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Geometric detection of hierarchical backbones in real networks
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Hierarchies permeate the structure of real networks, whose nodes can be ranked according to different features.
However, networks are far from treelike structures and the detection of hierarchical ordering remains a challenge,
hindered by the small-world property and the presence of a large number of cycles, in particular clustering. Here,
we use geometric representations of undirected networks to achieve an enriched interpretation of hierarchy that
integrates features defining the popularity of nodes and similarity between them, such that the more similar a
node is to a less popular neighbor the higher the hierarchical load of the relationship. The geometric approach
allows us to measure the local contribution of nodes and links to the hierarchy within a unified framework.
Additionally, we propose a link filtering method, the similarity filter, able to extract hierarchical backbones
containing the links that represent statistically significant deviations with respect to the maximum entropy null
model for geometric heterogeneous networks. We applied our geometric approach to the detection of similarity
backbones of real networks in different domains and found that the backbones preserve local topological features
at all scales. Interestingly, we also found that similarity backbones favor cooperation in evolutionary dynamics

modeling social dilemmas.
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I. INTRODUCTION

Many real systems display a hierarchical organization [1]
where higher status members dominate over lower-graded
ones, according to a certain measure of power, wealth, impor-
tance or influence. Examples are ubiquitous in living systems,
including molecular regulators governing gene expression
[2], animal communities of eusocial insects [3], dominant-
subordinate relationships in mammals [4], and different
structures—companies, political parties, courts, military, or-
ganized religion, etc.—in human society [5]. Additionally,
hierarchical organization can be found in nonliving systems
such as computer generated imagery (CGI) [6], grammatical
theory of language [7], or the structure of a musical compo-
sition [8]. Hierarchies are, thus, ubiquitous, and shape more
easily controllable structures [9] that can emerge as the result
of opposing forces, such as competition between individuals
[10] or a combination of cooperation and imitation strategies
[11].

Complex networked systems, however, present important
challenges when it comes to the detection of hierarchies due
to the lack of a unique and unambiguous stratification scheme,
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possibly including nestedness or layered structure. This is
caused by the small world property and the presence of a
large number of cycles of different lengths in their topologies,
in particular clustering [12], so that networks’ organiza-
tion deviates strongly from treelike. In directed networks,
link directionality can be exploited to ease the problem and
hierarchical order can be detected using, for instance, penalty-
function minimization strategies [13—16]. Nevertheless, most
frequently the only meaningful or available representation of
a complex system is an undirected graph. Within this archi-
tecture, a hierarchy is typically defined as a ranking where the
status of a node becomes determined by some heterogeneous
topological property, for instance degree [17] or some other
centrality measure [9,18]. However, other attributes shape as
well the hierarchical structure of real networks, like similarity
between nodes [19]. Clearly, the control exerted by a higher-
status node over a lower status one will be more effective
when there exists closeness or affinity between them. Con-
versely, the strength of hierarchical relations gets dissolved as
nodes loose their proximity and become dissimilar.

Here, we integrate degree rank, or popularity, and similar-
ity between nodes in an enriched interpretation of hierarchy,
valid for real networks. For this purpose, we capture network
architecture using geometric network maps [20,21] and mod-
els [19,22], which naturally encode popularity and similarity
attributes of nodes as coordinates in an underlying metric
space. Exploiting the geometric approach, we are able to
characterize the individual contribution of each node and each
link to the hierarchical structure of a network. Moreover,
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we exploit the great heterogeneity found in the hierarchy
load of links to propose a filtering method, the similarity
filter, that offers a practical procedure to extract a hierarchical
similarity backbone of a network. The obtained similarity
backbones contain the links that represent statistically relevant
interactions with respect to the maximally random geometric
network organization, constrained by node degrees and clus-
tering [23]. The similarity filter preserves network features at
all scales while pruning a large number of links, in the spirit
of the disparity filter for weighted networks [24]. However,
the similarity filter has a different purpose and operates on
the basis of different models in a completely distinct frame-
work, that of unweighted undirected networks. To illustrate
the use and results of the similarity filter, we extracted and
analyzed the hierarchical similarity backbones of several real-
world networks from different domains. Finally, we explored
the role of hierarchical similarity backbones in evolutionary
dynamical processes, which historically have been argued to
be sensitive to the hierarchical organization of complex ar-
chitectures [25,26]. Implementing an evolutionary prisoner’s
dilemma game [27-30] on the real networks under study, we
discovered that the similarity backbones tend to achieve final
states of greater cooperation as compared to the corresponding
original networks, when initial conditions are equivalent.

II. HIERARCHY LOAD OF LINKS AND NODES

We base our definitions of hierarchy on geometric maps
of real networks obtained from geometric network models
[19,22]. In these models, the high clustering typically ob-
served in real networks emerges naturally as a result of the
metric properties of an underlying space, which abstracts the
similarity space among nodes. In this paper, we use the S'
model, in which the similarity space is a one-dimensional
sphere (a circle). Nodes thus have an angular coordinate 6;,
so that the more similar two nodes are the shorter is the
angular separation, Af;; = min(|0; — 0;|, 27 — |6; — 6;]), be-
tween them. Nodes are also characterized by a hidden degree
ki, directly related to the observed degree, standing for popu-
larity or status. The probability that two nodes i and j connect
is a function that increases with their similarity and with the
product of their hidden degrees

1
pij=—""3" ()
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where R is the radius of the similarity circle, which we choose
to be equal to N/ (2 ) for N nodes, so that the density of nodes
in the circle is equal to one, and parameters 8 and p control
the mean clustering coefficient and the average degree of the
network, respectively.

The S' model is able to reproduce many of the fea-
tures widely observed in real complex networks, such as
scale-freeness, high levels of clustering and the small-world
property, among others [19]. Interestingly, the S' model is the
only model able to produce maximum entropy ensembles with
power-law degree distributions and clustering and without
nonstructural degree correlations [23]. Moreover, the model
also allows us to construct geometric maps of real networks
through a process called network embedding. Given a real

network, one can find the values {k;, 6;} for every node i, as
well as the global parameters p and §, that maximize the like-
lihood for the observed network to be generated by the model
[20]. The congruency of the S' model with real networks
results in very meaningful embeddings, which have proven
to be useful for network navigation [20,31,32], and for the
discovery of symmetries in the structure of real networks such
as self-similarity at different length scales [33]. Notice that
the distribution of angular positions of nodes in the S' model
is assumed to be homogeneous, while typically real network
embeddings show that nodes form geometric communities in
similarity space [20,34-36]. The geometric embeddings of
real networks used in this work were computed using the
mapping tool Mercator [21].

