdominal
pain and vomiting. T1D diagnosis often occurs in patients hospitalized due to
life­threatening ketoacidosis episodes.

At the time of diagnosis, the autoimmune attack on 𝛽 cells has likely been
developing for many years. Prospective studies on pre­diabetic relatives of
patients with T1D have shown that the process of 𝛽 cell degeneration can take
more than 3 years before the clinical manifestation of the disease (The DCCT
Research Group 1998). Therefore, a clear asynchronicity between the trigger
of the autoimmune attack and the clinical onset characterize the pathogenesis
of T1D.

3.1 Epidemiology
T1D usually develops in children and young adults, although cases of
adult­onset T1D have been reported (Buzzetti, Zampetti, and Maddaloni
2017). The age of onset is generally associated with the severity of the
disease, where late cases show milder symptoms and a slower decrease of
𝛽­cell mass. This milder presentation in adults together with the increased
incidence of other types of diabetes at that age makes the distinction between
T1D and T2D more difficult.

Worldwide, T1D represents around 5­10% of all the cases of diabetes and
shows variable incidence in different populations (Figure 3.1). In Spain,
the annual incidence of T1D is 9.5­16/100,000 yearly cases in children
under 14 years and 9.9/100,000 in young adults from 15 to 29 years of age
(Lopez­Bastida et al. 2013). Over the past 60 years, the incidence of T1D
has increased by 3–5 % per year (Bruno, Gruden, and Songini 2016). The
Diabetes Mondiale (DiaMond) study, which monitored T1D incidence from
1990 to 1994, reported a 40/100,000 yearly children cases in Sardinia and
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Finland, whose populations have the highest T1D rate (Karvonen et al. 2000).
More recent studies (Harjutsalo, Sjöberg, and Tuomilehto 2008; Songini et
al. 2017), have reported an incidence of 60 cases per 100,000 children
in such regions, thus highlighting a considerable increase in the number
of yearly diagnosed T1D cases. The increasing incidence of T1D is also
associated with an onset peak occurring at a younger age; some studies,
though, associate the onset peak shift to earlier diagnosis, primarily occurring
in high­incidence countries (Patterson et al. 2009). Increase of T1D incidence
has been associated with changes in lifestyle occurred during the industrial
and economic revolution that took place during the latter half of the twentieth
century (Ilonen, Lempainen, and Veijola 2019).

0 2 4 6 8 10 12 14 16
T1D cases/1,000 inhabitants

Figure 3.1: Estimated worldwide incidence of Type 1 Diabetes (2019). Estimated
new T1D cases per country in children (<15 years of age) per 1,000 individuals (2019).
Data from the International Diabetes Federation (http://www.diabetesatlas.org/data/
en/)

3.2 Aetiological factors
The aetiology of T1D is not completely understood, but it is likely to consist
of a combination of genetic and environmental factors targeting immune
and/or 𝛽 cells, which end up triggering, permitting and aggravating a 𝛽­cell
targeted autoimmune attack (Figure 3.2). Clarifying the precise aetiological
mechanisms of T1D is challenging because of the heterogeneous nature of the

http://www.diabetesatlas.org/data/en/
http://www.diabetesatlas.org/data/en/
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disease, exemplified by the presence of different islet­specific autoantibodies,
the variability of age at disease onset and the complexity of the genetic factors.

Figure 3.2: Proposed Type 1 Diabetes aetiological factors. T1D development may
include an interaction between genetic susceptibility and environmental factors.

In the following section I will analyze the current knowledge on the implication
of genetic susceptibility and environmental factors to the aetiology of T1D.

3.2.1 Genetic susceptibility
Genetics represents a primary risk factor for the development of 𝛽 cell
autoimmunity. Studies on T1D indicate that the disease risk for non­identical
twins is similar to that observed for siblings, while this raises up to 50­70%
in monozygotic twins, suggesting a key role for genetics in T1D aetiology
(Redondo et al. 2008; Tuomilehto 2013).

Studying the genetic component in multifactorial and polygenic diseases is
an extremely challenging task. Some insights may be obtained from studies
exploring some specific candidate loci, such as the insulin locus. Additionally,
Genome­Wide Association Studies (GWAS) take advantage of studying
single­nucleotide polymorphisms (SNPs) present in the population using large
cohorts of patients and healthy controls to associate different alleles to the risk
of developing a disease.

Current insights into T1D genetics architecture allow distinguishing into HLA
and non­HLA genetic susceptibility.

3.2.1.1 HLA locus

Human Leukocyte Antigen (HLA) is the name given to theMajor Histocompatibility
Complex (MHC) gene complex in humans. This largely polymorphic locus,
located in a 3 Mb stretch in chromosome 6, codes for cell surface proteins
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that are key to the adaptive immune system. MHC complexes are able to bind
small peptides – the antigens – and are expressed in the cell surface, where
they will be recognized by appropriate immune cell types.

MHC, and thus HLA, can be classified into three groups of proteins with distinct
immune functions:

• MHC class I (HLA­A, HLA­B, HLA­C). HLA class I proteins are
expressed by most cell types in the human organism. They are involved
in presenting potentially dangerous internally digested peptides. These
peptide­bound cell surface complexes are recognized by CD8+ cytotoxic
T lymphocytes.

• MHC class II (HLA­DP, HLA­DM, HLA­DO, HLA­DQ and HLA­DR). HLA
class II proteins, in turn, are expressed in the surface of professional
antigen­presenting cells, such as thymic, dendritic and B cells. Thus,
HLA­class II proteins bind processed peptides as well, but in this case
they are obtained from exogenous phagocytosed proteins. This complex
is involved in antigen presentation to CD4+ T cells, which will in turn
launch an immune attack against foreign microorganisms.

• MHC class III. HLA class III locus encodes proteins with a role in the
complement system, key in innate immunity. Other immunological
important genes, such as tumor necrosis factors and lymphotoxin are
also encoded in this region.

HLA genes currently account for 50% of the genetic risk of developing T1D
(Pociot and Lernmark 2016). Thus, an individual’s T1D risk is defined by the
combination of the inherited parental HLA haplotypes. Nonetheless, different
classes of HLA have different strengths of association with T1D development
and are involved in different mechanisms of T1D progression (Table 3.1).

Among all HLA genes, HLA class II show the strongest association with T1D
risk, especially HLA­DR and HLA­DQ genes. Different polymorphisms in
the alleles of the above­mentioned genes affect the selection of epitopes
that are presented to CD4+ T cells. Molecular mimicry is thought to be a
key event to generate cross­reactive antigens, as two peptides – one from
the organism and one from foreign microorganisms – could be recognized
by a single antigen­specific receptor. Additionally, the involvement of HLA
class II molecules in T1D has been associated with the development of
islet autoimmunity, as the frequency of seroconversion – the development
of islet­specific antibodies – is strongly correlated with the strength of the
association between the presented HLA class II genotypes and T1D. Thus,
different HLA class II haplotypes are mainly associated with the generation
of 𝛽­cell targeting antibodies, specifically with the age of onset (Krischer et
al. 2015; Ziegler et al. 2013) and the type of antibody that appears first (Törn
et al. 2015). For instance, the appearance of the insulin autoantibody as the
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first autoantibody is associated with the HLA­DR4­DQ8 haplotype, while the
glutamic acid decarboxylase autoantibody is associate with the HLA­DR3­DQ2
haplotype (Ilonen, Lempainen, and Veijola 2019).

HLA class I genes are also associated with T1D risk, even though their
contribution is considered to be less than HLA class II. In this case, the
encoded proteins are key to the activation of CD8+ T cells, which represent
the major cell population that infiltrates the pancreatic islets and mediates
𝛽 cell death. Moreover, HLA class I protein expression is increased in islet
cells during immune infiltration (Richardson et al. 2016). Thus, their role has
been mostly associated with later stages of T1D, after the development of
autoantibodies and autoimmunity.

3.2.1.2 Non­HLA loci

Even though the HLA locus has a major effect on T1D genetic risk, GWAS
unmasked over 50 additional genomic loci that individually contribute with
a modest effect to the total risk of developing T1D. However, the molecular
mechanism of action of many of these individual loci is still unknown (Pociot
and Lernmark 2016). In most cases, the prioritized target genes are associated
with immune regulation or 𝛽 cell function (Table 3.2). Interestingly, many
genes are also associated with other autoimmune diseases, suggesting
shared pathological mechanisms (Pociot and Lernmark 2016).

Among the non­HLA loci, the strongest association signals are observed at
two loci: the PTPN22 locus, which encodes the non­receptor protein tyrosine
phosphatase type 22, a molecule involved in T cell and B cell responsiveness;
and the INS locus, which codes for insulin.

INS polymorphisms are suggested to influence processes that are either
involved in thymic immune tolerance and lead to the inadequate deletion
of harmful 𝛽­cell antigen­reactive T cells or in the insufficient generation
of T regulatory cells that are specific for 𝛽 cell antigens. Indeed, some
INS polymorphisms protect against T1D development by increasing insulin
expression in thymic cells that present self­antigens to newly forming T cells
(Pugliese et al. 1997).

Nonetheless, most target causal genes for the non­HLA loci are yet unknown.
This is due to some inherent challenges from GWAS. First, variants are
inherited in haplotype blocks and thus, may share strong p­values of
association, limiting the identification of the causal variants solely based
on p­values. Second, most (88%) of GWAS­associated variants fall in the
non­coding part of the genome, suggesting that they may exert regulatory
functions rather than affect the gene coding potential (Hindorff et al. 2009).
Third, the regulatory landscape is dynamic, being cell­type­ and state­specific
and thus, identification of the causal regulatory variants requires knowledge
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Table 3.1: HLA gene polymorphisms associated with the risk of T1D. Adapted
from Ilonen, Lempainen, and Veijola (2019).

Effect Proposed function Haplotypes and alleles

HLA­DR and HLA­DQ
Risk Presentation of

auto­antigens that induce
autoimmunity

Far­eastern/Asian:
DRB1*04:05­DQA1*03­DQB1*04:01;
DRB1*09­DQA1*03­DQB1*03:03;
DRB1*08­DQA1*03­DQB1*03:02.
African:
DRB1*07­DQA1*03­DQB1*02;
DRB1*09­DQA1*03­DQB1*03:02.
European:
DRB1*04:01/2/4/5­DQA1*03­DQB1*0302;
DRB1*03­DQA1*05­DQB1*02;
DRB1*04:05­DQA1*03­DQB1*02

Protection Incapacity to present
auto­antigens to T helper
cells and competitive
binding with risk
haplotypes

Far­eastern/Asian:
DRB1*04:10­DQA1*03­DQB1*04:02.
African:
DRB1*03­DQA1*04:01­DQB1*04:02;
DRB1*08­DQA1*04:01­DQB1*03:01.
European:
DRB1*15­DQA1*01­DQB1*06:02;
DRB1*15­DQA1*01­DQB1*06:01;
DRB1*14­DQA1*01­DQB1*05:03;
DRB1*07­DQA1*02­DQB1*03:03;
DRB1*04:03­DQA1*03­DQB1*03:02

HLA­DP
Risk Presentation of

auto­antigens that induce
autoimmunity

DPB1*03:01

Protection Incapacity to present
auto­antigens to T helper
cells and competitive
binding with risk
haplotypes

DPB1*04:02

HLA class I
Risk Presentation of

auto­antigens to cytotoxic
CD8+ T cells

HL A­ A*24; HL A­ B*18; HL
A­B*39:01; HL A­ B*39:06

of the regulatory functions of the disease­implicated tissues and their
state­specific cis­regulation. Moreover, linking non­coding variants to their
gene target requires additional knowledge of tissue­ and state­specific
enhancer­promoter relationships. To overcome these challenges and improve
our knowledge of T1D genetic mechanisms, different studies have performed
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co­localization studies between T1D variants and regulatory elements from
different cell populations, aiming to unravel the cell types through which the
different variants may be acting, together with their potential target genes.

With the aim of understanding the role of T1D risk variants, Onengut­Gumuscu
et al. (2015) fine­mapped T1D SNPs to active enhancers mapped in different
cell populations, finding a significant enrichment in thymus, T and B cells,
among others. However, no enrichment for T1D­associated variants was
found in pancreatic islet enhancers, supporting the findings of other studies
indicating that pancreatic islet enhancers are enriched for T2D variants, but
not for T1D (Pasquali et al. 2014).

Similarly, Farh et al. (2015) fine­mapped disease­associated polymorphisms
in order to find candidate causal variants for different autoimmune diseases.
They observed an enrichment of T1D disease variants primarily in T­cell
enhancers, but also reported a slight enrichment in pancreatic islet enhancers.
Such observation opens the avenue for a possible mechanism of action of
T1D risk variants through the pancreatic islet tissue, in addition to their action
through immune cell types.

Table 3.2: Selection of non­HLA T1D­associated risk variants. Adapted from
Ilonen, Lempainen, and Veijola (2019).

T1D SNPs Candidate gene Proposed function

rs689, VNTR INS Low expression in thymus, which affects
central tolerance induction against proinsulin

rs2476601 PTPN22 Autoreactive T and B cells escaping negative
selection in thymus

rs12722495 IL2RA Response to IL­2 in regulatory T cells

rs3087243 CTLA4 Negative regulation of autoreactive T cells

rs1990760 IFIH1 Induction of type I interferon production

rs2292239 ERBB3 Regulation of 𝛽­cell apoptosis and antigen
presenting function in dendritic cells

rs45450798 PTPN2 Regualtion of 𝛽­cell apoptosis induction and
regulation of T cell activation

rs3825932 CTSH Regulation of 𝛽­cell function and protection
from immune­mediated damage

rs3757247 BACH2 Reguation of 𝛽­cell apoptosis
rs11202303,
rs80054410

UBASH3A Regulation of CD4+ T cell activation
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3.2.2 Environmental factors

The fact that T1D incidence has increased during the past decades points
to a role of the environment in the pathology of the disease. This is also
supported by the increasing number of T1D patients with low HLA­defined
genetic risk. Currently, the main environmental factors that are associated with
T1D aetiology are: viral infections, composition of gut microbiota and nutrition.

Viral infections are thought to accelerate T1D onset due to the generation
of an increased insulin demand, known as the overload effect (Dahlquist
2006). Risk of T1D has been specifically associated with mumps and rubella
viral outbreaks, although studies in the last years are focused on human
enterovirus B infection. Enterovirus is associated with 𝛽­cell damage through
different mechanisms. Some of them are direct, like cytolisis provoked by viral
replication or functional deficiency of 𝛽 cells. Other indirect mechanisms may
involve an infection­associated inflammation which results in an increased 𝛽
cell expression of HLA class I proteins and enhanced antigen presentation to
CD8+ T cells. Viral infections may also increase molecular mimicry, as some
antibodies produced as a response to an enterovirus infection were shown to
recognize islet antigens (Härkönen et al. 2003).

Gut microbiota is important for the development of the immune system
and has been suggested to have a role in autoimmunity. Different works
have studied the proportion of different bacterial groups and have observed
some differences between T1D patients and healthy controls. For instance,
Bactorioides are more abundant in populations with high T1D incidence, while
Escherichia coli is far more common in populations with lower T1D incidence
(Vatanen et al. 2016).

Several nutritional factors have been associated with T1D. Obesity might be
an important factor for developing T1D, especially in children with lower­risk
HLA haplotypes (Corbin et al. 2018). Some studies have also associated
increased consumption of cow’s milk with T1D and unsaturated fish oils with
some T1D protective effects (Niinistö et al. 2017). However, one key nutritional
factor that has been the focus of most studies has been vitamin D. Vitamin
D intake and subsequent 25­hydroxyvitamin D (25OHD) serum levels have
been considered to play a role in the development of T1D, mainly because
of their immune modulatory effects. However, results obtained from different
population studies are contradictory, as some studies show decreased plasma
levels of 25OHD in T1D patients compared to healthy controls (Littorin et al.
2006; Norris et al. 2018), while others report no differences (Simpson et al.
2011; Mäkinen et al. 2016). Thus, more studies are needed to clarify the role
of vitamin D in the development of T1D.
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3.3 Pathogenesis
T1D pathogenesis is highly complex and particularly challenging to study
primarily due to two reasons: 1) Asynchronicity between onset and diagnosis
makes it difficult to obtain samples and follow presymptomatic diabetes
patients, and 2) Pancreatic islets are difficult to obtain and biopsies are at high
risk of causing pancreatitis. Thus, most knowledge has been obtained from
peripheral blood samples and cadaveric organ donors at variable disease
stages. Animal models, such as NOD mice, have also provided useful insights,
although limited considering that some immune processes associated with the
development of diabetes differ between humans and the NOD mouse model

In global terms, T1D progression can be classified in three main stages (Pociot
and Lernmark 2016; Katsarou et al. 2017):

• Stage 1. In this stage, 𝛽­cell autoimmunity, indicated by the presence
of 𝛽­cell targeted autoantibodies, has already started and there is a
decrease in 𝛽 cell mass. However, glucose levels are maintained in the
physiological range and there are no symptoms of the disease.

• Stage 2. The decrease in 𝛽 cell mass is sufficient to impair glucose
tolerance. However, whether the loss of glucose tolerance owing to
impaired insulin secretion is entirely due to decreasing 𝛽­cell mass
or also involves dysfunctional 𝛽­cells remains to be determined.
Conversely, even though glucose levels may be altered, symptoms of
the disease are not present yet.

• Stage 3. This stage corresponds to the clinical onset of the disease, as
the 𝛽 cell mass decrease aggravates hyperglycemia and the first T1D
symptoms appear. At this stage, immunity is likely to have occurred for a
prolonged period, as indicated by the presence of CD4+ and CD8+ T cells,
dendritic cells, macrophages and B cells in and around the pancreatic
islets in many newly diagnosed T1D patients (Gepts 1965; Krogvold et al.
2016).

According to this classification, stage 1 and 2 would correspond to
pre­symptomatic T1D and stage 3 to symptomatic T1D (Figure 3.3).

The trigger able to start the autoimmune attack is commonly thought to be
of environmental nature, such as a viral infection that would start an immune
response, and lead to the production of the first autoantibody.

The first autoantibodies usually target insulin (INS) or 65 kDa glutamic
acid decarboxylase (GAD65). The order of appearance of these two
autoantibodies is strongly associated with the age of onset and some specific
HLA haplotypes. Although not proven, autoantibody production might reflect
continued presentation of 𝛽­cell autoantigens by dendritic cells, favoring the
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Figure 3.3: Proposed staging for T1D and relative cell numbers. Adapted from
Herrath, Sanda, and Herold (2007), Pociot and Lernmark (2016) and Katsarou et al.
(2017).

subsequent immunogenic response by CD4+ and CD8+ T cells.

Years after the first autoantibody appearance, tolerance to 𝛽 cell autoantigens
is finally breached. This loss of tolerance is marked by the appearance of
additional autoantibodies, now targeting specific 𝛽 cell proteins such as islet
antigen­2 (IA­2) or the ZnT8 transporter. Increasing numbers of additional
autoantibodies translates into an increased risk of rapid progression to T1D
clinical onset (Pociot and Lernmark 2016). At this point, T cells recognize
post­translationally modified 𝛽­cell peptides, likely induced by the presence
of endoplasmic reticulum stress in 𝛽 cells. Such stress­induced protein
modifications may then cause the breach of 𝛽­cell tolerance (Van Lummel et
al. 2014; Delong et al. 2016).

As with any other immune responses, regulatory mechanisms in the form
of negative feedback circuits are in place to ensure stability of the system
and minimize damage to the host. Due to the fact that these processes
are cyclic in nature, Herrath, Sanda, and Herold (2007) proposed that T1D
development and progression is also cyclical. According to this model, during
insulitis, the population of effector T cells in the islets increases, inducing 𝛽
cell death. To compensate such process, the numbers of regulatory T cells
increase to be able to modulate and repress the immune response, preventing
further damage. In response to the immune attack and the consequent 𝛽 cell
mass reduction, 𝛽 cells attempt to restore their functional mass by inducing
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their proliferation and/or hypertrophy. However, this leads to the release of
additional 𝛽 cell antigens that in turn increase effector T cell population, which
will renew the autoimmune attack to the 𝛽 cell population (Figure 3.3). This
cyclic mechanism of T1D progression would also explain the chronicity of the
disease, as an enhanced exposure over time to an increasing number of 𝛽
cell antigens leads to an exhacerbation of the autoimmune attack, with the
disease aggravating with increasing number of 𝛽­cell antigens.
As most information from T1D is obtained from blood samples, study of
T1D pathogenesis has been focused on the presence of autoantibodies
as indicators of 𝛽­cell directed autoimmunity (Campbell­Thompson 2015).
However, even though autoantibodies represent precious biomarkers to study
the progression of T1D, they are not necessarily pathogenic, as shown by the
lack of correlation between autoantibody detection and immune infiltration in
pancreatic islets from organ donors (Wiberg et al. 2015; Babon et al. 2016).
Indeed, T1D is considered a cell­mediated disease, with the actual triggers
of 𝛽 cell death being immune CD8+ cytotoxic T cells. Thus, to obtain clearer
insights into T1D pathology, the focus of future studies should be posed on
specific events happening in pancreatic islets during immune infiltration.

Finally, the proinflammatory environment in the islet and other environmental
factors that induce excessive 𝛽 cell stress, might accelerate their deterioration
and death (Dahlquist 2006). Indeed, stress signals such as proinflammatory
cytokines, increase the accumulation of misfolded proteins with antigen
capabilities in the endoplasmic reticulum. Such proteins and peptides will be
released to the extracellular environment and may exacerbate the autoimmune
attack.

3.4 The role of islet inflammation
Insulitis represents a key hallmark of T1D and is the result of pancreatic islet
immune infiltration. This immune infiltration is an heterogeneous process in
terms of the number of islets affected and the pancreatic distribution of the
preserved 𝛽 cell mass.

Insulitis can arbitrarily be classified into three different stages (Eizirik, Colli, and
Ortis 2009). Of note, each stage can progress to the next stage or be resolved
by endogenous factors and interrupt the progression to T1D.

1. Induction. Activation of both endogenous and exogenous ligands of
pattern­recognition receptors (PRRs) can induce islet inflammation and
death of pancreatic 𝛽 cells.

2. Amplification. Cross­talk between immune and 𝛽 cells may lead to
amplification of the immune attack by transitioning from innate to adaptive
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immune systems. This cross­talk is mediated by local production of
chemokines, cytokines and danger signals from dying 𝛽 cells.

3. Maintenance or resolution. After transitioning to the adaptive immune
response, inflammatory mediators, such as cytokines, may contribute
to prolonged functional suppression and death of 𝛽 cells, modulation of
𝛽­cell regeneration and insulin resistance.

Figure 3.4: Representation of insulitis in pancreatic islets.

The first immune response is obtained by the activation of components of the
innate immunity. In the context of T1D, a specific type of PRRs named toll­like
receptors (TLRs) are induced in 𝛽 cells in the presence of double­stranded
RNA (dsRNA) molecules, and can, in turn, induce transcription and translation
of type I interferons (IFNs). If IFNs production is prolonged in time, it can
lead to 𝛽 cell apoptosis, which may be at least in part mediated by ER stress.
Additionally, IFNs will increase the release of proinflammatory cytokines,
which will induce overexpression of HLA class­I in 𝛽 cells and will thus attract
additional immune cells from both innate and adaptive immune systems.

The immune attack can be further amplified by transitioning to the adaptive
immune system. This amplification involves recruiting of T cells to the
pancreatic islets. Simultaneously, a cross­talk between 𝛽 cells and infiltrating
immune cells is established through the release of cytokines and chemokines.
𝛽 cells will also show signs of ER stress, due to the proinflammatory
environment. This stress can in turn be translated into an induction of antigen
presentation through HLA­class I molecules. Finally, 𝛽 cells undergoing
apoptosis due to proinflammatory signals can also become ‘danger signals’
and induce further activation of the immune system.

Later stages of insulitis involve the maintenance or resolution of the
autoimmune attack. This stage is likely to be dominated by the adaptive
immune system. Thus, individuals that develop mild insulitis or that do not
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have a high­risk genetic background, might resolve insulitis and regain normal
𝛽 cell function. However, patients with specific T1D­favoring conditions might
see their 𝛽 cell mass considerably reduced, thus leading to T1D progression
and eventual disease clinical onset.

In summary, insulitis is a very complex process that involves many different
cell types, proteins and molecules. To deepen our understanding of this
process, in vitro models were developed using different cytokine cocktails to
reproduce some key insulitis hallmarks in 𝛽 cells. For the studies described in
this thesis, we modeled different stages of insulitis using two combinations of
proinflammatory cytokines: IFN­𝛼 to mimic early insulitis and IL­1𝛽 + IFN­𝛾 to
model late insulitis.

3.4.1 Interferon­𝛼
Interferon­𝛼 (IFN­𝛼), secreted mainly by macrophages and other cells from the
innate immune system, belongs to a group of proteins called type I interferons,
which are involved in stimulating an immune response after a viral infection.

The role of IFN­𝛼 in T1D is mostly associated with early insulitis in T1D
patients. This association was first suggested by the presence of IFN­𝛼 in
pancreata of T1D patients with recent disease onset (Foulis, Farquharson, and
Meager 1987). Moreover, INF­𝛼 serum levels were also elevated in children
and adults around T1D onset (Chehadeh et al. 2000). In patients from the
Diabetes Virus Detection (DiViD) cohort, composed of pancreatic biopsies
from early diagnosed T1D patients, expression of IFN­induced genes was
increased (Lundberg et al. 2016). Interestingly, even before disease onset or
detection of autoantibodies, children with high genetic risk of T1D present a
type I IFN transcriptional signature in blood (Kallionpaa et al. 2014).

IFN­𝛼 is used to treat infections caused by hepatitis C and some specific types
of leukemia and melanoma. Of note, a break in 𝛽 cell tolerance leading to T1D
onset has been observed in the context of such therapeutic approach (Fabris
et al. 1992; Schreuder et al. 2007; Sossau, Kofler, and Eigentler 2017).

Conversely, in patients with mutations in the thymus Autoimmune Regulator
transcription factor (AIRE), which leads to the development of a rare
autoimmune syndrome called autoimmune polyendocrinopathy syndrome
type 1 (APS­1), the presence of self­reactive antibodies targeting IFN­𝛼 was
associated with protection against T1D, which in some cases is an associated
condition (Meyer et al. 2016). These observations support the hypothesis that
IFN­𝛼 may play a central role in T1D pathogenesis.

IFN­𝛼 signals through the IFN­𝛼 receptor (IFNAR1) and the downstream
tyrosine kinases JAK1 and TYK. Interestingly, TYK2 gene overlaps a
T1D GWAS risk locus. Human islets and 𝛽 cells with TYK2 knockdown show
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decreased inflammatory gene expression, reducedHLA class I overexpression,
and decreased apoptosis in response to dsRNA (Marroqui et al. 2015).

3.4.2 Interferon­𝛾 and Interleukin­1𝛽
Interferon­𝛾 (IFN­𝛾) is the sole member of the type II interferon group and
is mainly secreted by CD8+ T lymphocytes. The main function of IFN­𝛾 is
the activation of macrophages and the induction of HLA class II molecule
expression.

Interleukin­1𝛽 (IL­1𝛽), on the other hand, is a proinflammatory cytokine
that is produced by activated macrophages. IL­1𝛽 is a key regulator of the
inflammatory response and is involved in cell proliferation, differentiation and
apoptosis, among other processes.

The combination of IFN­𝛾 and IL­1𝛽, in contrast to IFN­𝛼, is associated with
later stages of insulitis. These proinflammatory cytokines, in the context of
late insulitis stages, induce 𝛽 cell release of additional chemokines, such as
CXCL10 and CCL2. These molecules, in turn, attract more immune cells, thus
increasing the local production of late proinflammatory cytokines (Eizirik, Colli,
and Ortis 2009).

In patients with T1D, islets showed expression of the chemokineCXCL10, while
the invading T­cells expressed the corresponding chemokine receptor CXCR3
(Roep et al. 2010). Moreover, the combination of IFN­𝛾 + IL­1𝛽 has already
been shown to reproduce the cytokine­exposure signature observed in islets
from T1D donors (Eizirik et al. 2012).

3.5 Current treatments and perspectives
Nowadays, T1D can be clinically managed through the exogenous
administration of insulin and lifestyle modifications, such as low­carbohydrate
diets and exercise. Nonetheless, an effective treatment that can cure T1D is
not currently available.

Many different approaches are being studied to find a successful treatment for
T1D. However, considering the large heterogeneity of T1D, which underlies
different mechanisms and/or aetiological factors, finding an effective treatment
is a challenging task.

The first course of action was developing drugs that aimed to suppress or
modulate the autoimmune attack, in order to preserve 𝛽 cell mass. Indeed,
many clinical studies involving a large spectrum of immunosupressing agents
have been developed for many years, although with limited success (Skyler
2011).
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Alternatively, some attempts at restoring glucose regulation through pancreas
or islet transplantation have been successful, with 70% of transplanted
T1D patients achieving insulin independence (Matsumoto 2010). However,
donor shortage and the important side effects of immunosupressant therapy,
mandatory after the transplant, are important setbacks for using this approach.

After many years of isolated research, scientists worldwide started to join
efforts and created large consortia to promote and develop clinical trials
and mechanistic studies for T1D. One key example of this is the Type
1 Diabetes TrialNet, an international consortium of researchers aimed at
developing studies focused on prevention and intervention clinical trials in
T1D. Simultaneously, TrialNet is also gathering a large amount of longitudinal
samples from T1D patients, accounting for more than 70,000 samples from
over 7500 donors (Battaglia et al. 2017). Results from different studies
developed through TrialNet are poised to provide key insights into the
pathology of T1D, and show that collaborative research can enhance the
discovery of new disease mechanisms.

In summary, it is key to deepen our understanding of T1D aetiology and
pathology to understand the precise mechanisms of disease progression.
This knowledge will enable identification of additional biomarkers of disease
progression and of new potential therapeutic targets.
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Hypothesis and Objectives

The regulatory landscape of adult cells changes to accommodate responses
to their environment. We thus considered that studying the role of 𝛽 cells
in the development of T1D, by charting their regulatory landscape upon
exposure to disease­relevant stimuli, could improve our understanding of
the disease pathogenesis. The main hypothesis of this thesis is that 𝛽
cells have an active role in the development of T1D, mediated by changes
in their cis­regulatory networks in response to T1D­relevant stimuli such as
proinflammatory cytokines.

By mapping cytokine­responsive regulatory circuitries, we will be able to
identify key genes that could serve as potential T1D biomarkers or therapeutic
targets. Additionally, by exploring the association between GWAS and 𝛽­cell
cytokine­responsive regulatory elements, we will be able to determine the
mechanism by which 𝛽 cells are implicated in the risk of developing T1D.

More specifically, we define the following objectives:

1. Evaluate if exposure to proinflammatory cytokines induces changes in
the chromatin regulatory landscape of pancreatic 𝛽 cells.

2. Explore the cytokine­responsive 𝛽­cell regulatory circuitries and their
gene targets to find potential biomarkers and/or therapeutic targets for
T1D.

3. Assess if part of the T1D genetic risk can be explained by 𝛽­cell
cis­regulatory networks that respond to the proinflammatory environment.

4. Make the generated regulatory data available to the scientific community
in an easy and accessible way.
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Preamble

The results obtained by addressing the objectives of the present thesis have
been organized and published in three different scientific papers (Table 5.1).
The “Results” section contains the copies of said publications, together with a
graphical abstract and the highlights of the most relevant results obtained in
these studies, in order to guide the reader to the main contributions of each
publication.

Results have been assembled into three different publications, the first two
addressing the role of 𝛽 cells in the development of T1D and the third one
describing the development of an original tool to facilitate exploration and
visualization of pancreatic islet genomic data.

1. An integrated multi­omics approach identifies the landscape of
IFN­𝛼­mediated responses of human pancreatic 𝛽 cells (Colli et al.
2020). In this publication, we modeled early insulitis by exposing
human 𝛽 cells to IFN­𝛼 at different time points (2, 8 and 24 hours).
We assayed and integrated multi­omic data to pinpoint the key players
in inducing the 𝛽­cell interferon signature. Finally, we selected some
potential drug interventions to reverse this signature in human islets and
𝛽 cells.

2. The impact of proinflammatory cytokines on the 𝛽­cell regulatory
landscape provides insights into the genetics of type 1 diabetes
(Ramos­Rodríguez et al. 2019). Similarly to the above, in this article we
published multi­omics data obtained by exposing for 48 hours human
pancreatic islets and human 𝛽 cells to IFN­𝛾 and IL­1𝛽. By integrating
the generated data, we were able to dissect 𝛽­cell regulatory networks,
possibly responding to a late insulitis stage. Moreover, we observed
an enrichment of T1D­associated SNPs in regulatory elements that
were induced by the cytokine exposure. We validated the functional role
for two of these variants, by showing that the T1D risk alleles alter the
cytokine­responsive enhancer activity in 𝛽 cells.

3. The Pancreatic Islet Regulome Browser (Mularoni, Ramos­Rodríguez,
and Pasquali 2017). This last publication describes the implementation
of the Islet Regulome Browser, an interactive online application that
provides access and an integrated visualization to many genomic
datasets relevant to the pancreatic islet community. The Islet Regulome
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Browser was developed with the aim of facilitating access and exploration
of complex genomic data to scientists with no bioinformatic background.

Table 5.1: Articles generated as a result of this thesis and included in the Results
section.

Publication Ref Description Obj.

An integrated multi­omics
approach identifies the
landscape of
IFN­𝛼­mediated responses
of human pancreatic 𝛽 cells

Colli et al. (2020) IFN­𝛼 to model human 𝛽
responses to early
insulitis

1,
2

The impact of
proinflammatory cytokines
on the 𝛽­cell regulatory
landscape provides insights
into the genetics of type 1
diabetes

Ramos­Rodríguez
et al. (2019)

IFN­𝛾 + IL­1𝛽 to model
human 𝛽 cell responses
to late insulitis

1,
3

The Pancreatic Islet
Regulome Browser

Mularoni,
Ramos­Rodríguez,
and Pasquali
(2017)

Interactive exploration of
pancreatic islet genomic
data

4

Taking into account the Bioinformatic nature of the results obtained in this thesis,
I considered it important to make all the code I produced for the analyses
performed in Colli et al. (2020) and Ramos­Rodríguez et al. (2019) publicly
available. Thus, all the code and resulting figures are gathered into a publicly
accessible website at: mireia­bioinfo.github.io/phdthesis_code. A summary of
the identifiers and accessors of the publicly available datasets released with
the publications described above can also be found in the website.

http://mireia-bioinfo.github.io/phdthesis_code
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Interferon­𝛼 to model human 𝛽­cell responses
to early insulitis

In this study, we evaluated the effect of IFN­𝛼 on human 𝛽 cells using
a multi­omics approach, combining information obtained from chromatin
accessibility, gene expression and protein abundance assays. IFN­𝛼 is a key
cytokine that is known to play an important role in early insulitis by inducing
HLA­I expression, ER stress and 𝛽 cell apoptosis (Marroqui et al. 2017).

Colli, M.L., Ramos­Rodríguez, M., Nakayasu, E.S. et al. An
integrated multi­omics approach identifies the landscape of
interferon­𝛼­mediated responses of human pancreatic beta cells.
Nat Commun. 11, 2584 (2020). https://doi.org/10.1038/s41467­
020­16327­0

6.1 Graphical abstract
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6.2 Highlights
• Exposure to IFN­𝛼 resulted in global changes in chromatin accessibility,
gene expression and protein abundance. Importantly, all these changes
were inter­correlated at the different time points.

• Reconstruction of the dynamic regulatory networks uncovered IRF1,
STAT1 and STAT2 as the main TFs driving the response to IFN­𝛼.
When these genes were inhibited, we observed a down­regulation of
checkpoint genes such as PDL1 and HLA­E, suggesting that 𝛽 cells play
an active role during insulitis by expressing these immune co­inhibitory
molecules.

• An expansion of the 𝛽 cell mRNA repertoire, mediated by the use of
alternative splicing and alternative transcription start sites, was observed
in 𝛽 cells exposed to IFN­𝛼. This mechanism might increase the 𝛽 cell
antigen repertoire in T1D.

• Mining gene networks induced by IFN­𝛼 uncovered two potentially
interesting T1D therapeutic interventions:

– Bromodomain inhibitors, which reverted the effect of IFN­𝛼
on 𝛽 cells by decreasing in IFN­𝛼­induced HLA­I and CXCL10
expression, without altering IL­1𝛽 + IFN­𝛼 induced apoptosis.

– Baricitinib, an inhibitor of the kinase JAK1/2, showed a more clear
reversion of the interferon signature by inducing a decrease in the
expression of HLA­I, CXCL10 and CHOP, together with a decrease
in the cell surface expression of MHC class I and protection from
IFN­𝛼 + IL­1𝛽 induced apoptosis.
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Interferon-α (IFNα), a type I interferon, is expressed in the islets of type 1 diabetic individuals,
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combining ATAC-seq, RNA-seq and proteomics assays. The initial response to IFNα is

characterized by chromatin remodeling, followed by changes in transcriptional and transla-

tional regulation. IFNα induces changes in alternative splicing (AS) and first exon usage,
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changes observed on protein modification/degradation, ER stress and MHC class I, may

expand antigens presented by beta cells to the immune system. Beta cells also up-regulate
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Type 1 diabetes (T1D) is a chronic autoimmune disease
leading to pancreatic islet inflammation (insulitis) and
progressive beta cell loss1. Type I interferons (IFN-I), a

class of cytokines involved in antiviral immune responses2, are
involved in insulitis. Viral infections are a risk factor associated
with T1D development3 and individuals at risk of T1D show a
type I interferon signature4. The type I interferon, interferon-α
(IFNα), is expressed in islets of T1D patients5, and antibodies
neutralizing different isoforms of IFNα prevent T1D development
in individuals with polyglandular autoimmune syndrome type 16.
Exposure of human pancreatic beta cells to IFNα recapitulates
three key findings observed in human insulitis, namely HLA class
I overexpression, endoplasmic reticulum (ER) stress and beta cell
apoptosis7.

