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ABSTRACT

This thesis has been devoted to the study of the gravitational collapse of spherically
symmetric perturbations on a Friedman-Robertson-Walker (FRW) universe filled by a
perfect fluid.

Large cosmological perturbations generated by inflation, are known to be statistically
almost spherical. For this reason, this thesis aims to provide the conditions for Primordial
Black Hole (PBH) formation due to the collapse of inflationary density fluctuations. PBHs
are considered one of the best candidate for the missing dark matter (DM).

To simulate the collapse of large spherical overdensities, it has been used a pseudo-
spectral method which maps differential equations into an algebraic system. The nu-
merical code developed, allows to outline the conditions for black hole formation with a
greater than ever precision in some extreme cases. By using a combination of an excision
technique and analytical estimations of accretion rates, it was found that the estimation
of the black hole’s masses via a self-similar scaling law, gets worse and worse for larger and
larger values. In addition, it was also found that the accretion of the BH masses relevant
for the DM abundance, follows the law MBH,f ≈ 3MBH,i where, MBH,i is the initial mass
of the BH at the time of apparent horizon formation and MBH,f is the final mass of the
BH after the accretion process.

In the case in which the fluid permeating the universe is of the form p = wρ, where
p is the pressure, ρ is the density of the fluid and w is a constant, it is here shown that
for w ≥ 1/3 the conditions for black hole formation, to a very good approximation, only
depend upon the curvature of the local excess-mass (compaction function) around its
peak value (δc), δc (the ”threshold” for PBH formation) and the equation of state of the
collapsing fluid. This fact, has been used to build an analytical formula for δc in the case
of w ≥ 1/3, which is accurate enough to be used for cosmological applications, conversely
to previous attempts. For smaller w’s instead, the knowledge of the full shape of the
compaction function is necessary, in contradiction to previous claims. Moreover, while
the threshold for w ≥ 1/3 does not strongly depend from the full shape of the compaction
function, in this thesis it is also shown that the BH mass does.

While inflationary fluctuations are predominantly Gaussianly distributed at the cosmic
microwave back-ground scales, those leading to PBH formation at smaller scales can have
larger non-Gaussianities (NG). In the final part of this thesis, it was considered the effect
(numerically and analytically) of those NG to the threshold for primordial black hole
formation. By monitoring the non-gaussian parameter fNL, it was found that; i) for
fNL & 3.5, the population of PBH coming from false vacuum regions dominates over that
coming from the collapse of large adiabatic overdensities; ii) the effect of the statistical
dispersion of profiles is small in determining δc of the mean profile.
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RESUMEN

Esta tesis se ha dedicado al estudio del colapso gravitacional de perturbaciones esféri-
camente simétricas en un universo de Friedman-Robertson-Walker (FRW) con un fluido
perfecto.

Se conoce que las grandes perturbaciones cosmológicas generadas por la inflación son
en su mayoría aproximadamente esféricas. Por esta razón, esta tesis pretende proporcionar
las condiciones necesarias para la formación de Agujeros Negros Primordiales (PBHs)
producidos por el colapso de perturbaciones cosmológicas. Los PBHs se consideran uno
de los mejores candidatos para la materia oscura (DM), cuya composición es todavía un
misterio.

Para simular el colapso de grandes sobredensidades esféricas, se ha utilizado un método
pseudo-espectral que mapea ecuaciones diferenciales en un sistema algebraico. El código
numérico desarrollado permite obtener las condiciones para la formación de un PBH con
una precisión jamas vista para algunos casos extremos. Mediante el uso de una técnica
de escisión y estimaciones analíticas de las tasas de acreción, hemos encontrado que la
estimación de las masas de los PBHs a través de una ley de escala auto-similar, empeora
cada vez más para valores mas grandes de las masas. Además, también hemos encontrado
que la acumulación de las masas de BH relevantes para la abundancia de DM sigue la ley
MBH,f ≈ 3MBH,i donde, MBH,i es la masa inicial del BH en el momento de formación del
horizonte aparente y MBH,f es la masa final del BH después del proceso de acreción.

En el caso en el que el fluido que impregna el universo se comporte como un fluido
perfecto (p = wρ, donde p es la presión, ρ es la densidad del fluido y w es una constante),
hemos comprobado que para w ≥ 1/3 las condiciones para la formación de un agujero
negro, en una muy buena aproximación, solo dependen de la curvatura del exceso de masa
local (también llamado función de compactación) alrededor de su valor máximo (δc) , δc
(el ” umbral ” para la formación de PBH) y la ecuación de estado del fluido que colapsa.
Este remarcable resultado se ha utilizado para construir una fórmula analítica para δc en
el caso de w ≥ 1/3, que es lo suficientemente precisa como para usarse en aplicaciones
cosmológicas, en comparación con intentos anteriores en la bibliografía. En cambio, para
w más pequeños, es necesario conocer la forma completa de la función de compactación,
en contradicción con las afirmaciones anteriores. Además, mientras que el umbral para
w ≥ 1/3 no depende en gran medida de la forma completa de la función de compactación,
en esta tesis también se muestra que la masa del PBH sí lo hace.

Si bien es cierto que las fluctuaciones inflacionarias se distribuyen predominantemente
de manera gaussiana en las escalas del fondo de microondas cósmicas (CMB), las que
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conducen a la formación de PBH a menores escalas pueden distribuirse de forma altamente
no gaussiana (NG). En la parte final de esta tesis, se ha considerado el efecto de esas
NGs en el umbral de formación de agujeros negros primordiales, tanto numérica como
analíticamente. Al monitorizar el parámetro no gaussiano fNL, se encontró: i) que para
fNL & 3.5, la población de PBH proveniente de regiones de falso vacío domina sobre la
proveniente del colapso de grandes sobredensidades adiabáticas y ii) que el efecto de la
dispersión estadística de perfiles es pequeño para determinar δc del perfil medio.
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CHAPTER 1

INTRODUCTION

One of the great mysteries in Science is the composition of dark matter, which accounts
for the 27% of present Universe. Although there are different theories and candidates that
try to explain it, still the answer remains elusive. One of the most promising possibility
is Primordial Black Holes (PBHs), i.e. black holes (BH) generated at earlier than star
formation times and therefore not of stellar origin. The current observational status and
constraints of PBHs in the form of dark matter is shown in Fig.1.1.
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Figure 1.1: Different constraints of the fraction β for PBHs to account for the dark matter.
The figure is taken from [1], which is Fig.10.

An accurate description of the methods used to get these constraints can be found in
[1]. It is important to stress that some constraints are associated with some uncertainties
or are directly put in question (dashed-lines) [1]. Excluding those, the three mass windows
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where PBHs could constitute a significant fraction of dark matter are given by:

• 101M� <M <103 M�, the range that lies between the microlensing constraints
(HSC) [2] and wide binary limit (WB) [3–6].

• 5 ·10−14M� <M < 5 ·10−10 M�, this range lies between the femtolensing constraints
(F) [7, 8] and the microlensing (HSC)

• 5 · 10−18M� <M < 5 ·10−17 M�, this range lies between the femtolensing limit (F)
and the γ-ray background (GCB) [9].

PBHs were first considered in [10,11]. They could be formed in the very early Universe
due to the gravitational collapse of cosmological perturbations. Within this hypothesis
PBHs can be generated as a consequence of high non-linear peaks in the primordial distri-
bution of density perturbations. There is currently no hard bound on their amplitudes at
smaller than the Cosmic Microwave Background Radiation (CMB) scales, leaving open the
possibility of having a large fraction of the Dark Matter (DM) in the form of PBHs [12–20].

PBHs with a size smaller thanMPBH < 10−20 M� would have been already evaporated
due to Hawking radiation [21]. Therefore, those with higher masses can account for dark
matter. In addition, they may be responsible to seed supermassive black holes at the
centre of galaxies [22], to generate large-scale structure through Poisson statistics [23] or
change the thermal history of the Universe [24].

If formed by the collapse of inflationary perturbations, the abundance of PBHs is
exponentially sensitive to the threshold of the gravitational collapse δc (where δc is the
minimum amplitude of the gravitational potential peak related to the perturbation un-
dergoing to gravitational collapse and leading to a BH). In order to obtain the necessary
precision on δc, a numerical analysis of PBH formation is an obvious way to go.

Numerical simulations of PBH formation started some time ago with [25, 26], where
δc was computed and a scaling behaviour for the PBH mass was found whenever the
amplitude of the perturbation was close to δc [27, 28]. The value of the scaling ex-
ponent matched with the one quoted in the literate and obtained from a perturbative
treatment [29, 30], or from numerical simulations [31] in asymptotically flat spacetime.
While the constant of proportionality appearing in the scaling law depends on the spe-
cific shape of the perturbation considered, the scaling exponent is a universal quantity
only dependent on the type of fluid. Earlier simulations on PBHs were mainly based on
the implementation of a Lagrangian hydrodynamic code based on finite differences and
developed from an earlier work [32]. Solving Misner-Sharp equations [33] that describe
the motion of a relativistic fluid in a curved spacetime.

A known drawback of this method is the appearance of a coordinate singularity soon
after the formation of the black hole, which leads to the end of the evolution. To solve
this, Misner-Hernandez equations [34] (which are basically the Misner-Sharp equations in
null coordinates) are used to avoid the formation of an apparent horizon and follow the
subsequent evolution to determine the value of the black hole mass. The method is based
on [35]. Those codes are not publicly available so test their correctness has been always
a challenge.

One of the main earlier objectives of this thesis has been to obtain an efficient, im-
proved and simplified numerical method to compute the threshold and estimate the PBH
mass, with the aim to make it publicly available. This problem is tackled in chapter 4.

Even if a numerical code allows to compute the threshold, the realization of a numerical
simulation can be quite expensive to be actually useful for statistical applications such as

2
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the calculations of PBH abundances. Therefore an analytical expression would drastically
simplify the problem. Earlier than this thesis, there were some analytical estimations of
δc (e.g. [36] and [37]), which were based on analytically solvable models under certain
rather restrictive assumptions. These were used to motivate the existence of a “universal”
threshold that was supposed to apply for any equation of state. However, numerical
studies have shown that, even for a fixed equation of state, δc is not universal [26,27,38–43].
The main reason is that δc depends on the details of the initial perturbation [42], i.e., on
the scale dependence or “shape” of the perturbation.

In [44], numerical simulations were used to argue that the formation of a BH from
an over-density peak in a FRW universe assuming the perturbation to be initially at
super cosmological scales (shortly we latter call horizon scale), it only depends upon two
master parameters: the integral of the initial curvature perturbation, and the edge of
the over-density distribution. The paper in [42] recently refined the arguments of [44] by
showing that these parameters may be more conveniently given in terms of the amplitude
of the ”gravitational potential” at its maximum (r = rm), as already noticed in [40], and
that it mainly depends upon the functional form (shape) of the gravitational potential.
More precisely, in [42], the threshold δc was identified with the peak of the “compaction
function” [40] at super-horizon scales. The compaction function, closely resembles the
Schwarzschild gravitational potential and is defined as twice the local excess-mass over
the co-moving areal radius.

In [45] we have argued that the threshold for primordial black hole formation should
be quite insensitive to the physics beyond rm: The threshold is the amplitude above which
a “virtual” black hole of zero mass is formed. Therefore, all the over-density beyond rm
will be diffused away while that just in the vicinity of rm will hinder collapse.

Precisely, following those arguments, we showed that during a radiation-dominated
epoch (equation of state p = wρ with w = 1/3), to a very good approximation, there ex-
ists a universal (shape independent) threshold value for the volume-averaged compaction
function. Since the volume average is dominated by scales near the maximum of the
compaction function, in [45] we showed that it is sufficient to parametrize the profile de-
pendence of δc by the curvature of the compaction function at its maximum. Using this
insight, we found an analytic approximation to the shape dependence of δc which matches
that found in simulations to within a few percent.

This raised the question of whether or not this universality is generic and not only an
accident of radiation.

PBHs might be formed in a variety of scenarios (see e.g. [46–54]) where the collapsing
fluid equation of state is not that of radiation and perturbations are not necessarily
generated during inflation. Thus, we have addressed the universality question beyond the
case of a radiation fluid in [45]. These results correspond to chapter 5 of the thesis.

When a perturbation collapses, will firstly form an apparent horizon with an associ-
ated massMBH,i. After that, due to the surrounding fluid there is an accretion process up
to a final massMBH,f when the BH is formed. Some theoretical studies have estimated an
upper bound forMBH,i using a compensated PBH model [55,56], but a systematic numer-
ical investigation exploring the effects of different shapes of the curvature perturbations
was missing.

While the effect of the accretion from the cosmological background is known to be
negligible for ”small” MBH,i [55], it was not known for the case of large PBHs masses,
including those more relevant for the dark matter abundance, corresponding to MBH,f ∼
MH , where MH is related to the horizon mass at the time of horizon crossing.

3
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A study of the accretion from the collapse of a massless scalar field was performed
in [57], showing that MBH,f/MBH,i ≤ 2. A similar result was obtained in [58, 59] for the
BHs formed from the collapse of domain walls or vacuum bubbles. We have extended
those studies to the case of collapsing radiation fluids relevant for PBHs in chapter 6.

Finally, we are going to address a more practical problem. In order to make accurate
predictions on the statistical properties of PBHs, it is necessary to be specific about
their formation process, as we have said. One of the simplest mechanisms is the collapse
of large curvature perturbations (for example those seeded by a period of single-field
inflation [60–69]). However, even within those scenarios other channels may lead to PBH
formation: for example false vacuum bubbles which continue inflating in the ambient
radiation dominated universe, and eventually pinch off from it. This results in a black
hole which separates the ambient universe from an inflating “baby universe" [70–72].
A question of practical interest is to determnite the abundance of those PBHs. While
fluctuations must be predominantly Gaussian at the cosmic microwave background scales,
those leading to PBH formation at smaller scales can have large NG [72–75] (we expect this
to be the case also in other scenarios leading to PBH formation, as variants of multifield
inflation [76–78] and non-canonical inflation [48, 79, 80]). Several works have already
treated the influence of NG in the abundance of PBHs [72,81–90].

For a Gaussian random field, the typical shape of high peaks is determined from the
power spectrum, but if the distribution is non-Gaussian, the shape will also depend on the
nature of the non-Gaussianity [72,89,90]. Furthermore, since fluctuations are drawn from
a statistical distribution, the shapes of perturbations susceptible of collapsing will inherit
a dispersion. While the mean profile is usually taken to be representative of the typical
shape, it seems important to consider how the threshold may vary due to the dispersion
of shapes. This point is particularly relevant when a mean profile for the perturbations
cannot be defined, as it is the case for large perturbations coming from the model of
single-field inflation with a barrier [72].

With the aim to consider the previous points, in chapter 7 we study the dependence
of the threshold on the dispersion of the profiles, including the non-Gaussianity resulting
from the physics of single-field inflation.

Before considering in detail all these issues, we remember and remark on some essential
concepts in cosmology and PBHs used in this thesis. They can be found in chapter 2 and
4.
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CHAPTER 2

BASIC NOTIONS OF COSMOLOGY

In this chapter, we will briefly review some basic notions used in this thesis. The aim is
to provide a short summary of the tools needed to understand the following chapters.

2.1 FRW Universe and its dynamics
The current cosmological framework is based on the cosmological principle. The cosmo-
logical principle implies that our Universe is homogeneous and isotropic on very large
scales with distances beyond > 100Mpc. This implies that: 1) there is not any peculiar
point in the Universe. 2) looking at different directions we observe the same physics. This
has been verified over the last decades by the Cosmic Microwave Background (CMB) ex-
periments (which search for the photons that come from the last scattering in the very
early Universe) up to small anisotropies [91].

An isotropic and homogeneous universe is described by the Friedman-Robertson-
Walker (FRW) metric:

ds2 = −dt2 + a(t)2

[
dr2

1−Kr2
+ r2dθ2

]
(2.1)

where a(t) is the cosmic scale factor (t is the cosmic time). The constant K is a
curvature parameter and specify the geometry of the Universe: K = 0 is a flat Universe,
K = 1 is a closed Universe and K = −1 is an open Universe. From that, we can define
the Hubble parameter, given by:

H(t) =
ȧ(t)

a(t)
(2.2)

Current CMB observations tell us that H0 ≈ 72.1± 2.0(Km/s)/Mpc [92].
We already know that the spacetime of the Universe at large scales is given by the

FRW metric Eq. 2.1, but still we need to know what source it. We can describe the
macroscopical energy momentum tensor as the one coming from a fluid with an energy-
density ρ and pressure p.

5
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Tµν = (p+ ρ)uµuν − pgµν (2.3)

Introducing Eq. 2.3 into the Einstein equations, we obtain two independent equations:

H2 =
8πG

3
ρ− K

a2
, (2.4)

ä

a
= −4πG

3
(ρ+ 3p). (2.5)

The first one corresponds to the Friedman equation, and the second to the acceleration
equation. From them it can be derived the continuity equation,

ρ̇+ 3H(ρ+ p) = 0. (2.6)

To close the system of equations Eqs. 2.4,2.5 we need to supply them with an equation
of state p(ρ). In the cosmological context, the cosmic fluid can be described by a perfect
fluid (p = wρ). The value of w determines the kind of energy-matter content. For
instance, w = 0 corresponds to non-relativistic matter (dust). Instead, for relativistic
particles, such as radiation, we have w = 1/3. The case of vacuum-energy (cosmological
constant) is w = −1.

With the equation of state, the continuity equation Eq.2.6 can be solved to give the
evolution of the energy density in terms of the scale factor,

ρ ∝ a−3(1+w) (2.7)

and using Eq.2.5 we have,

a(t) ∝ t
2

3(1+w) if w 6= −1 (2.8)
a(t) ∝ eHt if w = −1 (2.9)

It is useful to define a conformal time η, given by,

η =

∫
dt

a(t)
, (2.10)

which can be used to define the particle horizon, that is, the maximum distance that
light have travelled from ti up today,

τ = η − ηi =

∫ t

ti

dt

a
(2.11)

6



Chapter 2 Albert Escrivà Mañas

2.2 Curvature perturbation
In this section we give the definition of what we called "curvature perturbation".

We are considering a perturbation on a FRW background, and for our purposes, we
are going to focus only on scalar perturbations which are the responsible of structure
formation. In this case the scalarly contribution of a perturbed FRW spacetime metric is
given by,

ds2 = a(η)2
[
−(1 + 2A)dη2 + 2B,idηdx

i + [(1 + 2ζ)δij + 2E,ij] dx
idxj

]
(2.12)

where A,B,E, ζ are functions of ~x and η. We have some freedom to fix some of those
functions via gauge transformation. The gauge transformations are given by,

η̃ = η + ξ0(η, ~x), (2.13)
x̃i = xi − δijξ,j(η, ~x) (2.14)

where ξµ = (ξ0, ξi) is the field responsible for the gauge transformations. Applying
these transformations to the previous scalar magnitudes we get,

Ã = A− ξ0
,η −

aη
a
ξ0, (2.15)

B̃ = B + ξ,η + ξ0, (2.16)
ζ̃ = ζ −Hξ0, (2.17)
Ẽ = E + ξ (2.18)

where the subscript ,η means the derivative in terms of the conformal time andH is the
Hubble factor in terms of η, H = a(η),η/a(η). The transformations for the components
of the energy momentum tensor are given by,

δ̃ρ = δρ− ρb,ηξ0, (2.19)
δ̃p = δp− pb,ηξ0, (2.20)
ṽi = vi + ξi,η, (2.21)

δ̃ρ

ρb
=

δρ

ρb
+ 3H(1 + w)ξ0 (2.22)

where v is the fluid-velocity of the perturbation vi = aui and δρ = ρ − ρb. From
that, we can define two scalars which are invariant under gauge transformations, which
are called the Bardeen potentials, are given by,

Φ = A+H(B − E,η) + (B − E,η),η, (2.23)
Ψ = ζ −H(B − E,η) (2.24)

There are different gauges commonly used in the literature, but we are going to focus
only on the one used for this thesis, which is the comoving gauge as used in [93] (the

7
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constant mean curvature gauge was instead used in [40]). It considers time slices orthog-
onal to the fluid 4-velocity v, implying v = B = 0. So that the gauge transformation is
basically given by ξη = −v and ξ0 = v −B.

In this gauge we can define, the comoving curvature perturbation as a combination of
the Bardeen potentials

R ≡ ζC = −Ψ− 2

3(1 + w)

(
1

HΨ,η + Φ

)
= ζ +H(v −B)

(2.25)

where ζC means the curvature ζ in the comoving gauge. Notice that R is a gauge
invariant quantity. Using the Einstein equations and making simplifications we can get,

H−1R,η =
2

3(1 + w)

(
k

H

)2 [
c2
sΨ +

1

3
(Ψ− Φ)

]
+ 3c2

sS (2.26)

where S is the total entropy perturbation (gauge invariant) and k is the Fourier mode of
the perturbation. For adiabatic perturbations (S = 0), at super-horizon scales (k � H)R
is almost constant. This result is important to set up initial conditions for the simulations
of PBHs as we will see in the next chapters. In fact we will implicitly assume that only
one fluid, the one forming PBHs, will source the universe and thus the perturbation are
adiabatic.

2.3 Gradient expansion approach
In this section we are going to give details about the gradient expansion. Which is used to
obtain the initial conditions for PBH formation from with perturbations at super-horizon
scales. We will see the practical implementation of the method in chapter 4 and in the
appendix A. Here we just give the fundamentals.

First of all, let’s consider a cosmological perturbation at super-horizon scales, i.e. with
a length-scale L much larger than the Hubble horizon. We can define a parameter ε to
relate the two scales: the Hubble horizon and the length-scale of the perturbation,

ε =
RH(t)

L
(2.27)

where RH = 1/H. It is clear that at super-horizon scales we will have ε � 1. The
gradient expansion method (also called long-wavelength method) allows to expand these
inhomogeneities in the spatial gradient in terms of ε. In the limit ε → 0, the space-
time locally corresponds to the FRW metric, when the perturbation is smoothed out at
sufficiently large scales L.