We use the purely geometric isomorphic version of the S!
model, named the H? model [22], for visualization purposes.
In the 2 model, the hidden degree is transformed into a radial
coordinate in a hyperbolic two-dimensional disk, such that
higher degree nodes are placed closer to the centre of the disk.
The angular coordinate remains as in the S! circle and the
connection probability becomes a decreasing function of the
hyperbolic distance between nodes, see Fig. 1(a). For further
details refer to section Methods B.

A. Definition of hierarchy load

We characterize the local contribution of a link or a node
to the hierarchical structure of a network by measuring its
hierarchy load, which depends on status, similarity, and the
reference provided by a null model to discount the effects of
random fluctuations. We use the S' as a null model since it
is the maximum entropy model for geometric networks with
heterogeneous degrees [23]. It provides expectations for the
distribution of hierarchy loads in a pure random assignment
of angular positions of nodes given a degree distribution and
a level of clustering, so that anomalous fluctuations can be
detected.

Given a geometric network embedding, where a node i has
coordinates {« ", 6%}, we consider that popularity, corre-
sponding to the hidden degree or, equivalently, to the radial
position in the hyperbolic plane, is a measure of status. This
means that a node i has a lower-status neighbor j when
K9 < k>, Similarity between the two nodes is represented
by their angular separation in the network map, A@;}bs =
min (|0 — 01‘-"’S|, 27 — |00 — 0]‘-’bs|).

First, we define the hierarchy load £;; of a link between
node i and its lower-status neighbor j as the probability of
obtaining a similarity distance between them in the S' model
greater than the one observed in the map

hij = P(A6i; > AG™). )

The rationale behind this definition is that a high probability
in the null model for the angular separation between nodes i
and j to be larger than observed indicates that they are closer
than expected in similarity space, hence signaling a highly
hierarchical connection. Being a probability, 4;; is bounded in
the interval [0,1], while the angular separation between nodes
A@i‘}bs € [0, mr]. Furthermore, Eq. (2) can be computed analyt-
ically giving an expression depending on the coordinates of
the nodes in the embedding (see Methods D). In particular, in
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FIG. 1. Hierarchy load in geometric networks. (a) Illustration of a geometric network in the hyperbolic disk. Node p and its subordinates
I, m, n are highlighted inside a blue square. Notice node p has a fourth neighbor which is not a subordinate since it lies at a smaller radial
position from the center of the disk and thus has higher degree than node p. (b) Hierarchy load of a link, 4;;, between a generic node i and
a lower-status neighbor j located at angular distance Aeg.bS. Notice in this example 4;; is necessarily h;; < 0.5 as j is located at an angular
distance greater than the expected from the null model, which appears depicted in grey. The hierarchy load of node i, 4;, is obtained from
averaging all link hierarchy loads corresponding to this node. (c) Hierarchy load of node p from pannel A as the circular mean of the angular
coordinates of lower-status neighbors I, m, n. Mean resultant vector is depicted by a black arrow of |R| < 1. Vectors added in the calculation
of h, [see Eq. (2)] appear as arrows in yellow, orange and red inside a circle of unit radius.

a synthetic network generated with the S' model, the expected
value of h;; for any {i, j} is h;; = 1/2 since, in that case, the
observed angular distance A@i‘}bs is generated by the model
and, hence, it is a random variable distributed according to the
same distribution as A@;;. In other words, Eq. (2) reduces to
the probability for two equally distributed variables a and b
to fulfill @ > b. As a consequence, Eq. (2) has the clear ad-
vantage of being size independent, in the sense that the value
hij = 1/2 defines the S'-model hierarchy baseline for any N,
therefore allowing us to compare the hierarchy structure of
networks of different size.

Link hierarchy loads inform about how substantial is the
contribution of a link towards the hierarchy by comparison
with the reference level provided by the S' null model, which
is h;jj = 1/2 as explained above. Accordingly, when the link
hierarchy load is higher than the reference, A;; > 1/2, nodes i
and j are closer than expected in angular distance, and so they
are more similar and their relationship is more hierarchical.
In contrast, when the probability is low, #;; < 1/2, i and j
are more dissimilar than expected by the null model, meaning
that they lie farther away in the angular space and, thus, their
relationship is less hierarchical. In fact, h;; = 0 if Aé’lf’jbs =7,
while h;; = 1if Aé‘lf’jbs =0.

Finally, within the same framework we also define a mea-
sure of hierarchy load for nodes as

1 &
hi=—Y hj, 3
n; J 3)

where the sum runs over the n; lower-status neighbours j of
node i satisfying «; < ;.

B. Hierarchy load of nodes in terms of angular concentration

Alternatively, one can also measure the hierarchy load of
a node i as the angular concentration of its n; lower-status
neighbors by computing the circular mean of their angles
{0;}=1,...n,- This method is different but very similar to the

node hierarchy measure used in [35] for the analysis of the
World Trade Web. When lower-status neighbors are concen-
trated in a narrow angular sector it means that node i has a
tendency to establish links with more similar nodes, hence
node i is contributing towards a more hierarchical structure
and thus carrying a higher hierarchy load 4;. Conversely, when
the lower-status neighbors of i are distributed in a very broad
angular sector, the hierarchy load of node i is low, indicating
that it is able to establish links with more dissimilar lower-
status nodes, thus supporting a flatter organization.

The hierarchy load of a node in terms of angular concentra-
tion of its n lower-status neighbors is computed as the length
of the mean resultant vector,

n
I o
o Z e ’
n

j=1

h* — — |Eei§0bsl — E’ (4)

see Fig. 1(c). The modulus of the circular mean vector R €
[0, 1] is a good proxy of angular confinement since it is 0
for angles pointing in opposite directions and it becomes 1
when the angles are totally aligned. The measure is simple
enough so that it generalizes well to networks of very different
domains as long as they admit a geometric interpretation. It is
worth mentioning that, since the average angular separation
between nodes decreases with the network size N, this quan-
tity increases with network size. This should be taken into
account when comparing A* measurements among networks
of different size.