Combination of genome-wide association studies (GWAS)8

and studies using the ImmunoChip9 have identified around 60
loci associated with the risk of developing T1D. Transcriptomic
studies revealed that >70% of the T1D risk genes are expressed in
human pancreatic beta cells10, and many of these genes regulate
innate immunity and type I IFN signaling11.

Type I IFN signaling is often cell-specific, an effect mediated by
differences in cell surface receptor expression, and activation of
downstream kinases and transcription factors12. Thus, and con-
sidering the potential relevance of this cytokine to the patho-
genesis of T1D, it is crucial to characterize its effects on human
beta cells. To define the global impact of IFNα on human beta
cells, we presently performed an integrative multi-omics analysis
(ATAC-seq, RNA-seq and proteomics) of IFNα-treated human
beta cells to determine the early, intermediate and late responses
to the cytokine. The findings obtained indicate that IFNα pro-
motes early changes in chromatin accessibility, activating distant
regulatory elements (RE) that control gene expression and pro-
tein abundance. IFNα activates key transcription factors (TFs),
including IRF1, which act as a mediator of the crosstalk between
beta cells and immune cells via the expression of the checkpoint
proteins PDL1 and HLA-E. Furthermore, IFNα induces modules
of co-expressed mRNA and proteins that physically interact and
have relevance to T1D pathogenesis. The integration of high-
coverage RNA-seq and ATAC-seq indicates regulatory gene
networks and reveals that alternative splicing and different first
exon usage are key mechanisms expanding the repertoire of
mRNAs and proteins expressed by stressed beta cells. Finally,
mining the modules of co-expressed genes and the IFNα beta cell
signature against the most recent catalogs of experimental and
clinical drugs identifies two potentially interesting therapeutic
targets for future trials.

Results
IFNα modifies beta cell mRNA expression similarly to T1D.
We performed a time course multi-omics experiment combining
ATAC-seq, RNA-seq and proteomics of the human beta cell line
EndoC-βH1 exposed or not to IFNα. The data were integrated to
determine the dynamics of chromatin accessibility, gene/tran-
script expression and protein translation, respectively (Fig. 1a).
We also performed RNA-seq of 6 independent human pancreatic
islet preparations exposed or not to the cytokine at similar time
points (Supplementary Fig. 1a). To assess whether our in vitro
model is relevant for the in vivo islet inflammation (insulitis) in
T1D, we took two approaches: (1) Examine whether candidate
genes for T1D expressed in human islets are involved in IFN
signaling (Supplementary Fig. 2a); and (2) Compare our in vitro
data of IFNα-treated EndoC-βH1 cells and human islets with
available RNA-seq data of human beta cells from T1D patients. In
line with previous findings suggesting a role for IFNs on the
pathogenesis of T1D13, we found that T1D risk genes expressed

in human islets10,14 are significantly enriched in immune-related
pathways, including type I and II interferon regulation/signaling
(Supplementary Fig. 2b). Next, we performed a Rank–Rank
Hypergeometric Overlap (RRHO) analysis (which estimates the
similarities between two ranked lists15) comparing the log2 fold-
change (FC) ranked list from RNA-seqs of EndoC-βH1 cells and
human islets (IFNα-treated vs untreated) against an equally
ranked list of genes obtained from RNA-seq of purified primary
beta cells16 from T1D and healthy individuals (Supplementary
Fig. 2c and Supplementary Data 1). There was a significant
intersection between upregulated genes induced by IFNα in both,
EndoC-βH1 cells (362 overlapping genes) and human islets (850
overlapping genes), and genes induced by the local pro-
inflammatory environment affecting primary beta cells from
T1D individuals (Supplementary Fig. 2d, f). We also compared
these two IFNα-treated datasets against beta cells from T2D
patients17, a condition mostly characterized by metabolic stress18.
By contrast with the observations made in beta cells from T1D
individuals, there was no statistically significant correlation
between IFNα-regulated genes in EndoC-βH1 cells and human
islets and the gene expression profile present in T2D beta cells
(Supplementary Fig. 2e, g).

IFNα induces early changes in chromatin accessibility. The
ATAC-seq experiments demonstrated that INFα induces early
changes in chromatin accessibility, with >4400 regions of gained
open chromatin regions (OCRs) detected at 2 h, which decreased
to 1000 regions by 24 h (Fig. 1b and Supplementary Data 2); only
nine regions had loss of chromatin accessibility (Fig. 1b). Most of
the OCRs at 24 h were already modified at 2 h (fast response), and
only 10% of OCRs were specifically gained at 24 h (late response).
The gained OCRs were mostly localized distally to gene tran-
scription starting sites (TSS) (Supplementary Fig. 3a) acting,
therefore, as potential regulatory elements. These regions are
evolutionary conserved (Supplementary Fig. 3b), and enriched for
transcription factors (TFs) binding motifs (Supplementary
Fig. 3c), including islet-specific TFs binding sequences.

To assess whether changes in chromatin remodeling were
associated with variations in gene expression, we first quantified
the frequency of ATAC-seq regions gained or stable in the
proximity (40 kb window centered on the TSS) of genes with
differential mRNA expression (up/down/non-regulated or non-
expressed) (Supplementary Data 2). There was a higher
proportion of upregulated genes associated with gained OCRs
in comparison to stable regions at each time point analyzed
(Fig. 1c). Moreover, the number of gained OCRs was associated
with changes in both the proportion (Fig. 1d) and the intensity
(Supplementary Fig. 3e) of transcript induction (Supplementary
Fig. 3d, see Methods for more information). There was also a
minor association between the number of stable regions and
upregulated mRNAs at 2 h (Supplementary Fig. 3e), likely due to
the activation of already nucleosome-depleted regions ahead of
cytokine exposure19. Consistently with these results, there was an
increase in the frequency of upregulated proteins coded by genes
proximal to gained OCRs (Fig. 1e). Likewise, there was a
progressive increase in IFNα-induced protein abundance depend-
ing on the number of linked gained open chromatin regions
(Fig. 1f).

There was a strong correlation between upregulated mRNAs
and induced proteins (r2: 0.66 and 0.65 at, respectively, 8 and
24 h, p < 2.2 × 10−16) (Fig. 1g, first column), but a much lower
similarity between downregulated mRNAs and proteins (Fig. 1g,
second column). Gene ontology analysis of differentially
abundant proteins upon IFNα treatment identified several
biological processes involved in the pathogenesis of T1D, such
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Fig. 1 Exposure of EndoC-βH1 cells to interferon-α promotes changes in chromatin accessibility, which are correlated with gene transcription and
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performed to study chromatin accessibility (ATAC-seq, n= 4), transcription (RNA-seq, n= 5) and translation (Proteomics, n= 4). b Volcano plot showing
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proteomics log2FC. The proteins most upregulated (log2FC > 0.58, FDR < 0.15) or downregulated (log2FC <−0.58, FDR < 0.15) are represented by red and
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as antigen processing and presentation, responses to viruses,
apoptosis and NK/T-cell responses (Supplementary Fig. 4a, b);
groups of genes associated to protein modification and degrada-
tion were also present (Supplementary Fig. 4a, c). Furthermore,
genes related to endoplasmic reticulum (ER) stress, another post-
transcriptional mechanism that downregulates translation of
many mRNAs20, were also upregulated by IFNα at both the
mRNA and protein levels (Supplementary Fig. 4d). These
findings are in line with our previous observations7 and were
confirmed here in independent samples for two key ER stress
markers, namely the transcription factor ATF321 and the ER
chaperon HSPA5 (also known as BiP/GRP78)22 (Supplementary
Fig. 4e–h). ER stress often decreases translation, which may
explain the weak association observed between mRNA and
protein expression in downregulated mRNAs and proteins
(Fig. 1g).

IRF1, STAT1 and STAT2 are key regulators of IFNα signaling.
To identify the key transcription factors involved, the expression

of differentially expressed genes (DEG) from all RNA-seq time
points (Supplementary Data 3) was analyzed using the dynamic
regulatory events miner (DREM) model23. This approach iden-
tified six patterns of co-expressed genes (Fig. 2a); 5 out of 6
pathways had an early peak of induction (2 or 8 h), which then
decreased or remained stable until 24 h (Fig. 2a). The model
compared the frequency of TF binding sites in the gene pro-
moters between divergent branches of co-expressed genes,
assuming that these TFs are responsible for the observed differ-
ences in gene expression profiles (Fig. 2a). This was compared
with the TF occupancy determined by assaying the protection of
the bound sequence to ATAC-seq transposase cleavage (foot-
print) (Supplementary Fig. 5a and Methods). There were foot-
prints for the transcription factors IRF1, STAT1 and STAT2,
which were deepened upon IFNα exposure in pathway B (which
had the highest transcriptional upregulation at 2 h) and for IRF1
in two independent pathways, namely B and D at 24 h (Fig. 2b).
Western blot analysis confirmed the activation of these TFs
(Fig. 2c). STAT1 and STAT2 phosphorylation peaked between 0.5
and 1 h and then returned to near-basal levels at 24 h, while IRF1
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Fig. 2 IRF1, STAT1 and STAT2 regulate IFNα-induced transcription and the expression of checkpoint proteins. a The regulatory paths summarize the
temporal patterns of the differentially expressed genes (DEG) detected by RNA-seq (|log2FC|> 0.58 and FDR < 0.05, n= 5) (evaluated by DREM25). The x
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c Time course profile of STAT1, STAT2 and IRF1 protein activation in EndoC-βH1 cells exposed to IFNα (representative of four independent experiments).
d–m EndoC-βH1 cells were transfected with an inactive control siRNA (siCT) or previously validated7,24 siRNAs targeting IRF1 (siIRF1), STAT1 (siSTAT1),
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peaked later, at 4–8 h decreased by 24 h (Fig. 2c); these findings
support the observed TF footprint profiles (Fig. 2b). There was
also a close correlation between DEGs induced by IFNα in RNA-
seq of EndoC-βH1 cells and in human pancreatic islets (Sup-
plementary Fig. 1b; p < 2.2 ×10−22 at 2, 8 and 24 h), which
resulted in a similar pattern of gene activation under the control
of analogous TFs (Supplementary Fig. 1c and Supplementary
Data 4).

Individual DREM pathways usually regulate specific biological
processes (GO) (Supplementary Fig. 5b, 1d). Among them, was
the term “Regulation of immune responses” (Supplementary
Fig. 5b). This pathway comprises several genes involved in the
crosstalk between beta cells and the immune system, such as
PDL1 (CD274), an immune checkpoint protein expressed in the
islets of T1D individuals24, and a second co-inhibitory molecule,
HLA-E, recently identified as potential target for cancer
immunotherapy25 (Fig. 2d–m).

By using a previously validated siRNA targeting IRF124, we
obtained around 60% knockdown (KD) of INFα-induced IRF1
protein and mRNA expression at 2 and 24 h (Supplementary
Fig. 5c–f). IRF1 silencing led to a significant decrease in IFNα-
induced PDL1 and HLA-E mRNA expression (Fig. 2d, f, i, k).
Silencing of IRF1 also decreased IFNα-induced upregulation of
the chemokines CXCL1 and CXCL10, the HLA-I component
beta-2-microglobulin (B2M) and the suppressor of cytokine
signaling 3 (SOCS3) (Supplementary Fig. 5d, f). Small interference
RNAs targeting STAT1 (siSTAT1) or STAT2 (siSTAT2) pro-
moted >70% KD of their respective proteins and mRNAs,
(Supplementary Fig. 5g–j). Inhibiting STAT1 or STAT2 alone
partially blocked the induction of PDL1 and HLA-E at 2 h
(Fig. 2e, j), but led to a paradoxical increase in PDL1 and HLA-E
expression at 24 h (Fig. 2g, i), which is probably due to a
compensatory increase in expression of the non-targeted STAT24.
In line with this, double KD of STAT1+ STAT2 led to
downregulation of both PDL1 and HLA-E (Fig. 2h, m). STAT2
inhibition decreased the 2 h expression of IFNα-induced CXCL1/
10, SOCS1 and MX1, whereas STAT1 KD only prevented CXCL10
induction (Supplementary Fig. 5h). At 24 h only 2 out of 4 genes
remained partially inhibited by siSTAT2 (Supplementary Fig. 5j),
whereas double KD of STAT1+ STAT2 prevented IFNα-induced
gene upregulation at 24 h in most cases (Supplementary Fig. 5k).

Exposure of FACS-purified human beta cells (Supplementary
Fig. 6a–c) to IFNα confirmed the upregulation of genes related to
antigen presentation (HLA-I), antiviral responses (MX1, MDA5),
ER stress (CHOP), immune cells recruitment (CXCL10) and
checkpoint regulators (PDL1) (Supplementary Fig. 6d).

The checkpoint protein PDL1 is overexpressed in beta cells
from people with T1D24, and we presently evaluated the
expression of another checkpoint protein, i.e. HLA-E25. IFNα
upregulated HLA-E mRNA expression in EndoC-βH1 cells
(Fig. 3a), dispersed human islets (Fig. 3b) and FACS-purified
human beta cells (Fig. 3c) and augmented HLA-E protein
expression in both EndoC-βH1 cells (Fig. 3d) and human islets
(Fig. 3e), with peak at 24 h. The inhibitory effects of HLA-E on
immune cells require its expression on the cell surface or its
secretion26. Flow cytometry confirmed that IFNα increases
surface HLA-E expression (Fig. 3f, g, Supplementary Fig. 5l),
but there was no HLA-E release to the supernatant (Supplemen-
tary Fig. 5m). HLA-E mRNA expression was upregulated by 8-
fold in human islets of donors with recent-onset T1D in the
DiViD study27 and HLA-E protein expression was significantly
increased in insulin-containing islets, but not in insulin-deficient
islets, of T1D individuals in comparison to healthy individuals
(Fig. 3h, i). HLA-E expression was present in both beta and alpha
cells (but not delta cells; Supplementary Fig. 5n) in the islets of
people with T1D, with a predominance of expression among

alpha cells as compared to beta cells (Fig. 3j). This may help to
explain why alpha cells are more resistant to the immune assault
in T1D.

mRNA and protein modules regulated by interferon-α. We
integrated the RNA-seq and proteomics data (using all the
samples from both 8 and 24 h) using the weighted correlation
network analysis package (WGCNA)28. The heatmaps of the
topological overlap matrix from each dataset with module
assignment are shown in Fig. 4a. There were initially 32 eigengene
modules of mRNAs and 27 of proteins, which were merged
(considering a dissimilarity threshold of 0.25) reducing the
numbers of mRNA and protein modules to 8 and 7, respectively
(Supplementary Fig. 7a–c). The quality of these modules was
determined using a combined score of density and separability
measures (Methods)29, which indicated that they were well-
defined (Zsummary > 10) (Supplementary Fig. 7d). WGCNA ana-
lysis of the RNA-seq of human islets exposed to IFNα identified
well-defined modules of mRNAs (Supplementary Fig. 8a–d),
similar to the ones identified in EndoC-βH1 cells exposed to the
cytokine (Supplementary Fig. 8e). To focus on central modules
induced by IFNα exposure, we selected only the differentially
expressed genes (DEG) (Supplementary Data 3) and abundant
proteins (DAP) (Supplementary Data 5) in each eigengene
module, representing 49% of the protein-coding DEGs and 89%
of the DAPs, and then examined the overlap between these
datasets. There was a significant overlap between five modules of
mRNAs and proteins (minimum of 10 elements in common,
FDR < 0.05) (Fig. 4b). The two main new modules, called #1 and
#2 (Fig. 4c), were composed of highly correlated mRNAs and
proteins (Supplementary Fig. 7e, g) predominantly upregulated
by IFNα at both 8 and 24 h (Supplementary Fig. 7f, h). Module #5
also had significantly correlated members (Supplementary
Fig. 7i), but enriched in downregulated mRNAs/proteins at both
8 and 24 h (Supplementary Fig. 7j). Interestingly, there was sig-
nificant enrichment of ATAC-seq gained OCRs in module #2
(Fig. 4d). They were enriched for TF binding motifs including
both the pro-inflammatory motifs ISRE / IRF and the islet-
specific transcription factor FOXA2 (Fig. 4e).

To identify the gene regulatory network (GRN) of module #2,
we integrated information from two sources: (1) literature-based
collection of TF-target interactions30, and (2) the present de novo
TF binding motifs and their predicted targets (Supplementary
Fig. 9a). This allowed us to add information from cis-regulatory
elements (in orange) acting on the IFNα-induced GRN in human
beta cells (Supplementary Fig. 9b). A similar approach was used
for modules #1 and #5, but considering only data from the
literature (Supplementary Fig. 10a, c).

The PPI network InWeb InBio Map31 was used to assess the
presence of protein–protein interaction (PPI) networks in the
different modules. This generated networks of interacting
proteins for modules #1, #2 and #5 (Fig. 4f and Supplementary
Fig. 10b, d) and allowed the recognition of protein communities
(grouped by colors) that regulate specific and common biological
functions (Fig. 4f and Supplementary Fig. 10b, d). Module #2,
which presents the higher number of connections, showed an
enrichment for several key biological processes activated by IFNα
and relevant for the pathogenesis of T1D, including cellular
response to viruses, antigen processing and presentation via MHC
class I, inflammatory and acute phase responses (Fig. 4g).

Interferon-α changes the alternative splicing landscape. The
present high-coverage RNA-sequencing (>200 million reads)
allowed the detection of ~47,000 splicing variants, with IFNα-
induced 343 differentially expressed transcripts (DETs) at 2 h,
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and 1690 and 1669, respectively at 8 and 24 h, with predominance
of upregulated transcripts (Fig. 5a and Supplementary Data 6 and
7). Considering all the DETs, 4%, 32% and 32% were exclusively
modified at 2, 8 and 24 h, respectively, indicating a predominance
of intermediary to late transcriptional changes induced by IFNα.
Next, we evaluated the frequency of each individual splicing
events (with an absolute difference in percent spliced-in (|ΔPSI|)
> 0.2) regulated by IFNα at 8 and 24 h. There were 3140 events at

8 h and 2344 events at 24 h (FDR < 0.05) (Fig. 5b). The most
frequent AS event modified by IFNα was cassette exons (CEx),
with predominantly increased exon inclusion (represented by
ΔPSI > 0.2, FDR < 0.05) (Fig. 5c). An example of a cassette exon
showing increased inclusion upon IFNα treatment is the gene
OASL (Fig. 5d, e), an antiviral factor targeting single-stranded
RNA viruses such as picornaviruses32. Exposure to IFNα for 24 h
increased exon 4 inclusion in both EndoC-βH1 cells and human
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islets (Fig. 5d). In line with this, the protein encoded by the
isoform OASL−001 (which retains exon 4) displayed a higher
IFNα-induced upregulation in comparison with the protein
encoded by the isoform OASL−002, which has exon 4 exclusion
(Fig. 5e). Interestingly, the isoform OASL−001 has antiviral
activity, whereas the isoform 002 lacks the ubiquitin-like domain
required for this response (Supplementary Fig. 11A)33.

Intron retention is an important mechanism of gene expression
regulation, promoting nuclear sequestration of transcripts or
cytoplasmatic degradation via nonsense-mediated decay34. There
was a predominance for intron removal after 24 h (represented by
ΔPSI <−0.2, FDR < 0.05), but not at 8 h (Fig. 5f). To understand
how this impacts protein translation, we compared changes in
protein abundance among three categories of ΔPSI. Genes
presenting intron removal had a significant increase in protein
expression after IFNα exposure for 24 h in comparison to those
with intron retention (ΔPSI > 0.2, FDR < 0.05) or with non-
significant intron changes (ΔPSI −0.2–0.2 or FDR > 0.05)
(Fig. 5g).

There were clear variations in the mRNA expression of several
well-known RNA-binding proteins (RBPs)35 upon IFNα exposure
(Fig. 5h, left panel), but the impact on the respective proteins was
less pronounced (Fig. 5h, right panel). We focused on a group of
IFNα-modified RBPs at both mRNA and protein levels after 24 h,
and mapped their RNA-binding motifs among upregulated and
downregulated alternative exons. In support of a biological role for
these RBPs on alternative exon splicing, there was an enrichment
of their binding motifs in regions controlling alternative cassette
exon inclusion/exclusion (Fig. 5i). To further study some of these
findings, we first reproduced the IFNα-induced downregulation of
two RBPs, ELAV-like protein 1 (ELAVL1) and heterogeneous
nuclear ribonucleoprotein (HNRNPA1), by using specifics siRNAs
(Supplementary Fig. 12a, e). Next, we evaluated whether this
inhibition reproduced the changes induced by IFNα in the exon
usage of four-and-a-half LIM domain protein 1 (FHL1) and
Caprin Family Member 2 (CAPRIN2) (Supplementary Fig. 12b, f)
two potential targets of, respectively, ELAVL136 and HNRNPA137.
Silencing these RBPs promoted changes on exon usage (Supple-
mentary Fig. 12c, g) that were similar to the ones observed after
IFNα treatment (Supplementary Fig. 12b, f). This is especially
relevant in the context of the IFNα-induced exon exclusion FHL1,
which decreases the expression of transcripts coding for the
protein FHL1A (Supplementary Fig. 12d), an isoform described as
a key host factor for the replication of the RNA virus
Chikungunya38.

RBPs can also control gene expression by blocking RNA
translation, as described for the Fragile X Mental Retardation 1
(FMR1) gene39. Indeed, there was a significant downregulation of
previously validated bona fide targets of FMR1 (Supplementary

Table 1)40 in IFNα-treated EndoC-βH1 cells as compared to the
remaining proteins (Fig. 5j).

IFNα induces increased alternative transcription start sites.
The usage of alternative transcription start (TSS) sites is another
mechanism that generates different transcripts from the same
gene41. We used the SEASTAR pipeline42 for the computational
identification and quantitative analysis of first exon usage. This
approach recognized >250 events of alternative first exon (AFE)
usage occurring in 166 different genes at 8 h, and >130 events of
AFE usage in 88 genes at 24 h (Fig. 6a). In agreement with this,
118 and 64 alternative promoters (±2 kb around FE TSS) detected
by SEASTAR at 8 and 24 h, respectively, overlapped peaks of TSS
identified by the FAMTOM5 Consortium43. Among these genes
was the 5′-nucleotidase cytosolic IIIA (NT5C3A), a negative
regulator of IFN-I signaling44. This gene had two AFEs identified
by the SEASTAR modeling. In untreated condition (controls),
there was a higher usage of the proximal first exon (FE), present
in the isoforms NT5C3A−001 and 002 in beta cells (Fig. 6b,
upper panel). After INFα exposure, however, there was increased
usage of the distal FE from the transcript NT5C3A−004 (ΔPSI:
0.71 (8 h)/0.65 (24 h), both FDR < 0.001), which is supported by
the cap analysis of gene expression (CAGE) of TSSs45 (Fig. 6b,
upper panel). This was confirmed in independent samples of
EndoC-βH1 cells and human islets using specific primers (Fig. 6b,
lower panel). Exon Ontology analysis46 indicated that this FE
shift probably has functional impact, since the distal FE lacks
both the endoplasmic reticulum (ER) retention signal and the
transmembrane helix (Supplementary Fig. 11b), enabling its
encoded protein to remain in the cytosol where NT5C3A acts44.

Next, we compared the frequency of gained OCRs among
alternative promoters. As the SEASTAR pipeline mainly
recognizes non-redundant FEs, we evaluated alternative promo-
ters identified by both the SEASTAR pipeline and the FAMTON5
database of alternative TSSs45 (Supplementary Methods). We
thus identified 198 and 51 gained OCRs present in alternative
promoter regions at 2 and 24 h, respectively. Characterization of
the IFNα-induced alternative promoters presenting a major gain
in chromatin accessibility pointed to the T1D risk gene RMI247.
At gene level, there was only a ~1.4-fold upregulation of RMI2
expression, but at the transcript level there was a >60-fold
increase in two isoforms, RMI2−002 and −004. Visualization of
the RMI2 locus combined with ATAC-seq and RNA-seq peaks
indicated that the isoform RMI2−004 gained chromatin acces-
sibility in its promoter leading then an increase in mRNA
expression (Fig. 6c). Data from CAGE analysis45 and RNA
polymerase II ChIP-seq of another human cell type exposed to
IFNα48 (Fig. 6c, lower part) confirms the presence of the RMI2

Fig. 3 HLA-E is overexpressed in pancreatic islets of T1D individuals. EndoC-βH1 cells (a, d), human islets (b, e) or FACS-purified human beta cells (c)
were exposed (gray bars) or not (black bars) to IFNα for the indicated time points and HLA-E mRNA (a–c) and protein (d, e) evaluated. The values were
normalized by the housekeeping gene β-actin (mRNA) or α-tubulin (protein) and then by the highest value of each experiment considered as 1 (for a (n=
4); b (n= 3 (8 h), n= 5 (24 h)); c (n= 4); d (n= 4) and e (n= 2 (8 h), n= 4 (24 h)), ANOVA with Bonferroni correction for multiple comparisons (a–e)).
f, g HLA-E cell surface expression was quantified in EndoC-βH1 cells by flow cytometry. Histograms (f) represent changes in mean fluorescence intensity
(MFI). The MFI values (g) were quantified at baseline and after 24 h exposure to IFNα (n= 4, two-sided paired t-test). Values are mean ± SEM (a–g).
h Immunostaining of HLA-E (green), glucagon (red) and insulin (light blue) in representative islets from individuals with or without diabetes. The top and
middle panels represent an insulin-containing islet (ICI) and insulin-deficient islet (IDI) from T1D sample DiViD 3, and the lower panel represents an islet
from a control donor (EADB sample 333/66). DAPI (dark blue). Scale bar 20 μm. i The MFI analysis of HLA-E expression. 30 ICIs from 6 independent
individuals with T1D (5 islets per individual), 20 IDIs from 4 independent individuals with T1D (5 islets per individual), and 30 ICIs from 6 independent
individuals without diabetes (5 islets per individual) were analyzed. Values are median ± interquartile range; ANOVA with Bonferroni correction for
multiple comparisons, AU (arbitrary units), ns= (non-significant). j Higher magnification image demonstrating that HLA-E (green) localizes predominantly
to alpha cells in a T1D donor islet (glucagon (red); insulin (light blue)) but is also expressed in beta cells, as indicated in h and j. Scale bar 30 μm. Source
data are provided as Source Data file.
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Fig. 4 Weighted correlation network analysis (WGCNA) identifies IFNα-regulated mRNA and protein modules. a Heatmap representation of the
topological overlap matrix. Rows and columns correspond to single genes/proteins, light colors represent low topological overlap, and progressively darker
colors represent higher topological overlap. The corresponding gene dendrograms and initial module assignment are also displayed. b Identification of
modules presenting significant overlap (FDR < 0.05 and a minimum of 10 members in common) (green border) between differentially expressed genes
(DEG) and their translated differentially abundant proteins (DAP). c Composition, number of elements and type of DEG and DAP present in each of the
significantly overlapping modules. d ATAC-seq-identified open chromatin regions at 2 h were linked to gene transcription start sites (TSSs) in a 40 kb
window. These genes and their open chromatin regions were associated to the modules of DEG and DAP. The enrichment for gained open chromatin
regions was then evaluated in each module. (** represents a p-value = 0.002343, one-sided χ2 test). e De novo HOMER motifs present in the ATAC-seq
regions overlapping module #2 as described in Methods. The unadjusted p-values were obtained using the hypergeometric test from the HOMER
package77. f The protein–protein interaction (PPI) network of module #2 was done using the InWeb InBio Map database31. Enriched proteins (FDR < 0.05
and minimum number of connections = 5, represented as squares) were identified and added to the network if they were not already present. Red fill
identifies upregulated proteins, blue fills downregulated proteins and gray fill equal-regulated. Colored regions delimitate communities of proteins, as
described in Methods. The wordcloud next to each community presents their enriched geneRIFs terms. g The biological processes (GO) overrepresented in
module #2 summarize the main findings observed in IFNα-treated human beta cells. The present results were based on RNA-seq (n= 5) and proteomics
(n= 4) data of EndoC-βH1 cells.
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alternative promoter. The IFNα-induced RMI2−004 upregulation
was confirmed using specific primers in both EndoC-βH1 cells
and human islets (independent samples) (Fig. 6d). These findings
support a double mechanism by which IFNα affects human beta
cells, i.e. first a massive change in open chromatin regions
followed by later changes in gene expression and AS (see above)
and also AFE usage.

Mining IFNα signatures to identify T1D therapeutic targets.
Considering the significant overlap observed between gene pro-
files of IFNα-exposed EndoC-βH1 cells and beta cells from T1D
individuals (Supplementary Fig. 2d), mining these common sig-
natures might identify relevant T1D therapeutic targets. First, the
top 150 commonly upregulated genes detected by the RRHO
analysis of both IFNα-exposed EndoC-βH1 cells and beta cells
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from T1D individuals were selected (Supplementary Fig. 2d and
Fig. 7a) to query the Connectivity Map database49. We focused in
opposite signatures of perturbagens that may reverse the effects of
IFNα. To decrease off-target findings based on individual com-
pounds, the analysis was performed considering only the classes
of perturbagens. Four main classes, including bromodomain
inhibitors, potentially reversed the signature from our query (tau
score <−90) (Fig. 7b). Comparable results were obtained when
analyzing the intersection of IFNα-exposed pancreatic human
islets and beta cells from T1D individuals (Supplementary
Fig. 13a). Bromodomain inhibitors have been shown to prevent
autoimmune diabetes in animal models50 and the KD of the
bromodomain containing 2 gene (BRD2) induced an opposite
signature to our model (Supplementary Fig. 13b). Pre-treatment
of EndoC-βH1 cells with two bromodomain inhibitors decreased
both IFNα-induced HLA-I and CXCL10 induction, with no
changes in CHOP (DDIT3) expression (Fig. 7c, e) or in apoptosis
induced by IL1β+ IFNα (Fig. 7d, f). In human islets, these
inhibitors induced a ~30% decrease in IFNα-induced HLA-I
expression and a 90% reduction in CXCL10 expression; at least in
the context of I-BET-151, there was a 60% reduction of the ER
stress marker CHOP (DDIT3) (Supplementary Fig. 13c, d).

Next, we searched for clinically approved drugs (DrugBank
5.151) among the PPI network of the WGCNA module #2
(Fig. 4f), with a view to possible drug repurposing. Module #2 is
particularly interesting in this context as it recapitulates many of
the key biological processes induced by IFNα (Fig. 4g), and
because ~50% of its members were also present among the most
upregulated genes from the RRHO analysis (Supplementary
Fig. 2d). An interesting target recognized as a hub for different
drugs was the kinase JAK1 (Fig. 8a) and its inhibitor baricitinib,
which has shown promising effects in the treatment of human
rheumatoid arthritis52. Baricitinib prevented IFNα-induced
mRNA expression of HLA-I, CXCL10 and CHOP (DDIT3) in
EndoC-βH1 cells (Fig. 8b) and human islets (Fig. 8c) and it
completely protected EndoC-βH1 cells (Fig. 8d) and human islets
(Fig. 8e) against the pro-apoptotic effects of IFNα+ IL1β.
Furthermore, baricitinib decreased the cell surface protein
expression of MHC class I by >90% in EndoC-βH1 cells (Fig. 9a)
and human islets (Fig. 9b, c).

Discussion
We presently modeled the initial changes observed in the islets of
Langerhans during T1D by performing an integrated multi-omics
approach in EndoC-βH1 cells exposed to the early cytokine IFNα.
The model was validated using human islets RNA-seq and
independent experiments using the same human beta cell line,
pancreatic human islets and FACS-purified human beta cells. Of
relevance, taking into account the major differences between

human and rodent beta cell responses to stressful stimuli53,54, all
experiments were performed in clonal or primary human beta
cells/islets. This approach identified very rapid and broad beta cell
responses to IFNα including: (1) major early modifications in
chromatin remodeling, which activates regulatory elements; (2)
the key TFs regulating signaling, and the crosstalk between beta
cells and immune cells; (3) the functional modules of genes and
their regulatory networks; and (4) alternative splicing and first
exon usage as important drivers of transcript diversity. Finally, an
integrative analysis led to the identification of two compound
classes that reverse all or part of these alterations in EndoC-βH1
cells and human islets and may be potential therapeutic targets
for future trials in T1D prevention/treatment.

During viral infection a prompt innate immune response,
mediated to a largest extent via type I interferons, is critical to
control virus replication and spreading55. In line with this,
exposure of human beta cells to IFNα leads to changes in chro-
matin accessibility already at 2 h, which correlates with sub-
sequent changes in mRNA and protein expression at 8 and 24 h.
The majority of these regions are localized distally to TSSs,
indicating that they may act primarily as distal regulatory ele-
ments. Interestingly, these regions were enriched in motifs of
islets-specific TFs, suggesting that tissue-restricted characteristics
regulate the local responses during insulitis, as we have recently
described for the cytokines IL1β+ IFNγ19. This could explain the
preferential expression of HLA class I (both the classical ABC
members and the presently described inhibitory HLA-E) by
pancreatic islets in comparison to the surrounding exocrine
pancreas. Islet HLA class I overexpression is a key finding during
T1D development56, contributing for the recruitment of auto-
reactive CD8+ T cells that selectively attack beta cells1. IFNα also
induces pathways involved in protein modification (ubiquitina-
tion, sumoylation, etc), degradation (proteasome, etc) and ER
stress, which can generate neoantigens14.

The IRF and STAT family members are master TFs involved in
IFN-I signaling2. Viruses have developed several species-specific
mechanisms to antagonize STAT1 and STAT2 activation55. For
instances, the NS5 protein of Zika virus degrades human but not
mouse STAT257. In the present work, we confirmed the impor-
tance of both STAT1 and 2 for INFα signaling in beta cells, and
observed that their individual KD is compensated in most cases
by the remaining member, as a possible backup mechanism to
protect against pathogens58. Interestingly, IRF1 seems to be a
critical regulator of the IFNα-mediated “defense” responses in
beta cells, including induction of checkpoint proteins such as
PDL1 and HLA-E (present data), and the suppressors of cytokine
signaling 1 and 3 (SOCS3) (ref. 59 and present data). This stands
in contrast to its pro-inflammatory effects in immune cells60. In
line with the possible role for IRF1 in dampening islet

Fig. 5 Interferon-α changes the alternative splicing landscape. a EndoC-βH1 cells were exposed to IFNα for the indicated time points. The significantly
upregulated (red) and downregulated (blue) transcripts were identified using Flux Capacitor (n= 5, |log2FC| > 0.58 and FDR < 0.05). b Frequency of
individual alternative splicing events regulated by IFNα (n= 5, |ΔPSI| > 0.2, minimum 5 reads, FDR < 0.05). c Frequency distribution of alternative cassette
exon (CEx) events altered by IFNα ((n= 5, ΔPSI) > |0.2| and FDR < 0.05). d Confirmation of the increased exon 4 inclusion in the antiviral gene OASL by
IFNα (24 h). cDNA was amplified by RT-PCR using primers located in the upstream and downstream exons of the splicing event and the product evaluated
using a Bioanalyzer 2100 (n= 4 (EndoC) and n= 7 (human islets), two-sided paired t-test). e The log2FCs of the proteins coding for OASL-001 and −002
isoforms from IFNα-treated EndoC-βH1 cells proteomics (24 h) (n= 4). f Frequency distribution of retained intron (RI) events altered by IFNα (n= 5, |
ΔPSI| > 0.2 and FDR < 0.05). g The protein log2FC values obtained by proteomics analysis of EndoC-βH1 cells exposed to IFNα for 24 h were classified in
three categories according to the levels of retained intron ΔPSI (n= 5, mean ± SEM, ANOVA with Bonferroni correction). h Expression of RNA-binding
proteins (left) that are significantly modified at mRNA level (FDR < 0.05) after exposure to IFNα and their respective proteins (right) in the indicated time
points (n= 4–5). i Positional enrichment of motifs from significantly modified RBPs among regions involved in the regulation of modified cassette exons
(CEx) after exposure to IFNα for 24 h. (n= 5, |ΔPSI| > 0.2, FDR < 0.05). j Comparison between the log2FC of a curated list (Supplementary Table 1) of
known FMR1 target proteins against the log2FC of the remaining proteins detected by the proteomics of EndoC-βH1 cells exposed to IFNα for 24 h (n= 4,
mean ± SEM; two-sided unpaired t-test). Source data are provided as a Source Data file.
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inflammation, systemic knockout of IRF1 prevents autoimmune
diabetes in NOD mice61, whereas IRF1 deletion in islets is
associated with shorter mouse allograft graft function and
survival62.