Consider a general spacetime metric in the 3 + 1 Arnowitt-Deser-Misner (ADM) for-
malism,

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt) (2.28)

in general the spatial metric can be decomposed in

8
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γij = a2(t)e2ζNL(t,xi)γ̃ij (2.29)

where γij, βi and α are the spatial metric, shift-vector and lapse function respectively.
In gradient expansion was shown in [40, 94, 95] that β = O(ε), α = 1 + O(ε2) and γ̃ij =
δij +O(ε2). Therefore in spherical symmetry and in the limit ε→ 0, the metric of Eq.2.28
can be written as,

ds2 = −dt2 + a2(t)e2ζ(r)(dr2 + r2dΩ2) (2.30)

Notice the time independence of ζ(r) since at super-horizon scales it is shown that
ζ̇ = O(ε2). It is important to mention that in this section we are considering the non-
linear ζNL in gradient expansion, in comparison with the previous section where we had
the linear ζL coming from linear perturbation theory. Both are related for small ζNL as
e2ζNL ≈ 1 + 2ζNL.

The metric Eq.2.30 can be also written in other coordinates as a FRW metric with a
non-constant curvature K(r),

ds2 = −dt2 + a2(t)

[
dr̃2

1−K(r̃)r̃2
+ r̃2dΩ2

]
. (2.31)

the change of coordinates between the two metrics is directly given by

dr

dr̂
= eζ(r̂) [1 + r̂ζ ′(r̂)] (2.32)

and the relation between the two curvatures is given by,

K(r)r2 = −r̂ζ ′(r̂) [2 + r̂ζ ′(r̂)] , (2.33)

ζ(r̂) =

∫ r

∞

(
1− 1√

1−K(r)r2

)
dr

r
(2.34)

We will use them in the next chapters.
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CHAPTER 3

DARK MATTER IN THE FORM OF PRIMORDIAL BLACK
HOLES

This chapter will review some basics concepts about PBHs, like its formation process, the
statistical methods commonly used to estimate their abundances and the mechanisms for
PBH production.

3.1 Basics on PBH formation
As we have said in the chapter 1, PBHs could have been formed in the very early uni-
verse during radiation domination, due to the gravitational collapse of large curvature
perturbations generated during inflation [10,11] 1.

The collapse or dispersion of those perturbations depend on the perturbation’s strength:
if its greater than a given threshold, the perturbation will collapse and form a BH. Oth-
erwise, if it is lower it will disperse because of pressure gradients fighting the collapse (a
schematic picture can be found in Fig.3.1). Both things could happen, i.e., the perturba-
tion could undergo gravitational collapse and subsequently bounce. In this case the fluid
is dispersed and collapsed continuously, making rarefactions waves (we will see it in more
detail in chapter 4). This behaviour is particularly evident when the initial strength of
the perturbation is very close to its threshold value.

Suppose the perturbation collapses, and an apparent horizon is formed. In that case,
there will be a process of accretion of the energy density of the perturbation surrounded
from the FRW background until reaching a stationary state, when the final mass of the
PBH is achieved (we will study in detail this problem in 6).

A big effort has been made during the past decades to find the correct PBH formation
criteria. The first estimation of a threshold was given by [102], using a Jeans-length
argument and Newtonian gravity. The criteria for the formation of a BH used was that
the size of an over-density at the maximum expansion should be larger than the Jeans
length, but also smaller than the particle horizon. This translates to the requirement that
the peak value of the density contrast at scales smaller than the cosmological horizon
must be at least w in order to collapse. The second analytical estimation came years later

1It is important to stress that in this thesis we don’t enter into the detail about the different inflationary
models that leads to a sufficient production of PBHs. Some examples are in the context of single filed
inflation [96], hybrid inflation [97,98], double inflation [99,100] and spectador field inflation [101].
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in [37]. There the authors considered a compensated "three zone" model, i.e, a central
over-dense region followed by an under dense layer (which compensates the over density)
and finally the FRW background, to estimate the threshold for BH formation. Following
an argument about the sound waves at the maximum expansion of the perturbation, it
was found the threshold of the peak value of the over density when it renters the horizon
must be (3(1 + w)/(5 + 3w)) · sin2(π

√
w/(1 + 3w)).

Later on however became clear that the threshold depends on the shape of the curva-
ture perturbation [26, 28, 44]. Moreover, it also depends on the specific equation of state
of the fluid, since pressure gradients plays a role on the determination of it: larger is w
stronger are the pressure gradients and therefore smaller the threshold.

In [40] a criteria for PBH formation was introduced. Importantly, it was found that
the peak of the compaction function (the average mass excess on a given volume) was a
good criterion for PBH formation and became the standard definition of threshold, that
we call δc. which is the criteria of PBH formation that we have also adopted for all our
work.

In [42] simulations were performed for a radiation fluid with a set of curvatures profiles
leading to a range of threshold values given by 0.41 . δc ≤ 2/3. As we will see in the
next chapters, the minimum value for the threshold in the case of a radiation fluid is 0.4
rather than 0.41. The reason is, as we will show in chapter 5, due to a choice of unphysical
profiles in some extreme limit of the range parameter.

In chapter 5, we will see that exist an (approximately) universal value given by the
averaged critical compaction function, which will allow us to build a sufficiently accurate
analytical expression for δc, which only depends on the type of fluid and the curvature
around the peak of the compaction function.

Figure 3.1: Schematic picture of the collapse of a perturbation on a FRW background.

Regarding the PBH mass, in [26], it was found a critical scaling law ,

MBH = KMH(δ − δc)γ (3.1)

with values of γ consistent with previous numerical computation [103] γ ≈ 0.356. The
scaling exponent is universal and only depends on the kind of fluid, not on the initial
condition. TheMH is roughly the mass of the cosmological horizon at the time of horizon
crossing (when the lengthscale of the perturbations equals the cosmological horizon). The
constant K depends on each initial condition used. As happened with the threshold, the
values of K were different dependent on what initial conditions and length-scale criteria
used, but always with values O(1).

12



Chapter 3 Albert Escrivà Mañas

The simulations in [26] were done for δ − δc & 10−5 which was not sufficient to test
the critical regime up to very small values, i.e, up to machine precision δ − δc ≈ 10−15.
In [38] it was verified, finally, the scaling law up to machine precision, and this was tested
with an explicit example. In chapter 4 we show that the scaling law for δ − δc > 10−2

breaks down.

3.2 The abundance of PBHs
In this section, we will give a brief review of the approaches commonly used in the lit-
erature to perform PBH statics and estimate their abundances. There is extensiv work
in this direction, with different approaches and methods [89, 104–112], but to show this
topic at the basic level, we will basically describe the Press-Schechter [113] and the peak
theory [114] procedures.

In both cases, we consider the amplitude of the peak of density contrast in the comov-
ing slicing, (usually denoted in the literature as ∆0 ≡ δρ(0)/ρb [115,116]), as a statistically
distributed variable. The power spectrum associated with the density contrast is defined
as,

P∆(k, t)δ(k, k′) =
1

(2π)3
< ∆(k, t)∆(k′, t) > (3.2)

and the moments j of P∆ are given by,

σ2
j (t) =

∫
k2dk

2π2
P∆(k, t)k2j. (3.3)

In the Press-Schechter formalism we make two assumptions: i) the density contrast
field ∆ is a Gaussian variable ii) perturbations with ∆ > ∆c will collapse and form a
PBH. So basically we integrate the probability distribution P (∆) over the range ∆c ≤
∆ < ∆max, where ∆max is the maximum allowed value. In practise, we integrate up
to ∆max → ∞ since the probability distribution is a rapidly decreasing function above
∆c, and therefore doesn’t change the result and allows to simplify the computation. It’s
important to notice that ∆c 6= δc, since we are comparing the critical density contrast
with the critical averaged density contrast.

Finally, consider a Gaussian distribution probability distribution,

P (∆) =
1√

2πσ0

e
− ∆2

0
2σ2

0 , (3.4)

the abundance of PBHs can be computed as,

β =
ρPBH
ρb

= 2

∫ ∞

∆c

MPBH

MH

P (∆)d∆ =

∫ ∞

∆c

K(∆−∆c)
γP (∆)d∆ ≈ Kσ2γ

0 erfc

(
∆c√
2σ0

)
(3.5)

The procedure in the peak theory approach is a bit different. It makes statistics on
counting the numbers of over threshold peaks on the over-density, another approach usses
ζ instead, see chapter 7.
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We summarize the procedure done in [116] to estimate the abundances through peak
theory.

We define the variable ν = ∆0/σ0, where ∆0 is the value of the peak of ∆. In the rare
peak assumption we have that ν � 1. The number of rare peaks is given by [114],

N (ν) =
1

a(tf )3

1

4π2

(
σ1

3
√
σ0

)3

ν3e−ν
2/2θ(ν − νc) (3.6)

where tf is the final time when the PBH is formed. It’s clear that we are considering
only that peaks higher than the threshold value νc will contribute to the formation of
PBHs. Therefore, the abundance of PBHs can be computed as,

β =

∫ ∞

νc

ρPBH(ν)

ρb(tf )
=

∫ ∞

νc

MPBH(ν)N(ν)

ρb(tf )
.

(3.7)

The scaling law mass, in terms of ν is given by ,

MPBH = KMH(tm)

(
σ0

a2
mH

2
m

)
(ν − νc)γ (3.8)

where MH(tm) = 4πM2
pl/Hm and tm is roughly the time of horizon crossing (when

the length-scale of the perturbation equals the Hubble horizon) . Taking into account
that numerical simulations has shown that af ≈ am ≈ 3, and using the saddle point
approximation [117] νs ≈ νc + γ/νc, finally we get,

β ≈
√

2

π
K
(

σ1

3amHm

)
σ
γ−3/2
0 ν1−γ

c γγ+1/2e−ν
2
c /2 (3.9)

From Eq.3.9 we clearly see the exponential dependence on the threshold for PBH
formation and the linear dependence on the constant K associated to the scaling law.

These two methods are however only an approximation of the true statistics which
consider the fact that each statistical realization of profiles have different threshold. This
was developed in [118], we will not discuss it here as it is beyond the scope of this
section. However, as it can be seen in [118] one finds again the generic behaviour that β
is exponentially sensitive to the threshold.

3.3 Other scenarios of PBH formation
In this thesis, we mainly focus on the study of PBH formation from a collapse of primordial
density perturbations with an equation of state p = wρ, in the case 0 < w ≤ 1. Although
that, many other mechanisms and scenarios could have lead to black holes formed in
the very early universe [12]. The case w = 0 is very special as the threshold of PBH
formation, for a infinitely long matter domination era is 0. Thus a study of abundances,
where the universe is matter-dominated for a finite time, differs a lot from the case of
radiation [119–121]
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Moreover, we have considered until now spherical symmetry, but a non-spherical effect
could dramatically change the threshold value. Some analytical estimations taking into
account an ellipsoidal collapse were done in the past, showing that the effect could be
important [122], but recently a numerical simulation taking into account a small (per-
turbative) non-sphericity initial condition (in radiative fluid) showed that the effect is
not important for the abundances calculation [123]. This situation could dramatically
change if we consider an equation of state different from radiation. In particular, for a
matter-dominated Universe, the effect of any sphericity could be important [124]. An-
other possibility is the inclusion of angular momentum; some analytical estimations have
been done [125], but still is necessary numerical simulations to test those arguments.

On the other hand, one of the most exciting scenarios is the PBH formation from
the collapse of Q-balls and Oscillons, which are features of supersymmetric extensions
of the standard model [126]. Specific realizations of those ideas are done throughout
theory motivated scalar field potentials, e.g, the axion-monodromy potential [127]. The
mechanism for PBH formation of all these cases is naively similar: small number densities
of defects lead to large fluctuations relative to the background density. These fluctuations
become gravitationally bound and collapse to form black holes once the relic density has
come to dominate. Finally, the relics decay due to some instabilities. Recently, it has
been argued that some solitonic type solutions like Q-balls and Oscillons could produce
a significant fraction of dark matter in the form of PBHs [50–53, 128], without relying
on any spectrum of density perturbations. A related mechanism for PBH production is
radiative cooling due to scalar radiation. This was shown with a simple model of fermion
with Yukawa interaction in [129].

Another mechanism is through the collapse of domain walls. Domain walls are topo-
logical defects that may form when a discrete symmetry is spontaneously broken in the
very early Universe. Several works have addressed this scenario and have shown the
possibility to form PBHs and with astrophysical consequences [71,130].

Similarly, it was also shown that vacuum bubbles could lead to a successful channel for
PBH production [131, 132]. They could have been formed during the inflationary epoch
through a nucleation process. After inflation and depending on their size, these bubbles
could collapse, forming black holes or baby universes. The mass spectrum of these objects
was shown to be very broad, and they could serve as seeds of supermassive black holes.

Another possibility comes from the collapse of cosmic strings, which are 1 + 1 topo-
logical defects that are predicted beyond the Standard Model [133,134].
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CHAPTER 4

NUMERICAL SIMULATIONS OF PBHS

This chapter introduces the two main ingredients of this thesis: The Misner-Sharp equa-
tions and the numerical technique used to solve them.

4.1 Misner-Sharp equations
The Misner-Sharp equations [33] describe the motion of a spherically symmetric relativis-
tic fluid. The starting point is to consider an ideal fluid with energy momentum tensor
T µν = (p+ ρ)uµuν + pgµν with the following line element:

ds2 = −A(r, t)2dt2 +B(r, t)2dr2 +R(r, t)2dΩ2, (4.1)

where dΩ2 = dθ2 + sin2(θ)dφ2 is the line element of a 2-sphere and R(r, t) is the areal
radius. The components of the four velocity uµ (which are equal to the unit normal vector
orthogonal to the hyperspace at cosmic time t uµ = nµ), are given by ut = 1/A and ui = 0
for i = r, θ, φ. From now on, we will use units GN = 1.

In the Einstein field equations appear the following quantities:

1

A(r, t)

∂R(r, t)

∂t
≡ DtR ≡ U(r, t),

1

B(r, t)

∂R(r, t)

∂r
≡ DrR ≡ Γ(r, t), (4.2)

where Dt and Dr are the proper time and distances derivatives. U is the radial
component of the four-velocity associated to an Eulerian frame. It measures the radial
velocity of the fluid with respect to the centre of coordinates. The Misner-Sharp mass is
introduced as

M(r, t) ≡
∫ R

0

4πR2ρ

(
∂R

∂r

)
dr , (4.3)

which is related with Γ, U and R though the constraint:

Γ =

√
1 + U2 − 2M

R
. (4.4)
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The mass M(r, t) includes contributions from the kinetic energy and gravitational poten-
tial energies. Finally, the Misner-Sharp equations governing the evolution of a spherically
symmetric collapse in non-linear full general relativity are:

DtU = −
[

Γ

(ρ+ p)
Drp+

M

R2
+ 4πRp

]
, (4.5)

DtR = U, (4.6)

Dtρ = −(ρ+ p)

ΓR2
Dr(UR

2), (4.7)

DtM = −4πR2Up, (4.8)
DrM = 4πΓρR2, (4.9)

DrA =
−A
ρ+ p

Drp . (4.10)

The boundary conditions are R(r = 0, t) = 0, leading to U(r = 0, t) = 0 and M(r =
0, t) = 0. Then, by spherical symmetry, we have Drp(r = 0, t) = 0.

4.2 Cosmological set up for PBH formation
We apply the Misner-Sharp equations in the cosmological context within a FRW back-
ground. To close the system we need to give the equation of state of the fluid, which in
our context is p = ωρ. At r →∞ we want to match with the FRW background, but in a
numerical simulation we have to handle with a finite grid. Then, to match the outer point
of the grid with the FRW solution and to avoid reflections from pressure waves, we have
used the condition Drp(r = rf , t) = 0 (where rf if the outer point of the grid). Eq.(4.9) is
called the Hamiltonian constraint, we will use it later on for numerical checks. Eq.(4.10)
can be solved analytically imposing A(rf , t) = 1 to match with the FRW spacetime. This
gives:

A(r, t) =

(
ρb(t)

ρ(r, t)

) ω
ω+1

, (4.11)

where ρb(t) = ρ0(t0/t)
2 is the energy density of the FRW background and ρ0 = 3H2

0/8π.
Using the definitions of Eq.(4.2), we can rewrite Misner-Sharp equations in a more con-
venient way to perform the numerical simulations:

U̇ = −A
[

ω

1 + ω

Γ2

ρ

ρ′

R′
+
M

R2
+ 4πRωρ

]
, (4.12)

Ṙ = AU, (4.13)

ρ̇ = −Aρ(1 + w)

(
2
U

R
+
U ′

R′

)
, (4.14)

Ṁ = −4πAωρUR2, (4.15)

where (̇) and (′) represents the time and radial derivative respectively. At superhorizon
scales the metric Eq.(4.1) can be approximated, at leading order in gradient expansion,
by the following metric [40]:
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ds2 = −dt2 + a2(t)

[
dr2

1−K(r)r2
+ r2dΩ2

]
. (4.16)

The cosmological perturbation will be encoded in the initial curvature K(r). At lead-
ing order in gradient expansion, the product K(r)r2 is proportional to the compaction
function C(r) [40], which represents a measure of the mass excess inside a given volume.
More specifically,

C(r, t) =
2 [M(r, t)−Mb(r, t)]

R(r, t)
. (4.17)

We now define the location of the maximum of C(r) as rm, its value Cmax = C(rm) is going
to be used as a criteria for PBH formation [39, 40]. By defining ε(t) = RH(t)/a(t)rm,
one can solve Misner-Sharp equations at leading order in ε � 1. RH(t) = 1/H(t) is the
cosmological horizon and rm is the length scale of the perturbation. This approach is the
so-called long wavelength approximation [40] (or gradient expansion). We have:

A(r, t) = 1 + ε2(t)Ã(r),

R(r, t) = a(t)r(1 + ε2(t)R̃(r)),

U(r, t) = H(t)R(r, t)(1 + ε2(t)Ũ(r)),

ρ(r, t) = ρb(t)(1 + ε2(t)ρ̃(r)),

M(r, t) =
4π

3
ρb(t)R(r, t)3(1 + ε2(t)M̃(r)),

(4.18)

where for ε→ 0 we recover the (FRW) solution. The perturbations of the tilde variables
in the linear regime were computed in [93] (see the appendix A for the details of the
derivation), which we summarize here:

ρ̃(r) =
3(1 + ω)

5 + 3ω

[
K(r) +

r

3
K ′(r)

]
r2
m,

Ũ(r) = − 1

5 + 3ω
K(r)r2

m,

Ã(r) = − ω

1 + ω
ρ̃(r),

M̃(r) = −3(1 + ω)Ũ(r),

R̃(r) = − ω

(1 + 3ω)(1 + ω)
ρ̃(r) +

1

1 + 3ω
Ũ(r).

(4.19)

The background solution equations are: H(t) = H0t0/t , a(t) = a0(t/t0)α and RH(t) =
RH(t0)(t/t0) where a0 = a(t0) , H0 = H(t0) = α/t0 and RH(t0) = 1/H0. Moreover we
define α = 2/3(1 + ω). We establish a time scale given by ε(tm) = 1, which leads
tm = t0(a0rm/RH(t0))1/(1−α).

The amplitude of a cosmological perturbation can be measured by the mass excess
within a spherical region:

δ(r, t) =
1

V

∫ R

0

4πR2 δρ

ρb
R′dr, (4.20)
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where V = 4πR3/3 and at leading order in ε gives:

δ(r, t) =

(
1

aHrm

)2

δ̄(r), (4.21)

where

δ̄(r) = f(w)K(r)r2
m, (4.22)

f(ω) = 3(1 + ω)/(5 + 3ω). (4.23)

In the long wavelength approximation, C(r, t) ' C(r) = f(ω)K(r)r2 = r2δ̄(r)/r2
m [42],

which yields C(rm) = δ̄(rm) = δ̄m. Because of the above definitions the value of rm is
given by the solution of:

K(rm) +
rm
2
K ′(rm) = 0. (4.24)

After the initial conditions are given the compaction function starts to evolve non-linearly
and becomes time dependent. The first apparent horizon is then formed whenever the
maximum of the compaction function is about one (for a more formal discussion see [135]).
We define the threshold for primordial black hole formation as δc such that a PBH is
formed whenever δ̄(rm) ≥ δc. 1

4.3 Pseudo-spectral technique
Most of the times, PDEs can not be solved analytically and numerical method are needed.
Actually, a numerical solution could be even better than an analytical solution, since could
be very tedious to obtain an analytical solution.

Instead of using a Lagrangian hydrodynamic technique with finite differences, we have
implemented the Pseudo-spectral Chebyshev collocation method to compute the spatial
derivatives in the Einstein field equations. The time evolution is instead solved with
fourth-order explicit Runge-Kutta method. In the following we explain the use of the
pseudo-spectral technique, see also [136] and [137].

Consider a function f(x) and fit with Ncheb Chebyshev polynomials (although this
could be any kind of orthonormal function). More specifically we can define the approxi-
mated function:

fNcheb
(x) =

Ncheb∑

k=0

ckTk(x), (4.25)

where Tk(x) are the Chebyshev polynomial of order k. The coefficients ck, k = 0, 1, ..., Ncheb

are then obtained by solving fNcheb
(xk) = f(xk) where xk = cos(kπ/Ncheb). Those points

are called Chebyshev collocation points and correspond to T ′k(xk) = 0. The solution is

fNcheb
(x) =

Ncheb∑

k=0

Lk(x)f(xk), (4.26)

Lk(x) =
(−1)k+1(1− x2)T ′Ncheb

(x)

c̄kN2
cheb(x− xk)

, (4.27)

1Here we use a slightly different notation for δm from the paper of [42] to avoid confusion due to the
use of the linear extrapolation.
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where c̄k = 2 if k = 0, N and c̄k = 1 in other cases. The functions Lk are called Lagrange
interpolation polynomials. With this we can easily obtain the p derivative to be:

f
(p)
Ncheb

(xi) =

Ncheb∑

k=0

L
(p)
k (xi)fNcheb

(xk). (4.28)

Defining the Chebyshev differentiation matrix D(p) = {L(p)
k (xi)} we have :

D
(1)
i,j =

c̄i
c̄j

(−1)i+j

(xi − xj)
, (i 6= j), i, j = 1, ..., Ncheb − 1, (4.29)

D
(1)
i,i = − xi

2(1− x2
i )
, i = 1, ..., Ncheb − 1, (4.30)

D
(1)
0,0 = −D(1)

Ncheb,Ncheb
=

2N2
cheb + 1

6
. (4.31)

We use the following identity to compute the diagonal terms of the matrix D quoted
before:

D
(1)
i,i = −

Ncheb∑

j=0,j 6=i
D

(1)
i,j , (4.32)

which gives a substantial improvement regarding the round-off errors in the numerical
computations (see [137] for details).