C. Hierarchy load vs geometric communities

To understand how the global distribution of angles, and,
in particular, the existence of geometric communities, could
affect the spectrum of hierarchy loads, we consider synthetic
networks with controllable angular concentration of nodes.
Typically, real network maps present angular regions more
densely populated than others, which define a partition of the
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FIG. 2. Hierarchy load spectra of synthetic and real networks.
[(a) and (b)] Hierarchy load spectrums for synthetic SCSS networks
of size N = 1000 nodes, generated with power-law degree distribu-
tion exponent y = 2.50, clustering parameter 8 = 2.50 and variable
attractiveness A. Results are averaged over 10 network realizations
for each choice of A. [(c)—(f)] Hierarchy load spectra of 4 real net-
works. In all plots blue curves correspond to 4; in Eq. (3) computed
from the link hierarchy loads while red curves correspond to 4 in
Eq. (4) as given by the circular mean resultant vector. Dashed blue
and dashed red lines indicate the corresponding average hierarchy
load values for the whole network. Dashed black lines provide the
reference level of the model, placed at hierarchy load 1/2.

network into different geometric groups [20,34-36]. Geomet-
ric communities can be accurately detected using algorithms
such as the Topological critical gap method [35] and repro-
duced by geometric network models [37,38]. We generated
synthetic networks with tunable geometric communities using
the soft communities in similarity space (SCSS) model [37]
(see Methods B). The SCSS model is an extension of the S'
model that enables to create scale-free networks with high
clustering while controlling for the global heterogeneity of
the distribution of angular coordinates. Essentially, this model
relies on a preferential attachment process in similarity space
[38], so that the angular coordinates of nodes depend on the
angular coordinates of higher-degree nodes. The effect of this
similarity preferential attachment is regulated by a parameter
A. The SCSS recovers the S' model in the limit of homoge-
neous angular distributions, which corresponds to A — oo.
We show the spectra of hierarchy loads %;, Eq. (3), and
hi, Eq. (4), in Figs. 2(a) and 2(b) for synthetic networks
with very different geometric community strengths (A = 0.01

and A = 10.0). The spectra of hierarchy loads is measured
by averaging the node hierarchy loads over degree classes.
The two measures display different results, but in both cases,
the global angular heterogeneity has a minor effect in shaping
the hierarchy loads of nodes. Therefore the spectrum of hierar-
chy loads of nodes is not merely a measurement of geometric
community structure. As expected, 4; spectra are flat and lie
around the average hierarchy load (h) = vazl h;/N for the
whole network. At large A values, (h) tends to 0.5 because,
by construction, SCSS networks recover the S " model in this
limit. Heterogeneous angular distributions in the limit of small
A values reduce the average angular distance between nodes
in the network, and as a consequence the average hierarchy
load of the network is slightly above 0.5.

This effect is also evident in the spectra of hierarchy loads
kY, where (h)* is lower for more homogeneous angular distri-
butions (A = 10.00, (h)* = 0.89 £ 0.10), as compared with
networks with more heterogeneous distributions that present
higher values (A = 0.01, (h)* = 0.95 & 0.06). In this case,
the average hierarchy level of the synthetic networks is rather
high ((h)* =~ 0.9), basically due to sustained large values of
hierarchy load for a wide range of node degrees.

D. Hierarchy spectrum of real networks

We measured and compared the hierarchy spectrum of
several real networks from different domains: the email com-
munication network within the Enron company (Enron) [39],
the Internet at the autonomous system level (Internet) [20,40],
the one-mode projection onto metabolites of the human
metabolic network at the cell level (Metabolic) [34] and the
network of chord transitions in western popular music (Music)
[41]. For more information see Table I and Methods A.

Real networks show a variety of profiles, see blue curves
in Figs. 2(c)-2(f). They also present in all cases an average
hierarchy load (h) below the reference of 1/2. In particular,
Enron shows the highest average hierarchy load at the node
level, (h) = 0.47 £ 0.19, followed by Metabolic, Music and,
lastly the Internet with (k) = 0.29 4 0.20. Variations in (k)
across networks conform to their distinct spectra. For in-
stance, whereas Music and Internet networks show noticeable
fluctuations in A; across degree classes, these are milder for
Enron and Metabolic networks. In general, however, all net-
works show a tendency for the lowest degree nodes to have
the highest hierarchy loads and for the highest degree nodes,
or hubs, to approach h; = 1/2. This last observation may be
attributable to great heterogeneity in the hierarchy load of
links h;; and the fact that hubs present numerous connections
with lower status nodes which are averaged when computing
h;.

Regarding the hierarchy load of nodes in terms of angular
concentration, the Internet and Metabolic are significantly
more hierarchical ((h)* ~ 1) than Music and Enron. The
particular trend followed by each profile has its roots in
each network’s specific degree sequence, whereas angular
communities show again minor influence as revealed by the
resemblance between the spectra of the four real networks
with the spectra of their corresponding geometrically random-
ized counterparts (see Methods B and Fig. 6). The randomized
counterparts consist in replicas of the real networks where
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TABLE 1. Properties of the data sets under consideration: N, size of the network; E number of edges; parameter S estimated from the
embedding of the real network; kn.x, highest degree; (k), average degree; and (c), average clustering coefficient; (h), average hierarchy load;
(h)*, alternative average hierarchy load in terms of angular concentration.