Alternative splicing (AS) is a species, tissue and context-specific
post-transcriptional mechanism that expands the number of
transcripts originated from the same gene thus increasing protein

diversity63. Pancreatic beta cells share many characteristics with
neuronal cells, including analogous signal transduction, devel-
opmental steps and splicing networks64. Both T1D risk genes65

and the cytokines IL1β+ IFNγ10 modify AS in beta cells. We
presently identified a preferential alternative exon inclusion after
IFNα exposure and mapped the potentially involved RBPs, which
included the upregulated protein Quaking (QKI). QKI activation
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Fig. 6 Changes in the alternative transcription start site (TSS) initiation increase the repertoire of IFNα-regulated transcripts. a The tool SEASTAR42

was used to estimate the frequency of differential alternative first exon (AFE) usage induced by IFNα in human beta cells. The total number of IFNα-
dependent AFEs events (left) and number of genes with AFEs (right) in the indicated time point are shown (n= 5, ΔPSI > |0.2|, FDR < 0.05). b View of the
NT5C3A locus showing the transcripts with AFE usage, the RNA-seq (red) signals of EndoC-βH1 cells exposed or not to IFNα and the CAGE TSSs
information (black scale)45 (upper panel). Confirmation of the AFE usage identified by SEASTAR in the gene NT5C3A (lower panel). cDNA was amplified
by RT-PCR using primers located in the AFE and in its downstream exon. The PCR products were analyzed by automated electrophoresis using a
Bioanalyzer 2100 and quantified by comparison with a loading control. The values were then corrected by the housekeeping gene β-actin. (n= 4 (EndoC)
and n= 6 (human islets), two-sided paired t-test). c View of the RMI2 locus showing all the transcripts in this region, the ATAC-seq (blue) and the RNA-
seq (red) signals of EndoC-βH1 cells exposed or not to IFNα for 24 h, the CAGE TSSs information (black scale)45 and RNA polymerase II ChIP-seq signal of
human K562 cells exposed to IFNα (black)48. A higher magnification of the RMI2-004 locus is presented below (image representative of 4–5 independent
experiments). d Confirmation of the AFE usage in the gene RMI2. Genome mapping (upper part) showing the genomic regions used to design-specific
primers located in the AFE of the transcript RMI2-004 and in its downstream exon. The PCR product was analyzed by automated electrophoresis using a
Bioanalyzer 2100 and quantified by comparison with a loading control. The values were then corrected by the housekeeping gene β-actin. (n= 4 (EndoC)
and n= 6 (human islets), two-sided paired t-test). Source data are provided as a Source Data file.
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in monocytes promotes extensive changes in AS, favoring their
differentiation into pro-inflammatory macrophages66. Further-
more, QKI binds to the genome of RNA viruses and inhibits their
replication67. A similar mechanism was recently described for
FMR168, another RBP induced by IFNα, which controls protein
translation in beta cell (present data). Several other RBPs were
observed as downregulated by IFNα and identified as potential
regulators of IFNα-induced AS events. Thus, inhibition of
ELAVL1 and HNRNPA1 reproduced IFNα-mediated changes in
exon usage. Different RNA viruses can use both ELAVL169 and
HNRNPA170 to support their replication, indicating that the
decreased expression of these proteins may provide an additional
IFN-triggered antiviral mechanism. These findings suggest that
during potentially diabetogenic viral infections, RBPs may have a
dual role: first as splicing regulators and second as regulators of
viral replication.

In order to identify novel approaches to protect beta cells in
T1D, we analyzed the similarities between beta cell signatures
from T1D donors and those following IFNα exposure, and
compared the top identified genes/pathways with the Con-
nectivity Map49 and the DrugBank51 database. This identified two
groups of potential therapeutic agents, namely bromodomain and
JAK inhibitors. Bromodomain (BRD) proteins are components of
chromatin-remodeling complexes that promote chromatin
decompaction and transcriptional activation. BET inhibitors have

shown protective effects in different animal models of auto-
immunity71, including the diabetes-prone NOD mice50. We have
now expanded these findings to human beta cells, showing that
two distinctive BET inhibitors (JQ1+ and I-BET-151) decrease
IFNα-induced responses, including HLA class I and chemokine
overexpression.

After binding to its receptor, IFNα promotes phosphorylation
of two tyrosine kinases, JAK1 and TYK2, which then trigger the
downstream signaling cascade. Chemical inhibition of JAK1+
JAK2 prevents autoimmune diabetes in NOD mice72 and poly-
morphisms associated with decreased TYK2 function are pro-
tective against human T1D73. We presently observed that
baricitinib, a JAK1/2 inhibitor recently approved for use in
rheumatoid arthritis by the FDA52, decreased all the three hall-
marks previously identified in islets of T1D individuals and
initiated by IFNα in human beta cells, namely HLA class I
overexpression, ER stress and beta cell apoptosis, supporting its
future testing in T1D.

In conclusion, we have applied a multi-omics approach to
study the different levels of gene regulation induced by IFNα in
EndoC-βH1 cells and pancreatic human islets. This in vitro
modeling showed strong correlation with the mRNA profile from
beta cells of T1D individuals. At the genomic level, early chro-
matin remodeling activated cis-regulatory elements, many of
them presenting motifs for islets-specific TFs, providing a
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possible mechanism by which tissue-restricted autoimmune dis-
eases might arise. Post-translational modifications, alternative
splicing and first exon usage were induced by IFNα, likely
expanding the repertoire of proteins and transcripts generated by
beta cells in response to this inflammatory stimuli. This can also

be a source of potential neoantigens. Interestingly, IFNα-exposed
human beta cells upregulate co-inhibitory proteins such as PDL1
and HLA-E, which may attenuate or delay the autoimmune
assault. Finally, the present results provide a useful resource for
the discovery of compounds that may be used to reverse the
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effects of IFNα on human pancreatic beta cells, paving the way for
potential T1D interventional trials.

Methods
Culture of EndoC-βH1 cells and human islets, cell treatment. The human
pancreatic beta cell line EndoC-βH1 was kindly provided by Dr. R. Scharfmann,
University of Paris, France74. Human islet isolation from 20 non-diabetic organ
donors (Supplementary Table 2) was performed in accordance with the local
Ethical Committee in Pisa, Italy. The use of pancreatic human islets for this project
was approved by the Comité d’Ethique hospitalo-facultaire Erasme-ULB. These
cells were maintained in culture and treated as described in Supplementary
Methods.

FACS-purified human beta cells isolation and treatment. Whole pancreatic
human islets were exposed or not to IFNα for 24 h. After this period, the islets were
dispersed into single cells and surface staining was carried out in FACS buffer (PBS
with 0.5% BSA and EDTA 2mM final concentration). Indirect antibody labeling

was performed with two sequential incubation at 4 °C and one wash in FACS buffer
followed each step. Cells were resuspended in FACS buffer, viability dye was added
(DAPI) and cells were sorted on a FACSAria III cell sorter (BD Biosciences).
Primary (mouse anti-human NTPDase3, hN3-B3S, www.ectonucleotidases-ab.
com) and secondary (Alexa Fluor 546 conjugated donkey anti-mouse IgG (A10036,
Thermo-Fisher Scientific)) antibodies were used with the dilutions described in
Supplementary Table 5. Data analysis was carried out with FlowJo software
(Version 10).

ATAC sequencing processing and analysis. ATAC sequencing was performed in
four independent experiments for each time point (2 and 24 h)75. For ATAC-seq
50,000 EndoC-βH1 cells were exposed or not to IFNα for 2 or 24 h. After that, the
cells were harvested, and the nuclei isolated by using 300 μl of cold lysis buffer
(10 mM Tris–HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% Igepal CA-630). The
nuclei pellet was resuspended in a 25 μl transposase reaction mix containing 2 μl of
Tn5 transposase per reaction and incubated at 37 °C for 1 h. The tagmented DNA
was isolated using SPRI cleanup beads (Agencourt AMPure XP, Beckman Coulter).
For library amplification two sequential 9-cycle PCR were performed (72 °C for
5 min; 98 °C for 30 s; 9 cycles of 98 °C for 10 s, 63 °C for 30 s; and 72 °C for 1 min;
and at 4 °C hold). Finally, the DNA library was purified using the MinElute PCR
Purification Kit (Qiagen, Venlo, Netherlands). TapeStation and semi-quantitative
PCR assays at target positive and negative controls were performed to ensure the
quality and estimate the efficiency of the experiment before sequencing. Libraries
were sequenced single-end on an Illumina HiSeq 2500. Data processing and ana-
lysis is described in Supplementary Methods.

RNA-sequencing processing and analysis. Total RNA of five independent
experiments with EndoC-βH1 cells and six independent preparation of pancreatic
human islets exposed or not to IFNα for different time points was obtained using
the RNeasy Mini Kit (Qiagen, Venlo, Netherlands). RNA integrity number (RIN)
values were evaluated using the 2100 Bioanalyzer System (Agilent Technologies,
Wokingham, UK). All the samples analyzed had RIN values >9. mRNA was
obtained from 500 ng of total RNA using oligo (dT)beads, before it was fragmented
and randomly primed for reverse transcription followed by second-strand synthesis
to generate double-stranded cDNA fragments. The cDNA undergone paired-end
repair to convert overhangs into blunt ends. After 3′-monoadenylation and adaptor
ligation, cDNAs were purified. Next, cDNA was amplified by PCR using primers
specific for the ligated adaptors. (Illumina, Eindhoven, Netherlands). The generated
libraries were submitted to quality control before being sequenced on an Illumina
HiSeq 2500. RNA-seq data processing and analysis is described in Supplementary
Methods.

Proteomics processing and analysis. EndoC-βH1 cells exposed or not to IFNα
were extracted using the Metabolite, Protein and Lipid Extraction (MPLEx)
approach. A detailed description of the method used for proteomics processing and
analysis is provided in Supplementary Methods.

Rank–rank hypergeometric overlap (RRHO) analysis. To compare the signature
induced by IFNα with the one present during insulitis in T1D individuals, we
performed the RRHO mapping15. For this goal, a full list of log2FC ranked genes
from our RNA-seq of EndoC-βH1 cells and human islets (IFNα vs Control, 24 h)
were compared against similarly ranked lists of purified primary beta cells obtained
from individuals with T1D16 and T2D17 (T1D/T2D vs non-diabetic).

In a RRHO map, the hypergeometric p-value for enrichment of k overlapping
genes is calculated for all possible threshold pairs for each experiment, generating a
matrix where the indices are the current rank in each experiment. The log-
transformed hypergeometric p-values are then plotted in a heatmap indicating the
degree of statistically significant overlap between the two ranked lists in that
position of the map. Multiple correction was applied using the Benjamini–Yekutieli
FDR correction.

Dynamic regulatory events miner (DREM) modeling. For reconstructing
dynamic regulatory networks, we have used the DREM method23, which integrates
times series and static data using an Input-Output Hidden Markov Model
(IOHMM), where the TF-DNA interaction information obtained from ChIP-seq
experiments48 was used as the input and our RNA-seq time series expression data
as the output. A detailed description of DREM-based modeling is provided in
Supplementary Methods.

Weighted gene co-expression network analysis (WGCNA). On each dataset
(RNA-seq and proteomics), we obtained modules of genes/proteins of similar
expression profiles using WGCNA28. The soft threshold parameter for the RNA-
seq dataset was chosen to be 10 (value to approximate a scale-free topology).
Similar parameters were used for the analysis of RNA-seq of pancreatic human
islets exposed or not to IFNα. Regarding the proteomics dataset, in order to achieve
an approximated scale-free topology, we first normalized each protein expression
in each temporal group (subtraction by mean and division by standard deviation),
and then selected the soft threshold parameter as 14. After merging the modules
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Fig. 9 Baricitinib decreases IFNα-mediated MHC class I protein
expression in beta cells. a EndoC-βH1 cells were pretreated with baricitinib
(4 μM) or DMSO and then exposed or not to IFNα for 24 h in the presence
or not of baricitinib. MHC class I (ABC) protein expression was measured by
flow cytometry. The percentage of positive cells was quantified. (n= 6,
mean ± SEM, ANOVA with Bonferroni correction for multiple comparisons).
b, c Dispersed human islets were pretreated with baricitinib (4 μM) or
DMSO (vehicle). Next, cells were left untreated, treated with IFNα alone or
with IFNα in the presence of baricitinib for 24 h. MHC class I intensity was
quantified in each condition (b) using Fiji software80 and normalized by the
HOECHST intensity to correct for the number of cell per area (n= 3,
ANOVA with Bonferroni correction for multiple comparisons, RFU (relative
fluorescence units)). Immunocytochemistry (ICC) analysis (c) of MHC class
I (ABC) (red), insulin (green) and HO (blue) was performed to confirm
MHC class I expression in three independent human islet preparations.
Scale bar 10 μm.
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using a dissimilarity threshold of 0.25, we identified 8 modules in the RNA-seq
dataset and 7 modules in the proteomics dataset.

To analyze module quality, we have used a set of statistics (density and
separability metrics) from the modulePreservation function of the R package
WGCNA29. For this purpose, we resampled the dataset 1000-times to create
reference and test sets from the original data and evaluate module preservation,
represented as the Zsummary for each module across the resulting networks. Zsummary

> 2 indicates moderate preservation and Z > 10 high quality/preservation for each
module29. To evaluate WGCNA module preservation in independent samples, we
used the same R function, but in this case applying metrics based on module
density and intramodular connectivity to give a composite statistic Zsummary.

To evaluate the overlap of RNA-seq and proteomics modules, we considered a
mRNA to be differentially expressed at 8 or 24 h if its absolute fold-change was
>1.5 and its FDR < 0.05. Regarding the proteomics dataset, we considered a protein
to be differentially abundant at 8 or 24 h if the t-test p-value was <0.05. We selected
only the differentially expressed genes/abundant proteins in the identified
WGCNA modules. We then searched for the overlap between the elements of the
RNA-seq and proteomics modules and obtained an overlap p-value
(hypergeometric probability). We retained overlapping modules with a FDR < 0.05
and a minimum of 10 common elements.

Protein–protein interaction network analysis. The inBio Map protein–protein
interaction (PPI) network database31 was obtained from https://www.intomics.
com/inbio/. We first restricted the network to contain only the elements expressed
in human beta cells based on our RNA-seq database (mean RPKM > 0.5 in at least
one condition). For each WGCNA overlapping module, we identified the proteins
in the PPI network with a significantly high number of protein-to-protein con-
nections to the set of elements in the module (FDR < 0.01, and minimum number
of connections equal to 5). We considered only networks obtained for the over-
lapping modules #1, #2 and #5, as the other overlapping modules returned empty
PPI networks. We then obtained PPI networks for each WGCNA overlapping
modules, involving the original set of module elements, plus the respective iden-
tified connecting proteins. Communities of interacting proteins were identified
using the EAGLE algorithm76 with the following parameters: CliqueSize threshold:
6 and ComplexSize threshold: 2. Wordclouds of each community were generated
using information from geneRIFs terms.

Gene regulatory network analysis. A network of regulatory interactions was
obtained from RegNetwoks30 (www.regnetworkweb.org). As in the PPI network,
we first restricted the network to contain only the elements we found to be
expressed in the RNA-seq dataset. Similarly to the PPI network analysis, for each
WGCNA overlapping modules, we identified regulators with a significantly high
number of regulatory connections to the set of elements in the module (FDR < 0.01,
and minimum number of connections equal to 4). We then obtained regulatory
networks for each WGCNA overlapping modules, involving the original set of
module elements, plus the respective identified regulators.

To create a non-redundant dataset of motifs from regions of gained open
chromatin, we used the compareMotifs.pl script from the package HOMER77 to
merge motifs with a similarity score threshold of 0.7. The remaining motifs were
mapped to the gain open chromatin regions using the annotatePeaks.pl script.

Transcription factor motif analysis. Sequence composition analysis of de novo
motifs was performed using findMotifGenome.pl from the package HOMER77

with parameters ‘-size given -bits -mask’. The motifs having a p ≤ 10−12 and
observed in >3.5% of the targets were chosen for subsequent analysis. All de novo
matches having a similarity score to known TF motifs higher than 0.7 are shown in
the tables (Fig. 4e and Supplementary Fig. 3c), or when no match was present over
this threshold, the first hit was elected and its score is presented.

Alternative splicing changes validation. Alternative splicing changes identified
from RNA-seq were validated by RT-PCR using specifically designed primers
(Supplementary Table 3). To confirm cassette exons, the primers were adjacent to
the predicted splicing event. This approach allowed us to discriminate between
variants based on their fragment sizes. For alternative first exon usage (AFE)
validation, we have designed primers spanning regions that are unique to the
isoform of interest (Fig. 6g), and then normalized the results by the housekeeping
gene β-actin. cDNA was amplified using MyTaq Red DNA polymerase (Bioline,
London, UK), and PCR products were analyzed using an Agilent 2100 Bioanalyzer
system (Agilent Technologies, Wokingham, U.K.). The molarity of each PCR band
corresponding to a specific splice variant was quantified using the 2100 Expert
Software (Agilent Technologies, Diegem, Belgium), and used to calculate the ratio
inclusion/exclusion (SE) or isoform-X/β-actin (AFE).

Small-RNA interference. Transfection was performed using Lipofectamine
RNAiMAX (Invitrogen) as described in Supplementary Methods. After that, the
cells were kept in culture for a 48 h recovery period and subsequently exposed or
not to IFNα as indicated. Supplementary Table 3 describes the sequences of siRNAs
used in the present study.

Real-time PCR analysis. After harvesting of the cells, Poly(A)+mRNA was
obtained using the Dynabeads mRNA DIRECT kit (Invitrogen) and reverse
transcribed. Detailed description is provided in Supplementary Methods.

Western blot, immunocytochemistry and flow cytometry. Detailed description
together with additional information on western blot, immunocytochemistry and
flow cytometry analysis is provided in Supplementary Methods.

Immunofluorescence. After dewaxing and rehydration, samples were subjected to
heat-induced epitope retrieval (HIER) in 10 mM citrate buffer pH 6.0, then probed
in a sequential manner with appropriate antibodies as indicated in Supplementary
Table 4. The relevant antigen–antibody complexes were detected using secondary
antibodies conjugated with fluorescent dyes (Invitrogen, Paisley, U.K). Cell nuclei
were stained with DAPI. After mounting, images were captured with a Leica
AF6000 microscope (Leica, Milton Keynes, UK) and processed using the standard
LASX Leica software platform (Version 1.9.013747). For quantification studies,
randomly selected insulin-containing islets (ICIs) from individuals with or without
diabetes were imaged, in addition to insulin-deficient islets (IDIs) from individuals
with diabetes. Thirty ICIs were analyzed from 6 independent individuals (5 islets
per individual), 20 IDIs were analyzed from 4 independent individuals (5 islets per
individual) and 30 ICIs were analyzed from 6 independent control individuals (5
islets per individual). The mean fluorescence intensity (MFI) arising from detection
of HLA-E was measured using LASX Leica quantification software.

Therapeutic targets identification. The top 150 upregulated genes shared among
the RNA-seq of EndoC-βH1 cells and human islets exposed to IFNα for 24 h and
the RNA-seq of beta cells16 from T1D individuals were identified by the RRHO
analysis. This list of genes was used to query the Connectivity Map dataset of L1000
cellular signatures, which has transcriptional responses of human cells to different
chemical and genetic perturbations, using the CLUE platform (https://clue.io)49.
To identify compounds potentially reverting the effects induced by interferons in
beta cells, we have focused on perturbagens promoting signatures that were
opposite (negative tau score) to our query list. Only perturbagens having a median
tau score <−90 were considered for further evaluation.

Additionally, aiming at potential repurposing of drugs under clinical
investigation for treatment of other pathologies, we have integrated the DrugBank
database v5.151 with the PPI network obtained from WGCNA module #2 using the
CyTargetLinker v4.0.078 within Cytoscape v3.6 to build a biological network
annotated with drugs.

The small molecules and drugs pointed out by these two approaches were then
validated in vitro as described above to verify their impact on IFNα-induced
upregulation of cytokines/chemokines, ER stress markers, HLA class I and beta cell
apoptosis.

Cell viability assessment. The cell viability is described in details in Supple-
mentary Methods.

Statistical analysis. Data of the confirmatory experiments are expressed as means
± SEM. A significant difference between experimental conditions was assessed by
paired t-test, unpaired t-test, one-way or two-ways ANOVA followed by Bonfer-
roni correction for multiple comparisons as indicated using the GraphPad Prism
program version 6.0 (www.graphpad.com). Results with p ≤ 0.05 were considered
statistically significant.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All raw and processed ATAC and RNA-sequencing data that support the findings of this
study have been deposited in NCBI Gene Expression Omnibus (GEO) with the primary
accession code GSE133221 (subseries are GSE133218: RNA-seq of EndoC-βH1 cells,
GSE148058: RNA-seq of human islets, GSE133219: ATAC-seq of EndoC-βH1 cells). The
proteomics datasets have been submitted to Pride under identifier number PXD014244
(http://www.ebi.ac.uk/pride/archive/projects/PXD014244). The network of regulatory
interactions can be obtained from RegNetwoks (http://www.regnetworkweb.org/
download/RegulatoryDirections.zip). The DrugBank database v5.1 can be downloaded
from: https://www.drugbank.ca/releases/5-1-0/downloads/all-full-database. The inBio
Map protein–protein interaction (PPI) network database can be obtained from: https://
www.intomics.com/inbio/api/data/map_public/2016_09_12/inBio_Map_core_2016_
09_12.zip. The CAGE peaks from FANTOM5 database can be obtained on: http://
fantom.gsc.riken.jp/5/datafiles/phase2.5/extra/CAGE_peaks/. The Connectivity Map
database can be accessed using the CLUE platform (https://clue.io). The RNA
polymerase II (POLR2A) ChIP-seq of human K562 cells can be obtained from the
ENCODE project (GSM935474, https://www.encodeproject.org/experiments/
ENCSR000FAX/). The Exon Ontology database can be accessed from: http://fasterdb.
ens-lyon.fr/ExonOntology/. The information about T1D risk genes can be found on
immunobase (www.immunobase.org) and GWAS catalog (https://www.ebi.ac.uk/gwas/).
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The source data underlying Figs. 2c–m, 3a–e, g, i, 5d, g, j, 6b, d, 7c–f, 8b–e, 9a, b and
Supplementary Figs. 4e–h, 5c–m, 6b, d, 12a–c, 12e–g, 13c–d are provided as a Source
data file.
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7

Interferon­𝛾 and Interleukin­1𝛽 to model
human 𝛽 cell responses to late insulitis

In this study we sought to explore the role of 𝛽 cells in late stages of
the T1D­induced inflammation, specifically during the amplification of the
immune response. To mimic these conditions, we exposed both a human
𝛽 cell line (EndoC­𝛽H1) and human pancreatic islets to proinflammatory
cytokines IFN­𝛾 and IL­1𝛽 for 48 hours. We then performed several assays
to reconstruct chromatin structure, gene expression and protein abundance in
both conditions.

Ramos­Rodríguez, M., Raurell­Vila, H., Colli, M.L. et al. The
impact of proinflammatory cytokines on the β­cell regulatory
landscape provides insights into the genetics of type 1 diabetes.
Nat Genet. 51, 1588–1595 (2019). https://doi.org/10.1038/s41588­
019­0524­6

7.1 Graphical abstract
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7.2 Highlights
• Using the cytokine­induced gain of H3K27ac at ATAC­seq derived
open chromatin regions, we identified 3,798 Induced Regulatory
Elements (IREs). IREs present enhancer characteristics, such as distal
location from gene promoters, phylogenetic sequence conservation and
enrichment for TF binding motifs.

• Over 3,000 genes and 223 proteins were up­regulated after the treatment,
showing a correlation between protein and the corresponding mRNA
levels. Moreover, induction of gene expression and protein abundance
was associated with the presence of IREs in proximity of the coding
gene location.

• IREs were classified into two different groups according to the exhibited
chromatin accessibility dynamics (see Figure 2a in Ramos­Rodríguez et
al. (2019)):

– Opening IREs, which showed increased accessibility coupled with
enrichment in the H3K27ac histone modification. They were further
classified into neo IREs, consisting of those regions that were
completely closed prior to the cytokine exposure.

– Primed IREs, which showed stable chromatin accessibility together
with an increase in H3K27ac deposition.

• Both neo and primed enhancers were found to be occupied by
inflammatory TFs, but only primed enhancers were also co­bound
by islet­specific TFs. Additionally, neo enhancers were enriched in
methylated CpG sites that underwent a demethlyation process after the
exposure.

• Chromatin capture experiments (UMI­4C, Schwartzman et al. (2016))
uncovered cytokine­induced changes in the 3D chromatin structure,
including formation of enhancer­promoter interactions involving IREs
and up­regulated genes.

• T1D but not T2D risk SNPs were enriched at both islet and 𝛽­cell IREs,
suggesting a role for these regulatory regions in the development of T1D.

• In vitro testing of two T1D risk SNPs – rs78037977 and rs183778 –
demonstrated functional properties of the allele variants in modulating
IREs enhancer activity.
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In T1D, early inflammation of the pancreatic islets (insulitis) by 
T and B cells contributes to both the primary induction and 
secondary amplification of the immune assault, with inflamma-

tory mediators such as the cytokines interleukin-1β (IL-1β) and 
interferon-γ (IFN-γ) contributing to the functional suppression and 
apoptosis of β cells1–3.

Genome-wide association studies (GWAS) have made a sub-
stantial contribution to the knowledge of T1D genetic architec-
ture, uncovering >60 regions containing thousands of associated 
genetic variants. Nevertheless, translating variants to function is a 
main challenge for T1D and other complex diseases. Most of the 
associated variants do not reside in coding regions4, suggesting that 
they may influence transcript regulation rather than altering pro-
tein coding sequences. Recent studies showed a primary enrich-
ment of T1D association signals in T- and B-cell enhancers4,5. A 
secondary5, or a lack of enrichment, was instead observed in islet 
regulatory regions. While such observation points to a major role 
of the immune system, we hypothesize that a subset of T1D vari-
ants may also act at the β-cell level but only manifest on islet cell 
perturbation and are thus not captured by the current maps of islet 
regulatory elements.

We have now mapped inflammation-induced cis-regulatory net-
works, transcripts, proteins and three-dimensional (3D) chromatin 
structure changes in human β cells (Fig. 1a). We leverage these data 

to reveal functional T1D genetic variants as well as key candidate 
genes and regulatory pathways contributing to β-cell autoimmune 
destruction. Such analyses permit elucidation of the role of gene 
regulation and its interaction with T1D genetics in the context of 
the autoimmune reaction that drives β-cell death.

Results
Proinflammatory cytokines impact the β-cell chromatin land-
scape. To characterize the effect of proinflammatory cytokines 
on the β-cell regulatory landscape, we first mapped all accessible 
or open chromatin sites in human pancreatic islets exposed or 
unexposed to IFN-γ and IL-1β. We assayed chromatin accessibil-
ity by assay for transposase-accessible chromatin using sequenc-
ing (ATAC-seq) and, to focus on the β-cell fraction and decrease 
interindividual variability, in parallel with human pancreatic islet 
assays, we performed ATAC-seq in the clonal human β-cell line 
EndoC-βH1 (EC)6, exposed or unexposed to the proinflamma-
tory cytokines (overall number of peaks identified in human islets: 
92,610–229,588; in EC cells: 52,735–110,715; see Extended Data 
Fig. 1a). Such experiments revealed an important remodeling of 
β-cell chromatin resulting in approximately 12,500 highly confident 
chromatin sites that gained accessibility (false discovery rate (FDR)-
adjusted P < 0.05; log2 fold change > 1; Extended Data Fig. 1b) on 
exposure to proinflammatory cytokines. Importantly, the changes 
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observed in the human β-cell line were concordant with those 
observed in the human islet preparations (Extended Data Fig. 1c).

We reasoned that changes in chromatin accessibility may reflect 
the activation of noncoding cis-regulatory elements. Thus, we used 
chromatin immunoprecipitation with sequencing (ChIP-seq) to 
map cytokine-induced changes in H3K27ac (Extended Data Fig. 1a),  
a key histone modification associated with active cis-regulatory  
elements shown to be dynamically regulated in response to acute 
stimulation7. We observed genome-wide deposition of the active his-
tone modification mark on exposure to proinflammatory cytokines 
in both EC and human pancreatic islets (Extended Data Fig. 1b,c).

Integrative analysis of ATAC-seq and ChIP-seq indicates that 
changes in chromatin accessibility are strongly correlated with 
deposition of H3K27ac (P < 2 × 10−16, r2 = 0.63) allowing the iden-
tification of approximately 3,800 open chromatin regions that 
gained H3K27ac (FDR-adjusted P < 0.05; log2 fold change >1) on 
exposure to proinflammatory cytokines (Fig. 1b and Extended Data 
Fig. 1d). We found that this subset of open chromatin regions is 
preferentially located distally to gene transcription start sites (TSS) 
(Extended Data Fig. 1e), and their sequence is evolutionarily con-
served (Extended Data Fig. 1f) and enriched for specific tran-
scription factor binding sites (Extended Data Fig. 1g). We named 
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these newly mapped regions induced regulatory elements (IREs) 
(Supplementary Table 1 and Supplementary Table 2).

Chromatin changes link to variation in transcription and trans-
lation. We next explored whether the newly identified IREs were 
associated with changes in gene expression and protein translation. 
To identify β-cell transcripts and proteins induced by the proinflam-
matory cytokines, we assayed gene expression by RNA sequencing 
(RNA-seq; five replicates in EC and five replicates in human pan-
creatic islets8; see Extended Data Fig. 1a) and collected multiplex 
proteomics data for three EC replicates after exposure or lack of 
exposure to proinflammatory cytokines.

In line with the chromatin assays, which indicated extensive gene 
regulatory activation, we unraveled cytokine-induced transcriptional 
activation resulting in approximately 1,200 upregulated genes (FDR-
adjusted P < 0.05; log2 fold change >1; Extended Data Fig. 2a,b).  
By multiplex proteomics, after rigorous filtering, a subset of 10,166 
proteins was confidently quantified and retained for significance 
testing. A total of 348 proteins displayed significant changes in 
abundance (FDR/Q < 0.15 and absolute fold change >1.5; abso-
lute log2 fold change > 0.58). Of the overall detected proteins, 
2.19% were upregulated (Extended Data Fig. 2c), 76% of which 
had induced messenger RNA levels at 48 h, confirming consistency 
between RNA-seq and protein changes (r2 = 0.72, P < 2 × 10−16; 
Fig. 1c). Protein–protein interactions inferred from β-cell cyto-
kine-induced proteins resulted in a network more connected 
than expected by chance (P < 10−3) and significantly enriched for 
Molecular Signatures Database (http://software.broadinstitute.org/
gsea/msigdb/) pathways including IFN-γ signaling, antigen pro-
cessing and presentation, apoptosis and T1D (Kyoto Encyclopedia 
of Genes and Genomes T1D P = 7.9 × 10−8; Extended Data Fig. 2d).

As expected, we found that IREs were linked to the upregula-
tion of the nearby gene(s) as well as to an induced abundance of 
the corresponding protein (Fig. 1d,e and Extended Data Fig. 2e). 
Moreover, gene induction was highly correlated with the number of 
associated IREs, suggesting a cumulative effect of IREs on cytokine-
induced changes in gene expression (Extended Data Fig. 2f).

Taken together, these findings reveal that the pancreatic β-cell 
response to proinflammatory cytokines is dynamic, involving 
extensive chromatin remodeling and profound changes in the regu-
latory landscape (Fig. 1f and Extended Data Fig. 2g). Such changes 
are associated with induction of transcription and protein trans-
lation including pathways implicated in the pathogenesis of T1D. 
Newly defined regulatory maps can be visualized online along with 
other islet regulatory annotations at www.isletregulome.org.

Primed and neo-regulatory elements mediate cytokine response. 
We next sought to gain an insight into the dynamic activation of 
IREs. The relationship between chromatin openness and H3K27ac 
deposition on exposure to proinflammatory cytokines allows the 
distinction of two classes of IREs (Fig. 1b and Fig. 2a–c): opening 
IREs (n = 2,436), which gain both chromatin accessibility (log2 fold 
change > 1) and H3K27ac (log2 fold change > 1); and primed IREs 
(n = 1,362), which are already accessible chromatin sites before 
treatment (ATAC-seq log2 fold change < 1) and gain H3K27ac 
(log2 fold change > 1) on exposure to the stimulus. Primed and 
opening IREs are both associated with gene expression induction 
(Extended Data Fig. 3a), are phylogenetically conserved (Extended 
Data Fig. 3b) and preferentially map distally relative to a gene’s TSS 
(Extended Data Fig. 3c). We further revealed that 70% of open-
ing IREs (n = 1,716), before cytokine exposure, are inactive and 
inaccessible (that is, undetectable by ATAC-seq under basal con-
ditions; see Methods). We named the latter neo-IREs. Neo-IREs 
represent 45% of all IREs and may mirror a class of regulatory ele-
ments identified on stimulation of mouse macrophages and named  
‘latent enhancers’7.

Because chromatin openness, the feature distinguishing the two 
classes of IREs, is believed to reflect transcription factor occupancy, 
we analyzed their sequence composition in search of recognition 
sequences of key transcription factors orchestrating the β-cell 
response to proinflammatory cytokines. Even though IREs are 
mostly distal to TSS (Extended Data Fig. 3c), to reduce sequence 
bias, we excluded all annotated promoters from this analysis. The 
two classes of distal IREs predominantly mapped to the enhancer 
chromatin state (Extended Data Fig. 3d) and showed clear differ-
ences in sequence composition. Newly induced enhancers were 
enriched for the binding motifs of inflammatory response tran-
scription factors including IFN-sensitive response element (ISRE), 
signal transducer and activator of transcription (STAT) and nuclear 
factor kappa-light-chain-enhancer of activated B cells (NF-κB) 
(Extended Data Fig. 3e). Instead, primed enhancers were enriched 
for binding motifs of inflammatory response transcription factors 
(ISRE, STAT) and, unexpectedly, islet-specific transcription factors 
(HNF1A/B, NEUROD1, PDX1, MAFB, NKX6.1; Extended Data 
Fig. 3f). Importantly, we found that in primed enhancers, inflam-
matory response and islet-specific transcription factor binding 
motifs mapped to the same genomic regions, suggesting cobinding 
and possibly cooperation of the two classes of transcription factors 
(Extended Data Fig. 3g,h).

Sequence composition bias per se does not imply transcription 
factor occupancy. Thus, we took advantage of published ChIP-
seq datasets of islet-specific transcription factors (MAFB, PDX1, 
FOXA2, NKX6.1 and NKX2.2) mapped in unstimulated human 
pancreatic islets9 to measure transcription factor occupancy in 
primed and neo-enhancers before the proinflammatory stimu-
lus. As expected from the sequence composition analysis, primed 
enhancers (unlike neo-enhancers) are bound by tissue-specific tran-
scription factors even before their activation (Fig. 2d and Extended 
Data Fig. 3i). Transcription factor occupancy can also be indirectly 
assessed by ATAC-seq, which assays the protection of the bound 
sequence to transposase cleavage (footprint). Footprint analysis is 
effective for transcription factors with a long residence time10, such 
as the IFN regulatory factor (IRF) and STAT transcription factor 
families. Our analyses revealed the emergence of footprint marks 
on proinflammatory treatment in correspondence to ISRE motifs 
in both primed and neo-enhancers (Fig. 2e), indicating cytokine-
induced transcription factor occupancy of IREs.

Gene regulation is orchestrated by different epigenetic mecha-
nisms. DNA methylation is a relatively stable epigenetic mark 
contributing to maintenance of cellular identity11,12. Moreover, high-
resolution DNA methylation maps, obtained from multiple tissues, 
suggested that the vast majority of tissue-specific, differentially 
methylated regions are located at distal, mostly noncoding regula-
tory sites13. Consequently, characterization of the DNA methylome 
in the context of relevant stimuli is important for understanding the 
functional mechanisms of tissue-specific responses in human dis-
ease14. Thus, we explored if cytokine-induced chromatin remodel-
ing is associated with changes in DNA methylation. We quantified 
DNA methylation changes by performing dense methylation arrays 
in EC cells exposed or unexposed to IFN-γ and IL-1β. The Infinium 
MethylationEPIC array was designed to interrogate with high preci-
sion and coverage >850,000 CpG sites (approximately 3% of all sites 
in the genome) selected primarily because of their location close to 
gene promoters and CpG island regions. By focusing on the 1,230 
IRE enhancers harboring one or more CpG sites interrogated by the 
array, we observed that primed enhancers overlap lowly methylated 
CpGs (median β = 0.12 ± 0.08), which did not vary significantly on 
cytokine exposure. Such observation is in sharp contrast with neo-
enhancers, which were highly methylated under control conditions 
(median β = 0.77 ± 0.10), but underwent a significant loss of DNA 
methylation (two-sided Wilcoxon test, P = 4.13 × 10−4) on treatment 
(Fig. 2f). While we did not observe cytokine-induced methylation, 
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we found that approximately 70% of significantly demethylated 
probes (FDR-adjusted P ≤ 0.05; β-value differences between cyto-
kine-exposed and untreated cells (βCyt − βCtrl) < −0.20) mapping to 
IREs were located at neo-enhancers (Extended Data Fig. 3j,k).

These results suggest that neo-enhancers are enriched for methyl-
ated CpGs that undergo preferential demethylation on cytokine treat-
ment, whereas primed enhancers are enriched for unmethylated CpGs 
that do not change their methylation status on exposure to cytokines.
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Taken together these analyses lead to a model, where proinflam-
matory cytokines elicit a regulatory response in β cells character-
ized by: (1) new induction of distal regulatory elements coupled 
with reduction of DNA methylation and binding of inflammatory 
response transcription factors; and (2) activation of regulatory ele-
ments prebound by islet-specific transcription factors and induced 
by inflammatory response transcription factors (Fig. 2g).

Collectively, these results allow the reconstruction of cis-regu-
latory networks activated in human pancreatic β cells on exposure 
to the proinflammatory cytokines IFN-γ and IL-1β (Extended Data 
Fig. 4a–c and Supplementary Table 1).

Changes in islet 3D chromatin structure. Regulatory regions can 
exert control over genes at megabase distances through the forma-
tion of DNA loops. These loops are often confined within struc-
tures known as topologically associating domains15–17. Topologically 
associating domains are largely conserved on evolution, are invari-
ant in different cell types and have their boundaries defined by the 
regulatory scope of tissue-specific enhancers18,19. Our knowledge 
regarding the general characteristics and mechanisms of loops is 
improving20–23, but much less is known regarding the mechanisms 
and functional significance of dynamic looping events during bio-
logical processes.

We took advantage of promoter capture Hi-C performed in 
human pancreatic islets24 to explore the long-range interactions 
between gene promoters and cytokine-induced and invariant distant 
regulatory elements. Interestingly, we observed that the interaction 
confidence scores captured between IRE enhancers and gene pro-
moters in untreated islets were significantly reduced compared with 
distal stable regulatory element (SRE) (P = 1.8 × 10−11; Extended 
Data Fig. 5a). Since this finding pointed to potential dynamic prop-
erties of the interaction maps, we next sought to investigate if cyto-
kine-induced regulatory changes are linked to modification of 3D 
chromatin structure and if induction of β-cell cytokine-responsive 
regulatory elements is coupled with the new formation of DNA 
looping interactions.