The crucial advantage of spectral methods in comparison with finite differences is that
the error decays exponentially in Ncheb. With finite differences instead, error decays like
1/N v , where N is again the sample of points and v is a positive number. Moreover a
crucial benefit of spectral methods respect to finite differences is that the derivative at a
given point is computed globally taking into account the value of all the other points, in
comparison with finite differences where the derivative at a given point only takes into
account the neighbours.

In our particular case, the domain of the radial coordinate is given by Ω = [rmin, rmax]
where rmin = 0 and rmax = NHRH(t0). NH is the number of initial cosmological horizon,
which in general is taken to be NH ∼ 90 as it is done in the literature [38]. Since our
domain is not [−1, 1] (which is the domain for the Chebyshev polynomials), we need to
perform a mapping between the spectral domain to the physical one. We have used the
following linear mapping (other options are possible):

x̃k =
rmax + rmin

2
+
rmax − rmin

2
xk. (4.33)

x̃k are the new Chebyshev points rescaled to our domain Ω. In the same way, the Cheby-
shev matrix can be rescaled in a straightforward way using the chain rule:

D̃ =
2

rmax − rmin

D. (4.34)

To implement a Dirichlet boundary condition at given xk, such that f(x = xk) = uD,bc,
it is only needed to fulfil fNcheb

(x = xk) = uD,bc. Instead, in case of Neumann boundary
condition such that f (1)(x = xk) = uN,bc, then (D · fNcheb

)(x = xk) = uN,bc. The stability
of the method depends on the value of Ncheb and dt used. An increment of the spatial
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resolution will require an enough small time step dt to avoid instabilities during the
evolution.

In order to numerically solve the system 4.12, we have used the publicly available code
based on pseudo-spectral methods [43]. The time integration of the differential equations
is performed with a fourth-order explicit Runge-Kutta method, while the Chebyshev
collocation method is used to discretise the grid and evaluate the spatial derivatives [136].
In this method, the spatial domain is discretised in a Chebyshev grid, whose nodes are
given at xk = cos(kπ/Ncheb), where k = 0, 1, .., Ncheb and Ncheb is the number of points
on the grid. To compute the spatial derivatives at the Chebyshev points we use the
Chebyshev differentiation matrix D.

Pressure gradients increase with increasing w implying the necessity of also increasing
the numerical accuracy. Therefore, for w > 1/3, we have improved the previous technique
by using a composite Chebyshev grid: we split the full domain in several Chebyshev
grids that differ in terms of the necessary density of points to reach the desired accuracy.
More technically, our domain is divided into M subdomains given by Ωl = [rl, rl+1] with
l = 0, 1...,M . Since the Chebyshev nodes are defined in [−1, 1], we also perform a mapping
between the spectral and the physical domain for each Chebyshev grid. In particular, we
use a linear mapping for each subdomain defined as:

x̃k,l =
rl+1 + rl

2
+
rl+1 − rl

2
xk,l, (4.35)

where x̃k,l are the new Chebyshev points re-scaled to the subdomain Ωl. In the same way,
the Chebyshev differentiation matrix is re-scaled using the chain rule:

D̃l =
2

rl+1 − rl
Dl. (4.36)

Each subdomain is independently evolved in time with the Runge-Kutta 4 methods. The
spatial derivative in each subdomain is computed by the associated Chebyshev differen-
tiation matrix D̃l.

In order to evolve across different Ωls we need to impose boundary conditions. For
this, we have followed the approach of [138]. At the boundaries between subdomains, the
time derivative of each field is computed. Then, the incoming fields derivative is replaced
by the time derivatives of the outgoing fields from the neighbouring domain. Following
an analysis of the characteristics like the one performed in [138], we have checked that all
the fields are incoming except for the density field, which is directed outwards. In other
words, the BC that we should apply between each subdomain is given by:

Ṁ(t, rl+1,i) = Ṁ(t, rl,f ), (4.37)
U̇(t, rl+1,i) = U̇(t, rl,f ),

Ṙ(t, rl+1,i) = Ṙ(t, rl,f ),

ρ̇(t, rl,f ) = ρ̇(t, rl+1,i) .

Where rl+1,i and rl+f means the first grid point in the subdoiman Ωl and Ωl+1 respec-
tively.

4.4 Numerical procedure
In this chapter will test our code in a radiation dominated universe. In other words,
we will fix ω = 1/3 and therefore f(ω) = 2/3. In all our numerical simulations we are

22



Chapter 4 Albert Escrivà Mañas

setting t0 = 1 and a0 = 1, which yields H0 = 1/2, RH(t0) = 2. For the length scale
of the perturbation, we have taken rm = 10RH(t0) as done in the literature [93], giving
tm = 102t0. This ensures that the long wavelength approximation is fulfilled. To find δc
we have implemented a bisection method which scans different regimes of δ̄ until finding
the range in which the collapse will happen. The threshold δc is defined as the mid point
of this range.

It’s useful to know that δc is bounded from above by δc = f(ω). This can be directly
inferred by noticing that since Γ2 = 1 − K(r)r2, then K(rm)r2

m = 1 as maximum. The
numerical procedure that we have established is described as follows:

• Set up the number of Chebyshev points Ncheb and create the grid of points xk.
This yields the Chebyshev differentiation matrix D. If needed, consider different
subdomains Ωl to increase the accuracy.

• Introduce the initial time step dt0 and the length scale value rm.

• Choose a lower and an upper bound in δ̄ to perform the domain of the bisection
method. In our case, we have chosen δmax = 2/3 and δmin = 2/5 [45] (although
this can be changed to establish a domain closer to δc to reduce the computational
time).

• Given a curvature profile K(r) , such that K(r) = AK̄(r) with K̄(0) = 1, com-
pute the tilde perturbations in the other hydrodynamical magnitudes following
Eqs.(4.18,4.19), except by the curvature amplitude A that multiplies all this per-
turbations.

• Once the bisection method starts and a value of δ̄m is taken, the corresponding value
of A is computed to set up the profile K(r).

• Use the four-order Runge-Kutta equations to integrate the equations at each time-
step dt, imposing as well boundary conditions at each internal time step.

• Compute at each iteration time the value of the maximum of the compaction func-
tion Cmax. Once it approaches Cmax ≈ 1 an apparent horizon is formed. This
corresponds to a given value of δc,yes (a black hole will form). Next step is search
for a lower value of δ̄m via bisection method modifying the bound such that δc ∈
[δmin, δc,yes] and we go to the next iteration in the bisection. Otherwise, if Cmax ≈ Cmin

(in our simulations we take in general Cmin ≈ 0.3, this is related to the fact that
δmin = 2/5) then the perturbation disperses (it is not going to form a black hole)
getting a value δc,no and we go to the next iteration in the bisection, modifying the
bound such that δc ∈ [δc,no, δmax].

• With the previous result, the bisection method is iterated until the difference be-
tween δc,yes and δc,no becomes less than the resolution that we set to compute the
value of δc, δc,yes − δc,no . δ(δc). Where we infer that δc = (δc,yes + δc,no)/2 ± δ(δc).
If during the bisection (δ − δc) goes beyond the resolution of the method, then the
trial δ is shifted according to δ(δc).

For the Runge-Kutta we have used a conformal time step dt = dt0(t/t0)α as it improves
significantly the running time. To test our code, we use the 2-norm of the Hamiltonian
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constraint equation Eq.(4.9) in all the simulations, which is expected to remain con-
stant from the beginning if Einstein equations are correctly solved during the simulations.
Specifically:

H = DrM − 4πΓρR2, (4.38)

|| H ||2 ≡
1

Ncheb

√∑

k

∣∣∣M
′
k/R

′
k

4πρkR2
k

− 1
∣∣∣
2

. (4.39)

The maximal resolution that we have been able to obtain is δc,yes−δc,no > O(10−5). The
reason is that large pressure gradients develop once δ approaches the self-similar critical
solution, and so there the accuracy in computing derivatives is limited. The situation
depends on the profile considered and it was already observed in [38].

4.5 Numerical results

4.5.1 FRW solution

Here we check that our code reproduces the FRW solution. To do that, we have computed
the relative error of the different variables ρ, U,M,R ( A and Γ depends on the previous
ones) with respect to the FRW analytical solution. We define δXi = X(xi) − Xb(xi),
where X are the variables that we solve in the Misner-Sharp equations. To test our code
against the FRW solution we compute the variance,

‖δX‖2 =
1

Ncheb

√∑

k

| δXk |2. (4.40)

In Fig. 4.1 we see ‖δX‖2 for the different hydrodynamical variables and we see a
good convergence to the analytical solution. Already for Ncheb = 7 we have at least a
O(10−9) accuracy. Obviously for a curvature profile that is not homogeneous the number
of Chebyshev points would need to be increased because the pressure gradients are not
vanishing.

4.5.2 Curvature profiles

In this section we are going to test our code against the results obtained in [42] for centrally
peaked profile, the ones relevant for cosmology [116,139]. In other words we shall consider
the following profiles for initial curvature perturbations:

K̄(r) ∼ e−
1
q

(r/rm)2q

, (4.41)

where q parametrizes the slope of the profiles.
For q = 1 we recover the Gaussian curvature profile. Here we get δc ≈ 0.49774±2·10−5,

which matches the one quoted in the literature (δc ≈ 0.5 [42]). This value was obtained
by using dt0 = 10−3 and a single domain with Ncheb = 400. We have cheeked that this
result is stable under the increment of Ncheb (or using several subdomains) and/or the
reduction of dt0.

In addition, to check the correctness of the numerical procedure of the bisection at
each iteration, we have computed ‖H‖2, which can be found in Fig. 4.2. We see that
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Figure 4.1: ‖δX‖2 with Ncheb = 7 in all cases for dt = 10−2.5 (black), dt = 10−3.0 (red),
dt = 10−3.5 (green) and dt = 10−4.0 (blue).

the constraint is violated at late times for (δ − δc) ≈ O(10−5). This sets the maximal
resolution we can achieve in this case.

Finally, in Fig. 4.3, we have tested our code against the different profiles parameterized
by q in the range q ∈ [0.5, 14.6]. Our results match with very good accuracy the ones
of [42].

4.5.3 Gaussian profile in details

In Figs. 4.4,4.5 and 4.6 we see the evolution of the variables ρ,Γ, U and C for the Gaussian
profile q = 1 in the, respectively, supercritical (δ > δc), subcritical (δ < δc) with δ − δc �
O(10−3) and critical δ − δc 6 O(10−3) cases.

• In Fig. 4.4 (the super-critical case) we see that the Cmax grows during the evolution.
From the same figure it is also evident the formation of two apparent horizons (where
at the location of the horizons is satisfied that 2M/R = 1), as discussed in [135]. The
outer horizon moves outwards and the inner moves faster than the outer inwards.
Once the inner horizon approaches the center of coordinates the simulation breaks
due to the appearance of the singularity.

In Fig. 4.5 (the sub-critical case) Cmax decreases continuously as the perturbation is
diluted away due to the dominance of pressure gradients.

In Fig. 4.6 (the critical case) Cmax first decreases and then bounces to re-increase
again.
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Figure 4.2: Left Panel: Hamiltonian constraint for the iterations of the bisection pro-
cedure in the case of the Gaussian curvature profile whose are leading to the formation
of a black hole. Right panel: Hamiltonian constraint for the iterations of the bisection
procedure in the case of the Gaussian curvature profile whose perturbations are going
to disperse and not form a black hole In both cases dt0 = 10−3, Ncheb = 400. We have
subtracted the initial Hamiltonian constraint for each evolution of δ in both cases.
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Figure 4.3: Values of δc for different values of q. Points are the values that we have got
numerically. Blue line is the curve from [42] got using [140]. All the computations has
been done with dt0 = 10−3 with Ncheb = 400, unless in some cases has been necessary to
increase Ncheb to get the same accuracy in the determination of δc.

• From the Figs. 4.4, 4.5 and 4.6 we see that Γ is not constant during the evolution.
This implies, as it should, that the long wavelength approximation breaks down
during the evolution.

• In Fig. 4.4 (super-critical case) we see that U/Γ decreases quickly in time. Instead, in
Fig. 4.5 (sub-critical case) only a small negative value U/Γ is reached for early times,
and after that no negative values can be found, which means that the perturbation
is dispersing avoiding the collapse. The most remarkable behavior is found in the
critical case Fig. 4.6. Here the fluid splits into two parts, one going inwards (negative
U) and one outwards (positive U) generating an under-dense region. This under-
dense region re-attract the fluid with a net effect of a rarefaction and compression
process which gets faster and faster. This is the reason why the code is not able to
follow the evolution up to the final time BH formation.

Let us finally remark something about the long wavelength approximation. As can
be seen in Fig. 4.7 the threshold δc (as well as Cmax) has some small dependence in
terms of ε. It is obvious that the difference between the asymptotic critical value and
the one numerically found grows with ε. Thus, a physical limitation (not numerical) on
the resolution of δc of O(10−3) is already present, due to the use of the long wavelength
approximation to build the initial conditions.

4.5.4 Power-spectrum profiles

In this section, we aim to provide a test of the stability of our code for profiles that differ
from the ones studied before in Eq.(4.41). The main difference are under- and over-density
oscillations away from the peak of the curvature.
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Figure 4.4: Dynamical evolution of the different magnitudes at a given time t for a
supercritical perturbation in case of q = 1 and δ = 0.51. We have taken dt0 = 10−3 and
Ncheb = 800 in the simulation.
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Figure 4.5: Dynamical evolution of the different magnitudes at a given time t for a
subcritical perturbation in case of q = 1 and δ = 0.49. We have taken dt0 = 10−3 and
Ncheb = 800 in the simulation.
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Figure 4.6: Dynamical evolution of the different magnitudes at a given time t for a
perturbation with δ ≈ δc in case of q = 1 with δ = 0.49775 and δc = 0.49774 ± 2 · 10−5.
We have taken dt0 = 10−3 and Ncheb = 800 in the simulation.
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The profiles used here are sub-classes of the mean profiles obtained with the procedure
outlined in [116] by broken power spectrums of the form

P (k) = 0 if k < kp, (4.42)

P (k) = P0

(
k

kp

)−n
if k ≥ kp ,

(4.43)

which are relevant for cosmological applications [139]. In particular, we shall only
consider the convergent cases of n ≥ 0. In Eq.(4.43) kp is the wavelength of the peak.
After a straightforward computation, one finds that the mean curvature is

K̄(r) = 3n
2(kpr)3 [−kpr {E3+n(−ikpr) + E3+n(ikpr)}

+ i {E4+n(ikpr)− E4+n(−ikpr)}] , (4.44)

where

En(x) =

∫ ∞

1

e−xt

tn
dt. (4.45)

From a given value of rm and n, we get the correspondent value of kp solving nu-
merically Eq.(4.24). An important difference from these profile with respect to the ones
studied before is that here we needed to consider a larger number of Ncheb in order to
capture the oscillations of the curvature. Finally, in Fig. 4.9 are shown the thresholds
obtained for different values of n.

Finally, we have tested the spectral convergence of the profiles considered in terms of
the Hamiltonian constraint, the results can be seen in Fig. 4.10.

4.6 Mass spectrum
It is known that for δ̄(rm) close to the critical value δc the mass of the black hole follows
the following scaling law [26–28]

MBH = MHK(δ − δc)γ, (4.46)

where γ ≈ 0.36 in radiation. In Eq.(4.46) the constant K is a correction factor due to the
choice of the reference massMH ≡ 1/2H(tm), where the Hubble scale has been calculated
at the time rmH(tm)a(tm) = 1. The scaling law starts to deviate at (δ−δc) & 2·10−2, [28].

To test our code, in this section we will numerically obtain the constant K, for a
Gaussian profile. Moreover, in the cosmological context, one needs the value of K to
estimate the PBH abundances [116].

Previous numerical computations were performed in the region up to (δ−δc) ≈ 10−1.2.
We will show in the following, for the first time, the mass range for large values of δ̄(rm)
up to the maximal value 2/3.

The way we will find the mass spectrum is by the implementation of an excision
technique [141] which avoids the region of large curvatures in the Misner-Sharp evolution
where the code would break.
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Figure 4.7: Top panel: threshold δc for the curvature Gaussian profile for different values
of ε, taking Ncheb = 400 and dt0 = 10−3. Black points are δc,yes and red points δc,no.
Bottom panel: Cmax in terms of ε computed with Eq.(4.17).

Figure 4.8: Curvature profile K̄(r) in terms of n using Eq.(4.44).
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Figure 4.9: Values of δc for different values of n for the curvature profile of Eq.(4.44).
Simulations done with Ncheb ≈ 700 and dt0 = 10−3.

Figure 4.10: Spectral convergence for different curvature profiles. Red points corresponds
to the profile of Eq.(4.41) with q = 1, green points corresponds to q = 5 and blue points to
the profile of Eq.(4.44) with n = 15. The black solid line is the exponential fit ∼ e−αNcheb

with α ≈ 0.23, 0.031, 0.092 respectively for the cases quoted before.

33



Numerical simulations of primordial black holes Chapter 4

The key idea of excision is that the evolution of matter inside the horizon cannot
affect the physics outside. The excisions follow the motion of the apparent horizon. The
implementation of this technique is straightforward using spectral method, in contrast
with finite differences [142], since the derivative at the excision boundary (that we have
to define when we cut part of the computational domain) is computed without taking into
account points that lies inside the inner boundary (in finite differences it is necessary to
interpolate).

Unfortunately, the excision technique cannot be used until the formation of the black
hole. This is due to the fact that the velocity of the outer horizon is too small and
the initial resolution is not enough to follow the change in apparent horizon. Of course
this can be solved with an implementation of some kind of AMR for spectral methods,
like junctions of Chebyshev grids. We will however follow here another (semi-analytical)
direction.

To estimate the final mass of the PBH, we have used the Zeldovich-Novikov formula
Eq.(4.47), which assumes Bondi accretion [143–145]. It is important to highlight that
this is not applicable at the moment of formation of the horizon, since it neglects the
cosmological expansion [146], but we can apply from sufficiently late times after the
formation of the PBH considering an effective constant accretion rate F [144, 145]. This
approximation was already employed in the context of PBH formation from domain walls
in [58].

In particular, at the final stage of the BH formation, the mass accretion follows the
law

dM

dt
= 4πFR2

BHρb(t) . (4.47)

F is usually numerically found to be of order O(1). By the condition of apparent
horizon RBH = 2MBH, the previous equation is solved as:

MBH(t) =
1

1
Ma

+ 3
2
F
(

1
t
− 1

ta

) , (4.48)

where Ma is the initial mass when the asymptotic approximation is used at the time ta .
We will find F by fitting the numerical evolution of the mass via the excision method.

Once found it, the PBH mass will be inferred as the asymptotic mass at t→∞, i.e.

MBH(t→∞) =

(
1

Ma

− 3F

2ta

)−1

. (4.49)

4.6.1 Excision technique

The main idea of the excision technique implemented here is to dynamically remove part
of the computational domain within the horizon, that would otherwise develop large
gradients and eventually break down the simulation.

To do that, we have defined two parameters, ∆r and dr. ∆r is the separation between
the excision boundary and the apparent horizon that we set after each redefinition of the
excision surface. dr is the maximum allowed displacement of the apparent horizon before
we redefine the excision surface. We consider always that ∆r > dr.
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We locate the position of the apparent horizon (defined as 2M(r, t)/R(r, t) = 1) after
each time step using a cubic spline interpolation (we have checked that the difference in
M(r, t) taking a quadratic spline interpolation are O(0.01%)).

Specifically, the exact procedure we have used is the following:
At the time when Cmax ≈ 1.2 (the result is not affected by the exact choice as long

as Cmax ≈ O(1)), we remove part of the computation domain creating an excision surface
close to the apparent horizon whose separation with the excision boundary is precisely
given by ∆r. After that, the system is evolved as usual in the new Chebyshev grid with
the new domain (the Chebyshev differentiation matrix has to be redefined as well). Once
the apparent horizon has displaced a distance greater than dr, we redefine a new excision
surface close to the new location of the apparent horizon, again with the same separation
∆r. We repeat this process continuously.

The values of ∆r and dr are slightly reduced in time when is needed. This is particu-
larly important for the smallest values of δ − δc. To do that, when a simulation is going
to break down due to large gradients, we return to a "safe point", reducing ∆r and dr.
After that, we proceed with the usual way.

The values that we have considered are ∆r ≈ 2dr ≈ O(10−2). ∆r and dr can not be
taken arbitrarily small, due to the limitation of the resolution given by the Chebyshev
grid. An AMR can solve this, but the current implementation worked already well for
our purposes.

Although we didn’t apply boundary conditions at the excision surface, (in comparison
with r = 0) we found that freezing the value of ρ′ at the excision surface, after each
redefinition of the boundary, increases the stability of the procedure without changing
the results.

For the computation of the excision we have taken at least Ncheb = 1000, to increase
the resolution and be able to make the excision sequentially.

4.6.2 Numerical results

The evolution of the black hole mass in time MBH(t) can be seen in Fig. 4.11.
In order to check when the approximation of Eq.(4.48) is valid, we have computed

the ratio of the increment of the black hole mass respect the Hubble scale Ψ = Ṁ/HM ,
which is expected to be Ψ < 1 when the evolution satisfy this regime. We have made
a non-linear fit in the Eq.(4.48) to get the parameters ta, Ma and F to estimate the
mass of the black hole. The range of numerical values that we use to make the fit are
those which fulfill Ψ . 0.1, which works well for our purposes. We have checked that
the Hamiltonian constraint is fulfill until late time, when the simulation breaks, Fig. 4.12.
Nevertheless, we have tested that the evolution of the mass is not affected by the violation
of the constraint. The results can be found in Fig. 4.12. Interestingly, we see a crossing
for different evolution of Ψ at a given time t∗.