Data set N E /3 kmax (k) (C) (h) (h>*

Enron 182 2097 1.99 109 23.04 0.50 0.47 £0.19 0.77 £0.25
Internet 23752 58416 1.91 2778 4.92 0.61 0.29 £0.20 0.96 £0.10
Metabolic 1436 4718 2.15 224 6.57 0.54 0.45 £0.28 0.97 £0.09
Music 2476 20624 2.30 1566 16.66 0.82 0.34 £0.25 0.81 £0.23

the distribution of angular coordinates is homogeneized, thus
eliminating geometric community structure, while the rest
of properties are preserved and the replica network remains
maximally geometric. Moreover, we note that the hierarchy
loads of nodes tend to show strong heterogeneity and an in-
verse correlation with the degree, so that more popular nodes
(higher k) contribute more to dilute the hierarchical structure
by connecting to less affine lower-popularity neighbors. This
trend is remarkably pronounced for the Internet, Enron, and
Music, while heterogeneity is less pronounced in Metabolic.
In fact, this happens because the Metabolic network presents
more modular hubs, less prone to connect with dissimilar
nodes due to an unusually marked partition of the similarity
space.

III. THE SIMILARITY FILTER AND HIERARCHICAL
BACKBONES OF REAL NETWORKS

Strong heterogeneity is found in real networks if we an-
alyze the contribution of lower-popularity neighbors to the
hierarchy load of nodes, see Fig. 3. The link hierarchy load
contributions involving low popularity neighbors are repre-
sented in Fig. 3 by dots color-coded to the blue end of
the scale. We find those dots covering almost all the area
of the plots, thus indicating that these link hierarchy loads
span the entire range of /;;, both when the link is shared with
another node of low degree or with a node of high degree
(right end of the x axis). This observation reveals that the
vast majority of link hierarchy loads in the network are dis-
tributed rather heterogeneously. We can take advantage of this
heterogeneity to filter out the connections that dominate the
hierarchical organization of the network in terms of popularity
and similarity, what we name the hierarchical similarity back-
bone (HSB). A hierarchical similarity backbone contains the
links that represent statistically significant contributions with
respect to the null hypothesis given by the S' model, that is
the only model able to produce maximum entropy ensembles
constrained by power-law degree distributions and clustering
and without nonstructural degree correlations [23].

The link hierarchy load in Eq. (2) measures the probability
under the null hypothesis that the similarity distance between
a node and a lower-status neighbor is larger than the observed
in the embedding of the network, what is known as p value in
statistical inference. By imposing a significance level «, the
links that carry a hierarchy load that are not compatible with
the random angular distribution of angles in the S' model, and
reject the null hypothesis, can be filtered out. A hierarchical
similarity backbone is then obtained by preserving all the links
that satisfy the criterion h;; > o, while discounting the rest.

As we increase the significance level o € [0, 1], the filter pro-
gressively focuses on more relevant links to obtain a sequence
of nested subgraphs, each with a more strict condition for a
link to belong to the HSB of the network, see an illustration
in Fig. 4(a). Noteworthy, since the similarity filter is applied
to the links, nodes of any degree may find a place in a very
hierarchical backbone if they are found to have significantly
strong hierarchical connections.

We tested the performance of the similarity filter by ex-
ploring the hierarchical similarity backbones of the four real
networks considered in this work. Figure 4(b) shows that,
for all real networks, low values of « reduce the number of
links drastically while most of the nodes are preserved in
the backbone. Notice that « increases from right to left in
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FIG. 3. Link hierarchy loads of real networks. [(a) and (b)] Link
hierarchy loads of the Enron and Metabolic networks, respectively.
Each dot indicates the value of A;; of a link established between
node i and one of its lower-status neighbors j with hidden degree
k; indicated by the color code. Notice node labels in the x axis are
sorted by increasing hidden degree «;, so that more popular i nodes
appear to the right.
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FIG. 4. Hierarchical similarity backbones. (a) A hierarchical similarity backbone of the World Trade Web [35] (in red) filtered with
a = 0.4, on top of the complete network (pale blue). [(b)—(e)] Plots show in order: the relative number of nodes in the backbone, against
the relative number of edges in the backbone (subindex O refers to the complete network); the relative number of nodes in the backbone
giant connected component (gcc), against the relative number of edges in the backbone gcc; mean clustering coefficient of the backbone for
increasing o; number of disconnected components against increasing values of the significance « (f) Fraction of nodes considered hubs, for
threshold value T = 0.25, found in backbones obtained with increasing «. [(g)—(i)] Topological features of the HSBs of the Music network,
obtained for «’s from 0.1 to 0.8. Value o = 0.0 corresponds to the original unaltered network, whereas in the most restrictive HSB (o = 0.8)
0.60% of the nodes and 14% of the links remain. From left to right: complementary cuammulative probability distribution (CCP) of rescaled
degrees, ks = k/(k), degree dependent clustering coefficient (c) over rescaled-degree classes, normalized average nearest-neighbor degree

(knn>res = <knn(kres)) (k)/<k2)

Figs. 4(b) and 4(c). For instance, when filtered with « = 0.25,
the Internet, Metabolic and Music HSBs contain a propor-
tion of edges that is already less than half of the original,
so E/Ey < 0.5. In contrast, the proportion of nodes in the
same backbones remains very high, the lowest case being
the Internet, but with still 85% of the nodes. The results in
Fig. 4(c) show similar behaviour for the reduction in nodes
and edges of the giant connected components (gcc’s) of the
backbones, for the 4 networks under study. Only the decay in
number of nodes in the gcc of the backbones tends to be less
abrupt than in Fig. 4(b) and start sooner, at smaller values of
the filtering parameter «. Moreover, we observe in Fig. 4(d)
that the mean clustering coefficient of the filtered similarity
backbones does not have strong fluctuations and varies little
with o, with the exception of the Internet which shows a clear
decreasing trend.

In Fig. 4(f), we inspect the participation of hubs in the
HSBs. For this purpose, we sort the nodes in the network
from highest degree to lowest and tag as “hubs” all nodes
lying within a top slice of the list, delimited by a threshold
value t. For instance, when 7 = 0.25, the top 25% of the
nodes in the ranked list are considered as hubs. Subsequently,
we keep track of the proportion of such high-degree nodes
in every hierarchical backbone for increasing «. Figure 4(f)
demonstrates that, even when considering that a large frac-
tion of the network (v = 0.25) are nodes of high degree, in

fact these nodes only represent, at best, half of the backbone
composition [see Internet, Metabolic and Music in Fig. 4(f)
for « = 0.9]. In Appendix (Fig. 9), we show analogous plots
to Fig. 4(f) for a wider range of threshold values t € [0.05 —
0.30] providing further evidence that, while more restrictive
HSBs become enriched with hubs, the similarity backbones
still present an assorted composition in terms of node degrees.