Hi-C profiles are limited in sequencing coverage and library 
complexity, resulting in maps of reduced resolution relative to reg-
ulatory maps of functional elements. On the other hand, circular 
chromosome conformation capture (4C) approaches are difficult 
to interpret quantitatively mainly due to potential amplification 
bias. Thus, we applied targeted chromosome capture with unique 
molecular identifiers (UMI-4C), a recently developed method25, to 
quantitatively measure interaction intensities in human islets before 
and after exposure to proinflammatory cytokines. We centered 
the conformation capture viewpoint at the promoter of 13 genes 
(TNFSF10, GBP1 and CIITA, among others) whose expression was 
strongly induced by cytokine exposure.

UMI-4C showed marked changes in the 3D chromatin structure 
at the analyzed loci. Promoters of the induced genes gained chroma-
tin interactions, with distal genomic regions reflecting the forma-
tion of new DNA looping events (Fig. 3a,b and Extended Data Fig. 
5b–d). Importantly, such new contacts were preferentially engaged 
with newly mapped human islet cytokine-responsive IREs (Fig. 3c).

These results demonstrate that cytokine exposure induces 
changes in human islet 3D chromatin conformation including the 
formation of new enhancer–promoter interactions. Such changes 
allow the newly activated distal IREs to contact their target gene 
promoters.

Islet cytokine enhancers are implicated in T1D genetic suscep-
tibility. GWAS have identified approximately 60 chromosome 
regions associated with T1D26, with many of the association signals 
having been assigned to candidate genes with immunological func-
tions. Consistent with this notion, several studies reported a pri-
mary enrichment of T1D risk variants in T- and B-cell regulatory 

elements4,5. Furthermore, there is a substantial lack of statistically 
significant overlap of T1D-associated variants in islet enhancers, 
while such regulatory elements are instead enriched for GWAS sig-
nals for type 2 diabetes (T2D) and fasting glucose9,27. Nonetheless, 
the molecular mechanisms linking T1D association signals to cel-
lular functions are poorly described for most of the regions of asso-
ciation identified.

We hypothesized that a subset of T1D genetic signals may reflect 
an altered capacity of β cells to react to an inflammatory environ-
ment. Thus, we sought to explore to what extent genetic signals 
underlying T1D susceptibility act through pancreatic islet regula-
tory response to proinflammatory cytokines.

Causal cis variants are expected to be found in sequences that act 
as regulatory regions in state-specific and disease-relevant tissues. 
Thus, we examined nonshared loci with genome-wide significant 
association to T2D and T1D in European populations and con-
sidered all variants in high linkage disequilibrium (1000 Genomes 
Project, phase 3 European population (EUR), R2 > 0.8) with a lead 
SNP reported in the National Human Genome Research Institute-
European Bioinformatics Institute (NHGRI-EBI) GWAS catalog26. 
In line with previous observations4,9, we found that T2D but not 
T1D risk variants overlap human islet noncytokine-responsive reg-
ulatory elements (that is, SREs) more than expected by chance (T2D 
SNPs in SREs P < 2 × 10−16, z = 5.47). In contrast, we found that 
human islet IREs are enriched for T1D but not T2D risk variants 
(T1D SNPs in IREs P = 3 × 10−6, z = 4.61) (Fig. 4a). This result was 
reproduced when using regulatory elements detected in EC cells 
(Extended Data Fig. 6a). Such findings revealed 9 T1D-associated 
regions (13% of the total) containing at least 1 islet cytokine-
induced regulatory element directly overlapping a T1D-associated 
variant (Supplementary Table 3 and Extended Data Fig. 6b–f).

We noted that the two T1D lead SNPs at the 1q24.3 and 16q13.13 
loci (rs78037977 (refs. 28,29) and rs193778 (ref. 4), respectively) were 
directly overlapping IREs in the islets. We used GWAS genotyping 
data from a cohort of 14,575 individuals (5,909 T1D cases and 8,721 
controls (Ctrls); see Methods) to confirm their association with T1D. 
Both variants were included in the 99% credible set of their respec-
tive locus and displayed strong association P values (rs78037977, 
P = 6.94 × 10−10; rs193778, P = 1.33 × 10−7; see Supplementary Table 
4 for the posterior probability of association and variant ranking in 
the credible set), indicating that they could potentially be causal.

At the 1q24.3 locus, rs78037977 (NC_000001.10:g.172715702
A>G) overlaps an islet cytokine-induced chromatin site (Fig. 4b), 
which is prebound by islet-specific transcription factors and is 
a predicted enhancer in other cell types (Extended Data Fig. 6g). 
We created allele-specific luciferase reporter constructs and mea-
sured enhancer activity in the EC cell line before and after cyto-
kine exposure. The sequence exerts enhancer activity exclusively 
after cytokine exposure, which is disrupted by the rs78037977 
T1D-associated G allele (one-way analysis of variance (ANOVA), 
F = 26, P = 4.34 × 10−5; Fig. 4c and Extended Data Fig. 6h). This is 
consistent with a causal role of the variant at this locus. To identify 
the gene target of this T1D-susceptible enhancer, we reconstructed 
the 3D chromatin structure using chromatin capture experiments. 
UMI-4C in human islets identified a cytokine-induced interaction 
of the enhancer with TNFSF18, a gene activated in islets on cytokine 
exposure (Fig. 4d,e). TNFSF18 encodes a cytokine, glucocorticoid-
induced tumor necrosis factor receptor-related protein (GITR; also 
known as TNFRSF18), which modulates the inflammatory reac-
tion and regulation of autoimmune responses30. Interestingly, we 
noted that cytokine exposure results in upregulation of TNFSF18 in 
human islets but not in the EC β-cell line, suggesting differences in 
gene regulatory dynamics in primary tissue or the activation of an 
islet cell subpopulation.

At the 16q13.13 locus, rs193778 (NC_000016.9:g.11351211
A>G) maps to a phylogenetically conserved, cytokine-responsive 
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regulatory element (Fig. 4f). This sequence displays enhancer 
activity in both treated and untreated β cells. However, exclusively 
in cytokine-exposed β cells, the T1D-associated G allele exerts 
significantly higher enhancer activity than the protective variant 
(one-way ANOVA, F = 12.34, P = 1.23 × 10−3; Fig. 4g and Extended 
Data Fig. 6i). The locus includes several upregulated genes (SOCS1, 
DEXI, CIITA, RMI2) that could represent potential targets of this 
IRE. Recent research points to DEXI as a T1D candidate gene in 
immune cells and β cells31,32. By performing UMI-4C experiments in 
human islets, we observed a strong chromatin contact between the 
promoter of DEXI and the regulatory element bearing the rs193778 
T1D-associated variant (Fig. 4h). Such data points to DEXI as a 
potential causal gene in pancreatic islets.

Altogether, these results illustrate how unraveling cytokine-
induced chromatin dynamics in human islets can guide the iden-
tification of cis-regulatory variants that are strong candidates in 
driving T1D-association signals.

Discussion
Our work illustrates the human pancreatic β-cell chromatin 
dynamics in response to an external stimulus that may be relevant 
in the context of T1D. We show that exposure to proinflamma-
tory cytokines causes profound remodeling of the β-cell regulatory 
landscape coupled with changes in gene expression and protein pro-
duction. The degree of remodeling of the regulatory network was 
comparable to that previously shown for macrophages or mouse 
dendritic cells exposed to similar stimuli7. We unveil the activation 
of approximately 3,600 cytokine-responsive distal cis-regulatory  

elements and reveal a lack of homogeneity in their molecular 
mechanism of activation. We observe that the induction of a subset 
of regulatory regions (neo-IREs) require transcription factor bind-
ing and chromatin opening, while other chromatin sites are primed 
to their activation being prebound by islet-specific transcription 
factors. Our observations suggest a model where binding of tissue-
specific transcription factors may facilitate chromatin accessibility 
at a subset of chromatin sites that can then be promptly activated 
by the induction of inflammatory response transcription factors. 
Such a model is supported by very recent findings33 and it is con-
sistent with observations in murine macrophages7,34 and dendritic 
cells35; however, thus far, it has not been demonstrated in a highly 
differentiated and nonimmune-related tissue, such as pancreatic 
islets. Even though our model suggests that exposure to proinflam-
matory cytokines causes predominantly induction of gene tran-
scription rather than transcript downregulation, we cannot exclude 
that a more prolonged stimulus could induce loss of critical β-cell 
processes resulting from the reduction of β-cell cis-regulatory net-
work activity.

Importantly, we show that such regulatory changes are coupled 
with 3D chromatin remodeling, allowing the newly activated regu-
latory elements to contact their target genes. Several reports have 
described the properties of 3D chromatin dynamics in the cell 
developmental context36,37, on loss of cell fate38,39, senescence40,41 or 
in response to hormonal exposure42. Our observations indicate that 
the capacity of enhancer loop formation is maintained in a highly 
differentiated tissue such as the islets and it is coupled with tran-
scriptional regulatory changes in response to an external stimulus.
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The model used in our study to explore chromatin dynamics 
is of particular interest because it mimics the inflammatory envi-
ronment that pancreatic islets may face in the early stages of T1D. 
While several T1D candidate genes regulating key steps related to 
danger signal recognition and innate immunity are expressed in 
human islets43, T1D-associated variants are enriched for immune 
cell types but not in stable pancreatic islets regulatory elements4. 
Such apparent contradiction may be reconciled by our findings 
showing that human islet cytokine-responsive regulatory elements 
are enriched for T1D risk variants. Our data, supported by recent 
findings revealing regulatory variants that affect enhancer activa-
tion in the immune response33,44, opens the avenue to identify T1D 
molecular mechanisms acting at the pancreatic islet cell level.

Although we cannot exclude that functional variants disrupting 
the β-cell regulatory mechanisms may at the same time affect the reg-
ulatory potential of immune-related cell types, the availability of stim-
ulus-responsive cis-regulatory maps in pancreatic islets will facilitate 
hypothesis-driven experiments to uncover how common and lower-
frequency genetic variants impact islet cells in T1D. In this study, we 

researched the human islet responses to a specific proinflammatory 
stimulus. Future work studying additional immune-mediated stresses 
potentially affecting β cells at different stages of the disease may 
uncover other association signals acting at the islet cell level.

More generally, our findings could apply by extension to other 
diseases where primed enhancers may facilitate cell type-specific 
responses to ubiquitous signals resulting in tissue-specific genetic 
susceptibility in autoimmune diseases.
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Methods
Human islets and EC cells. Human islets from 14 multiorgan donors without a 
history of glucose intolerance were isolated in compliance with ethical regulations 
(Supplementary Note 1) and according to established isolation procedures45,46 
(Supplementary Note 2 and Supplementary Table 5). The human insulin-producing 
EC cells where kindly provided by R. Scharfmann6 and cultured in DMEM 
medium (Supplementary Note 3).

Human islets and EC cells where either exposed or unexposed to a cocktail of 
proinflammatory cytokines IFN-γ and IL-1β for 48 h. The cytokine concentrations 
used were those described in previous dose–response experiments47–49 
(Supplementary Note 2). The glucose stimulation index was tested on human islet 
preparations and EC cell samples to confirm functional competence of the samples 
(Supplementary Note 4 and Extended Data Fig. 7).

ChIP-seq and ATAC-seq. ATAC-seq library preparations were carried out as 
described previously50 with minor modifications51,52 (Supplementary Note 5). 
ChIP-seq was carried out using tagmentation (ChIPmentation) as described 
previously53 (Supplementary Note 6).

ATAC-seq and ChIP-seq libraries were sequenced on a HiSeq 2500 system 
(Illumina). Reads were aligned to the hg19 reference genome using Bowtie 2 
v.2.3.4.1 (ref. 54) using default parameters. After alignment, reads mapping to 
Encyclopedia of DNA Elements blacklist regions55, noncanonical chromosomes 
or mitochondrial DNA were discarded. Duplicates were removed using samtools 
markdup v.1.8 (ref. 56). See Supplementary Table 6 for the number of mapped reads 
per experiment and Extended Data Fig. 8 for measures of ATAC-seq quality.

Peaks were called with MACS2 callpeak v.2.1 (ref. 57) with the parameters ‘-q 
0.05 -nomodel -shift -100 -extsize 200’ for ATAC-seq and ‘-broad -broad-cutoff 0.1 
--nomodel’ for H3K27ac ChIP-seq. A more detailed description of bioinformatics 
processing can be found in Supplementary Note 7.

RNA-seq. Total RNA was isolated from EC cells and human islets8 using the 
RNeasy Mini Kit (QIAGEN), which retrieves RNA molecules longer than 200 
nucleotides, as described in detail previously58. RNA integrity number values were 
evaluated using the Bioanalyzer 2100 (Agilent Technologies). All the samples had 
RNA integrity number values >8 (Supplementary Note 8).

RNA-seq libraries were sequenced on a HiSeq 2000 platform (Illumina) to 
produce 100 base pair (bp)-long paired-end reads with an average of 180 million 
reads per replicate (EC cells, n = 5). Reads were aligned using TopHat v.2.0.13  
(ref. 59) to the GChr37 genome with default parameters. Then reads were assigned 
to GENCODE release 18 gene annotation60 using htseq-count v.0.6.1p1 (ref. 61) 
with default parameters. The RNA-seq of five human islet preparations8 was used 
for comparison and processed in an identical way.

Differential analysis of ATAC-seq, ChIP-seq and RNA-seq. For both ATAC-seq 
and ChIP-seq, aligned reads from all replicates were merged into a single BAM file 
to identify a comprehensive set of peaks. Next, we used the comprehensive peak 
set to compute read counts separately for each replicate and condition. In the case 
of the RNA-seq data, the output of htseq-count was used as the input matrix for 
downstream analysis. The generated matrices were normalized and differential 
analysis was performed using DESeq2 v.1.24.0 (ref. 62) using a paired sample design 
(Supplementary Note 9). Thresholds for significance were set at an FDR-adjusted 
P < 0.05 and an absolute log2 fold change > 1. All regions/genes that did not reach 
significance or did not pass the log2 fold change cutoff were classified as stable/
equally regulated.

Proteomics. For the proteomics analysis, 1.5 million EC cells treated or not treated 
with cytokines (IL-1β + IFN-γ) were processed using the metabolite, protein and 
lipid extraction approach63 (Supplementary Note 10).

Collected data were processed using Decon2LS_V2 v.2.3.1.4 (ref. 64) and 
DtaRefinery v.1.2 (ref. 65), both using default parameters, to recalibrate the 
runs and generate peak lists. Peptide identification was done using MS-GF+ 
v.2017.08.23 (ref. 66) by searching peak lists against islet protein sequences deduced 
from a transcriptomics experiment47 and supplemented with keratin sequences 
(32,780 total protein sequences) (Supplementary Note 10).

Extracted reporter ion intensities (Supplementary Note 10) were then 
converted into log2 and normalized by standard median centering. Proteins 
were quantified using a Bayesian proteoform discovery methodology (Bayesian 
proteoform quantification) in combination with standard reference-based median 
quantification67 and were considered significant at a cutoff of P ≤ 0.05 based on a 
paired t-test.

Protein–protein interaction network analysis was performed with GeNets68 
using Metanetworks v.1.0, which integrates protein–protein interactions from 
InWeb v.3 (ref. 69) and ConsensusPathDB v.32 (ref. 70). Default parameters  
were applied and Molecular Signatures Database-enriched v.6.1 (ref. 71)  
pathways were overlaid.

Defining classes of IREs. To characterize the dynamics of chromatin accessibility 
on exposure of human islets and EC cells to proinflammatory cytokines, we 
processed the results obtained from the DESeq2 differential analysis and computed 

the overlap between ATAC-seq peaks and H3K27ac-enriched sites, allowing a 
200 bp gap. Regions annotated as stable for both ATAC-seq and H3K27ac assays 
were classified as SREs. Regions classified as either stable or gained in ATAC-seq 
differential analysis and as gained in H3K27ac were classified as IREs.

IREs were classified in two groups: opening IREs (n = 2,436), corresponding to 
regions annotated as gained for both ATAC-seq and H3K27ac; and primed IREs 
(n = 1,362) for regions annotated as stable for ATAC-seq and gained for H3K27ac. 
Since opening IREs include a gradient of cytokine-induced chromatin accessibility 
changes, we next selected only those opening regions that were completely closed 
before cytokine exposure. For this purpose, we considered newly open chromatin 
regions as those opening ATAC-seq peaks that were not called in the control 
samples using a relaxed threshold (P ≤ 0.05). Such analysis allowed us to identify a 
subset of 1,716 opening regions that we named neo-IREs. A similar approach was 
used to identify macrophage latent enhancers7.

See Supplementary Note 11 for the sequence conservation analysis performed 
at the different classes of IREs.

Assigning regulatory elements to target genes. To annotate regulatory elements 
as distal or proximal, we assigned each regulatory element to the nearest TSS of 
a coding gene (using GENCODE release 18 annotation60). Those regions lying 
within 2 kilobases (kb) from the nearest TSS were annotated as promoters while the 
rest were considered as distal regulatory elements.

To test the association between different classes of open chromatin and changes 
in gene expression and protein abundance (Fig. 1d,e and Extended Data Figs. 2e 
and 3a) in an unbiased manner, we assigned ATAC-seq sites to genes closer than 
15 kb from their TSS. To analyze the additive effect of IREs on gene expression 
changes, we associated to a gene all IREs within 40 kb of their TSS (Extended Data 
Fig. 2f).

Finally, to detect all possible IRE gene targets, we assigned to each IRE all 
upregulated genes whose TSS was closer than 40 kb. When an upregulated gene 
could not be found in <40 kb, the IRE was assigned to the closest, but <1 Mb 
far, induced gene (Extended Data Fig. 4a and Supplementary Tables 1 and 2; see 
Supplementary Note 12).

Sequence composition and transcription factor analysis. De novo motif analysis 
was performed using HOMER v.4.8.2 (ref. 72) findMotifGenome.pl tool with the 
parameter ‘-size given -bits –mask’. Only enriched sequences present in >1.5% 
of targets were retained. Selection of best matches was performed as follows: all 
matches with scores >0.80 were included in the table; for those hits without any 
match >0.80, the top 3 hits were selected and their score was included in the table 
(Extended Data Figs. 1g and 3e,f).

To assay motif colocalization, we used all motif instances identified in the 
de novo analysis in primed enhancers. First we used the findMotifGenome.pl 
tool from HOMER to map all these motif instances in primed enhancers and 
SRE enhancers (that is, excluding all sites <2 kb from a TSS). Next, the motif 
colocalization was calculated by counting motif pairs found in each ATAC-
seq peak. Significance was determined by Fisher’s exact test comparing the 
colocalization of motif pairs in distal IREs versus distal SREs. Only significant 
pairs (Fisher’s exact test, FDR-adjusted P < 0.001) were retained (Extended Data 
Fig. 3g,h).

To evaluate islet-specific transcription factor occupancy, we used ChIP-seq 
BAM files for PDX1, NKX2.2, FOXA2, NKX6.1 and MAFB9. We computed the 
read coverage in the regions of interest over 10 bp bins. Reads were quantile-
normalized, the mean counts in each bin for each transcription factor were 
calculated and the mean for all transcription factors was plotted (Fig. 2d).

To identify footprints from the ATAC-seq data, we generated tag directories 
with all ATAC-seq replicates in each condition using HOMER makeTagDirectory. 
Neo and primed enhancers were centered on the ISRE motif matrix annotated with 
annotatePeaks.pl with the option ‘-center motif1.motif –size given’ and tag means 
for the 5′ and 3′ read ends were obtained using annotatePeaks.pl with the option 
‘-size -100,100 –hist 1 –d tagsDir’. The resulting 5′ ends were plotted using ggplot2 
v.3.2.0 (ref. 73) (Fig. 2e).

To create a nonredundant dataset of motifs for the gene regulatory network 
analysis (Extended Data Fig. 4a), motifs from primed and opening enhancers were 
reduced to a nonredundant set with the compareMotifs.pl script from HOMER 
using a similarity score of 0.7 as the threshold for merging similar motifs. The 
motifs were then mapped to primed and opening enhancers using annotatePeaks.pl.

Infinium MethylationEPIC array. DNA from EC cells exposed or unexposed 
to IL-1β and IFN-γ for 48 h, as described earlier (5 replicates per condition), was 
extracted using QIAamp DNA Mini Kit (QIAGEN); 1 µg DNA aliquots (n = 10) 
were processed for 850 K Infinium MethylationEPIC array (Illumina) as described 
previously74.

The resulting array signals were processed and analyzed with the RnBeads R 
package v.3.2.0 (ref. 75). The method used by RnBeads to assess differences between 
groups consists of fitting a hierarchal linear model (the empirical Bayesian method 
from the limma package v.3.40.0 (ref. 76)) using M values (log of β values) as 
metrics to measure methylation levels77. All P values were corrected for multiple 
testing using the Benjamini–Hochberg method for controlling the FDR. CpGs 

Nature Genetics | www.nature.com/naturegenetics



Articles NaTurE GEnETicS

were considered as differentially methylated when FDR-adjusted P < 0.05 and 
the absolute difference in methylation β values between cytokine and control 
samples was >0.2 (20% change in methylation). Information on the differentially 
methylated CpGs can be found in Supplementary Table 7.

UMI-4C. UMI-4C was performed as described previously25 with minor 
modifications (see Supplementary Note 13). To increase molecular complexity, 
each library was obtained by pooling 5–10 PCRs per viewpoint. The PCR primers 
used in UMI-4C are listed in Supplementary Table 8. Each library was sequenced 
to a depth >1 million 75-bp-long paired-end reads using either the NextSeq 550 or 
HiSeq 2500 platforms.

Paired-end reads were demultiplexed according to the viewpoint 
sequence using fastq-multx from ea-utils v.1.30 (ref. 78) and analyzed with the 
umi4cPackage v.0.0.0.9000 (ref. 25). 4C tracks were created by selecting viewpoint-
specific reads, aligning them to the genome and extracting the number of 
UMIs using the p4cCreate4CseqTrack function (see quality control statistics in 
Supplementary Table 9). Cytokine-treated profiles were then scaled to the control 
profile using the umi4cPackage function p4cSmoothedTrendComp. Profiles 
were also smoothened based on the total number of UMIs present in a 2 Mb 
region centered on the viewpoint and excluding the 3 kb around it. The following 
formula was used to calculate the minimum UMIs needed for smoothing. If the 
fragment did not reach this minimum, it was merged with successive fragments 
until a minimum was reached:

MinimumUMIs ¼
P

UMIsregion
2;000

´ 50

To detect differential chromatin contacts we focused on a 2 Mb region centered 
on the viewpoint, but excluding 1.5 kb on each side of the viewpoint. We then 
partitioned the region into windows of width proportional to the mean restriction 
fragment length in the region (Meanfragment):

Widthwindow ¼ Meanfragment ´ 20

Differential contact analysis was performed for each of these windows using 
a chi-squared test, comparing UMIs in such windows with the total number of 
UMIs in the 2 Mb region. Windows with a chi-squared P < 0.05 are highlighted 
in Fig. 3a,b and Extended Data Fig. 5b–d with small black diamonds. To quantify 
the chromatin contact changes, we counted the number of cytokine-treated and 
untreated UMIs for each window and computed their odds ratio (OR) based on the 
total UMI counts in the region, following the formula:

ORwindow ¼ Ctrlregion ´Cytwindow
Ctrlwindow ´Cytregion

where Ctrl and Cyt represent the number of UMIs in unexposed and cytokine-
exposed conditions.

Variant set enrichment (VSE) analyses. We used the VSE R package v.0.99 (ref. 79) 
to assess the enrichment of T1D and T2D risk variant for IRE and SRE regulatory 
annotations. We first selected from the NHGRI-EBI GWAS catalog26 all leading 
SNPs with disease trait matching either ‘type 1 diabetes’ or ‘type 2 diabetes’ (24 
April 2019). Next, we extended our collection of associated variants to all those 
in strong linkage disequilibrium (R2 ≥ 0.8, EUR) with the lead SNP (source of 
linkage disequilibrium information, 1000 Genomes Project phase 3 (ref. 80)). These 
SNPs and their proxies were used to generate the associated variant set (AVS)79, 
resulting in 83 disjointed regions for T1D and 389 for T2D, after removing shared 
loci between T1D and T2D. A null distribution or matched random variant set, 
matched in size and structure to the original AVS, was generated from the 1000 
Genomes Project phase 3 by permutating the AVS 500 times. The number of 
independent SNPs from the AVS overlapping the regulatory annotations was 
computed and compared with the intersections obtained with the matched 
random variant set. The enrichment score was defined as the number of s.d. that 
the overlapping tally deviates from the null overlapping tally median. The exact 
P value was then calculated by fitting a density function to the null distribution 
derived from the matched random variant set. This P value was finally corrected 
for multiple testing using the Bonferroni method. Enrichments or depletions with 
a Bonferroni-adjusted P < 0.05 were considered statistically significant (Fig. 4a and 
Extended Data Fig. 6a).

T1D-associated regions were generated by selecting all SNPs in strong linkage 
disequilibrium (R2 ≥ 0.8, EUR) with the T1D leading SNPs. We defined the risk 
loci boundaries using the most upstream and downstream SNPs. Next, we merged 
the overlapping loci to obtain a total of 71 T1D risk regions. All T1D-associated 
regions containing IREs and T1D risk variants directly overlapping human islet 
cytokine-induced regulatory elements are shown in Supplementary Table 3. For 
this analysis, to extract all possible cytokine-induced regulatory elements located at 
the T1D risk loci, we used a less stringent set of human islet IREs by lowering the 
H3K27ac log2 fold change threshold from 1 to 0.8.

For details regarding the GWAS association analysis, see Supplementary Note 14.

Luciferase reporter assays. For episomal reporter assays in the EC cell line, 
selected human cytokine-induced regulatory elements regions were first amplified 
from genomic DNA using primers (Supplementary Table 10) containing the XhoI/
HindIII restriction sites. The amplicons were then cloned into the pGL4.23[luc2/
minP] luciferase reporter vector (Promega Corporation) as described previously81. 
Briefly, the amplicon and the vector were simultaneously digested. Next, the vector 
was dephosphorylated with FastAP (Thermo Fisher Scientific). The DNA was 
then purified and ligated with a T4 DNA Ligase (Promega Corporation). Next, 
the generated reporter vectors were transformed into Escherichia coli (DH5α) and 
purified with the NucleoSpin Plasmid (catalog no. 740588.250; Macherey-Nagel).

Site-directed mutagenesis was used to introduce single-nucleotide variants into 
the generated construct. The variants were generated by PCR using the primers 
shown in Supplementary Table 10. The parental supercoiled double-stranded DNA 
was digested with DpnI (catalog no. R0176S; New England Biolabs) 1 h at 37 °C 
and the constructs were transformed in competent E. coli cells (DH5α) by thermal 
shock. Finally, the introduced variants were checked using Sanger sequencing.

EC cells were transfected in 24-well plates at a density of 300,000 cells per well, 
with 200 ng of reporter vectors or empty vectors plus 20 ng of phRL-CMV Renilla 
luciferase to control for transfection efficiency.

Transfections were performed with Lipofectamine 2000 (Thermo Fisher 
Scientific) for 8 h, according to the manufacturer’s instructions. On transfection, 
the EC medium was supplemented with 2% FCS82 and exposed or unexposed to 
the cytokines for 48 h. After 48 h, cells were assayed using the Dual Luciferase 
Assay (Promega Corporation), according to the manufacturer’s instructions. 
The luciferase units were measured with the VICTOR Multilabel Plate Reader 
(PerkinElmer). Firefly luciferase activity was normalized to Renilla luciferase 
activity and then divided by the values obtained for the empty pGL4.23. The assays 
were performed in at least three independent experiments.

Statistical differences were calculated using a one-way ANOVA. P values were 
then Bonferroni-corrected.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Datasets for the IREs are available for download and visualization at the Islet 
Regulome Browser83 (www.isletregulome.com).
Raw sequencing reads for the different high-throughput assays can be accessed 
at the Gene Expression Omnibus with the following identifiers: GSE123404 
(ATAC-seq); GSE133135 (H3K27ac data); GSE137136 (RNA-seq); and GSE136865 
(UMI-4C). Raw proteomics data can be accessed at the ProteomeXchange with the 
identifier PXD011902.

Code availability
The code and scripts used in this study are available from the corresponding author 
upon reasonable request.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Chromatin characterization of human pancreatic β cells exposed to pro-inflammatory cytokines. a, Pearson correlation values 
between replicates in different assays and conditions (see Supplementary Note 2). b, Volcano plots of ATAC-seq (left) and H3K27ac ChIP-seq (right) 
changes obtained after exposure of EndoC-βH1 to IFN-γ and IL-1β; green and red dots correspond to sites with absolute log2 fold change > 1 and FDR 
adjusted P < 0.05 as calculated by fitting a negative binomial model in DESeq2. Chromatin changes are classified as ‘gained’ and ‘lost’ chromatin sites 
whereas non-significant changes are defined as ‘stable’. c, Chromatin accessibility and H3K27ac enrichment changes observed in EndoC-βH1 are largely 
replicated in human pancreatic islets as illustrated by the distribution of log2 fold change at regions as classified in b in EndoC-βH1. Dotted lines indicate 
log2 fold change thresholds (absolute log2 fold change > 1). Box plot limits show upper and lower quartiles, whiskers extend to 1.5 times the interquartile 
range and the notch represents the confidence interval around the median. d, Hierarchical clustering using normalized ATAC-seq and H3K27ac read 
counts at EndoC-βH1 IREs shows that samples cluster according to treatment, suggesting that the differences caused by the proinflammatory cytokines 
are greater than those derived by the sample heterogeneity. HI = Human pancreatic islets, EndoC = EndoC-βH1 e, Distribution of distances to nearest 
TSS for the different types of regulatory elements, showing that IREs, compared with stable regulatory elements (SREs), are preferentially located distally 
to TSS. f, Mean sequence conservation score of IREs and a randomized set of IREs in placental mammals. Peaks were extended from the center 1 kb to 
each direction and mean score was calculated in 50 bp windows. g, Sequence composition analysis of IREs (n = 3,009) illustrating the top identified 
de novo motifs. Colors for matched genes correspond to RNA-seq (name) or protein (underlined) status (red = down-regulated, blue = equal-regulated, 
green = up-regulated, black/no line = not expressed/detected).
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Extended Data Fig. 2 | Exposure to pro-inflammatory cytokines drives changes in the transcriptome and proteome of pancreatic β cells. a, Volcano 
plot of RNA-seq genes, showing up-regulated genes (green) and down-regulated genes (red) upon exposure of EndoC-βH1 to cytokines. Vertical lines 
indicate the log2 fold change threshold (absolute log2 fold change > 1) and horizontal line indicates the FDR adjusted P cutoff for significance (FDR adjusted 
P < 0.05) calculated by fitting a negative binomial model in DESeq2. b, Distribution of RNA-seq counts in human islet samples in the genes previously 
classified as up, down or equal-regulated in EndoC-βH1 cells. Boxplot limits show upper and lower quartiles, whiskers extend to 1.5 times the interquartile 
range and the notch represents the confidence interval around the median. c, Volcano plot for multiplex proteomics, showing in green the up-regulated 
proteins and in red the down-regulated, which have a Q-value < 0.1 and absolute log2 fold change > 0.58. Vertical lines indicate the log2 fold change 
thresholds. d, Protein-protein Interaction (PPI) network generated from up-regulated proteins after cytokine exposure. Node color indicates belonging to 
same interacting community and background corresponds to specific pathway enrichment. e, Proportion of up, equal or down-regulated proteins encoded 
by genes located <15 kb from IREs or SREs. *** Chi-squared test P < 0.001. f, An additive effect on gene up-regulation was observed for multiple IREs 
located at <40 kb of a gene. Box plot limits show upper and lower quartiles, whiskers extend to 1.5 times the interquartile range and the notch represents 
the confidence interval around the median. ANOVA P < 2.2 × 10−16. g, View of the LY6E locus, whose expression is induced after cytokine exposure and is 
coupled with chromatin changes in the vicinity.
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Extended Data Fig. 3 | Characterization of β-cell IREs. a, Genes associated to different classes of IREs (classified as in Fig. 2a) show cytokine-induced 
expression in EndoC-βH1. CYT = cytokine exposed, CTRL = control. Boxplot limits show upper and lower quartiles, whiskers extend to 1.5 times the 
interquartile range and notch represents the median confidence interval. ***Wilcoxon test P < 0.001. b, Sequence conservation score of IREs and a 
corresponding randomized set used as control. c, Distribution of distances to nearest TSS of the different classes of open chromatin sites. Line indicates 
the threshold used to classify them as ‘promoters’. d, Number of IREs overlapping regions annotated as ‘Strong’ or ‘Weak’ enhancers by ENCODE 
ChromHMM. *Chi-squared P < 2 × 10−16. e, f, Top hits for de novo motif analysis in opening (e) and primed enhancers (f). Colors for matched genes 
correspond to RNA-seq (name) or protein (underlined) status (red = down-regulated, blue = equal-regulated, green = up-regulated, black/no-line = not-
expressed/detected). g, Diagram showing the percentage of colocalization between the TF binding sites identified by de novo motif analysis in SRE and 
primed enhancers (that is excluding sites < 2Kb from a TSS). Label size indicates number of regions containing the TF binding sites and line width/
intensity percentage of regions in which two motifs colocalize. h, Odds-ratio for finding a motif pair in the same enhancer in primed vs. SRE. Only 
significant pairs (FDR-adjusted Fisher’s Exact test P < 0.001) are shown. Immune and islet-specific TF motifs colocalize more often in primed compared 
to SRE chromatin sites. i, Percentage of overlap between EndoC-βH1 different classes of open chromatin and islet-specific TFs obtained by ChIP-seq in 
untreated human islets. j, Volcano plot showing differentially methylated sites (depicted in red) in EndoC-βH1 exposed or not to cytokines. Dotted lines 
indicate the threshold for methylation differences or significance using limma moderated t-test. k, Distribution of demethylated and stable CpGs according 
to different classes of open chromatin.
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Extended Data Fig. 4 | Deconstructing cytokine induced cis-regulatory networks in β cells. a, Gene Regulatory Network (GRN) derived from IREs and 
their putative target genes. Squares represent the IREs inferred TF binding sites (motifs logos and TF matches are shown on the right side) and the ellipses 
represent their putative target genes (see Methods). The size of the squares reflects the number of connections (edge count) while the gene node size 
reflects the log2 fold change of RNA expression after cytokine exposure. The resulting GRN is an interconnected scale-free network composed of 648 
nodes and 3,589 edges. Genes regulated exclusively by primed IREs are represented in blue while green depicts opening IREs regulated genes. Red denotes 
genes regulated by both types of IREs. In each of these three groups the representation of the hierarchy is based on the principle of network centrality 
where authoritative nodes are located more proximal to the core. b, Comparison between the degree distribution of the observed GRN (black triangles) 
and a random generated network (blue squares) having the same number of nodes and edges. The bell-shaped degree distribution of random graph 
denotes a statistically homogeneity in the degree of small and large nodes. In contrast, the observed network showed a high frequency of small degree 
nodes and a low frequency of highly connected nodes as is typical of a scale-free network. c, Bar plot of gene ontology biological process enrichment 
analysis. Gene-ontology analysis was performed using all target genes in the GRN. Functional enrichment analysis was performed by Metascape (http://
metascape.org). Only terms with P < 0.001 and with at least 3 enriched genes were considered as significant. Color is proportional to their P values.
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Extended Data Fig. 5 | 3D chromatin changes induced by exposure of human islets to pro-inflammatory cytokines. a, Violin plots showing the 
distribution of CHiCAGO scores of contacts, detected by promoter capture HiC experiments in untreated human islets24, between stable and induced 
enhancers and their target genes. SREs engage chromatin contacts with higher interaction scores compared to those detected for IREs. *** Wilcoxon 
test P < 0.001. b, c, d, Views of the 3D chromatin contacts of CIITA (b), SOCS1 (c) and RSAD2 (d) promoters obtained by UMI-4C performed in islets 
exposed or not to pro-inflammatory cytokines. In yellow we highlight those IREs that gain contacts with the up-regulated gene promoter. A heatmap 
under the 4C track represents the log10 odds ratio (OR) of the UMI-4C contacts difference in cytokine vs. control and a small black diamond on top of the 
contact heatmap indicates a significant difference in contacts between cytokine-treated and control samples (Chi-squared P < 0.05). ATAC-seq peaks are 
represented by rectangles, shaded from gray to green proportionally to the cytokine-induced H2K27ac log2 fold change observed at that site.

Nature Genetics | www.nature.com/naturegenetics
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Extended Data Fig. 6 | Cytokine-induced islet regulatory elements are enriched in T1D associated variants. a, EndoC-βH1 cytokine-induced regulatory 
elements (IREs) overlap more often than expected T1D associated variants while the opposite is true for T2D. EndoC-βH1 cytokine-invariant regulatory 
elements (SREs) are instead enriched for T2D, but not T1D associated variants. Each dot denotes the Varian Set Enrichment (VSE) score in IREs or 
SREs regions. Boxplot shows the enrichment distribution of the matched null permutated data sets. Red dots indicate that the difference is statistically 
significant as determined by VSE (Bonferroni adjusted P < 0.05). Box plot limits show upper and lower quartiles, whiskers extend to 1.5 times the 
interquartile range and the notch represents the confidence interval around the median. b-f, Representative regional plots of different T1D risk loci 
containing T1D variants overlapping IREs and up-regulated genes. R2 values are based on 1KG phase 3 EUR and the leading SNPs in the locus is represented 
by a diamond. If different leading variants are present in the same locus, their proxies are depicted in different colors. Yellow squares highlight those 
variants that overlap a human islet IRE. IREs are depicted as boxes, with the filling color corresponding to the H3K27ac log2 fold change. g, The IRE 
bearing the T1D associated variant rs78037977 is marked by the ENCODE ChromHMM classification as a ‘strong enhancer’ (orange) in other non β-cell 
lines (left). ENCODE ChromHMM classification in non β-cell lines for the IRE bearing the T1D associated variant rs193778. h, i, Allele-specific luciferase 
experiments for rs78037977 (h) and rs193778 (i) in untreated EndoC-βH1. ANOVA followed by Bonferroni correction * P < 0.05; ** P < 0.01. Bars represent 
mean ± sd.