The values of F that we get goes from F ∈ [3.5, 3.75] increasing the value of δ. This is
consistent with the one reported in [58] where a value of F ≈ 3.8 was got for large black
holes, although the mechanism of PBH formation is different. We have checked always
that the fit performed is accurate, getting a variance of σmax ≈ 10−2.5. The standard
deviation sd of the parameters are sd(ta) ≈ 10−9, sd(Ma) ≈ 10−5 and sd(F ) = 10−5.

We have used the values of MBH in the range of δ ∈ [0.505, 0.51] to estimate the value
of K from the scaling law, taking into account that δc = 0.49774 and γ = 0.357. The
values of K in this domain of δ are K ∈ [5.87, 5.96], making an average we get K = 5.91.
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Figure 4.11: Mass of the BH in time after the formation of the apparent horizon for
different values of δc. The dashed line corresponds to the analytical fit with Eq.(4.48).

Figure 4.12: Top panel: Hamiltonian constraint during the excision procedure for different
values of δ. Bottom panel: Evolution of Ψ in time. The crossing point is around t/tm ≈
37.5.
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This values differs in 1.9% from the value quoted in the literature with K = 6.03. The
values of MBH in terms of δ can be found in Fig. 4.13.

Finally, for the first time we present the values of MBH for large values of δ until
δmax = 2/3. We observe that the scaling law deviates at the higher end of in the δ range
up to O(15%), as can be seen in the subplot of Fig. 4.13. For this particular case we obtain
that the maximum allowed mass of the black hole is Mmax(BH) ≈ 3.7MH. Is expected that
this deviation is not going to significantly affect the PBH abundances due to the rarity
of such perturbations.

Figure 4.13: Values ofMBH/MH in terms of (δ−δc). The solid red line corresponds to the
scaling law behaviour with γ = 0.357, δc = 0.49774 for K = 6.03 and the blue solid line
with the numerical value for K = 5.91. Dark points are the values got from the fitting of
Eq.(4.49). The subplot represents the absolute value of the relative deviation d respect
the numerical values and the ones coming from the scaling law. The orange vertical line
is the value δmax = 2/3.
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CHAPTER 5

UNIVERSAL THRESHOLD

In this chapter we develop an analytical formula to estimate the threshold for PBH for-
mation with a perfect fluid. The main ingredient is the use of the compaction function
Eq.4.17, and in particular, its average. At the end of the chapter, we compare our esti-
mation with previous literature.

As explained in [45], to a very good approximation, the threshold for the w = 1/3 case
only depends upon the curvature of the compaction function at its maximum, under the
assumption of a central over-dense peak in the density distribution. This is the key idea
of this chapter, which generalizes our results in [45] for a perfect fluid with w 6= 1/3.

5.1 Use of average compaction function
At super-horizon scales, the perturbations at threshold are very well approximated by
their Newtonian counterpart. Because the space and time dependence of the perturbation
decouples, one has that

∇2Φ = 8πρ̄ , (5.1)

where ρ̄(r) ≡ (aH)2δρ(r, t)/ρb, Φ is the Newtonian potential and ∇2 is the Euclidean
Laplacian. Eq 5.1 is solved by

Φ(r) = 8π

∫ r

0

dx

x2

∫ x

0

dy y2 ρ̄ . (5.2)

In this limit the compaction function is

C(r) =
3

r

∫ r

0

dyy2ρ̄ , (5.3)

and thus

Φ(r) =
8π

3

∫ r

0

C(x)

x
dx . (5.4)

Now suppose only the potential difference around rm is important for the gravitational
collapse. Then we can consider the difference Φ(rm) − Φ(r0) where r0 ≡ rm(1 − α).
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Assuming this region is weakly dependent upon the profile chosen, once the equation of
state is fixed, we can approximate α ' α(w) < 1. Then,

Φ(rm)− Φ(r0) =
8π

3Vα

∫ rm

rm(1−α)

x2C(x)
Vα
x3
dx ,

where Vα is the volume in the shell of internal radius rm(1 − α) and external radius rm.
Since α < 1, we have

Φ(rm) ' α
8π

3
C̄ +O(α2) . (5.5)

This shows that if the gravitational collapse only depends on the potential difference
around the maximum of the compaction function, then the threshold will mainly depend
on the volume averaged compaction function, and not on the other details of its profile.
Because of this, one could equivalently study the dual problem of a top-hat compaction
function with height equal to the average of the original compaction function.

5.2 Shape approximation
Following [37], we first crudely model a sharply peaked initial density distribution as a
homogeneous core (a closed universe) surrounded by a thin under-dense shell between it
and the external expanding universe.

The speed of propagation in a closed FRW universe is equation-of-state dependent:

v =

√
w

1 + 3w
. (5.6)

This speed has a maximum at w = 1/3, from which it falls relatively steeply for w < 1/3
and less steeply for w > 1/3. For radiation (w = 1/3), only a very small portion around
the maximum of the gravitational potential (which is typically at the border of the core)
will contribute to the collapse. All other surrounding fluid-elements will manage to escape
the gravitational attraction. However, if the equation of state differs from w = 1/3, a
larger portion of the fluid will participate in the collapse. Hence, as w becomes increasingly
different from 1/3, we may expect the threshold to depend more and more on the full
shape of the compaction function. Moreover, this dependence will be asymmetric: we
expect a stronger dependence for w < 1/3 than w > 1/3. This is indeed what we are
going to show numerically.

If the escape velocity were the only ingredient, the point of maximal velocity would also
correspond to the maximal threshold, as reported in [37]. This, however, does not make
sense [147]: the approximation of [37] misses the fact that if the density is inhomogeneous,
then this generates gradient pressures that are larger if w is large. These resist the collapse,
so we might expect the threshold to increase with w. However, even this is not the full
story. Pressure gradients are also a form of gravitational energy so, while they initially
work against the collapse, once the collapse is triggered, they mostly favor it. The net
result is a smaller formation time for a larger w, as can be seen in Fig.5.1.

To summarize: Our heuristic arguments suggest that the methodology of [45] for
finding a universal threshold might also be useful for w > 1/3 but it is likely to fail for
w < 1/3.
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H

Figure 5.1: Dependence on w of the time for a perturbation to collapse and form an
apparent horizon. For this example the initial perturbation (at t = t0) is given by Eq.5.8
with q = 1 and δ = δc + 10−2.

5.3 Analytic formula for the threshold
In this section, we suppose that the equation of state of the fluid is such that it allows us
to expand the compaction function around its maximum (r = rm). Then, as in [45], to a
very good approximation the threshold only depends on

q ≡ −r
2
m C ′′(rm)

4 C(rm)
, (5.7)

which is a dimensionless measure of the curvature of C(r) at its maximum.
To proceed, we define a “basis” (or fiducial set of curvature profiles) such that, by

varying q, this set covers the whole range of interesting thresholds and shapes with q ∈
(0,∞) while also being regular at r = 0 and having ρ′(r = 0, t) = 0. In [45], this basis was
given in terms of the exponential functions used previously by [42]. However, because the
boundary conditions at the origin are violated for q < 0.5, we instead consider the basis

Kb(r) =
C(rm)

f(w)r2
m

1 + 1/q

1 + 1
q

(
r
rm

)2(q+1)
. (5.8)

This fiducial set satisfies the appropriate boundary and regularity conditions for any q > 0.
We then define

Cb(r) = f(w)r2Kb(r) . (5.9)

The critical compaction function, averaged within a spherical shell extending from radius
[1− α(w)] rm to rm, is defined to be

C̄c(w, profile) ≡ 3

r3
mV [α(w)]

∫ rm

rm[1−α(w)]

Cc(r)r2dr , (5.10)

where V [α(w)] = α(w) [3 + (α(w)− 3)α(w)] and Cc(r) = C(r)
∣∣∣
C(rm)=δc

.
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Inserting Eq.5.8 in Eq.5.10 yields

C̄c(w, basis) = δc(w, q) g(q, w)
[
−F1(q) + (1− α)3−2qF2(q, α)

]
, (5.11)

with

g(q, w) =
3(1 + q)

α(2q − 3) [3 + α(α− 3)]
, (5.12)

F1(q) = 2F1

[
1, 1− 5

2(1 + q)
, 2− 5

2(1 + q)
,−q

]
, (5.13)

and

F2(q, w) = 2F1

[
1, 1− 5

2(1 + q)
, 2− 5

2(1 + q)
,−q(1− α)−2(1+q)

]
, (5.14)

where 2F1 is the hypergeometric function.
Notice that if

C̄c(w, profile) ' C̄c(w) , (5.15)

i.e. if the dependence of the averaged critical compaction function on profile shape is
weak enough to be ignored, then one can simply rearrange Eq. 5.11 to obtain an analytic
expression for the critical threshold value:

δAc (w, q) =
C̄c(w)

g(q, w)

1

[−F1(q) + (1− α)3−2qF2(q, α)]
. (5.16)

Once α(w) has been specified, Eq. 5.16 represents our generalization of [45] to w ≥ 1/3.
In [45], where w = 1/3, α was a constant set equal to 1 and hence C̄c equaled the

volume average within the sphere of radius rm. Here, we allow α to depend on w but we
still assume its dependence on q to be negligible. As we shall see, this assumption is good
enough only for w & 1/3, as we suggested in the previous section. In particular, we shall
find that even for the case w = 1/3, the optimal α is smaller than 1. In this sense, the
current analysis not only generalizes the work of [45] to w 6= 1/3, it also enhances the
precision of the w = 1/3 case.

5.4 The appropriate volume over which to average
We determine α(w) as follows: Consider a family of profiles parameterized only by C(rm)
and q, such as those given by Eq. 5.8. We evolve each profile using the code described
in Section 4.3, and hence determine the threshold δNc (w, q). We then perform the volume
integral for various α to find the corresponding C̄c(w, α, q). The left panel of Fig.(5.2)
illustrates: the top and bottom panels show results for different w; the different curves
in each panel show how C̄c(w, α, q) varies with α as q is increased in steps of ≈ 1, when
the profile shape is given by Eq. 5.8. The top left panel shows that C̄c(w, α, q) can vary
by tens of percent with q when w = 0.1. However, the bottom left panel shows that this
variation is much smaller when w = 0.5; at α ≈ 0.5, C̄c(w, α, q) varies by less than 5%
for the entire range of q we have considered. This is consistent with the heuristics of the
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previous section, which argued that details of the profile shape should matter much more
at small w.

Since the dependence on q is weak, we have parametrized the remaining dependence
on w (comparison of the top and bottom panels shows that C̄c tends to be larger for
larger w) as follows: To minimize the error associated with using q-independent α and
C̄c values in Eq.5.16, we first chose the value of α(w) corresponding to the point where
the flux of C̄c(w, α, q) (e.g., in the bottom left panel) is densest. Once α(w) is given,
the q-independent Cc(w) is chosen to minimize the difference between its value and the
numerical q-dependent ones. The red circle at α ≈ 0.5 in the bottom left panel of Fig.(5.2)
shows the result of this double minimization for w = 0.5. The red circle in the top left
panel is at α = 1. We discuss the significance of this difference shortly.

The symbols in the right hand panels of Fig.(5.2) show α(w) and Cc(w) resulting
from following this procedure for the basis profiles (Eq.5.8). They show that C̄c decreases
monotonically with w; the limit C̄c(w → 0) = 0 reflects the fact that δc(w → 0) = 0.
Instead, α increases as w decreases reaching its maximal value, unity, for w . 0.2. Larger
values of α indicate that the threshold is sensitive to the whole profile shape rather than
just q (which describes the profile shape at α→ 0). Thus, the increase of α as w decreases,
and the fact that α→ 1 for w < 1/3, are in qualitative agreement with the discussion of
the previous section.

The trends shown in the right hand panels are well described by

C̄c(w) = a+ bArctan(cwd) (5.17)
α(w) = e+ f Arctan(g wh), (5.18)

with a = −0.140381, b = 0.79538, c = 1.23593, d = 0.357491, e = 2.00804, f = −1.10936,
g = 10.2801 and h = 1.113. Inserting Eqs.5.17 and 5.18 in Eq.5.16 yields an analytic
expression for δc(q, w). To connect with [45], note that when w = 1/3 we have α ∼ 0.6
and C̄c ∼ 0.4. This value of C̄c is similar to that obtained by [45] who explicitly set α = 1.
Eq. 5.17 is then our generalization of the [45] analysis to w > 1/3.

Having established that our methodology works for profiles of the form Eq. 5.8, the
next section tests its accuracy and generality. However, before moving on, we note that
there is a technical issue with the basis Eq. 5.8. As q → 0, Cb(r) becomes nearly constant
over an ever wider range of scales. Because our simulation uses only a finite number of
grid points, the non-zero constant compaction function at the grid “infinity” – i.e. on the
scale of the box – results in a fictitious conical singularity which violates the boundary
condition of a flat FRW. For our simulations, this occurs when q < 0.1. In addition, for
q � 1, Kb becomes close to a tophat, and Cb becomes sharply peaked at rm. This results
in pressure gradients which are difficult to simulate accurately. For this reason, Eqs. 5.17
and 5.18 have really only been calibrated using simulations over the range q ∈ [0.1, 30].
Of course, this restriction on the range of q is not physical: in principle smaller q can be
simulated simply by using more grid points. Rather than paying the larger computational
price of longer run times as one moves to more and more grid points, in the next sections
we check that extrapolating our results to q < 0.1 agrees with simulations of other profiles
which have low q but for which the fictitious singularity at low q does not arise. We also
consider the q →∞ limit in more detail later.
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5.5 Choice of profile shape
Here we test the approximation that both α and C̄c only depend on w. To do so we
consider three other families of curvature profiles:

K1 =
C(rm)

f(w)r2
m

e
1
q

(
1−[ r

rm
]
2q
)
; (5.19)

K2 =
C(rm)

f(w)r2
m

(
r

rm

)2λ

e
(1+λ)2

q

(
1−( r

rm
)

2q
1+λ

)
; (5.20)

K3 =
C(rm)

f(w)r2
m

r3
m

r3

g(n(q), kp, r)

g(n(q), kp, rm)
, (5.21)

where

g(n(q), kp, r) = Λ3+ng1(n(q), kp, r) + g2(n(q),Λ, kp, r), with,

g1(n(q), kp, r) = [kpr {E3+n(−ikpr) + E3+n(ikpr)}+ i {−E4+n(ikpr) + E4+n(−ikpr)}] ,
g2(n(q),Λ, kp, r) = [−Λkpr {E3+n(−iΛkpr) + E3+n(iΛkpr)} − i {−E4+n(iΛkpr) + E4+n(−iΛkpr)}] ,

and En(x) ≡
∫∞

1
e−xt dt/tn. K1 andK2 are the centrally and non-centrally peaked families

of exponential profiles discussed in [42], while the oscillating profiles K3 are more phys-
ically related to models of inflation [139]. This comes from taking the power-spectrum
template from Eq.4.43, but generalizing it with Λ, which is a UV cut-off of the power spec-
trum and kp the Fourier mode related to its highest peak. For n > 0, one may remove
the cut-off in K3 (Λ→∞). In this case, only the term g1(n(q), kp, r) would contribute to
the curvature profile.

In the next section we also consider profiles of the form

K4 =
C(rm)

f(w)r2
m

r2
m

r2

CLC(r)

CLC(rm)
, with CLC(r) =

1 + 1/q1

1 + 1
q1

(
r

rm,1

)2(q1+1)
+ γ

1 + 1/q2

1 + 1
q2

(
r

rm,2

)2(q2+1)
.(5.22)

These K4 are a linear combination of two of our basis Kb profiles Eq.5.8, each having
different q and rm. Our main interest in this family is that the resulting q < 0.1 is
well-behaved without having to use extremely large grids.

Fig.5.3 compares a few of these curvature profiles and their associated compaction
functions for a variety of parameter choices. This makes the point that our analysis
considers a wide variety of profile shapes. Then, following the procedure outlined in the
previous section, we ran simulations with these other profile shapes, and so obtained the
family-dependent α’s and C̄c’s. Finally, we checked if the averaged compaction functions
depend mainly on the curvature of K around rm (i.e. on q) or if the full shape between
0 and rm matters.

Fig. 5.4 shows the results. As we expected, universality – results which do not depend
on the choice of K, provided q is fixed – is most closely achieved when w = 1/3. For
w < 1/3, α and C̄c depend strongly on the family of profiles chosen and α quickly saturates
to 1. This is because for small pressure gradients (small w) local structure in the initial
profile shape matters more. Therefore, the shape around the peak of C is no longer the
only relevant quantity. However, notice that for w > 1/3, the dependence of α and C̄c on
choice of parametrization of the initial curvature profile is weak enough to be neglected,
as we discuss further below.
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Figure 5.2: Left: Dependence of C̄ on the volume within which it is averaged, for two
choices of w (top and bottom panels) and a variety of basis shapes (curves show different
q’s) for each w. Red circle in each panel shows the pair (α, C̄), Eqs.5.17 and 5.18 re-
spectively, which return the best estimates of δc when inserted in our universal threshold
formula (Eq.5.16). Right: Symbols in top and bottom panels show C̄(w) and α(w) for
profiles given by Eq.5.8; curves show Eqs.5.17 and 5.18. Vertical dashed line is at w = 1/3.

Figure 5.3: Illustrative K(r) with the peak normalized to 1 (left) and corresponding C(r)
(right) profiles associated with Eqs.5.19–5.21 with parameters chosen to all have q = 1.22
at rm and normalized to δ = 0.5.
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Figure 5.4: Same as Fig.5.2 except that green circles are obtained from simulations in
which the initial profiles were described by Eq.5.19, orange circles are for Eq.5.20 with
λ = 1, cyan circles show results for Eq.5.20 with λ = 2 and violet circles are for Eq.5.22.
Solid curves show Eqs.5.17 and 5.18 which provide an excellent description of our basis
set (Eq.5.8) based simulations.

Figure 5.5: Relative difference (∆∗ of Eq.5.23) between the numerically simulated values
δNc for the basis Eq.5.8 and for Eq.5.20 with λ = 0.5 (upside down triangles), λ = 1 (solid
dots), λ = 2 (squares), λ = 5 (leftward pointing triangles) and λ = 10 (diamonds) for a
range of values of w and q.
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To quantify the dependence of δc on choice of K for a given w and q, we define

∆∗ ≡ 100

∣∣∣δc(basis|q, w)− δc(other family|q, w)
∣∣∣

δc(basis|q, w)
; (5.23)

this is the percent difference between δc returned by the simulations for the fiducial, basis
profile and one from another family (having the same q and w). Fig.5.5 shows ∆∗ when
the other family is given by Eq. 5.20, for a variety of choices of λ. For w < 1/3, ∆∗ clearly
depends strongly on both λ and q. However, as w increases, ∆∗ decreases and is much less
dependent on either λ or q, with differences down at the one percent level when w = 1.
This also happens if we replace profiles of the Eq. 5.20 family with those of Eq. 5.19 or
Eq. 5.21.

5.6 Numerical versus analytical thresholds for w ≥ 1/3

We are now ready to test if our methodology for obtaining an analytic fitting formula for
the threshold works, albeit only for w ≥ 1/3. To do so, we define

∆ ≡ 100

∣∣∣δNc − δAc
∣∣∣

δNc
, (5.24)

where N and A stand for the threshold obtained from the numerical simulation and the
corresponding analytic approximation to it given by Eq.5.16.

The top left panel of Fig.5.6 shows that ∆ of Eq.5.24 is typically less than 6 – the
numerical and analytical thresholds agree at better than the 6% level – over the entire
range of w and q we have tested. The other panels show the agreement is similarly good
for the other families of profiles: Eqs.5.19–5.21. Our results for radiation (w = 1/3),
which make use of the basis Eq.5.8, turn out to be slightly more accurate than those of
our earlier work [45] where the exponential basis, Eq.5.19, was used.

We noted previously that numerical stability and speed make it difficult to estimate
δc in simulations with q . 0.1 or q & 30, due to a conical singularity and large pressure
gradients respectively. However, it turns out that the q → 0 and q → ∞ limits are both
amenable to further analysis as we now discuss. In addition to pedagogy, understanding
the full range of q is important because, in some models of PBH abundances (e.g. [104]),
larger q contribute at later times, so the full range of q matters for PBH abundances.

5.6.1 The sharply peaked limit: q →∞
It is easy to show analytically that the compaction function cannot exceed f(w) [42].
Moreover, numerical simulations of w = 1/3 show that this limit is saturated when the
compaction function is sharply peaked [42]. Sharply peaked implies q → ∞: for such
profiles the pressure gradients fighting the collapse are maximal and thus the compaction
function should be too. This saturation should persist to larger values of w because larger
values of w also imply larger pressures which fight the collapse. Therefore, for w ≥ 1/3
the compaction function of a peaked profile must also saturate the bound. The left hand
panel of Fig. 5.7 shows that, indeed, for w ≥ 1/3 δc → f(w) when q → ∞ (the case for
ω = 1/3 was already reported in [42]). Therefore, it is interesting to ask how well our
Eq.5.16 does if we continue to use it even for q � 30. The right hand panel of Fig. 5.7
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Figure 5.6: Relative difference ∆ of Eq.5.24 between the analytic values δAc Eq. 5.16 and
the numerically simulated δNc for a range of w and q. Top left panel shows results for the
fiducial family of profiles Eq.5.8 (circles) and profiles described by Eq.5.22 (diamonds); top
right is when the profile is given by 5.19; bottom left is for Eq.5.20 with λ = 0.5 (upside-
down triangles), λ = 1 (solid dots), λ = 2 (triangles pointing left), λ = 5 (squares) and
λ = 10 (diamonds); bottom right is for Eq.5.21 with n ∈ [0.5, 15] for Λ→∞ (solid points)
and for Λ 6=∞ and n < 0 (stars).
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H

Figure 5.7: The q � 1 limit. Left: For each w (as labeled), the critical threshold measured
in simulations δNc (symbols connected by solid lines) approaches δc,max ≡ f(w) of Eq.4.23
(dashed) as q increases. Right: Comparison of the maximum threshold δc,max = f(w) and
our Eq.5.16 when q →∞. Inset shows the percent difference between the two.

shows that setting q →∞ in Eq.5.16 returns δc that is within 5% of f(w) for all w > 1/3.
This strongly suggests that one can use it for all q > 0.1.