Finally, we find that topological features —degree dis-
tribution, clustering coefficient and average nearest-neighbor
degree— of the original network are preserved in the sub-
graphs as we increase « and the backbone is progressively
restricted to exceedingly hierarchical links, see Figs. 4(g)—4(i)
and 7. Only for very high values of the significance level, & 2
0.8, when not only the number of links but also the number of
nodes is strongly reduced, the measured topological properties
start to deviate from the original curves. This suggests some
grade of self-similarity across the sequence of HSBs.

IV. GAME DYNAMICS IN HSBS

As an illustration of the importance of HSBs, we study
a dynamical process with intriguing behavior in networked
systems: the evolution of cooperation. The evolution of co-
operation has been studied in different fields [42—45], but it
is not well understood yet in scale-free networks [46-50] or
in real networks [51], which additionally present high levels
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TABLE II. Backbones used to study evolutionary game dynam-
ics. HSB stands for hierarchical similarity backbone, meaning these
backbones are obtained using the similarity filter with specific o.
RLR stands for random link removal, thus this method gives random
surrogates where a specific number of links have been removed,
indicated by LR (links removed). The results in Figs. 5(i)-5(1) and
Appendix Fig. 10 are the average of 10 random surrogate realiza-
tions. Because of this, and since by construction we fix the number
of edges in the random surrogates, only their number of nodes can
fluctuate and hence display an error interval.

Network Filtering method Threshold Noce Egec

Enron none - 182 2097
Enron HSB «’=0.66 159 587

Enron HSB a”=0.68 136 498

Enron RLR LR°=1510 17530+ 142 587

Enron RLR LR>=1599 174304245 498

Internet none - 23748 58414
Internet HSB «’=0.18 18536 27374
Internet HSB a”=0.27 16691 22970
Internet RLR LR°=31040 15901.20 4 36.06 27374
Internet RLR LR™>=35444 14172.80 £ 40.27 22970
Metabolic none - 1436 4718
Metabolic HSB a’=0.21 1157 2717
Metabolic HSB a”=0.25 1069 2470
Metabolic RLR LR°=2001 1195.60 + 14.21 2717
Metabolic RLR LR>=2248 1147.10 £13.35 2470
Music none - 2476 20624
Music HSB «’=0.53 2252 6617
Music HSB a”=0.59 2111 5774
Music RLR LR°=14007 1905.60 4 12.04 6617
Music RLR LR>=14850 1824.60 =21.49 5774

of clustering and finite size effects. In fact, only recently
some mechanisms have been proposed to aid cooperation in
real networks [52], based precisely in the geometric approach
followed in this contribution. Here, we show that, counterintu-
itively, our HSBs capture the links of real networks that better
support cooperative behavior in evolutionary dynamics. We
consider an evolutionary prisoner’s dilemma game consisting
of two players deciding to cooperate or defect with one an-
other, and gaining a specific reward depending on which of
the four possible outcomes takes place. The game proceeds
in successive rounds; in each round every node accumulates a
payoff m; resulting from playing the game with all its neigh-
bors; after that, and before moving to the next round, the
strategy (cooperate or defect) played by every node is updated
simultaneously taking into account an imitation mechanism.
The imitation step consist of each node i deciding to adopt the
strategy of a randomly chosen neighbor j with a probability
dependant upon the difference of their payoffs (; — 7;), to
reflect the tendency of copying more successful neighbors.
See Methods C for more details.

We simulated the dynamics on the four real systems ana-
lyzed in this work and on two different HSBs for each of them
(with « values and corresponding sizes in number of nodes
and links reported in Table II). The results are provided in
Figs. 5(a)-5(h). Notice that the similarity backbones are al-
ways selected so that they face a considerable reduction in the

number of links while their number of nodes does not decay
drastically. That is, for a given real network, the HSBs where
we run the game dynamics lie along the slope change part of
the blue curves in Figs. 5(i)-5(1), and are identified by blue
symbols. We use random surrogates to discern whether the
results of the dynamics on HSBs are due to their hierarchical
nature. The surrogate backbones are obtained by removing
a number of links at random so that the they have exactly
the same number of links as the corresponding HSBs [see
matching fraction of edges between red and blue symbols in
Figs. 5(1)-5(1)]. As a result, the fraction of remaining nodes
in a given HSB may be higher or lower than in the analogous
random surrogate. Regardless of the situation, however, the
dynamics results stay consistent, see red curves in Figs. 5(1)—
5(1). Note that the fraction of nodes in the random surrogates is
still very high even when the number of links has been greatly
reduced, akin to the case of similarity backbones. This was
expected from the reported robustness of scale-free networks
to random removals [53,54].

The evolutionary dynamics are initiated by distributing a
proportion of initial cooperators uniformly at random among
the nodes of a network. For each of the three graphs (origi-
nal network and the two similarity backbones), we vary the
proportion of initial cooperators and quantify the level of co-
operation achieved in the network at the end of the dynamics

by measuring the fraction of final cooperators ch‘;,‘})p /[Nycc after

10° rounds of the game. Notice no node alters its strategy
while playing with its neighbors during an individual round
(see Methods C). The fraction of final cooperators Ng)‘})p [Ngce
is averaged over 100 realizations in all showcased curves in
Fig. 5 showing the results for the dynamics on HSBs. Notice
the system can reach a quenched state before the maximum
number of rounds is achieved if all agents become either
cooperators or defectors. In that situation, the imitation mech-
anism does not induce any further evolution and the dynamics
becomes effectively frozen.