Nature Genetics | www.nature.com/naturegenetics
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Extended Data Fig. 7 | Human islets and EndoC-βH1 Glucose-Stimulated Insulin Secretion (GSIS). GSIS was assessed, in pancreatic human islets (a) and 
EndoC-βH1 cells (b). In the case of EndoC-βH1 cells, the experiments were performed upon exposure or not to IFNγ (1000 U/ml) +IL1β (50U/ml) for 48 h. 
Data are mean plus range of four to eight independent experiments, and are expressed as the ratio between glucose stimulated and basal insulin secretion. 
*P < 0.05, **P < 0.01, ***P < 0.001, for the indicated comparisons (paired t test (a) or ANOVA followed by Bonferroni correction (b)). NT = Non treated.

Nature Genetics | www.nature.com/naturegenetics
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Extended Data Fig. 8 | ATAC-seq quality control. a, Agilent TapeStation profiles obtained by chromatin tagmentation of human islets and EndoC-βH1 
samples showing the laddering pattern of ATAC-seq libraries. The band sizes correspond to the expected nucleosomal pattern. *Notice that samples HI-19 
CTRL and CYT were used as examples to illustrate the expected fragment distribution pattern in ATAC-seq experiments in Raurell-Vila et al.52. b, Summary 
of per-replicate sequencing metrics, showing total library sizes, percentage of aligned reads, percentage of mitochondrial aligned reads, normalized strand 
cross-correlation coefficient (NSC, values significantly lower than 1.1 (<1.05) tend to have low signal to noise or few peaks) and relative strand cross-
correlation coefficient (RSC, values significantly lower than 1 (<0.8) tend to have low signal to noise). c, TSS enrichment over a 4 kb window centered on 
genes TSS compared to a set of genes randomized along the genome, showing the expected pattern of open chromatin centered on the TSS. d, Percentage 
of total reads found at called open chromatin peaks classified as distal (>2 kb from TSS) or promoters (≤2 kb from TSS) compared to a randomized set 
of peaks. e, UCSC views at islet-specific loci (NKX6.1, PDX1 and NEUROD1) showing the high reproducibility of ATAC-seq profiles among independent 
replicates.

Nature Genetics | www.nature.com/naturegenetics
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The Pancreatic Islet Regulome Browser

In the following article, we describe the Islet Regulome Browser (IRB), a
web application created with the aim of gathering relevant pancreatic islet
genomic data and, at the same time, making it accessible to researchers with
no bioinformatic expertise. As with other bioinformatic applications, since the
article publication, the structure and overall implementation of the tool was
changed and improved in order to keep up with new datasets and technologies.
See section State of the art of the Islet Regulome Browser for an updated
description of the IRB implementation.

Mularoni L., Ramos­Rodríguez M. and Pasquali L. The Pancreatic
Islet Regulome Browser. Front. Genet. 8 (2017). https://doi.org/10.
3389/fgene.2017.00013

8.1 Graphical abstract
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8.2 Highlights
• The IRB is an online tool with a user­friendly interface that provides
access to pancreatic islet genomic datasets.

• This tool allows interactive visualization of the genomic data. The user
can select a genomic region or gene of interest, and several datasets to
be visualized simultaneously.

• The plot generated by the IRB provides an integrated view of different
types of genomic, epigenomic and GWAS data.

• The IRB is freely accessible at isletregulome.com.

http://isletregulome.com
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The pancreatic islet is a highly specialized tissue embedded in the exocrine pancreas

whose primary function is that of controlling glucose homeostasis. Thus, understanding

the transcriptional control of islet-cell may help to puzzle out the pathogenesis of

glucose metabolism disorders. Integrative computational analyses of transcriptomic and

epigenomic data allows predicting genomic coordinates of putative regulatory elements

across the genome and, decipher tissue-specific functions of the non-coding genome.

We herein present the Islet Regulome Browser, a tool that allows fast access and

exploration of pancreatic islet epigenomic and transcriptomic data produced by different

labs worldwide. The Islet Regulome Browser is now accessible on the internet or may

be installed locally. It allows uploading custom tracks as well as providing interactive

access to a wealth of information including Genome-Wide Association Studies (GWAS)

variants, different classes of regulatory elements, together with enhancer clusters,

stretch-enhancers and transcription factor binding sites in pancreatic progenitors and

adult human pancreatic islets. Integration and visualization of such data may allow a

deeper understanding of the regulatory networks driving tissue-specific transcription and

guide the identification of regulatory variants. We believe that such tool will facilitate the

access to pancreatic islet public genomic datasets providing a major boost to functional

genomics studies in glucose metabolism related traits including diabetes.

Keywords: pancreatic islet, epigenome, non-coding DNA, gene regulation, β-cells

INTRODUCTION

During the last decade, the advent of high-throughput “-omics” technologies, has greatly promoted
advances in the study of human diseases at the genomic, transcriptomic, and epigenomic levels.
Sequence databases and software analysis tools are now crucial tools for molecular biologist
to understand the molecular mechanisms underlying tissue-specific functions. Nevertheless, the
systematic acquisition of large bioinformatic datasets has created a tremendous gap between
available data and their biological interpretation. Frameworks to access processed and integrated
genomic datasets may assist, computational and non-computational scientists, to bridge this gap
and provide understanding and biological interpretations to the regulatory and transcriptional
complexity of the genome.

In this context genome browsers are key tools in the accomplishment of this task. The
UCSC Genome Browser (Speir et al., 2016), ENSEMBL (Yates et al., 2016) and NCBI’s Sequence
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Viewer (Wolfsberg, 2011), for example, provide to the research
community a wealth of integrated information and represent
nowadays essential instruments to assist the interpretation of
genomic data.

The pancreatic islets of Langerhans constitute an endocrine
tissue embedded in the exocrine pancreas and represent the
sole source of insulin in the human body. Pancreatic islets play
a crucial role in maintaining normal glucose homeostasis, and
islet-cell dysfunction and/or reduction in islet-cell mass are key
elements in the development of diabetes mellitus. For these
reasons, understanding the regulatory networks controlling the
tissue-specific expression of pancreatic islets, is key to shed light
on the molecular mechanisms underlying diabetes.

Large consortia such as ENCODE (Dunham et al., 2012)
and the Epigenome Roadmap (Bernstein et al., 2010) provided
extensive epigenetics maps allowing annotation of the non-
coding regions of the human genome for a large amount of
cell lines and tissues including several relevant to diabetes
such as adipose tissue and skeletal muscle, while other less
accessible primary tissues such as the endocrine pancreas were
not prioritized in these studies. For their central role in diabetes
pathogenesis, different laboratories embarked in profiling the
transcriptomic and epigenetic landscape of human pancreatic
islet-cells (Bhandare et al., 2010; Gaulton et al., 2010; Stitzel et al.,
2010; Parker et al., 2013; Dayeh et al., 2014; Pasquali et al., 2014)
in an ongoing effort to shed light on the pancreatic islets tissue-
specific gene regulation. Free access to such data represents an
invaluable opportunity for the research community to dissect the
molecular mechanisms of glucose metabolism diseases (Ashcroft
and Rorsman, 2012). Nevertheless, these datasets are deposited
in different repositories, often in bulky raw format files, thus of
difficult immediate access especially to non-bioinformatic users.

Here we present the Islet Regulome Browser, an intuitive
web tool providing access to interactive exploration of a wealth
of pancreatic islet genomic data allowing the visualization of
different classes of regulatory elements and transcription factor
binding sites obtained from experiments performed by different
labs worldwide. The Islet Regulome Browser is addressed to
molecular biologists, human geneticist and clinicians with or
without bioinformatics skills.

MATERIALS AND METHODS

The overall structure of the Islet Regulome Browser is illustrated
in Figure 1.

The Islet Regulome Browser internal structure is composed
of three main components: (a) the database, which is saved in
binary format as RData objects and tabix indexed files, (b) the
code for computing the graphic image, written in R (Rizzo1), and
(c) the interface and the framework for the web service, written in
Python (http://www.python.org). The Islet Regulome Browser is
compatible with all the most popular web browsers and operative
systems. It can be explored via web at http://www.isletregulome.
com or can be installed in a workstation or laptop through
the Python package management system with the command pip

1Statistical computing with R.

install regulome_web. The source code is available under the MIT
license at https://bitbucket.org/batterio/regulome_web.

Web Interface and Plot Generation
The code for running the Islet Regulome Browser is composed
of two main blocks that interact with each other: a Python
framework that creates the web interface and retrieves the user
input, and the R code which generates the plot and the tables.

On the server side the Islet Regulome Browser is managed by
the Flask framework (http://flask.pocoo.org/). The web interface
allows users to generate plots and tables by querying for a gene
name or for a specific genomic region. In addition, users can
customize their analyses by choosing which datasets to use. The
interactivity of the web application is achieved by using Brython
(http://brython.info/), a Python 3 implementation for client-
side web programming. The options selected by the user are
forwarded to the R script that generates both the plot and the
result tables (Figure 1).

The plot is generated by an R script (R version 3.3.1) that takes
as input the user specified features, such as the genomic location
and the datasets to use. Several Bioconductor packages have been
used to read the database and render the final plot: Rsamtools
(Morgan et al., 2016), rtracklayer (Lawrence et al., 2009), and
Sushi (Phanstiel et al., 2014). A plot may also be generated via
command line, using the code as a stand-alone script.

The plots are converted from PDF to PNG format by the
ImageMagick converter tool (http://www.imagemagick.org/) and
cached, along with the produced text tables. This allows to rapidly
load a plot, instead of generating a new one, in case the same
query is repeated. The cache is not used when the users upload
their own data.

Code Structure and Development
We deposited the Islet Regulome Browser code in a publicly
accessible Bitbucket repository (https://bitbucket.org/batterio/
regulome_web). Even though the web application can be
explored at http://www.isletregulome.com, we created a Python
package to easily install the Islet Regulome Browser on a personal
computer. The recommended way to install the package is
by using the Python package management system (pip install
regulome_web). The main requirement for the web application
is Python (version 3.5 or above), R (version 3.3.1 and above),
and ImageMagik (http://www.imagemagick.org). Other Python
related dependencies are listed in the “requirement.txt” file,
however, by using the Python package management system
all the libraries are automatically installed. Once installed, the
Islet Regulome Browser can be executed with the command
regulome_web. The program has two sub-commands: init and
start. regulome_web init will create several folders following
a structure required by the program, and a configuration file
that needs to be modified by the user. The sub-command
regulome_web start runs the Islet Regulome Browser web server,
locally accessible at the url localhost:5000.

The R code to render the plot contains two main scripts: (1)
plot_IRB_main.R, which is the script that needs to be executed
to call all other scripts and to draw each part of the plot. (2),
plot_IRB_config.R contains all configuration variables, including

Frontiers in Genetics | www.frontiersin.org 2 February 2017 | Volume 8 | Article 13
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FIGURE 1 | Structure of the Islet Regulome Browser. Schematic representation of the interactions between the 3 main components of the Islet Regulome

Browser web application.

the path to the database. The R script are integrated in the web
application but they can also be used via command prompt as a
stand-alone program.

Database
Central to the system is the database, which stores the genomic
annotations, chromatin tracks, genome-wide association study
(GWAS) variants and transcription factor binding sites that
may be visualized by the browser. The publicly available data
that can be currently visualized by the Islet Regulome Browser
consists of transcription factor binding sites obtained from
ChIP-seq experiments in adult human pancreatic islets (PDX1,
FOXA2, NKX2.2, NKX6.1, and MAFB) (Pasquali et al., 2014)
and pancreatic progenitors (PDX1, FOXA2, ONECUT1, HNF1B,
and TEAD1) (Cebola et al., 2015); open chromatin classes
and chromatin states in adult pancreatic islets (Parker et al.,
2013; Pasquali et al., 2014), enhancer predictions in pancreatic
progenitors (Cebola et al., 2015); enhancer clusters and stretched
enhancers in adult pancreatic islets (Parker et al., 2013; Pasquali
et al., 2014); open chromatin profiles of α- and β-cells FACS
purified form adult human pancreatic islets (Ackermann et al.,
2016); expression data obtained from RNA-seq experiments
including coding (Morán et al., 2012) and non-coding RNA in
adult pancreatic islets (Akerman et al., in press), and datasets for
genome wide association studies for type 2 diabetes, DIAGRAM
(Cho et al., 2012) and fasting glycemia, MAGIC (Scott et al.,
2012).

While the above description summarizes the data currently
available, the Islet Regulome Browser is a dynamic project.
We periodically revise the database and the literature with
the aim of providing the most updated and relevant datasets
to the pancreatic islet community. We will ensure the future
maintenance the Islet Regulome Browser and will interact
with other members of the pancreatic islets community to
collect their feedback and improve the user interaction with
browser.

For each dataset visualized in the browser we provide, in the
“Data Source” page, full reference of publication as well as links
to the repositories where the raw data was deposited for bulk
download.

RESULTS

The Islet Regulome Browser (http://www.isletregulome.com)
provides interactive access to a wealth of information, allowing
the visualization of GWAS variants, different classes of regulatory
elements, together with enhancer clusters, stretch-enhancers and
transcription factor binding sites in pancreatic progenitors and
adult human pancreatic islets. Integration and visualization of
such data may help in the interpretation of the regulatory
networks driving tissue-specific transcription and guide the
identification of regulatory variants.

From the initial page (Figure 2) a plot can be generated by
selecting a valid gene name or an absolute chromosomal location
by specifying the genomic coordinates (chromosome, start, and
end). The available human builds are: hg18, hg19 (default), and
hg38. The plot can be extended at both sides of the gene/location
by selecting a range that by default is 50 Kb. To limit the
computational load on the server, on the web applications, plots
can span a maximum 5 Mb of genomic space and a minimum of
10 bp. These restrictions can be changed in a local installation
of the Islet Regulome Browser. Four major track types can be
loaded to obtain the desired plot. (1) Tracks named “chromatin
maps” refer to genomic maps of regions that may be involved
in gene transcription regulation. Such publicly available maps
were inferred from experimental datasets such as open chromatin
and histone modification profiles, performed in adult human
pancreatic islets and pancreatic progenitors. (2) “transcription
factors” tracks are maps of transcription factors binding sites
obtained from Chip-seq experiments performed in human adult
pancreatic islets and pancreatic progenitors. (3) “SNPs” tracks
include GWAS variants datasets associated to type 2 diabetes and
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FIGURE 2 | Front panel of the Islet Regulome Browser. From the initial page the user can generate a plot by selecting the desired parameters and a valid gene

name or an absolute chromosomal location.
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fasting glycemia. (4) An optional “chromatin profile” track can be
loaded to visualize open chromatin profiles obtained fromATAC-
Seq experiments performed in FACS purified alpha and beta cells
(Figure 2).

Variants or chromatin maps tracks can be uploaded by the
user for temporary display from the home page, “Advanced
options” section. The file size of the uploaded file should not
exceed 50 Mb. If a file contains a header, this should start with
the “#” symbol. A “variant file” should consist of three or four
tab-delimited fields. Mandatory fields are those of chromosome,
position, and p-value. The files can also contain an optional
fourth field with the reference number of the variant, additional
columns will be ignored. A “chromatin map file” has a typical
BED file format and should be composed of 3 tab-delimited
fields: chromosome, start, and end, additional columns will be
ignored. The fields with positional information should only
contain integer values while the p-values should be numerical
values. Upon data upload, a “Share uploaded files” option may
be selected. This will provide a link that can be copy-pasted to
a browser address bar in order to reproduce the Islet Regulome
Browser session in use, including the uploaded data. Such link
may be shared with other users in order to share data on the Islet
Regulome Browser. Data uploaded by the user will be available
for 1 month.

Plot Description
For any given gene or genomic region selected by the user, a plot
is generated (Figure 3).

The plot illustrates the regulatory regions, transcription
factors binding sites and GWAS variants in which the sequence
of the base genome is represented on the horizontal axis. In the
upper part of the plot a red line on the chromosome ideogram
reflects the portion of the chromosome displayed.

Each dot represents a genomic variant, being the color
intensity of the dot proportional to -Log p-value of association,
as indicated on the side of the plot. A black box in the
central part of the plot contains vertical colored bands depicting
different chromatin states, open chromatin classes or regulatory
elements as described in the legend above the plot. Black lines
connecting the circles (each representing a different transcription
factor) to the black box, point to the genomic location of each
transcription factor binding site. The color intensity of such lines
is proportional to the number of co-bound transcription factors.
Annotated genes are depicted as horizontal gray lines at the
bottom of the plot, with transcriptional orientation indicated by
arrows. Boxes along the line correspond to positions of coding
exons. Islet-specific genes are shown in dark gray.

Plotting Versatility
Graphical outputs are highly dynamic, being rendered on the fly.
The user can zoom in and out at different resolutions as well as
slide left or right 25, 50, and 75% of the length of the plot.

The “Data displayed” panel, selectable from top left corner of
the plot page, allows reviewing all the settings used to make the
plot including genomic coordinates, genome build and all the
features selected.

Retrieve Results
Graphical representations and text tables are available for
download (Figure 4A).

The plot can be downloaded as PNG (Portable Network
Graphics) or as PDF (Adobe Portable Document) format by
clicking on the download icon above the plot. The difference
between the two formats is that the latter uses vector graphics
that is more suitable for high resolution publication figures while
PNG compresses the image to a bitmap.

A button above the plot provides a link to a UCSC
browser (Speir et al., 2016) session containing all the data
currently available in the Islet Regulome Browser for classic
UCSC visualization. For this purpose bigwig files were
generated from BAM files obtained by aligning the raw
data using Bowtie2 (Langmead and Salzberg, 2012) (default
parameters).

Three tables related to the selected locus can be downloaded
from the “Table” panel, selectable from the top left corner of
the plot page. One table contains the regulatory regions, open
chromatin classes or chromatin states selected for display along
with the transcription factors whose binding sites overlap them
(Figure 4B). A second table lists the variants contained in the
selected locus along with their p-value of association (Figure 4C).
Finally a third table includes reference ID and expression level of
the different transcript isoforms overlapping the selected locus
(Figure 4D).

A link at the top left corner of the plot page named
“Data displayed” redirects the user to the “Data Source”
used to create the plot displayed, including reference, date of
publication and links to the databases where the raw data is
deposited.

DISCUSSION

With the advent of high-throughput sequencing technologies we
are assisting to an exponential production of data relevant to
different fields of research including pancreatic islet regulatory
genomics. Scientists are now facing new challenges by shifting
the research efforts from data acquisition to data processing, and
knowledge extraction. The role of the Islet Regulome Browser is
to provide to the pancreatic islet community fast accessibility to
processed genomic data obtained from experiments performed
on the endocrine pancreatic tissue. Such data is otherwise of
difficult accessibility to non-bioinformatics laboratories being
publicly available but usually deposited in bulky unprocessed
formats.

Much of the scientific effort in the pancreatic islet field is
nowadays dedicated to the understanding of the non-coding
genome functions in diabetes, in an effort of translating the
GWAS genetic signal of association to a molecular mechanism.
Compared to preliminary meeting communications (Ramos
et al., 2016) the Islet Regulome Browser now allows the
visualization of different classes of regulatory elements and
transcription factor binding sites obtained from experiments
performed by different labs worldwide. The original view of the
data provided by the Islet Regulome Browser allows to easily
integrating GWAS raw files with epigenomic and transcriptomic
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FIGURE 3 | Plots generated by the Islet Regulome Browser. (A) Illustration of the different sections of the plot, see the text for the detailed description. The left

panel shows an illustrative example of a fasting glycemia associated locus (proximal to the PCSK1 gene), depicting highly associated SNPs mapping to active

regulatory elements (dashed box). The right panel plot illustrates the adult islet regulatory landscape at the locus transcribing the β-cell specific transcription factor

NKX6.1. The locus is characterized by a large Enhancer Cluster upstream the gene annotation. (B) Example of a fasting glycemia associated locus in proximity of the

DGKB gene. As for the previous example, the integration of GWAS data with regulatory elements and transcription factors binding sites, allows pinpointing associated

variants that directly map to active enhancer sites (dashed box). (C) Islet Regulome Browser view of the pancreatic progenitors regulatory landscape at chromosome

17q12. The locus is characterized by a high density of active enhancer elements bound by multiple transcription factors in proximity of the gene encoding HNF1B, a

transcription factors involved in pancreatic development and homeostasis.

datasets. The user can thus visualize the whole spectrum of
variants with different p-values of association and contrast them
with non-coding regulatory elements and transcription factor
binding sites in simple way. We believe that such level of
data integration is novel compared to other available genome
browsers and can assist researchers in prioritizing diabetes
associated variants and to boost their functional validations.

The Islet Regulome Browser is not intended to compete with
other genomic browser tools rather to integrate data of specific
interest to a relative small scientific community with genomic
annotation and epigenetic features obtained from other tissues.
To this end we provide the data available at the Islet Regulome

Browser processed and organized in UCSC genomic browser
sessions as well as direct links to the raw fastq files.

The Islet Regulome Browser is an intuitive interface to explore
pancreatic islet genomic datasets. Publicly available experimental
data sets such as open chromatin assays, transcription factor
binding assays or GWAS variants are readily visualized at loci of
interest and provided in the form of summary tables, facilitating
the selection of candidate loci to be considered in experimental
settings. We believe that such tool will facilitate the access to
pancreatic islet public genomic datasets providing a major boost
to functional genomics studies in glucose metabolism related
traits including diabetes.
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FIGURE 4 | Tables generated by the Islet Regulome Browser. Example of tables generated by the Islet Regulome Browser related to the PROX1 gene locus (A).

The tables include information on the coordinates of the regulatory elements and transcription factor bindings (B), the GWAS variants along with their p-value of

association (C) and the reference ID and expression level of the different transcript isoforms overlapping the selected locus (D).

The Islet Regulome Browser is freely accessible at http://www.
isletregulome.com.
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8.4 State of the art of the Islet Regulome Browser
The publication of the above article coincided with the first version of the IRB,
during the first year of my PhD. Since then, I have grown the expertise and
proficiency to take over the development and maintenance of the IRB. As part
of the development and enhancement of the site, I have improved the whole
implementation to make it more scalable and simple. For this reason, many
of the methods and results described in the article are now obsolete. Thus, I
provide this additional section to update the methods and results to match the
new implementation of the IRB.

8.4.1 Methods
In Figure 8.1 I show the current structure of the IRB. Similarly to the older
version, it consists of three main components:

• Database. The database contains all the datasets available in the IRB,
which are saved as RData objects.

• plotRegulome R package. Consists on a custom R package available
on github1 that uses the datasets present in the database to produce the
typical Islet Regulome plot.

• Shiny web application. Shiny (Chang et al. 2019) is an R package that
provides the necessary tools to build interactive web applications using
the R programming language. The code for the IRB shiny application can
be found in the corresponding github repository2.

These three components interact with one another to render the IRB web
application, process user queries and return the resulting plots and tables.
All these components are encapsulated inside a Docker (Docker Inc n.d.)
container, which ensures stability and reproducibility of the site.

Figure 8.1: Updated structure of the Islet Regulome Browser.

1https://github.com/mireia­bioinfo/plotRegulome
2https://github.com/mireia­bioinfo/isletregulome_shiny

https://github.com/mireia-bioinfo/plotRegulome
https://github.com/mireia-bioinfo/isletregulome_shiny
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8.4.1.1 Database

In order to generate the database, processed files were obtained from
the original publications, coordinates were lifted over to the hg19 genome
build and datasets were transformed to match the requirements of the
plotRegulome package. These datasets were then stored as RData files,
which are lightweight binary compressed files that R can write and read very
efficiently.

According to the type of data they represent, they can be classified in different
groups:

• Enhancer clustering annotation. Represents different grouping of
enhancer elements such as enhancer clusters, stretch enhancers or
enhancer hubs.

• Chromatin maps. Contains chromatin annotations in islet­relevant
tissues and cell lines.

• Transcription factors. Depicts binding sites for TFs.

• GWAS. Association studies analyzing islet relevant diseases and
phenotypes. Contains the studied SNPs together with their p­value of
association with the studied phenotype.

• Chromatin contact data. Contains virtual 4C data derived from
Miguel­Escalada et al. (2019) promoter­capture Hi­C experiments in
human pancreatic islets.

• Gene annotations. Represents gene annotations, together with mRNA
expression levels, and also lncRNAs found in human pancreatic islets.

All these datasets are public and can be easily downloaded with the function
downloadIRB() from the plotRegulome R package. The different datasets
included in the IRB are listed in Table 8.1.

8.4.1.2 plotRegulome package

The plotRegulome package was developed with the idea of providing
consistent and scalable functions to produce the characteristic Islet Regulome
plot, using the Islet Regulome database.

With this idea in mind, plotRegulome contains several functions for plotting
all the different panels inside the regulome plot, allowing the user to easily
produce the independent panels – for example, the GWAS SNPs – if needed.
This new implementation in the form of an R package makes it easier to add
new visualizations and implement other datasets to the Islet Regulome plot.

Internally, plotRegulome takes advantage of the ggplot2 (Wickham et al.
2019) R package to easily produce the required plots from the different
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Table 8.1: Datasets available for visualization at the Islet Regulome Browser.

Dataset type Dataset name

Ramos­Rodríguez et al. (2019)
Chromatin Maps Adult Islets ­ Cytokine­Responsive REs
Chromatin Maps EndoC­𝛽H1 ­ Cytokine­Responsive REs
Gene Annotation Adult Islets ­ Cytokine­Responsive expression
Gene Annotation EndoC­bH1 ­ Cytokine­Responsive expression

Miguel­Escalada et al. (2019)
Chromatin Maps Adult Islets ­ Chromatin Classes
Enhancer Clustering Annotation Super Enhancers
Enhancer Clustering Annotation Enhancer Hubs
Transcription Factors Adult Islets ­ Structural (MED1, CTCF)
Virtual 4C Virtual 4C

Bonàs­Guarch et al. (2018)
SNPs 70KforT2D

Akerman et al. (2017)
Gene Annotation lncRNAs in human islets

Cebola et al. (2015)
Chromatin Maps Pancreatic Progenitors
Transcription Factors Pancreatic Progenitors (ONECUT1, FOXA2, PDX1,

TEAD1, GATA6)
Pasquali et al. (2014)
Chromatin Maps Adult Islets ­ Chromatin Classes
Enhancer Clustering Annotation Transcription Factors Enhancer Clusters
Transcription Factors Adult Islets ­ Tissue­specific (PDX1, NKX2.2, FOXA2,

NKX6.1, MAFB)
Parker et al. (2013)
Chromatin Maps Adult Islets ­ Chromatin States
Enhancer Clustering Annotation Stretch Enhancers

Morán et al. (2012)
Gene Annotation RNA­seq in human islets

Morris et al. (2012)
SNPs Diagram

Scott et al. (2012)
SNPs Magic

Gaulton et al. (2010)
Enhancer Clustering Annotation COREs

datasets. After all the plots are generated, they are combined into one single
figure using the cowplot (Wilke 2019) R package. This whole process is
automated by the plotRegulome function, which takes as input the name of
the different datasets the user wants to plot and automatically generates the
output Islet Regulome Plot.
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8.4.1.3 Shiny web application

Shiny (Chang et al. 2019) is a very powerful R package that allows
easy creation of interactive and responsive web applications using the R
programming language. It provides easy customization and full integration
with other R packages and R code.

The IRB shiny app has three basic parts:

• global.R. Loads and defines elements that need to be used by all the
other parts, such as R packages and datasets.

• ui.R. This script is used to define the user interface. It contains the overall
structure of the site, together with the layout of the application and the
different menus and widgets that need to be included.

• server.R. Deals with parsing the inputs from the user and producing
the different outputs. Here, the different arguments are passed to the
plotRegulome function to produce the Islet Regulome plot. The code for
generating the different tables is also included in this script.

This app can be run locally or it can be launched at the IRB site (isletregulome.org).

8.4.2 Results

8.4.2.1 User interface

The use of shiny allows for a nice and responsive interface that automatically
adjusts to the size of the user’s screen. Compared to the older IRB version,
the selection of coordinates and datasets and the output plot are located in the
same window (Figure 8.2). This allows the user to keep track of the datasets
that are being plotted and change them at will.

8.4.2.2 Islet Regulome plot

The overall IRB plot is very similar to the one described in the publication, with
the addition of some new data visualizations, such as the virtual 4C profiles.
Briefly, the IRB plot can enclose many different genomic and epigenomic
information in one single figure (Figure 8.3):

• Virtual 4C. 3D contact data of the gene of interest (black triangle) with the
rest of the genome. Fill color represents CHiCAGO confidence scores.

• SNPs. GWAS SNP data showing each individual SNP (points) and its
p­value of association with the disease (T2D = Diagram, 70KforT2D;
Fasting glycemia = Magic).

• Chromatin Maps. Open chromatin regions classified in different
types (see original publications in Table 8.1), represented as colored

https://isletregulome.org
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Figure 8.2: View of the Islet Regulome Browser.

rectangles.

• Enhancer Clustering Annotation. Grouping information of open
chromatin regions obtained by different algorithms (see original
publications in Table 8.1), represented as green lines covering the
genomic regions included in the cluster.

• Transcription Factors. TF binding sites obtained from ChIP­seq assays
in human islets or pancreatic progenitors. Lines indicate the location of
the binding site and the darkest the line, the more TFs are found binding
to the same region.

• Gene Annotation. This annotation includes protein coding genes (exons
are represented as rectangles) and long non­coding RNAs from human
islet samples. Islet­specific genes are colored in purple.

The zooming in and out of the plot is now provided as a slider at the top of the
plot, through which the user can change both the start and end coordinates of
the view and/or move it around by clicking in the blue bar that joins the two dots
that represent the start and end coordinates.
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Figure 8.3: Plot generated by the Islet Regulome Browser via the plotRegulome
R package. The different information integrated in the plot are marked by colored
rectangles.
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Regulatory networks driving responses to
cytokines in 𝛽 cells

Insulitis is a key process in the development of T1D. During this immune
islet infiltration, different molecules, such as cytokines and chemokines, are
released by both immune and 𝛽 cells. Such molecules act as messengers that
will in turn induce changes in the surrounding cells by inducing the modulation
of gene expression and protein profile. Thus, understanding the regulatory
responses activated in different cell types during insulitis is key to further
dissect T1D pathological mechanisms and ultimately pinpoint new biomarkers
of disease progression or new therapeutic intervention targets.

9.1 Proinflammatory cytokines induce extensive𝛽 cell
chromatin remodeling

Exposure to both cocktails of proinflammatory cytokines tested in the
studies described in the present thesis (IFN­𝛼 and IFN­𝛾 + IL­1𝛽), induces
considerable chromatin remodeling in pancreatic𝛽 cells, potentially uncovering
new cis­regulatory networks driving the 𝛽­cell response to a proinflammatory
environment.

In the case of IFN­𝛼, which was used to model early insulitis, >4,400 gained
open chromatin regions were observed as early as 2 hours after IFN­𝛼
exposure. Of those accessible regions, only 1,000 were also identified as
gained after 24 hours of exposure, suggesting that some regions act as
fast­responders at 2 hours and then return to their basal, less accessible
status. Even though chromatin accessibility can be used to identify regulatory
elements, chromatin openness is not necessarily a measure of regulatory
element activity. Thus, solely by measuring chromatin accessibility we cannot
determine if the identified regions are in fact active regulatory elements.
Therefore, these regions were simply defined as Open Chromatin Regions
(OCRs).

Next, a cocktail of IFN­𝛾 + IL­1𝛽 was used to study 𝛽­cell chromatin
remodeling in late insulitis. Similarly, a great degree of chromatin remodeling
was observed after a 48 hour exposure. We identified genomic regions
gaining chromatin accessibility and/or increasing their enrichment in H3K27ac,
a histone modification that marks active regulatory regions such as promoters
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and enhancers (Creyghton et al. 2010; Rada­Iglesias et al. 2011). In this
study, the use of both chromatin accessibility and the H3K27ac histone
modification allowed for a better characterization of the potential regulatory
elements driving the response to proinflammatory cytokines. Thus, changes
in H3K27ac were used as proxies for regulatory element activation, with
the coordinates of the accessible sites pinpointing the genomic coordinates
of such elements. This allowed us to define a subset of 3,798 genomic
regions becoming activated after cytokine exposure, which we called Induced
Regulatory Elements (IREs).

Of note, regulatory element losses upon the stimuli, represented by chromatin
regions reducing their accessibility or showing a reduction of H3K27ac, was
residual in both studies. Nonetheless, it could be possible that longer exposure
times could further modify the 𝛽­cell regulatory landscape by inducing loss of
𝛽­cell specific processes, as reported by other studies (Eizirik, Colli, and Ortis
2009).

In general, the magnitude of chromatin changes observed in both studies is
comparable to other works using differentiated cells exposed to similar stimuli
(Ostuni et al. 2013; Calderon et al. 2019). Nonetheless, the cited works
use immune­related cell types, whose main function is to respond effectively
to these type of stimuli. Thus, the results from the present thesis show that
highly specialized cells, such as 𝛽 cells, are also able to modify their regulatory
landscape to respond to proinflammatory stimuli.

To what extent do the regulatory elements activated in models of early and
late insulitis overlap? We tried to address this question, but encountered
some difficulties due to key differences in the experimental design of these
studies that impede direct comparison of their results. First, characterization
of regulatory elements in both studies is different: for the IFN­𝛼 study (solely
based on ATAC­seq), all gained open chromatin regions were considered
potential regulatory elements, whereas for the IFN­𝛾 + IL­1𝛽 study (based on
ATAC­seq and H3K27ac ChIP­seq) only accessible regions – either gained or
stable – with gains in H3K27ac enrichment were defined as induced regulatory
elements. Secondly, the exposure times for both studies are different, that
is, two different time points of 2 and 24 hours for the IFN­𝛼 study, and a
single time point of 48 hours for the IFN­𝛾 + IL­1𝛽 study. Finally, even though
bioinformatics methods for processing and performing differential analysis
were similar, the number of replicates also differed between experiments:
ATAC­seq data was obtained from 4 replicates in the IFN­𝛼 study, while
5 ATAC­seq replicates were used in the IFN­𝛾 + IL­1𝛽 studies. All these
differences made the comparison of cytokine­responsive regulatory elements
obtained from the two studies unreliable, based on the current data.

Both OCR and IREs show correlation with the induction of the nearby genes
and their corresponding protein. In the case of OCRs, we observed that their
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gains in chromatin accessibility precede up­regulation of their putative target
genes, showing highest correlation between detected OCRs at 2 hours and
up­regulated genes at 8 hours. Regarding IREs, their association with gene
up­regulation was maintained when this group was sub­divided into opening
and primed IREs. This observation suggests that both classes of IREs are
able to up­regulate their target genes independently from their pre­existing
accessibility status, that is, closed or already accessible. Further study on the
gene networks regulated by such putative regulatory elements could help to
clarify the cellular processes involved in responses to cytokines and could help
to identify potential therapeutic interventions to reverse the detrimental effects
of cytokine­induced 𝛽­cell stress and apoptosis.

9.2 Uncovering novel regulatory elements

Both proinflammatory cytokine cocktails studied in this thesis – IFN­𝛼
and IFN­𝛾 + IL­1𝛽, modeling early and late insulitis, respectively – trigger
genome­wide chromatin remodeling, resulting in changes in gene expression
and in the cell’s protein profile. Such remodeling may uncover the activation
of novel regulatory elements that drive the 𝛽­cell response to proinflammatory
cytokines.

In Chapter 6, we hypothesized that gained OCRs were mostly composed
of cytokine­induced distal regulatory elements, as suggested by their high
sequence conservation scores, distal localization relative to gene TSS and
enrichment for TF binding motifs. Moreover, the identified regions were
correlated with the induction of gene expression of the nearby genes, and
footprint analysis indicated likely binding of TFs.

Characterization of regulatory elements in Chapter 7, however, was more
accurate, as we intersected changes in chromatin accessibility with changes in
H3K27ac enrichment, allowing a more precise prediction of active enhancers.
Similarly to OCRs, IREs were also phylogenetically conserved, distal to
TSS and enriched for TF binding motifs. In this case, we were also able to
further classify these accessible regions into different groups, depending on
their chromatin accessibility changes: Opening IREs gained both H3K27ac
enrichment and chromatin accessibility, while primed IREs were already
accessible before the stimulus but were enriched in H3K27ac after the
proinflammatory cytokine exposure. Taking into account that opening IREs
showed different gradients of chromatin accessibility changes, we further
divided them into neo IREs, representing those open chromatin regions
that were totally closed before the stimulus but afterwards opened up and
gained H3K27ac. Moreover, neo IREs are analogous to the latent enhancers
described by Ostuni et al. (2013) in murine macrophages.
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9.3 Tissue­specific mechanisms in the response to
proinflammatory cytokines

Different classes of IREs also presented intrinsically different mechanisms
of activation. Primed IREs were already accessible and pre­bound by
islet­specific regulatory elements. After the cytokine exposure, our analyses
suggest that new TFs, mostly inflammatory, bind these regulatory elements and
cooperate with 𝛽­cell specific TFs to activate the response to proinflammatory
cytokines. A similar cooperation between tissue­ and signal­specific TFs has
been described before in murine and human macrophages (Heinz et al. 2013;
Alasoo et al. 2018).

Conversely, neo IREs showed no enrichment in islet­specific TFs, neither
before nor after the exposure. On the other hand, they were likely bound by
inflammatory TFs, as suggested by the de novo motif analysis and the ISRE
footprint observed at those genomic sites. DNA methylation analysis also
revealed the analyzed CpGs within these neo IREs were demethylated upon
the proinflammatory signal.

These findings are in line with some studies revealing that external stimuli
can change the enhancer repertoire of terminally differentiated cells from the
immune system (Ostuni et al. 2013; Alasoo et al. 2018; Calderon et al. 2019).
Moreover, these novel cis­regulatory elements elicited by a disease­relevant
stimuli might help explain the immune attack tissue­specificity in autoimmune
pathologies. Indeed, Alasoo et al. (2018) proposed that disease variants
lying in such genomic regions can influence enhancer function, for instance
by altering tissue­specific TF binding, which may in turn alter the cooperative
binding of stimulus­specific TFs. The generated aberrant response would then
impede the resolution of the immune attack and lead to a progression of the
autoimmune process.