5.6.2 The q � 1 limit

We now consider q < 0.1, for which Cb becomes approximately constant over a wide range
of scales, making it difficult to simulate the q → 0 limit. The top left panel of Fig. 5.8
shows why this limit is better studied by simulating the evolution of profiles given by
K4 rather than Kb. The two curves show profiles that both have q = 0.015; however, C4

is obviously smaller at r � rm. In particular, C4 satisfies the condition of a flat FRW
universe at the boundary much better than does Cb.

We have used the K4 profiles to study δc as q → 0. The bottom left panel of Fig.5.8
shows that, for all w > 1/3, δc has approximately converged to its q → 0 value even
when q ∼ 0.015. The symbols in the right hand panel show that δc in the q → 0 limit
is a strong function of w. The red curve shows that this dependence is well described by
the q → 0 limit of our Eq.5.16, even though Eq.5.16 was only calibrated over the range
q ∈ [0.1, 30]. Finally, the top right panel shows that the difference between the q → 0
limit of our Eq.5.16 and the q → 0 threshold in our simulations of C4 profiles is typically
smaller than about 6 percent.

In summary: We have shown that, as was true for equations of state having w = 1/3
[45],

• i) the critical threshold for PBH formation depends mainly on the shape of the
compaction function around its peak;

• ii) the average of the compaction function over an appropriately chosen volume is a
nearly universal quantity which only depends on w;

• iii) the critical threshold saturates to the maximum of the compaction function in
the limit q →∞;

• iv) for small values of q, δc(q, w) rapidly converges to a q independent function,

for all w ∈ [1/3, 1].
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Figure 5.8: The q → 0 limit. Top left: Comparison of compaction func-
tions associated with two profiles having q = 0.015: C4 has (rm,1, rm,2, q1, q2, γ) =
(150, 800, 0.0005, 0.3,−0.8) in Eq.5.22 and Cb has (rm, q) = (37.27, 0.015) in Eq.5.8. Al-
though they are similar at r < rm, C4 is much smaller at r � rm, so it is easier to
simulate accurately. Bottom left: Convergence of the threshold δc(q, w) for profiles of the
form Eq.5.22 to its q = 0 value, for different w (as labeled). Bottom right: Numerical
threshold for the case q → 0 (symbols and black line) and the result of setting q → 0 in
the fitting formula of Eq.5.26 (red line). Top right: Percent difference between the q → 0
limit of our analytical threshold Eq.5.16 and the threshold obtained from simulations of
C4 as q → 0.
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5.6.3 Combining the two limits to build a fully analytic approach

One of the steps in our methodology was the assumption that the dependence of the
averaged critical compaction function on profile shape is weak enough to be ignored
Eq.5.15. With this in mind, we have explored what happens if, instead of performing
a numerical minimization to determine α(w) and C̄c(w), we use either the q →∞ or the
q = 0 limiting values as the basis for our method. The q → 0 limit has constant C, so
C̄c(w, q → 0) = δc(w, q → 0). The q → ∞ limit has K (rather than C) → constant for
r ≤ rm. Since this limit has δc → f(w), it has

C̄c(w, q →∞) = f(w)
3

5

1− [1− α(w)]5

V [α(w)]
. (5.25)

I.e., in these two limits C̄c is not an arbitrary function of w.
With this in mind, we start by using the fact that the simulated values of δc(w, q → 0)

directly determine C̄c(w). We have found that the dependence on w (c.f. the bottom right
panel of Fig. 5.8) is well approximated by

C̄c(w) = i+ j Arctan(pwl), (5.26)
(i, j, p, l) = (0.262285, 0.251647, 1.82834, 0.984928). (5.27)

Fig. 5.9 shows that this expression for C̄c and that given by Eq.5.17 agree to better
than 7 percent. Next, by requiring this C̄c(w) to match Eq.5.25 we determine α(w), which
we have found is well described by

α(w) = m+ tArctan(r ws), (5.28)
(m, t, r, s) = (25261.6,−16081.8, 363647, 2.09818). (5.29)

We can now insert Eqs.5.26 and 5.28 (instead of Eqs.5.17 and 5.18) in Eq.5.16 to produce
an analytic estimate of the critical threshold δc(w, q). Fig.5.10 shows the percent difference
between these new estimates and the simulated thresholds for a variety of w, q and choice
of profile family. Notice that the differences here are not much worse than in Fig. 5.6,
suggesting than if we had an analytic understanding of δc(w, q → 0) then our methodology
for determining δc(w, q) for any q > 0 would be fully analytic.

5.7 Comparison to previous estimates
In view of the importance of the q → 0 limit, we now compare our results to earlier
attempts that were calibrated to small values of q. One is due to [148], who used a Jeans
length approximation to argue that

δCarr = w . (5.30)

The other is due to [37], who improved on [148] by considering the collapse of a homo-
geneous overdense sphere surrounded by a thin underdense shell. [37] argued that, under
certain assumptions on the form of the relativistic Jeans instability,

δHYK = f(w) sin2
(
πv(w)

)
, (5.31)
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Figure 5.9: Percent difference between two estimates of C̄c(w): Eq.5.26 (which equals
δc(w, q → 0) shown in the bottom right panel of Fig.5.8) and Eq.5.17.

Figure 5.10: Same as Fig.5.6, but now the analytic values δAc come from using the new
fits for C̄c and α(w) (Eqs.5.26 and 5.28 instead of Eqs.5.17 and 5.18) in Eq.5.16.
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where f(w) and v(w) are given by Eqs.4.23 and 5.6. To account for uncertainty in how
to formulate the relativistic Jeans criteria, [37] also provided upper and lower bounds on
δc for each w. These are given by their Eqs.(4.36) and (4.37).

Neither Eq.5.30 nor 5.31 admit dependence on the profile shape, which we showed are
present. Nevertheless, it is interesting to see how well they perform. The solid lines in
Fig.5.11 show these approximations; symbols with error bars show δc(w) from numerical
simulations of profiles having q = 0.015, q = 0.1, q = 1 and q = 30. The dashed and
dotted curves, which provide a significantly better description of the simulations, show
the result of inserting Eqs.5.17 and 5.18, or Eqs.5.26 and 5.28, in our Eq.5.16. In both
cases, our Eq.5.16, like the simulations, exceeds even the upper bound claimed by [37] at
ever lower w as q increases.

The discrepancy between our simulations and Eq.5.31 at small w – which is as large
as 50% for q = 0.1 – deserves further comment, as this is the limit that was believed to be
optimal for the approximations on which Eq.5.31 is based. This discrepancy is even larger
than the one noticed earlier because [37] only compared their formula with simulations
of a Gaussian curvature profile (i.e., Eq.5.19 with q = 1). Indeed, for w < 0.15 the
solid black curve does provide a reasonable description of our q = 1 simulations (even
though the profile is given by Eq.5.8 rather than Eq.5.19, so it is not exactly Gaussian in
shape). However, the top-hat profile, which is the one used in the analytic calculations
of [37], is much better approximated by q � 1. For q = 0.1, their formula does not
describe the simulations particularly well, and the discrepancy at w < 1/3 is even worse
when q = 0.015. This disagreement suggests that the apparent agreement shown in Fig.3
of [37] is just a result of numerical coincidences: it is not physical. Therefore, analytic
understanding of δc in the q → 0 limit remains an open and – our analysis suggests –
extremely interesting and impactful problem.

As a final comment, is important to point out something. The polynomial basis
profile of Eq.5.8 fulfils regularity conditions for q → 0 as we have pointed out before,
something notfulilled with the exponential basis Eqs.5.19 and 5.20. Precisely, this lead in
previous literature musco2018 to the wrong conclusion that the minimum threshold for
PBH formation (in the case of a radiation fluid) must coincide to the estimation of [37],
i.e, δc,min(w = 1/3) = δHYK(w = 1/3) ≈ 0.41. In [42], due to the singularity in the initial
conditions using the exponential basis, only was possible to compute δc for q = 0.1. In our
case we can go even to smaller values, up to q = 0.01 with the polynomial bass. Therefore
this leads that, for a radiation fluid, to the correct range of values of the threshold is
0.4 < δc < 2/3. Actually, from our generalization to the case w 6= 1/3 in this chapter,
is completely clear that for w 6= 1/3 the minim threshold doesn’t coincide with the value
δHYK .
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Figure 5.11: Dependence of threshold δc on w when the initial profile is given by Eq.5.8
with q = 30, q = 1, q = 0.1 and q = 0.015 (q = 0 would be a homogeneous sphere).
Blue and green curves show the maximal and minimal bounds on δc from [37]. Solid lines
with dots and error bars show the results of our simulations. Magenta line shows the
approximation of Carr (our Eq.5.30); black curve labeled HYK is from [37] (our Eq.5.31).
Neither predicts q dependence of δc, but δHYK explicitly aims to describe the q � 1 limit.
The other curves show our approximation (Eq.5.16) in which δc depends both on w and
q. The dotted curves use Eqs.5.26 and 5.28 in Eq.5.16 whereas the dashed curves use
Eqs.5.17 and 5.18 in Eq.5.16.
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CHAPTER 6

EFFECTS OF THE SHAPE OF CURVATURE PEAKS ON
THE SIZE OF PRIMORDIAL BLACK HOLES

In the previous chapter, we have seen that the threshold for PBH formation in the case
1/3 ≤ w ≤ 1 mainly depends on the shape around the peak of the compaction function, in
terms of the parameter q. A similar dependence could be found as well for the MBH,i and
MBH,f , which are the initial mass of the PBH at the time of apparent horizon formation,
and the final mass after the accretion process. In this chapter we address this question
performing a systematic study of the masses of the PBHs in terms of the profiles considered
until now.

6.1 Apparent horizon formation
First, we have computed the size of the PBH at the time t = tAH of formation of the
apparent horizon (AH), when 2M(rAH , tAH) = R(rAH , tAH) and rAH is radial coordinate
of the AH, as we have seen in Chapter 4. We run simulations for different families of
initial curvature curvature profiles [45, 149]

Kb(r) =
C(rm)

f(w)r2
m

1 + 1/q

1 + 1
q

(
r
rm

)2(q+1)
; (6.1)

Kexp(r) =
C(rm)

f(w)r2
m

(
r

rm

)2λ

e
(1+λ)2

q

(
1−( r

rm
)

2q
1+λ

)
(6.2)

Different profiles of the two families are plotted in Fig.(6.1). For both families when
q � 1 the peak of the compaction function is sharp, while when q � 1 the peaks is broad.

In Fig.(6.2) we plot the apparent horizon formation time tAH for different profiles,
showing that tAH decreases when δ is higher since the initial amplitude of the perturbation
is much larger than the critical value δc, and therefore it collapses faster. On the contrary
tAH is large when δ is close to the critical value. This behaviour is the same for different
families of profiles.

The ratio between the areal radius of the PBH RBH,i = R(rAH , tAH) and the Hubble
radius at tAH , RH,i = RH,i, is plotted in Fig.(6.3). As expected, for all PBHs RBH,i < RH,i,
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Figure 6.1: The profiles in Eq.6.1, Eq.6.2 and Eq.6.9 for C(r), δρ(r)/ρb and ζ(r) are plotted
as function of r for δ = δc. The dashed black line corresponds q → ∞, and the dotted
black line to q = 0. The parameters used for Ctt(r) are δ1 = δc(q1), q2 = 3, rm1 = rm2 = 1,
rj = 2rm1, Ctt(peak,2) = 0.3, with the corresponding δ2 obtained from Eq.6.10 using the
previous values, and q1 = 1 (orange) and q1 = 5 (violet).
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Figure 6.2: The ratio tAH/tH is plotted as a function of δ for different values of q. As
expected, the minimum value of δ, i.e. δc, decreases as q decreases. Circle corresponds to
Eq.6.1, star to Eq.6.2 with λ = 0 and square to Eq.6.2 with λ = 1.

because the perturbations collapse after re-entering the the cosmological horizon. In [55]
it was derived an analytical formula for the upper bound of RBH,i/RH,i

(
RBH,i

RH,i

)

max

=

(
2

1 + 3w

)3 [
3(1 + w)

2(1 +
√
w

] 3(1+w)
1+3w

w3/2 , (6.3)

which is approximately confirmed by our numerical results, giving ≈ 0.31 in the case of
radiation, except for very large values of δ as shown in Fig.(6.3).

Such an analytical bound [55] was obtained considering a compensated PBH model
where the black hole horizon is contained within a perturbed region, surrounded by a FRW
background. In Fig.(6.3) we plot the ratio RBH,i/RH,i for different initial curvature profiles
and δ. The upper bound in Eq.6.3 is satisfied for most of cases except for certain values
of q and when δ approached the maximum value δmax , since when δ is much greater than
the critical value, the ratio can exceed substantially the bound. This is shown in more
details in Fig .(6.4) and Fig.(6.6), where we have compared the analytically computed
bound of the ratio with its numerical calculation. In this cases the formation time tAH is
smaller because the PBH is formed soon after the perturbation crosses the cosmological
horizon, and for this reason the ratio RBH,i/RH,i is larger.

.
The ratio MBH,i/MH if plotted in Fig.(6.5) for different initial conditions. As it can be
seen, the mass MBH,i is sensitive to δ and perturbations with sufficiently large δ can form
black holes with MBH,i > MH . For small q MBH,i decrease as δ increases, since in this
case the perturbation collapse faster due to the smaller pressure gradients in comparison
when larger q larger, and therefore MBH,i/MH is smaller.

A comparison between RBH,i/RH,i,MBH,i for different profiles with the same q is shown
in Fig.(6.7).
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Figure 6.3: The ratio RBH,i/RH,i is plotted for different values of q. As expected, the
minimum value of δ̄m, i.e. δc, decreases as q decreases. Circle corresponds to Eq.6.1, star
to Eq.6.2 with λ = 0 and square to Eq.6.2 with λ = 1.

Figure 6.4: The ratio RBH,i/RH,i is plotted as function of q for δ = δmax − 10−5, using the
profiles in Eq.6.1 (black), in Eq.6.2 with λ = 0 (green) and in Eq.6.2 with λ = 1 (blue).
The red line corresponds to the analytical estimation of the upper bound obtained in [55].
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Figure 6.5: The ratio MBH,i/MH is plotted for different values of q. As expected, the
minimum value of δ, i.e. δc, decreases as q decreases. Circles corresponds to Eq.6.1, stars
to Eq.6.2 with λ = 0 and squares to Eq.6.2 with λ = 1.

Figure 6.6: Top: The ratio RBH,i/RH,i is plotted as a function of δ near the maximum
value δmax = f(w). Bottom: The time evolution of the Hamiltonian constraint is plotted
for the profiles in Eq.6.1 with q = 1, and for different values of δ.
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Figure 6.7: The absolute value of relative percentual difference between different profile
families is plotted for the quantities RBH,i/RH,i (top), MBH,i (middle) and tAH (bottom).
The profiles correspond to Eq.6.1 and Eq.6.2 with q = 1.

6.2 Effect of the accretion
After the formation of the AH it follows a process of accretion that increases the size of
the BH until a stationary state with final mass MBH,f as we have pointed out already in
Section 4.6. As we pointed out in section 4.6, at the final stage of the BH evolution, the
mass satisfy the Eq.4.47

dMBH

dt
= 4πFR2

BHρb(t) , (6.4)

The analytical solution of Eq.6.4 during radiation domination is Eq.4.48,

MBH(t) =
1

1
Ma

+ 3
2
F
(

1
t
− 1

ta

) , (6.5)

where Ma and ta are define the initial conditions imposed to solve it.
As in [43], we will find F by fitting the numerical evolution of the mass with the

formula in Eq.6.5. Once the best fit parameters have been determined the final PBH
mass is obtained as the asymptotic future limit Eq.4.49

MBH,f = lim
t→∞

MBH(t) =

(
1

Ma

− 3F

2ta

)−1

. (6.6)

Some examples of the time evolution of MBH(t) for different curvature profiles are
given in Fig.(6.8).

In section 4.6 we introduced the following scaling law for the PBH mass when δ ≈ δc

MBH,f = MHK(δ − δc)γ, (6.7)

As shown in section 4.6, the scaling law start to be inaccurate for δ−δc & 10−2, where
the profile used was a Gaussian profile corresponding to Eq.6.2 with λ = 0 and q = 1.
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Figure 6.8: Top: Time evolution of the PBH mass of for the profiles q = 1.5, q = 3 and
q = 10. Solid line corresponds to Eq.6.1 and dashed line to Eq.6.2 with λ = 0. Bottom:
Time evolution of the corresponding Hamiltonian constraints. In all cases δ− δc = 0.005.

Here we consider different profiles, showing how the constant K can vary significantly.
The value of K is in important for the estimation of PBH abundance, since the latter is
proportional to it. Usually in the literature it is commonly assumed K ≈ O(1), but it has
not been investigated systematically the dependency of K on the initial curvature profiles.

To modulate the existence of a mass excess sufficiently far away from the peak of C(r),
we have used another profile that comes from the junction of two curvatures of Eq.6.1,
we will refer it as the two-tower profile, and it’s expression in terms of the compaction
function Cb (refereed to Eq.6.1) is directly given by Eq.6.9,

Ctt(r) = Cb(r, δ1, q1, rm1) + θ(r − rj)Cb(r − rj, δ2, q2, rm2). (6.8)

where Cb is equal to

Cb(r, δj, qj, rmj) = δj

(
r

rmj

)2
1 + 1/qj

1 + 1
qj

(
r
rmj

)2(qj+1)
; (6.9)

It is shown in Fig.(6.1). We consider always that the second peak of C is lower than
the first one at δ1, this ensures the first peak collapse and forms the AH. 1 the value of the
first peak is directly given by δ1, and the value of the second can be modulated through
the following equation:

Ctt(peak,2) =
(1 + q1)(rj + rm2)2δ1

q1r2
m1 + (rj + rm2)2(rj + rm2/rm1)2q1

+ δ2 (6.10)

To obtain the value of K we have computed MBH,f taking for 10−3 < δ− δc(q) < 10−2 and
performed a fit of the formula in Eq.6.7, using γ = 0.357 [150,151]. In Fig.6.9 we show the

1In the situation with Ctt(peak,2) ≥ δ1, the second peak could be the dominant contribution for the
collapse, therefore the definition of the "threshold" may be different. Although that, we don’t consider
this situation in this work and we leave this question for future research.

61



Numerical simulations of primordial black holes Chapter 6

values of K for different profiles. Contrary to the case of the δ there can be a substantial
difference for the value K computed for different curvature profiles, since the accretion
process is affected by the shape of the profile beyond the peak of the compaction function
C(r).

In the case of the profiles given in Eq.6.1 K tends to ≈ 3.5 for large values of q. The
value of K tend to increase as q decreases, as shown Fig.(6.9). Numerically we were not
able to obtain the final mass MBH,f for profiles q . 0.5, due to conic singularities, as
already found in [149].

Figure 6.9: The constant K defined in Eq.6.7 is plotted as a function q for the profiles
in Eq.6.1 (red), Eq.6.2 with λ = 0 (black), Eq.6.2 with λ = 1 (blue) and Eq.6.9 (green).
The parameters used for the profile Ctt(r) are q2 = 3, rj = 2rm1, Ctt(peak,2) = 0.3, and δ2 is
obtained from Eq.6.10 using the previous values, and q1 = q.

As can be see in Fig.(6.10) the accretion is more important for large δ. Sharp pro-
files, corresponding to large q, have larger pressure gradients and therefore the ratio
MBH,f/MBH,i is smaller, even for large δ. For low MBH,f the ratio MBH,f/MBH,i is small,
as expected [10, 55]. When MBH,f ' MH , i.e. for PBHs with higher probability to form,
we obtain MBH,f ' 3MH . On the other hand as shown in the Fig.(6.10), we obtained
increasing values of MBH,f/MBH,i, for decreasing values of q.
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Figure 6.10: The ratio MBH,f/MBH,i is plotted as a function of δ − δc(q) for different
profiles. Circles correspond to Eq.6.1, stars to Eq.6.2 with λ = 0 and triangles to Eq.6.9.
The subplot shows the ratio MBH,f/MBH,i for PBHs with MBH,f 'MH .
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CHAPTER 7

NON-GAUSSIANITIES

In the last chapter, we study the effects of non-gaussianities on PBH formation and their
repercussions on the PBH abundances. The non-Gaussianity we consider is entirely due
to the non-linear relation between the Gaussian variable

ζg ≡ − H
δφ

φ̇

∣∣∣∣
sr

, (7.1)

and the fully non-linear non-Gaussian curvature perturbation ζ. Here δφ is the inflaton
field perturbation and H is the expansion rate during inflation. For the non-linear relation
between ζ and ζg, we will consider the case of a single field model where the inflaton
overshoots a small barrier [72].

7.1 Large and rare peaks from single field inflation
At cosmological scales, the power spectrum of primordial perturbations must be of the
order of 10−9, in accordance with observations of the cosmic microwave background.
However, in order for PBH formation to be significant, the power must be of the order of
10−3− 10−2 at the PBH scale. This jump in the amplitude can be achieved if the inflaton
field passes trough a transient period with φ̈/Hφ̇ ≈ const. < −3, we shall refer to this as
“constant-roll" (CR).1

Parametrically, the fraction of dark matter in PBH is ΩPBH ∼ 109(M�/MPBH)1/2β0,
where the probability of PBH formation at the time when a large perturbation crosses the
horizon can be roughly estimated as β0 ∼ exp[−ζ2

c /2σ
2
0], for some threshold value ζc ∼ 1.