The results in Figs. 5(a)-5(h) show that the real networks
have a tendency for their hierarchical similarity backbones
to display final cooperation levels equal or greater than the
achieved in the original network for equal proportions of
initial cooperators, despite their radically reduced number of
links. We expect the dynamics not to work as well as they
would in moving the system towards full cooperation when
the number of agents to convince is still large but the nodes
play the game within small groups of neighbors, as it happens
in the backbones. This is because the probability of adopt-
ing a neighbor’s strategy, P, ;, drives the evolution towards
consensus only when it reflects the tendency to copy a more
successful neighbor. This mechanism may be compromised
by large fluctuations in the difference of nodes’ collected
payoffs (7; — 7;), when these payoffs come from just few
interactions with a small number of neighbors. However, the
enhanced final cooperation displayed by the HSBs is observed
in general for all networks in Figs. 5(a)-5(h), and specially for
Metabolic and Music whose HSBs curves are visibly above
the curves for the original networks (in black) for a wide range
of initial conditions, Ncigiop /Ngce € (0.4-0.9). For instance, the
HSB with «™ = 0.59 of the Music network [see blue symbols
curve in Fig. 5(h)] has 73% less links than the original network
while preserving 83% of nodes and still sustains up to &8
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FIG. 5. Evolutionary game dynamics in HSBs of real networks. [(a)—(h)] Fraction of final cooperators against fraction of initial cooperators
for similarity backbones of Enron, Internet, Music, and Metabolic networks. For every network we show two plots, each with the results of
an HSB filtered with either a® or a™ (see numeric values in Table II). For an HSB (blue curve with symbols), the corresponding random
surrogate appears as a grey dashed line together with the original network in black line for reference. [(i)—(1)] Relative number of nodes against
relative number of edges in the gcc of similarity backbones, and their corresponding surrogates, for the four networks under study. Blue lines
correspond to backbones obtained using the similarity filter and red lines to surrogates obtained by random link removal. Blue circle and
triangle symbols highlight the fraction of nodes and edges of the two similarity backbones filtered with «® and o, respectively. The same

information is featured by red symbols for the random surrogates.

times more final cooperation than the original network, for a
fraction of initial cooperators of 0.8. To further ensure that
the enhanced cooperation actually stems from the categorical
structure of the backbones one should compare an HSB curve
with that of its corresponding random surrogate. By doing so,
we observe that the random surrogates happen to reproduce
closer the cooperative behaviour of the original network, that
is LR curves in Figs. 5(a)-5(h) follow the profile of the orig-
inal network instead of appreciably deviating upwards, thus
revealing that the surrogates do not provide a substantial gain
in cooperation as opposite to HSBs. In general, the surrogates
also require a higher proportion of initial cooperators, around
Ncigi)p /Ngce 2, 0.6, to produce any sizable increase in final co-
operation with respect to the original network. This indicates
that the internal hierarchical organization of the HSBs is key
to sustain enhanced cooperation. Actually, the similarity filter
preferentially removes links with lower hierarchy load, usu-
ally consisting of long-range connections stablished by high
degree nodes, whereas the random removal makes no distinc-
tion. In fact, given the scale-freeness of real networks, deleting
a long-range link at random is less likely due to their scarcity.
Therefore, during the dynamics, similarity backbones may
develop clusters of same-strategy nodes that are more stable
through the evolutionary process than those found in random
surrogates, the reason being the former are less exposed to
distant contacts belonging to clusters of opposite strategy.
This means the hierarchical structure of HSBs enables a better

shielding for the groups of cooperators in the shape of metric
clusters [52], which in turn can explain the increased cooper-
ation levels found in similarity backbones.

To additionally validate our results we choose to explore
four more different combinations of payoff values for the
Music network in Fig. 11. We observe that modifying the pay-
offs produces the same qualitative results as discussed above,
with HSBs curves clearly surpassing the original network
and evidencing that similarity backbones can reach superior
cooperation.

V. DISCUSSION

The existence of a metric space underlying complex net-
works allows us to provide an enriched interpretation of
hierarchy that integrates two dimensions: popularity, or degree
rank, and similarity between nodes, thus overcoming the prob-
lem of detecting hierarchies in the presence of clustering and
the small world effect. The metric approach enables a unified
framework to define the hierarchy loads of nodes and links.

Interestingly, the spectra of hierarchy loads of real net-
works revealed that, in general, these networks are less
hierarchical than the reference provided by the maximum
entropy null model and show greater variation in the hierarchy
load of nodes across degree classes. Particularly, the lowest
degree nodes typically contribute more towards the hierarchi-
cal structure, although their fluctuations are remarkable.
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Moreover, we introduced the similarity filter, a link prun-
ing method which exploits the heterogeneity found in the
hierarchy load of links. The filter extracts the connections
that dominate the hierarchical structure of networks in terms
of popularity and similarity, providing what we name hier-
archical similarity backbones (HSB). The analysis of such
backbones uncovered that, strikingly, the similarity filter is
able to preserve network topological features at all scales
while discarding a large number of links. Accordingly, from
a fundamental point of view, hierarchical backbones could
help provide new insight about the percolation properties of
highly stratified real networks, aiding control of cascading
failures, as well as have the potential to become a standard
methodology for the detection, visualization and inspection of
hierarchical clusters [55] in machine learning and data science
environments.

From a practical point of view, the similarity filter has
proven to be an exceptional tool to unravel the backbone that
sustains enhanced cooperation in social dilemmas on struc-
tured populations. This is in line with previous simulations
of prisoners dilemma type dynamics on adaptive networks,
showing that cooperation combined with imitation can lead to
a hierarchical structure [11]. When this dynamics is played
on heterogeneous contact networks with underlying metric
structure, the evolution of cooperation leads to the formation
of clusters of cooperators in the similarity subspace [52]. In
the presence of these clusters, heterogeneity in the degrees
was nevertheless found to hinder cooperation. Those find-
ings reveal a tension between the popularity and similarity
dimensions in evolutionary dynamics modeling social dilem-
mas. Our findings here solve this opposition by identifying
the similarity backbones composed of significant links that
are simultaneously hierarchical in terms of popularity and
similarity, and which are expressly relevant in supporting and
fostering cooperation.

Lastly, the methods developed in this contribution can be
used to study the hierarchical nature of complex networks of
any domain as long as they admit a geometric representation.
The detection of hierarchical similarity backbones could for
instance help in designing controllability of gene regulatory
networks, improve communicability in information systems
and infrastructures or assess robustness to species loss in
ecological networks. Other possibilities for our framework in-
clude its extension to multiplex networks, opening promising
future lines of research.