9.4 Changes in 3D chromatin structure

The uncovering of new putative enhancers driving 𝛽­cell responses to
proinflammatory cytokines raises the question of whether such IREs
are already in contact with their gene targets or new enhancer­promoter
interactions are formed upon the cytokine exposure. Some studies already
explored the dynamics of established chromatin interactions during cell
development (Phanstiel et al. 2017; Mumbach et al. 2016), in carcinogenic
processes (Taberlay et al. 2016; Barutcu et al. 2015) or after hormonal
exposure in breast cancer cells (Le Dily et al. 2014), among others. However,
at the time of publication of the work presented in Chapter 7, the chromatin
dynamics of highly specialized and differentiated cells, such as pancreatic
islets, upon an environmental stimulus was not known.



9.4. Changes in 3D chromatin structure 123

As TADs, mainly described by Hi­C chromatin capture technology (see
Chromatin three­dimensional organization), were shown to be established
during development and to be mostly stable among cell types, we aimed
to obtain targeted promoter­centered chromatin interactions with higher
resolution using UMI­4C assays. By using the promoters of 13 up­regulated
genes as viewpoints, we observed that, upon proinflammatory exposure,
chromatin contacts were preferentially gained with IREs. This observation
suggests that new enhancer­promoter loops were formed, allowing IREs to get
in physical proximity with their target genes. Moreover, these findings suggest
that differentiated cells maintain the ability to form new chromatin interactions
to respond to environmental changes.

In summary, the studies presented in this thesis provide evidence that the
regulatory landscape of terminally differentiated cells, such as 𝛽 cells, can be
reshaped upon stimuli, revealing novel regulatory elements involved in the
response to such stimuli. Such regulatory elements are, in turn, able to form
new enhancer­promoter interactions to modulate the expression of their target
genes. This is the first time, to our knowledge, that such level of remodeling
is described in a human specialized, differentiated and non­immune related
tissue, such as 𝛽 cells and human pancreatic islets. Linking these newly
uncovered IREs to T1D will provide more insights into the role of these putative
enhancers in the development of the disease.
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Exploring gene networks to find T1D therapeutic
targets

Studying gene and protein networks driving𝛽­cell responses to proinflammatory
cytokines is vital to understand the cellular processes involved in such
responses. Analyses of protein­protein interaction (PPI) networks in both
IFN­𝛼 and IFN­𝛾 + IL1­𝛽 studies revealed that up­regulated proteins
were enriched for processes such as cellular response to viruses, antigen
processing and presentation via MHC class I for early insulitis, and IFN­𝛾
signaling, antigen processing and presentation, apoptosis and T1D for late
insulitis. These results suggest that both cocktails are able to induce the key
T1D signatures resulting from the different insulitis stages.

Sequence analysis of open chromatin regions can provide clues as to which
TFs are regulating the response to proinflammatory cytokines. De novo motif
analysis in OCRs and IREs revealed both inflammatory and islet­specific
TF motifs (see Chapter 9). Of note, IRF and STAT motifs, belonging to
a family of TFs involved in IFN signaling, were found in both OCRs and
IREs. The role of both families of TFs was further studied in Chapter 6,
showing that individual protein knock­downs were usually compensated by
other proteins from the same family. Moreover, IRF1 appeared to act as
a key regulator of 𝛽­cell INF­𝛼­mediated responses, by inducing inhibitory
checkpoint proteins such as PDL1 and HLA­E. Interestingly, the effect of IRF1
is different depending on the cell type in which it is studied: the systemic IRF1
knockout in NOD mice prevents autoimmune diabetes (Nakazawa et al. 2001),
while islet­specific deletion correlates with shorter islet mouse graft function
and survival (Gysemans et al. 2009). Such differences may be explained by
IRF1 acting through cell­type­specific regulatory elements, thus highlighting
the importance of dissecting cis­regulatory networks in target tissues.

Study of gene and protein networks driving the response to IFN­𝛼 in 𝛽 cells
revealed several candidate genes and pathways, which are also present in the
𝛽­cell gene signatures of T1D patients. Mining such networks and comparing
them to pathway and drug databases, revealed two potential therapeutic
interventions inhibiting either bromodomain proteins or JAK tyrosine kinases.

Bromodomain proteins are part of chromatin remodeling complexes
and are able to recognize acetylated lysine residues in histones, thus
promoting chromatin decompaction. Previous studies have demonstrated
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that inhibition of bromodomain proteins in NOD mice produces protective
effects against T1D development (Fu et al. 2014). Here, we show that
inhibition of bromodomain proteins by two different molecules (JQ1+ and
I­BAT­151) is able to down­regulate HLA class I and chemokine expression in
𝛽 cells. Nonetheless, such molecules are not able to protect 𝛽 cells against
cytokine­induced apoptosis.

On the other hand, the JAK protein family is implicated in the IFN­𝛼 signaling
pathway by triggering the JAK­STAT signaling cascade. The inhibition of two of
its members, JAK1 and JAK2, is able to prevent development of T1D in NOD
mice (Trivedi et al. 2017). Here, we used baricitinib, a drug that has already
been approved as treatment in rheumatoid arthritis (Genovese et al. 2016), to
inhibit JAK1/2. Baricitinib treatment in 𝛽 cells was able to inhibit HLA class I
overexpression and reduce cytokine­induced 𝛽 cell ER stress and apoptosis.

To summarize, the compounds presented in this thesis are good candidates for
reversing the deleterious effects of IFN­𝛼 in 𝛽 cells during early insulitis, thus
favoring survival of 𝛽 cells.



11

Finding a mechanism for the 𝛽 cell role in T1D
using GWAS

GWAS provide great resources for studying and understanding the genetic risk
of complex diseases, by comparing the polymorphic alleles present in affected
population versus healthy controls. As 88% of GWAS­identified T1D variants
are located in non­coding sequences, they are candidates for potentially
disrupting gene regulatory activity. Thus, comparison of disease variants with
enhancer maps is critical to shed light onto the potential disease mechanisms.
However, much effort is still needed to understand the molecular mechanisms
underlying candidate risk variants affecting enhancer function. Challenges
involve the identification of the putative gene targets of the candidate enhancer,
the understanding of the cell types in which risk variants operate and the lack
of accurate in vitro and in vivo disease models.

In the case of T1D, several studies have observed enrichment of T1D
candidate SNPs at immune cell enhancers (Onengut­Gumuscu et al. 2015;
Farh et al. 2015) and, more subtly, in pancreatic islet enhancers (Farh et
al. 2015). Nonetheless, studying static regulatory maps might be limiting our
understanding of the genetic mechanisms underlying disease risk, as many
variants may be context­specific. This means that it might be necessary to
profile a large range of disease­specific cellular states in order to understand
the individual contributions of each candidate risk variant.

The need for querying different cellular states to understand disease risk
was already presented in previous works in immune cell types (Alasoo et al.
2018; Kim­Hellmuth et al. 2017). With the work presented in this thesis, we
demonstrate that this concept is valid as well for pancreatic islets in the context
of T1D. Thus, by intersecting IREs with T1D­associated variants, we were
able to observe an enrichment of T1D risk SNPs in these cytokine­induced
enhancers. Nonetheless, with the current data, we cannot rule out the
possibility that the T1D risk variants overlapping islet IREs are also acting
through immune cell types, as we observe that islet IREs may in some cases
act as active enhancers in some immune cell types.

Luciferase assays provide further proof that a subset of T1D risk variants
are functional by altering enhancer activity in 𝛽 cells. We provide evidence
that rs78037977 and rs193778, both T1D leading variants, are able to modify
the enhancer activity of the IRE they overlap. More studies are needed to
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fully understand the effect of the risk alleles at specific enhancers. One
mechanism of action may be that of altering the binding affinity of cell­type
specific TFs and thus indirectly decreasing binding of stimuli­specific TFs,
mirroring a model proposed by Alasoo et al. (2018). These findings could
be also exported to other autoimmune diseases, as disease variants acting
through stimuli­specific enhancers in target tissues may explain the immune
preference of the autoimmune attack.

To understand the biological consequences of the gene regulatory changes
caused by functional risk variants, it is vital to identify their target genes. This
is a challenging task, as enhancers can regulate genes located megabases
away in the linear genomic space. As enhancers are believed to get in physical
proximity with their target gene’s promoter, analyzing chromatin interactions
can guide their identification. By using UMI­4C, we provide some potential
gene targets of the studied enhancers containing T1D risk variants. However,
more studies are necessary to actually identify how changes in enhancer
activity can affect gene networks in T1D. For example, Nasrallah et al. (2020)
coupled analysis of chromatin interactions with subsequent CRISPR functional
mapping to shed light onto the role of a specific enhancer in ulcerative colitis.
Gaining insight onto the gene networks affected by T1D risk alleles may also
allow to identify novel therapeutic targets for pre­clinical T1D studies.
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Facilitating access to pancreatic islet genomic
data

The growing availability of high­throughput assays to query the genome
and epigenome, together with the drop in sequencing cost, has increased
the production of genomic datasets in research laboratories worldwide. All
these datasets are usually publicly available in data repositories, theoretically
facilitating re­exploration and re­use of these load of the data by the scientific
community. However, such data is usually deposited in unprocessed formats,
which pose a challenge in terms of data processing, as it requires extensive
bioinformatic knowledge, and in terms of uncovering of the underlying
biological information. The Islet Regulome Browser (IRB) addresses both
challenges by facilitating access and exploration of processed genomic and
epigenomic data to the scientific community. Exploration of the IRB data does
not require any bioinformatic knowledge, as the data is already processed and
ready for visualization.

Different genomic and epigenomic factors can be queried using available
high­throughput methodologies, allowing integration of such data with GWAS
information, thus gaining insights into a certain disease (see Finding a
mechanism for the 𝛽 cell role in T1D using GWAS for an example). The IRB
facilitates such integration by providing a unified view of GWAS data with islet
epigenomic and transcriptomic information. Data integration can in turn help
researchers to prioritize variants of interest by visualizing chromatin features,
TF binding sites and chromatin interactions that might help uncover their
underlying mechanism. Moreover, the IRB provides a user­friendly interface to
easily explore genomic data and provides links for downloading the visualized
datasets.

Many different browsers for genomic data visualization are currently available,
such as the UCSCGenome Browser (Kent et al. 2002), theWashU Epigenome
Browser (Zhou andWang 2012) or the Integrative Genomics Viewer (Robinson
et al. 2011). The IRB, however, does not aim to compete in terms of data
visualization, but it rather aims to integrate and gather data on pancreatic islet
regulation, making it accessible to a specialized community of researchers. For
this reason, the IRB also provides links to sessions in the UCSC and WashU
browsers, to allow further data exploration.

Considering that technology, both in terms of development of genomic assays
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and of bioinformatic applications and tools, is advancing fast, the IRB is also
evolving at the same pace. For this reason, since its official release, different
types of genomic information have been added, such as virtual 4C tracks
showing chromatin interactions in pancreatic islets. Additionally, the interface
and the underlying code is improving to keep up with different available tools
that facilitate integration and navigation at the IRB site.

In conclusion, the IRB is an important resource for the pancreatic islet
community, as it gathers relevant genomic and epigenomic datasets,
and allows for easy data exploration without requiring any bioinformatic
background.
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Conclusions

1. Exposure of 𝛽 cells to both IFN­𝛼 (early insulitis) and IFN­𝛾 + IL­1𝛽
(late insulitis) induce extensive chromatin remodeling coupled with
changes in gene expression and protein abundance. While with IFN­𝛼
exposure we only queried chromatin accessibility, thus identifying
different sets of Open Chromatin Regions (OCRs) gained at the
different time points, in the case of IFN­𝛾 + IL­1𝛽 we were able to
uncover 3,798 Induced Regulatory Elements (IREs), which showed
gains in chromatin accessibility and/or in enrichment of H3K27ac –
a histone modification marking active regulatory elements – after the
exposure.

2. Motif analysis of both OCRs and IREs revealed binding sites for
inflammatory TFs, such as IRF and STAT. Interestingly, a subset of
IREs called primed IREs, which were already accessible before exposure
to the proinflammatory stimuli, were pre­bound by islet­specific TFs,
which were likely cooperating with inflammatory TFs to drive changes in
gene expression.

3. The study of changes in chromatin interactions by UMI­4C, revealed that
after exposure to IFN­𝛾 + IL­1𝛽, new enhancer­promoter contacts
were formed between IREs and their up­regulated target genes. This
suggests that the chromatin contacts in differentiated tissues are not
fixed and can be modified to accommodate new enhancer­promoter
interactions.

4. Proinflammatory cytokines induced regulation of genes related with T1D.
By mining such induced gene regulatory networks, we identified two
compounds able to reduce the interferon signatures in 𝛽 cells:

• Bromodomain inhibitors were able to reduce interferon­induced 𝛽
cell stress.

• Baricitinib, a JAK1/2 inhibitor, was revealed as a promising
therapeutic drug for reducing both interferon­induced cellular stress
and apoptosis in 𝛽 cells.

5. IREs uncovered upon exposure to IFN­𝛾 + IL­1𝛽 were enriched for
T1D­associated risk variants. Interestingly, the risk alleles for two T1D
risk variants were tested and shown to have an effect on enhancer
activity in response to proinflammatory cytokines, revealing a potential
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𝛽­cell­mediated mechanism for T1D progression.

6. The Islet Regulome Browser is a useful resource that allows
visualization and exploration of human pancreatic genomic
datasets, making them accessible to all researchers, including scientists
with no bioinformatics background.
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An integrated multi-omics approach identifies the landscape of interferon-a-mediated responses of 

human pancreatic beta cells 
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Supplementary Figures 

 
 

Supplementary Figure 1. Characterization of the global transcriptional responses of human islets to 

interferon-a. A. Schematic representation of the present experimental design. In brief, pancreatic 

human islets were exposed or not to IFNa (2000 U/ml) for the indicated time points and RNA-sequencing 

was performed (n = 6). B. Correlation between RNA-seq of EndoC-bH1 cells (n = 5) and RNA-seq of human 

islets (n = 6) exposed to INFa. The x axis represents the log2FC of DEGs from human islets RNA-seq and 

the y axis the DEG from EndoC-bH1 cells RNA-seq at different time points. The up-regulated (log2FC > 

0.58, FDR < 0.05) and down-regulated (log2FC < -0.58, FDR < 0.05) mRNAs in human islets are filled in 

red and blue, respectively. The up-regulated (log2FC > 0.58, FDR < 0.15) or down-regulated (log2FC < -

0.58, FDR < 0.15) mRNAs in EndoC-bH1 cells are represented by red and blue borders, respectively. C. 

The DREM1 regulatory paths summarizing the temporal patterns of the differentially expressed genes 

(DEG) detected by RNA-seq (|log2FC| > 0.58 and FDR < 0.05, n = 6). The x axis represents the time and 

the y axis the mRNA log2FC. Each path corresponds to a set of co-expressed genes. Split nodes (circles) 

represent a temporal event where a group of genes co-expressed up to that point diverge in expression, 



 3 

most probably due to regulatory events. These annotations are placed on the path immediately after 

the split to indicate whether the transcription factor (TF) controls the upper or lower paths following the 

split. In blue are the TFs upregulated at the respective time points of the RNA-seq. D. Transcription 

factors and biological processes (GO) enriched in the main pathways defined by the DREM model (FDR 

< 0.05). 
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Supplementary Figure 2. Type I interferon-induced genes are enriched among T1D candidate genes 

and the in vitro modelling of this cytokine partially recapitulates the beta cell gene expression 

signature from T1D individuals. . A. Summary of the approach used to evaluate the biological processes 

regulated by T1D candidate genes expressed in human islets. Initially, two lists were generated, one 

containing the T1D risk genes (see Methods) and another the genes expressed in pancreatic human islets 

(RPKM > 0.5, (GSE1084132). Next, these two lists were intersected and functional enrichment analysis 

was performed using the overlapping genes. B. Enrichment map of the biological processes (GO) 

significantly overrepresented in T1D candidate genes expressed in pancreatic human islets performed 

as described in Methods. C. Schematic illustration of the steps followed for the Rank-Rank 

Hypergeometric Overlap (RRHO) analysis. In brief, ranked-lists of genes based on the log2FC (T1D or T2D 
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vs non-diabetic individuals) were generated (List 1) and compared to similarly ranked lists of EndoC-bH1 

cells (D and E) and human islets (F and G) exposed to IFNa for 24 or 18h, respectively, vs untreated cells 

(List2). Next, the RRHO map was used to screen the sample permutation maps for the higher overlap in 

genes among the lists. D, E, F and G. RRHO map comparing the gene expression profile of EndoC-bH1 

cells (D) or human islets (HI) (F) treated with IFNa to the one present in primary beta cells  of individuals 

affected by T1D3  identified by RNA-seq. This IFNa-induced profile of EndoC-bH1 cells (E) and human 

islets (HI) (G) was also compared against the mRNA expression profile of beta cells isolated from 

individuals affected by T2D4, to exclude the impact of metabolically-induced changes.  
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Supplementary Figure 3. Gained open chromatin regions are mainly localized distally to gene 

transcription starting sites (TSSs), evolutionary conserved and enriched in transcription factors (TFs) 

binding motifs. A. Distribution of the open chromatin regions (OCRs) distance to the closest gene TSS in 

different classes and time points. B. Mean sequence conservation score of gained open chromatin 

regions (2 and 24h) and randomized sets in placental mammals. Peaks are extended from the center to 

1kb in each direction and mean score was calculated in 50bp windows. C. TFs binding motifs enriched in 

regions of IFNa-induced gained open chromatin. D. Scheme representing the strategy to analyze OCRs 

and their potential target genes. (n = 4, unadjusted p-values were obtained using the hypergeometric 

test from the HOMER package5). E. mRNA log2 fold-changes detected by RNA-seq are related to the type 
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and the number of REs. Boxplot limits show upper and lower quartiles, centered on the median value. 

Whiskers extend to 1.5 times the interquartile range (n = 5,  p-values were adjusted using the Benjamini-

Hochberg method, two-sided Mann-Whitney test).  
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Supplementary Figure 4. IFNa decreases expression of proteins via proteasome activation and 

triggering of ER stress in EndoC-bH1 cells . A, B. Gene set enrichment analysis (GSEA) of KEGG pathways 

(A) and enrichment map of biological processes (Gene Ontology) (B) significantly enriched among 

proteins modified by IFNa in EndoC-bH1 cells. C, D. mRNAs and proteins involved in proteasomal 

degradation and triggering ER stress are significantly modified by IFNa in EndoC-bH1 cells (C: (n = 5), D: 

(n = 4), genes/proteins were selected if they present a FDR < 0.05 in at least one time point/condition). 

E to H. Validation of key mRNAs and proteins involved in protein folding and degradation. EndoC-bH1 

cells were treated or not with IFNa for the indicated time points in independent experiments and 

expression of the stress-responsive transcription factor ATF3 (E, F) and the chaperone BiP (HSPA5) (G, 

H) were evaluated at the mRNA (E, G) and protein levels (F, H). (for E (n = 9), F (n = 4), G and H (n = 5), 

mean ± SEM, ANOVA with Bonferroni correction for multiple comparisons). Source data are provided as 

a Source Data file. 
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Supplementary Figure 5. Identification of key transcription factors regulating EndoC-bH1 cells 

responses to IFNa. A. Flowchart of the experimental approach: First, the DREM model divided the 

differentially expressed genes in pathways based on their expression pattern and pointed out TFs 

potentially controlling paths diverging over time. Second, the coordinates of the genes classified in each 
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of the pathways were obtained. Third, OCRs at 2 and 24h were associated to the nearest gene classified 

in one of the paths at 2 and 24h, respectively. Forth, motif matrices of the putative TFs regulating a 

specific path were identified. Fifth, matches for these matrices were searched for in the respective 

subset of OCRs annotated to the cluster regulated by the respective TFs. Sixth, the difference in cutting 

probability between control and IFNa samples was plotted. B. TFs and biological processes (GO) 

enriched in the main pathways defined by the DREM model (FDR < 0.05). C to K. EndoC-bH1 cells were 

transfected with a control non-specific siRNA (siCT) or previously validated siRNAs6,7 against IRF1 (siIRF1) 

(C to F), STAT1 (siSTAT1) (G to J), STAT2 (siSTAT2) (G to J) or STAT1 plus STAT2 (siSTAT1+2) (I and K). 

After 48h of recovery, the knockdown efficiency was confirmed at the protein level by Western blot and 

quantified by densitometry (C, E, G, I). The values were normalized by the housekeeping protein a-

tubulin and then by the highest value of each experiment considered as 1. The Western blot images are 

representative of three (E) and four (C, G, I) independent experiments (ANOVA with Bonferroni 

correction for multiple comparisons). The mRNA induction of key IFNa-target genes (D, F, H, J and K) 

was determined by real-time PCR at the indicated time points. The values were normalized by the 

housekeeping gene b-actin and then by the highest value of each experiment considered as 1 (for D: 

IRF1 and CXCL10 (n = 6), SOCS1 (n = 2); for F: IRF1 and CXCL10 (n = 6), CXCL1 (n = 4); B2M (n = 5); for H: 

all (n = 5); for J: all (n = 4); for K: all (n = 3), ANOVA with Bonferroni correction for multiple comparisons). 

L. Gating strategy used to evaluate HLA-E expression on EndoC-bH1 cells exposed or not to IFNa for 24h 

(see Supplementary Methods, the same gating strategy was used for MHC Class I analysis). M. HLA-E 

protein in the supernatant of EndoC-bH1 cells exposed or not to IFNa for 24h was measured by ELISA. 

(n = 6, ns: non-significant, two-sided paired t test) N. Higher magnification image of an islet from a T1D 

donor demonstrating that HLA-E (green) does not localize to delta cells (somatostatin; red – white 

arrows).  DAPI – dark blue.  Scale bar 20 μm. Source data are provided as a Source Data file. 
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Supplementary Figure 6. Evaluation of interferon-a-induced genes on FACS-purified primary human 

beta cells. Pancreatic human islets were FACS-sorted using a beta cell specific cell surface marker 

(NTPDase3) (see Methods). A. Gating strategy used to obtain purified human beta cells. B. The islet cell 

population frequency in the beta cell enriched fraction was determined by immunocytochemistry (ICC) 

with antibodies against insulin (INS), glucagon (GCG) or somatostatin (SST) (8 fields were analysed from 

2 independent experiments). C. Representative ICC image of the beta cell enriched fraction after FACS-

sorting of pancreatic human islets. Image representative of 2 independent experiments. Scale bar 100 

µm. D. mRNA expression of HLA class I (ABC), MX1, MDA5, CHOP, CXCL10 and PDL1 was evaluated by 

real-time RT-PCR on FACS-purified human beta cells exposed or not to IFNa for 24h. The values were 

normalized by the housekeeping gene b-actin and then by the highest value of each experiment 

considered as 1 (n = 4, two-sided paired t test). Source data are provided as a Source Data file. 
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Supplementary Figure 7. Description of interferon-a-regulated modules of genes and proteins. A. 

Dendrogram of consensus module eigengenes identified by WGCNA mRNA and protein clustering. B. 
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Modules obtained after merging eigengenes groups whose expression profiles were similar. A threshold 

of eigengene correlation of 0.75 (corresponding to the dissimilarity threshold 0.25) was used for the 

merging. C. Number and status of the mRNAs and proteins in each module from RNA-seq and proteomics 

of EndoC-bH1 cells. D. Module quality is represented as the Zsummary for each module from the 

resulting networks from RNA-seq and proteomics of EndoC-bH1 cells. For this analysis, the original 

dataset was re-sampled 1000-times to create reference and test sets and then module quality was 

evaluated using density and separability metrics and represented as the Zsummary for each module. 

Zsummary > 2 indicates moderate and Z > 10 high quality/robustness for each module8. E, G, I. Heatmap 

plots depicting the relation between genes and proteins in each module. Progressively darker colors 

correspond to higher correlations. F, H, J. Log2 fold-changes of mRNAs and proteins present in modules 

#1 (F), #2 (H) and #5 (J), which were generated as described before in Figure 4B and C. The present 

results show RNA-seq (n = 5) and proteomics (n = 4)  data of EndoC-bH1 cells. 
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Supplementary Figure 8. Weighted correlation network analysis (WGCNA) of human pancreatic  islets 

RNA-seq. A. Heatmap representation of the topological overlap matrix. Rows and columns correspond 

to single genes, light colors represent low topological overlap, and progressively darker colors represent 

higher topological overlap. The corresponding gene dendrograms and initial module assignment are also 

displayed. B. Modules obtained after merging eigengenes groups whose expression profiles were 

similar. A threshold of eigengene correlation of 0.75 (corresponding to the dissimilarity threshold 0.25) 

was used for the merging. C. Number and status of the mRNAs in each module based on the RNA-seq 

data from pancreatic human islets. D. Module quality is represented as the Zsummary for each module 

from the resulting networks. For this analysis, the original dataset was re-sampled 1000-times to create 

reference and test sets and then module quality was evaluated using density and separability metrics, 

and represented as the Zsummary for each module. Zsummary > 2 indicates moderate and Z > 10 high 

quality/robustness for each module8. E. Similarity between EndoC-bH1 cells mRNAs modules (reference 

set) and the human islets RNA-seq modules (test set) was evaluated as described in (C), but using density 

and intramodular connectivity metrics. Module preservation is represented as the Zsummary for each 

module. Zsummary > 2 indicates moderate and Z > 10 high preservation for each module8. The present 

results show RNA-seq data (n = 6) of pancreatic human islets. 
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Supplementary Figure 9. Reconstructing the gene regulatory networks induced by interferon-a in 

EndoC-bH1 cells. A. A gene regulatory network of module #2 was built combining data from two sources: 

1) Transcription factor (TF)-target information obtained from publicly available data-repository of 

regulations (www.regnetworkweb.org). Enriched regulators (FDR < 0.01 and minimum number of 
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connections = 4) were identified and added to the network if they were not already present. 2) 

Previously recognized de novo HOMER motifs were linked to their target genes using annotatePeaks.pl. 

B. Gene regulatory network from module #2. Light blue edges represent the literature-based network. 

Orange edges indicate the cis-regulatory network presently identified. The size of the nodes is 

proportional to the outdegree of the regulatory components. The present results were based on RNA-

seq (n = 5) and proteomics (n = 4)  data of EndoC-bH1 cells. 

  



 17 

 

 
Supplementary Figure 10. Gene regulatory networks and protein-protein interaction (PPI) networks 

from modules #1 and #5. A, C. Gene regulatory networks of modules #1 (A) and #5 (C) were built using 

TF-target information obtained from publicly available data-repository of regulations 

(www.regnetworkweb.org). Enriched regulators (FDR < 0.05 and minimum number of connections = 5) 

were identified and added to the network if they were not already present. The size of the TFs nodes is 

proportional to the outdegree. B, D. The PPI network of modules #1 (B) and #5 (D) was done using the 

InWeb InBioMap database9. Enriched proteins (FDR < 0.05 and minimum number of connections = 5, 

represented as squares) were identified and added to the network if they were not already present. Red 

fill identifies upregulated proteins, blue fill indicates downregulated proteins and gray fill equal-

regulated. Colored regions delimitate communities of proteins identified using the EAGLE algorithm, as 

described in Material and Methods. The wordcloud next to each community presents their enriched 

geneRIFs terms. The present results were based on RNA-seq (n = 5) and proteomics (n = 4)  data of 

EndoC-bH1 cells. 
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Supplementary Figure 11. Interferon-a leads to alternative exon usage with functional impact. 

Graphical representation of OASL (A) and NT5C3A (B) gene structure with all its exons and the most 
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frequent alternative exon skipping/retention events (red). In the middle it is shown the protein features 

associated to their respective exons and at the bottom the transcripts regulated by IFNa that are 

affected by the usage of alternative exons.  
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Supplementary Figure 12. Inhibition of ELAVL1 and HNRNPA1 reproduces IFNa-induced changes in 

alternative splicing. A and E. ELAVL1 (A) and HNRNPA1 (E) were silenced in EndoC-bH1 cells using 

specific siRNAs and their mRNA expression were evaluated by real-time RT-PCR. The values were 

normalized by the housekeeping gene b-actin and then by the highest value of each experiment 

considered as 1 (for A and E (n = 5), mean ± SEM, two-sided paired t test). B and F. FHL1 and CAPRIN2 

percent splice-in (PSI) values in RNA-seq of EndoC-bH1 cells exposed to IFNa for 24h. PSI represents the 

ratio of normalized read counts, indicating inclusion of the transcript element over the total normalized 

reads for that event (inclusion and exclusion reads) (for B and F (n = 5), mean ± SEM, adjusted p-values 

(FDR). C and G. Confirmation of exon 6 (FHL1) (C) and exon 5 (CAPRIN2) (G) inclusion in EndoC-bH1 cells 

after silencing of ELAVL1 and HNRNPA1, respectively. cDNA was amplified by RT-PCR using primers 

located in the up-stream and down-stream exons of the splicing event. The PCR products were analysed 

by automated electrophoresis using a Bioanalyzer 2100 machine and quantified by comparison with a 

loading control. (for C (n = 4) and G (n = 5), mean ± SEM, two-sided paired t test). D. Schematic 

representation of the transcripts expressed in EndoC-bH1 cells with differential usage of exon 6 on FHL1 

and the proteins encoded by these transcripts (aa: amino acids). Source data are provided as a Source 

Data file. 
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Supplementary Figure 13. Bromodomain inhibitors decrease the type I interferon-induced signature 

in pancreatic human islets. A. Classes of drugs that have an opposite signature to the one shared among 

beta cells of individuals with T1D and human pancreatic islets exposed to IFNa for 18h (see 

Supplementary Fig. 2D). B. Knockdown of the gene BRD2 (bromodomain containing 2) generates an 

inversely related signature in comparison to IFNa in the Connectivity MAP database10. C, D. Dispersed 

human islets were pretreated for 2h with the bromodomain inhibitors I-BET-151 (1 µM) (C) or JQ1+ (0.4 

µM) (D) and then exposed to IFNa for 24h. After this period the cells were collected and the mRNA 

expression of HLA class I (ABC), the chemokine CXCL10 and the ER stress marker CHOP were evaluated 

by real-time RT-PCR. The vehicle Ethanol and an inactive enantiomer (JQ1-) were used as respective 

controls for I-BET-151 and JQ1+. (for C and D (n = 4) mean ± SEM, ANOVA with Bonferroni correction for 

multiple comparison). Source data are provided as a Source Data file. 
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Supplementary Tables 
 

Supplementary Table 1. List of FMR1 targets for which mRNA binding and protein 
regulation have been reported in more than one study11. 
 

 
Gene name Gene symbol 
Apoptosis associated tyrosine kinase AATK 
Aldolase, fructose-bisphosphate A ALDOA 
Adaptor related protein complex 2 subunit beta 1 AP2B1 
APC, WNT signaling pathway regulator APC 
Amyloid beta precursor protein APP 
Activity regulated cytoskeleton associated protein ARC 
Rho guanine nucleotide exchange factor 12 ARHGEF12 
Calcium/calmodulin dependent protein kinase II alpha CAMK2A 
Catenin beta 1 CTNNB1 
Dystroglycan 1 DAG1 
DSCS large MAGUK scaffold protein 4 DLG4 
DLG associated protein 4 DLGAP4 
Eukaryotic translation elongation factor 2 EEF2 
Fragile X mental retardation 1 FMR1 
FUS RNA binding protein FUS 
Gamma-aminobutyric acid type A receptor beta1 subunit GABRB1 
Gamma-aminobutyric acid type A receptor delta subunit GABRD 
Heterogeneous nuclear ribonucleoprotein A2/B1 HNRNPA2B1 
Potassium voltage-gated channel subfamily C member 1 KCNC1 
Potassium voltage-gated channel subfamily D member 2 KCND2 
Microtubule associated protein 1B MAP1B 
Microtubule associated protein 2 MAP2 
Myelin basic protein MBP 
Matrix metallopeptidase 9 MMP9 
Neuroligin 2 NLGN2 
Nuclear receptor subfamily 3 group C member 1 NR3C1 
Oligophrenin 1 OPHN1 
Protocadherin 10 PCDH10 
Piccolo presynaptic cytomatrix protein PCLO 
Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta PIK3CB 
Plakophilin 4 PKP4 
Proteolipid protein 1 PLP1 
Protein phosphatase 2 catalytic subunit alpha PPP2CA 
Protein tyrosine phosphatase, non-receptor type 5 PTPN5 
Rac family small GTPase 1 RAC1 
Regulator of G protein signaling 5 RGS5 
Ras homolog family member A RHOA 
Superoxide dismutase 1 SOD1 
Spen family transcriptional repressor SPEN 
Voltage dependent anion channel 1 VDAC1 
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Supplementary Table 2. Characteristics of the human islets and tissue donors. 
 

   

Supplementary Table 9. Characteristics of the human islets and tissue donors.

Age (y) Gender BMI (kg/m2) Cause of death Beta cell 
purity (%)

ICU stay 
(days)

Mean glycemia 
(mg/dl) Dithizone (%) Cold ischemia 

time (hours)
Donor 1 63 F 27.3 Stroke 58 4 110 80 15

Donor 2 74 M 26
Cerebral 

hemorrhage
46 1 171 90 13

Donor 3 71 F 31.2
Cerebral 

hemorrhage
46 4 158 80 18

Donor 4 73 M 24.1
Cerebral 

hemorrhage
NA 12 80 60 15

Donor 5 72 F 22.9 CVD 45 2 156 85 18

Donor 6 56 F 26.6
Cerebral 

hemorrhage
71 24 210 80 14

Donor 7 66 F 26.4 Trauma 45 11 149 90 14

Donor 8 64 M 31.02
Cardiovascular 

disease
NA 1 121 50 18

Donor 9 46 M 29.39
Cardiovascular 

disease
NA 2 169 70 19

Donor 10 79 F 20 Trauma 50 1 59 80 40

Donor 11 63 F 26
Cerebral 

hemorrhage
45 11 99 50 36

Donor 12 58 F 25.8
Postanoxic 

encephalopathy
46 1 196 70 17

Donor 13 71 M 27.7
Cerebral 

hemorrhage
26 3 101 80 14

Donor 14 83 F 28.3
Cardiovascular 

disease
49 2 134 80 15

Donor 15* 67 M 25.7 Trauma 48 2 124 50 16

Donor 16* 87 F 23.8
Cerebral 

hemorrhage 60 4 148 90 14

Donor 17* 67 F 24.6
Cerebral 

hemorrhage 44 1 147 50 13

Donor 18* 83 F 37.1 CVD 51 7 117 60 12
Donor 19* 84 F 24.5 CVD 58 5 124 80 13
Donor 20* 40 F 22.5 Stroke 59 1 118 70 14

Identifier Classification Age(y)/Gender Duration of 
Disease

21/89 No diabetes 4 / F

184/90 No diabetes 5 / M

333/66 No diabetes 16 / M

146/66 No diabetes 18 / F

191/67 No diabetes 25 / M

9310/08 No diabetes 58 / F

SC115 Type 1 diabetes 16 months / F 3 days

E308 Type 1 diabetes 3 / F 4 weeks

SC41 Type 1 diabetes 4 / F 3 weeks

E261 Type 1 diabetes 18 / F 3 weeks

E560 Type 1 diabetes 41 / F 18 months

DiViD 1 Type 1 diabetes 25 / F 4 weeks

DiViD 3 Type 1 diabetes 34 / F 9 weeks

CVD: Cardiovascular disease

Islets donors

 * Samples used for RNA-sequencing

Tissue donors

NA: non-available

ICU: Intensice care unit
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Supplementary Table 3. List of siRNAs and primers used in the present study. 
 

 
 
 
  

Supplementary Table 10. List of siRNAs and primers used in the present study.

Distributor Sequence
siCT Qiagen, Venlo, Netherlands Allstars Negative Control siRNA, sequence not provided

Human siIRF1 Qiagen, Venlo, Netherlands 5’- CAAGCATGGCTGGGACATCAA -3’
Human siSTAT1 Invitrogen, Pasley, UK 5’-GGAUUGAAAGCAUCCUAGAACUCAU-3’
Human siSTAT2 Invitrogen, Pasley, UK 5’-CAGCAGCAUGUCUUCUGCUUCCGAU-3’
Human siELAVL1 Ambion, Austin, USA 5'-UGUCAAACCGGAUAAACGC-3'

Human siHNRNPA1 Ambion, Austin, USA 5'-AUCACUUUUAUAACCAUUC-3'

Forward Reverse
Sequence (5'-3') Sequence (5'-3')

Human ATF3 GCTGTCACCACGTGCAGTAT TTTGTGTTAACGCTGGGAGA
Human β-actin CTGTACGCCAACACAGTGCT GCTCAGGAGGAGCAATGATC
Human B2M TGCTGTCTCCATGTTTGATGTA GACCAAGATGTTGATGTTGGATAAG
Human CHOP
Human CXCL1 AGAACATCCAAAGTGTGAAC TTTCTTAACTATGGGGGATG
Human CXCL10 GTGGCATTCAAGGAGTACCTC GCCTTCGATTCTGGATTCAG
Human HLA-E TGGTTGCTGCTGTGATATGGA GCTCCACTCAGCCTTAGAGT
Human HLA-I (ABC) GAGAACGGGAAGGAGACGC CATCTCAGGGTGAGGGGCT
Human HSPA5
Human IRF1 CATTCACACAGGCCGATACA TGGTCTTTCACCTCCTCGATAT
Human MX1 AGACAGGACCATCGGAATCT GTAACCCTTCTTCAGGTGGAAC 
Human NT5C3A -004 TGTAGCTCGTCCGGTTACCT ACCAGCTTACAGTTGTCAATGAT
Human OASL  (exon 4) CCCCTGAGGTCTATGTGAGC ATCTGTACCCTTCTGCCACG
Human PDL1 CCAGTCACCTCTGAACATGAA ACTTGATGGTCACTGCTTGT
Human RMI2 -004 CGCCAGACATCTTATGCCCT TCACAGCAAGGCAGTGTGAA
Human SOCS1 GACGCCTGCGGATTCTAC GAGGCCATCTTCACGCTAA
Human SOCS3 CCTCGCCACCTACTGAAGGC CCCGGAGTAGATGTAATA
Human STAT1 GACCCAATCCAGATGTCTATGA CCCGACTGAGCCTGATTA
Human STAT2 GTTGGCAGTTCTCCTCCTATG GAAGTCAGCCCAGGACAATAA
Human ELAVL1 TTTGATCGTCAACTACCTCCCTC CTGTGTCCTGCTACTTTATCCCG
Human HNRNPA1 ATTTGGACTTTCCCTACCCACTC CAGCTAGTTTCTATTCCCTGGCA
Human FHL1 TTTGCCAAGCATTGCGTGAA GGCACAGTCGGGACAATACA
Human CAPRIN2 TCAAAACTGACCTGCCCTGA TGGCATTTTTGGGAACTGGG
Human MDA5 GAGGAATCAGCACGAGGAATAA TCAGATGGTGGGCTTTGAC

siRNAs

Primers

Qiagen QuantiTect primer, cat# QT00082278 

Qiagen QuantiTect primer, cat# QT00096404 
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Supplementary Table 4. List of antibodies and conditions used for the immunofluorescence. 