The remaining factors in the estimate of ΩPBH account for the dilution of radiation relative
to PBH, from the time of their formation until the time teq. ForMPBH in the broad range
10−13−102M�, the threshold for the perturbations to undergo gravitational collapse must
be in the range ζc ∼ (6 − 8)σ0, sizably larger than the standard deviation, in order to

1In its original definition [152], constant-roll refers to any period where φ̈ = −(3 + α)Hφ̇, with any
constant value of α. Ultra slow-roll (USR) corresponds to α = 0, and can also enhance the amplitude
of the power spectrum. However, to our knowledge, there is no concrete model of transient USR where
the amplification is sufficient to provide a significant abundance of PBH [74]. Hence, here we consider a
transient period with α > 0. This corresponds to the presence of a small barrier in the potential which
slows down the motion of the inflaton for a short period of time (see Fig. 7.1).
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obtain a significant ΩPBH ∼ 1. Because these perturbations are very rare, we can use the
theory of high peaks to describe them.

7.1.1 The typical high peak profiles

Since the non-Gaussian curvature perturbation ζ is a local function of the Gaussian field
ζg, let us start by reviewing the latter [153]. This will be the basis to describe the non-
Gaussian realisations. Fluctuations of ζg are characterized by the power spectrum Pζ(k),
representing the variance of the random field per logarithmic interval in k,

〈ζ2
g 〉 ≡ σ2

0 =

∫
dk

k
Pζ(k). (7.2)

Introducing the normalized two point correlation function of ζg(~x) as

ψ(r) ≡ 1

σ2
0

〈ζg(r)ζg(0)〉 =
1

σ2
0

∫
Pζ(k)kr

dk

k
, (7.3)

peaks of the Gaussian random field of given amplitude µ = νσ0 at the origin, have a mean
profile given by

〈ζg(r)|ν, peak〉 = σ0[νψ(r) +O(ν−1)], (7.4)

where the last term can be neglected in the limit of high peaks ν � 1. Note that ψ(0) = 1.
The above expectation is calculated by using the number density distribution of peaks.
This distribution is almost Gaussian, except for a Jacobian prefactor which relates the
condition of being an extremum with the condition for the peak to be at a certain location.
If we simply condition the field value to be at a certain height, the distribution is Gaussian,
an leads to the simpler expression [153]

〈ζg(r)|ν〉 = σ0νψ(r), (7.5)

which coincides with the large ν limit of Eq.7.4. For a Gaussian distribution, the mean
and the median coincide, and therefore for the rest of this paper we shall refer to Eq.7.5
as the median Gaussian profile.

Still, there will be some deviations around the median, so that the typical profile will
be of the form

ζg(r) = µψ(r)±∆ζ, (7.6)

where the variance of the shape is given by [153]

(∆ζ(r))2

σ2
0

= 1− ψ2

1− γ2
− 1

γ2 (1− γ2)

(
2γ2ψ +

R2
s∇2ψ

3

)
R2
s∇2ψ

3
− 5R4

s

γ2

(
ψ′

r
− ∇

2ψ

3

)2

−R2
s

ψ′2

γ2
.(7.7)

Here γ ≡ σ2
1/(σ2σ0), and Rs ≡

√
3σ1/σ2, where the gradient moments of the power

spectrum are given by

σ2
n =

∫
k2nPζ(k)d ln k. (7.8)

In what follows, we are going to consider two different forms for the enhancement of the
power spectrum at the PBH scale.
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Monochromatic power spectrum: This is simply an idealized a delta function enhance-
ment, such that the power spectrum is given by

P δ
ζ (k) = σ2

0k0δ(k − k0). (7.9)

In this case the median shape in Eq.7.6 is given by

ψ(r) = (k0r), (7.10)

while the dispersion takes the following form

(∆ζ(r))2

σ2
0

= 1− ψ2 − 5

[
R2
s

ψ′

r
+ ψ

]2

−R2
s(ψ

′)2 . (7.11)

Note that in this case, we have γ = 1, and the general expression Eq.7.7) contains inde-
terminate ratios. In order to obtain Eq.7.11) we have regularized the delta function by
using a normalized distribution which is constant in an interval of radius ε around k = k0,
and vanishes outside of this interval, taking the limit ε→ 0 at the end.

Sharply peaked power spectrum: We are also going to consider a more realistic case,
in which the enhancement follows a power law growth kn. Models of the type considered
here tend to have n in the range 3− 4 [154], and for definiteness we shall consider n = 4.2
For n = 3, the results are qualitatively similar, since the perturbation profiles in this
range of n are strongly dominated by wavelengths near the peak of the power spectrum.
The results might be different for a broadeer spectrum, with a milder slope n . 1, but
such low values of n are not particularly well motivated in the present context, and we
shall not consider them further.We also consider a rapid fall of the power spectrum after
the peak. In the single field model, such fall-off behaves as k−

12
5
fNL [72]. Note that at

low fNL < 5/3, the fall-off is not sharp enough to make σ2 [given in Eq.7.8)] indepent on
the ultraviolet details of the spectrum. In other words, peak theory cannot be blindly
used in this case to find the number density of PBH at the scale of the peak kp, because
the distribution of peaks is dominated by smaller scales. In what follows, we will simply
introduce a sharp cut-off at the peak value kp. This amounts to a top hat window function
in momentum space, which filters out the smaller scales.3 The spectrum is then given by

P sf
ζ (k) = 0 , for k < k0, (7.12)

P sf
ζ (k) = P0

(
k

kp

)4

, for k0 ≤ k ≤ kp (7.13)

P sf
ζ (k) = 0 , for k > kp . (7.14)

In this case, the correlation function determining the shape of the peak is given by

ψ(r) ' 4

k4
pr

4

[
−2 +

(
2− k2

pr
2
)

cos (kpr) + 2kpr sin (kpr)
]
, (7.15)

where we have further assumed that k0 � kp. For its dispersion we can take directly Eq.
7.7, since in this case γ 6= 1. We now discuss the effect of non-Gaussianities.

2In the example considered in [72] the value n = 4 corresponds to large fNL. It was argued in [154]
that this may be the maximum possible value in canonical single field scenarios. It has recently been
shown, however, that a slightly steeper spectrum is possible in certain models [155].

3For recent discussions on the use of window functions in the present context, see e.g. [106, 156–158].
Since we are mostly interested in the effect of non-Gaussianity, and to avoid unnecessary complication,
we shall not dwell further on this interesting issue. Nonetheless, we emphasize that for fNL & 2 the use
of a window function is not strictly necessary.
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7.1.2 Non-Gaussianity

In single-field inflation, when the inflaton passes through a period of constant-roll as it
overshoots a barrier, the non-Gaussian curvature perturbation ζ is related to the Gaussian
field ζg defined in Eq.7.1 as [72]

ζ = −µ∗ ln

(
1− ζg

µ∗

)
. (7.16)

The parameter µ∗ can be written as a function of the potential as

1

µ∗
=

1

2

(
−3 +

√
9− 12η

)
, (7.17)

with η ≡ V ′′/V , evaluated at the local maximum of the barrier. The relation Eq.7.16 is
only defined for perturbations with ζg < µ∗. Perturbations with ζg > µ∗ are so large that
they prevent the inflaton field from overshooting the local maximum [72]. The regions
where the inflaton is trapped in the false vacuum are localized false vacuum bubbles
which, from the point of view outside observers, end up forming a black hole, while from
the point of view of internal observers they continue inflating. That is the reason why
such PBH are said to carry a baby universe inside [70, 71]. In this context, black holes
can be formed in two different ways. If ζg is larger than a certain threshold µth, whith
µc < ζg < µ∗, then standard black holes will be created by the gravitational collapse of
the adiabatic overdensity. On the other hand, regions where ζg > µ∗, will lead to false
vacuum bubbles.4

By Taylor expanding the non-perturbatuve relation Eq.7.16 to quadratic order in ζg,
we obtain the widely used perturbative template of local type non-Gaussianity,

ζ = ζg +
3

5
fNLζ

2
g . (7.18)

The parameter µ∗ is related to fNL through

1

µ∗
=

6

5
fNL. (7.19)

It is clear, however, that this truncated expansion is far from accurate, since PBH forma-
tion occurs in the regime where ζg is not small. Furthermore, the perturbative template
does not capture the existence of a second channel for PBH production from regions
trapped in a false vacuum, since ζ in Eq.7.18 is well defined for any amplitude of ζg.
Nonetheless, because of its prevalence in the literature, and in order to compare with
other approaches, it seems of some interest to also consider this quadratic template.

Hence, in the following we will consider two different cases. Case A corresponds to
an idealized Dirac delta function power spectrum for the Gaussian variable ζg, as in Eq.
7.9), where we will consider the “vanilla" perturbative local template Eq.7.18) in order to
obtain the non-Gaussian curvature perturbation. Case B is a more realistic scenario based
on the single field model of [72], where the logarithmic template for non-Gaussianity will
be combined with the power spectrum Eq.7.14 in order to determine the range of typical
shapes for ζ.

4Note that µc is always smaller than µ∗. Since ζ ′ diverges as zeta approaches µ∗, the compaction
function will unavoidable be larger than its threshold for collapse for an amplitude µc < µ∗.
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roll” (see Fig. 1). In this context, PBH can be formed not only from the collapse of a large
adiabatic overdensity, but also from false vacuum bubbles which continue inflating in the
ambient radiation dominated universe, and eventually pinch o↵ from it. This results in a
black hole which separates the ambient universe from an inflating baby universe [23, 32, 33].3

A question of practical interest is to determine the abundance of PBHs. Several works
have already treated the influence of non-Gaussianities in the abundance of PBHs [23, 34–
43]. Since this turns to be large, it is important to i) predict the amplitude and shape of
the non-Gaussianities for a given model of PBH formation, and ii) consider their influence
beyond perturbation theory.

When PBHs are formed from rare overdensities, their abundance will depend on the
threshold for the amplitude of the overdensity to collapse once it reenters the horizon. This
threshold notoriously depends on the shape (or profile) for the overdensity [44–48]. For
a Gaussian random field, the typical shape of high peaks is determined from the power
spectrum, but if the distribution is non-Gaussian, the shape will also depend on the nature of
the non-Gaussianity [23, 41, 42]. Furthermore, since fluctuations are drawn from a statistical
distribution, the shapes of perturbations susceptible of collapsing will inherit a dispersion.
While the mean profile is usually taken to be representative of the typical shape, it seems
important to consider how the threshold may vary due to the dispersion of shapes. This
point is particularly relevant when a mean profile for the perturbations cannot be defined,
as it is the case for large overdensities coming from the model of single-field inflation with a
barrier4 [23].

In this work we study the dependence of the threshold on the dispersion of the profiles,
including the non-Gaussianity resulting from the physics of single-field inflation. The non-
Gaussianity is entirely due to the non-linear relation between the Gaussian variable

⇣g ⌘ � H
��

�̇

����
sr

> µ⇤, (1.1)

and the non-Gaussian gauge-invariant curvature perturbation ⇣. Here �� is the inflaton field
perturbation in the flat slicing, evaluated at the onset of the slow roll attractor behaviour
past the top of the barrier, and H is the expansion rate during inflation5. For the non-
linear relation between ⇣ and ⇣g, we will compare the non-perturbative expression which
follows from the single field model where the inflaton overshoots a small barrier [23], with
the more widely used perturbative Taylor expansion of ⇣ to second order in ⇣g (parametrized
by the standard coe�cient fNL). These non-perturbative and perturbative versions of local
non-Gaussianity are given, respectively, in Eqs. (2.13) and (2.15) below.

We will find the thresholds for collapse into a PBH under the assumption of spherical
symmetry, by using a recently developed numerical code [52]. This solves the Misner-Sharp
(MS) partial di↵erential equations by using spectral methods. We will also compare the

3These are sometimes refered to as black holes with a baby universe inside. Note, however, that the baby
universe is not in the trapped region, or “interior” of the black hole. Rather, the trapped region separates
two normal regions, one in the parent ambient universe and the other in the baby universe, which were once
causally connected but are not anymore, after the trapped region forms.

4In a nutshell, the problems is that ⇣ diverges when the amplitude of ⇣g reaches a critical value µ⇤, and it
is not even defined for larger amplitude of ⇣g, for which there is a finite probability.

5Refs. [49–51] consider the non-Gaussianity in the density perturbation � due to the non-linear relation
between � and ⇣. Note that such discussion would be redundant in our approach, where the initial conditions
for numerical evolution, as well as the threshold estimators for gravitational collapse, are expressed directly
in terms of ⇣.
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Figure 7.1: An inflaton potential with a small barrier on its slope. As the background field
goes over the barrier, it undergoes a period of constant-roll with φ̈/Hφ̇ ≈ const. < −3,
which strongly amplifies the power spectrum of adiabatic perturbations to the amplitude
required for significant PBH production. Here δφ is the inflaton field perturbation in the
flat slicing, evaluated at the onset of the slow roll attractor behaviour past the top of the
barrier. Large backward fluctuations with −Hδφ/φ̇|sr > µ∗ may prevent some horizon
sized regions from overshooting the barrier, generating false vacuum bubble relics [72].
From the point of view of internal observers, these continue inflating at a high rate, while
from the external point of view, these bubbles will form PBH once they enter the horizon
during the radiation dominated era.
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7.1.3 The long wavelength approximation and initial conditions

As we did in section 4.2, are going to consider the long wavelength approximation to
determine the form of our initial metric and hydrodynamical variables [40]. The difference
now is that we are going to use the variable ζ instead of K in the metric of Eq.4.16. In
the limit ε→ 0, the metric of a perturbed FRW model can be written in the form

ds2 = −dt2 + a2(t)e2ζ(r)(dr2 + r2dΩ2). (7.20)

This is in a coordinate system where the energy density of the fluid is used as a clock,
so that t = const. surfaces coincide with ρ = const. surfaces. We have also restricted to
spherical symmetry, which excludes the presence of tensor modes (gravitational waves).
In terms of ζ(r), the long wavelength solution of the Misner-Sharp equations equations,
in comparison with Eqs.4.19 reads [159]

U = H(t)R(1 + ε2Ũ), (7.21)
ρ = ρb(1 + ε2ρ̃), (7.22)
M = 4π3ρbR

3(1 + ε2M̃) = 4π3ρbR
3(1− 4ε2Ũ), (7.23)

R = a(t)eζ(r)r(1 + ε2R̃) = a(t)eζ(r)r
(

1− ε2ρ̃8 + ε2Ũ2
)
, (7.24)

where the functions ρ̃, Ũ represent the energy density and velocity perturbation, given by

Ũ = −16e2ζ(rk)e2ζ(r)ζ ′(r) [2r + ζ ′(r)] r2
k, (7.25)

ρ̃ = −49e2ζ(rk)e2ζ(r)r2
k

[
ζ ′′(r) + ζ ′(r)

(2

r
+
ζ ′

2

)]
. (7.26)

Here rk is the comoving lengthscale of the perturbation associated to the wavenumber k,
i.e. rkeζ(rk) = [H(t)a(t)ε]−1. The compaction function written using ζ variable is given
by,

C =
2

3

[
1− (1 + rζ ′(r))2

]
(7.27)

7.2 Results
Here we consider the thresholds for collapse for a set of typical profiles corresponding
to Case A and Case B described at the end of Subsection 7.1.2, for values of the non-
Gaussianity parameter in the range 0 < fNL < 6. Ideally, we would be interested in the
set of profiles

ζg = µψ ± s∆ζ, (7.28)

which are within s standard deviations from the median profile for a given amplitude µ.
For s = 1 this includes 68% of all realizations, including generic profiles which are not
spherically symmetric. Nonetheless, in the limit ν = µ/σ0 � 1 they will be approximately
spherical, with corrections of order ν−1 [153]. Since our numerical code assumes spherical
symmetry, here we shall restrict attention to profiles with such symmetry. Aside from the
median shape, ζ̄(r) = µψ(r), we shall consider the profiles

ζ±g (r) = µψ(r)±∆ζ(r), (7.29)
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with ∆ζ(r) given by Eq.7.7. These are, roughly speaking, the envolvent of all realizations
within one standard deviation from the median. Denoting by µ±c and C±c the corresponding
thresholds for the amplitude and the optimized initial compaction function, the differences

σµ =
|µ+
c − µ−c |

2
, σC =

|C+
c − C−c |

2
. (7.30)

can be taken as indicative of the dispersion in the thresholds, within one standard devia-
tion.5

We have determined the thresholds by using two different methods. Namely, by nu-
merical evolution with the code developed in [43], and by using the universal criterion
based on C̄ = 1/5. In Fig. 7.3 we show the results for the thresholds µc and Cc evaluated
from these two methods, in the case where we do not include the dispersion ∆ζ = 0, for
the perturbative and non perturbative template. We see a good agreement between both,
within a deviation of ∼ 2%, as was reported in [45]. The dispersions in the thresholds
given in Eq.7.30 are represented in Fig. 7.4. Let us now comment on the more qualitative
features of the results and their physical implications.

7.2.1 Case A: Perturbative template

This case corresponds to the Dirac delta function power spectrum Eq.7.9), together with
the perturbative local template Eq.7.18) for the relation between ζg and the curvature
perturbation ζ.

In Fig. 7.2 we display the time evolution of the mean profile Eq.7.10) for the Gaussian
case (fNL = 0). The “sinc" profile Eq.7.10) is somewhat peculiar, in that the initial
compaction function (represented as a blue line in the figure) has a dominant peak at
r = rm ≈ 2.7k−1

0 , and then an infinite number of nearly equally spaced secondary peaks
of nearly equal height at r � rm. The threshold for gravitational collapse of the dominant
peak once it enters the horizon is determined numerically to be Cc ≈ 0.29. This raises
the somewhat naive question of what happens to the secondary peaks if the compaction
function exceeds th also at the secondary peaks. Will these also trigger the gravitational
collapse of bigger PBHs once they enter the horizon? It is clear from the figure that this
will not be the case. As soon as the dominant peak enters the horizon, at the time tH ,
the width of the secondary peaks will also be within the horizon, and we see that these
secondary structures disipate due to pressure gradients.6 By contrast, the dominant peak
continues to grow and in a time-scale t ∼ 10tH , it reaches C > 1, signaling the existence
of a trapped region with 2M > R.

In fact, for the profiles ζ±g given in Eq.7.29, we find that the initial compaction function
for ζ+

g can be lower at the first peak than it is at the subsequent “secondary" ones. Still,
the first peak is the one that grows under time evolution, until a trapped surface forms,
whereas the secondary ones dissipate. This is important, because it highlights the fact

5Departures from spherical symmetry are expected to increase the threshold value for PBH formation
[122]. A more precise study of this effect would require the development of a numerical code which can
handle deviations from spherical symmetry in the ensemble of realizations. This is beyond the scope of
the present work, and is left for further research.

6The simulation is done under the assumption of spherical symmetry. However, it should be noted
that for ν . 8 the variance in the shapes ζ(r) at the secondary peaks is comparable to the the amplitude
of ζ, which means that the assumption of spherical symmetry does not really hold there. This is another
reason why we do not expect these additional structures to form bigger PBHs. We thank Chulmoon Yoo
for bringing this point to our attention.
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Figure 7.2: Time evolution of the compaction function C(r, t) for the Gaussian profile
Eq.7.10, with amplitude µ = 0.64, slightly larger than the threshold value µc ≈ 0.61.
For reference, the threshold value th is indicated as a dashed line. The radial coordinate
is in units of the initial time ti, which we take to be much smaller than the time tH at
which rm crosses the horizon, tH = 100 ti. The size of the grid is actually somewhat
larger than displayed, with rmax = 200 ti, much larger than the initial Hubble radius
H−1
i = 2ti. After the time tH the secondary peaks in the compaction function dissipate

due to pressure gradients. The dominant peak, on the other hand, continues to grow. By
the time t = 16tH , the compaction function has reached values significantly larger than
1/2, indicating that a trapped region has already formed.

that the relevant optimal radius rm at which we evaluate C(rm) in order to determine the
threshold – and which also enters the universal estimator Eq.5.16 – is not the absolute
maximum of the compaction function, but the local maximum which is closest to the
origin.

We have determined the threshold amplitude µth and the threshold compaction func-
tion Cth for different values of the non-Gaussianity parameter in the range 0 ≤ fNL ≤ 6.
The numerical results are shown in Fig. 7.3 and Fig. 7.4.

In particular, we find that the threshold for the compaction function reaches a constant
as we increase the non-linear parameter fNL. To gain some insight into the origin of this
behaviour, let us note that at sufficiently large fNL the overdensity is dominated by the
non-linear term. Indeed, for

µfNL � 1/ψ(rm) ≈ 1.85, (7.31)

the median shape can be approximated as ζ(r) ≈ fNLµ
2ψ2(r) out to the radius rm. In the

last step in Eq.7.31 we use ψ(r) = (r), and rm ≈ 1.8 is the maximum of the compaction
function for the profile ψ2(r). In this regime, the shape of the perturbation is independent
of fNL, and hence, we expect th to be independent of fNL:

Cc ≈ 0.286. (µcfNL � 2) (7.32)
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Here the numerical value is calculated by evolving the profile ζ ∝2 (k0r). From the right
panel in Fig.7.3 we see that Cc is indeed nearly constant for fNL in the range from 2 to 6.
This is, however, somewhat coincidental, since the condition µcfNL � 2 is only satisfied
for fNL � 10. In the same regime, from rmζ

′(rm;µc)) =
√

1− 3Cc − 1, we expect

µc =

[ √
1− 3Cc − 1

2rmψ(rm)ψ′(rm)

]1/2

f
−1/2
NL ≈ 1.12f

−1/2
NL . (fNL � 10) (7.33)

Note that this overestimates the actual values of µc in the interval 1 < fNL < 6, by 30% or
so (See Fig. 7.3). The reason is that for fNL . 10, the value of rm and, more importantly
ψ(rm)ψ′(rm), changes appreciably with fNL.

By contrast with Cc, we find that the threshold amplitude µc decreases quite signif-
icantly with fNL in the 0 < fNL < 6 interval. We also note that the dispersion of the
shapes accounts for a very small dispersion of Cc. On the other hand, the threshold for
the amplitude µc has a larger variability, in particular at low fNL. This may have a sizable
impact on the abundance of PBH, although a precise determination of this effect would
require simulations which include departures from spherical symmetry (see footnote Eq.5.
Note that for a monochromatic spectrum, the only spherically symmetric profile with
finite amplitude at the origin is precisely the median profile ζg = ζ̄ = µ(k0r), so there is
no dispersion in the thresholds unless the assumption of spherical symmetry is dropped.
In this sense, our treatment of the dispersion by considering the profiles ζ± is only indica-
tive, since it ignores the effect of non-sphericity, which is expected to shift the threshold
to slightly higher values.