VI. METHODS

A. Empirical data

All real complex networks used in this paper have been
mapped into their hyperbolic latent geometry using the em-
bedding method Mercator [21]. This method mixes machine
learning and maximum likelihood approaches to infer the co-
ordinates of the nodes in the underlying hyperbolic disk, while
ensuring best congruency between the real network topology
and the S' geometric model.

Enron. The network captures the email communication
activity (125 409 emails) within employees from the En-
ron company. Edges are stablished between email addresses

that shared correspondence. We use the dataset provided in
Ref. [56] which includes also information about the organiza-
tional roles of 130 users.

Internet. We use the adjacency data for the Internet at the
autonomous systems (AS) level assambled by the Archipelago
project [40] during June 2009.

Human metabolic. This network is the one-mode projec-
tion of metabolites of the bipartite metabolic network of
human cell metabolisms. In this representation [34], there is
a link between two metabolites if they participate in the same
biochemical reaction.

Music. Nodes of the network are chords-sets of musical
notes (see Ref. [41]) played in a single beat while edges
represent detected transitions between these chords. We use
a sparser, undirected version of the network reconstructed in
Ref. [33].

B. Models of network geometry
1. H? model

An isomorphism exists between the S' and the H? mod-
els [22], so that hidden degrees « are mapped into radial
coordinates, r, in a hyperbolic disk of radius Ry, such
that k ~ e®»2 = /2 Consequently, in the hyperbolic version,
nodes with larger radial coordinates are located towards the
edge of the hyperbolic disk and show lower expected de-
gree. Particularly, in the H? model, every node i is defined
by the tuple (7, 6;), and the probability that a link exists
between two nodes i and j depends on their distance d;;, as
measured in the hyperbolic space using the hyperbolic law
of cosines cosh(d;;) = coshr;coshr; — sinhr;sinhr;cosAf;;.
Nodes closely positioned in the hyperbolic disk have higher
chances of being connected, thus the connection probability
p(d;;) must be a decreasing function of distance between them
and, specifically, it can be chosen to be

1

B(dij—Ry2) ]’
1 + exp [—2“’(i]

pdij) = 5

where the parameter S still controls the network’s clustering
coefficient. In this paper, we mainly use the S' model for
calculation purposes, and its equivalent 74? version for visual-
ization tasks.

2. Soft Communities in similarity space (SCSS)

The SCSS model [37] produces synthetic geometric
networks with inhomogeneous angular distributions, de-
rived from geometric preferential attachement mechanisms,
which were conceived in growing geometric network models
[38,57]. This means, for a network represented in an un-
derlying (hyperbolic) metric space, the initial attractiveness
of different angular regions during a geometric preferential
attachemnt process is controlled by a parameter A. Con-
sequently, this parameter regulates the heterogeneity of the
angular coordinate, so that heteorgeneity is a decreasing
function of A, with A — oo recovering the homogeneous
distribution. The SCSS model, then takes such heterogeneous
angular distribution defined by A and adjusts it to an indepen-
dent power-law degree distribution (P(k) ~ k") and a tunable
level of mean clustering (c), controlled through parameter §.
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The SCSS model does so by introducing correlations between
« and @ coordinates of nodes of the geometric network.

C. Geometric Randomization (GR)

The GR [58] is a model for the randomization of com-
plex networks with geometric structure, which allows to
uniformize their angular coordinate distribution, while pre-
serving the exact degree sequence of the network. It thus
applies to both real and synthetic networks where nodes have
an observed degree and exist in a similarity space. In the
GR model, angular coordinates 6 are assigned to the nodes,
chosen uniformly at random from [0, 27]. The network is
then rewired following a likelihood maximization process that
ensures the new topology is one generated by the S' model,
while the observed degrees (and thus the number of edges)
remain unaltered. The model is implemented using a single
parameter S controlling the mean clustering of the resultant
rewired network. The rewiring and maximization procedure
executed by the GR are specially useful to produce faithful
real network replicas where only geometric (soft) communi-
ties have been supressed.

D. Evolutionary prisoner’s dilemma

The evolutionary prisoner’s dilemma game [27], conducted
on a network, considers that individual nodes playing with
their contacts choose to either cooperate (C) or defect (D) ev-
ery turn. The choice of strategies of the two interacting agents
leads to specific payoffs, summarized by the payoff-matrix

C D
A="C|R § . ©)
D|T P

That is, if both players cooperate, they both receive the
reward R for cooperating. If both players defect, they both
receive the punishment payoff P. Lastly, if one of them de-
fects while the other agent cooperates, the defector receives
the temptation payoff T, while the cooperator receives the
“sucker’s” payoff, S. In order for the game to be recognized
as a prisoners’s dilemma the condition 7 > R > P > S must
apply. Different ordinalities of the parameters define further
classes of games [29]. In this paper, the prioner’s dilemma
is defined with parameter values: 7 = 1.5, R=1, P =0,
and S = —0.5. Further parameter values are explored in Ap-
pendix.

The game proceeds in successive rounds. After each round,
the strategies (C or D) of all nodes are updated synchronously
according to the outcome of the imitation dynamics [27,59,60]
that outline the evolutionary mechanism. This means, during a
single round, each individual node i collects payoffs given by
Eq. (6) from the interactions with all its neighbors and obtains
an accumulated payoff m;. All players chose then between
their old strategy and the strategy of a randomly picked up
neighbor j. In this way, node i will adopt j’s strategy with
a probability that depends upon the difference between col-
lected payoffs of both nodes (7; — ;) as

1

T e @

Pi—j =

which reflects the popular tendency of individuals to copy
more successful neighbors. Such updating rule is a common
choice in evolutionary dynamics [61], known as the Fermi
rule since it is based in the Fermi distribution from statistical
mechanics. The variable (%), which in Physics stands for the
inverse temperature, can be interpreted here as the intensity
of the selection. That is, parameter (%) (which we set to 0.5)
controls the noise added to the decision-making process of,
otherwise, perfectly rational players. After the simultaneous
update of strategy of all nodes, their accumulated payoffs are
reset and a new round begins.