 

 
  

Supplementary Table 11. List of antibodies and conditions used for the immunofluorescence.

Primary Antibody Manufacturer and clone Antigen Retrieval Antibody 
Dilution

Incubation time with 
primary antibody Secondary Detection System

Abcam

MEM-E/02
Mouse Monoclonal

Abcam 10mM Citrate pH6

EP3070
Rabbit

Monoclonal
Cat# 92517

Abcam

Rat
M09204

Monoclonal
Cat# 30788

Dako

Guinea-Pig Polyclonal

Goat anti-rabbit IgG (H+L) Alexa Fluor ™-
conjugated secondary antibodies (1/400 for 1h)

Goat anti-rat IgG (H+L) Alexa Fluor ™-
conjugated secondary antibodies (1/400 for 1h)

Cat#2216

Cat#A0546

1h at RT

Step 3: Insulin 10mM Citrate pH 6 1:700 1h at RT
Goat anti-guinea-pig IgG (H+L) Alexa Flour™-

conjugated secondary antibodies (1/400 for 1h)

Step 1: HLA-E 10mM Citrate pH6 1:150 Overnight at 4°C

Goat anti-mouse IgG (H+L) HRP then tyramide 
Alexa 488 (as per manufacturers protocol; 

Thermofisher Tyramide SuperBoost kit Cat# 
B40922)

Step 2: Glucagon or 
Somatostatin

1:4000 1h at RT

10mM Citrate pH6 1:200
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 Supplementary Table 5. List of antibodies used for Western blot and flow cytometry. 
 

 
 
  

Supplementary Table 12. List of antibodies used for Western blot, immunocytochemistry and flow cytometry.

Antibody Supplier Identifier Dilutiuon

HLA-E clone 3D12 (Flow cytometry (FC)) Biolegend Cat#342602; RRID: AB_1659247 1:250 (FC)

HLA-E clone MEM-E/02 (Western blot (WB) and IF) Abcam Cat#ab2216; RRID: AB_302895 1:500 (WB)        
1:150 (IF)

IRF1 Cell signaling Cat#8478; RRID: AB_10949108 1:1000 (WB)

a-tubulin Sigma Cat#T9026; RRID:AB_477593 1:5000 (WB)

Alexa Fluor 488 goat anti-Guinea-Pig IgG Life technologies, USA Cat#A11073; RRID: AB_2534117 1:500 (ICC)

Alexa Fluor 568 rabbit anti-mouse IgG Life technologies, USA Cat#A11061; RRID: AB_2534108 1:500 (ICC)

Polyclonal Goat Anti-Mouse Immunoglobulins/RPE Goat Dako Cat#R0480; RRID: AB_579538 1:500 (FC)

Mouse anti-human NTPDase3 www.ectonucleotidases-ab.com Cat#hN3-B3S 5 μg/mL (FC)

ATF3 Santa Cruz Cat#SC-188 1:1000 (WB)

Insulin DAKO Cat#A0546  1:1000 (ICC)

Cell signalingBIP Cat##3177 1:1000 (WB)

MHC class I antibody (W6/32) Enzo Cat##ALX-805-711-C100
1:500 (FC)          
1:1000 (ICC)

1:1000 (WB)

1:1000 (WB)

1:1000 (WB)

1:1000 (WB)

1:1000 (WB)

1:1000 (WB)

Cat#9167; RRID: AB_561284

Cat#88410; RRID:AB_2800123

Cat#14495; RRID: AB_2716280

Cat#72604; RRID:AB_2799824

total STAT1 Cell signaling

total STAT2 Cell signaling

phospho-STAT1 Cell signaling

phospho-STAT2 Cell signaling

Cat#715-036-152; RRID:AB_2340590

Peroxidase- conjugated donkey anti-mouse IgG Jackson ImmunoResearch Cat#711-036-150; RRID:AB_2340773

Peroxidase- conjugated donkey anti-rabbit IgG Jackson ImmunoResearch
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Supplementary Methods  
 
Culture of human EndoC-βH1 cells and human islets, and cell treatments 

EndoC-βH1 cells were cultured in DMEM containing 5.6 mmol/l glucose (Gibco, Thermo-Fisher Scientific, 

Paisley, UK), 2% BSA fraction V, fatty acid free (Roche, Manheim, Germany), 50 μmol/l 2-

mercaptoethanol (Sigma-Aldrich, Poole, UK), 10 mmol/l nicotinamide (Calbiochem, Darmstadt, 

Germany), 5.5 μg/ml transferrin (Sigma-Aldrich), 6.7 ng/ml selenite (Sigma-Aldrich), 100 units/ml 

penicillin and 100 μg/ml streptomycin (Lonza, Leusden, Netherlands) in Matrigel-fibronectin-coated 

plates12.  

After isolation, the human islets were cultured in M199 culture medium (5.5 mmol/l of glucose) before 

being sent to Brussels, Belgium, where they were dispersed and, in some experiments FACS-sorted for 

mRNA determination. Dispersed cells were cultured in Ham’s F-10 medium containing 6.1 mM glucose 

(Gibco, Thermo-Fisher Scientific), 10% fetal bovine serum (FBS) (Gibco, Thermo-Fisher Scientific), 2 mM 

GlutaMAX (Sigma-Aldrich), 50 mM 3-isobutyl-1-methylxanthine (Sigma-Aldric), 1% BSA fraction V, fatty 

acid free (Roche), 50 U/ml penicillin and 50 mg/ml streptomycin (Lonza)12. All the results from 

experiments shown with EndoC-βH1 cells or human islet cells refer to independent biological samples. 

EndoC-bH1 cells or pancreatic islets were treated with human IFNa 2000 U/ml (equivalent to 11.1 pg/ml) 

(PeproTech Inc., Rocky Hill, NJ) alone, or in combination with human IL1b, 50 U/ml (equivalent to 240 

pg/ml) (R&D Systems, Abingdon, UK), for the indicated time points, based on previous dose-response 

experiments7. Of note, peripheral blood levels of IFNa in individuals affected by T1D are in the range of 

0 - 30 pg/ml and infection of peripheral blood mononuclear cells (PBMCs) from T1D patients with 

Coxsackievirus B4, a strain previously identified in the pancreas of T1D patients13, produces IFNa 

concentration in the range of 0-65 pg/ml14. Patients with severe and complicated hepatitis C have serum 

IL1b concentrations in the range of 0.7 – 187 pg/ml15. The different time points were selected to 

represent early, intermediary and late responses to IFNa. In some conditions the cells were pre-treated 

for 2h with chemical inhibitors of JAK signaling (Baricitinib), bromodomain and extra-terminal proteins 

(BET) (JQ1+ and I-BET-151) (Selleckchem, Munich, Germany) or their respective vehicles. These 

compounds were maintained in the medium during the subsequent exposure to cytokines. 

Tissue 

Formalin-fixed paraffin embedded pancreatic sections from the Exeter Archival Diabetes Biobank (EADB; 

http://foulis.vub.ac.be/) or from the DiViD biopsy study of living donors with recent-onset T1D16 were 

studied . These comprised 13 samples in total; 6 from non-diabetic subjects (age range: 4 - 58 years) and 

7 from individuals with T1D (age range: 1.3 - 42 years; duration of disease range 3 days - 18 months; 

Supplementary Table 2). All samples were studied with full ethical approval and using adequate 

reporting standards for the study of human tissues (15/W/0258). 
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ATAC sequencing processing and analysis 

Sequenced reads were mapped to the human reference genome version hg19 using bowtie2 (version 

2.3.4.1)17 and unaligned reads were filtered out. Afterwards, duplicate reads were removed using Picard 

MarkDuplicates (version 2.5.0) (Picard Tools, retrieved November 29, 2018, from 

https://broadinstitute.github.io/picard/index.html) and reads aligned to the mitochondrial DNA or to 

ENCODE blacklisted regions18 were filtered out using samtools (version 1.8)19. Finally, ATAC-seq reads 

were shifted 4bp in the forward strand and -5bp on the reverse strand. 

Bam files from different replicates were merged into a single one using samtools (version 1.8)19 and 

peaks were called from that merged file using MACS2 callpeak (version 2.1)20 using the parameters “-q 

0.05 --nomodel --shift -100 --extsize 200”.  

Differential analysis of ATAC-seq chromatin accessibility was performed using the R package DESeq2 21. 

A consensus peak set was generated for each timepoint by merging the called peaks. Then, reads were 

counted at each peak and the resulting matrix was used as input for DESeq2. Briefly, DESeq2 normalizes 

samples according to per-sample sequencing depth and accounting for intra-sample variability. Then, it 

fits data to a negative binomial generalized linear model (GLM) and calculates the Wald statistic. Finally, 

raw p-values are false discovery rate (FDR)-corrected for multiple testing using the Benjamini-Hochberg 

method. Peaks with an absolute log2 fold change higher than 1 (|log2FC|>1) and an FDR < 0.05 were 

considered differentially accessible after the IFNα treatment. 

RNA sequencing processing and analysis 

Sequenced reads were mapped to the human genome (version GRCh37/hg19) using the software Tophat 

2 (v2.0.13)22 with default parameters. Mapped reads were then annotated based on the Gencode 

version 1823 using Flux Capacitor24 (http://confluence.sammeth.net) with default parameters. The 

relative expression of genes and transcripts is represented in RPKM units (‘‘reads per kilobase per million 

mapped reads’’)25. 

The genes and transcripts differentially expressed after IFNa exposure were identified by using the 

R/Bioconductor package EdgeR26. For the present analysis read counts were normalized using the 

Trimmed Mean of M-values (TMM) method, which calculates a set of normalization factors, one for each 

sample, and try to eliminate composition biases between libraries. The dispersion estimates was 

obtained and the negative binomial generalized linear model fitted. Different contrasts were used to 

allow the evaluation among the time points. The differential expression was determined using the quasi-

likelihood (QL) F-test. Genes or transcripts were considered differentially expressed if presented a FDR  

< 0.05 and a |log2FC| > 0.58 (FC > 1.5). 

Alternative splicing (AS) events were analyzed by rMATS27 using paired settings. This generated 

percentage splicing index (PSI) values and the false discovery rates for five different splicing events: 
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cassette exons (CEx), mutually exclusive exons (MXE), retained introns (RI), and 5’ and 3’ alternative 

splice sites (5/3ASS). To select the more biologically relevant AS events a threshold of |DPSI| > 20% and 

FDR < 0.05% was applied. The computational motif enrichment analysis of RNA-binding proteins (RBPs) 

in the vicinity of alternatively spliced cassette exons was performed using rMAPS28 by comparing the 

spatial occurrence of RBPs motifs among flanking regions of exons whose inclusion/exclusion was 

modified by IFNa-exposure to the one non-modified. Functional impact of the splicing changes was 

performed using the Exon Ontology database29. 

The quantification of alternative first exon (AFE) usage from RNA-seq data was performed using the 

software SEASTAR30. In brief, all the putative non-redundant first exons (FEs) were identified by 

transcript assembly from our RNA-sequencing and then their usage was quantified by counting the reads 

aligned to the FEs and to their downstream splice junctions. Finally, the PSI values for AFEs detected in 

each sample were calculated and the rMATS statistical method27 used to determine whether there was 

significant differential usage induced by IFNa. The standard parameters were used, except: ‘-c 0.05 -t P’. 

RNA polymerase II (POLR2A) ChIP-seq of human K562 cells exposed to IFNa for 6h was obtained from 

the ENCODE project (GSM935474); signal tracks represent the control-normalized tag density (bigWig 

format) of pooled replicates. The signal is expressed as p-value to reject the null hypothesis that the 

signal at that location is present in the control.  

Sequence conservation analysis 

The sequence conservation among stable and gained open chromatin regions detected by ATAC-seq was 

assessed by determining average phastCons 46 way score in placental mammals31. The scores average 

was calculated in 50bp bins over a 2kb window center on the open chromatin site. Such regions were 

then randomized along the mappable genome using regioneR32 and used as control. 

Assignment of open chromatin regions to target genes 

To annotate open chromatin as distal or proximal, we assigned each ATAC-seq region to the nearest 

major TSS of a coding gene (the most upstream annotated TSS) using information from Gencode version 

1823. Regions closer than 2kb to the nearest TSS were annotated as promoters, all the other regions were 

considered as distal regulatory elements. 

We evaluated the correlation between different classes of open chromatin and changes in mRNA 

expression and protein abundance (Figs. 1C-F, Supplementary Fig. 3E), and assigned ATAC-seq regions 

to a gene when closer than 20kb of its TSS.  

Annotation of CAGE-defined TSSs 

The human TSSs peaks detected by genome-wide 5’-RNA sequencing of capped RNAs (Cap Analysis of 

Gene Expression, CAGE) were obtained from the FANTOM5 database33 

(http://fantom.gsc.riken.jp/5/datafiles/phase2.5/extra/CAGE_peaks/). Canonical TSSs were defined as 
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the most upstream annotated TSS based on the Gencode version 18. All the other TSSs non-overlapping 

the principal TSS and Gencode-annotated were defined as alternative TSSs. Only TSSs having peaks with 

> 10 Tags Per Million (TPM) were considered in the analysis.  

The promoter regions were considered as ± 2kb around the TSS peak, and defined based on the type of 

TSS (canonical or alternative). The overlap between OCRs and promoters was performed using the 

function overlapRegions from the R package regioneR32, with standard parameters. 

For visualization, CAGE tag start site (CTSS) human tracks from the FANTOM5 Phase1+233 were pooled 

and filtered with 3 or more tags per library. After that, RLE (Relative Log Expression)-factor normalization 

was applied and the results are represented using a log scale. 

Proteomics processing 

Protein extracts were dissolved in 50 mM NH4HCO3 containing 8 M urea and 10 mM dithiothreitol and 

vortexed at 800 rpm for 1h at 37ºC. Sulfydryl groups were alkylated by using 400 mM iodoacetamide (40 

mM final concentration), and incubating for 1h in the dark at room temperature. Samples were then 

diluted 8-fold with 50 mM NH4HCO3, and CaCl2 was added to a final concentration of 1 mM. The digestion 

was performed with trypsin at 1:50 enzyme:protein ratio and incubation at 37ºC for 5h. The final 

peptides were extracted using C18 cartridges (Discovery, 50 mg, Sulpelco) and concentrated in a vacuum 

centrifuge. Peptides quantification was done by BCA, normalized and labeled with tandem mass tags 

(TMT-10plex, ThermoFisher Scientific) according to the manufacturer's instructions. Labeled peptides 

were extracted using C18 cartridges and fractionated into 24 fractions using high-pH reversed phase 

chromatography. Peptide fractions were loaded into a C18 column (70 cm × 75 μm i.d. packed with 

Phenomenex Jupiter, 3 μm particle size, 300 Å pore size) connected to Waters NanoAquity UPLC system. 

A gradient of water (solvent A) and acetonitrile (solvent B), both containing 0.1% formic acid, was used 

to elute the peptides, which were directly analyzed by nanoelectrospray ionization on a Q-Exactive mass 

spectrometer (Thermo Fisher Scientific). Scans were collected with a resolution of 35,000 at 400 m/z in 

a 400-2000 m/z range. High-energy collision induced dissociation (HCD) fragmentation were set for the 

12 most intense parent ions using the following parameters: peptide charge > 2, 2.0 m/z isolation width, 

30% normalized collision energy and 17,500 resolution at 400 m/z. Each parent ion was fragmented only 

once before being dynamically excluded for 30s. 

Collected data were processed using Decon2LS_v2.0 34 and DTARefinery35, both with default 

parameters, to generate peak lists. Peptide identification was done using MS-GF+36 by searching peak 

lists against islet protein sequences deduced from transcriptomic experiments37 and supplemented with 

keratin sequences (32,780 total protein sequences). For MS-GF+ searches, a parent ion mass tolerance 

of 10 ppm, partially tryptic digestion and 2 missed cleavages were allowed. The following modifications 

were also considered during searches: cysteine carbamidomethylation and N-terminal/lysine TMT 
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addition as static modifications, and methionine oxidation as a variable modification. Results were 

filtered in two steps to a final false-discovery rate <1%: spectral-peptide matches - MS-GF probability < 

10-9, and protein level < 10-10. The intensity of TMT reporter ions was extracted using MASIC38. Finally, 

the data was log2 converted and normalized by standard median centering. Proteins were quantified 

using a Bayesian proteoform discovery methodology (BP-Quant) in combination with standard 

reference-based median quantification39. Proteins were considered significant with a cutoff of p ≤ 0.05 

based on a paired t-test. 

Dynamic Regulatory Events Miner (DREM) modeling 

The DREM divided genes in paths based on their expression profiles and identified bifurcation points, 

which are moments in time series where previously co-expressed groups of genes start to diverge. These 

points were then annotated with the TFs potentially regulating the split. The following parameters were 

used: Minimum Absolute Expression Change = 1.5 (difference from 0); Model Selection Options = 

Penalized Likelihood, Node Penalty: 40; Expression Scaling Options = Incorporate expression in regulator 

data for TF; default values were applied for other parameters. The key TFs were selected based on the 

split scores (score threshold < 0.05). 

In order to validate the binding of these key TFs in promotor regions, but also in distant REs, we have 

integrated the DREM outputs with the changes in chromatin accessibility induced by IFNa. For this 

purpose, we first associated each open chromatin peak to the nearest TSS of a gene (if closer than 1Mb) 

and assigned the DREM pathway of the gene to the associated ATAC-seq peak. Next, binding motif 

matrices from TF appearing in the DREM pathways were selected from JASPAR2016 R package40. 

Footprint was assayed for each relevant TF in ATAC-seq peaks annotated to its DREM pathway by using 

factorFootprints function from the R package ATACseqQC41 specifying a minimum score of 95% for 

finding a motif match. The genes selected for validation with specific siRNAs were identified based on 

the presence of predicted binding sites for the targeted TF using the i-cisTarget tool42. 

Functional enrichment evaluation 

The functional enrichment results were generated using the Gene Set Enrichment Analysis (GSEA) 

software v3.043 when comparing full list of genes (Supplementary Figs. 4A and B). For the functional 

analysis of WGCNA modules (Fig. 3G) and T1D risk genes (Supplementary Figs. 2A and B) the 

hypergeometric distribution was used to estimate the significance of enriched pathways and biological 

processes using g:Profiler44. The whole list of genes identified by RNA-seq with a mean RPKM > 0.5 in at 

least one condition was used as background. The standard parameters were applied in both methods, 

except for minimum and maximum size of functional category values that were adjusted to 5 and 350, 

respectively. Enrichment maps of significantly modified biological process (Gene Ontology (GO)) were 
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generated using the plugin “Enrichment Map” v3.145 and visualized within Cytoscape v3.6, using 

standard parameters. 

T1D risk genes were identified from immunobase (www.immunobase.org, accessed on 11/2018), GWAS 

catalog (https://www.ebi.ac.uk/gwas/, accessed on 11/2018) and46. The risk genes were selected based 

on the following criteria: 1) T1D as the Disease/Trait evaluated by the study, 2) a p-value for the lead 

SNP < 0.5 x 10-8, 3) selecting the reported genes linked to the lead SNP by the original study, 4) filtering 

only the reported genes expressed in human islets (mean RPKM > 0.5 at basal condition or after exposure 

to IL1b+IFNg)2,37 for functional enrichment analysis as described above. 

Real-time PCR 

The real-time PCR quantification was performed using SYBR Green. Gene expression values were 

normalized by the housekeeping gene β-actin, as its expression is not affected by the present 

experimental conditions7, and then by the highest value of each experiment considered as 1. The 

sequences of primers used are shown in Supplementary Table 3.  

Western blot, immunocytochemistry, ELISA and flow cytometry analysis 

For Western blot analysis, the cells were lysed using Laemmli buffer. Total protein was resolved by 10% 

SDS-PAGE gel and then transferred to nitrocellulose membranes. Immunoblot analysis was performed 

with specific antibodies as indicated in Supplementary Table 5. Peroxidase-conjugated antibodies were 

used as secondary antibodies (Supplementary Table 5). The detection of immunoreactive bands was 

performed using chemiluminescent substrate (SuperSignal West Femto, Thermo Scientific, Chicago, 

USA) in a Bio-Rad chemi DocTM XRS+ system (Bio-Rad laboratories). The ImageLab software (Bio-Rad 

laboratories) was used for densitometric quantification of the bands. The values obtained were 

normalized by the housekeeping protein α-tubulin and then by the highest value of each experiment 

considered as 1.  

Cell supernatants of EndoC-bH1 cells exposed or not to IFNa for 24h were retrieved and human HLA-E 

protein expression was measured by enzyme-linked immunosorbent assay (Biorbyt, Cambridge, UK). 

For the flow cytometry analysis of HLA-E and MHC class I the EndoC-βH1 cells were seeded in 24-well 

plates (300,000 cells per condition) 72h before being exposed or not to IFNα for 24h. Next, the cells were 

incubated with primary antibody (mouse monoclonal anti-HLA-E antibody clone 3D12 (1:250) 

(Biolegend, San Diego, USA) or rabbit anti-MHC class I (W6/32) (Enzo Life Sciences, NY, USA) (1:1000)) 

for 2h at 4oC, without permeabilization, and subsequently with secondary antibody conjugated with 

fluorescent dyes for 1h at 4oC (1:500) (Alexa Fluor™ anti-mouse or anti-rabbit) before performing flow 

cytometry analysis (BD LSRFortessa™ X-20, San Jose, CA, USA). Data analysis and graphical 

representation were performed using FlowJo software version v10 (Tree Star, Ashland, USA). The gating 

strategy is represented in Supplementary Fig. 5L. In summary, the cells were identified by FSC/SSC 
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morphological gates (to exclude debris and dead cells). Next, the FSC-W and FSC-H relation was used to 

eliminate doublets of cells. Finally, histogram distributions of the fluorophore were generated and the 

mean fluorescence intensity determined. The positive and negative thresholds were set using an isotype 

Ig control with the same fluorophore. For immunocytochemistry (ICC), 30,000 cells per condition were 

plated on polylysine-coated coverslips, then treated with IFNα for 24h and fixed with 4% 

paraformaldehyde. Cells were permeabilized with 0.1 % Triton X100 for 5 min and after incubated with 

rabbit anti-MHC class I (W6/32) (1:1000) and mouse monoclonal anti-insulin (1:1000). Alexa Fluor-

conjugated secondary antibodies were used (Supplementary Table 5). After nuclear staining with 

Hoechst 33342 (HO), coverslips were mounted with fluorescent mounting medium (Dako, Carpintera, 

CA, USA) and immunofluorescence was visualized on a Zeiss microscope (Zeiss-Vision, Munich, 

Germany). Images were obtained at ×20 or ×40 magnification and analysed using AxioVision software 

(version 4.7.2; Zeiss-Vision, Munich, Germany).  

Small-RNA interference 

For transfection, the siRNA and the Lipofectamine RNAiMAX were diluted separately in OptiMEM 

medium and incubated at room temperature for 5 min. The Lipid-siRNA complexes were then formed at 

room temperature for 20 min in a proportion of 1.3 μl Lipofectamine RNAiMAX to 150 nmol/l of siRNA. 

The complexes were diluted five times in antibiotic-free medium and added to the cells at a final 

concentration of 30 nmol/l siRNA for overnight transfection. 

The non-specific control siRNA (siCT) (Allstar Negative Control siRNA (Qiagen, Netherlands) does not 

affect gene expression or insulin secretion by human beta cells47. The concentration of siRNAs presently 

used (30 nM) was selected based on dose-response studies47. 

Cell viability assessment 

The percentage of viable, apoptotic and necrotic cells was determined using nuclear dyes (propidium 

iodide (10 µg/ml, Sigma) and Hoechst 33342 (10 µg/ml, Sigma)). This method has been validated for use 

in pancreatic beta cells by systematic comparison with electron microscopy, caspase 3 activation and 

DNA laddering48-50. A minimum of 500 cells was counted per condition. Viability was evaluated by two 

independent observers, one of them being unaware of sample identity. The agreement between the 

two observers was > 90%. 

 

  



 34 

 

Supplementary References: 

1 Ernst, J., Vainas, O., Harbison, C. T., Simon, I. & Bar-Joseph, Z. Reconstructing dynamic regulatory 
maps. Mol Syst Biol 3, 74, doi:10.1038/msb4100115 (2007). 

2 Gonzalez-Duque, S. et al. Conventional and Neo-antigenic Peptides Presented by beta Cells Are 
Targeted by Circulating Naive CD8+ T Cells in Type 1 Diabetic and Healthy Donors. Cell Metab 28, 
946-960 e946, doi:10.1016/j.cmet.2018.07.007 (2018). 

3 Russell, M. A. et al. HLA Class II Antigen Processing and Presentation Pathway Components 
Demonstrated by Transcriptome and Protein Analyses of Islet beta-Cells From Donors With Type 
1 Diabetes. Diabetes 68, 988-1001, doi:10.2337/db18-0686 (2019). 

4 Xin, Y. et al. RNA Sequencing of Single Human Islet Cells Reveals Type 2 Diabetes Genes. Cell 
Metab 24, 608-615, doi:10.1016/j.cmet.2016.08.018 (2016). 

5 Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-
regulatory elements required for macrophage and B cell identities. Mol Cell 38, 576-589, 
doi:10.1016/j.molcel.2010.05.004 (2010). 

6 Colli, M. L. et al. PDL1 is expressed in the islets of people with type 1 diabetes and is up-regulated 
by interferons-alpha and-gamma via IRF1 induction. EBioMedicine 36, 367-375, 
doi:10.1016/j.ebiom.2018.09.040 (2018). 

7 Marroqui, L. et al. Interferon-alpha mediates human beta cell HLA class I overexpression, 
endoplasmic reticulum stress and apoptosis, three hallmarks of early human type 1 diabetes. 
Diabetologia 60, 656-667, doi:10.1007/s00125-016-4201-3 (2017). 

8 Langfelder, P., Luo, R., Oldham, M. C. & Horvath, S. Is my network module preserved and 
reproducible? PLoS Comput Biol 7, e1001057, doi:10.1371/journal.pcbi.1001057 (2011). 

9 Li, T. et al. A scored human protein-protein interaction network to catalyze genomic 
interpretation. Nat Methods 14, 61-64, doi:10.1038/nmeth.4083 (2017). 

10 Subramanian, A. et al. A Next Generation Connectivity Map: L1000 Platform and the First 
1,000,000 Profiles. Cell 171, 1437-1452 e1417, doi:10.1016/j.cell.2017.10.049 (2017). 

11 Pasciuto, E. & Bagni, C. SnapShot: FMRP mRNA targets and diseases. Cell 158, 1446-1446 e1441, 
doi:10.1016/j.cell.2014.08.035 (2014). 

12 Brozzi, F. et al. Cytokines induce endoplasmic reticulum stress in human, rat and mouse beta cells 
via different mechanisms. Diabetologia 58, 2307-2316, doi:10.1007/s00125-015-3669-6 (2015). 

13 Dotta, F. et al. Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-
onset type 1 diabetic patients. Proc Natl Acad Sci U S A 104, 5115-5120, 
doi:10.1073/pnas.0700442104 (2007). 

14 Xia, C. Q. et al. Increased IFN-alpha-producing plasmacytoid dendritic cells (pDCs) in human Th1-
mediated type 1 diabetes: pDCs augment Th1 responses through IFN-alpha production. J 
Immunol 193, 1024-1034, doi:10.4049/jimmunol.1303230 (2014). 

15 Antonelli, A. et al. Serum levels of proinflammatory cytokines interleukin-1beta, interleukin-6, 
and tumor necrosis factor alpha in mixed cryoglobulinemia. Arthritis Rheum 60, 3841-3847, 
doi:10.1002/art.25003 (2009). 

16 Krogvold, L. et al. Pancreatic biopsy by minimal tail resection in live adult patients at the onset of 
type 1 diabetes: experiences from the DiViD study. Diabetologia 57, 841-843, 
doi:10.1007/s00125-013-3155-y (2014). 

17 Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357-
359, doi:10.1038/nmeth.1923 (2012). 

18 Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 
489, 57-74, doi:10.1038/nature11247 (2012). 

19 Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079, 
doi:10.1093/bioinformatics/btp352 (2009). 



 35 

20 Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol 9, R137, doi:10.1186/gb-
2008-9-9-r137 (2008). 

21 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-
seq data with DESeq2. Genome Biol 15, 550, doi:10.1186/s13059-014-0550-8 (2014). 

22 Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, 
deletions and gene fusions. Genome Biol 14, R36, doi:10.1186/gb-2013-14-4-r36 (2013). 

23 Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic 
Acids Res 47, D766-D773, doi:10.1093/nar/gky955 (2019). 

24 Montgomery, S. B. et al. Transcriptome genetics using second generation sequencing in a 
Caucasian population. Nature 464, 773-777, doi:10.1038/nature08903 (2010). 

25 Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying 
mammalian transcriptomes by RNA-Seq. Nat Methods 5, 621-628, doi:10.1038/nmeth.1226 
(2008). 

26 Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential 
expression analysis of digital gene expression data. Bioinformatics 26, 139-140, 
doi:10.1093/bioinformatics/btp616 (2010). 

27 Shen, S. et al. rMATS: robust and flexible detection of differential alternative splicing from 
replicate RNA-Seq data. Proc Natl Acad Sci U S A 111, E5593-5601, doi:10.1073/pnas.1419161111 
(2014). 

28 Park, J. W., Jung, S., Rouchka, E. C., Tseng, Y. T. & Xing, Y. rMAPS: RNA map analysis and plotting 
server for alternative exon regulation. Nucleic Acids Res 44, W333-338, doi:10.1093/nar/gkw410 
(2016). 

29 Tranchevent, L. C. et al. Identification of protein features encoded by alternative exons using 
Exon Ontology. Genome Res 27, 1087-1097, doi:10.1101/gr.212696.116 (2017). 

30 Qin, Z., Stoilov, P., Zhang, X. & Xing, Y. SEASTAR: systematic evaluation of alternative transcription 
start sites in RNA. Nucleic Acids Res 46, e45, doi:10.1093/nar/gky053 (2018). 

31 Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast 
genomes. Genome Res 15, 1034-1050, doi:10.1101/gr.3715005 (2005). 

32 Gel, B. et al. regioneR: an R/Bioconductor package for the association analysis of genomic regions 
based on permutation tests. Bioinformatics 32, 289-291, doi:10.1093/bioinformatics/btv562 
(2016). 

33 Consortium, F. et al. A promoter-level mammalian expression atlas. Nature 507, 462-470, 
doi:10.1038/nature13182 (2014). 

34 Mayampurath, A. M. et al. DeconMSn: a software tool for accurate parent ion monoisotopic mass 
determination for tandem mass spectra. Bioinformatics 24, 1021-1023, 
doi:10.1093/bioinformatics/btn063 (2008). 

35 Petyuk, V. A. et al. DtaRefinery, a software tool for elimination of systematic errors from parent 
ion mass measurements in tandem mass spectra data sets. Mol Cell Proteomics 9, 486-496, 
doi:10.1074/mcp.M900217-MCP200 (2010). 

36 Kim, S. & Pevzner, P. A. MS-GF+ makes progress towards a universal database search tool for 
proteomics. Nat Commun 5, 5277, doi:10.1038/ncomms6277 (2014). 

37 Eizirik, D. L. et al. The human pancreatic islet transcriptome: expression of candidate genes for 
type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet 8, e1002552, 
doi:10.1371/journal.pgen.1002552 (2012). 

38 Monroe, M. E., Shaw, J. L., Daly, D. S., Adkins, J. N. & Smith, R. D. MASIC: a software program for 
fast quantitation and flexible visualization of chromatographic profiles from detected LC-
MS(/MS) features. Comput Biol Chem 32, 215-217, doi:10.1016/j.compbiolchem.2008.02.006 
(2008). 

39 Webb-Robertson, B. J. et al. Bayesian proteoform modeling improves protein quantification of 
global proteomic measurements. Mol Cell Proteomics 13, 3639-3646, 
doi:10.1074/mcp.M113.030932 (2014). 



 36 

40 Tan, G. JASPAR2016: Data package for JASPAR 2016. R package version 1.12.0, 
http://jaspar.genereg.net/.  (2019). 

41 Ou, J. et al. ATACseqQC: a Bioconductor package for post-alignment quality assessment of ATAC-
seq data. BMC Genomics 19, 169, doi:10.1186/s12864-018-4559-3 (2018). 

42 Imrichova, H., Hulselmans, G., Atak, Z. K., Potier, D. & Aerts, S. i-cisTarget 2015 update: 
generalized cis-regulatory enrichment analysis in human, mouse and fly. Nucleic Acids Res 43, 
W57-64, doi:10.1093/nar/gkv395 (2015). 

43 Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for 
interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 15545-15550, 
doi:10.1073/pnas.0506580102 (2005). 

44 Reimand, J. et al. g:Profiler-a web server for functional interpretation of gene lists (2016 update). 
Nucleic Acids Res 44, W83-89, doi:10.1093/nar/gkw199 (2016). 

45 Merico, D., Isserlin, R., Stueker, O., Emili, A. & Bader, G. D. Enrichment map: a network-based 
method for gene-set enrichment visualization and interpretation. PLoS One 5, e13984, 
doi:10.1371/journal.pone.0013984 (2010). 

46 Cooper, N. J. et al. Type 1 diabetes genome-wide association analysis with imputation identifies 
five new risk regions. bioRxiv, doi:10.1101/120022 (2017). 

47 Moore, F., Cunha, D. A., Mulder, H. & Eizirik, D. L. Use of RNA interference to investigate cytokine 
signal transduction in pancreatic beta cells. Methods Mol Biol 820, 179-194, doi:10.1007/978-1-
61779-439-1_11 (2012). 

48 Moore, F. et al. PTPN2, a candidate gene for type 1 diabetes, modulates interferon-gamma-
induced pancreatic beta-cell apoptosis. Diabetes 58, 1283-1291, doi:10.2337/db08-1510 (2009). 

49 Rasschaert, J. et al. Toll-like receptor 3 and STAT-1 contribute to double-stranded RNA+ 
interferon-gamma-induced apoptosis in primary pancreatic beta-cells. J Biol Chem 280, 33984-
33991, doi:10.1074/jbc.M502213200 (2005). 

50 Cunha, D. A. et al. Initiation and execution of lipotoxic ER stress in pancreatic beta-cells. J Cell Sci 
121, 2308-2318, doi:10.1242/jcs.026062 (2008). 

 



Articles
https://doi.org/10.1038/s41588-019-0524-6

The impact of proinflammatory cytokines on the 
β-cell regulatory landscape provides insights into 
the genetics of type 1 diabetes
Mireia Ramos-Rodríguez   1, Helena Raurell-Vila1, Maikel L. Colli2, Maria Inês Alvelos2, 
Marc Subirana-Granés1, Jonàs Juan-Mateu2, Richard Norris1, Jean-Valery Turatsinze2, 
Ernesto S. Nakayasu   3, Bobbie-Jo M. Webb-Robertson3, Jamie R. J. Inshaw4, Piero Marchetti5, 
Lorenzo Piemonti   6, Manel Esteller7,8,9,10, John A. Todd4, Thomas O. Metz3, Décio L. Eizirik2 and 
Lorenzo Pasquali   1,7,11*

1Endocrine Regulatory Genomics Laboratory,Germans Trias i Pujol University Hospital and Research Institute, Badalona, Spain. 2Center for Diabetes 
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Supplementary Notes: 

1. Ethics 

Human islets were isolated from brain-dead organ donors in accordance with national laws and institutional 

ethical requirements at the Istituto Scientifico San Raffaele, Milan, Italy and University of Pisa, Italy. All 

experiments were performed according to protocols approved by the institutional research committee of the 

Institute for Health Science Research Germans Trias i Pujol, Badalona, Spain. 