Recently, the effect of non-Gaussianity with the quadratic template Eq.7.18 was also
considered in Ref. [89,90], by considering somewhat different approaches. In [89], a fiducial
value Cc ≈ 0.267 was used independently of the value of fNL, and it was concluded that
the abundance of PBH grows with fNL. Here, we find that Cc & 0.286 for any fNL. Note
also that the dependence of Cc on fNL in the range 0 < fNL . 2 tends to further enhance
the abundance of PBH with growing fNL, relative to the Gaussian case.

For fNL = 0, our result for Cc corresponding to the median profile ζ̄ coincides with
the result reported in [90], indicating the mutual consistency of the numerical methods.
It should be noted, however, that there are some differences in the two approaches, and
in the questions we are addressing. Ref. [90] develops a perturbative method in order to
calculate the average profile for the density contrast δρ, where δρ is expanded in powers
of ζ and the calculation is carried out to second order in ζ. Here we consider instead
a family of profiles for the curvature perturbation ζ, within a standard deviation from
the median at fixed ν. Ref. [90] finds a value of Cc for the average profile 〈δρ〉 which is
significantly smaller than what we find for the median. This difference is of order 10%,
for all values of fNL, and it is natural to ask whether this may be due to the difference
between the average and the median. Although these two can indeed be different, we
expect the former to be within a standard deviation from the latter, corresponding to 68
% of all realisations. However, as shown in the right panel of Fig. 7.4, the dispersion of
Cc between the profiles ζ± is very narrow, of the order of 1%, which is much smaller than
the 10% difference mentioned above. A more plausible origin for the discrepancy may be
a certain inaccuracy of the perturbative approach used in [90], for which the expansion
parameter is the amplitude of the curvature perturbation, µ ∼ 1. Since this is not small,
the accuracy of the truncated expansion is not under control.7

7The lack of a small expansion parameter was already noted by the authors of [90]. They also pointed
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Figure 7.3: Results with ∆ζ = 0. The orange and blue points represents the values got
using the perturbative ζA and the non perturbative template ζB with the corresponding
error bars. The red points are those computed using the universal law of Eq.5.16. The
inner plot represents the deviation d =| µNc −µAc | /µNc between the numerical µNc and the
analytical values µAc (the same is applied for Cc). We also show in dashed line the critical
amplitude ζ∗ ≡ µ∗, such that a perturbation jumps into the false local minimum of the
potential. For values of fNL ∼ 3 − 4, the thresholds for collapse approaches this limit.
left) Variation of the threshold for the amplitude µc with respect to the non-Gaussian
parameter fNL. right) Variation of the threshold for the maximum of the compaction
function Cc with respect to the non-Gaussian parameter fNL.

Figure 7.4: Results with ∆ζ 6= 0 including the dispersion term of Eq.7.7. Here, we use
the numerical value ν = µ/σ0 = 5. left) Variation of the threshold for the amplitude µc
with respect to the non-Gaussian parameter fNL, for both the perturbative template ζA
(orange) and the non perturbative template ζB (blue). The shaded region indicates the
dispersion in the numerical results from the dispersion of shapes. right) Variation of the
threshold for the maximum of the compaction function c with respect to the non-Gaussian
parameter fNL. While for the perturbative template, the threshold for the compaction
function is constant for large fNL, for the non perturbative template the threshold keeps
evolving with increasing fNL. In both cases the dispersion in c is very small and comparable
to the numerical errors.
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7.2.2 Case B: Non-perturbative template

Let us now consider the single field model where the background inflaton overshoots a
barrier in the slope of the potential, as in Fig. 7.1. In this case the, the curvature
perturbation is related to the Gaussian variable through the non-perturbative relation
Eq.7.16. Note that the non-perturbative template can also be written in terms of fNL,
since µ∗ is a simple function of it, given by Eq.7.19.

For fNL � 1, the differences between Cases A and B are due entirely to the difference
in the corresponding power spectra. As can be seen in Fig 3 and 4, such differences are
marginal. Thus, for the purpose of determining the critical amplitude and dispersion, the
Dirac delta spectrum seems to be a good approximation to the sharp spike (2.11), which
follows from the one-field model.

In Figs. 7.3 and 7.4 we also plot the curve fNL ≡ 5/(6µ∗) as a dashed line. Note
that for ζg ∼ µ∗ non-linearities are very important, and in fact for ζg > µ∗ the backward
fluctuation in the inflaton potential causes a horizon sized region to remain stuck in the
false vacumm [72]. The relation between ζg and ζ becomes singular at ζg = µ∗, and
as a result when the threshold approaches µ∗, a small change in ζg can lead to a large
change in ζ, according to the relation ∆ζg ≈ (1− ζg/µ∗)∆ζ. As a result, the dispersion in
the threshold becomes small when µc becomes close to µ∗. This happens for fNL & 3.5,
where, as shown in Fig. 7.4, the dispersion of the threshold decreases dramatically. Also,
near this value of fNL, black holes will actually be more likely to be formed though to
the creation of false vacuum regions than by adiabatic perturbations. Indeed, we can
calculate the abundance of black holes produced by the latter mechanism

βst ∝
∫ µ∗

µc

µ3e−µ
2/(2σ2

0)dµ (7.34)

relative to the abundance of black holes with a baby universe in their interior, given by

βfv ∝
∫ ∞

µ∗

µ3e−µ
2/(2σ2

0)dµ. (7.35)

where we have used the peak theory prescription for computing number density of high
peaks [153], for ν = µc/σ0 � 1. In the same limit, their ratio is then simply given by

βst
βfv
≈ µ2

th

µ2
∗

exp

[
(µ2
∗ − µ2

th)ν
2

2µ2
th

]
− 1, (7.36)

where we have also used the fact that µc < µ∗.
Note that PBHs created from large overdensities follow the critical collapse scaling,

and therefore their mass can range from zero up to the mass contained within the horizon
at the time of their formation. On the other hand, PBHs formed from false vacuum
bubbles will have a mass which is a fixed (order one) fraction of the mass of radiation

out that the shape of the second order correction to the average δρ is very similar to that of the lowest
order linear term, and that if all subsequent terms were to have a similar profile, then the truncated result
would be similar to the fully resummed average profile. Although this remains a logical possibility, which
could be checked by calculating further terms in the expansion, it would be surprising to us if this turns
out to be the case. As noted above, this would mean that the average profile is several standard deviations
away from the median, and therefore far from typical in the ensemble of all realizations. Assuming, for
the sake of argument, that this is the case, one should then question what is the point of focussing on
the average profile, as opposed to a more representative sample of all realizations.
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Figure 7.5: Ratio of PBHs coming from the collapse of large overdensities to those created
from inflating regions trapped in the false minimum of the potential.

contained within a horizon sized region [70]. The ratio Eq.7.34 is then an upper bound
on the dark matter fraction in the form of standard PBHs relative to that in the form
of PBHs containing a baby universe. In Fig. 7.5 we show this ratio as a function of the
non-Gaussian parameter fNL, for different values of ν. We see that for fNL < 3 standard
black holes dominate, for 3 < fNL < 4 both types of black holes are produced with a
comparable abundance and for fNL > 4, black holes with baby universe in their interior
dominate. In principle, as mentioned above, both populations could be distinguished if we
could measure the mass distribution of PBH accurately enough to tell whether it follows
the critical collapse distribution or it is instead very monochromatic. Whether this can
be done realistically is an interesting open question.
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CHAPTER 8

SUMMARY AND CONCLUSIONS

In this chapter, we outline the conclusions and summarize the results of the thesis.
In chapter 4, we have performed numerical simulations of PBHs formations using, for

the first time, a Pseudo-spectral technique instead of the extensively used Lagrangian
hydrodynamic scheme based on [32, 35]. Our results prove that our code allows solving
the problem of numerical PBH formation in a very efficient and sophisticated way with a
small length of code.

We have been able to obtain the threshold δc of different curvature profiles with up to
an accuracy of O(10−5), which is enough for cosmological applications, where an accuracy
of O(10−2) in δc is required [116].

In our simulations, we have used an excision technique to remove the singularity from
the computational domain. To get the mass of the black hole, we have employed a
semi-analytical formalism given by Eq.(4.48), which leads to a deviation of O(2%) in the
determination of the black hole mass with respect to the values quoted in the literature, in
the scaling law regime. Moreover, for the first time, we were able to give the values of the
black hole mass for large initial amplitudes, finding a deviation of O(15%) at the largest
value δmax = 2/3 (for w = 1/3) with respect to the scaling law, this can be observed in
Fig.4.13.

Our new publicly available numerical represents a test of the correctness of the results
obtained previously in the literature and allow the community researching the PBH sce-
nario to use it. It is built with Python and can be found in https://sites.google.com/
fqa.ub.edu/albertescriva/home.

Moreover, our method could be naturally extendable to the case of multidimensional
collapse as the generalization of the 1D problem to higher spatial dimensions with the
Pseudo-spectral method is straightforward. Conversely, the standard implementation of
the hydrodynamical method seems to fail [160].

In chapter 5, we have shown that although the threshold to form a PBH is initial
curvature profile dependent, as noticed by [42], the threshold for the mean (i.e. volume
averaged) compaction function within a concentric sphere of radius rm(1−α(w)) ≤ r ≤ rm,
is, to a very good approximation, universal in the case 1/3 ≤ w < 1. We used this
remarkable result to provide an analytical formula for the threshold that only depends
upon the normalised second derivative of the compaction function at its maximum and
the equation of state w.

Our first attempt in [45] has been improved modifying the start point were to perform
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the average. We have argued that, for w ≥ 1/3, pressure gradients are strong and erase
small scale details of perturbations, so a simple parametrization in terms of suitably
chosen averaged quantities should be sufficient to predict δc quite accurately (chapter 5).
We then argued that w determines the scale over which one should average C and that,
given w, the shape-dependence of δc can be parametrized using only a single additional
parameter, q of Eq.5.7, which is a dimensionless measure of the curvature of C on the
scale where dC/dr = 0. We have demonstrated the accuracy of this proposal using a
wide variety of parametrizations of possible profile shapes Eq.(5.8), Eqs.(5.19)–(5.21) and
Fig. 5.3). Our analytical threshold formula, δc(q, w) of Eq.5.16, which is always within
∼ 6% of the simulated values (Figs. 5.5–5.8 and 5.10).

We also have shown that the expressions for δc provided by earlier analytical works [37],
which are supposed to be applicable in the limits of small q and w, are not as accurate
as our Eq.5.16 (Fig. 5.11). In particular, the physical understanding of the q → 0 limit
remains a fascinating problem.

Our results represent the first analytical estimation that correctly, with enough accu-
racy and contrasted with numerical simulations, estimates the threshold for PBH forma-
tion in a range of w. Our analytical estimation is the first one to take into account the
shape of the initial perturbation rather to be a unique value. Moreover, it allows us to
consider the threshold as an analytical value and can be used directly to account for the
PBH statistics, as it has been done already in [118].

The fact that the spherically symmetric case has worked out straight forwardy with
our method, at least for w ≥ 1/3, suggests that a number of other problems may also
be tractable with the Pseudo-spectral technique. For example, PBH formation from non-
spherical perturbations [122, 161], the effects of rotation on the gravitational collapse
[162–166] or even PBH formation in modified gravity models [167].

In chapter 6, we have studied the dependency on the curvature profile (in a radiation
fluid) of the initial mass MBH,i of the PBHs at the time of apparent horizon formation
tAH , and the final massMBH,f after the accretion process, using an excision technique and
comparing MBH,i to previous analytical estimations obtained using compensated PBHs
model approach. The analytical estimations are in agreement with numerical results,
except for large values of the initial density contrast when the compensated model is less
accurate. We found that the masses MBH,i and MBH,f of the PBH depend upon the full
shape of the curvature profile, at can not be parametrized accurately only by the shape
around the peak of the compaction function, as with δc [45].

The analytical estimation of the upper bound of the PBH size of [55] has been com-
pared with numerical results. The arguments used in [55] are a good approximation to
the numerical results, except when profiles with q ≈ 2 are considered with δ → δmax.
Moreover, we have given a numerical estimation regarding the effect of the accretion for
different profiles. For light PBHs the accretion effect is remarkably small as expected
in [10]. In particular, for MBH,f ≈ MH is the most relevant value for the abundance
calculation [116], the accretion amplification is MBH,f/MBH,i ≈ 3.

In the future, it would be interesting to reproduce these results for different equations of
state w, and considering non-spherically symmetric simulations [123]. Another interesting
thing to explore would be studying the accretion effect in other systems like the PBH
formation from the collapse of Q-balls or oscillons [52, 128].

Finally, in chapter 7, we have studied the non-Gaussianities on the statistical disper-
sions of thresholds. This was done assuming single-field inflationary initial conditions for
the PBH formation.
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We found that the effect of the dispersion of shapes on the distribution of δc, related
to the statistical realization of the profiles, is small if we consider 1σ deviation from the
median profile. Conversely, it is larger if we would consider the thresholds related to the
statistical realization of curvature perturbations, particularly at low fNL.

We have found that the impact of non-Gaussianity on the thresholds is more sub-
stantial in the non-perturbative treatment where the non-linear curvature perturbation
has been related to the linear one (case B 7.2.2). For instance, while the distribution
of δc’s saturates to a constant for fNL & 1 in the perturbative (local) template (case A
7.2.1), we found that in the non-perturbative template decays approximately linearly as
δc ≈ 0.58− (0.06fNL) for fNL . 3.75. Numerically, it is hard to probe larger values of fNL

because the profiles become extremely peaked near the origin and therefore the pressure
gradients can not be accurately numerically computed. Nonetheless, we expect the linear
behaviour to saturate to its lowest possible value δc = 2/5 for fNL & 4.

We have estimated the effect of the dispersion of curvature profiles in Fig. 7.4, by
using spherical symmetry. A more precise determination of the dispersion requires the
development of numerical codes which can handle non-spherically symmetric realizations
in the ensemble.

Finally, we have computed the relative abundance of PBHs coming from a collapse
of overdensities with respect to those coming from false vacuum regions (Fig. 7.5). We
concluded that false vacuum regions dominate the production of PBHs for fNL & 3.5,
showing that this can be a new feasible mechanism for PBH formation apart from the
collapse of density perturbations. PBHs created from large overdensities have a distri-
bution of masses which follows from the critical collapse scaling and the dispersion in
shapes, whereas those created from false vacuum bubbles have a fairly monochromatic
spectrum. Prospects for observational discrimination of these two possibilities remain an
interesting direction for further research. Another possible phenomenological application
of these results may be in the study of gravitational waves induced by non-Gaussian scalar
perturbations [168–170].
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APPENDIX A

QUASI-HOMOGENEUS SOLUTION OF MISNER-SHARP
EQUATIONS

In this appendix we show the procedure to obtain the initial conditions given in Eq.4.19.
We basically follow the procedure done already in [93]. The starting point is to consider
the general metric of the spacetime with spherical symmetry.

ds2 = −A(r, t)2dt2 +B(r, t)2dr2 +R(r, t)2dΩ2, (A.1)

and the necessary set of Misner-Sharp equations that we need to perturb are given by,

Ṙ = AU, (A.2)

ρ̇ = −Aρ(1 + w)

(
2
U

R
+
U ′

R′

)
, (A.3)

Ṁ = −4πAωρUR2, (A.4)
M ′ = 4πρR2R′, (A.5)
R′2

B2
= 1 + U2 +

2M

R
, (A.6)

Ḃ

B
= A

U ′

R′
, (A.7)

A′

A
= − w

1 + w

ρ′

ρ
, . (A.8)

The FRW background solution is given by:

Ab = 1,

Bb = aU,

Rb = ar,

Mb =
4π

3
ρbR

3
b ,

Ub = HbRb = ȧr,

(A.9)
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To developed the perturbative analysis we use a dimensionless parameter, which is
the ratio between two scales: the physical scale of the perturbation and the scale of the
cosmological horizon. Considering perturbations ta super-horizon scales, we request that
ε� 1

ε =
RH(t)

a(t)rm
(A.10)

is useful to know the following equation for next computations:

ε̇

ε
= (1 + 3ω)

ȧ

a
, (A.11)

a

ȧ

∂

∂t
=

∂

∂σ
, (A.12)

therefore σ = ln(a). We perturb using term ε2, we should find the equation for the
tilde variables.

A = 1 + ε2Ã, (A.13)

B =
R′√

1−K(r)r2
(1 + ε2B̃), (A.14)

R = ar(1 + ε2R̃), (A.15)
ρ = ρb(1 + ε2ρ̃), (A.16)

M =
4π

3
ρbR

3
b(1 + ε2M̃), (A.17)

U = HbR(1 + ε2Ũ), (A.18)
(A.19)

We start expanding in terms o ε the Eq.A.2 and using Eq.A.11 and Eq.A.12 we have,

Ṙ

R
=

aU

R
, (A.20)

ȧ

a
+ ˙εR =

ȧ

a
(1 + εÃ)(1 + εŨ), (A.21)

a

ȧ

ε̇

ε
R̃ +

∂R̃

∂σ
= Ã+ Ũ , (A.22)

Ã+ Ũ =
∂R̃

∂σ
+ R̃(1 + 3w), (A.23)

(A.24)

We do the same with Eq.A.7 to get,

Ṙ′ = (aU)′, (A.25)
a

ȧ

∂

∂t
(εB̃) = −A

′U

R′
, (A.26)

(1 + 3w)B̃ +
∂B̃

∂σ
= −rÃ′, (A.27)

(A.28)
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In he case of Eq.A.8 the expansion is straightforward,

Ã′ = − w

1 + w
ρ̃′, (A.29)

(1 + w)Ã+ wρ̃ = 0. (A.30)
(A.31)

With the Eq.A.4 and using Eqs.A.2, A.23,A.30 we get,

1

3
(1 + εM̃)

[
ρ̇b
ρb

+ 3
Ṙ

R
+ ˙(εM̃)

]
= w(1 + ερ̃)

Ṙ

R
, (A.32)

ε̇M̃ + ε ˙̃M − 3w
ȧ

a
εM̃ + 3w

ȧ

a
ερ̃+ 3(1 + w)(ε̇R̃ + ε ˙̃R) = 0, (A.33)

M̃ +
∂M̃

∂σ
= −3(1 + w)Ũ , (A.34)

(A.35)

Perturbing EqA.5,

1

3
(1 + εM̃)

[
3
R′

R
+ (ερ̃)′

]
= (1 + ερ̃)

R′

R
, (A.36)

ρ̃ =
1

3r2
(r3M̃)′. (A.37)

Finally, with Eq.A.6 we have,

[
(1−K(r)r2)(1− 2εB̃)− 1

]
=

ȧ2

a2
R2(1 + 2εŨ)− 8πρbR

3

3R
(1 + εM̃), (A.38)

−
[
K(r)r2 + 2εB̃(1−K(r)r2)

]
=

r2

r2
m

(2Ũ − M̃), (A.39)

Ũ =
1

2

[
M̃ −K(r)r2

m

]
, (A.40)

(A.41)

The last expression has been obtained already neglecting the first order term in ε.
Introducing Eq.A.40 into Eq.A.34 we have,

∂M̃

∂ξ
+

5 + 3w

2
M̃ =

3

2
(1 + w)K(r)r2

m, (A.42)

M̃ = Φ(σ)K(r)r2
m (A.43)

Also we get a differential equation for the Φ(σ).

dΦ

dσ
+

5 + 3w

2
Φ =

3

2
(1 + w) (A.44)
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Finally, introducing Eq.A.43 into Eqs.A.37 and making subsequent simplifications with
Eqs.A.30,A.40 we get the other tilde variables:

ρ̃ = Φ(σ)
1

3r2

[
r3K(r)

]′
r2
m, (A.45)

Ã = −Φ(σ)
w

1 + w

1

3r2

[
r3K(r)

]′
r2
m, (A.46)

Ũ =
1

2
[Φ(σ)− 1]K(r)r2

m (A.47)

To obtain R̃, we introduce the previous equations into Eq.A.23 to get a differential
eqaution in R̃, given by:

(1 + 3w)R̃ +
R̃

∂σ
= −Φ(σ)

w

1 + w

1

3r2

[
r3K(r)

]′
r2
m (A.48)

this previous differential equations can be solved introducing two auxiliary functions
I1(σ) and I2(σ),

R̃ = −I1(σ)
1

r2

[
r3K(r)

]′
r2
m + I2(σ)

K(r)

2
r2
m, (A.49)

dI1

dσ
+ (1 + 3w)I1(σ) =

w

1 + w
Φ(σ), (A.50)

dI2

dσ
+ (1 + 3w)I2(σ) = [Φ(σ)− 1] , (A.51)

(A.52)

Since we consider a perfect fluid with a single component, we can solve Eq.A.44 ana-
lytically, which yields the following solution.

Φ(σ) = c1e
−σ

2
(3w+5) +

3(1 + w)

3w + 5
(A.53)

Taking into account the initial condition a(ti) = 1, at super horizon scales this leads
Φ = 3(1 + w)/(3w + 5).

Φ =
3(1 + w)

(3w + 5)
, (A.54)

I1 =
3w

(1 + 3w)(5 + 3w)
, (A.55)

I2 =
−2

(1 + 3w)(5 + 3w)
(A.56)

Therefore we have recovered the initial condition on the tilde variables of Eq.4.19.
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APPENDIX B

CONVERGENCE TESTS OF THE NUMERICAL
SIMULATIONS

To check the reliability of our simulations done in chapter 5, we have performed the
numerical test prescribed in Eq.4.39,

with the numerical square norm

|| H ||2≡
1

Ncheb

√∑

k

∣∣∣M
′
k/R

′
k

4πρkR2
k

− 1
∣∣∣
2

, (B.1)

Figs.B.1–B.4 of this appendix show that Einstein eqautions are correctly solved nu-
merically, and for all the profile shapes and families we have tested. Roughly speaking,
for q ≥ 1 convergence is more difficult as w increases, but our simulations always have
|| H ||2< 10−4.