E. Probability distribution of angular distances
between connected nodes in the S! model

The hierarchy load of an observed link, 4;;, can be com-
puted analytically given the angular distance between the two
nodes observed in the embedding, A@lf’jbs. To derive a closed
expression for it, we first need to write down an expression for
the probability distribution function of the angular separation
between two nodes in the S' model conditioned to the fact
that they are connected. Using Bayes’ rule, we see that

plaij = 1|1A6;;)p(A6;))
plai; =1)

p(Abiila;; =1) = , (®)

where q;; is the adjacency matrix element corresponding to
the two nodes. In the above expression, p(a;; = 1|A6;;) is
the connection probability, Eq. (1), while the distribution of
angular distances is simply p(A6;;) = 1/m, given that an-
gular coordinates are homogeneously distributed in the S'
model. The denominator can be obtained by direct integra-
tiOIl, p(a,-j = 1) = fon p(a,-j = 1|A9U)p(A9U)dA9U USiIlg
the definition of 4;;, we obtain

hij = P(A6;; > AGY™)
AGS
=1 —/ p(AOij|a,-j = 1)dA9,]
0

Aelofbs
Jo " plaij = 1|A6;)p(AG;;)d Ab;;

=1- =
Iy plaij = 1|A6;;)p(A6;;)d Ab;
obs /3
a1 (222
. i K , (9)

B
L. 1. Rm
7T2F1(1, 51+ g,—<m) )

where > F (a, b; c; z) is the hypergeometric function. Equation
(9) yields the hierarchy load of a given link in terms of the
angular separation and product of hidden degrees of the nodes
at both ends of the edge, as well as of the global parameters
R, 11, and B.

Finally, let us also show that the expected value of h;; for
any link in a network generated by the S' model is (%; st =
1/2. To calculate (h;;)s1, we only need to notice that, in this
case, the angular separation between the nodes at the ends of
the edge in the resulting network, A@;’jbs, is itself a random
variable with distribution p(A@i"jbs) given by Eq. (8) (that
is, p(A@i‘}bS) = p(AGi‘}bﬂai ; = 1) and, therefore, the expected
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value of h;; is

(hij)sl = (P(A@l] > AGlf}bS))S]

p(AG®)P(A6;; > A6Y®)d AGS”
4 1

p(AQ;’}’S)/ i P(AG;))d A6, d AGT™ = 3
AO{}S

(10)

g

o~ S—

In the last step, we have used the fact that p(z) is normalized,
fy p2dz = 1.

Codes and data supporting the findings of this study are
available from the corresponding author upon request.
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APPENDIX

1. Hierarchy load spectrums of nodes for GR network replicas

Figures 2(c)-2(f) shows the spectrum of hierarchy loads
of nodes in terms of angular concentration, ki, for 4 real
networks. Here, we provide the same metric for angularly
randomized versions of such real networks, obtained using
the Geometric Randomization model (see Methods B in main
paper). By comparing the spectra in Figs. 2(c)-2(f) and 6 in
this Appendix, one can notice that the complete homogeniza-
tion of the angular coordinates of nodes (and thus the full
elimination of geometric communities) does not translate into
radical changes in the hierarchy load profiles. Instead, below
(Fig. 6) we observe for each of the randomized networks that
the inverse correlation with the degree of the hierarchy loads
is compatible with that of the original network, and that the
average hierarchy load (h)* values of the GR networks are
not remarkably different to that of the real ones. The most
noticeable influence of geometric community structure in the
hierarchy load measurement is found for the Metabolic net-
work, which turns to be a natural effect given the pronounced
bimodal distribution of node angles of the original real net-
work.

Enron Internet
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FIG. 6. Hierarchy load spectrums for Geometric randomization
(GR) model replicas of each of the 4 real networks under study. Each
spectrum is the average over 10 independent realizations. Dashed
lines indicate the average hierarchy load of the network, obtainded
as (h)* = N~! vazl h, yielding to the following values for each net-
work: (h)f.0, = 0.82£0.19, (h)], = 0.99 £ 0.02, {(h){1ewbotic =

Internet
0.99 £ 0.04, and (h) 4. = 0.95 £0.11.

2. Topological properties of similarity backbones
of real networks

First, in Fig. 7, we provide results for the topological fea-
tures of similarity backbones examined in Figs. 4(g)—4(i) for
the rest of real networks under study. Secondly, in Fig. 8, we
cover further topological metrics of the HSBs and showcase
them against the o parameter controlling the filtering proce-
dure.

3. Composition of similarity backbones of real networks

In this section, we sort the nodes in the network from
highest degree to lowest and tag as “hubs” all nodes lying
within a top slice of the list, delimited by a threshold value
7. Subsequently, in Fig. 9, we keep track of the proportion
of such high-degree nodes in every similarity backbone of
increasing « for the 4 real networks. The results are analogous
to those of Fig. 4(f) but obtained for an extended range of ©
values.

4. Evolutionary prisoner’s dilemma game dynamics

First, for the four real networks analysed, we report in
Table S1 the number of nodes and edges in the gccs of ev-
ery similarity backbone and random surrogate along with «
filtering values and number of links removed, respectively.
Secondly, in Fig. 10, we provide analogous plots of those in
Figs. 4(g)-4(i) and 7 for the random surrogates, showcasing
their main topological features. Lastly, in Fig. 11, we explore
the dynamics on similarity backbones (HSB) for further pay-
off values for one of the networks (Music).
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FIG. 8. Topological properties of hierarchical backbones of the four real networks against increasingly restrictive filtering parameter (o)
values. Plots from (a) to (d) show, for increasing values of «: the normalized number of nodes in the backbone; the normalized number of
edges in the backbone; normalized average degree of the backbone and the HSB normalized maximum degree.
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FIG. 11. Fraction of final cooperators against fraction of initial cooperators for similarity backbones and random surrogates of Music
network under different payoffs. The results of the dynamics in each plot are obtained using the following payoft values for the evolutionary
prisoner’s dilemma game: (a) and (¢) T =1.0, R=0.5, P=-0.5, S=—-1.00b)and (f) T =15, R=1.0, P=0.5, §=0.0 (c) and
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reference, indicated by a black line. HSB filtered with o = 0.53 are shown as blue curves with circles whereas HSBs filterd with « = 0.59
correspond to blue curves with triangles in the second row. Results of random surrogates are displayed as grey dashed lines.
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