2. Human Islets 

A total of 14 human pancreatic islets were isolated from multiorgan donors without a history of glucose 

intolerance after informed consent from family members. Pancreatic islets were isolated according to 

established isolation procedures4,5. After isolation, islets were incubated at 37°C in CMRL 1066 medium 

with 10% fetal calf serum for 24 h prior to shipment at room temperature in the same culture medium. Upon 

arrival, samples were recultured at 37°C in Ham's F-10 medium containing 10% fetal bovine serum (FBS), 

2 mM GlutaMAX, 50 U/ml penicillin and 50 µg/ml streptomycin (GIBCO), 6.1 mM glucose, 50 µM 3-isobutyl-

1-methylxanthine, 1% BSA (Sigma) for 1-3 days. The islets were then exposed or not to cytokines in the 

same medium without FBS for 48 hours. The following cytokine concentrations were used, as from 

previous dose-response experiments6–8: recombinant human IL-1β (specific activity 1.8×107 U/mg; 201-LB-

005, R&D Systems, Abingdon, UK) at 50 U/ml; recombinant human IFN-γ (specific activity 2×107 U/mg; AF-

300-02, Peprotech, London, UK) at 1000 U/ml as described6. Islets were next rinsed with phosphate 

buffered saline at room temperature, formaldehyde was added to a final concentration of 1%, and samples 

were incubated at room temperature with constant shaking for 10 minutes. Glycine was added to a final 

concentration of 125 mM for 5 minutes, and cells were rinsed two times with phosphate-buffered saline 

containing 1x protease inhibitor cocktail (Millipore) at 4°C. The cells were spun down at 1000 rpm for 4 

minutes, snap frozen, stored at -80°C and then used for ChIP, and 4C experiments. Additional aliquots of 

the same sample were processed similarly but without exposing to formaldehyde or glycine and frozen for 

RNA extraction or directly processed for ATAC-seq experiments. Islet purity was initially assessed by 

dithizone staining using an aliquot of islets immediately prior to fixation. Only islet preparations with minimal 

exocrine contamination were selected for the experiments described here (Supplementary Table 5). Cell 

viability was assessed in 4 of the 5 human islets exposed or not to IL-1β + IFN-γ and used for RNAseq, as 

previously described9. The results confirmed, as previously observed9,10, that the cytokine cocktail used in 

this study affects islet cell viability (control human islets viability 94 ± 1%; cytokine-exposed human islet 

viability 72 ± 4%. Paired T-test P=0.02). 

High correlation levels are observed within replicates of the EndoC-βH1 β cell line and within biological 

replicates of human pancreatic islets primary tissues (Extended Data Fig. 1a). Importantly, we still observe 

high correlation when comparing human islets and EndoC-βH1. Lower correlation values in the latter 

comparison, compared to inter-replicates correlations are due to the heterogeneity of the human islet cell 

population composed primarily of β cells (~50-60%) but including other cell types such as α, γ, δ or ε cells. 
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3. EndoC-βH1 

The human insulin-producing EndoC-βH1 cells, kindly provided by Dr R. Scharfmann, University of Paris, 

France11, were cultured in DMEM medium containing 5.6 mmol/l glucose, 2% BSA fraction V, 50 μmol/l 2-

mercaptoethanol (Sigma-Aldrich, Poole, UK), 10 mmol/l nicotinamide (Calbiochem, Darmstadt, Germany), 

5.5 μg/ml transferrin, 6.7 ng/ml sodium selenite (Sigma-Aldrich), 100 units/ml penicillin and 100 μg/ml 

streptomycin (Lonza, Leiden, Netherlands). The same concentrations of cytokines as described for the 

human islets experiments were used in the treatment of EndoC-H1 cells10.  

4. Glucose-Stimulated Insulin Secretion 

The glucose stimulation index tested on 4 human islet preparations ranged from 3.3 to 7.9, indicating that 

the islets were functionally competent. The glucose stimulation index was also assessed for EndoC-βH1 

cells exposed or not to proinflammatory cytokines. In line with the cell viability experiments we observed 

that exposure to IL-1β + IFN-γ resulted in reduction of the glucose-induced insulin secretion (Extended 

Data Fig. 7). 

Insulin secretion studies in human islets were performed as previously described12. Briefly, islets were first 

kept at 37°C for 45 min in Krebs−Ringer bicarbonate (KRB), 0.5% (vol/vol) albumin, pH 7.4, containing 3.3 

mmol/L glucose (wash-out phase). Then, the medium was replaced with KRB containing 3.3 mmol/L 

glucose to assess basal insulin secretion during 45 min, followed by further 45 min incubation at 16.7 

mmol/L glucose to assess insulin response to acute challenge. Insulin was quantified by RIA (Pantec 

Forniture Biomediche, Turin, Italy). Results were corrected for the number of islets. EndoC-βH1 cells were 

incubated in Krebs-Ringer buffer without glucose for 1h and then in the same buffer with 0 mmol/L glucose 

or 20 mmol/L glucose for 40 min (modified from 13) following Univercell-Biosolutions’ protocol 

(http://www.univercell-biosolutions.com). Insulin release and insulin content were measured in cell-free 

supernatants and acid/ethanol-extracted cell lysates, respectively, using a human insulin ELISA kit 

(Mercodia, Uppsala, Sweden). Results were normalized by total protein content. 

5. ATAC-seq 

ATAC-seq library preparations were carried out as previously described14 with minor modifications3,15. 

Briefly, we selected 50 healthy and acinar-free islets corresponding approximately to 50,000 cells and 

isolated their nuclei by incubating the islets in 300 µl cold lysis buffer for 25 min on ice and resuspending 

them after 5 and 15 min using a syringe with a 29G needle. The pellet was next washed in 100 µl of lysis 

buffer and centrifuged for 15 min at 500 g at 4°C. The transposition reaction was carried out in a 25 µl 

reaction mix containing 2 µl of Tn5 transposase, 12.5 µl of TD buffer (Nextera DNA Library Prep Kit, 

15028212, Illumina, San Diego, USA) and 10.5 µl DEPC-treated water. The transposition reaction mix was 

incubated at 37°C for 1 h following inactivation by incubating for 30 min at 40°C after addition of 5 µl of 

clean up buffer (900 mM NaCl, 300 mM EDTA), 2 µl of 5% SDS and 2 µl of Proteinase K. Isolation of the 

tagmented DNA was performed with 2x SPRI beads cleanup (Agencourt AMPure XP, Beckman Coulter) 

and was eluted in 20 µl DEPC treated water.  
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Two sequential 9-cycle PCR were performed in order to enrich for small tagmented DNA fragments. The 

PCR mix consisted of 2 µl of PCR Primer 1 (25 µM working stock), 2 µl of Barcoded PCR Primer 2 (25 µM 

working stock; sequences provided in14), 25 µl of NeBNext High-Fidelity 2x PCR Master Mix, 1 µl of DEPC-

treated water and 20 µl of the eluted sample (DEPC water was added to compensate in case the volume of 

eluted DNA was less than 20 µl). The library was amplified in a thermocycler using the following program 

(leave preheated to 72°C): 72 °C for 5 min; 98 °C for 30 s; 9 cycles of 98 °C for 10 s, 63 °C for 30 s; and 72 

°C for 1 min; and at 4 °C hold. After the first PCR round, fragments smaller than 600bp were selected using 

SPRI cleanup beads. The DNA library was finally purified using the MinElute PCR Purification Kit (Qiagen, 

Hilden, Germany), following kit instructions and eluting 2 x 10 µl with the elution buffer. TapeStation was 

performed to check library quality and nucleosomal pattern of the fragments distribution resulted from the 

tagmentation reaction (Extended Data Fig. 8a). Semi-quantitative PCR assays at target positive and 

negative control sites were performed to estimate the efficiency of the ATAC-seq experiment before 

sequencing (data not shown). 

6. ChIP-seq 

ChIP–seq was carried out using tagmentation (ChIPmentation) as previously described16. Briefly, 4,000 

islet equivalents or ~4 million 1% formaldehyde fixed cells were lysed in sonication buffer (2% Triton X-100, 

100mM NaCl, 10 mM Tris-HCl pH 8.0, 1 mM EDTA pH 8.0, 1% SDS, 1 × protease inhibitors cocktail 

(Millipore)) and sonicated with a Diagnode Bioruptor with the following conditions: 20 cycles of 1 minute (40 

seconds on, 20 seconds off) at high power, to obtain a fragment size in the range of 100–500 bp. Lysates 

were centrifuged at 13,000 RPM for 5 min at 4°C, and the supernatant containing the sonicated chromatin 

was diluted with a ChIP dilution buffer (50mM Hepes pH 8.0, 1 mM EDTA pH 8.0, 140 mM NaCl, 0.75% 

Triton X-100, 0.1% sodium deoxycholate, 1 × protease inhibitors cocktail (Millipore)) to a final volume of 

1ml per immunoprecipitation (IP). The antibody against H3K27ac epitope (1.5 μg per IP, Abcam ab4729) 

was added along with 50 µl 10% BSA and the IP was incubated over night at 4 °C. For each IP, 20 μl 

magnetic Protein A+G (Millipore) were washed twice and resuspended in PBS. The beads were then 

added to the IP and incubated for 2h at 4°C on a rotator. Blocked antibody-conjugated beads were then 

placed on a magnet and the supernatant was removed. Beads were subsequently washed with a low salt 

wash buffer (20 mM Tris-HCl pH 8.0, 2mM EDTA pH 8.0, 150 mM NaCl, 1% Triton X-100, 0.1% SDS), high 

salt wash buffer (20 mM Tris-HCl pH 8.0, 2mM EDTA pH 8.0, 500 mM NaCl, 1% Triton X-100, 0.1% SDS) 

and LiCl wash buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA pH 8.0, 250 mM LiCl, 1% DOC and 1% NP40). 

The IP was incubated for 4 minutes at 4°C with rotation for each wash buffer. Beads were then washed 

with cold 10mM Tris-Cl pH 8.0, to remove detergent, salts and EDTA. The whole reaction, including beads, 

was then transferred to a new tube and placed on a magnet to remove supernatant to decrease 

background. Beads were then carefully resuspended in 30 μl of the tagmentation reaction mix (10 mM Tris-

HCl pH 8.0, 5 mM MgCl2) containing 1 μl Tn5 transposase from the Nextera DNA Library Prep Kit 

(15028212, Illumina, San Diego, USA) and incubated at 37°C for 10 min. The beads were then washed 

twice with RIPA (10 mM Tris-HCl, pH 8.0, 1 mM EDTA, pH 8.0, 140 mM NaCl, 1% Triton x-100, 0.1% SDS, 

0.1% DOC), once with cold Tris-EDTA. Beads were next incubated with 150 μl elution buffer (1% SDS, 

0.1M NaHCO3) for 15 min with rotation at room temperature. The chromatin immunoprecipitate was 
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separated from the beads using a magnet. The ChIP was then re-eluted by adding another 150 µl elution 

buffer to the beads. Both ChIP elutions were combined in the same tube. Each ChIP elute was then 

incubated with 0.75 µl RNaseA (20mg/ml) for 30 min at 37°C. 4.5 µl Proteinase K (Thermo Scientific), and 

12 µl 5M NaCl was then added and the ChIP was incubated at 65°C overnight to revert formaldehyde 

cross-linking. Finally, ChIP DNA was purified using a Phenol-chloroform extraction protocol. 

Two μl of each library were amplified in a 10 μl qPCR reaction containing 0.15 μM primers, 1 × SYBR 

Green and 5 μl NEBNext High-Fidelity 2X PCR Master Mix (NEB M0541S), to estimate the optimum 

number of enrichment cycles with the following program: 72°C for 5 min, 98°C for 30 s, 24 cycles of 98°C 

for 10 s, 63°C for 30 s and 72°C for 30 s, and a final elongation at 72°C for 1 min. Final enrichment of the 

libraries was performed in a 50μl reaction using 0.75 μM primers and 25 μl NEBNext High-Fidelity 2X PCR 

Master Mix. Libraries were amplified for N+1 cycles, where N is equal to the rounded-up Cq value 

determined in the qPCR reaction. Enriched libraries were purified using SPRI AMPure XP beads at a 

beads-to-sample ratio of 0.7:1, followed by a size selection using AMPure XP beads to recover libraries 

with a fragment length of 100–500 bp. Semi-quantitative PCR assays at target positive and negative control 

sites were performed to estimate the efficiency of the ChIP experiment before sequencing (data not 

shown). 

7. ATAC-seq, ChIP-seq read mapping and data processing 

ATAC-seq and ChIP-seq libraries were sequenced on Illumina HiSeq 2500 platform to generate 49-50 bp 

single or paired end reads. 42-180M ATAC-seq reads and 18-120M ChIP-seq reads were aligned to the 

hg19 reference genome using Bowtie 2 (version 2.3.4.1)17 with default parameters. After alignment, reads 

mapping to ENCODE blacklist regions18, to non-canonical chromosomes or to mitochondrial DNA were 

discarded. Duplicates were removed using samtools markdup (version 1.8)19 (see Supplementary Table 6 

for number of mapped reads per experiment). For ATAC-seq samples we performed an offset correction of 

4 bp on the + strand and 5 bp on the - strand to adjust the read start sites to the center of the transposon’s 

binding event as previously described14 using an in-house script. 

As measures of quality control, normalized strand cross-correlation coefficients (NSC) and relative strand 

cross-correlation coefficient (RSC) were calculated for each sample using phantompeakqualtools20 

(Extended Data Fig. 8b). The NSC represents the normalized ratio between the fragment-length cross-

correlation peak and the background cross-correlation and values lower than 1.05 represent low signal to 

noise ratios and few peaks, which might be due to biological reasons or due to poor quality of the 

experiment. The RSC represents the ratio between the fragment-length peak and the read-length peak and 

values lower than 0.8 are also indicative of low signal to noise ratios, probably to a failed or poor quality 

experiments, low read sequence quality or shallow sequencing depth. As additional measures of the overall 

quality of the ATAC-seq experiments, we show: 1) the enrichment of ATAC-seq reads 4kb around the TSS 

of coding genes, compared to a random control set of regions computed using regioneR21 (Extended Data 

Fig. 8c); 2) the signal to noise ratios both at distal and promoter regions (Extended Data Fig. 8d); 3) Some 

representative views of ATAC-seq profiles at islet-specific genes NKX6.1, PDX1 and NEUROD1, showing 

the replicability of the experiments (Extended Data Fig. 8e). 
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Open chromatin peaks were called with MACS2 (version 2.1)22 callpeak using the following parameters “-q 

0.05 --nomodel --shift -100 --extsize 200”. H3K27ac enriched regions were identified with the same 

software using the following parameters “--broad --broad-cutoff 0.1 --nomodel”. We compared the number 

of called peaks with other published ATAC-seq datasets in human islets and β cells23–25 and observed that 

~80% of the stronger peaks found in such datasets are also present in our merged peak set. 

For both assays, peaks were called separately for each replicate (ATAC-seq: EndoC-βH1 n=5, human 

islets n=5; ChIP-seq H3K27ac: EndoC-βH1 n=4, human islets n=4) as a measure of quality control. Merged 

BAM files for each condition and experiment were converted to bedgraph using bedtools (version 2.26)26 

genomeCoverageBed and transformed into bigWig (bedGraphToBigWig UCSC tool27) to be uploaded to a 

public server for visualization.  

8. RNA-seq 

Total RNA was isolated from EndoC-H1 cells and human islets28 using the RNeasy Mini Kit (Qiagen) 

which retrieves RNA molecules longer than 200 nucleotides, as previously described in detail13. RNA 

integrity number (RIN) values were evaluated using the Agilent bioanalyzer 2100 (Agilent Technologies, 

Wokingham, UK). All the samples had RIN values of > 8. RNA-seq libraries generation was performed as 

described by the manufacturer (Illumina, Eindhoven, The Netherlands). In brief, mRNA was purified from 1-

2 µg of total RNA using oligo (dT) beads, before it was fragmented and randomly primed for reverse 

transcription followed by second-strand synthesis to create fragments of double-stranded cDNA. The 

obtained cDNA underwent paired-end repair to produce blunted ends. After 3′-monoadenylation and 

adaptor ligation, cDNAs were purified on an agarose gel and 200 bp products were excised from the gel. 

The purified cDNA was amplified by PCR using primers specific for the ligated adaptors. Finally, the 

libraries were submitted to quality control with the Agilent bioanalyzer 2100. 

9. Differential analysis of ATAC-seq, RNA-seq, ChIP-seq 

For both ATAC-seq and ChIP-seq, aligned reads from all replicates were merged into a single BAM file to 

identify a comprehensive set of peaks. We next used such peak set to compute read counts, separately for 

each replicate and condition. In the case of RNA-seq data, the output of htseq-count29 was used as the 

input matrix for downstream analysis. The generated matrices were normalized and differential analysis 

was performed using DESeq230 using a paired sample design in which the model is defined as “~ replicate 

+ treatment”. Briefly, DESeq2 algorithm performs size factors estimation, to normalize each sample by its 

library size; next, calculates dispersions for each feature to account for intra-sample variability; finally, it fits 

a negative binomial generalized linear model (GLM) and calculates the Wald statistic. To improve statistical 

power, DESeq2 performs an independent step to filter out low mean normalized counts that bear a limited 

chance of being significant. To control for type I errors, raw P-values are adjusted for the False Discovery 

Rate (FDR) using the Benjamini-Hochberg method. The DESeq2 method allows to detect, for the number 

of replicates used in this study, differential features with a statistical power of >80% (as calculated by 

PROPER31). 
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Thresholds for significance were set at an FDR adjusted P <0.05 and |log2 FC|>1. All regions/genes that 

did not reach significance or did not pass log2 fold change cutoff were classified as stable/equal-regulated.  

10. Proteomics 

For the proteomic analysis 1.5 million EndoC-βH1 cells treated or not with cytokines (IL-1β + IFN-γ) were 

processed using the Metabolite, Protein and Lipid Extraction (MPLEx) approach32. Protein pellets were 

dissolved in 50 mM NH4HCO3 containing 8 M urea and 10 mM dithiothreitol and shaken at 800 rpm for 1 h 

at 37 ºC. Sulfydryl groups were alkylated by adding 400 mM iodoacetamide (40 mM final concentration), 

and incubated for another hour in the dark at room temperature. Samples were then 8-fold diluted with 50 

mM NH4HCO3, and CaCl2 was added to a final concentration of 1 mM from a 1 M stock solution. The 

digestion was carried out by adding trypsin at 1:50 enzyme:protein ratio and incubation at 37 ºC for 5 h. 

The resulting peptides were extracted using C18 cartridges (Discovery, 50 mg, Sulpelco) and concentrated 

in a vacuum centrifuge. Peptides were then quantified by BCA, normalized and labeled with tandem mass 

tags (TMT-10plex, ThermoFisher Scientific) according to the manufacturer's instructions. Labeled peptides 

were extracted using C18 cartridges and fractionated into 24 fractions using high-pH reversed phase 

chromatography33. Peptide fractions were loaded into a C18 column (70 cm × 75 μm i.d. packed with 

Phenomenex Jupiter, 3 μm particle size, 300 Å pore size) connected to a Waters NanoAquity UPLC 

system. A gradient of water (solvent A) and acetonitrile (solvent B) both containing 0.1% formic acid (1-8% 

B in 2 min, 8-12% B in 18 min, 12-30% B in 55 min, 30-45% B in 22 min, 45-95% B in 3 min, hold for 5 min 

in 95% B and 99-1% B in 10 min) was used to elute the peptides, which were directly analyzed by 

nanoelectrospray ionization on a Q-Exactive mass spectrometer (Thermo Fisher Scientific). Scans were 

collected with a resolution of 35,000 at 400 m/z in a 400–2000 m/z range. High-energy collision-induced 

dissociation (HCD) fragmentation were set for the 12 most intense parent ions using the following 

parameters: peptide charge ≥ 2, 2.0 m/z isolation width, 30% normalized collision energy and 17,500 

resolution at 400 m/z. Each parent ion was fragmented only once before being dynamically excluded for 30 

s. 

Collected data were processed using Decon2LS_V234 and DTARefinery35, both using default parameters, 

to recalibrate the runs and generate peak lists. Peptide identifications were done using MSGF+36 by 

searching peak lists against islet protein sequences deduced from a transcriptomics experiment6 and 

supplemented with keratin sequences (32,780 total protein sequences). For MSGF+ searches, a parent ion 

mass tolerance of 10 ppm, partially tryptic digestion and 2 missed cleavages were allowed. The following 

modifications were also considered during searches: cysteine carbamidomethylation and N-terminal/lysine 

TMT addition as static modifications, and methionine oxidation as a variable modification. Results were 

filtered in two steps to a final false-discovery rate <1%: spectral-peptide matches - MSGF probability ≤ 

1.0x10−9, and protein level ≤ 1.0x10−10. The intensity of TMT reporter ions was extracted using MASIC37. 

Data quality of the multiple omics sets was assessed by evaluating of the distribution of the data for each 

sample via the robust Mahalanobis distance abundance vector (rMd-PAV) algorithm38. Data were then 

converted into log2 and normalized by standard median centering. Proteins were quantified using a 
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Bayesian proteoform discovery methodology (BP-Quant) in combination with standard reference-based 

median quantification39 and were considered significant with a cutoff of p ≤ 0.05 based on a paired T-test. 

11. Sequence conservation analysis 

Sequence conservation at different classes of induced regulatory elements was assessed by determining 

average phastCons 46 way score in placental mammals40. The scores average was calculated in 50bp bins 

over a 2kb window centered on the open chromatin site. A set of regions identical in number and size 

shuffled over the mappable genome using regioneR21 were used as control set. 

12. Gene regulatory network analysis 

Regulatory networks were constructed using 1.9 networkx python module41. IRE enhancers, harboring de 

novo enriched TF binding motifs, were linked to their inferred target gene as described above. A random 

network with the same number of nodes as the observed network and an edge creation probability p=0.1 

was generated for comparison using the erdos_renyi_graph module. The inferred networks were visualized 

using Cytoscape (version 3.6.0)42 applying a force directed layout.  

Functional enrichment analysis of the IREs gene targets (Extended Data Fig. 4c) was performed by 

Metascape1. The enrichment analysis for Gene Ontology biological process included only terms with 

P<0.001 and with at least 3 enriched genes.  

13. UMI-4C data generation 

UMI-4C was performed as described43 with minor modifications. Briefly, formaldehyde crosslinked human 

islets (estimated ~4 million individual cells) were treated with ice-cold lysis buffer (50 mM Tris-HCl pH 8, 

150 mM NaCl, 1% TX-100, 0.5% IGEPAL-CA-630, Sigma; 5mM EDTA, AppliChem; 1X protease inhibitor 

cocktail, Millipore) and permeabilized with SDS (Millipore) and TX-100. Nuclei were digested with DpnII 

(New England Biolabs) for 16h at 37ºC. Afterwards, more DpnII was added for 4h and ligated with T4 DNA 

ligase (Promega) at 16ºC overnight. Cross-link was reversed by overnight incubation with Proteinase K at 

65°C. Next, after 30 min incubation with 30 µl of 10 mg/ml RNase A at 37°C, DNA was purified by 

phenol/chloroform and ethanol precipitation. DNA was then resuspended in 10 mM Tris-HCl pH 8 and 5 ug 

aliquots were sonicated by Covaris S2 to fragment sizes in the range of 450-550 bp. Sonicated DNA was 

next incubated for 30 min at 20ºC with 20 µl 10× end-repair buffer and 10 µl end-repair mix (NEB E6050S). 

The reaction was next cleared by 2× AmpureXP beads (Agencourt AMPure XP, Beckman Coulter) and 

eluted in 75 µl EB (10 mM Tris-HCl pH 8). A-tailing was performed on the elute by adding 10 µl NEB buffer 

2, 4 µl Klenow fragment (NEB M0212L) and 10 µl 10 nM dATP 20 min at 37 ºC and 20 min at 75ºC to 

inactivate the reaction. DNA was next dephosphorylated with 2 µl calf intestinal alkaline phosphatase (NEB 

M0290S) and incubated at 50°C for 60 min and immediately purified by 2x AmpureXP beads. Illumina 

forked adaptors were added (final concentration 0.4 µM) and incubated with 80 µl quick ligase buffer and 5 

µl of Quick Ligase (NEB M2200S) for 20 min at 25°C. DNA was next denatured at 96ºC for 5 min, moved to 

ice for 5 min and then purified by 0,8x AmpureXP beads to release the non-ligated strand of the adaptor. 

Denatured DNA was quantified by Qubit (ssDNA HS Assay, Q32851, Invitrogen).  
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200 ng of DNA were used for library preparation by nested PCR. The first PCR reaction was performed 

with 10 µl GoTaq Flexi Buffer, 3 µl MgCl2 25mM, 1 µl dNTP 10 mM, 2 µl US bait primer and 2 µl Illumina 

universal primer 10 µM (0,4 µM final concentration each primer) and 1 µl GoTaq (Promega, M5005) with 

the following program: 2 min 95°C, 20 cycles of 30 s 95°C, 30 s 56°C and 60 s 72°C and final extension of 

5 min 72°C. After the first PCR reaction, the DNA was purified with 1× AmpureXP beads, and 31 µl of the 

elute was used to perform a second PCR reaction following the same conditions as the first one but using 

the DS bait primer and 17 amplification cycles instead of 20. Finally, DNA was purified by 0,8x AmpureXP 

beads. To increase molecular complexity, each library was obtained by pooling 5-10 PCRs per viewpoint. 

The PCR primers used in UMI-4C are listed in Supplementary Table 8. Each library was sequenced to a 

depth of >1M 75bp long paired-end reads using either NextSeq or HiSeq 2500 platforms. 

14. GWAS association analysis 

Genome wide association statistics were generated from 5,909 type 1 diabetes cases (from the UK GRID44 

cohort) and 8,721 controls (1,397 from the UK blood service45, 5,472 from the 1958 British birth cohort46 

and 1,852 from the bipolar disorder cases from the welcome trust case control consortium45). 6,653 (1,926 

cases and 4,727 controls) were genotyped using the Affymetrix GeneChip 500k array and 7,992 (3,983 

cases and 3,994 controls) were genotyped using the Illumina Infinium 550k array. Prior to imputation, we 

filtered SNPs with a call rate of less than 95%. Shapeit247 was used to pre-phase individual haplotypes 

using the haplotype reference consortium (HRC) as the haplotype reference panel, then minimac348 was 

used to impute both batches genome-wide for chromosomes 1-22. As post imputation quality control, we 

excluded SNPs with a Minor Allele Frequency (MAF) <0.01 (or MAF<0.05 if the SNP was only present in 

one of the genotyping batches), an imputation information score <0.3 a difference in MAF between Illumina 

and Affymetrix controls of >5%, a difference between Illumina and Affymetrix cases of >5% and a 

difference in MAF of >5% between combined controls and European members of the HRC. As a further 

quality control (QC), we removed SNPs where the difference in log-odds ratio between cases and controls 

was >0.3, or the odds ratio difference was >0.3 and the effects were in opposite directions between 

batches. Finally, if a SNP was present in only one of the genotyping batches, we removed SNPs with an 

imputation r2 of less than 0.8. This conservative QC procedure was implemented to minimize the probability 

of observing spurious associations due to imputation. 

SNPTEST49 was used to test the association of each SNP with type 1 diabetes status, adjusting for the top 

3 principal components, for those genotyped with the Illumina chip and the Affymetrix chips separately, 

then results were combined in an inverse-variance weighted fixed effects meta-analysis. 

Once association results were generated, we filtered-out rare variants with MAF < 0.01. For the definition of 

99% credible sets we followed previously defined methodology50. Shortly, we took all SNPs with P<5x10-8 

and created a 1Mb window around them, merging all overlapping windows. This allows us to generate the 

potential risk loci; we considered as the top SNP of the locus the one with the smallest P-value. Next, 

taking advantage from the R2 scores from 1,000 Genomes phase 3 we removed from further analysis those 

variants whose association (R2) with the top SNP in the locus was < 0.1. Finally, we calculated the 
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Approximate Bayes Factor (ABF) and Posterior Probability (PP) of each variant within the locus, and 

included in the credible set all those variants until reaching a cumulative PP over 0.99. 
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Supplementary Tables: 

Supplementary Table 3. T1D risk loci overlapping human islets induced regulatory elements*. 

Mapped genes Lead variants** locus coordinates 
# Overlapping HI 
IREs*** 

Closest up-regulated 
genes**** 

SNPs directly overlapping 
IREs***** 

SLC25A38P1, FASLG rs78037977 chr1:172715702-172715702 1 TNFSF18 rs78037977 

CAMSAP2 rs6691977 chr1:200718569-200832857 1 GPR37L1 None 

RF00019, IL10 rs3024505 chr1:206939904-206955041 2 IL19 rs3024493 

IL2RA rs61839660, rs12722495 chr10:6078553-6097283 1 IL2RA None 

IL2RA, RPL32P23, RBM17 rs10795791, rs12251307, rs41295121 chr10:6098949-6217022 2 IL2RA None 

AL353149.1, RNLS rs10509540, rs12416116 chr10:90015401-90051317 1 LIPM None 

SH2B3, ATXN2 rs3184504, rs653178 chr12:111826477-112059557 2 SH2B3 None 

NAA25 rs17696736 chr12:112486818-112610714 4 TRAFD1 None 

CLEC16A rs12708716, rs12927355, rs2903692 chr16:11158885-11240854 3 RMI2 None 

RMI2 rs193778, rs416603 chr16:11342785-11367477 4 RMI2, SOCS1 
rs149310, rs193779, rs193778, 
rs243330, rs243327 

CLN3, IL27, NUPR1 rs151234, rs4788084 chr16:28483061-28653523 2 IL27, NUPR1 rs12446550 

ZPBP2, GSDMB rs2872507, rs12453507, rs2290400 chr17:37922259-38088417 2 GSDMB rs7219923, rs201389301 

PTPN2 rs12971201 chr18:12820900-12884343 2 PTPN2 rs2847281 

UBASH3A 
rs11203202, rs11203203, rs9976767, 
rs3788013 

chr21:43820573-43841827 1 UBASH3A None 

CCRL2, LINC02009 rs113010081 chr3:46384204-46457412 2 CCR5, CCRL2 None 

KIAA1109, ADAD1, IL2, IL21 
rs4505848, rs6534347, rs75793288, 
rs17388568, rs2069762 

chr4:123067808-123501086 7 FGF2 
rs55969942, rs55904957, 
rs4505848, rs77516441 

LINC02357 rs10517086 chr4:26085480-26128710 3 SLIT2 rs7441808, rs874040 

IL7R, AC112204.3, CAPSL rs6897932, rs11954020, rs1445898 chr5:35827351-35919378 9 IL7R 
rs6890853, rs10213865,  
rs10214273, rs34143578 

* T1D-T2D shared loci were excluded from this analysis (see text) 
** Leading variants for the region as defined in the GWAS Catalog

52
 and Cooper et al

53
. 

*** IREs H3K27ac log2 FC>0.8 
**** Closest gene is defined as the overlapping or nearest up-regulated genes to the locus. 

***** SNPs defined as those with strong LD (R
2
0.8) with the lead variant. 
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Supplementary Table 5. Metadata from human islet samples. 

 

Sample Gender Age BMI % Purity Cause of Death 
Pre-mortem 
diabetes 

Experiments 

HI19 Male 34 23.1 80 Cerebral bleeding No ATAC-seq, ChIP-seq H3K27ac, UMI-4C 

HI22 Male 52 25.1 85 Trauma No ATAC-seq, ChIP-seq H3K27ac, UMI-4C 

HI24 Male 54 26.5 90 Anoxia No ATAC-seq, UMI-4C 

HI28 Male 60 22.7 85 Cerebral bleeding No UMI-4C 

HI32 Male 62 23.1 90 Cerebral bleeding No UMI-4C 

HI37 Female 53 21.8 85 Cerebral bleeding No ChIP-seq H3K27ac 

HI40 Female 62 29.3 90 Cerebral bleeding No ChIP-seq H3K27ac 

HI42 Female 81 21.5 70 Cerebral bleeding No ATAC-seq 

HI44 Male 58 27.8 90 Cerebral bleeding No ATAC-seq 

HI06 Female 23 22.5 46 Cardiac arrest No RNA-seq* 

HI07 Male 31 27.8 66 Cerebral bleeding No RNA-seq* 

HI08 Male 77 24.5 59 Cerebral bleeding No RNA-seq* 

HI09 Female 64 29.4 47 Cerebral bleeding No RNA-seq* 

HI10 Female 58 21.3 67 Cerebral bleeding No RNA-seq* 

 
* Previously reported in Gonzalez-Duque, S. et al. Conventional and Neo-Antigenic Peptides Presented by β Cells Are 
Targeted by Circulating Naïve CD8+ T Cells in Type 1 Diabetic and Healthy Donors. Cell Metab. (2018). 
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Supplementary Table 8. Oligonucleotides used for UMI-4C experiments. 

 

Up-regulated genes 

Bait Name US Primer DS Primer PAD Bait Position 

DOCK9 GAGTTGGACAGGGGAGAAGAGAAG AACTCCCAGACCCCTCCC CGCCACCCAAGATC chr13:99738257 

IFIH1 GCAAACTCTGTAAGAACTGCCTG CTCAAAGCTCCTACCCGAGTG TGCAGCAGGATC chr2:163175129 

SOCS1 GCCGGAGAAAGGCTGTGC CCCAAATCGCCCAGACCAG GCGCGGATC chr16:11349720 

GBP1 ATAGAAACTGAGCACAGAAAGACT CACTGTAACTAATCTGAACCCAAGC ACTCATGATC chr1:89531571 

CIITA CTGAGTTGGAGAGAAACAGAGACC GGACAAGCTCCCTGCAACTCA GGACTTGCAGATC chr16:10972544 

TNFSF10 TCAAAAGGAGAGCAAGAAAGAGAAG TTGAGGTGAGTGCAGATAAGGG GTGCATGGATC chr3:172241434 

ATF3 CTCGCCTTCATTCCCTTCGC TCTAAGTAACCAGTCCGCCG ACCCCTGACCCACCCCGGATC chr1:212782375 

CMPK2 AAATCAGGTAGGGAAGGTGTCCTG CAGGCAACTCTTTTAAGATTCTTGT TTGCAAGGATC chr2:7004967 

LAMP3 GTGGTCTGACAGATTGTGCCAT AGGTGTAGGAAGAGTGTCAAAGAC TTTTTTTTTTTTAAATGATC chr3:182879972 

RSAD2 GCTGAGTTAGAGTTTCGATTTTTCC AAGTTGAAACAGGGCCAAGAC TGAAGACTAGAGATC chr2:7017732 

CXCL11 CTTCAGTAACTCCATGCCACG GTTAGGGGTGAAGCCACACA CCTCTGGGATC chr4:76958088 

IFIT1 TGGCTGCTGTTTAGCTCCCTTAT ACGTAACTGAAAATCCACAAGACA GAATAGCCAGATC chr10:91152408 

IRF1 ACGCGGCGTGGACCG CGGACGAGGCTGCCG GCGCCCGGCAGCTTTCGCAGATC chr5:131825992 

     

T1D risk loci 

Bait Name US Primer DS Primer PAD Bait Position 

DEXI AACGCCCGCGCTGATT TTGCTTTCCTGGTTCGGGTC TGCCCTCAGATC chr16:11036502 

rs78037977 GAGTGTTTGCCAATGTTTGAAGTA TTAAAGTGATGTTTGTGGCTAAGAG CTCAAGATC chr1:172715942 
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Supplementary Table 9. UMI-4C sequencing statistics. 

 

Bait Treatment Raw reads Bait-specific reads % specificity # UMIs 

ATF3 IFN-γ + IL-1β 48h 17,748,014 16,227,284 91 11,184 

ATF3 Control 19,033,231 17,404,550 91 16,240 

CIITA IFN-γ + IL-1β 48h 8,510,230 7,759,081 91 9,146 

CIITA Control 8,902,916 8,189,179 92 11,221 

CMPK2 IFN-γ + IL-1β 48h 4,130,031 3,778,254 91 10,290 

CMPK2 Control 3,801,896 3,489,780 92 11,619 

CXCL11 IFN-γ + IL-1β 48h 8,441,058 7,653,148 91 10,276 

CXCL11 Control 9,066,024 8,243,721 91 12,981 

DEXI IFN-γ + IL-1β 48h 12,214,438 10,728,755 88 6,622 

DEXI Control 11,777,000 10,422,707 89 9,657 

DOCK9 IFN-γ + IL-1β 48h 1,172,909 577,184 49 9,955 

DOCK9 Control 4,972,466 1,871,266 38 12,673 

GBP1 IFN-γ + IL-1β 48h 1,498,820 1,399,799 93 4,630 

GBP1 Control 1,630,829 1,525,062 94 6,070 

IFIH1 IFN-γ + IL-1β 48h 1,561,369 1,351,149 87 26,263 

IFIH1 Control 2,066,371 1,766,431 85 29,074 

IFIT1 IFN-γ + IL-1β 48h 7,997,529 7,361,083 92 9,657 

IFIT1 Control 8,097,838 7,440,040 92 11,529 

IRF1 IFN-γ + IL-1β 48h 1,374,134 514,925 37 2,399 

IRF1 Control 1,650,279 773,405 47 3,242 

LAMP3 IFN-γ + IL-1β 48h 2,495,385 847,831 34 9,437 

LAMP3 Control 2,616,115 887,928 34 10,227 

rs78037977 IFN-γ + IL-1β 48h 1,505,820 1,353,025 90 24,163 

rs78037977 Control 1,262,331 1,118,647 89 28,079 

RSAD2 IFN-γ + IL-1β 48h 14,440,385 13,144,612 91 13,247 

RSAD2 Control 15,730,693 14,350,630 91 16,257 

SOCS1 IFN-γ + IL-1β 48h 3,336,826 2,118,570 63 19,843 

SOCS1 Control 4,277,311 2,663,116 62 23,934 

TNFSF10 IFN-γ + IL-1β 48h 10,273,497 9,438,691 92 11,429 

TNFSF10 Control 11,566,075 10,669,468 92 14,495 
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Supplementary Table 10. Oligonucleotides used for luciferase assays. 

 

Amplification RE 

SNP Fw Primer Rv Primer 

rs78037977 CCGCTCGAGAGTGGGCTCTTGTTTCAATGT CCGAAGCTTTGGCAAACACTCAAAGATTCAA 

rs193778 CCGCTCGAGGTGGTCGGGGCTGTAATTTG CCGAAGCTTCACACACACGCACAACCTAG 

   
Site Directed Mutagenesis 

SNP Fw Primer Rv Primer 

rs78037977 CTTTCCTCTGAGGAGTAAGAGTGACCCTTGCTTAAAAG CTTTTAAGCAAGGGTCACTCTTACTCCTCAGAGGAAAG 

rs193778 GCTCCGTGTATTTTTGGATGAAGGCATGTGAGG CCTCACATGCCTTCATCCAAAAATACACGGAGC 
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