In passing, we also note that the fiducial profiles Eq.5.8, give more stable numerical
evolutions than the basis used in the work [171]. This is an extra justification that the
choice of the polynomial basis is optimal for the reliability of our semi-analytical formulae
for the threshold δc(w, q).
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Figure B.1: Evolution of the Hamiltonian constraint Eq.B.1 using our fiducial profile
choice, Eq. 5.8, for different values of q (top to bottom) and w (as labeled) when δ =
δc(w, q) + 10−2 is supercritical. The same qualitative behavior is obtained for subcritical
δ (i.e. δ < δc(w, q)).

Figure B.2: Same as Fig. B.1 but using Eq. 5.19 for the profile shape.
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Figure B.3: Same as Fig. B.1 but using Eq. 5.20 with λ = 1 for the profile shape.

Figure B.4: Same as Fig. B.1 but using Eq. 5.21 for the profile shape. Note that the range
of q here is smaller than for previous figures of this appendix.
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APPENDIX C

NUMERICAL CODE

This appendix shows the SPriBHos code used in chapter 4 to perform the numerical
simulations, which is the source of all the other computations. Notice the simplicity of
the method. Here is shown the code post on the website to obtain the threshold for a
simple case of an initial Gaussian curvature profile. Basically, the code is composed of
four main codes:

• The "SpriBHos.py" code, which performs the simulations.

• The "threshold.py", which computes the threshold.

• The "curvatureprofiles.py", which computes the curvature profile and its derivative,
needed to set up the initial conditions.

• The "Dmatrix.py", which computes the Chebyshev differentiation matrix.

1) SpriBHos.py
1

2

3 # SPriBHoS code (Spectral Primordial Black Hole Simulator). Code made by
Albert Escriva.

4 #See webpage https :// sites.google.com/fqa.ub.edu/albertescriva/home for
more details.

5 #The code is published in Phys.Dark Univ. 27 (2020) 100466 -> https ://
arxiv.org/abs /1907.13065

6

7 #We import the numeric libraries needed for the code.
8 from numpy import *
9 import numpy as np

10 import math
11 from sympy import *
12 pi = math.pi
13 import time
14 import sys
15

16 #External modulus
17 from Dmatrix import chebymatrix
18 from curvature_profiles import curvature_profile
19 from curvature_profiles import derivative_curvature_profile
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20 from threshold import A_versus_threshold
21

22

23 start_time = time.time()
24

25 #Here we set up the initial variables and magnitudes.
26 w =1./3.#EQ. of state
27 t_initial = 1.0 #initial time
28 alpha = 2./(3.*(1.+w))
29 #numerical initial conditions(background quantities)
30 H_bI = alpha/( t_initial) #Initial Hubble constant
31 e_bI = (3./(8.* pi))*H_bI **2 #initial energy density of the background
32 a_I = 1. #initial scale factor
33 RHI = 1/H_bI # initial cosmological horizon
34 Nh = 90 #number of initial horizon radious , to set up the final point of

the grid
35

36

37 r_initial =0.0 #initial point of the grid
38 r_final = Nh*RHI #final point of the grid , given by the mass enclosed

for the given radious
39

40 a = r_initial
41 b = r_final
42

43

44 dt0 = 10**( -3.)#initial time -step
45 t_final = 80000. #final time of the simulation. This is used as an "exit

" in the bisection method
46 t = t_initial
47

48

49 #Differentiation matrix pseudospectral method
50 N_cheb = 400 #Number of chebyshev points used
51 vector_ones = np.array ([1. for l in range(N_cheb +1)],dtype=np.float64)
52 D,x = chebymatrix(N_cheb ,a,b) #we get the chebychev differetiaiton

matirx and the grid x
53

54

55 rm_N = 10. #number of initial cosmological horizon that we put the
length scale of the perturbtion rk.

56 #The long wavelength approximation must be fulfilld! Take rm_N always
such that epsilon <0.1

57

58 error = 10**( -3)
59

60 #Minimum and maximum thresholds allowed. Case for radiation fluid
61 thresh_min = 2./5.
62 thresh_max = 2./3.
63

64

65 thresh_limit_yes = thresh_max
66 thresh_limit_no = thresh_min
67

68 vector_ones = np.array ([1. for l in range(N_cheb +1)],dtype=np.float64)
69

70 print ("Welcome to the primordial black hole simulator , the simulation
is done with the following parameters:")
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71 print ("N_cheb:",N_cheb)
72 print ("dt0:",dt0)
73 print ("Nh:",Nh)
74 print ("rm_N",rm_N)
75 print ("error allowed in bisection" , error)
76 print ("The simulation is in process")
77

78 #
--------------------------------------------------------------------------------

79 #
--------------------------------------------------------------------------------

80 #
--------------------------------------------------------------------------------

81

82 # The evolution of the FRW magnitudes in time
83 def solution_FRW(t):
84 a_FRW = a_I*(t/t_initial)** alpha #scale factor
85 H_FRW = alpha/t #Hubble factor
86 e_FRW = vector_ones*e_bI*( t_initial/t)**2 #energy density of the

background
87 R_FRW = a_FRW*x #areal radious
88 U_FRW = R_FRW*H_FRW #euler velotity
89 M_FRW = (4.*pi/3.)*e_FRW*R_FRW **3 #mass of the bakground
90 A_FRW = 1.* vector_ones #lapse function
91 G_FRW = 1.* vector_ones #gamma function
92 return e_FRW ,R_FRW ,U_FRW ,M_FRW ,A_FRW ,G_FRW
93

94

95 def energy_FRW(t):
96 e_FRW = vector_ones*e_bI*( t_initial/t)**2
97 return e_FRW
98 # Dynamical magnitudes
99

100

101 #
--------------------------------------------------------------------------------

102 #
--------------------------------------------------------------------------------

103 #
--------------------------------------------------------------------------------

104 #The main numerical code is set up in the three following functions
105 #

--------------------------------------------------------------------------------

106 # The Misner -Sharp equations are set up
107 def system_dynamic_RK(Up ,Rp,Mp,Ap,Gp,ep ,devep ,devRp ,devUp):
108 #Note that the point r=0 in defined
109 fraction = Mp[: -1]/Rp[: -1]**2
110 fraction = np.insert(fraction , len(fraction), 0.)
111 Ut = -Ap*( 4.*pi*Rp*w*ep + fraction + (w/(1.+w))*(devep*Gp**2)/(ep*

devRp) )
112 Rt = Up*Ap
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113 Mt = -Ap*4.*pi*w*ep*Up*Rp**2
114 derU_R = devUp/devRp
115 ratioUR = Up[:-1]/Rp[:-1]
116 ratioUR = np.insert(ratioUR , len(ratioUR), derU_R [-1])
117 et = -Ap*ep *(1.+w)*(2.* ratioUR+devUp/devRp)
118 return Ut,Rt ,Mt ,et
119 # Dynamical equations of the Runge -Kutta 4 method. We evolve M,R,U and

rho
120 def system_RK(Upl ,Rpl ,Mpl ,Apl ,Gpl ,epl ,devepl ,devRpl ,devUpl ,dt ,t):
121 #Note that we set up the boundary conditions in each time step
122 k1U ,k1R ,k1M ,k1e = system_dynamic_RK(Upl ,Rpl ,Mpl ,Apl ,Gpl ,epl ,devepl ,

devRpl ,devUpl)
123

124 shifte1 = epl+k1e *0.5* dt
125 shiftU1 = Upl+k1U *0.5* dt
126 shiftR1 = Rpl+k1R *0.5* dt
127 shiftM1 = Mpl+k1M *0.5* dt
128

129 shiftU1 [-1] = 0.
130 shiftR1 [-1] = 0.
131 shiftM1 [-1] = 0.
132

133 e_FRW1 = energy_FRW(t+0.5*dt-dt)
134

135 devep2 ,devUp2 ,devRp2 = compute_derivatives(shifte1 , shiftU1 ,
shiftR1)

136 devep2 [0] = 0.
137 devep2 [-1] = 0.
138

139 Ap2 ,Gp2 = system_static(shifte1 , shiftM1 , shiftR1 , shiftU1 , e_FRW1
)

140 k2U ,k2R ,k2M ,k2e = system_dynamic_RK(shiftU1 , shiftR1 , shiftM1 , Ap2
, Gp2 , shifte1 , devep2 , devRp2 , devUp2)

141

142 shifte2 = epl+k2e *0.5* dt
143 shiftU2 = Upl+k2U *0.5* dt
144 shiftR2 = Rpl+k2R *0.5* dt
145 shiftM2 = Mpl+k2M *0.5* dt
146

147 shiftU2 [-1] = 0.
148 shiftR2 [-1] = 0.
149 shiftM2 [-1] = 0.
150

151 devep3 ,devUp3 ,devRp3 = compute_derivatives(shifte2 , shiftU2 , shiftR2
)

152 devep3 [0] = 0.
153 devep3 [-1] = 0.
154

155 e_FRW2= energy_FRW(t+0.5*dt-dt)
156

157 Ap3 ,Gp3 = system_static(shifte2 , shiftM2 , shiftR2 , shiftU2 ,e_FRW2)
158 k3U ,k3R ,k3M ,k3e = system_dynamic_RK(shiftU2 , shiftR2 , shiftM2 , Ap3

, Gp3 , shifte2 , devep3 , devRp3 , devUp3)
159

160 shifte3 = epl+k3e*dt
161 shiftU3 = Upl+k3U*dt
162 shiftR3 = Rpl+k3R*dt
163 shiftM3 = Mpl+k3M*dt
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164

165 shiftU3 [-1] = 0.
166 shiftR3 [-1] = 0.
167 shiftM3 [-1] = 0.
168

169 devep4 ,devUp4 ,devRp4 = compute_derivatives(shifte3 , shiftU3 , shiftR3
)

170 devep4 [0] = 0.
171 devep4 [-1] = 0.
172

173 e_FRW3 = energy_FRW(t+dt-dt)
174

175 Ap4 ,Gp4 = system_static(shifte3 ,shiftM3 ,shiftR3 ,shiftU3 ,e_FRW3)
176 k4U ,k4R ,k4M ,k4e = system_dynamic_RK(shiftU3 ,shiftR3 ,shiftM3 ,Ap4 ,Gp4 ,

shifte3 ,devep4 ,devRp4 ,devUp4)
177

178 U = Upl +(1./6.)*dt*(k1U +2.* k2U +2.* k3U+k4U)
179 R = Rpl + (1./6.)*dt*(k1R +2.* k2R +2.* k3R+k4R)
180 M = Mpl + (1./6.)*dt*(k1M +2.* k2M +2.* k3M+k4M)
181 e = epl + (1./6.)*dt*(k1e +2.* k2e +2.* k3e+k4e)
182 return U,R,M,e
183 # We solve the magnitudes A,G using the previous variables rho ,U,M,R got

from the RK method.
184 def system_static(epc ,Mpc ,Rpc ,Upc ,e_FRWc):
185 Aqq = 1.*( e_FRWc/epc)**(w/(w+1.))
186 fraction = Mpc [: -1]/Rpc[:-1]
187 fraction = np.insert(fraction , len(fraction), 0.)
188 Gqq = np.sqrt (1+Upc **2 -2.*( fraction))
189 return Aqq ,Gqq
190 #

--------------------------------------------------------------------------------

191 #
--------------------------------------------------------------------------------

192 #
--------------------------------------------------------------------------------

193

194 # Initial perturbation magnitudes , we only need supply K and its
derivative K’

195 def initial_perturbation_magnitudes(Kk ,Kderk ,rmk):
196 dek = (3.*(1.+w)/(5.+3.*w))*(Kk+(x/3.)*Kderk)*rmk **2
197 dUk = -(1./(5.+3.*w))*Kk*rmk **2
198 dAk = -(w/(1+w))*dek
199 dMk = -3.*(1+w)*dUk
200 dRk = -dek*w/((1+3.*w)*(1.+w))+dUk /(1+3.*w)
201 return dek ,dUk ,dAk ,dMk ,dRk
202

203 #We set up the initial conditions of the simulation
204 def initial_conditions(epskk ,dekk ,dRkk ,dUkk ,dAkk ,dMkk):
205 e_Ikk = e_bI *(1* vector_ones+dekk*(epskk **2))
206 R_Ikk = a_I*x*(1* vector_ones+dRkk*(epskk **2))
207 U_Ikk = H_bI*R_Ikk *(1* vector_ones+dUkk*(epskk **2))
208 A_Ilkk = 1* vector_ones+dAkk*(epskk **2)
209 M_Ikk = ((4.* pi)/3.)*e_bI *(1* vector_ones+dMkk*( epskk **2))*R_Ikk **3
210 fraction = M_Ikk [: -1]/ R_Ikk [:-1]
211 fraction = np.insert(fraction , len(fraction), 0.)
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212 G_Ikk = np.sqrt (1.* vector_ones+U_Ikk **2 -2.* fraction)
213 putaaa = (energy_FRW (1.)/e_Ikk)**(w/(w+1.))
214 #G_I = np.sqrt(1-K*x**2)
215 return e_Ikk ,R_Ikk ,U_Ikk ,A_Ilkk ,M_Ikk ,G_Ikk
216

217 #The derivatives at each point are computed using Chebyshev
differentiation matrix.

218 def compute_derivatives(err ,Urr ,Rrr):
219 deve = np.dot(D,err)
220 devU = np.dot(D,Urr)
221 devR = np.dot(D,Rrr)
222 return deve ,devU ,devR
223

224 #we get the epsilon parameter
225 def epsilon_horizon_crosing(rmNt):
226 rm_total = rmNt*RHI #length scale of the perturbation
227 epst = 1./( a_I*H_bI*rm_total)
228 tHt = t_initial*rmNt **2 #value of the time horizon crossing
229 return epst ,tHt ,rm_total
230

231 #we compute the compaction function
232 def compact_function(Mv ,Rv,efrw):
233 Cc = 2*(Mv[: -1] -(4./3.)*pi*efrw [:-1]*Rv[: -1]**3)/Rv[:-1]
234 Cc = np.insert(Cc , -1, 0.)
235 return Cc
236

237 # Computation of the variables after each RK cycle
238 def computation(dt ,t,Rpp ,Mpp ,epp ,Upp ,App ,Gpp):
239

240 e_FRW = energy_FRW(t)
241

242 Rp = Rpp.copy()
243 Mp = Mpp.copy()
244 ep = epp.copy()
245 Up = Upp.copy()
246 Ap = App.copy()
247 Gp = Gpp.copy()
248

249 devep ,devUp ,devRp = compute_derivatives(ep,Up,Rp)
250

251 devep [0] = 0.
252 devep[-1] = 0. #we imposs the Neumann boundary conditions
253

254 Upp ,Rpp ,Mpp ,epp = system_RK(Up,Rp ,Mp ,Ap ,Gp,ep,devep ,devRp ,devUp ,dt,t)
255

256 Upp [ -1]=0.
257 Rpp [ -1]=0.
258 Mpp [ -1]=0.#we impose the Dirichlet boundary conditions
259 App ,Gpp = system_static(epp ,Mpp ,Rpp ,Upp ,e_FRW)
260

261 return Upp ,Rpp ,Mpp ,epp ,App ,Gpp ,e_FRW #we return the final values
already computed

262

263

264 #We check if a BH if formed or not. We give the value of delta to
contruct the initial condition

265 def search(thresh):
266
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267 Kbar = curvature_profile(x,rmww)
268 Kbarder = derivative_curvature_profile(x,rmww) #we have to add the

amplitude of the perturbation
269

270 Am = A_versus_threshold(x,w,thresh ,rmww)
271 #we build the curvature profile \bar{K}. and its derivative , needed to

build the initial conditions
272 K = Am*Kbar
273 Kder = Am*Kbarder
274

275 derr ,dUrr ,dArr ,dMrr ,dRrr = initial_perturbation_magnitudes(K,Kder ,
rmww)

276 e_Ie ,R_Ie ,U_Ie ,A_Ile ,M_Ie ,G_Ie = initial_conditions(epsrr ,derr ,dRrr ,
dUrr ,dArr ,dMrr)

277 Rv ,Mv ,ev ,Uv,Av,Gv = R_Ie ,M_Ie ,e_Ie ,U_Ie ,A_Ile ,G_Ie
278

279 t = t_initial
280 while t<t_final: #we set a maximum time (an "exit") to avoid problems
281

282 dt = dt0*np.sqrt(t) #time -step
283 t += dt
284

285 Uk ,Rk ,Mk ,ek,Ak,Gk,e_FRW = computation(dt ,t,Rv ,Mv ,ev,Uv,Av,Gv)
286

287 CC = compact_function(Mk,Rk,e_FRW) #we construct the compaction
function

288 Cmax = max(CC) #we search its maximum
289

290

291 if t>tH:
292

293 if (np.any(np.isnan(Ak)) == True) or (np.any(np.isnan(Uk)) == True
) or (np.any(np.isnan(Mk)) == True) or (np.any(np.isnan(ek)) == True)
or (np.any(np.isnan(Gk)) == True) or (np.any(np.isnan(Rk)) == True):

294 print ("The simulation has broken , provably due to large
gradients , at time: ",t)

295 return 0
296 break
297

298 if (Cmax <0.3 and t>tH):
299 print ("No BH formation , we proceed with the next bisection

iteration")
300 return -1
301 break
302 elif (Cmax >1.0 and t>tH):
303 print ("Yes BH formation , we proceed with the next bisection

iteration")
304 return +1
305 break
306 elif t<tH:
307

308 if (np.any(np.isnan(Ak)) == True) or (np.any(np.isnan(Uk)) == True
) or (np.any(np.isnan(Mk)) == True) or (np.any(np.isnan(ek)) == True)
or (np.any(np.isnan(Gk)) == True) or (np.any(np.isnan(Rk)) == True):

309 print ("The simulation has broken before the time of horizon
crosing , probably because the initial conditions are wrong , the
curvature profile is problematic of the stability condition between
Ncheb and dt0 is not satisfied , check it")
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310 sys.exit (0)
311

312

313

314 Rv = Rk.copy()
315 Mv = Mk.copy()
316 ev = ek.copy()
317 Uv = Uk.copy()
318 Av = Ak.copy()
319 Gv = Gk.copy()
320

321

322 #We stablish the bisection procedure
323 def bisection(thresh_low , thresh_high , err):
324

325 thresh_mid = (thresh_low+thresh_high)/2 #initial guess of the
bisection

326

327 comp =0.0
328

329 thresh_limit_yes = thresh_max
330 thresh_limit_no = thresh_min
331

332 while(abs(thresh_mid -comp)/2. > err):
333

334 A_mid = float(A_versus_threshold(x,w,thresh_mid ,rmww))
335 print ("We try the value of delta:", thresh_mid)
336 value = search(thresh_mid)
337

338 if value > 0:
339

340 thresh_limit_yes = thresh_mid
341 thresh_high = thresh_mid
342 comp = thresh_high
343

344 elif value < 0:
345

346 thresh_limit_no = thresh_mid
347 thresh_low = thresh_mid
348 comp = thresh_low
349

350 elif value == 0: #this shift the interval of bisection to avoid the
region of deltas where pressure gradients are strong

351

352 print ("The value of delta has been shifted")
353 thresh_low = thresh_low +2* error
354

355 thresh_high = thresh_high +2* error
356 thresh_mid = (thresh_low+thresh_high)/2
357 delta_c = (thresh_limit_yes+thresh_limit_no)/2. #final result of

deltac
358 print ("The value of the threshold and its resolution is given by:",

delta_c ,abs(thresh_limit_yes -delta_c ) )
359 return delta_c
360

361

362 #
--------------------------------------------------------------------------------
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363 #
--------------------------------------------------------------------------------

364 #
--------------------------------------------------------------------------------

365

366 epsrr ,tH,rmww = epsilon_horizon_crosing(rm_N) #we get the epsilon
parametter

367 bisection(thresh_min , thresh_max , error) #we start with the bisection
procedure

368

369

370

371 print ("Simulation done successfully. The time of the computation was:")
372 print("--- %s seconds ---"% (time.time()-start_time))

2)threshold.py
1

2

3 #In this modulus is computed the value of the amplitude
4 #of the perturbation for a given value of delta.
5 import numpy as np
6 from curvature_profiles import curvature_profile
7

8

9 def A_versus_threshold(xf ,w,thresh ,rmf):
10 Krm = curvature_profile(rmf ,rmf)
11 fw = 3.*(1.+w)/(5.+3.*w)
12 Amp = thresh /(fw*Krm*rmf **2)
13 return Amp

3)curvatureprofiles.py
1

2 # This modulus is used to build the curvature profile and its derivative
K,K’.

3 #This two things are used to build the initial perturbations.
4 #In this example is used the Gausian curvature profile.
5 import numpy as np
6

7 def curvature_profile(xf ,rmf):
8 K = np.exp(-(xf/rmf)**2)
9 return K

10

11 def derivative_curvature_profile(xf,rmf):
12 Kd = -2.*(xf/rmf **2)*np.exp(-(xf/rmf)**2)
13 return Kd

4)Dmatrix.py
1

2 # Method based on L. N. Trefethen ,Spectral Methods in MATLAB(SIAM
,2000)

3 #and http :// blue.math.buffalo.edu /438/ trefethen_spectral/all_py_files/
4 import numpy as np
5 import math
6 pi = math.pi
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7 #It builds the Chebyshev grid and a differentiation matrix in a general
domain (a, b)

8 def chebymatrix(Ncheb ,a,b):
9

10 range_cheb = np.arange(0,Ncheb +1)
11 x = np.cos(pi*range_cheb/Ncheb)
12 t = (a+b)/2.-((a-b)/2.)*x
13 carray = np.hstack ([2, np.ones(Ncheb -1), 2])*(-1)**np.arange(0,Ncheb

+1)
14 X = np.tile(x,(Ncheb +1,1))
15 dX = X.T - X
16 Dp = (carray[:,np.newaxis ]*(1.0/ carray)[np.newaxis ,:])/(dX+(np.

identity(Ncheb +1)))
17 Dp = Dp - np.diag(Dp.sum(axis =1))
18 Dcheb =(2./(b-a))*Dp
19

20 return Dcheb , t
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